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ABSTRACT 

SPATIAL VARIABILITY ANALYSIS AND RECLAMATION OF SALINE SODIC-SOILS IN 

THE NORTHERN GREAT PLAINS 

GIRMA A. BIRRU 

2016 

Increased spring rainfall and higher temperatures when combined with changing land-

uses and extensive tile drainage installation have contributed to the development of sodic and 

saline/sodic soils in the Northern Great Plains. The objectives of this dissertation were: 1) 

determine the impact of surface chemical treatments and cover crop on crop yields and soil 

remediation; 2) determine and describe soil spatial variability and develop a model  to identify 

saline-sodic soils; and 3)  evaluate cation impact on dispersion of bentonite clay and selected 

soils. The research was conducted between 2013 and 2016 at Redfield (Argiustolls, Natrudolls, 

Calciustolls), White Lake (Argiudolls, Natrudolls), and Pierpont (Hapludolls, Natrudolls), in 

eastern South Dakota. A randomized complete block design with 4 replications was used.  

Treatments were cover cropping and surface amendments [gypsum, calcium chloride, elemental 

sulfur (S), and no amendments]. A mixture of barley (Horedeum vulgare) and sugar beet (Beta 

vulgaris) was used as the cover crop. At 169 sampling points, yield, soil properties, and 

reflectance were measured.  Spatial class was developed using nugget to sill ratio. The impacts 

of chemical amendments on reducing soil dispersion were determined.  Surface chemical 

amendment and cover crop treatments did not show significant differences in crop yield and soil 

properties in most locations. Hence, the amendments did not work in the Northern Great Plain 

soils with a glacial parent material that has high salt, calcium carbonate, and gypsum levels. 

Other management strategies that can reduce soil pH and mimic the native prairie grasses (deep-
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rooted perennial grasses that can use water from deeper in the soil profile) could be useful for 

future study. The exponential semivariogram model was found to be the optimal model for 

NDVI and yield with the spatial dependence (nugget/sill ratio) of 14.4 and 0%, respectively. 

Similarly, the exponential model was the optimum fit for mollic depth, lime depth, pH, EC, and 

SAR with nugget to sill ratio of 0, 0, 45, 17 and 49 respectively. Local Moran’s I and 

semivariogram modelling of soil attributes and NDVI data could help locate saline hot spots and 

quantify spatial heterogeneity respectively in saline-sodic soils.  Higher turbidity was recorded in 

Na salt treated soil and bentonite clay than Ca and Mg salts. Turbidity was useful in measuring 

clay dispersion and could be used as an indicator of clay dispersion in salt-affected soils.  

 

Keywords: Argiustolls, bentonite clay, Calciustolls, dispersion, Hapludolls, Natrudolls, NDVI, 

semivariograms, SAR, saline-sodic soil, soil spatial variability, surface amendments, turbidity, 

reclamation, water infiltration. 
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1. CHAPTER I

INTRODUCTION AND LITRATURE REVIEW 

Rapid world population growth has increased the demand for agricultural products and has 

sometimes resulted in natural resource degradation. To maintain the food supply and meet the 

growing world population, agricultural production has to grow substantially (Foley et al., 2011; 

Tscharntke et al., 2012). In the last few decades, suitable cultivable land for crop production has 

decreased significantly and the alternative option is improving the productivity of degraded land 

including salt-affected soils (Ladeiro, 2012; Rengasamy, 2006). 

Estimates identify at least  950 million ha of the world’s soils that are salt-affected with 

different proportions of saline and sodic soil (Szabolcs, 1994). These hundreds of millions of 

hectares of land are not used for agricultural production due to high levels of salts (Northcote and 

Srene, 1972) and the increased incidence of salt-affected soils has resulted in environmental 

quality degradation and reduced crop yields (Rengasamy, 2006). Salt-affected soils are found 

almost in all climatic regions, where evapotranspiration exceeds precipitation at least some 

portion  of the year (Rengasamy, 2006; Sumner and Naidu, 1998). 

Secondary dryland salinity (human-induced salinity in non-irrigated areas) has become a 

major concern in the Northern Great Plains (NGP) region of USA (South Dakota, North Dakota, 

and Montana) and Canada (the prairie provinces of Manitoba, Saskatchewan, and Alberta)  

(Pannell and Ewing, 2006). Thus, these salt-affected soils require special management measures 

to improve their productivity and to reduce their environmental impact (Allen et al., 1998; 

Gabrijel et al., 2011). Therefore, a comprehensive understanding of the interrelationship between 

different environmental conditions that affect saline and sodic soils expansion is vital to 
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designing effective and sound management strategies and to reduce the expansion of the 

problem. 

1.1  Source and Classification 

Detailed reviews of the chemistry and formation of salt-affected soils have been reported 

(McBride, 1994; Suarez et al., 2005). Geochemical weathering of parent rock materials is the 

main source of salts in most soils (Maas et al., 1999). However, the expansion of salts in soils 

and water bodies is mainly affected by land-use (Suarez et al., 2005) and precipitation changes. 

During weathering,  the primary minerals react with water and O2 and CO2 to form secondary 

minerals and salts which are transported by water to depressions in the landscape and oceans 

(Maas et al., 1999; Suarez et al., 2005). Salts consist mostly of various proportions of Na+, Ca2+, 

Mg2+, Cl-, SO4
2-, HCO3

- and occasionally K+, CO3
2-, and NO3

- ions (McBride, 1994).  

The processes of salinization and alkalization of soils are the consequences of a number 

of factors of surface and ground waters, soil physical properties, climate, relief, geomorphology, 

and man’s and other biological activities (Maas et al., 1999). Similarly, salinization and 

alkalization of NGP soils are the result of a combination of several factors including: 1) the 

weathering of primary materials with high salt levels (Cerling and Quade, 1993; Kohut and 

Dudas, 1993); 2) changes in land use and vegetation (conversion of grass land to cropland) 

(Anderson et al., 2015; Kim et al., 2012); 3) increases in precipitation (Karl and Knight, 1998); 

and 4) changes in land management practices (no-till, summer fallow, and expansion tile 

drainage) (Karlen et al., 1997). 

Classification of salt-affected soils is based on their chemical properties and ease of 

reclamation. The key chemical properties are pH, electrical conductivity (EC), and exchangeable 
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sodium percentage (ESP) or sodium adsorption ratio (SAR) (Rhoades, 1982; Szabolcs et al., 

1974). According to the US Salinity Laboratory Staff, (1954) salt-affected soils are traditionally 

classified into three groups. These are: 1) saline soils; 2) saline-sodic soils; and 3) sodic soils. 

Saline soils contain soluble salt levels that can affect the growth and productivity of most crop 

plants ( US Salinity Laboratory Staff, 1954; Wallender and Tanji, 2011). Saline soils are 

composed mainly of the ions Cl-, SO4
2- , Na+, Ca2+, Mg2+ and small amounts of NO3

-, HCO3
-, 

and K+. Saline-sodic soils contain both soluble salts and exchangeable sodium in higher 

quantities that affect growth and productivity of the of crop plants ( US Salinity Laboratory Staff, 

1954; Wallender and Tanji, 2011).  Electrical conductivity (EC) is the common method of 

estimating salinity levels in soils. In most cases, the uncontrolled removal of soluble salts from 

saline-sodic soils can result in the formation of sodic (dispersed) soils (Kelley, 1951). Soils that 

contain high levels of exchangeable sodium on their exchange complex which can affect the 

growth and production of most crop plants and dispersed soil structure are sodic soils (Sumner 

and Naidu, 1998).  Commonly, sodic soils have very low permeability (Kelley, 1951; Sumner, 

1993; Sumner and Naidu, 1998). The surface horizons of sodic soils are often dense (compacted) 

with poor (dispersed and columnar) subsurface structure. Soil alkalinity is determined by the 

amount of exchangeable sodium percentage (ESP), the concentration of exchangeable sodium 

(Na+) expressed as percent of Na+ retained by the soils cation exchange capacity (CEC) or by the 

sodium adsorption ratio (SAR). 

1.2 Plant Response and Salt Affected Soils 

Salt stress affects plants in a variety of ways including reducing growth rate (stunted 

growth and darker green leaf color) and changes in plant physiology (Maas and Hoffman, 1977; 
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Munns, 1993, 2002; Netondo et al., 2004; Volkmar et al., 1998). The level of injury and 

reduction in growth varies among crop plants (Maas et al., 1999). However, a high concentration 

of a single salt is likely to cause specific ion effect (toxicity or nutritional imbalances) 

(Bernstein, 1975; Grattan and Grieve, 1999; Lauchli and Epstein, 1990; Shainberg and Letey, 

1984). The osmotic effect (due to high salinity levels) is the main cause of annual crop yield 

reduction in saline soils (Maas et al., 1999; Stavridou et al., 2016). Whereas the impact of high 

sodium levels is on soil structure, nutrient availability, and plant growth (Bernstein, 1975; 

Bertness and Hacker, 1994; Bronick and Lal, 2005) 

1.3 Reclamation and Management 

Reclamation and management strategies of saline, sodic, or saline-sodic soils should be 

developed based on the baseline data of a specific site (Gupta and Abrol, 1990; Qadir and Oster, 

2004; Qadir et al., 2008). The key factor in reclamation of saline soil  is water movement into 

and through soils (Oster et al., 1996). Reclamation can be done by the combination of one or 

more of the following practices: tillage and other cultural practices, water management, tolerant 

crops and cropping systems, and use of soil amendments to improve crop productivity (Kelley, 

1951; Oster et al., 1996). 

Some of the suggested strategies and methods to control salinity and sodicity in the short-

term and medium-term include: the use of quality water related measures including post-planting 

leaching; mulching;  application of farmyard manure; maintaining high levels of available water 

in the plant root zone; use of good quality irrigation water; establishing and rehabilitating sub-

surface drainage systems and drainage canals; and proper land drainage (Gupta and Abrol, 1990; 

Haque, 2006; Heuperman, 1999; Qadir et al., 2003). Additional  strategies could include 
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selection and seedbed preparation including avoiding cultivation of lands with high water tables 

and hard pans; avoiding irregular water intake to prevent accumulation of salts; and minimum 

tillage to avoid soil compaction (Abrol et al., 1988; Lal, 2000) . There are also suggested 

biological and agronomic management measures that could help combat the effect of salt-

affected soil including the selection of salt tolerant crops, growing salinity and sodicity 

ameliorating crop species, and selecting proper seeding or planting methods (Qadir and Oster, 

2004; Rietz and Haynes, 2003). 

Some of the strategies and methods to control salinity and sodicity in the long-term start 

with field observations, investigating the sources, soil classification studies, irrigation effects, 

determine suitable management practices (irrigation, drainage, leaching, groundwater 

management, land levelling, and cultural practices), evaluating the agronomic practices, and 

identifying representative area(s) to test the prescribed practices (Abrol et al., 1988; Oster et al., 

1996; Qadir and Oster, 2004). 

1.4 Objectives 

Experiment 1 (Chapter II): To compare the impact of surface chemical treatments, and cover 

crop on crop yields and soil quality. 

Experiment 2 (Chapter III): to select the appropriate model that can define or predict spatial 

variability of NDVI and yield and to compare the effectiveness of spatial interpolation methods. 

Experiment 3 (Chapter IV): To evaluate the effectiveness of surface chemical amendments and 

cover crops on improving water infiltration in saline-sodic soils and to evaluate the effect of 

variable cation concentrations on the dispersion of bentonite clay and selected soil samples.  

Experiment 4 (Chapter V): Describe spatial variability of selected soil properties. 
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2. CHAPTER II

CROP YIELD AND SOIL PROPERTIES AS AFFECTED BY SOIL SURFACE 

CHEMICAL AMENDMENTS AND COVER CROP 

Abstract 

Changing climatic conditions when combined with an opportunity to install tile drainage has 

placed many Northern Great Plains (NGP)  soils at the tipping point of sustainability.  A field 

study was conducted to compare the impact of surface chemical treatments and cover crop on 

crop yields and soil quality. The eastern South Dakota study locations were White Lake 

(dominant soils: Argiustolls, Natrudolls, and Calciustolls), Redfield (dominant soils: Argiudolls 

and Natrudolls) and Pierpont (dominant soils: Hapludolls and Natrudolls).  A randomized 

complete block design with four replications was used. The treatments were cover crop and 

surface amendments. A barley (Hordeum vulgare L.) and sugar beet (Beta vulgaris subsp. 

vulgaris) mixture was seeded as the cover crop at the rate of 34 kg ha-1 and 4.5 kg ha-1, 

respectively. Soil surface amendments were gypsum (CaSO4·2H2O), CaCl2, and elemental 

sulfur. No amendment was used as a control. Grain yield, stover weight, and other agronomic 

traits were measured. Initial and final soil samples from each plot and three soil depths were 

analyzed for basic soil parameters. Soil chemical properties improved when compared with 

baseline data in all locations and years for surface chemical amendments. However, the surface 

amendments did not show any significant difference in most locations years indicating these 

treatments did not work for glacial parent material soils with high salt levels (calcium carbonate 

and gypsum). Other management strategies that can reduce soil pH and mimic the native prairie 

grasses (deep-rooted perennial grasses that can use water deeper in the soil profile) could be 
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useful for future study. Generally, the spatial area of saline and saline-sodic soils is increasing in 

the NGP region of the United States resulting in a significant reduction of productive of arable 

land due to reduced soil organic matter which affects soil chemical properties and degrades soil 

structure and increases the downstream sediment deposition due to the erosion of sodic soils. 

Keywords: saline-sodic soil, saline soil, sodic soil, sodium adsorption ratio (SAR), gypsum, 

sulfur, calcium chloride, Northern Great Plains, Argiustolls, Calciustolls, Natrudolls, Hapludolls, 

electrical conductivity (EC). 
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2.1 Introduction 

Over 950 million ha of the world’s soils are salt-affected (with different proportions of 

saline and sodic soils, [(Szabolcs, 1994). Soil salinity and sodicity are major forms of land 

degradation affecting the world soils (Qadir and Schubert, 2002; Rengasamy, 2006). Secondary 

dryland salinity (human-induced salinity in non-irrigated areas) has become a major concern in 

the North America Northern Great Plains, NGP (Pannell and Ewing, 2006). 

Factors attributing to increasing salinity include changes in land use and vegetation, 

mainly the conversion of grass land to cropland (Reitsma et al., 2015; Reitsma et al., 2016); 

increases in precipitation (Karl and Knight, 1998); changes in management practices (no-till, 

summer fallow, and expansion of tile drainage) (Karlen et al., 1997); and parent materials 

containing high level of salts (Cerling and Quade, 1993) mainly  Pierre shale (Malo et al., 2010). 

These factors contribute to higher exchangeable sodium concentrations in soil exchange sites 

which lead to natric horizon formation and soil dispersion.  Ultimately, yields can be reduced 

and environmental quality can be diminished (Chi et al., 2012; Hulugalle et al., 2010; 

Rengasamy, 2006). In the NGP regions, drainage has been used to increase the productivity of 

wet soils by removing excess water from the root zone (Olson and DeBoer, 1988). Installation of 

tile drainage has increased in recent years and there have been concerns as to the negative impact 

of tile drainage on the conversion of a large area of saline soils to sodic soils. However, the effect 

of integrated soil and water management and agronomic practices on crop productivity and soil 

health in salt-affected soils of these areas was not investigated. Therefore, this study was 

conducted to determine the effectiveness of selected soil surface amendments and cover crop in 

reducing sodicity, improving the soil physical and chemical properties, and improving crop yield 

in saline-sodic and sodic soils in Eastern South Dakota. 
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2.2 Materials and Methods 

2.2.1 Description of the study sites 

A three-year field study (2013 to 2015 growing seasons) was conducted near Redfield, 

SD (44°58′10″N, -98°27′52″W) and near White Lake, SD (43°40′31″N, -98°45′50″W). 

Additional sites were selected in 2014 and a two-year field study (2014 to 2015 growing 

seasons) was conducted near Pierpont, SD (45°30′31″N, -97°53′50″W). The study sites were 

selected to provide a range of possible salt levels. The dominant soils at the Redfield study site 

were Harmony-Aberdeen silty clay loams (0-2 % slopes), Winship-Tonka silt loams (0-1 % 

slopes), and Great Bend-Beotia silt loams (0-2 % slopes). The dominant soils at White Lake 

were Beadle-Dudley complex (0-3 % slopes), Delmont-Talmo complex (6-15 % slopes), and 

Houdek and Ethan loams (2-6 % slopes) (USDA-NRCS, 2016a; 2016b). Kranzburg-Brookings 

silt loams and Nahon-Aberdeen-Exline silt loams with slopes of 2 to 6 % and 0 to 2 % slopes, 

respectively, were the dominant soil series at the Pierpont study site. Detailed classification of 

soils is provided in the Appendix II (Table 1). The baseline soil chemical properties are 

presented in Table 2.1. 
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Table 2.1 Initial (baseline) average soil chemical composition of the research plots in Redfield 

(2013), White Lake (2013), and Pierpont (2014), SD. 

*44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).

**43°40′31″N, -98°45′50″W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls). 

***45°30′31″N, -97°53′50″W (Dominant soils: Hapludolls, Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
n= 4 (Redfield); n=5 (White Lake); n=5 (Pierpont). 

Table 2.2 Surface amendment application rates by location. 

Salt Treatment 

Rate applied in kg ha-1 (0-15 cm soil depth) 

Redfield* White Lake** Pierpont*** (East) Pierpont (West) 

Gypsum 

(CaSO4·2H2O) 4980 4970 8735 6119 

CaCl2 4258 4281 7517 5224 

Elemental S 923 922 1616 1139 

No Salt 0 0 0 0 

*44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).

**43°40′31″N, -98°45′50″W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls). 

***45°30′31″N, -97°53′50″W (Dominant soils: Hapludolls, Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

2.2.2 Experimental design and treatments 

The research design used at all sites (Redfield, White Lake, and Pierpont) was a 

randomized complete block design with 4 replications. The treatments were cover cropping 

(includes cover crop and non-cover crop) and surface chemical amendments [gypsum 

(CaSO4·2H2O), calcium chloride (CaCl2), elemental sulfur (S) and control (no-application)]. The 

area of each plot was 9 m x 9 m for Redfield and 9 m by 6 m in White Lake and Pierpont. The 

Sites 

Soil 

class 

Electrical 

Conductivity (EC) 

(dS/m) Soil pH 

Sodium Adsorption 

Ratio (SAR) 

Depth (cm) 

0-7.5 7.5-15 15-30 0-7.5 7.5-15 15-30 0-7.5 7.5-15 15-30 

Redfield* Saline 8.0 6.2 6.5 7.3 7.8 7.8 3.6 3.3 3.0 

White 

Lake** 

Saline-

sodic 

10.2 8.2 7.3 7.6 7.4 7.5 17.0 17.8 12.3 

Pierpont*

** 

Saline-

sodic 

20.0 19.0 18.0 7.9 7.5 7.5 19.0 23.0 16.0 
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rate of application of the surface chemical amendments was determined based on the initial soil 

test results. The surface amendment application rate was calculated from the amount of calcium 

(Ca2+) required to be replace sodium (Na+) at each study location for the 0 to 15 cm soil depth. 

The target exchangeable sodium percentage (ESP) value of the soil was 5 (at this ESP the effect 

of Na+ on plants and soils is minimal) (Horneck et al., 2007) and is critical value for most NGP 

soils (Kharel, 2016). The chemical amendment applications rates at each site are presented in 

Table 2.2. Surface treatments were broadcast onto the soil surface and incorporated using a hand-

operated motorized rototiller before planting. 

A combination of sugar beet (Beta vulgaris) and barley (Horedeum vulgare) was used as 

an in-season cover crop.  The seeding rates for sugar beet and barley were 34 kg/ha and 4.5 

kg/ha.  Cover crop planting at each site depended on the growth stage of the main crop (June). 

Accordingly, for the corn (Zea mays) and sorghum (Sorghum bicolor) crops the cover crop was 

planted when the main crop growth stage was between V4 (four visible leaf collars) and V6 

(sixth leaf growth stage). Whereas, for soybeans (Glycine max) cover crops were seeded between 

n V stage- nth trifoliate (V stages continue with the unfolding of trifoliate leaves and the final 

number of trifoliate depends on the soybean variety and the environmental conditions) and R1 

(beginning flowering - plants have at least one flower on any node (Clark, 2008; Fehr et al., 

1971; Vaughan and Evanylo, 1998). 

2.2.3 Data collection and analysis 

Soil Sampling and Chemical Analysis 

Soil samples were taken from each plot in each fall and spring seasons from 2013 to 2015. Soil 

sampling was done at start of the cropping season (May/June) and after harvest 
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(October/November). Soil samples from three different depths (0-7.5, 7.5-15, and 15-30 cm) 

consisted of 10 subsamples collected with a 1.9 cm diameter soil probe.  Each sample was dried 

at 40ᵒC, ground, sieved (<2 mm), stored in plastic bags, and analyzed for pH, electrical 

conductivity (EC), water soluble cations, sodium adsorption ratio (SAR), carbon,  ammonium 

and nitrate-N (Page, 1982) 

Water soluble cation concentrations (Na+, Ca2+, and Mg2+), EC, and pH and were determined 

from a saturated extract. One hundred and fifty grams of air-dry soil was weighed and mixed 

with distilled water until saturated.  The mixture was covered and allowed to equilibrate for 24 

hours. After 24 hours, the soil solution was extracted using a Bϋchner funnel apparatus and 

vacuum. All extracts were stored at 4ᵒC until they were analyzed for pH, EC, Ca, Mg, and Na 

(PC 2700, Oakton Instruments, Vernon Hills, IL) (Rhoades, 1982). Sodium adsorption ratio 

(SAR) was calculated using Equation 2.1. 

(2.1) 

Yield and other agronomic traits 

The plots were planted with corn (Zea mays), sorghum (Sorghum bicolor), and soybean 

(Glycine max), fertilized, and pesticides applied by the producer collaborators (Table 2.3). Grain 

and stover harvest for corn and sorghum were done by hand and, soybean harvest was conducted 

by a combine. A total area of 1.5 m x 3 m (5.25 m2) for corn and sorghum were harvested to 

estimate grain yield and stover biomass. Whereas, a 12 m2 area of soybeans was harvested and 

converted to yield on a hectare basis.  

𝑆𝐴𝑅 =
[𝑁𝑎+]

(
[𝐶𝑎2+] + [Mg2+]

2 )
1/2
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Table 2.3 Crops planted and agronomic management practices at the study locations. 

Soy = soybean (Glycine max); Sor = sorghum (Sorghum bicolor) 

*44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).

**43°40′31″N, -98°45′50″W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls). 

***45°30′31″N, -97°53′50″W (Dominant soils: Hapludolls, Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

Chlorophyll content and stomatal conductance 

Stomatal conductance was measured using Leaf Porometer-Model SC-1. Five plants from 

each plot were measured from 11 am to 1 pm when the sun was overhead on a sunny day. The 

third leaf from the top was measured for all plants. Chlorophyll content was measured using 

MINOLTA chlorophyll meter, SPAD-502. A fully matured leaf was measured for chlorophyll 

content. Eight plants per plots were measured. 

2.2.4 Statistical analysis 

Data was analyzed using SAS version, SAS Institute, Cary, NC (SAS, 2007). Differences 

found between the different treatments were subjected to an analysis of variance (ANOVA). 

Site 

2013 2014 2015 

Crop 
Row Spacing 

(cm) 
Crop 

Row x Plant 

Spacing   (cm) 
Crop 

Row Spacing 

(cm) 

Redfield* Corn 75 Soy 50 Soy 50 

White Lake** Sor 75 Corn 75 Soy 50 

Pierpont*** - - - - Corn 75 
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2.3 Results and Discussion 

2.3.1 Crop response 

Average growing season (April to October) precipitation and temperature for each 

research sites are shown Table 2.4. The monthly precipitation and temperature of the two study 

sites are plotted in Figure 2.1, 2.2, 2.3, 2.4, and 2.5. Note that White Lake precipitation was at 

least 15 cm below average in all years studied, while at Redfield the precipitation was either 

much lower or much higher than long-term average. The growing season temperatures were near 

average for White Lake and much warmer for Redfield. 

Table 2.4 Climatic data of the research sites over 2013 to 2015 years and long-term average. 

Research Sites 

Average April to October 

Precipitation (mm) 

Average April to October 

Temperature (0C) 

2013 2014 2015 
Long-term 

average 
2013 2014 2015 

Long-term 

average 

Redfield* - 46 81 
60 (25-

year) 
- 15 17 14 (25 year) 

White Lake** 51 46 54 69 (30 year) 15 16 17 16(30 year) 

Pierpont*** 66 (9 years average)  16 (9 years average) 

*44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).

**43°40′31″N, -98°45′50″W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls). 

***45°30′31″N, -97°53′50″W (Dominant soils: Hapludolls, Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

Source of climate information: South Dakota Climate and Weather, 2016. 
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Figure 2.1 Twenty-five year and 2014 average monthly temperature and precipitation at 

Redfield, SD. 

Redfield GPS: 44°58′10″N, -98°27′52″W. 

Source:South Dakota Climate and Weather, 2016. 

Figure 2.2 Twenty-five year and 2015 average monthly temperature and precipitation at 

Redfield, SD. 

Redfield GPS: 44°58′10″N, -98°27′52″W. 

Source: South Dakota Climate and Weather, 2016 
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Figure 2.3 Thirty-year and 2013 average monthly temperature and precipitation at White Lake, 

SD. 

White Lake GPS:43°40′31″N, -98°45′50″W. 

Source: South Dakota Climate and Weather, 2016. 

Figure 2.4 Thirty-year and 2014 average monthly temperature and precipitation at White Lake, 

SD. 

White Lake GPS:43°40′31″N, -98°45′50″W. 

Source: South Dakota Climate and Weather, 2016. 

0

20

40

60

80

100

120

0

10

20

30

40

50

60

Apr May Jun July Aug Sep Oct

P
re

ci
p

it
at

io
n

 (
m

m
)

Te
m

p
ra

tu
re

 o
C

Months

Precipitation (mm) Precipitation 30 years average (mm)

Temptarure (°C) Temptarure 30 years average (°C)

0

30

60

90

120

0

10

20

30

40

Apr May Jun July Aug Sep Oct

P
re

ci
p

it
at

io
n

 (
m

m
)

Te
m

p
ra

tu
re

 o
C

Months

Precipitation (mm) Precipitation 30 years average (mm)

Temptarure (°C) Temptarure 30 years average (°C)



22 

Figure 2.5 Thirty-year and 2015 average monthly temperature and precipitation at White Lake, 

SD. 

White Lake GPS:43°40′31″N, -98°45′50″W. 

Source: South Dakota Climate and Weather, 2016. 

In 2013 and 2015 at Redfield, there were no significant differences in corn yield due to 

the treatments, surface amendments, or cover crop. There was also no significant difference on 

the interaction of the treatments (Table 2.5). Similarly, there was no significant difference in 

stover weight due to treatments, surface amendments, or cover crop. 

However, in 2014, one year after treatment application, there was a significant yield 

decline in soybean yields for CaCl2 among the surface amendments treatments (p < 0.001; Table 

2.5). The highest soybean yields were obtained from sulfur treated plots followed by gypsum, 

control, and calcium chloride. The cover crop treatments were not significantly different. During 

the three growing seasons there was no significant yield increase in grain yield between the 

0

30

60

90

120

150

0

10

20

30

40

Apr May Jun July Aug Sep Oct

P
re

ci
p

it
at

io
n

 (
m

m
)

Te
m

p
ra

tu
re

 o
C

Months

Precipitation (mm) Precipitation 30 years average (mm)

Temptarure (°C) Temptarure 30 years average (°C)



23 

control and the three treatments tested and CaCl2 actually significantly lowered soybean yields in 

2014. 

Grain yields of sorghum (2013) and soybean (2015) in White Lake were not significantly 

affected by the surface amendments and cover crop treatments (Table 2.6). The cover crop 

treatments gave numerically better (75% of the time) grain yield than the non-cover crop 

treatments in White Lake 2013 (Table 2.6). The one-year (2015) field trial at Pierpont showed no 

significant differences in both corn grain yield and stover weight due to surface amendments or 

cover crop and there was also no significant difference in the interaction of the treatments. The 

cover crop treatments numerically increased both grain yield and stover weight (Table 2.7), but 

were not statistically different. 

These data demonstrate slight numerical (but not statistically significant) increases in 

grain yield and stover weight in surface amendments plots (mainly sulfur and gypsum) when 

compared to the control that may have resulted from slight change in soil chemical properties 

(reduction in soil pH, EC, and exchangeable sodium), soil physical properties (infiltration and 

water hydraulic conductivity of the soil), or a combination of one or more factors. In sodic soils 

with high levels of lime, sulfur reacts with lime and produce gypsum, a soluble Ca2+ form, which 

can then replace exchangeable Na+ (Stroehlein et al., 1978). The variable responses of the 

treatments over the years could be attributed to differences precipitation, temperature, and soil 

parent materials at each research site. For instance, in year 2015 annual rainfall increased from 

the previous years (see Table 2.4 and Figures 2.1, 2.2, 2.3, 2.4, and 2.5). That may have resulted 

leaching of soluble salts from the topsoil. Previous work has shown improving sodic soil 

productivity with the application of gypsum and sulfuric acid (Abrol and Bhumbla, 1979; Noble 

and Kleinig, 1971; Shainberg et al., 1989; Stroehlein et al., 1978). In addition to increasing the 
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solubility of Ca2+, sulfuric acid increases the availability of essential plant nutrients (Fe, Mn, Zn 

and P) by lowering soil pH. Availability of nutrients as a result of lowering pH could be cited as 

an advantage of sulfur (sulfuric acid) application over using gypsum as amendment (Gupta and 

Abrol, 1990; Qadir et al., 2001; Ryan et al., 1975). Therefore, the results of this study showed 

that adding amendments like sulfur to NGP sodic soils could be more effective than gypsum or 

calcium chloride when reclaiming saline-sodic soils. However, in general the chemical 

amendments in NGP soils did not work as anticipated. 

Table 2.5 Grain yield and dry stover weight as affected by surface amendment and cover crop 

treatments at Redfield, South Dakota.  

Treatments at 

Redfield* 

Corn, 2013 Soybean, 2014 Soybean, 2015 

Grain Yield 

(kg/ha) n 

Stover Yield 

(kg/ha) n 

Grain Yield 

(kg/ha) n 

Grain Yield 

(kg/ha) n 

Surface 

Treatment (ST) 

CaCl2 ‡ 6340 ± 1240 a† 8 3470 ± 1150a 7 1540 ± 1050b 18 2420 ± 1070a 17 

No-treatment 6910 ± 1190 a 6 3550 ± 630a 4 2360 ± 880a 15 2260 ± 920a 9 

Gypsum 

(CaSO4·2H2O) 6850 ± 1480a 

8 

3570 ± 910a 

7 

2740 ± 1080a 

17 

2290 ± 920a 

16 

Sulfur (S) 6920 ± 1020a 7 3130 ± 500a 6 2790 ± 1260a 17 2580 ± 1170a 18 

Cropping System 

(CS) 

Cover crop 6810 ± 1300 a 14 3324 ± 950a 14 2180 ± 1180a 34 2324 ± 1090a 31 

No-cover crop 6700 ± 1180 a 15 3534 ± 700a 10 2530 ± 1180 a 33 2452 ± 990a 29 

ANOVA P>F 

ST 0.662 0.630 0.001 0.640 

CS 0.785 0.447 0.105 0.529 

ST*CS 0.281 0.112 0.397 0.554 

†Means with different letters within a column, treatment are significantly different at P < 0.05. 

‡ Surface Treatment =ST; Cropping System =CS.  

*44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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Table 2.6 Grain yield and dry stover weight as affected by surface amendment and cover crop 

treatments at White Lake, South Dakota.  

Sorghum, 2013 Soybean, 2015 

Treatments at White Lake** Grain Yield (kg/ha) n Grain Yield (kg/ha) n 

Surface Treatment (ST) 

CaCl2 ‡ 3150 ± 1650a† 10 1720 ± 1270 a 8 

No-treatment 3100 ± 1360a 14 1450 ± 1070a 9 

Gypsum (CaSO4·2H2O) 3370 ± 1940a 13 1950 ± 1090a 7 

Sulfur (S) 3480 ± 2310a 18 1900 ± 1060a 9 

Cropping System (CS) 

Cover crop 3549 ± 1740a 

No-cover crop 2996 ± 1930a 

ANOVA P>F 

ST 0.918 0.807 

CS 0.240 - 

ST*CS 0.923 - 

†Means with different letters within a column, treatment are significantly different at P < 0.05. 

‡ Surface Treatment =ST; Cropping System =CS.  

**43°40′31″N, -98°45′50″W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

Table 2.7 Comparison of grain yield and dry stover weight as affected by surface amendment 

and cover crop treatments at Pierpont, South Dakota.  

Treatments at Pierpont*** 

Corn, 2015 

Grain Yield (kg/ha) n Stover Yield (kg/ha) n 

Surface Treatment (ST) ‡ 

CaCl2 1970 ± 1580a† 9 1900 ±  1120 a 13 

No-treatment 1410 ± 1130a 11 1460 ± 680 a 11 

Gypsum (CaSO4·2H2O) 2300± 1550a 10 2240 ± 1290 a 13 

Sulfur (S) 1660± 1100a 11 1940 ± 1790 a 18 

Cropping System (CS) 

Cover crop 2160 ± 1490a 22 2160  ± 1690 a 27 

No-cover crop 1500 ± 1100a 21 1615 ± 840 a 27 

ANOVA P>F 

ST 0.097 0.610 

CS 0.447 0.185 

ST*CS 0.822 0.640 

†Means with different letters within a column, treatment are significantly different at P < 0.05. 

‡ Surface Treatment =ST; Cropping System =CS.  

***45°30′31″N, -97°53′50″W (Dominant soils: Hapludolls, Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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Chlorophyll content and stomatal conductance 

This study showed significant differences in final sorghum populations at White Lake 

among the surface amendments (Table 2.8).  However, there were no significant differences in 

plant populations due to cover crop treatment and the interaction at White Lake 2013. 

Chlorophyll contents for White Lake were not significantly different for surface amendments for 

both years (2013 and 2015). There were no significant differences in stomatal conductance for 

surface amendments in 2013. In 2015, there were significant differences in soybean stomatal 

conductance due to surface treatments (Table 2.8). 

During the three years of study (corn [2013] and soybean [2014, 2015]) final plant 

populations, chlorophyll content, and stomatal conductance measurements at Redfield, SD 

indicate that there were no significant differences in all studied parameters due to surface 

amendments or cover crop (Table 2.9). Cover crop did numerically enhance stomatal 

conductance and plant populations. 

2.3.2 Soil chemical properties 

Surface chemical amendments and cover crop did not show significant differences in 

improving the topsoil properties. Surface soil (0 – 0.5 cm) chemical properties appeared to 

improve (Tables 2.10, 2.11, and 2.12) when compared with the baseline data (Table 2.1). At 

White Lake surface soil pH reduced from 7.6 to 7.3, EC from 10.2 dS/m to 7.9 dS/m, and SAR 

from 17 to 12.6 in sulfur treated plots over the study period. However, when treatments at all 

depths and cover crops were compared to the control there were no significant differences in pH, 

EC, or SAR. Similarly, in Redfield, the surface soil (0 – 7.5 cm) pH was reduced from 7.3 to 7.1 

(gypsum treated plots), EC from 8.0 dS/m to 4.9 dS/m, and SAR from 3.6 to 1.3 during the three-
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year period. However, when treatments at all depths and cover crop were compared to the 

control there were no significant differences in pH, EC, or SAR (except for SAR in soybeans at 

7.5 cm depth in 2015). Soil chemical properties changes due to surface chemical amendments 

and cover crops at different depth are presented in Figures 2.6 to 2.12. 

The changes in soil chemical properties were attributed to the increase in precipitation 

that may have leached the salts from the topsoil and also a slight positive impact of sulfur and 

gypsum on soils, acidifying the soil and making the existing Ca2+ more available in the exchange 

complex. The Ca2+ then replaces Na+ resulting in reductions of soil pH and SAR. Gypsum 

decreases the ratio of sodium to other soluble salts and as a result, reduces sodicity and increases 

Ca2+ exchange system (Frenkel et al., 1989). 

Other research on different soils have shown improvement in soil chemical properties 

after application of gypsum and sulfuric acid (Hamza and Anderson, 2003; Rengasamy and 

Olsson, 1991; Shainberg et al., 1989; Shanmuganathan and Oades, 1983). There have been 

reports of increased yield (Abrol and Bhumbla, 1979; Noble and Kleinig, 1971; Shainberg et al., 

1989) and increased seed emergence (Lauchli and Epstein, 1990; McKenzie et al., 1993) under 

specific soil treatments. 
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Table 2.8 Plant population and selected physiological measurements of sorghum (Sorghum bicolor) and soybean (Glycine max) as 

affected by surface amendment and cover crop treatments in White Lake, SD in 2013 and 2015  

Treatments at 

White Lake** 

Sorghum, 2013 Soybeans, 2015 

Number 

of 

Plants/ha n 

Chlorophyll 

Content (%) N 

Stomatal 

conductance 

(mmol m⁻² s⁻¹) n 

Chlorophyll 

Content (%) n 

Stomatal 

conductance 

(mmol m⁻² s⁻¹) n 

Surface 

Treatment (ST) ‡ 

CaCl2 21310ab† 12 50 ± 5a 12 213 ± 87a 12 48 ± 5 a 12 225 ± 92ab 12 

No-treatment 16810b 15 50 ± 3a 10 209 ± 84a 12 48 ± 4 a 10 225 ± 85ab 12 

Gypsum 

(CaSO4·2H2O) 25800ab 13 51 ± 4a 12 214 ± 63a 12 49 ± 5 a 12 187 ± 66b 12 

Sulfur (S) 32510a 17 50 ± 3a 12 206 ± 98a 12 50 ± 7 a 10 291 ± 180a 12 

Cropping System 

(CS) 

Cover crop 20490a 28 - - - - 

No-cover crop 27720a 29 - - - - 

ANOVA P>F 

ST 0.154 0.923 0.991 0.830 0.172 

CS 0.173 - - - - 

ST*CS 0.977 - - - - 

†Means with different letters within a column, treatment are significantly different at P < 0.05. 

‡ Surface Treatment =ST; Cropping System =CS.  

**43°40′31″N, -98°45′50″W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

Measurements were done between V4 (four leaves) and V6 (six leaves) stage for sorghum and R1 (flowering) stage for soybean. 
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Table 2.9 Plant population and selected physiological measurements of corn (Zea mays) and soybean (Glycine max) as affected by 

under surface amendment and cover crop treatments in Redfield, SD in 2013, 2014, and 2015.  

Treatments at 

Redfield* 

Corn, 2013 

Soybean, 

2014 Soybean, 2015 

Number of 

Plants/ha n 

Chloro-

phyll 

Content 

(%) n 

Stomatal 

conductance 

(mmol m⁻² 

s⁻¹) N 

Chloro- 

phyll 

Content 

(%) n 

Chloro- 

phyll 

Content 

(%) n 

Stomatal 

conductance 

(mmol m⁻² 

s⁻¹) n 

Surface 

Treatment (ST) ‡ 

CaCl2 33970 ± 6520 a† 14 43 ± 5 a 15 234 ± 92 a 15 38 ± 6 a 18 46 ± 15 a 11 364 ± 129 a 9 

No-treatment 35070 ± 5350 a 18 44 ± 6 a 18 236 ± 59 a 18 37 ± 5 a 18 48 ± 9 a 12 352 ± 107 a 10 

Gypsum 

(CaSO4·2H2O) 34720 ± 6070 a 

17 

45 ± 6 a 

18 

242 ± 68 a 

18 

39 ± 5 a 

18 49 ± 14 a 12 379 ± 108 a 11 

Sulfur (S) 36550 ± 5800 a 15 44 ± 5 a 18 226 ± 117a 18 39 ± 6 a 16 49 ± 11 a 10 413 ± 99 a 8 

Cropping System 

(CS) 

Cover crop 35587 ± 5471 a 33 43 ± 5 a 35 259 ± 74 a 35 39 ± 5 a 35 48 ± 15 a 22 407 ± 110 a 19 

No-cover crop 34571 ± 6222 a 31 43 ± 6 a 34 225 ± 94 a 34 38 ± 6 a 35 49 ± 15 a 23 344 ± 102 a 19 

ANOVA P>F 

ST 0.462 0.543 0.855 0.740 0.710 0.692 

CS 0.361 0.731 0.078 0.675 0.261 0.084 

ST*CS 0.952 0.664 0.793 0.443 0.802 0.703 

†Means with different letters within a column, treatment are significantly different at P < 0.05. 

‡ Surface Treatment =ST; Cropping System =CS.  

*44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

Measurements were done between V4 (four leaves) and V6 (six leaves) stage for sorghum and R1 (flowering) stage for soybean. 
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Table 2.10 Soil pH change by depth at White Lake and Redfield, SD. 

†Means with different letters within a column, treatment are significantly different at P < 0.05. 

‡ Surface Treatment =ST; Cropping System =CS.  

*44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).

**43°40′31″N, -98°45′50″W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

Note: Baseline soil samples were taken in May 2013. 

Treatments 

Soil pH After Harvest 

Soybean (Glycine max), 2015 at White Lake** Soybean (Glycine max), 2015 at Redfield* 

0-7.5cm n 7.5-15cm n 15-30cm n 0-7.5cm n 7.5-15cm n 15-30cm n 

Baseline soil pH 7.6 ± 0.2 6 7.8 ± 0.1 6 7.8 ± 0.2 6 7.3 ± 0.3 5 7.8 ± 0.4 5 7.8 ± 0.3 5 

Surface 

Treatment (ST)‡ 

No-treatment 7.4 ± 0.5 a† 8 7.4 ± 0.3 a 7 7.5 ± 0.3 a 9 7.1 ± 0.6 a 13 7.7 ± 0.3 a 15 7.7 ± 0.3 a 15 

Gypsum 

(CaSO4·2H2O) 7.5 ± 0.3 a 

9 

7.4 ± 0.4 a 9 7.4 ± 0.1 a 

3 

7.1 ± 0.5 a 17 7.7 ± 0.4 a 

15 

7.6 ± 0.2 a 

17 

Sulfur (S) 7.3 ± 0.3 a 6 7.4 ± 0.3 a 7 7.4 ± 0.5 a 8 7.8 ± 0.5 a 18 7.6 ± 0.3 a 18 7.6 ± 0.3 a 18 

Cropping System 

(CS) 

Cover crop 7.3 ± 0.3 a 6 7.5 ± 0.3 a 8 7.5 ± 0.4 a 7 8.0 ± 0.6 a 25 7.8 ± 0.4 a 24 7.7 ± 0.3 a 26 

No-cover crop 7.5 ± 0.4 a 17 7.4 ± 0.4 a 15 7.4 ± 0.4 a 13 7.8 ± 0.6 a 23 7.6 ± 0.3 b 24 7.6 ± 0.2 a 24 

ANOVA P>F 

ST 0.426 0.623 0.711 0.438 0.641 0.790 

CS 0.463 0.526 0.882 0.307 0.221 0.189 

ST*CS 0.528 0.396 0.642 0.425 0.422 0.368 
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Table 2.11 Electrical conductivity (EC) change by soil depth at White Lake and Redfield, SD. 

†Means with different letters within a column, treatment are significantly different at P < 0.05. 

‡ Surface Treatment =ST; Cropping System =CS.  

*44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).

**43°40′31″N, -98°45′50″W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls). 

dS/m = decisiemens per meter 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016. 

Note: Baseline soil samples were taken in May 2013. 

Treatments 

After Harvest EC (dS/m) 

Soybean (Glycine max), 2015 at White Lake** Soybean (Glycine max), 2015 at Redfield* 

0-7.5cm n 7.5-15cm n 15-30cm n 0-7.5cm n 7.5-15cm n 15-30cm n 

Baseline (EC in 

dS/m  ) 10.2 ± 2.4 6 8.2 ± 1.0 6 7.3 ± 1.1 6 8.0 ± 2.4 5 6.2± 2.1 5 6.5 ± 2.5 5 

Surface 

Treatment (ST)‡ 

No-treatment 9.2 ± 3.5 a† 8 8.7 ± 2.7 a 7 8.5 ± 1.7 a 9 5.6 ± 3.8 a 13 4.9 ± 3.1 a 15 4.8 ± 2.6 a 15 

Gypsum 

(CaSO4·2H2O) 9.8 ± 3.2 a 9 9.2 ± 1.8 a 9 9.4 ± 1.3 a 3 5.4 ± 2.5 a 17 5.7 ± 2.8 a 15 4.9 ± 2.0 a 17 

Sulfur (S) 7.9 ± 6.2 a 6 7.7 ± 3.3 a 7 8.2 ± 1.9 a 8 4.9 ± 3.0 a 18 4.2 ± 3.2 a 18 4.3 ± 2.5 a 18 

Cropping System 

(CS) 

Cover crop 7.3 ± 2.0 a 6 8.2 ± 2.7 a 8 9.3 ± 1.0 a 7 5.6 ± 3.3 a 25 5.1 ± 3.1 a 24 4.6 ± 2.5 a 26 

No-cover crop 9.8 ± 3.9 a 17 8.7 ± 2.2 a 15 8.1 ± 1.8 a 13 5.0 ± 2.6 a 23 4.8 ± 3.1 a 24 4.7 ± 2.8 a 24 

ANOVA P>F 

ST 0.336 0.336 0.396 0.594 0.229 0.640 

CS 0.131 0.131 0.085 0.346 0.614 0.860 

ST*CS 0.425 0.425 0.905 0.463 0.343 0.211 
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Table 2.12 Sodium adsorption ratio (SAR) change by soil depth at White Lake and Redfield, SD. 

†Means with different letters within a column, treatment are significantly different at P < 0.05. 

‡ Surface Treatment =ST; Cropping System =CS.  

*44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).

**43°40′31″N, -98°45′50″W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

Note: Baseline soil samples were taken in May 2013. 

Treatments 

After Harvest SAR 

Soybean (Glycine max), 2014 at White Lake** Soybean (Glycine max), 2015 at Redfield* 

0-7.5cm n 7.5-15cm n 15-30cm n 0-7.5cm n 7.5-15cm n 15-30cm n 

Base line 17 ± 5.2 6 17.8 ± 4.1 6 12.3 ± 2.3 6 3.6 ± 1.5 5 3.3 ± 1.0 5 3.0 ± 2.6 5 

Surface 

Treatment (ST) 

No-treatment 13.6 ± 3.8 a 10 12.4 ± 2.7 a 11 12.5 ± 2.2 a 9 2.5 ± 1.9 a 13 3.1 ± 4.2 a 15 3.0 ± 2.0 a 15 

Gypsum 

(CaSO4·2H2O) 13.7 ± 4.3 a 

11 

11.3 ± 4.2 a 

11 

10.4 ± 3.7 a 10 1.8 ± 1.1ab 17 3.6 ± 3.6 a 

15 

2.8 ± 2.0 a 

17 

Sulfur (S) 12.6 ± 2.6 a 10 10.4 ± 4.4 a 10 10.5 ± 2.7 a 11 1.3 ± 0.8 b 18 2.5 ± 0.8 a 18 2.6 ± 2.1 a 18 

Cropping System 

(CS) 

Cover crop - - - 2.2 ± 1.5 a 25 2.8 ± 3.1 a 24 2.7 ± 1.9 a 26 

No-cover crop - - - 1.5 ± 1.0 a 23 3.3 ± 2.9 a 24 3.0 ± 2.1 a 24 

ANOVA P>F 

ST 0.850 0.570 0.237 0.056 0.701 0.896 

CS 0.061 0.596 0.606 

ST*CS 0.056 0.285 0.063 
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Figure 2.6  Electrical conductivity (EC) as affected by cover crop at different soil depths at 

White Lake, SD (3 years after treatment applied). 

GPS: 43°40′31″N, -98°45′50″W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, 

Calciustolls).  

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

Figure 2.7  Electrical conductivity (EC) as affected by cover crop at different soil depths at 

Redfield, SD (3 years after treatment applied). 

GPS: 44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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Figure 2.8 Electrical conductivity (EC) as affected by surface chemical amendments at different 

soil depths at White Lake, SD (3 years after treatment applied). 

GPS: 43°40′31″N, -98°45′50″W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, 

Calciustolls).  

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

Figure 2.9 Electrical conductivity (EC) as affected by surface chemical amendments at different 

soil depths at Redfield, SD (3 years after treatment applied). 

GPS: 44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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Figure 2.10 Sodium adsorption ratio (SAR) as affected by surface chemical amendments at 

different soil depths at White Lake, SD (3 years after treatment applied). 

GPS: 43°40′31″N, -98°45′50″W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, 

Calciustolls).  

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

Figure 2.11 Sodium adsorption ratio (SAR) as affected by cover crop  at different soil depths at 

Redfield, SD (3 years after treatment applied). 

GPS: 44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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Figure 2.12 Sodium adsorption ratio (SAR) as affected by surface chemical amendments at 

different soil depths at Redfield, SD (3 years after treatment applied). 

GPS: 44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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2.4 Conclusions 

The area coverage of saline and saline sodic soils is increasing in the NGP region of the 

United States and that is resulting in a significant reduction of productive of arable land 

(degraded soil organic levels, soil chemical properties, and soil structure) and increases the 

downstream sediment deposition (due to increased erosion rates associated with sodic soils).  

The effects of chemical amendments on improving crop yield have been shown in earlier 

research in other parts of the world; however the information on the role of these amendments in 

NGP saline-sodic soils is scarce. The results of this study showed that the selected surface 

treatments of gypsum, CaCl2, and sulfur did not significantly enhance crop yield and most soil 

properties studied. Although, there were a few encouraging responses of gypsum and elemental 

sulfur amendments, the effect of these treatments both on crop and soil has to be monitored for 

the long-term and under a larger variety of crops, parent materials, and climatic conditions. 

The use of cover crops in saline-sodic soil management was mixed in increasing crop 

yields, improving soil quality (soil pH, EC, and exchangeable sodium), and water infiltration in 

some of the tested sites. Elemental sulfur and gypsum were usually, numerically better than 

calcium chloride and control. Information on the role of perennial  and annual ameliorating crops 

in improving saline-sodic soils needs to be further examined in the future research. The effect of 

chemical amendments on nutrient availability the impacts of amendments (reclamation) on soil C 

level in the salt-affected areas of NGP soils are other important areas of future research. 

Designing a system that mimic the use of deep rooted prairie grasses that utilize the water in 

most of the year could be useful. 
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3. CHAPTER III 

SPATIAL MODEL DEFINING NDVI AND CORN YIELDS IN SALINE-SODIC 

SOILS 

 

Abstract 

 

Geospatial tools coupled with remote sensing methods can assist in making sound natural 

resource management decisions. The objective of this chapter is to select appropriate models that 

can define or predict spatial variability of Normalized Difference Vegetation Index (NDVI) and 

crop yield. This experiment was conducted at Pierpont, SD [44°55′30″ to 45°28′30″N and 

97°50′9″ to 98°28′34″W in Major Land Resource Area (MLRA) 55C]. The dominant soils in the 

study area were Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls. 

A total of 169 grid points (62 x 62 m grid) were laid out in the field in 2014. Reflectance (485-

1050 nm of the reflectance bands) readings were made using crop scan [Multispectral 

Radiometer (MSR)] between seeding and the corn (Zea mays) growth stage V1.  Corn yields 

were measured with a yield monitor at harvest. The normalized difference vegetation indices 

[NDVI = (NIR - Red) / (NIR + Red)] was computed from reflectance in red and near infrared 

(NIR) bands.  Semi-variograms for the spherical, exponential, and Gaussian models were 

determined.  The exponential semivariogram model for yield and NDVI was the optimal model 

with the spatial dependence (nugget/sill ratio) of 14.4 and 0 %, respectively. The spatial 

dependence also extends up to a range of 178 m and 105 m for NDVI and yield, respectively. 

Comparative analysis of spatial interpolation methods (Trend Surface Analysis, Inverse Distance 

Weighting, Ordinary Kriging, and Linear Regression models) using elevation as an independent 

variable were used to map NDVI and yield at the field scale. The Ordinary Kriging was the 
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optimal model for NDVI with a correlation coefficient of 0.544 (R2=0.33) and root mean square 

error (RMSE) of 0.089 when compared to other methods.  For yield the Inverse Distance 

Weighting (IDW) method with class of nearest neighbor (k) = 2 was found to be optimal with a 

correlation coefficient of 0.413 (R2= 0.24) and RMSE of 0.223. Therefore, the study clearly 

showed that geospatial models coupled with remote sensing methods can be used as potential 

tools to analyze and predict the spatial dependence of NDVI values and crop yield, and aid in the 

spatial prediction of un-sampled spatial variables in salt-affected soils.  

Keywords: Argiudolls, Calciaquolls, Endoaquolls, Hapludolls, interpolation, Natrudolls, 

radiometer, salinity, Calciudolls, Normalized Difference Vegetation Index (NDVI), 

semivariograms, spatial interpolation methods, sodicity. 
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3.1 Introduction 

Worldwide saline and Na+ affected soils are separated into at least three groups: saline 

(high total salts), saline/sodic (high total salts and Na+), and sodic (high Na+) (Halvorson and 

Rhoades, 1976). The classification of salt-affected soils into one of these groups is based on the 

soil electrical conductivity (EC) and the amount of Na+ on the cation exchange sites expressed as 

ESP (exchangeable Na+ percentage) or SAR (Na+ adsorption ratio). Historically, sodic soils are 

characterized as having a Na+ adsorption ratio (SAR) > 13, whereas in the NGP, soils are at risk 

when the SAR > 4 (He et al., 2014; Qadir et al., 2007).  Saline soils have high salt 

concentrations and soil electrical conductivities, and these soils reduce yields by decreasing seed 

germination and slowing plant growth due to high osmotic forces.  Sodic soils have high Na+ 

concentrations which can result in soil dispersion, decreased water infiltration, and increased 

erosion.   

The development of saline soils is growing problem and in the Northern Great Plains 

(NGP) high salinity and sodic concentrations impact productivity on over 10 million hectares of 

land.  World-wide high salt concentrations impact growth on over 930 million hectares of land 

(Cook and Muller, 1997; Szabolcs, 1989). Historically, salinity and sodicity problems were most 

often observed on irrigated lands, whereas in the NGP salinity and sodicity problems are often 

observed in dryland agriculture (Cheeseman, 2015; Rengasamy, 2006). 

To develop effective solutions, which may include reseeding to grasslands or installing 

tile drainage, the extent of the problem must be identified and the effectiveness of remediation 

measured assessed.  Techniques for characterizing a soil’s saline and sodic characteristics 

include measuring, pH, electrical conductivity, and ESP and/or SAR.  High salt areas can be 

identified by conducting a visual survey of the area, conducting an apparent electrical 
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conductivity survey using a Geonics EM 38 (Geonics Inc., Mississauge, Ontario, Canada, 2016) 

or the Veris Soil EC Mapping System (Veris Technologies, Salina, Kansas, 2016), tracking 

changes in yield over multiple years, and collecting and analyzing soil samples for electrical 

conductivity (EC).  Historically, saline management recommendations were based on the EC of a 

saturated paste extraction (ECe).  Most commercial soil testing laboratories do not analyze EC 

from a saturated paste as part of their “normal” analysis (Owen, 2014).  They generally 

determine the EC of a solution containing 10 mL (= 10 g) of water to 10 g of soil (1:1).  The soil 

water extracted from a 1:1 extraction and saturated paste extraction produce different EC values.   

Geospatial techniques coupled with remote sensing may overcome these barriers  (Barnes 

et al., 2003). In the past, several methods have been used to identify and map salt-affected areas 

(Eldiery et al., 2005). However, spatial models that can easily determine the spatial variability of 

some selected attributes on salt affected soils were not investigated. Semivariograms are a 

graphical representation of the spatial variability in a given dataset (Cohen, 1994) and  help to 

determining the spatial autocorrelation of spatial variables. (Lam, 1983). Comparing the different 

interpolation methods could also help to select the best way to map NDVI, yield, and other soil 

attributes.  

The objectives of this study were to select appropriate models that can define or predict 

spatial variability of NDVI and yield and compare the efficiency of spatial interpolation 

methods. 
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3.2 Materials and Methods 

The experiment was conducted in Pierpont in Day County, South Dakota (44°55′30″ to 

45°28′30″N and  97°50′9″ to 98°28′34″W, representing Major Land Resource Area, MLRA, 

55C), in April 2014. A yield interpolated map was plotted (Figure 3.1). The dominant soils in the 

study area were Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls 

(USDA-NRCS, 2016a; 2016b). Detailed soil and site characteristics of the study area are shown 

in Appendix II. 

 

Figure 3.1 The study area plotted with 2014 corn (Zea mays) yield values from yield monitor at 

each data point  

Coordinates: 44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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3.2.1 Data analysis 

A total of 169 grid points (62 x 62 m) were laid out in the field.  Multispectral Radiometer 

(MSR) readings was taken by holding the MSR 2 m above the surface and 1 m diameter data was 

collected at each grid point in corn (Zea mays) field in April 2014. The readings were taken 

between 10 am to 3 pm. Reflectance readings bands range from 485 to 1050 nm.  Reflectance 

reading broad bands included: blue, 485 ± 2.1 nm; green, 560 ± 2.6 nm; red, 660  ±3.4 nm; NIR, 

830  ± 4.3; and MIR, 1650  ± 5.5; and narrow bands included: 510 ± 2.3 nm; 566  ± 2.7 nm; 610 

± 3.0 nm; 661  ± 3.4; 710  ± 3.8 nm; 760  ± 4.0 nm; 810  ± 4.2; 840 ± 4.4 nm; 870  ± 4.5 nm; 905  

± 4.5 nm; and 1050 ± 4.9 nm. 

The following equation was used to calculate percentage reflectance: 

 

            (3.1) 

The normalized difference vegetation indices (NDVI) were computed using the following 

equation: 

 

          (3.2) 

Grain yield was measured at the site by a combine equipped with a yield monitoring 

system and Global Positioning System (GPS).  Standard protocols were followed to insure data 

accuracy.  Yield data at each grid point was extracted from the yield monitor data using SMS™ 

Ag Leader* developed software (Ag Leader Inc., 2016). 

*SMS™  is software that helps to make management decisions and is  produced by Ag Leader. The use of a trade or 

commercial name is for educational purposes and does not imply endorsement of the product by the author, the 

Agronomy, Horticulture and Plant Science Department, or South Dakota State University. 

 

NDVI =
NIR −  Red

NIR +  Red
 

Reflectance % = (
𝐷𝑜𝑤𝑛 𝑠𝑒𝑛𝑠𝑜𝑟 𝑟𝑒𝑎𝑑𝑖𝑛𝑔

𝑈𝑝 𝑠𝑒𝑛𝑠𝑜𝑟 𝑟𝑒𝑎𝑑𝑖𝑛𝑔
) 𝑥 100 
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 Digital elevation map (DEM) of 30m x 30m was downloaded from United States 

Geological Survey (USGS, 2016). Landfire website and elevation points were extracted from 

DEM. (http://www.landfire.gov/NationalProductDescriptions7.php).  

 

Semi-variances were calculated using Equation 3.3, where γ(h) is the semi-variance for 

lag distance h, N is the number of samples, A is the test value for sample i, X is the location of 

sample i. and Xi + h represents the distance between two sample locations (Nielsen and 

Wendroth, 2003).    

 

(3.3) 

     

The selected interpolation methods tested were: Trend Surface Analysis (TSA), Inverse 

Distance Weighting (IDW), Ordinary Kriging (OK), and Linear Regression (LR) using elevation 

as an independent variable. These interpolation models were tested to map NDVI and crop yield. 

Finally, interpolation accuracy was evaluated using Root Mean Square Error (RMSE) and 

correlation coefficient (Trangmar et al., 1985). 

The relationship between distance and the semi-variance values were determined using 

the spherical, exponential, and Gaussian models.  Crop yield and NDVI maps were developed.  

Interpolation accuracy was evaluated using RMSE and correlation coefficient (r). 

 

 

 

 

𝛾(ℎ) =
1

2𝑁(ℎ)
 ∑ [𝐴𝑖(𝑋𝑖) −  𝐴𝑖(𝑋𝑖 + ℎ)]2

𝑁(ℎ)

𝑖=1

 

http://www.landfire.gov/NationalProductDescriptions7.php
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The RMSE was calculated: 

n

XX
RMSE

n
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Where,  Xobs is observed values and Xmodel is modelled values at time/place i. 
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3.3 Results and Discussion 

 

The NDVI data was positively skewed with the Skewness and  Kurtosis values of 0.25 

and 2.28, respectively. Similarly, the yield data was positively skewed with the skewness and  

Kurtosis values of 2.82 and 120.2, respectively. The kurtosis for a normal distribution is 3.0. The 

NDVI kurtosis value indicates that there are fewer and less extreme outliers when compared to a 

normal distribution while for yield has more outliers and is more peaked than normal. 

If the (nugget/sill)*100 is < 25% then the spatial distribution of the data has a strong 

relationship, while 26-75% is a moderate relationship, and > 75% is a weak spatial dependence. 

Whereas, 100% shows there is no spatial correlation (Di Virgilio et al., 2007). Accordingly, in 

our data the best spatial dependence of NDVI and crop yield was found by using the Exponential 

semivariogram models, when compared to Spherical and Gaussian due to the lower nugget to sill 

ratio criteria (See Figures 3.2a, 3.2b, and Tables 3.1, 3.2).  
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Figure 3.2  2014 Exponential semivariogram models fit for Normalized Difference Vegetation 

Index- NDVI (a) and corn (Zea mays) yield (b) at Pierpont. 

Coordinates 44°55′30″ to 45°28′30″ N and  97°50′9″ to 98°28′34″ W. Dominant study site soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS, 

2016b]. 
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Table 3.1  2014 Semivariogram models and parameters for models for Normalized Difference 

Vegetation Index (NDVI) at Pierpont, SD. 

*44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W. (Dominant soils: Calciaquolls, 

Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS, 2016b]). 

C
0
 = Nugget Semi-variance,  C

1 
= Partial sill semi-variance 

 

Table 3.2  2014 Semivariogram models and parameters for models for corn (Zea mays) yield at 

Pierpont, SD. 

*44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W. (Dominant soils: Calciaquolls, 

Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS, 2016b]). 

C
0
 = Nugget Semi-variance, C

1 
= Partial sill semi-variance 

 

 

 

 

 

 

 

Parameters 

at Pierpont* 

Semivariogram 

Model 

Nugget 

(C
0
) 

Sill 

(C
0
+C

1
) 

Nugget/Sill 

(%) 

Range  

(m) 

NDVI 

  

  

Spherical 0.00404 0.0056 71.7 178 

Exponential 0.00125 0.0087 14.4 60 

Gaussian  0.00573 0.0040 142.1 101 

Parameters 

  at Pierpont* 

Semivariogram 

Model 

Nugget 

(C0) 

Sill 

(C0+C1) 

Nugget/Sill 

(%) 

Range 

(m) 

Yield 

  

  

Spherical 0.0241 0.025 95 105 

Exponential 0 0.051 0 33 

Gaussian  0.0088 0.040 22 34 
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Table 3.3  2014 Comparative analysis of interpolation methods and their correlation coefficient 

and Root Mean Square Error (RMSE) for Normalized Difference Vegetation Index (NDVI) at 

Pierpont, SD. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TSA= Trend Surface Analysis, TS=Trend Surface IDW= Inverse Distance Weighting 

OK= Ordinary Kriging, LR el IV= Linear regression using elevation as an independent variable 

k= class of nearest neighbor 

*44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: Calciaquolls, 

Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS, 2016b]). 

 

Spatial interpolation methods were tested for interpolating NDVI and crop yield, Tables 

3.3 and 3.4, respectively. Ordinary Kriging was found to have relatively highest correlation 

coefficient (0.544) or R2= 0.3 and lowest RMSE (0.089), respectively for NDVI and therefore 

was selected for interpolation.  Whereas, Inverse Distance Weighting (IDW) with k = 2 was 

found to have relatively highest correlation coefficient (0.413) or R2= 0.2 and lowest RMSE 

(0.223) for yield and therefore was selected for interpolation.  

 

 

 

 

Element at 

Pierpont* 

Interpolation 

Method 

Correlation 

Coefficient 
RMSE 

NDVI 

TSA: Linear TS 0.422 0.096 

TSA: Quadratic  TS 0.429 0.096 

IDW: k = 1 0.463 0.099 

IDW: k = 2 0.478 0.094 

OK  0.544 0.089 

Linear Regression (LR) 0.460 0.094 
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Table 3.4 Comparative analysis of interpolation methods and their correlation coefficient and 

Root Mean Square Error (RMSE) for 2014 corn (Zea mays) yield at Pierpont, SD. 

 

 

 

 

 

 

 

 

 

 

 

TSA= Trend Surface Analysis, TS=Trend Surface, IDW= Inverse Distance Weighting, OK= 

Ordinary Kriging, k= class of nearest neighbor 

*44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″N (Dominant soils: Calciaquolls, 

Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS, 2016b]). 

 

Figures 3.3, 3.4, and 3.5 demonstrate the interpolated surfaces of 2014 corn yield using 

different interpolation methods. The lower values of yield were obtained in areas where there 

were low NDVIs and that could be attributed to lower elevations, accumulation of salts, water 

logging, or a combination of one or more factors. Figures 3.6, 3.7, 3.8, and 3.9 shows the 

interpolated surfaces of NDVI using different interpolators. Previous research on yield variability 

on a small plots and large fields have shown similar result of variation of yield in time and space 

due to soil and other climatic factors (Bhatti et al., 1991; Di Virgilio et al., 2007; Vieira and Paz 

Gonzalez, 2003). Characterization of spatial heterogeneity of landscape vegetation cover from 

the modeling of the variogram of high spatial resolution NDVI data showed that land use is a 

major factor for variability (Garrigues et al., 2006). In our study differences in the NDVI values 

could be as result of differences in soil property (particularly, EC, and SAR) that ultimately 

resulted in differences in 2014 corn yield and NDVI values.  

.

Element at 

Pierpont* 

Interpolation 

Method 

Correlation 

Coefficient 
RMSE 

Yield 

TSA: Linear TS 0.262 0.235 

 TSA: Quadratic TS 0.364 0.228 

IDW: k = 1 0.368 0.233 

IDW: k = 2 0.413 0.223 

OK 0.396 0.235 
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Figure 3.3 Corn (Zea mays) yield (2014) interpolated surface map of the study area (Pierpont, 

SD) using the Inverse Distance Weighting interpolation method. 

Pierpont GPS: 44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS, 

2016b]). 

 

 

Figure 3.4 Corn (Zea mays) yield (2014) interpolated surface map of the study area (Pierpont, 

SD) using Trend Surface interpolation method. 

Pierpont GPS:44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS, 

2016b]). 
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Figure 3.5 Corn (Zea mays) yield (2014) interpolated surface map of the study area (Pierpont, 

SD) using the Ordinary Kriging interpolation method. 

Pierpont GPS:44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS, 

2016b]). 

 

 
 

Figure 3.6 Normalized Difference Vegetation Index (NDVI bare soil) interpolated surface map 

(2014) of the study area (Pierpont, SD) using the Ordinary Kriging interpolation method. 

Pierpont GPS:44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS, 

2016b]).
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Figure 3.7 Normalized Difference Vegetation Index (NDVI V1) interpolated surface map (2014) 

of the study area (Pierpont, SD) using the Ordinary Kriging interpolation method. 

Pierpont GPS:44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS, 

2016b]). 

Figure 3.8 Normalized Difference Vegetation Index (NDVI V4) interpolated surface map (2014) 

of the study area (Pierpont, SD) using the Ordinary Kriging interpolation method. 

Pierpont GPS:44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS, 

2016b]). 
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Figure 3.9 Normalized Difference Vegetation Index (NDVI V6) interpolated surface map (2014) 

of the study area (Pierpont, SD) using the Ordinary Kriging interpolation method. 

Pierpont GPS:44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS, 

2016b]). 

 

3.4 Conclusions 

 

Geospatial models coupled with remote sensing methods, including MSR, were used to 

analyze and predict the spatial dependence of NDVI values and corn yield and gave insight about 

for spatial prediction of unknown spatial variables. However, detailed analysis of other soil 

attributes are needed to give a better understanding of spatial variability at different scales. In 

future studies, unmanned aircraft should be tested with their high resolution image capability. In 

addition, testing more and relevant interpolation methods and other geospatial approaches, 

including multivariable and spatial classification techniques, should be done to determine if they 

would be more helpful in understanding the relationship of the different attributes. The study of 

reflectance signatures at different crop growth stages as an indicator of plant stress and salt level 

could also be another area of future research. 
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4. CHAPTER IV 

WATER INFILTRATION AND SOIL DISPERSION AS AFFECTED BY 

AMMENDEMENTS 

Abstract 

 

Soils with sodic properties significantly affect water infiltration by altering soil physical 

and chemical properties leading to runoff and loss of topsoil through erosion. Surface 

amendments (SA) and cropping systems (CS) are used to reduce the sodium level in the soil and 

improve soil physical properties. The objectives of this study were 1) compare different soil 

remediation strategies particularly the influence of SA (gypsum, calcium chloride, and elemental 

sulfur) and CS in a corn (Zea mays) soybean (Glycine max) rotation system on water infiltration 

by double-ring (ponded) and Cornell sprinkler infiltrometer, and 2) evaluate the effect of variable 

cation concentrations on the dispersion of bentonite clay and selected soil samples. A field study 

was conducted in three locations: White Lake (2013-2015), Redfield (2014-2015), and Pierpont 

(2014-2015) in Eastern South Dakota. Infiltration rates (IR) and runoff rates (ROT) were 

computed. A randomized complete block design with 4 replications was used. The treatments 

were: cover crop and surface amendments. The cover crop was a mixture of barley (Hordeum 

vulgare L.) and sugar beet (Beta vulgaris) seeded at the rate of 34 kg ha-1 and 4.5 kg ha-1, 

respectively. There were significant differences among the chemical amendments in 2013 in 

White Lake and 2014 and 2015 in Redfield. Cover crop treatments significantly improved 

ponded infiltration at Pierpont in 2014. The infiltration rate and runoff rate measurements using 

Cornell infiltrometer showed no significant differences among treatments in all locations. The 

results of this study suggest that chemical amendments influenced double-ring water infiltration 
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more than the cover crop treatments in White Lake and Redfield, whereas, cover crop influenced 

infiltration more at Pierpont. Monitoring of the experiment in the long-term could be useful.  

Significantly higher turbidity was measured in NaCl solutions at different concentrations when 

compared with similar concentrations of CaCl2 or MgCl2 solutions. There was no significant 

difference in CaCl2 and MgCl2 solutions at variable concentrations. Therefore, effect of Mg2+ 

and Ca2+ solutions on clay dispersion demonstrates that the two ions have more flocculating 

effect than dispersion at the concentrations tested. Turbidity can be used as an indicator/measure 

of clay dispersion potential in salt-affected soils. 

Keywords: Bentonite clay, Cornell sprinkler infiltrometer, dispersion, double-ring infiltration, 

flocculation, sodic properties, turbidity, saline, sodic, saline-sodic. 
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4.1 Introduction 

 

Saline-sodic soil genesis is a major form of soil degradation resulting in the decline of 

agricultural productivity and environmental quality. Millions of hectares of these soils have 

formed worldwide. With improved management  these soils could produce more food, fiber, and 

energy to feed the ever increasing world population (Qadir et al., 2007).  In addition, above 

average precipitation and changes in land use and management in the last few decades coupled 

with extensive tile drainage installation have aggravated saline-sodic soil formation (Franzen, 

2007). 

Previous reports have identified factors that affect water infiltration into the soil 

including: soil structure, texture, pores (size, distribution, and orientation), slope, and organic 

matter content (Bronick and Lal, 2005; Tisdall and Oades, 1982); soil vegetative cover (Meek et 

al., 1992);  antecedent water content and rainfall intensity (Radke and Berry, 1993); and water 

management (Agassi et al., 1986). Soils with sodic properties affect water infiltration into soil by 

altering soil physical properties (structure, porosity, and bulk density) that ultimately lead to 

increased runoff and loss of topsoil (Chi et al., 2012; Hulugalle et al., 2010; Rengasamy and 

Olsson, 1991). Clay-size fraction dispersion caused by high exchangeable Na+ levels causes soil 

structural degradation and poor permeability (Amezketa, 1999; Sumner, 1993). 

Water turbidity is a measure of water clarity and measured by nephelometric turbidity 

units (NTU) (Davies‐Colley and Smith, 2001). Sediments from surface erosion are a major 

source of turbidity (Alexander et al., 1998; Lettenmaier et al., 1991; Wong et al., 2010). Sodic 

conditions can cause soil organic matter loss by increasing dispersion of aggregates and, 

increasing bulk density (Wong et al., 2010).  
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Reclamation of sodic soils using tillage has been found to be effective in improving water 

infiltration and reducing runoff (Hulugalle et al., 2010), however the interactive effect of 

different chemical amendments and cropping systems on Northern Great Plains (NGP) saline-

sodic soils has not been tested. The objectives of this study were: to evaluate the effectiveness of 

surface chemical amendments and cover crops in improving water infiltration measured using 

the ponded infiltration method in saline-sodic soils; and to evaluate the effect of selected cation 

concentrations on the dispersion and flocculation of bentonite clay and selected NGP soils. 

 

4.2 Materials and Methods 

4.2.1 Sites description and experimental set up  

 

A field study was conducted in three locations: White Lake (43°40′31″N, -98°45′50″W), 

Redfield (44°58′10″N, -98°27′52″W), and Pierpont (45°30′31″N, -97°53′50″W) in Eastern South 

Dakota. Sites were selected in 2013 and three years of field study (2013-2015) were conducted in 

White Lake and in Redfield and a two years were conducted in Pierpont. Prior to treatment 

application the surface soil salt level of the sites were determined (Table 4.1). The area is known 

to have a corn (Zea mays), sorghum (Sorghum bicolor), and soybean (Glycine max) crop 

rotation. Occasionally, spring wheat (Triticum aestivum) and oats (Avena sativa) are planted as 

part of a 3-year rotation with corn and soybeans. 

The dominant soils at the Redfield,  Spink County study site were Harmony-Aberdeen 

silty clay loams (0-2 % slopes), Winship-Tonka silt loams (0-1 % slopes), and Great Bend-

Beotia silt loams (0-2 % slopes). Whereas, the dominant soils at the White Lake, Aurora County 

study site were Beadle-Dudley complex (0-3 % slopes), Delmont-Talmo complex (6-15 % 
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slope), Houdek and Ethan loams (2-6 % slopes) (USDA-NRCS, 2016a; 2016b). Kranzburg-

Brookings silt loams and Nahon-Aberdeen-Exline silt loams with slopes of 2 to 6 and 0 to 2, 

respectively, were the two dominant soil series at the Pierpont (Day County) research site.  

The study used a randomized complete block design with 4 replications. The treatments 

were soil surface amendments and cover crop (cover crop and non-cover crop). Barley (Hordeum 

vulgare L.) and sugar beet (Beta vulgaris) were seeded at the rate of 34 kg ha-1 and 4.5 kg ha-1, 

respectively. Sugar beet and barely were mixed at their recommended rate and planted in 6 rows 

between the main crop (corn, soybean, and sorghum). The date of cover crop planting was based 

on the growth stage of the main crop and the soil conditions. For corn and sorghum the cover 

crop planting was done when the main crop growth stage was between V4 and V6. Whereas the 

cover crop planting in soybean field was conducted between V stage (unfolding of trifoliate 

leaves, the final number of trifoliate’s depends on the soybean variety and the environmental 

conditions) and R1-beginning flowering - plants have at least one flower on any node (Clark, 

2008; Fehr et al., 1971; Vaughan and Evanylo, 1998). Soil surface amendments application rates 

are summarized in Table 2.2.  

 

4.2.2 Soil chemical analysis 

Soil EC, pH, and soluble cation concentrations were determined from a saturated extract (Table 

4.1). Electrical conductivity was determined using a conductivity probe (PC 2700, Oakton 

Instruments Vernon Hills, IL). Cation concentrations of Na+, Ca2+, and Mg2+ were measured 

using flame atomic adsorption spectrophotometry (200 A, Buck Scientific, Norwalk, CT) 

(Rhoades, 1982). Sodium adsorption ratio (SAR) was calculated using Equation 4.1.  
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(4.1) 

 

Table 4.1 Initial soil properties mean values by soil depth and location 

*44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls). 

**43°40′31″N, -98°45′50″W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls). 

***45°30′31″N, -97°53′50″W (Dominant soils: Hapludolls, Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division (2016b). 

n= 4 (Redfield); n=5 (White Lake); n=5 (Pierpont). 

 

4.2.3 Ponded infiltration measurements 

 

Water infiltration was measured at 32 points at each research site location using a double-

ring with a 12 cm radius inner ring water infiltrometer (Figure 1). In situ soil moisture 

measurements of the surface soil were measured with a moisture probe (Table 4.2). The ring was 

driven into the soil to a depth of 4 cm and the infiltration measurements were conducted for 

about 60 minutes (Reynolds and Elrick, 1990). Field water infiltration measurements were done 

5 months after application of the treatments (October 2013) and each consecutive year after 

harvest (2013 to 2015). Additional field infiltration and runoff measurements were taken with a 

Cornell Sprinkle Infiltrometer after harvest in 2015 (Ogden et al., 1997). Cornell infiltration 

measurement showed different values compared to double-ring water infiltration measurement 

Sites 

Salt 

Composition 

Electrical Conductivity 

(EC) (dS/m) pH 

Sodium Adsorption 

Ratio (SAR) 

Depth (cm) 

0-7.5 7.5-15 15-30 0-7.5 7.5-15 15-30 0-7.5 7.5-15 15-30 

Redfield* Saline 8.0 6.2 6.5 7.3 7.8 7.8 3.6 3.3 3.0 

White 

Lake** 
Saline-sodic 

10.2 8.2 7.3 7.6 7.4 7.5 17.0 17.8 12.3 

Pierpont*** Saline-sodic 20.0 19.0 18.0 7.9 7.5 7.5 19.0 23.0 16.0 

𝑆𝐴𝑅 =
[𝑁𝑎+]

(
[𝐶𝑎2+] + [Mg2+]

2 )
1/2
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due to surface structure breakdown, dispersion, and surface sealing due to water drops that 

occurred during field measurement. 

Infiltration Rate (IR) 

 

The infiltration rate (IR), reported in mm h−1, was calculated as: 

 

(4.1) 

 

Where ΔQ is the volume of water collected during a given time period, Δt, and A is the cross-

sectional area of the soil columns. 

 

 

 

 

 

 

 

Figure 4.1 Infiltration measurement at White Lake, SD. 

4.2.4 Bentonite clay and soil dispersion 

 

A laboratory experiment was conducted to evaluate the effect of variable concentrations 

of selected cations (Ca2+, Mg2+, Na+) on the dispersion and flocculation of bentonite clay and 

selected NGP soils.  Bentonite clay soil material (10 g) was placed in a 250 mL Erlenmeyer flask 

and 200 mL of 0.1, 0.2, or 0.3 M CaCl2, MgCl2, or NaCl were added. The suspension was shaken 

for 1 hr and allowed to settle for 24 hours. A 50 mL subsample of the suspension was taken. The 

𝐼𝑅 =
ΔQ

A  x Δt
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level of suspended soil materials was determined by measuring absorbance at 650 nm using a 

colorimeter to measure turbidity. 

A second part of experiment was conducted to evaluate the effect of variable cation Ca2+, 

Mg2+, Na+) concentrations on the dispersion of selected NGP saline-sodic and normal (non-

saline, non-sodic) soils. Soil samples were collected from four locations (Pierpont, Andover, and 

White Lake in 2014; and Brookings in 2016). Forty g of soil was placed in a 250 mL Erlenmeyer 

flask and a 200 mL of 0.1, 0.2, or 0.3 M CaCl2, MgCl2, or NaCl were added. The experiment was 

replicated 4 times. The suspension was shaken for 1 hr and allowed to settle for 24 hr and a 50 

mL subsample of the suspension was taken. The level of suspended soil materials was 

determined by measuring absorbance at 650 nm using a colorimeter to measure turbidity. 

 

4.2.5 Statistical analysis 

Infiltration rates variability and turbidity differences were tested for analysis of variance 

(ANOVA) using SAS version, SAS Institute, Cary, NC (SAS, 2007). Statistical differences were 

declared significant at α = 0.05 level. 

 

4.3 Results and Discussion 

 

4.3.1 Ponded Infiltration Measurements 

Average precipitation and temperature of the research sites for the months of April to 

October and soil moisture content of the research plots are shown Table 4.2. Month by month 

precipitation and temperature is reported in chapter 2, Figures 2.1 to 2.5. The measured double-

ring water infiltration rate was significantly different due to surface treatments in 2013 at White 

Lake, but treatments were not significantly different in consecutive years (2014 and 2015). The 
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sulfur treatment was significantly higher in 2013 when compared to the control and was 

numerically higher in 2014 and 2015. Cover crop did not significantly influence ponded water 

infiltration in all years at White Lake (Table 4.3).  

Table 4.2 Mean annual precipitation, mean annual temperature, and % antecedent soil moisture 

at research sites. 

Research Sites 

Soil 

Moisture 

(%) 

Average April to October 

Precipitation (mm) 

Average April to October 

Temperature (0C) 

2013 2014 2015 2013 2014 2015 

Redfield* - - 46 81 - 15 17 

White Lake** 36.8 51 46 54 15 16 17 

Pierpont*** 29.5 66 (9 years average) 16 (9 years average) 

Source: South Dakota Climate and Weather, 2016 

*44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls). 

**43°40′31″N, -98°45′50″W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls). 

***45°30′31″N, -97°53′50″W (Dominant soils: Hapludolls, Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

 

Table 4.3 Saturated water infiltration rates (double-ring) of surface amended soils and cover crop 

treatments from 2013-2015 at White Lake, SD. 

 Infiltration rate (mm h-1) 

Treatments at White Lake 2013 n 2014 n 2015 n 

Surface Amendments (SA) †       

CaCl2 236b† 7 183a 8 -  

No-treatment 182b 3 92a 8 119a 8 

Gypsum (CaSO4·2H2O) 130b 6 135a 8 -  

Sulfur (S) 535a 6 137a 4 149a 8 

Cropping System (CS) †† 

 

     

CC 302a 12 129a 14 127a 8 

NCC 337a 10 145a 14 141a 8 

ANOVA P>F 

 

     

SA 0.024  0.563  0.650  

CS 0.463  0.742  0.823  

SA*CS 0.776  0.805  0.250  

†Means with different letters within a column, treatment are significantly different at P < 0.05. 

‡CC = cover crop (sugar beet and barley); NCC = non-cover crop. 

**43°40′31″N, -98°45′50″W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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The measured water infiltration rates for the treatments tested were significantly different 

at Redfield in 2014 at the 0.05 level. Both gypsum and sulfur significantly increased infiltration 

rates in 2014 with no significant difference in 2015 when compared to the control. Similar to 

White Lake (2013 and 2014) the cover crop treatments did not show a significant difference in 

Redfield plots (Table 4.4). Water infiltration measurements were also done at Pierpont in 2014 

and 2015. There were no significant differences in both years for the chemical amendments. 

However, there was a significant difference for cover crop treatment in 2014 (Table 4.5). The 

results of the double-ring water infiltration study suggest that chemical amendments influenced 

water infiltration more than cover crop treatments in White Lake and Redfield. Whereas cover 

crop influenced ponded infiltration more in the Pierpont study site. Because soil and parent 

materials differ at the three locations more studies on different soils and parent materials are 

needed. The water infiltration variation could be attributed to soil differences among sites, 

changes in soil properties as a result of surface amendment application (mainly sulfur and 

gypsum), and cover crop. The influence of the treatments is site specific. The infiltration rate and 

runoff rate measurements using Cornell infiltrometer showed no significant difference among 

treatments (amendment and cover crop) in all locations (Table 4.6). The differences in results 

obtained from each study sites is attributed to the differences in soil properties, salinity levels, 

sodicity, parent materials, and precipitation. Similar results were found in previous findings on 

the effects of amendments and salt concentration on infiltration of sodic soils (Agassi et al., 

1981; Robbins, 1986). However, research on the impact of cover crop in salt affected soil is very 

limited. The recorded values of double-ring water infiltration were much higher when compared 

to the Cornell infiltration due to soil dispersion (breakdown of soil structure) and surface sealing 

of soil pores when using Cornell infiltration process when compared to the seepage with the 
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double-ring water infiltration measurement (Ben-Hur et al., 1987; van Es, 2015). This could be 

part of the reason that higher infiltration rates were recorded in double-ring when compared to 

Cornell infiltration measurements. 

Table 4.4 Saturated water infiltration rates (double-ring) of surface amended soils and cover crop 

treatments from 2014-2015 at Redfield, SD. 

†Means with different letters within a column, treatment are significantly different at P < 0.05. 

‡CC = cover crop [barley (Hordeum vulgare L.) and sugar beet (Beta vulgaris)]; NCC = non-cover crop. 

*44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016. 

 

Table 4.5 Saturated water infiltration rates (double-ring) of surface amended soils and cover crop 

treatments from 2014-2015 at Pierpont, SD. 

Treatments at Pierpont 

Infiltration rate (mm h-1) 

2014 n 2015 n 

Surface Amendments (SA) †     

CaCl2 223a† 7 -  

No-treatment 116a 7 236a 6 

Gypsum (CaSO4·2H2O) 195a 8 -  

Sulfur (S) 163a 8 333a 6 

Cropping System (CS) ††     

CC 247a 16 379a 6 

NCC 101b 14 230a 6 

ANOVA P>F     

SA 0.5243  0.4829  

CS 0.0114  0.3743  

SA*CS 0.3723  0.3579  

†Means with different letters within a column, treatment are significantly different at P < 0.05. 

‡CC = cover crop [barley (Hordeum vulgare L.) and sugar beet (Beta vulgaris)]; NCC = non-cover crop. 

***45°30′31″N, -97°53′50″W (Dominant soils: Hapludolls, Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

Treatments at Redfield 

Infiltration rate (mm h-1) 

2014 n 2015 n 

Surface Amendments (SA)†     

CaCl2 144bc† 7 -  

No-treatment 42c 7 213 a 6 

Gypsum (CaSO4·2H2O) 362ab 8 -  

Sulfur (S) 535a 8 649 a 6 

Cropping System (CS)†† 

 

   

CC 230a 16 284a 6 

NCC 311a 14 578a 6 

ANOVA P>F 

 

   

SA 0.013  0.060  

CS 0.445  0.170  

SA*CS 0.861  0.232  
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Table 4.6 Comparison of infiltration rate and runoff rate (using Cornell sprinkle infiltrometer) two years after surface amendment and 

cover crop treatments. 

 

**White Lake *Redfield ***Pierpont 

Treatments 

Infiltration 

rate Runoff rate n 

Infiltration 

rate Runoff rate n 

Infiltration 

rate Runoff rate n 

 

mm h-1 mm h-1  mm h-1 mm h-1  mm h-1 mm h-1  

 

2015  

Surface Amendments 

(SA) † 

  

 

  

 

  

 

No-treatment  5.3 a† 0.40 a 8 5.5 a 0.37 a 8 5.3 a 0.359 a 8 

Sulfur (S) 5.3 a 0.45 a 8 5.7 a 0.32a 8 5.4 0.340 a 8 

Cropping System (CS) ‡  

 

 

  

  

 

 

CC 5.3a 0.43 a 8 5.8 a 0.33 a 8 5.5 a 0.376 a 8 

NCC 5.3 a 0.41 a 8 5.4 a 0.36 a 8 5.4 a 0.446 a 8 

ANOVA P>F  

 

 

  

  

 

 

SA 0.337 0.337  0.383 0.408  0.474 0.474  

CS 0.688 0.688  0.173 0.630  0.597 0.597  

SA*CS 0.298 0.298  0.348 0.182  0.848 0.848  

†Means with different letters within a column, treatment are significantly different at P < 0.05. 

‡CC, cover crop; NCC, non cover crop. 

*44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls); 

**43°40′31″N, -98°45′50″W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls); 

***45°30′31″N, -97°53′50″W (Dominant soils: Hapludolls, Natrudolls), Soil Survey Division, 2016b. 
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4.3.2 Turbidity as a measure of dispersion 

Table 4.7 Soil chemical properties of the tested soils. 

Locations EC (dS/m) pH SAR soil type 

White Lake* 13 7.6 17 Saline Sodic 

Pierpont** 20 8.0 19 Saline Sodic 

Andover*** 18 7.7 8 Saline 

Brookings*** 3.9 7.8 - None saline, none sodic 

Bentonite - 8.2 -  

*44°58′10″N, -98°27′52″W (Dominant soils: Hapludolls, Natrudolls, Argiudolls). 

**43°40′31″N, -98°45′50″W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls). 

***45°30′31″N, -97°53′50″W (Dominant soils: Hapludolls, Natrudolls). 

**** 44° 19' 7"N,-96° 46' 56"W (Dominant soil: Hapludolls). 

Source of soil information: USDA-NRCS, Soil Survey Division (2016b). 

 

Selected soil chemical properties of the tested soils and bentonite clay are presented in 

Table 4.7. Results of the lab study showed significant differences for the chemical treatments and 

the different salt concentrations for all selected soils and bentonite clay. There was significantly 

higher turbidity in NaCl solutions at different concentrations when compared to similar 

concentrations of CaCl2 and MgCl2 solutions (see Tables 4.8 and 4.9) for the saline, sodic and 

saline-sodic soils studied (except for 0.1 M on the White Lake soil). The turbidity measurements 

of  CaCl2 and MgCl2 solutions at variable concentrations were not significantly different from 

each other (except for 0.3 M on the White Lake soil) and were less turbid than NaCl solutions 

(See Figure 4.2, Table 4.8, and Table 4.9). The highest turbidity was recorded in NaCl treated 

soil for saline, sodic and saline-sodic soils while the highest turbidity measurements in the 

bentonite clay and Brookings soils were with distilled water. This increased turbidity could be 

attributed to higher dissolved organic matter level in the Brookings soil and the fine clay 

particles of the bentonite clay. In previous studies, smaller particle sizes have contributed the 

higher turbidity reading (Cuker et al., 1990; Cuker and Hudson Jr, 1992). In other studies similar 

results of dispersion of organic matter being increased with dispersion of clay was reported 

(Fitzpatrick et al., 1994; Naidu et al., 1993).  
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Figure 4. 2 Bentonite clay and selected soils turbidity measurement after treated with variable concentration of salts (Logarithmic 

scale of base 10).  
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Table 4.8 Effect of salt concentration on soil dispersion (turbidity as an indicator) of three different salt affected soils, a normal soil 

and bentonite clay. 

 Soil Sampling Locations n=12  

Treatments 

Andover 

(Saline) 

Pierpont 

(Sodic) 

White Lake 

(Saline-sodic) 

Brookings 

(Normal) Bentonite Clay 

Salts (S) 

Turbidity in 

(NTU) 

Turbidity in 

(NTU) 

Turbidity in 

(NTU) 

Turbidity in 

(NTU) 

Turbidity in 

(NTU) 

NaCl‡      

0.1 M 44.3 a† 23.3 a 95.0 a 21.0 b 89.8 b 

0.2 M 31.5 a 24.3 a 98.5 a 20.8 b 77.0 b 

0.3 M 40.8 a 20.3 ab 107.0 a 25.5 b 88.0 b 

Distilled H2O 7.5 b 10.5 b 7.8 b 659.3 a 1500 a 

ANOVA P>F 0.001 0.040 <.0001 <.0001 <.0001 

CaCl2·2H2O      

0.1 M 20.3 a 18.0 a 79.3 ab 19.3 b 62.3 b 

0.2 M 14.0 a 21.0 a 90.0 a 13.5 b 58.3 b 

0.3 M 18.5 a 15.0 ab 74.5 b 8.0 b 57.8 b 

Distilled H2O  7.5 a 10.5 b 7.8 c 659.3 a 1500 a 

ANOVA P>F 0.312 0.047 <.0001 <.0001 <.0001 

MgCl2·6H2O      

0.1 M 13.0 b 12.8 a 84.5 a 27.5 b 59.3 b 

0.2 M 14.8 ab 14.3 a 83.3 a 9.5 b 55.8 b 

0.3 M 27.0 a 13.0 a 95.0 a 21.5 b 58.8 b 

Distilled H2O  7.5 b 10.5 a 7.8 b 659.3 a 1500 a 

ANOVA P>F 0.033 0.137 <.0001 <.0001 <.0001 

†Means with different letters within a column, treatments are significantly different at P < 0.05. 

‡S=Salt type; NaCl=sodium Chloride; CaCl2·6H2O= Calcium Chloride Hexahydrate;  

MgCl2·2H2O= Magnesium Chloride Dehydrate;  

C=Concentration in molarity; 0.1, 0.2, and 0.3 M 

NTU=Nephelometric Turbidity Unit.  

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwi52q6nydLLAhUsn4MKHQbDArIQFggiMAE&url=http%3A%2F%2Fwww.endmemo.com%2Fchem%2Fcompound%2Fcacl26h2o.php&usg=AFQjCNEdbnIdo5KuDBRJrG_PGnj2tdaKTA&bvm=bv.117218890,d.amc
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwi52q6nydLLAhUsn4MKHQbDArIQFggiMAE&url=http%3A%2F%2Fwww.endmemo.com%2Fchem%2Fcompound%2Fcacl26h2o.php&usg=AFQjCNEdbnIdo5KuDBRJrG_PGnj2tdaKTA&bvm=bv.117218890,d.amc
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwi52q6nydLLAhUsn4MKHQbDArIQFggiMAE&url=http%3A%2F%2Fwww.endmemo.com%2Fchem%2Fcompound%2Fcacl26h2o.php&usg=AFQjCNEdbnIdo5KuDBRJrG_PGnj2tdaKTA&bvm=bv.117218890,d.amc
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwi52q6nydLLAhUsn4MKHQbDArIQFggiMAE&url=http%3A%2F%2Fwww.endmemo.com%2Fchem%2Fcompound%2Fcacl26h2o.php&usg=AFQjCNEdbnIdo5KuDBRJrG_PGnj2tdaKTA&bvm=bv.117218890,d.amc
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Table  4.9  Effect of salt type on soil dispersion (turbidity as an indicator) of three different salt affected soils, a normal soil and 

bentonite clay. 

 Soil Sampling Locations n=12  

Treatments 

Andover 

(Saline) 

Pierpont 

(Sodic) 

White Lake 

(Saline-sodic) 

Brookings 

(Normal) Bentonite Clay 

Salts Concentration 

Turbidity in 

(NTU) 

Turbidity in 

(NTU) 

Turbidity in 

(NTU) 

Turbidity in 

(NTU) 

Turbidity in 

(NTU) 

0.1 M ‡      

NaCl 44.3 a 23.3 a 95.0 a 21.0 b 89.8 b 

CaCl2·2H2O 20.3 b 18.0 ab 79.3 a 19.3 b 62.3 c 

MgCl2·6H2O 13.0 b 12..8 bc 84.5 a 27.5 b 59.3 c 

Distilled H2O 7.5 b 10.5 c 7.8 b 659.3 a 1500 a 

ANOVA P>F 0.003 0.007 <.0001 <.0001 <.0001 

0.2 M ‡      

NaCl 31.5 a 24.3 a 98.5 a 20.8 b 77.0 b 

CaCl2·2H2O 14.0 b 21.0 ab 90.0 ab 13.5 b  58.3 c 

MgCl2·6H2O 14.8 b 14.3 bc 83.3 b 9.5 b 55.8 c 

Distilled H2O 7.5 b 10.5 c 7.8 c 659.3 a 1500 a 

ANOVA P>F <.0001 0.015 <.0001 <.0001 <.0001 

0.3 M ‡      

NaCl 40.8 a 20.3 a 107.0 a 25.5 b 88.0 b 

CaCl2·2H2O 18.5 bc 15.0 ab 74.5 b 8.0 b 57.8 c 

MgCl2·6H2O 27.0 ab 13.0 b 95.0 a 21.5 b 58.8 c 

Distilled H2O 7.5 c 10.5 b 7.8 c 659.3 a 1500 a 

ANOVA P>F 0.007 0.049 <.0001 <.0001 <.0001 

†Means with different letters within a column, treatments are significantly different at P < 0.05. 

‡S=Salt type; NaCl=sodium Chloride; CaCl2·6H2O= Calcium Chloride Hexahydrate;  

MgCl2·2H2O= Magnesium Chloride Dehydrate;  

C=Concentration in molarity; 0.1, 0.2, and 0.3 M 

NTU=Nephelometric Turbidity Unit.  

 

 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwi52q6nydLLAhUsn4MKHQbDArIQFggiMAE&url=http%3A%2F%2Fwww.endmemo.com%2Fchem%2Fcompound%2Fcacl26h2o.php&usg=AFQjCNEdbnIdo5KuDBRJrG_PGnj2tdaKTA&bvm=bv.117218890,d.amc
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwi52q6nydLLAhUsn4MKHQbDArIQFggiMAE&url=http%3A%2F%2Fwww.endmemo.com%2Fchem%2Fcompound%2Fcacl26h2o.php&usg=AFQjCNEdbnIdo5KuDBRJrG_PGnj2tdaKTA&bvm=bv.117218890,d.amc
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwi52q6nydLLAhUsn4MKHQbDArIQFggiMAE&url=http%3A%2F%2Fwww.endmemo.com%2Fchem%2Fcompound%2Fcacl26h2o.php&usg=AFQjCNEdbnIdo5KuDBRJrG_PGnj2tdaKTA&bvm=bv.117218890,d.amc
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwi52q6nydLLAhUsn4MKHQbDArIQFggiMAE&url=http%3A%2F%2Fwww.endmemo.com%2Fchem%2Fcompound%2Fcacl26h2o.php&usg=AFQjCNEdbnIdo5KuDBRJrG_PGnj2tdaKTA&bvm=bv.117218890,d.amc
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4.4 Conclusions 

 

Sulfur appeared to improve double-ring water infiltration in all years and locations 

(although values were not always statistically significant). However, significant differences 

among the chemical amendments were observed in year 2013 in White Lake and 2014 in 

Redfield. A cover crop treatment seems to have a positive effect at Pierpont soil in terms of 

improving double-ring water infiltration. The infiltration rate and runoff rate measurements using 

Cornell infiltrometer showed no significant differences among the treatments in all locations. 

The experiment needs to be monitored longer (5 years or more) as a permanent plot trial since 

soil physical property change often requires time to obtain the anticipated result.  

The effect of Mg2+ and Ca2+ solutions on clay dispersion suggest that the two ions have 

more flocculating effect than dispersion for the concentrations studied on the soils tested. Na+ 

had more dispersion effect (increased turbidity) as seen in many previous studies. However, 

additional experiments are needed to be conducted at higher ion concentrations on a wider 

variety of salinity and sodicity levels in various parent materials soils under field conditions. 

Turbidity can be used as an indicator of clay dispersion in salt affected soils. 
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5. CHAPTER V  

SPATIAL VARIABILITY ANALYSIS OF SELECTED SOIL ATTRIBUTES IN 

SALINE-SODIC SOIL 

Abstract 

 

Soil spatial variability in the northern Great Plains of USA is related to natural (topographic, 

vegetation, time, parent material, and climate) and anthropogenic (management and landuse 

change) factors. The objective of this study was to describe the spatial variability of selected soil 

properties at a landscape scale and define spatial class. The study was conducted at Pierpont, SD 

with dominant soils of Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and 

Natrudolls. A total of 169 grid points (62 x 62 m grid) were laid out in the field in 2014. The 

field was planted with corn (Zea mays). Soil pH, electrical conductivity (EC) and sodium 

adsorption ratio (SAR) were analyzed. Mollic depth and lime depth were measured at each grid 

points. Semivariograms fit for exponential, spherical, and Gaussian models were tested. Spatial 

class was developed using nugget to sill ratio. Analysis of variance for soil attributes were made 

to test if there is variation due to differences in soil series. Global Moran’s I and local Moran’s I 

statistics were performed.  The exponential model was the optimum fit for mollic depth, lime 

depth, pH, EC, and SAR with nugget to sill ratio of 0, 0, 45, 17, and 49, respectively. EC and 

SAR showed moderate spatial dependence whereas the other parameters showed strong spatial 

dependence. At the V1, V4, and V6 growth stages the exponential model was the optimum fit for 

NDVI with a value of nugget to sill ratio of  23, 0, and 25, respectively. At all plant growth 

stages the NDVI had showed strong spatial dependence. Analyses of variance of all the 

parameters measured were significantly different at P < 0.05. 
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Mollic depth, lime depth, and EC showed slight positive spatial autocorrelation with Moran’s 

statistic value of 0.193, 0.106, and 0.337 and significantly small p-values at alpha 0.05. So the 

null hypothesis of random distribution was rejected for these variables. Whereas the Global 

Moran’s I statistics value and the z-score of SAR was very small and p-value was insignificant. 

SAR showed random distribution. Patterns of local spatial autocorrelation were assessed from a 

generated map using Local Moran’s I.  Semivariogram modelling  and Moran’s I of soil 

attributes and NDVI data can help to quantify spatial heterogeneity in saline-sodic soils.  

Key words: Semivariogram, clustering, dispersion, soil spatial variability, northern Great Plains, 

NDVI, saline-sodic soil, Argiudolls, Calciaquolls, Endoaquolls, Hapludolls, interpolation, 

Natrudolls, Calciudolls, mollic depth, lime depth,  EC, SAR, and  soil moisture. 
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5.1 Introduction 

 

Soil properties distribution in a field or  landscape are variable in terms of time and space 

(Corwin et al., 2003). In-depth understanding of the spatial and temporal  distribution of these 

properties at all levels (field, landscape, or watershed) is useful  to make sound management 

decisions in natural resource conservation and agriculture (Cambardella et al., 1994). 

Several methods have been used to estimate spatial variability of soil physical and 

chemical properties (Cambardella et al., 1994; Goovaerts, 1998), soil apparent electrical 

conductivity (Corwin and Lesch, 2005), soil moisture (Vinnikov et al., 1996), infiltration 

(Sharma et al., 1980), and several other properties. Several attempts were also made to estimate 

variability at various scales (Cambardella et al., 1994; Nielsen et al., 1973).   

Semivariogram models are used to characterize the spatial variability of soil attributes. 

(Goovaerts, 1998). Spatial dependence can be expressed as a percentage ratio of nugget 

semivariance to the sill semivariance with a value < 25 % (strong spatial dependence), 26-75 % 

(moderate spatial dependence), and > 75 % (weak spatial dependence) (Schlesinger et al., 1996). 

However, soil spatial variability studies in saline sodic soils of the Northern Great Plains have 

not been well studied in the past and there is very little information available as to the spatial 

variability of properties in saline-sodic soils. 

Therefore, this study was conducted to describe the spatial variability of selected soil 

properties at a landscape scale and define spatial class for measured soil variables in selected 

Northern Great Plains (NGP) soils. 
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Objectives 

i. To assess the global and local spatial autocorrelation and variability of selected soil 

attributes  

ii. Evaluate the differences in soil properties due to soil series. 

 

5.2 Materials and Methods 

A field measurement was conducted in Pierpont in Day County, South Dakota (44°55′30″ 

to 45°28′30″N and 97°50′9″ to 98°28′34″W in April 2014. The dominant soils in the study area 

were Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls (USDA-

NRCS, 2016a; 2016b).  

A total of 169 grid points (62 x 62 m) were laid out in the field.  Multispectral 

Radiometer (MSR) readings were taken by holding the MSR 2 m above the surface and 1 m 

diameter data was collected at each grid point in corn (Zea mays) field in April 2014. The 

readings were taken between 10 am to 3 pm.  

Soil samples were taken from each grid point. Mollic depth, till depth (glacial till parent 

materials), and lime depth were measured at each grid point after sampling soil using soil 

sampling probe. Soil samples from 0-7.5 cm consisted of 10 subsamples collected with a 1.9 cm 

diameter soil probe.  Each sample was dried at 40ᵒC, ground, sieved (<2 mm), stored in plastic 

bags and analyzed for pH, electrical conductivity (EC), water soluble cations, sodium adsorption 

ratio (SAR) (Page, 1982). 

Water soluble cation concentrations (Na+, Ca2+, and Mg2+), EC, and pH and were 

determined from a saturated extract. One hundred and fifty grams of air-dry soil was weighed 

and mixed with distilled water until saturated.  The mixture was covered and allowed to 
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equilibrate for 24 hours. After 24 hours, the soil solution was extracted using a Bϋchner funnel 

apparatus and vacuum. All extracts were stored at 4ᵒC until they were analyzed for pH, EC, Ca, 

Mg, and Na (Rhoades, 1982). Sodium adsorption ratio (SAR) was calculated using the following 

equation. 

 

 

 

Data exploration was made to evaluate the normality of the data. Exponential, spherical, and 

gaussian semivariograms were fitted for the selected variables (see Appendix V and Figures 5.1 

to 5.5). The details (nugget, sill, and range) of the models were determined.. Spatial class was 

developed for selected soil variables using the nugget to sill ratio as an indicator. Generally, 

semivariograms with higher range indicates spatial autocorrelation, whereas, higher sill values 

indicates more variation between neighbors samples.  

The normalized difference vegetation indices (NDVI) were computed using the following 

equation:   

 

 

Semi-variances were calculated using equation below, where γ(h) is the semi-variance for lag 

distance h, N is the number of samples, A is the test value for sample i, X is the location of 

sample i. and Xi + h represents the distance between two sample locations (Nielsen and 

Wendroth, 2003). 

 

 

𝑆𝐴𝑅 =
[𝑁𝑎+]

(
[𝐶𝑎2+] + [Mg2+]

2 )
1/2

 

NDVI =
NIR −  Red

NIR +  Red
 

𝛾(ℎ) =
1

2𝑁(ℎ)
 ∑ [𝐴𝑖(𝑋𝑖) −  𝐴𝑖(𝑋𝑖 + ℎ)]2

𝑁(ℎ)

𝑖=1
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Analysis of variance (ANOVA) was performed for selected soil attributes (EC, SAR, lime 

depth, mollic depth, till depth and soil moisture) and NDVI was computed for the crop growth 

stage (V1, V4, and V6) of corn (Zea mays). Spatial autocorrelation was tested for selected soil 

attributes using  Global Moran’s  I statistics and clsutering and dispersion was detected using 

local local Moran’s I statistics (Anselin, 1995). The test was applied for selected soil attributes 

including mollic depth, lime depth, electrical conductivity, and sodium adsorption ratio.  

 

5.3 Results and Discussion 

5.3.1 Correlation of soil properties 

 

The soil properties selected at each grid point were correlated with each parameter. The 

raw correlation matrix is based on Appendix V, Table 3. A summary of the significant 

correlations from this matrix is given in Table 5.1. 

Yield was positively correlated with elevation and lime depth content while negatively 

correlations were seen with salinity, sodicity and soil moisture properties. Elevation was 

positively correlated with yield and chlorophyll negatively correlated with salinity, sodicity, 

moisture level, mollic depth, redox depth and depth to till. This demonstrates how erosion and 

water interact on the landscape to affect yield and soil properties studied 
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Table 5.1 Summary of significant correlation relationship for selected soil properties. 

Soil Property  

(n=169) 

Significantly positively 

correlated* 

Significantly negatively 

correlated* 

Soil moisture E (SME) 

SMV1, ECV1, EC, SAR, 

MD 

Yld, Elev 

Soil moisture V1 (SMV1) EC V1, EC, SAR, MD, SME Yld, Elev 

EC V1 (EC V1) 

EC, SAR, MD, RD, TD, 

SME,SMV1 

Yld, Elev 

Chlorophyll V4 (CV4) Elev, pH MD 

Yield (Yld) Elev, LD EC, pH, SAR, SME, SMV1, ECV1 

Elevation (Elev) 

CV4, Yld EC, SAR, MD, RD, TD, SME, 

SMV1, ECV1 

EC 0-3 inch depth 

SAR, MD, RD, SME, 

SMV1,ECV1 

Yld, Elev 

pH 0-3 inch depth  RD, CV4 LD, Yld 

SAR 0-3 inch depth 

MD, RD, SME, 

SMV1,ECV1, EC 

Yld, Elev 

Lime depth (LD) MD, RD, TD, Yld pH 

Mollic depth 

RD, TD, SME, SMV1, 

ECV1, EC, SAR, , LD 

Elev, CV4 

Redox depth (RD) 

TD, ECV1, EC, pH, SAR, 

LD, MD 

Elev 

Till depth (TD) ECV1, LD, RD, MD Elev 

Pierpont coordinate: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). Source of soil 

information: USDA-NRCS, Soil Survey Division, 2016b. 

E= Emergence (crop), EC = electrical conductivity, SAR = sodium adsorption ratio, V1=one leaf 

with collar visible, V4= four leaves with collar visible 

*significant at 0.05 alpha level. 
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5.3.2 Data Exploration 

Detailed statistics of the data exploration are summarized in Table 5.2. All the measured 

soil data (mollic depth, lime depth, EC, and SAR) have showed a distribution of positive 

skewness. Whereas, all the calculated NDVI value were negatively skewed. The transformed 

data was not improved when compared to the raw data (original).  

Table 5.2 Descriptive statistics showing data distribution for the variables measured at Pierpont. 

Parameter n Min Max Mean Std. Dev. Skewness Median Pr>F 

Mollic Depth 168 0.00 49.0 21 10.88 0.61 18.00 <.0001 

Lime Depth 168 0.00 40.0 17 9.18 0.08 16.00 <.0001 

EC 168 0.00 25.8 2.0 3.84 3.79 0.07 0.0140 

SAR 168 0.00 21.3 1.5 2.67 3.74 0.58 0.0008 

NDVI E 168 0.14 0.23 0.2 0.02 0.25 0.18 0.0012 

NDVI V1 168 0.00 0.27 0.8 0.06 -2.35 0.19 0.1125 

NDVI V4 168 0.00 0.31 0.1 0.11 -2.58 0.20 0.2553 

NDVI V6 168 0.09 0.79 0.5 0.16 -0.81 0.55 0.0077 

Pierpont coordinate: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). Source of soil 

information: USDA-NRCS, Soil Survey Division, 2016b. 

E= Emergence (crop), EC = electrical conductivity, SAR = sodium adsorption ratio, 

NDVI=normalized difference vegetation indices, V1=one leaf with collar visible, V4= four 

leaves with collar visible, V6=six leaves with collar visible.
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5.3.3 Semivariogram model fitting 

 

Spatial variability of the different soil attributes measured is summarized in Table 5.3. 

Mollic depth had a strong spatial dependence and fitted well all the models tested (with the 

exponential model being the optimum fit with 0 nugget to sill ratio and RMS=10.15).  

Similarly, the exponential model was the optimal fit for lime depth, pH, EC, and SAR 

with  nugget to sill ratio of 0, 45, 17, and 49, respectively. EC and SAR showed moderate 

dependence whereas the other parameters showed strong spatial dependence. Spatial variability 

of the NDVI values are summarized in Table 5.4. The exponential model was the optimum fit for 

NDVI at V1, V4, and V6 stage with a value of nugget to sill ratio of 23, 0, and 25, respectively. 

At all stages the NDVI showed a strong spatial dependence. Similar results of spatial variability 

and model fitting were reported in earlier research (Burrough, 1983; Gessler et al., 1995; 

Goovaerts, 1998). Semivariogram fit for all other soil properties and NDVI values are presented 

in Appendix V (Figures 3 to 12). 
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Table 5.3 Variogram models for selected soil paameters. 

Pierpont coordinate: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). Source of soil 

information: USDA-NRCS, Soil Survey Division, 2016b. 

S= strong, M=moderate, W=weak, EC= electrical conductivity, SAR=sodium adsorption ratio. 

 

Table5.4 Variogram models for NDVI at different crop growth stage. 

Parameter Model Nugget Sill Range Nugget/Sill 

Ratio 

Root-Mean-

Square 

Spatial 

Class 

NDVI V1 Exponential 0.0010 0.004 0.012 23 0.04 S 

 Spherical 0.0014 0.004 0.012 33 0.04 M 

 Gaussian 0.0016 0.005 0.012 30 0.04 M 

NDVI V4 Exponential 0.0000 0.018 0.012 0 0.03 S 

 Spherical 0.0000 0.022 0.012 0 0.03 S 

 Gaussian 0.0015 0.031 0.012 5 0.04 S 

NDVIV6 Exponential 0.0074 0.030 0.007 25 0.11 S 

 Spherical 0.0116 0.029 0.007 40 0.12 M 

 Gaussian 0.0141 0.029 0.005 49 0.12 M 

Pierpont coordinate: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). Source of soil 

information: USDA-NRCS, Soil Survey Division, 2016b. S= strong, M=moderate, W=weak 

NDVI=normalized difference vegetation indices, V1=one leaf with collar visible, V4= four 

leaves with collar visible, V6=six leaves with collar visible.

Parameter Model Nugget Sill Range Nugget/Sill 

Ratio 

Root-Mean-

Square 

Spatial 

Class 

Mollic depth Exponential 0.0000 133.5 0.001 0 10.15 S 

 Spherical 0.0000 121.0 0.001 0 10.03 S 

 Gaussian 0.1228 122.9 0.001 0.1 10.06 S 

Lime depth Exponential 0.0000 91.7 0.001 0 9.64 S 

 Spherical 4.0179 87.0 0.001 5 9.67 S 

 Gaussian 34.3257 88.6 0.001 39 9.66 M 

EC Exponential 8.0082 17.9 0.010 45 3.54 M 

 Spherical 9.1545 17.3 0.008 53 3.50 M 

 Gaussian 10.5491 17.6 0.007 60 3.47 M 

pH Exponential 1.4332 8.4 0.001 17 2.87 S 

 Spherical 6.0567 8.4 0.001 72 2.89 M 

 Gaussian 6.4498 8.4 0.001 77 2.84 W 

SAR Exponential 4.1089 8.4 0.009 49 2.55 M 

 Spherical 4.5440 8.0 0.007 57 2.53 M 

 

Gaussian 5.1224 8.1 0.006 63 2.50 M 
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Table 5.5 Analysis of Variance for selected soil parameters as affected by soil series. 

†Means with different letters within a column, treatments are significantly different at P < 0.05. 

Pierpont coordinate: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, 

and Natrudolls). Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

EC= electrical conductivity, SAR=sodium adsorption ratio, SM= soil moisture, dS/m= deciSiemens per meter, n=number of samples, nd= not determined 

Soil Series† 

Mollic Depth 

(inches) n 

Lime Depth 

(inches) n EC (dS/m) n SAR n 

Till 

depth(inches) n SM (%) n 

Brookings 26 ± 6.1bc 55 24 ± 6ab 55 3.0 ± 2.9b 37 2 ± 2.1b 37 36 ± 8.6abc 53 30 ± 4.7abc 29 

McKranz 15 ± 10.5d 19 8  ± 5.7d 19 6.0 ± 7.0b 15 4 ± 4.0b 15 32 ±  11.4bcd 19 30 ± 3.6ab 18 

Deposition 41 ± 3.9a 7 25 ± 4.4ab 4 4.0 ± 3.2b 5 3 ± 2.5b 5 43 ± 4.2abc 4 34 ± 3.9ab 7 

Beotia 35 ± 7.5a 4 24 ± 23.3ab 2 5.0  ± 1.8b 2 3 ± 1.4b 2 42 ± 6.9abc 4 32 ± 2.4ab 4 

Kranzburg 14 ± 2.3d 32 15 ± 3.2bcd 32 2 ± 3.5b 28 1 ± 2.0b 28 29 ± 6.0cd 32 28 ± 4.2abc 18 

Harmony 42 ± 4.8a 4 25 ± 7.6ab 4 2.0 ± 0.8b 2 1 ± 0.6b 2 50 ± 5.5a 3 31 ± 1.3ab 4 

Buse 9 ± 5.8d 5 6 ± 7.8de 5 2.0  ± 0.0b 1 1 ± 0.0b 1 19 ± 0.0de 1 30 ± 2.6abc 3 

Vienna 10 ± 2.2d 7 14 ± 3.1bcd 7 1.0  ± 0.6b 5 1 ± 0.2b 5 16 ± 2.6e 7 28 ± 6.5abc 3 

Barnes 11 ± 2.6d 13 13 ± 5.0cd 13 1.0  ± 0.8b 9 1 ± 0.6b 9 12 ± 0.0e 1 23 ± 2.6cd 4 

Hamerly 13 ± 2.1d 4 0 ± 0.0e 4 1.0  ± 0.0b 1 1 ± 0.0b 1 nd - 27 ± 0.0abc 1 

Svea.like 29 ± 6.9abc 6 29 ± 6.9a 6 1.0  ± 0.1b 3 1 ± 0.3b 3 36  ± 0.0abcd 1 14 ± 0.0d 1 

Aastad 18 ± 0bcd 1 18 ± 0.0bcd 1 0.4 ± 0.0b 1 1 ± 0.0b 1 nd - nd - 

Aberdeen 33 ± 0ab 1 21 ± 0.0abc 1 2 ± 0.0b 1 3 ± 0.0b 1 36 ± 0.0abcd 1 32 ± 0.0ab 1 

Bearden 17 ± 3.1bcd 3 12 ± 3.8cd 3 1.0  ± 0.4b 3 2 ± 1.5b 3 45 ± 3.8 3 28 ± 1.1abc 3 

Putney 42 ± 0a 1 15 ± 0.0bcd 1 nd 

 

Nd - 48  ± 0.0ab 1 30 ± 0.0abc 1 

Nahon 42± 0a 1 16 ± 0.7bcd 2 3.0  ± 1.3b 2 3 ± 0.2b 2 48 ± 0.0ab 1 34 ± 2.0ab 2 

Huffton 30 ± 0abc 1 13 ± 0.0bcd 1 1.0  ± 0.0b 1 1 ± 0.0b 1 42 ± 0.0abc 1 25 ± 0.0bcd 1 

Heil 29 ± 0abc 1 21 ± 0.0abc 1 0.3 ± 0.0b 1 1 ± 0.0b 1 nd - 37 ± 0.0a 1 

Badger 32 ± 0ab 1 15 ± 0.0bcd 1 4.0  ± 0.0b 1 7 ± 0.0ab 1 nd - 24 ± 0.0bcd 1 

Saline 40 ± 5.7a 2 14 ± 8.5bcd 2 14  ± 16.5a 2 12 ± 13.6a 2 44 ± 0.0abc 1 36 ± 2.3a 2 

ANOVA P>F <.0001 

 

<.0001 

 

0.0314 

 

0.0018 

 

<.0001 

 

0.0002 

 



93 
 

 
 

5.3.4 Analysis of variance and Moran’s I statistics 

Analysis of variance was performed to test if there is variation in soil series for selected 

soil attributes. Accordingly, all the parameters (mollic depth, lime depth, till depth, EC, SAR, 

and  SM ) measured were significantly different at P < 0.05. The selected soil properties are used 

in South Dakota to classify and organize soils into management groups. The thickest mollic 

depths  were recorded for the following series, Beotia, Putney, Nahon, Harmony Deposition 

(unidentified), and saline (unidentified)  soil series (see Table 5.5 ). 

Svea soil series had the greatest lime depth whereas; the Hamerly series had lime at soil 

surface. Saline (unidentified) had the highest EC (14 dS/m). Aastad and Heil had the lowest EC 

value of 0.3 and 0.4 dS/m, respectively. Harmony had the highest till depth (50). Heil and Saline 

(unidentified) soil series had the highest moisture content (37 and 36%, respectively). Svea like 

soil series had the lowest (14%). 

Moran’s I statistics measure of the degree of spatial correlation present in a spatial data 

set. In Moran’s I statistics, a value closer to one indicates presence of positive spatial 

autocorrelation. Any value close to zero indicates the absence of spatial auto correlation 

(Anselin, 1995). Results of the Global Moran’s I test are presented in Table 5.6. Maps of the 

local Moran’s I are shown in Figures  5.1 to 5.5. Mollic depth, lime depth, and EC showed slight 

positive spatial autocorrelation with Moran’s statistic value of 0.193, 0.106, and 0.337, 

respectively, and significantly small p-values at alpha 0.05 (Table 5.6). So the null hypothesis of 

random distribution was rejected for these variables. Whereas the Moran’s I statistics value and 

the z-score of SAR and pH were very small the p-values were insignificant and showed random 

distribution. Patterns of local spatial autocorrelation were assessed from a generated map using 

Local Moran’s I.  
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Mollic depth shows a pattern of high-high and low-low correlation. That means areas of  

high mollic depth values are surrounded by areas of high mollic depth and vice versa (see Figure 

5.1). Similar results were found for lime depth and EC  (see Figures 5.2 and 5.3, respectively). 

Table  5.6 Summary of spatial autocorrelation of selected soil attributes using Global Moran’s  I. 

Variable Moran's Index Expected Index Variance z-score p-value Pattern 

Mollic depth 0.193 -0.00595 0.0042 3.0637 0.0022 Clustered 

Lime Depth 0.106 -0.00595 0.0042 1.7286 0.0839 Clustered 

EC 0.337 -0.00595 0.0040 5.4154 0.0001 Clustered 

SAR 0.088 -0.00595 0.0037 1.5390 0.1238 Random 

pH 0.094 -0.00595 0.0041 1.5533 0.1203 Random 

Pierpont coordinate: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

EC= electrical conductivity, SAR=sodium adsorption ratio. 

A significance level of 0.05, a z score would have to be less than –1.96 or greater than 1.96 to be 

statistically significant. Global Moran's I evaluates whether the pattern expressed is clustered, 

dispersed, or random. When the Z score indicates statistical significance, a Moran's I value near 

+1.0 indicates clustering while a value near –1.0 indicates dispersion. 
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Figure 5.1  Interpolated map showing the clustering of mollic depth using local Moran’s I test. 

Pierpont, SD coordinates: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant 

soils: Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

 

 

Figure 5.2 Interpolated map showing the clustering of lime depth using local Moran’s I test. 

Pierpont, SD coordinates: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant 

soils: Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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Figure5.3 Interpolated map showing the clustering of EC using local Moran’s I test. 

Pierpont, SD coordinates:  (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant 

soils: Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

 

Figure 5.4 Interpolated map showing the clustering of SAR using local Moran’s I test. 

Pierpont, SD coordinates: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant 

soils: Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016. 

 



97 
 

 
 

 

Figure 5.5 Interpolated map showing the clustering of pH using local Moran’s I test. 

Pierpont, SD coordinates: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant 

soils: Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 

 

 

5.4 Conclusions 

 

This study clearly showed using geospatial statistics particularly, local Moran’s I, 

semivatiogram modelling of soil attributes, and NDVI data, could help to quantify spatial 

heterogeneity in saline-sodic soils. Thus, a better understanding of the spatial pattern of the 

measured soil variables in saline sodic soils can easily be captured. It also showed soil series 

variation for all the measured soil attributes and demonstrates the need to further explore and 

examine other soil attributes not covered in this study. Integrating high resolution imagery for 

NDVI and other indices could be an area of future research in saline-sodic soil. 
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APPENDICES 

 

Appendix I: SAS and R codes 

 

SAS Code for ANOVA 

data one; 

input CCT$ SA$ Rep VAR1; 

cards; 

; 

Run; 

proc glimmix; 

class CCT SA Rep; 

model VAR1 = CCT SA CCT*SA ; 

random Rep; 

lsmeans SA CCT*SA / diff; 

lsmeans CCT / bylevel lines; 

lsmeans SA/ bylevel lines; 

run; 

proc sort data=one out=one1; 

by CCT; 

run; 

proc means data=one1 n mean std; 

var VAR1; 

by CCT; 

run; 

proc sort data=one out=one2; 

by SA; 

run; 

proc means data=one2 n mean std; 

var VAR1; 

by SA; 

run; 

SAS codes used for ANOVA 

Data; 

Input TRT$ REP NDVI; 

Cards; 

; 

proc glm; 

class TRT REP ; 

model NDVI  = TRT REP*TRT ; 

test h=TRT e=REP*TRT; 

means TRT/duncan alpha=0.01 e=REP*TRT; 

PROC PRINT; 

RUN; 
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R Code used for spatial analysis 

Pierpont data - semivariograms and kriging 

# Before starting, we need to have both the gstat package loaded 

load libraries 

library(rgdal) 

library(sp) 

library(gstat) 

library(lattice) 

library(RColorBrewer) 

library(raster) 

#library(tiff) 

install.packages (tiff) 

 

setwd("C:/Users/Girma/Desktop/girma") 

ppt <- read.csv("data.csv") 

 

dem.grid <- readGDAL("dem2.tif") 

names(dem.grid) <- "elevation" 

image(dem.grid) 

 

# Generate an empty grid for spatial interpolation 

library(sp) 

# Specify the min and max coordinates and cell size in the E-W direction 

xcoords <- seq(586050, 586900, 10) 

# Specify the min and max coordinates and cell size in the N-S direction 

ycoords <- seq(5040000, 5040800, 10) 

# Expand to all possible combinations of these coordinates 

gridcoords.sp <- expand.grid(xcoords, ycoords) 

# Use same coordinate names as in your point file 

names(gridcoords.sp) <- c("x", "y") 

# Make into a spatial points object 

coordinates(gridcoords.sp) <- ~ x + y 

# Make gridded 

gridded(gridcoords.sp) <- TRUE 

# Look at the grid 

plot(gridcoords.sp) 

write.csv(gridcoords.sp, "datagrid.csv") 

 

# Read in two datasets – the sample points and the prediction grid 

# These are two gstat sample datasets – can be accessed by typing data(meuse)  

# and data(meuse.grid). Here, we read them from text files as an example 

data.sdf <- read.csv("data.csv") 

data.grid <- read.csv("datagrid.csv") 

data <- read.csv("data.csv") 

class(data.sdf) 

names(data.sdf) 
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# Make the data frame into a spatial data object for use with gstat 

coordinates(data.sdf) <- c("x", "y") 

class(data.sdf) 

summary(data.sdf) 

 

# We can access spatial locations directly with the coordinates() function 

coordinates(data.sdf)[1:5,] 

 

# Plot the spatial pattern of ACSA concentrations 

bubble(data.sdf, zcol="E") 

 

# Examine the distribution of E concentrations 

attach(data.sdf@data) 

hist(E) 

qqnorm(E) 

hist(sqrt(E)) 

qqnorm(sqrt(E)) 

hist(log(E)) 

qqnorm(log(E)) 

 

# Plot the semivariogram cloud 

E.cl1 <- variogram(log(E) ~ 1, data=data.sdf, cloud=TRUE) 

plot(E.cl1) 

 

# Generate an empirical semivariogram for the sqrt of E concentrations 

E.vgm <- variogram(log(E) ~ 1, data=data.sdf, width = 70, cutoff=350) 

plot(E.vgm) 

E.vgm 

 

# Explicitly specify the width of the “bins” 

E.vgm2 <- variogram(log(E) ~ 1, data=data.sdf, width = 70, cutoff=350) 

plot(E.vgm2) 

E.vgm2 

 

# Explicitly specify width of bins and maximum lag distance 

E.vgm3 <- variogram(log(E) ~ 1, data=data.sdf, width = 70, cutoff=350) 

plot(E.vgm3) 

E.vgm3 

 

# Generate an anisotropic semivariogram with four direction classes 

E.vgma <- variogram(log(E) ~ 1, data=data.sdf, alpha=c(0, 45, 90, 135)) 

plot(E.vgma) 

E.vgma 

 

# Fit a spherical semivariogram function  
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# Need to specify starting values for the fit 

plot(E.vgm3) 

E.fit <- fit.variogram(E.vgm3, model=vgm(psill=0.0005, model="Sph", range=350, 

nugget=0.0001)) 

E.fit 

plot(E.vgm3, E.fit) 

 

# Fit an exponential semivariogram function  

E.fit2 <- fit.variogram(E.vgm3, model=vgm(psill=0.0005, model="Exp", range=350, 

nugget=0.0001)) 

E.fit2 

plot(E.vgm3, E.fit2) 

 

# Fit a Gaussian semivariogram function 

E.fit3 <- fit.variogram(E.vgm3, model=vgm(psill=0.0005, model="Gau", range=350, 

nugget=0.0001)) 

E.fit3 

plot(E.vgm3, E.fit3) 

 

# Examine the prediction grid 

class(data.grid) 

names(data.grid) 

coordinates(data.grid) <- c("x", "y") 

class(data.grid) 

gridded(data.grid) = TRUE 

class(data.grid) 

summary(data.grid) 

 

 # Fit first- and second-order trend surface models 

# Specify trend-surface modeling using the degree argument 

predict.tr1 <- krige(log(E) ~ 1, locations=data.sdf, newdata=data.grid, degree=1) 

predict.tr2 <- krige(log(E) ~ 1, locations=data.sdf, newdata=data.grid, degree=2) 

 

# Set blue-pink-yellow as default color ramp for trellis graphics (including spplot) 

trellis.par.set(sp.theme()) 

 

# Generate maps of trend-surface predictions 

spplot(predict.tr1, zcol="var1.pred") 

spplot(predict.tr2, zcol="var1.pred") 

 

# Cross-validate the trend surface models 

crossval.tr1 <- krige.cv(log(E) ~ 1, locations=data.sdf, degree=1) 

crossval.tr2 <- krige.cv(log(E) ~ 1, locations=data.sdf, degree=2) 

# Mean absolute error 

mean(crossval.tr1$residual) 

mean(crossval.tr2$residual) 
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# Root mean squared error 

sqrt(mean(crossval.tr1$residual^2)) 

sqrt(mean(crossval.tr2$residual^2)) 

# Correlation between predicted/observed 

cor(crossval.tr1$observed, crossval.tr1$var1.pred) 

cor(crossval.tr2$observed, crossval.tr2$var1.pred) 

# Visually assess predicted versus observed 

plot(crossval.tr1$observed, crossval.tr1$var1.pred) 

# add the 1:1 line 

abline(0, 1, lty=2) 

plot(crossval.tr2$observed, crossval.tr2$var1.pred) 

abline(0, 1, lty=2) 

 

# Generate inverse distance weighting prediction for k=1 

# Call the idw function and specify the idp parameter 

predict.idw1 <- idw(log(E) ~ 1, locations=data.sdf, newdata=data.grid, idp=1) 

# Generate inverse distance weighting prediction for k=2 

predict.idw2 <- idw(log(E) ~ 1, locations=data.sdf, newdata=data.grid, idp=2) 

 

# Generate maps of inverse distance weighting predictions 

spplot(predict.idw1, zcol="var1.pred") 

spplot(predict.idw2, zcol="var1.pred") 

 

# Assess prediction accuracy using cross-validation 

# Supply idp as a list element to the set argument 

crossval.idw1 <- krige.cv(log(E) ~ 1, set=list(idp=1), data.sdf) 

crossval.idw2 <- krige.cv(log(E) ~ 1, set=list(idp=2), data.sdf) 

cor(crossval.idw1$observed, crossval.idw1$var1.pred) 

cor(crossval.idw2$observed, crossval.idw2$var1.pred) 

sqrt(mean(crossval.idw1$residual^2)) 

sqrt(mean(crossval.idw2$residual^2)) 

plot(crossval.idw1$observed, crossval.idw1$var1.pred) 

abline(0, 1, lty=2) 

plot(crossval.idw2$observed, crossval.idw2$var1.pred) 

abline(0, 1, lty=2) 

 

# Ordinary kriging 

# Include a fitted semivariogram as the model argument 

E.krige <- krige(log(E) ~ 1, locations=data.sdf, newdata=data.grid, model=E.fit) 

spplot(E.krige, zcol="var1.pred") 

names(E.krige) 

spplot(E.krige, zcol="var1.var") 

  

crossval.krige <- krige.cv(log(E) ~ 1, locations=data.sdf, model=E.fit) 

cor(crossval.krige$observed, crossval.krige$var1.pred) 

sqrt(mean(crossval.krige$residual^2)) 
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plot(crossval.krige$observed, crossval.krige$var1.pred) 

abline(0, 1, lty=2) 

 

# Linear regression using elevation as an independent variable 

predict.iv <- krige(log(E) ~ elevation, locations=data.sdf, newdata=dem.grid) 

spplot(predict.iv, zcol="var1.pred") 

# Root mean squared error 

sqrt(mean(crossval.iv$residual^2)) 

# Correlation between predicted/observed 

cor(crossval.iv$observed, crossval.iv$var1.pred) 

 

# Kriging with external drift using elevation as an independent variable 

E.vgm2 <- variogram(log(E) ~ elevation, data=data.sdf) 

E.fit2 <- fit.variogram(E.vgm, model=vgm(psill=0.0005, model="Sph", range=350, 

nugget=0.0001)) 

predict.ed <- krige(log(E) ~ elevation, locations=data.sdf, newdata=dem.grid, model=E.fit2) 

spplot(predict.ed, zcol="var1.pred") 

crossval.ed <- krige.cv(log(E) ~ elevation, locations=data.sdf, model=E.fit2) 

accuracy.ed <- accstats(crossval.ed$observed, crossval.ed$var1.pred, "ED") 

 

# Kriging with external drift using elevation as an independent variable 

E.vgm2 <- variogram(log(E) ~ elevation, data=data.sdf) 

E.fit2 <- fit.variogram(E.vgm, model=vgm(psill=0.0005, model="Sph", range=350, 

nugget=0.0001)) 

predict.ed <- krige(log(E) ~ elevation, locations=data.sdf, newdata=dem.grid, model=E.fit2) 

spplot(predict.ed, zcol="var1.pred") 

crossval.ed <- krige.cv(log(E) ~ elevation, locations=data.sdf, model=E.fit2) 

accuracy.ed <- accstats(crossval.ed$observed, crossval.ed$var1.pred, "ED") 

#Extract eleveation points from DEM 

file<- list.files("C:\\Users\\Girma\\Desktop\\girma", "*.tif") 

a<-raster(file[1]) 

plot(a) 

elevation<-extract(a, data.sdf) 

elevation 

 

cbind(data.sdf@data,elevation) 

projection(data.sdf) <- "+proj=utm +zone=14 +datum=WGS84 +units=m +no_defs 

+ellps=WGS84 +towgs84=0,0,0" 

proj4string(data.sdf)<-"+proj=utm +zone=14 +datum=WGS84 +units=m +no_defs 

+ellps=WGS84 +towgs84=0,0,0" 

install.packages("plotKML") 

library(plotKML) 

plotKML(data.sdf["yield"]) 

 



106 
 

 
 

Appendix II: Soils of the study sites 

 

Table 1 Soil of the research site with area of coverage. 

 

*44°58′10″N, -98°27′52″W, **43°40′31″N, -98°45′50″W, ***45°30′31″N, -97°53′50″W, **** 44° 19' 7"N,-96° 46' 56"W  

Source of soil information: USDA-NRCS, Soil Survey Division (2016b). 

Study Site Dominant soils Soil Classification 
US Soil Mapping units 

containing named soil (ac) 

Redfield*, SD Harmony Fine, smectitic, frigid Pachic Argiudolls 1,189,440 

 Aberdeen Fine, smectitic, frigid Glossic Argiudolls 2,062,270 

 Winship Fine-silty, mixed, superactive, frigid Pachic Argiudolls 202,190 

 Tonka Fine, smectitic, frigid Argiaquic Argiudolls 13,902,240 

 Bend Fine-silty, mixed, superactive, mesic Typic Haplustolls 44,600 

 Beotia Fine-silty, mixed, superactive, frigid Pachic Hapludolls 1,448,060 

White Lake** SD Beadle Fine, smectitic, mesic Typic Argiustolls 1,869,900 

 Dudley Fine, smectitic, mesic Typic Natrustolls 2,754,850 

 Delmont 
Fine-loamy over sandy or sandy-skeletal, mixed, 

superactive, mesic Typic Haplustolls 
1,029,770 

 Talmo Sand skeletal, mixed, mesic, udorthentic Hapludolls 472,420 

 Houdek Fine-loamy, mixed, superactive, mesic Typic Argiustolls 6,9483,40 

 Ethan Fine-loamy, mixed, superactive, mesic Typic Calciustolls 5,517,300 

Pierpont*** SD Kranzburg Fine-silty, mixed, superactive, frigid Calcic Hapludolls 2,665,320 

 Brookings Fine-silty, mixed, superactive, frigid Pachic Hapludolls 1,752,790 

 Nahon Fine, smectitic, frigid Calcic Natrudolls 1,000,250 

 Aberdeen Fine, smectitic, frigid Glossic Natrudolls 2,062,270 

 Exline Fine, smectitic, frigid Leptic Natrudolls 1,095,090 

Brookings****SD Brookings Fine-silty, mixed, superactive,frigid Calcic Hapludolls 1752790 

 Vienna Fine-loamy, mixed, superactive,frigid Calcic Hapludolls 1721590 
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Appendix III: Interpolated maps of selected soil attributes using different interpolation methods. 

 

Figure 1 Interpolated electrical conductivity (EC) measured at V1 (first leaf) stage of corn (Zea 

mays) overlaid on soil series at Pierpont , SD saline sodic soils  

 

Pierpont, SD coordinates:  (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant 

soils: Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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Figure 2 Interpolated soil moisture measured at V1 (first leaf) stage of corn (Zea mays) overlaid 

on soil series at Pierpont , SD saline sodic soils 

 

Pierpont, SD coordinates:  (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant 

soils: Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
 

 

 

 

 

 

 

 

 



109 
 

 
 

Appendix IV: ANOVA tables 

 

Table 2 ANOVA summary of soil attributes and NDVI values, soil series as independent 

variable at Pierpont. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pierpont coordinate: 45°30′31″N, -97°53′50″W (Dominant soils: Hapludolls, Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division (2016b). 

NDVI= Normalized Difference Vegetation Index, E=emergence, V1= first leaf, V4=four leaves, 

V6=six leaves, EC= electrical conductivity, SAR=sodium adsorption ratio. 

*Significant at P < 0.05. 

** Significant at P < 0.01. 

*** Significant at P < 0.001. 

 

 

 

 

 

 

NDVI E 0.0012** 156 

NDVI V1 0.1125 142 

NDVI V4 0.2553 88 

NDVI V6 <.0001*** 156 

Soil Moisture  E 0.0055** 91 

Soil Moisture V1 0.2353 155 

Soil Moisture V4 0.1262 156 

Soil Moisture  V6 0.4364 156 

EC V1 <.0001*** 156 

EC V4 0.0012** 156 

EC V6 <.0001*** 156 

Chlorophyll  V4 0.5424 139 

Chlorophyll V6 0.0077** 156 

EC 0-3 0.0140* 112 

pH  0-3 0.6894 24 

SAR  0-3 0.0008*** 112 

Lime depth <.0001*** 154 

Mollic depth <.0001*** 155 

Redox depth <.0001*** 79 

Till depth  <.0001*** 125 

Yield <.0001*** 156 
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Appendix V: Soil variability 

 

       

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

 

 

 

Figure 3 Semivariograms fit for NDVI at V1 stage of corn (Zea mays) at Pierpont, SD field: 

stable (a), exponential (b), Spherical (c) and Guassian (d)models. 

Pierpont coordinate: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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Figure 4 Semivariograms for NDVI at V4 stage of corn (Zea mays) at Pierpont, SD field: (a) 

stable, (b) exponential), Spherical (c) and Guassian (d) models. 

Pierpont coordinate: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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Figure 5 Semivariograms for NDVI at V6 stage of corn (Zea mays) at Pierpont, SD field: (a) 

stable, (b) exponential), Spherical (c) and Guassian (d) models. 

Pierpont coordinate: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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Figure 6 Semivariograms for mollic depth at Pierpont, SD field: (a) stable, (b) exponential), 

Spherical (c) and Guassian (d) models. 

Pierpont coordinate: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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Figure 7 Semivariograms for lime depth at Pierpont, SD field: (a) stable, (b) exponential), 

Spherical (c) and Guassian (d) models. 

Pierpont coordinate: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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Figure 8 Semivariograms for pH at Pierpont field: (a) stable, (b) exponential), Spherical (c) and 

Guassian (d) models. 

Pierpont coordinate: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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Figure 9 Semivariograms for EC at Pierpont field: stable, exponential), Spherical and Guassian 

models. 

Pierpont coordinate: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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Figure 10 Semivariograms for SAR at Pierpont field: (a) stable, (b) exponential), Spherical (c) 

and Guassian (d) models. 

Pierpont coordinate: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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Figure 11 Semivariograms fit for NDVI at bare soil/emergence stage of corn (Zea mays)  at 

Pierpont field: stable, (b) exponential), Spherical and Guassian models. 

Pierpont coordinate: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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Figure 12 Semivariograms fit for corn (Zea mays) yield at Pierpont, SD field: stable, (b) 

exponential), Spherical and Guassian models. 

Pierpont coordinate: (44°55′30″ to 45°28′30″N and  97°50′9″ to 98°28′34″W (Dominant soils: 

Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b. 
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Table 3 Correlation matrix of soil attributes 

 

Pierpont coordinate: 45°30′31″N, -97°53′50″W (Dominant soils: Hapludolls, Natrudolls). 

Source of soil information: USDA-NRCS, Soil Survey Division (2016b). 

NDVI= Normalized Difference Vegetation Index, E=emergence, V1= first leaf, V4=four leaves, V6=six leaves, EC= electrical 

conductivity, SAR=sodium adsorption ratio.* Significant at 0.05, **significant at 0.01 

Properties 

SM 

E 

SM 

V1 

EC 

V1 

Chlorophyll 

V4 Yield Elevation 

EC 0-

3 inch 

depth 

pH 0-

3 inch 

depth 

SAR 

0-3 

inch 

depth 

Lime_ 

depth 

Mollic 

depth 

Redox 

depth 

Till 

depth 

Soil moisture E 1.00 0.17** 0.24** -0.02 -0.31** -0.50** 0.20** 0.01 0.24** 0.06 0.35** 0.12 0.05 

Soil moisture V1 

 

1.00 0.45** -0.02 -0.16* -0.24** 0.36** -0.06 0.34** 0.05 0.15* -0.01 0.03 

EC V1 

  

1.00 -0.09 -0.30** -0.38** 0.91** -0.11 0.77** -0.01 0.18** 0.25* 0.16* 

Chlorophyll V4 

   

1.00 -0.03 0.27** -0.05 0.40** -.010 -0.10 

-

0.15** -0.13 -0.05 

Yield 

    

1.00 0.34** 

-

0.24** 

-

0.37** 

-

0.37** 0.30** 0.02 0.02 0.00 

Elevation 

     

1.00 

-

0.28** -0.10 

-

0.31** 0.11 

-

0.36** 

-

0.35** 

-

0.30** 

EC 0-7.5 cm 

depth 

      

1.00 -0.08 0.81** -0.03 0.17** 0.17** 0.09 

pH 0-3 inch 

depth  

       

1.00 -0.06 -0.33** -0.01 0.15* -0.12 

SAR 0-7.5 cm 

depth 

        

1.00 -0.07 0.22** 0.21** 0.12 

Lime depth 

         

1.00 0.63** 0.45** 0.32** 

Mollic depth 

          

1.00 0.52** 0.66** 

Redox depth 

           

1.00 0.73** 

Till depth 

            

1.00 
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