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ABSTRACT
SPATIAL VARIABILITY ANALYSIS AND RECLAMATION OF SALINE SODIC-SOILS IN
THE NORTHERN GREAT PLAINS
GIRMA A. BIRRU
2016

Increased spring rainfall and higher temperatures when combined with changing land-
uses and extensive tile drainage installation have contributed to the development of sodic and
saline/sodic soils in the Northern Great Plains. The objectives of this dissertation were: 1)
determine the impact of surface chemical treatments and cover crop on crop yields and soil
remediation; 2) determine and describe soil spatial variability and develop a model to identify
saline-sodic soils; and 3) evaluate cation impact on dispersion of bentonite clay and selected
soils. The research was conducted between 2013 and 2016 at Redfield (Argiustolls, Natrudolls,
Calciustolls), White Lake (Argiudolls, Natrudolls), and Pierpont (Hapludolls, Natrudolls), in
eastern South Dakota. A randomized complete block design with 4 replications was used.
Treatments were cover cropping and surface amendments [gypsum, calcium chloride, elemental
sulfur (S), and no amendments]. A mixture of barley (Horedeum vulgare) and sugar beet (Beta
vulgaris) was used as the cover crop. At 169 sampling points, yield, soil properties, and
reflectance were measured. Spatial class was developed using nugget to sill ratio. The impacts
of chemical amendments on reducing soil dispersion were determined. Surface chemical
amendment and cover crop treatments did not show significant differences in crop yield and soil
properties in most locations. Hence, the amendments did not work in the Northern Great Plain
soils with a glacial parent material that has high salt, calcium carbonate, and gypsum levels.

Other management strategies that can reduce soil pH and mimic the native prairie grasses (deep-



xiiii

rooted perennial grasses that can use water from deeper in the soil profile) could be useful for
future study. The exponential semivariogram model was found to be the optimal model for
NDVI and yield with the spatial dependence (nugget/sill ratio) of 14.4 and 0%, respectively.
Similarly, the exponential model was the optimum fit for mollic depth, lime depth, pH, EC, and
SAR with nugget to sill ratio of 0, 0, 45, 17 and 49 respectively. Local Moran’s I and
semivariogram modelling of soil attributes and NDVI data could help locate saline hot spots and
quantify spatial heterogeneity respectively in saline-sodic soils. Higher turbidity was recorded in
Na salt treated soil and bentonite clay than Ca and Mg salts. Turbidity was useful in measuring

clay dispersion and could be used as an indicator of clay dispersion in salt-affected soils.

Keywords: Argiustolls, bentonite clay, Calciustolls, dispersion, Hapludolls, Natrudolls, NDVI,
semivariograms, SAR, saline-sodic soil, soil spatial variability, surface amendments, turbidity,

reclamation, water infiltration.



1. CHAPTERI

INTRODUCTION AND LITRATURE REVIEW

Rapid world population growth has increased the demand for agricultural products and has
sometimes resulted in natural resource degradation. To maintain the food supply and meet the
growing world population, agricultural production has to grow substantially (Foley et al., 2011;
Tscharntke et al., 2012). In the last few decades, suitable cultivable land for crop production has
decreased significantly and the alternative option is improving the productivity of degraded land

including salt-affected soils (Ladeiro, 2012; Rengasamy, 2006).

Estimates identify at least 950 million ha of the world’s soils that are salt-affected with
different proportions of saline and sodic soil (Szabolcs, 1994). These hundreds of millions of
hectares of land are not used for agricultural production due to high levels of salts (Northcote and
Srene, 1972) and the increased incidence of salt-affected soils has resulted in environmental
quality degradation and reduced crop yields (Rengasamy, 2006). Salt-affected soils are found
almost in all climatic regions, where evapotranspiration exceeds precipitation at least some

portion of the year (Rengasamy, 2006; Sumner and Naidu, 1998).

Secondary dryland salinity (human-induced salinity in non-irrigated areas) has become a
major concern in the Northern Great Plains (NGP) region of USA (South Dakota, North Dakota,
and Montana) and Canada (the prairie provinces of Manitoba, Saskatchewan, and Alberta)
(Pannell and Ewing, 2006). Thus, these salt-affected soils require special management measures
to improve their productivity and to reduce their environmental impact (Allen et al., 1998;
Gabrijel et al., 2011). Therefore, a comprehensive understanding of the interrelationship between

different environmental conditions that affect saline and sodic soils expansion is vital to



designing effective and sound management strategies and to reduce the expansion of the

problem.

1.1 Source and Classification

Detailed reviews of the chemistry and formation of salt-affected soils have been reported
(McBride, 1994; Suarez et al., 2005). Geochemical weathering of parent rock materials is the
main source of salts in most soils (Maas et al., 1999). However, the expansion of salts in soils
and water bodies is mainly affected by land-use (Suarez et al., 2005) and precipitation changes.
During weathering, the primary minerals react with water and O, and CO, to form secondary
minerals and salts which are transported by water to depressions in the landscape and oceans
(Maas et al., 1999; Suarez et al., 2005). Salts consist mostly of various proportions of Na*, Ca?*,
Mg?*, CI-, SO4*, HCO3 and occasionally K*, CO3s?, and NOs™ ions (McBride, 1994).

The processes of salinization and alkalization of soils are the consequences of a number
of factors of surface and ground waters, soil physical properties, climate, relief, geomorphology,
and man’s and other biological activities (Maas et al., 1999). Similarly, salinization and
alkalization of NGP soils are the result of a combination of several factors including: 1) the
weathering of primary materials with high salt levels (Cerling and Quade, 1993; Kohut and
Dudas, 1993); 2) changes in land use and vegetation (conversion of grass land to cropland)
(Anderson et al., 2015; Kim et al., 2012); 3) increases in precipitation (Karl and Knight, 1998);
and 4) changes in land management practices (no-till, summer fallow, and expansion tile
drainage) (Karlen et al., 1997).

Classification of salt-affected soils is based on their chemical properties and ease of

reclamation. The key chemical properties are pH, electrical conductivity (EC), and exchangeable



sodium percentage (ESP) or sodium adsorption ratio (SAR) (Rhoades, 1982; Szabolcs et al.,
1974). According to the US Salinity Laboratory Staff, (1954) salt-affected soils are traditionally
classified into three groups. These are: 1) saline soils; 2) saline-sodic soils; and 3) sodic soils.
Saline soils contain soluble salt levels that can affect the growth and productivity of most crop
plants ( US Salinity Laboratory Staff, 1954; Wallender and Tanji, 2011). Saline soils are
composed mainly of the ions CI-, SO4* , Na*, Ca?*, Mg?*" and small amounts of NOz", HCOs3’,
and K*. Saline-sodic soils contain both soluble salts and exchangeable sodium in higher
quantities that affect growth and productivity of the of crop plants ( US Salinity Laboratory Staff,
1954; Wallender and Tanji, 2011). Electrical conductivity (EC) is the common method of
estimating salinity levels in soils. In most cases, the uncontrolled removal of soluble salts from
saline-sodic soils can result in the formation of sodic (dispersed) soils (Kelley, 1951). Soils that
contain high levels of exchangeable sodium on their exchange complex which can affect the
growth and production of most crop plants and dispersed soil structure are sodic soils (Sumner
and Naidu, 1998). Commonly, sodic soils have very low permeability (Kelley, 1951; Sumner,
1993; Sumner and Naidu, 1998). The surface horizons of sodic soils are often dense (compacted)
with poor (dispersed and columnar) subsurface structure. Soil alkalinity is determined by the
amount of exchangeable sodium percentage (ESP), the concentration of exchangeable sodium
(Na*) expressed as percent of Na* retained by the soils cation exchange capacity (CEC) or by the

sodium adsorption ratio (SAR).

1.2 Plant Response and Salt Affected Soils
Salt stress affects plants in a variety of ways including reducing growth rate (stunted

growth and darker green leaf color) and changes in plant physiology (Maas and Hoffman, 1977;



Munns, 1993, 2002; Netondo et al., 2004; Volkmar et al., 1998). The level of injury and
reduction in growth varies among crop plants (Maas et al., 1999). However, a high concentration
of a single salt is likely to cause specific ion effect (toxicity or nutritional imbalances)
(Bernstein, 1975; Grattan and Grieve, 1999; Lauchli and Epstein, 1990; Shainberg and Letey,
1984). The osmotic effect (due to high salinity levels) is the main cause of annual crop yield
reduction in saline soils (Maas et al., 1999; Stavridou et al., 2016). Whereas the impact of high
sodium levels is on soil structure, nutrient availability, and plant growth (Bernstein, 1975;

Bertness and Hacker, 1994; Bronick and Lal, 2005)

1.3 Reclamation and Management

Reclamation and management strategies of saline, sodic, or saline-sodic soils should be
developed based on the baseline data of a specific site (Gupta and Abrol, 1990; Qadir and Oster,
2004; Qadir et al., 2008). The key factor in reclamation of saline soil is water movement into
and through soils (Oster et al., 1996). Reclamation can be done by the combination of one or
more of the following practices: tillage and other cultural practices, water management, tolerant
crops and cropping systems, and use of soil amendments to improve crop productivity (Kelley,

1951, Oster et al., 1996).

Some of the suggested strategies and methods to control salinity and sodicity in the short-
term and medium-term include: the use of quality water related measures including post-planting
leaching; mulching; application of farmyard manure; maintaining high levels of available water
in the plant root zone; use of good quality irrigation water; establishing and rehabilitating sub-
surface drainage systems and drainage canals; and proper land drainage (Gupta and Abrol, 1990;

Haque, 2006; Heuperman, 1999; Qadir et al., 2003). Additional strategies could include



selection and seedbed preparation including avoiding cultivation of lands with high water tables
and hard pans; avoiding irregular water intake to prevent accumulation of salts; and minimum
tillage to avoid soil compaction (Abrol et al., 1988; Lal, 2000) . There are also suggested
biological and agronomic management measures that could help combat the effect of salt-
affected soil including the selection of salt tolerant crops, growing salinity and sodicity
ameliorating crop species, and selecting proper seeding or planting methods (Qadir and Oster,

2004; Rietz and Haynes, 2003).

Some of the strategies and methods to control salinity and sodicity in the long-term start
with field observations, investigating the sources, soil classification studies, irrigation effects,
determine suitable management practices (irrigation, drainage, leaching, groundwater
management, land levelling, and cultural practices), evaluating the agronomic practices, and
identifying representative area(s) to test the prescribed practices (Abrol et al., 1988; Oster et al.,

1996; Qadir and Oster, 2004).

1.4 Objectives
Experiment 1 (Chapter I1): To compare the impact of surface chemical treatments, and cover

crop on crop yields and soil quality.

Experiment 2 (Chapter I11): to select the appropriate model that can define or predict spatial

variability of NDVI and yield and to compare the effectiveness of spatial interpolation methods.

Experiment 3 (Chapter 1V): To evaluate the effectiveness of surface chemical amendments and
cover crops on improving water infiltration in saline-sodic soils and to evaluate the effect of

variable cation concentrations on the dispersion of bentonite clay and selected soil samples.

Experiment 4 (Chapter V): Describe spatial variability of selected soil properties.
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2. CHAPTERII

CROP YIELD AND SOIL PROPERTIES AS AFFECTED BY SOIL SURFACE

CHEMICAL AMENDMENTS AND COVER CROP
Abstract

Changing climatic conditions when combined with an opportunity to install tile drainage has
placed many Northern Great Plains (NGP) soils at the tipping point of sustainability. A field
study was conducted to compare the impact of surface chemical treatments and cover crop on
crop yields and soil quality. The eastern South Dakota study locations were White Lake
(dominant soils: Argiustolls, Natrudolls, and Calciustolls), Redfield (dominant soils: Argiudolls
and Natrudolls) and Pierpont (dominant soils: Hapludolls and Natrudolls). A randomized
complete block design with four replications was used. The treatments were cover crop and
surface amendments. A barley (Hordeum vulgare L.) and sugar beet (Beta vulgaris subsp.
vulgaris) mixture was seeded as the cover crop at the rate of 34 kg ha* and 4.5 kg ha™?,
respectively. Soil surface amendments were gypsum (CaSO4-2H,0), CaCl,, and elemental
sulfur. No amendment was used as a control. Grain yield, stover weight, and other agronomic
traits were measured. Initial and final soil samples from each plot and three soil depths were
analyzed for basic soil parameters. Soil chemical properties improved when compared with
baseline data in all locations and years for surface chemical amendments. However, the surface
amendments did not show any significant difference in most locations years indicating these
treatments did not work for glacial parent material soils with high salt levels (calcium carbonate
and gypsum). Other management strategies that can reduce soil pH and mimic the native prairie

grasses (deep-rooted perennial grasses that can use water deeper in the soil profile) could be
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useful for future study. Generally, the spatial area of saline and saline-sodic soils is increasing in
the NGP region of the United States resulting in a significant reduction of productive of arable
land due to reduced soil organic matter which affects soil chemical properties and degrades soil

structure and increases the downstream sediment deposition due to the erosion of sodic soils.

Keywords: saline-sodic soil, saline soil, sodic soil, sodium adsorption ratio (SAR), gypsum,
sulfur, calcium chloride, Northern Great Plains, Argiustolls, Calciustolls, Natrudolls, Hapludolls,

electrical conductivity (EC).
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2.1 Introduction

Over 950 million ha of the world’s soils are salt-affected (with different proportions of
saline and sodic soils, [(Szabolcs, 1994). Soil salinity and sodicity are major forms of land
degradation affecting the world soils (Qadir and Schubert, 2002; Rengasamy, 2006). Secondary
dryland salinity (human-induced salinity in non-irrigated areas) has become a major concern in

the North America Northern Great Plains, NGP (Pannell and Ewing, 2006).

Factors attributing to increasing salinity include changes in land use and vegetation,
mainly the conversion of grass land to cropland (Reitsma et al., 2015; Reitsma et al., 2016);
increases in precipitation (Karl and Knight, 1998); changes in management practices (no-till,
summer fallow, and expansion of tile drainage) (Karlen et al., 1997); and parent materials
containing high level of salts (Cerling and Quade, 1993) mainly Pierre shale (Malo et al., 2010).
These factors contribute to higher exchangeable sodium concentrations in soil exchange sites
which lead to natric horizon formation and soil dispersion. Ultimately, yields can be reduced
and environmental quality can be diminished (Chi et al., 2012; Hulugalle et al., 2010;
Rengasamy, 2006). In the NGP regions, drainage has been used to increase the productivity of
wet soils by removing excess water from the root zone (Olson and DeBoer, 1988). Installation of
tile drainage has increased in recent years and there have been concerns as to the negative impact
of tile drainage on the conversion of a large area of saline soils to sodic soils. However, the effect
of integrated soil and water management and agronomic practices on crop productivity and soil
health in salt-affected soils of these areas was not investigated. Therefore, this study was
conducted to determine the effectiveness of selected soil surface amendments and cover crop in
reducing sodicity, improving the soil physical and chemical properties, and improving crop yield

in saline-sodic and sodic soils in Eastern South Dakota.
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2.2 Materials and Methods
2.2.1 Description of the study sites

A three-year field study (2013 to 2015 growing seasons) was conducted near Redfield,
SD (44°58'10"N, -98°27'52"W) and near White Lake, SD (43°40'31"N, -98°45'50"W).
Additional sites were selected in 2014 and a two-year field study (2014 to 2015 growing
seasons) was conducted near Pierpont, SD (45°30'31"N, -97°53'50"W). The study sites were
selected to provide a range of possible salt levels. The dominant soils at the Redfield study site
were Harmony-Aberdeen silty clay loams (0-2 % slopes), Winship-Tonka silt loams (0-1 %
slopes), and Great Bend-Beotia silt loams (0-2 % slopes). The dominant soils at White Lake
were Beadle-Dudley complex (0-3 % slopes), Delmont-Talmo complex (6-15 % slopes), and
Houdek and Ethan loams (2-6 % slopes) (USDA-NRCS, 2016a; 2016b). Kranzburg-Brookings
silt loams and Nahon-Aberdeen-Exline silt loams with slopes of 2 to 6 % and 0 to 2 % slopes,
respectively, were the dominant soil series at the Pierpont study site. Detailed classification of
soils is provided in the Appendix Il (Table 1). The baseline soil chemical properties are

presented in Table 2.1.
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Table 2.1 Initial (baseline) average soil chemical composition of the research plots in Redfield
(2013), White Lake (2013), and Pierpont (2014), SD.

Electrical
Conductivity (EC) Sodium Adsorption
(dS/m) Soil pH Ratio (SAR)
Soil Depth (cm)

Sites class 0-7.5 | 7.5-15 | 15-30 | 0-7.5| 7.5-15 | 15-30 | 0-7.5 | 7.5-15 | 15-30
Redfield* | Saline 8.0 6.2 6.5 7.3 7.8 7.8 : 3.3 3.0
White Saline- | 10.2 8.2 7.3 7.6 7.4 75 | 170 | 178 | 123
Lake** sodic
Pierpont* | Saline- | 200 | 19.0 | 180 | 7.9 7.5 75 | 19.0 | 23.0 | 16.0
** sodic

*44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).

**43°40'31"N, -98°45'50"W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls).
***45°30'31"N, -97°53'50"W (Dominant soils: Hapludolls, Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
n= 4 (Redfield); n=5 (White Lake); n=5 (Pierpont).

Table 2.2 Surface amendment application rates by location.

Rate applied in kg ha* (0-15 cm soil depth)
Salt Treatment Redfield* | White Lake** | Pierpont*** (East) | Pierpont (\West)
Gypsum
(CaS04-2H,0) 4980 4970 8735 6119
CaCl» 4258 4281 7517 5224
Elemental S 923 922 1616 1139
No Salt 0 0 0 0

*44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).
**43°40'31"N, -98°45'50"W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls).
***45°30'31"N, -97°53'50"W (Dominant soils: Hapludolls, Natrudolls).

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.

2.2.2 Experimental design and treatments
The research design used at all sites (Redfield, White Lake, and Pierpont) was a
randomized complete block design with 4 replications. The treatments were cover cropping
(includes cover crop and non-cover crop) and surface chemical amendments [gypsum
(CaS04-2H70), calcium chloride (CaCly), elemental sulfur (S) and control (no-application)]. The

area of each plot was 9 m x 9 m for Redfield and 9 m by 6 m in White Lake and Pierpont. The
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rate of application of the surface chemical amendments was determined based on the initial soil
test results. The surface amendment application rate was calculated from the amount of calcium
(Ca?") required to be replace sodium (Na*) at each study location for the 0 to 15 cm soil depth.
The target exchangeable sodium percentage (ESP) value of the soil was 5 (at this ESP the effect
of Na* on plants and soils is minimal) (Horneck et al., 2007) and is critical value for most NGP
soils (Kharel, 2016). The chemical amendment applications rates at each site are presented in
Table 2.2. Surface treatments were broadcast onto the soil surface and incorporated using a hand-

operated motorized rototiller before planting.

A combination of sugar beet (Beta vulgaris) and barley (Horedeum vulgare) was used as
an in-season cover crop. The seeding rates for sugar beet and barley were 34 kg/ha and 4.5
kg/ha. Cover crop planting at each site depended on the growth stage of the main crop (June).
Accordingly, for the corn (Zea mays) and sorghum (Sorghum bicolor) crops the cover crop was
planted when the main crop growth stage was between V4 (four visible leaf collars) and V6
(sixth leaf growth stage). Whereas, for soybeans (Glycine max) cover crops were seeded between
n V stage- nth trifoliate (\V stages continue with the unfolding of trifoliate leaves and the final
number of trifoliate depends on the soybean variety and the environmental conditions) and R1
(beginning flowering - plants have at least one flower on any node (Clark, 2008; Fehr et al.,

1971; Vaughan and Evanylo, 1998).

2.2.3 Data collection and analysis

Soil Sampling and Chemical Analysis

Soil samples were taken from each plot in each fall and spring seasons from 2013 to 2015. Soil

sampling was done at start of the cropping season (May/June) and after harvest
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(October/November). Soil samples from three different depths (0-7.5, 7.5-15, and 15-30 cm)
consisted of 10 subsamples collected with a 1.9 cm diameter soil probe. Each sample was dried
at 40°C, ground, sieved (<2 mm), stored in plastic bags, and analyzed for pH, electrical
conductivity (EC), water soluble cations, sodium adsorption ratio (SAR), carbon, ammonium

and nitrate-N (Page, 1982)

Water soluble cation concentrations (Na*, Ca?*, and Mg?*), EC, and pH and were determined
from a saturated extract. One hundred and fifty grams of air-dry soil was weighed and mixed
with distilled water until saturated. The mixture was covered and allowed to equilibrate for 24
hours. After 24 hours, the soil solution was extracted using a Bichner funnel apparatus and
vacuum. All extracts were stored at 4°C until they were analyzed for pH, EC, Ca, Mg, and Na
(PC 2700, Oakton Instruments, Vernon Hills, IL) (Rhoades, 1982). Sodium adsorption ratio
(SAR) was calculated using Equation 2.1.

[Na*]

A= <[Ca2+] + [Mg2+]>1/2 .

2

Yield and other agronomic traits

The plots were planted with corn (Zea mays), sorghum (Sorghum bicolor), and soybean
(Glycine max), fertilized, and pesticides applied by the producer collaborators (Table 2.3). Grain
and stover harvest for corn and sorghum were done by hand and, soybean harvest was conducted
by a combine. A total area of 1.5 m x 3 m (5.25 m?) for corn and sorghum were harvested to
estimate grain yield and stover biomass. Whereas, a 12 m? area of soybeans was harvested and

converted to yield on a hectare basis.
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Table 2.3 Crops planted and agronomic management practices at the study locations.

2013 2014 2015

Row Spacing Row x Plant Row Spacing
Site Crop (cm) Crop Spacing (cm) Crop (cm)
Redfield* Corn 75 Soy 50 Soy 50
White Lake** | Sor 75 Corn 75 Soy 50
Pierpont*** - - - - Corn 75

Soy = soybean (Glycine max); Sor = sorghum (Sorghum bicolor)

*44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).
**43°40'31"N, -98°45'50"W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls).
***45°30'31"N, -97°53'50"W (Dominant soils: Hapludolls, Natrudolls).

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.

Chlorophyll content and stomatal conductance

Stomatal conductance was measured using Leaf Porometer-Model SC-1. Five plants from
each plot were measured from 11 am to 1 pm when the sun was overhead on a sunny day. The
third leaf from the top was measured for all plants. Chlorophyll content was measured using
MINOLTA chlorophyll meter, SPAD-502. A fully matured leaf was measured for chlorophyll

content. Eight plants per plots were measured.

2.2.4 Statistical analysis
Data was analyzed using SAS version, SAS Institute, Cary, NC (SAS, 2007). Differences

found between the different treatments were subjected to an analysis of variance (ANOVA).



2.3 Results and Discussion

2.3.1 Crop response
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Average growing season (April to October) precipitation and temperature for each

research sites are shown Table 2.4. The monthly precipitation and temperature of the two study

sites are plotted in Figure 2.1, 2.2, 2.3, 2.4, and 2.5. Note that White Lake precipitation was at

least 15 cm below average in all years studied, while at Redfield the precipitation was either

much lower or much higher than long-term average. The growing season temperatures were near

average for White Lake and much warmer for Redfield.

Table 2.4 Climatic data of the research sites over 2013 to 2015 years and long-term average.

Average April to October
Precipitation (mm)

Average April to October
Temperature (°C)

Research Sites Long-term Long-term
2013 | 2014 | 2015 g 2013 | 2014 | 2015 g
average average
. 60 (25-
Redfield* - 46 81 - 15 17 14 (25 year)
year)
White Lake** | 51 46 54 | 69 (30 year) 15 16 17 16(30 year)
Pierpont*** 66 (9 years average) 16 (9 years average)

*44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).
**43°40'31"N, -98°45'50"W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls).
***45°30'31"N, -97°53'50"W (Dominant soils: Hapludolls, Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.

Source of climate information: South Dakota Climate and Weather, 2016.
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Figure 2.1 Twenty-five year and 2014 average monthly temperature and precipitation at
Redfield, SD.

Redfield GPS: 44°58'10"N, -98°27'52"W.
Source:South Dakota Climate and Weather, 2016.
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Figure 2.2 Twenty-five year and 2015 average monthly temperature and precipitation at
Redfield, SD.

Redfield GPS: 44°58'10"N, -98°27'52"W.
Source: South Dakota Climate and Weather, 2016
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Figure 2.3 Thirty-year and 2013 average monthly temperature and precipitation at White Lake,
SD.

White Lake GPS:43°40'31"N, -98°45'50"W.
Source: South Dakota Climate and Weather, 2016.
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Figure 2.4 Thirty-year and 2014 average monthly temperature and precipitation at White Lake,
SD.

White Lake GPS:43°40'31"N, -98°45'50"W.
Source: South Dakota Climate and Weather, 2016.
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Figure 2.5 Thirty-year and 2015 average monthly temperature and precipitation at White Lake,
SD.

White Lake GPS:43°40'31"N, -98°45'50"W.
Source: South Dakota Climate and Weather, 2016.

In 2013 and 2015 at Redfield, there were no significant differences in corn yield due to
the treatments, surface amendments, or cover crop. There was also no significant difference on
the interaction of the treatments (Table 2.5). Similarly, there was no significant difference in

stover weight due to treatments, surface amendments, or cover crop.

However, in 2014, one year after treatment application, there was a significant yield
decline in soybean yields for CaCl, among the surface amendments treatments (p < 0.001; Table
2.5). The highest soybean yields were obtained from sulfur treated plots followed by gypsum,
control, and calcium chloride. The cover crop treatments were not significantly different. During

the three growing seasons there was no significant yield increase in grain yield between the
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control and the three treatments tested and CaCl> actually significantly lowered soybean yields in

2014.

Grain yields of sorghum (2013) and soybean (2015) in White Lake were not significantly
affected by the surface amendments and cover crop treatments (Table 2.6). The cover crop
treatments gave numerically better (75% of the time) grain yield than the non-cover crop
treatments in White Lake 2013 (Table 2.6). The one-year (2015) field trial at Pierpont showed no
significant differences in both corn grain yield and stover weight due to surface amendments or
cover crop and there was also no significant difference in the interaction of the treatments. The
cover crop treatments numerically increased both grain yield and stover weight (Table 2.7), but

were not statistically different.

These data demonstrate slight numerical (but not statistically significant) increases in
grain yield and stover weight in surface amendments plots (mainly sulfur and gypsum) when
compared to the control that may have resulted from slight change in soil chemical properties
(reduction in soil pH, EC, and exchangeable sodium), soil physical properties (infiltration and
water hydraulic conductivity of the soil), or a combination of one or more factors. In sodic soils
with high levels of lime, sulfur reacts with lime and produce gypsum, a soluble Ca?* form, which
can then replace exchangeable Na* (Stroehlein et al., 1978). The variable responses of the
treatments over the years could be attributed to differences precipitation, temperature, and soil
parent materials at each research site. For instance, in year 2015 annual rainfall increased from
the previous years (see Table 2.4 and Figures 2.1, 2.2, 2.3, 2.4, and 2.5). That may have resulted
leaching of soluble salts from the topsoil. Previous work has shown improving sodic soil
productivity with the application of gypsum and sulfuric acid (Abrol and Bhumbla, 1979; Noble

and Kleinig, 1971; Shainberg et al., 1989; Stroehlein et al., 1978). In addition to increasing the
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solubility of Ca?*, sulfuric acid increases the availability of essential plant nutrients (Fe, Mn, Zn
and P) by lowering soil pH. Availability of nutrients as a result of lowering pH could be cited as
an advantage of sulfur (sulfuric acid) application over using gypsum as amendment (Gupta and
Abrol, 1990; Qadir et al., 2001; Ryan et al., 1975). Therefore, the results of this study showed
that adding amendments like sulfur to NGP sodic soils could be more effective than gypsum or
calcium chloride when reclaiming saline-sodic soils. However, in general the chemical

amendments in NGP soils did not work as anticipated.

Table 2.5 Grain yield and dry stover weight as affected by surface amendment and cover crop
treatments at Redfield, South Dakota.

Corn, 2013 Soybean, 2014 Soybean, 2015
Treatments at Grain Yield Stover Yield Grain Yield Grain Yield
Redfield* (kg/ha) n (kg/ha) n (kg/ha) n (kg/ha) n
Surface
Treatment (ST)
CaCly 1 6340 + 1240%t | 8 3470+ 1150* | 7 1540 + 1050° | 18 | 2420+ 1070% | 17
No-treatment 6910 + 1190* | 6 3550 + 630° 4 2360 + 8802 15 | 2260+920° |9
Gypsum 8 7 17 16
(CaS04-:2H20) 6850 + 1480° 3570 + 9107 2740 + 1080? 2290 + 9202
Sulfur (S) 6920 + 1020? 7 3130 + 500° 6 2790 + 1260* | 17 | 2580 +1170% | 18
Cropping System
(CS)
Cover crop 6810 + 1300® | 14 | 3324 + 950° 14 | 2180+1180* | 34 | 2324+1090* | 31
No-cover crop 6700+ 1180% | 15 | 3534 + 700° 10 | 2530+1180% | 33 | 2452+990* | 29
ANOVA P>F
ST 0.662 0.630 0.001 0.640
CS 0.785 0.447 0.105 0.529
ST*CS 0.281 0.112 0.397 0.554

tMeans with different letters within a column, treatment are significantly different at P < 0.05.
1 Surface Treatment =ST; Cropping System =CS.

*44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.



Table 2.6 Grain yield and dry stover weight as affected by surface amendment and cover crop

treatments at White Lake, South Dakota.

Sorghum, 2013 Soybean, 2015
Treatments at White Lake** Grain Yield (kg/ha) n Grain Yield (kg/ha) n
Surface Treatment (ST)
CaCl; 1 3150 + 1650%F 10 | 1720+ 1270% 8
No-treatment 3100 + 1360? 14 | 1450 £ 10702 9
Gypsum (CaS04-2H20) 3370 £ 1940? 13 | 1950 + 10902 7
Sulfur (S) 3480 + 2310? 18 | 1900 + 10602 9
Cropping System (CS)
Cover crop 3549 + 1740?
No-cover crop 2996 + 1930?
ANOVA P>F
ST 0.918 0.807
CS 0.240 -
ST*CS 0.923 -

tMeans with different letters within a column, treatment are significantly different at P < 0.05.

1 Surface Treatment =ST; Cropping System =CS.

**43°40'31"N, -98°45'50"W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls).

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.

Table 2.7 Comparison of grain yield and dry stover weight as affected by surface amendment

and cover crop treatments at Pierpont, South Dakota.

Corn, 2015
Treatments at Pierpont*** | Grain Yield (kg/ha) | N Stover Yield (kg/ha) | n
Surface Treatment (ST) i
CaCl 1970 + 1580%t 9 1900 + 1120 13
No-treatment 1410 + 11302 11 | 1460 +680°2 11
Gypsum (CaSO4-2H,0) 2300+ 1550? 10 | 2240 + 12902 13
Sulfur (S) 1660+ 1100° 11 | 1940 +1790° 18
Cropping System (CS)
Cover crop 2160 + 14902 22 | 2160 +1690° 27
No-cover crop 1500 + 11002 21 | 1615+ 8402 27
ANOVA P>F
ST 0.097 0.610
CS 0.447 0.185
ST*CS 0.822 0.640

tMeans with different letters within a column, treatment are significantly different at P < 0.05.

1 Surface Treatment =ST; Cropping System =CS.
***45°30'31"N, -97°53'50"W (Dominant soils: Hapludolls, Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Chlorophyll content and stomatal conductance

This study showed significant differences in final sorghum populations at White Lake
among the surface amendments (Table 2.8). However, there were no significant differences in
plant populations due to cover crop treatment and the interaction at White Lake 2013.
Chlorophyll contents for White Lake were not significantly different for surface amendments for
both years (2013 and 2015). There were no significant differences in stomatal conductance for
surface amendments in 2013. In 2015, there were significant differences in soybean stomatal

conductance due to surface treatments (Table 2.8).

During the three years of study (corn [2013] and soybean [2014, 2015]) final plant
populations, chlorophyll content, and stomatal conductance measurements at Redfield, SD
indicate that there were no significant differences in all studied parameters due to surface
amendments or cover crop (Table 2.9). Cover crop did numerically enhance stomatal

conductance and plant populations.

2.3.2 Soil chemical properties

Surface chemical amendments and cover crop did not show significant differences in
improving the topsoil properties. Surface soil (0 — 0.5 cm) chemical properties appeared to
improve (Tables 2.10, 2.11, and 2.12) when compared with the baseline data (Table 2.1). At
White Lake surface soil pH reduced from 7.6 to 7.3, EC from 10.2 dS/m to 7.9 dS/m, and SAR
from 17 to 12.6 in sulfur treated plots over the study period. However, when treatments at all
depths and cover crops were compared to the control there were no significant differences in pH,
EC, or SAR. Similarly, in Redfield, the surface soil (0 — 7.5 cm) pH was reduced from 7.3 t0 7.1

(gypsum treated plots), EC from 8.0 dS/m to 4.9 dS/m, and SAR from 3.6 to 1.3 during the three-
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year period. However, when treatments at all depths and cover crop were compared to the
control there were no significant differences in pH, EC, or SAR (except for SAR in soybeans at
7.5 cm depth in 2015). Soil chemical properties changes due to surface chemical amendments
and cover crops at different depth are presented in Figures 2.6 to 2.12.

The changes in soil chemical properties were attributed to the increase in precipitation
that may have leached the salts from the topsoil and also a slight positive impact of sulfur and
gypsum on soils, acidifying the soil and making the existing Ca?* more available in the exchange
complex. The Ca?* then replaces Na* resulting in reductions of soil pH and SAR. Gypsum
decreases the ratio of sodium to other soluble salts and as a result, reduces sodicity and increases
Ca?" exchange system (Frenkel et al., 1989).

Other research on different soils have shown improvement in soil chemical properties
after application of gypsum and sulfuric acid (Hamza and Anderson, 2003; Rengasamy and
Olsson, 1991; Shainberg et al., 1989; Shanmuganathan and Oades, 1983). There have been
reports of increased yield (Abrol and Bhumbla, 1979; Noble and Kleinig, 1971; Shainberg et al.,
1989) and increased seed emergence (Lauchli and Epstein, 1990; McKenzie et al., 1993) under

specific soil treatments.



Table 2.8 Plant population and selected physiological measurements of sorghum (Sorghum bicolor) and soybean (Glycine max) as
affected by surface amendment and cover crop treatments in White Lake, SD in 2013 and 2015

Sorghum, 2013 Soybeans, 2015

Number Stomatal Stomatal
Treatments at of Chlorophyll conductance Chlorophyll conductance
White Lake** Plantss/ha | n | Content (%) | N | (mmolm™s™) |n | Content(%) |n | (mmolm™2s™) | n
Surface
Treatment (ST)
CaCl, 213108+ |12 |50 +5? 12 | 213+ 872 12 |48 +5°2 12 | 225+ 92% 12
No-treatment 16810P 15 |50+ 3? 10 | 209 + 84* 12 |48 +4% 10 | 225 + 85% 12
Gypsum
(CaS04-2H20) 25800% 13 |51 +42 12 | 214 + 632 12 | 49 +5° 12 | 187 + 66° 12
Sulfur (S) 325102 17 |50+ 32 12 | 206 + 98? 12 |50+7¢% 10 | 291 +180? 12
Cropping System
(CS)
Cover crop 204902 28 | - - - -
No-cover crop 277202 29 | - - - -
ANOVA P>F
ST 0.154 0.923 0.991 0.830 0.172
CS 0.173 - - - -
ST*CS 0.977 - - - -

tMeans with different letters within a column, treatment are significantly different at P < 0.05.

1 Surface Treatment =ST; Cropping System =CS.

**43°40'31"N, -98°45'50”"W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls).

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.

Measurements were done between V4 (four leaves) and V6 (six leaves) stage for sorghum and R1 (flowering) stage for soybean.



Table 2.9 Plant population and selected physiological measurements of corn (Zea mays) and soybean (Glycine max) as affected by
under surface amendment and cover crop treatments in Redfield, SD in 2013, 2014, and 2015.
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Soybean,

Corn, 2013 2014 Soybean, 2015

Chloro- Stomatal Chloro- Chloro- Stomatal

phyll conductance phyll phyll conductance

Treatments at Number of Content (mmol m™ Content Content (mmol m™
Redfield* Plants/ha n | (%) n |s?) N | (%) n | (%) n |s?) n

Surface
Treatment (ST) 1
CaCl» 33970 + 6520°% | 14 |43+52 |15 | 234+ 92% 15 |38+6°% |18 |46+15°% |11 | 364+129% |9
No-treatment 35070 £5350% |18 |44+6°% |18 | 236 +£59° 18 |37+5% |18 |48+9?% |12 |352+107% |10
Gypsum 17 18 18 18 |49+142 |12 |379+108% |11
(CaS04-2H20) 34720 + 60702 45+ 6 242 + 68° 39+5
Sulfur (S) 36550 £5800% |15 [44+5% |18 |226+117% |18 [39+6% |16 [49+112 |10 |413+992 8
Cropping System
(CS)
Cover crop 35587 £5471% |33 |43+5% |35 | 259+74% 35 [39+5% |35 |48+15% |22 |407+110% |19
No-cover crop 34571 £ 62222 |31 |43+6?% |34 |225+94% 34 |38+6% |35 |49+152 |23 |344+102% |19
ANOVA P>F
ST 0.462 0.543 0.855 0.740 0.710 0.692
CS 0.361 0.731 0.078 0.675 0.261 0.084
ST*CS 0.952 0.664 0.793 0.443 0.802 0.703

tMeans with different letters within a column, treatment are significantly different at P < 0.05.

1 Surface Treatment =ST; Cropping System =CS.
*44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.

Measurements were done between V4 (four leaves) and V6 (six leaves) stage for sorghum and R1 (flowering) stage for soybean.



Table 2.10 Soil pH change by depth at White Lake and Redfield, SD.

Soil pH After Harvest

Soybean (Glycine max), 2015 at White Lake** Soybean (Glycine max), 2015 at Redfield*
Treatments 0-7.5cm n 7.5-15¢cm | n | 15-30cm | n |0-7.5cm | n | 7.5-15cm n 15-30cm n
Baseline soil pH 7.6%0.2 6 | 78+01 | 6 | 78+£02 | 6 | 7.3+£03 | 5| 78+£04 | 5 | 7803 | 5
Surface
Treatment (ST)I
No-treatment 74+05% | 8 |74+£03%| 7 |75£03%| 9 |71+06%|13 | 7.7+£03% |15 | 7.7+£03% | 15
Gypsum 9 3 15 17
(CaS04:2H20) 75+£0.3% 7.4+£04%) 9 | 74%0.1° 7.1+£05%| 17 | 7.7+ 0472 7.6+0.2°
Sulfur (S) 73+£03* | 6 |74+03%| 7 |74+05%| 8 |[78+£05%| 18| 76+0.3% |18 | 7.6+0.3% | 18
Cropping System
(CS)
Cover crop 73+£03% | 6 |75+03%| 8 |75+04%| 7 [80+£062%|25|7.8+04% |24 | 7.7+0.3% | 26
No-cover crop 75+04°% | 17 [ 74404215 74+04%|13|78+0.62|23 | 7.6+0.3" |24 | 76+0.22 | 24
ANOVA P>F
ST 0.426 0.623 0.711 0.438 0.641 0.790
CS 0.463 0.526 0.882 0.307 0.221 0.189
ST*CS 0.528 0.396 0.642 0.425 0.422 0.368

tMeans with different letters within a column, treatment are significantly different at P < 0.05.
1 Surface Treatment =ST; Cropping System =CS.
*44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).

**43°40'31"N, -98°45'50"W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls).

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.

Note: Baseline soil samples were taken in May 2013.
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Table 2.11 Electrical conductivity (EC) change by soil depth at White Lake and Redfield, SD.
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After Harvest EC (dS/m)

Soybean (Glycine max), 2015 at White Lake**

Soybean (Glycine max), 2015 at Redfield*

Treatments 0-7.5cm n | 7.5-15cm n 15-30cm n 0-7.5cm n | 7.5-15cm n 15-30cm n
Baseline (EC in

dS/m ) 102+24 |6 82+10 |6 73+£11 |6 80+24 |5 6.2+ 2.1 5 6.5+25 |5
Surface

Treatment (ST)I

No-treatment 9.2+35% |8 8.7+£27% |7 85+1.7% |9 56+38% |13 |[49+3.12 |15 |48+2.6?% |15
Gypsum

(CaS04-2H-0) 98+3.2% |9 9.2+18% |9 94+13% |3 54+25% |17 |57+28% |15 |49+2.0? |17
Sulfur (S) 79+6.2% |6 7.7+£33% |7 8.2+19?% |8 49+3.02 |18 [ 42+3.2% |18 [43+25% |18
Cropping System

(CS)

Cover crop 73+20% |6 82+27% |8 9.3+1.0% |7 56+33% |25 |51+£3.12 |24 |46+25?% |26
No-cover crop 9.8+39?% |17 |87+22% |15 [8.1+1.8?% |13 |50+26%2% |23 |48+3.1% |24 |(47+28% |24
ANOVA P>F

ST 0.336 0.336 0.396 0.594 0.229 0.640

CS 0.131 0.131 0.085 0.346 0.614 0.860

ST*CS 0.425 0.425 0.905 0.463 0.343 0.211

tMeans with different letters within a column, treatment are significantly different at P < 0.05.

1 Surface Treatment =ST; Cropping System =CS.
*44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).

**43°40'31"N, -98°45'50"W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls).

dS/m = decisiemens per meter

Source of soil information: USDA-NRCS, Soil Survey Division, 2016.
Note: Baseline soil samples were taken in May 2013.



Table 2.12 Sodium adsorption ratio (SAR) change by soil depth at White Lake and Redfield, SD.
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After Harvest SAR

Soybean (Glycine max), 2014 at White Lake** Soybean (Glycine max), 2015 at Redfield*
Treatments 0-7.5cm n 7.5-15cm n | 15-30cm n 0-7.5cm n 7.5-15cm | n 15-30cm n
Base line 17+£5.2 6 178+41 |6 |123+23 |6 |36%x15 |5 |33+x10 |5 |3.0+£26 |5
Surface
Treatment (ST)
No-treatment 13.6+£38?% (10 [124+272 |11]125+22% |9 |25+19?% | 13 [3.1+42% | 15 |3.0+£2.02 | 15
Gypsum 11 11 15 17
(CaS04-2H20) 13.7+4.3% 11.3+4.2% 10.4+37% (10 |1.8+1.1% | 17 [ 3.6 +3.62 2.8+2.02
Sulfur (S) 12.6+2.6% |10 |104+4.4% |[10/105+2.7% {11 |1.3+08" | 18 |25+0.8% | 18 |[26+2.1?% | 18
Cropping System
(CS)
Cover crop - - - 22+15% | 25 (28+£3.1% | 24 |27+£19?% | 26
No-cover crop - - - 15+10% | 23 |{3.3+£29% |24 |3.0+21% | 24
ANOVA P>F
ST 0.850 0.570 0.237 0.056 0.701 0.896
CS 0.061 0.596 0.606
ST*CS 0.056 0.285 0.063

tMeans with different letters within a column, treatment are significantly different at P < 0.05.
1 Surface Treatment =ST; Cropping System =CS.
*44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).

**43°40'31"N, -98°45'50"W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls).

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
Note: Baseline soil samples were taken in May 2013.
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Figure 2.6 Electrical conductivity (EC) as affected by cover crop at different soil depths at

White Lake, SD (3 years after treatment applied).
GPS: 43°40'31"N, -98°45'560"W (Dominant soils: Argiustolls, Natrustolls, Haplustolls,

Calciustolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Figure 2.7 Electrical conductivity (EC) as affected by cover crop at different soil depths at
Redfield, SD (3 years after treatment applied).

GPS: 44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Figure 2.8 Electrical conductivity (EC) as affected by surface chemical amendments at different
soil depths at White Lake, SD (3 years after treatment applied).

GPS: 43°40'31"N, -98°45'560"W (Dominant soils: Argiustolls, Natrustolls, Haplustolls,

Calciustolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Figure 2.9 Electrical conductivity (EC) as affected by surface chemical amendments at different
soil depths at Redfield, SD (3 years after treatment applied).

GPS: 44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Figure 2.10 Sodium adsorption ratio (SAR) as affected by surface chemical amendments at

different soil depths at White Lake, SD (3 years after treatment applied).

GPS: 43°40'31"N, -98°45'60"W (Dominant soils: Argiustolls, Natrustolls, Haplustolls,

Calciustolls).

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Figure 2.11 Sodium adsorption ratio (SAR) as affected by cover crop at different soil depths at
Redfield, SD (3 years after treatment applied).

GPS: 44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Figure 2.12 Sodium adsorption ratio (SAR) as affected by surface chemical amendments at
different soil depths at Redfield, SD (3 years after treatment applied).

GPS: 44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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2.4 Conclusions

The area coverage of saline and saline sodic soils is increasing in the NGP region of the
United States and that is resulting in a significant reduction of productive of arable land
(degraded soil organic levels, soil chemical properties, and soil structure) and increases the

downstream sediment deposition (due to increased erosion rates associated with sodic soils).

The effects of chemical amendments on improving crop yield have been shown in earlier
research in other parts of the world; however the information on the role of these amendments in
NGP saline-sodic soils is scarce. The results of this study showed that the selected surface
treatments of gypsum, CaClz, and sulfur did not significantly enhance crop yield and most soil
properties studied. Although, there were a few encouraging responses of gypsum and elemental
sulfur amendments, the effect of these treatments both on crop and soil has to be monitored for

the long-term and under a larger variety of crops, parent materials, and climatic conditions.

The use of cover crops in saline-sodic soil management was mixed in increasing crop
yields, improving soil quality (soil pH, EC, and exchangeable sodium), and water infiltration in
some of the tested sites. Elemental sulfur and gypsum were usually, numerically better than
calcium chloride and control. Information on the role of perennial and annual ameliorating crops
in improving saline-sodic soils needs to be further examined in the future research. The effect of
chemical amendments on nutrient availability the impacts of amendments (reclamation) on soil C
level in the salt-affected areas of NGP soils are other important areas of future research.
Designing a system that mimic the use of deep rooted prairie grasses that utilize the water in

most of the year could be useful.
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3. CHAPTER Il1I

SPATIAL MODEL DEFINING NDVI AND CORN YIELDS IN SALINE-SODIC

SOILS

Abstract

Geospatial tools coupled with remote sensing methods can assist in making sound natural
resource management decisions. The objective of this chapter is to select appropriate models that
can define or predict spatial variability of Normalized Difference Vegetation Index (NDVI) and
crop yield. This experiment was conducted at Pierpont, SD [44°55'30" to 45°28'30"N and
97°50"9" to 98°28'34"W in Major Land Resource Area (MLRA) 55C]. The dominant soils in the
study area were Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls.
A total of 169 grid points (62 x 62 m grid) were laid out in the field in 2014. Reflectance (485-
1050 nm of the reflectance bands) readings were made using crop scan [Multispectral
Radiometer (MSR)] between seeding and the corn (Zea mays) growth stage V1. Corn yields
were measured with a yield monitor at harvest. The normalized difference vegetation indices
[NDVI = (NIR - Red) / (NIR + Red)] was computed from reflectance in red and near infrared
(NIR) bands. Semi-variograms for the spherical, exponential, and Gaussian models were
determined. The exponential semivariogram model for yield and NDVI was the optimal model
with the spatial dependence (nugget/sill ratio) of 14.4 and 0 %, respectively. The spatial
dependence also extends up to a range of 178 m and 105 m for NDVI and yield, respectively.
Comparative analysis of spatial interpolation methods (Trend Surface Analysis, Inverse Distance
Weighting, Ordinary Kriging, and Linear Regression models) using elevation as an independent

variable were used to map NDVI and vyield at the field scale. The Ordinary Kriging was the
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optimal model for NDVI with a correlation coefficient of 0.544 (R?=0.33) and root mean square
error (RMSE) of 0.089 when compared to other methods. For yield the Inverse Distance
Weighting (IDW) method with class of nearest neighbor (k) = 2 was found to be optimal with a
correlation coefficient of 0.413 (R*= 0.24) and RMSE of 0.223. Therefore, the study clearly
showed that geospatial models coupled with remote sensing methods can be used as potential
tools to analyze and predict the spatial dependence of NDVI values and crop yield, and aid in the

spatial prediction of un-sampled spatial variables in salt-affected soils.

Keywords: Argiudolls, Calciaquolls, Endoaquolls, Hapludolls, interpolation, Natrudolls,
radiometer, salinity, Calciudolls, Normalized Difference Vegetation Index (NDVI),
semivariograms, spatial interpolation methods, sodicity.
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3.1 Introduction

Worldwide saline and Na* affected soils are separated into at least three groups: saline
(high total salts), saline/sodic (high total salts and Na*), and sodic (high Na") (Halvorson and
Rhoades, 1976). The classification of salt-affected soils into one of these groups is based on the
soil electrical conductivity (EC) and the amount of Na* on the cation exchange sites expressed as
ESP (exchangeable Na* percentage) or SAR (Na* adsorption ratio). Historically, sodic soils are
characterized as having a Na" adsorption ratio (SAR) > 13, whereas in the NGP, soils are at risk
when the SAR > 4 (He et al., 2014; Qadir et al., 2007). Saline soils have high salt
concentrations and soil electrical conductivities, and these soils reduce yields by decreasing seed
germination and slowing plant growth due to high osmotic forces. Sodic soils have high Na*
concentrations which can result in soil dispersion, decreased water infiltration, and increased
erosion.

The development of saline soils is growing problem and in the Northern Great Plains
(NGP) high salinity and sodic concentrations impact productivity on over 10 million hectares of
land. World-wide high salt concentrations impact growth on over 930 million hectares of land
(Cook and Muller, 1997; Szabolcs, 1989). Historically, salinity and sodicity problems were most
often observed on irrigated lands, whereas in the NGP salinity and sodicity problems are often
observed in dryland agriculture (Cheeseman, 2015; Rengasamy, 2006).

To develop effective solutions, which may include reseeding to grasslands or installing
tile drainage, the extent of the problem must be identified and the effectiveness of remediation
measured assessed. Techniques for characterizing a soil’s saline and sodic characteristics
include measuring, pH, electrical conductivity, and ESP and/or SAR. High salt areas can be

identified by conducting a visual survey of the area, conducting an apparent electrical
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conductivity survey using a Geonics EM 38 (Geonics Inc., Mississauge, Ontario, Canada, 2016)
or the Veris Soil EC Mapping System (Veris Technologies, Salina, Kansas, 2016), tracking
changes in yield over multiple years, and collecting and analyzing soil samples for electrical
conductivity (EC). Historically, saline management recommendations were based on the EC of a
saturated paste extraction (ECe). Most commercial soil testing laboratories do not analyze EC
from a saturated paste as part of their “normal” analysis (Owen, 2014). They generally
determine the EC of a solution containing 10 mL (= 10 g) of water to 10 g of soil (1:1). The soil
water extracted from a 1:1 extraction and saturated paste extraction produce different EC values.

Geospatial techniques coupled with remote sensing may overcome these barriers (Barnes
et al., 2003). In the past, several methods have been used to identify and map salt-affected areas
(Eldiery et al., 2005). However, spatial models that can easily determine the spatial variability of
some selected attributes on salt affected soils were not investigated. Semivariograms are a
graphical representation of the spatial variability in a given dataset (Cohen, 1994) and help to
determining the spatial autocorrelation of spatial variables. (Lam, 1983). Comparing the different
interpolation methods could also help to select the best way to map NDVI, yield, and other soil
attributes.

The objectives of this study were to select appropriate models that can define or predict
spatial variability of NDVI and yield and compare the efficiency of spatial interpolation

methods.
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3.2 Materials and Methods

The experiment was conducted in Pierpont in Day County, South Dakota (44°55'30" to
45°28'30"N and 97°50'9" to 98°28'34"W, representing Major Land Resource Area, MLRA,
55C), in April 2014. A yield interpolated map was plotted (Figure 3.1). The dominant soils in the
study area were Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls

(USDA-NRCS, 2016a; 2016b). Detailed soil and site characteristics of the study area are shown

in Appendix II.
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Figure 3.1 The study area plotted with 2014 corn (Zea mays) yield values from yield monitor at
each data point

Coordinates: 44°55'30" to 45°28'30"N and 97°50'9" to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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3.2.1 Data analysis

A total of 169 grid points (62 x 62 m) were laid out in the field. Multispectral Radiometer
(MSR) readings was taken by holding the MSR 2 m above the surface and 1 m diameter data was
collected at each grid point in corn (Zea mays) field in April 2014. The readings were taken
between 10 am to 3 pm. Reflectance readings bands range from 485 to 1050 nm. Reflectance
reading broad bands included: blue, 485 = 2.1 nm; green, 560 + 2.6 nm; red, 660 +3.4 nm; NIR,
830 +4.3; and MIR, 1650 = 5.5; and narrow bands included: 510 + 2.3 nm; 566 + 2.7 nm; 610
+3.0nm; 661 +3.4; 710 £3.8nm; 760 +4.0 nm; 810 +4.2; 840 + 4.4 nm; 870 + 4.5 nm; 905
+ 4.5 nm; and 1050 = 4.9 nm.

The following equation was used to calculate percentage reflectance:

Down sensor reading

Reflectance % = ( ) x 100

Up sensor reading (3.1)
The normalized difference vegetation indices (NDV1) were computed using the following
equation:

NIR — Red
NIR + Red (3.2)

NDVI =
Grain yield was measured at the site by a combine equipped with a yield monitoring
system and Global Positioning System (GPS). Standard protocols were followed to insure data

accuracy. Yield data at each grid point was extracted from the yield monitor data using SMS™

Ag Leader* developed software (Ag Leader Inc., 2016).

*SMS™ s software that helps to make management decisions and is produced by Ag Leader. The use of a trade or
commercial name is for educational purposes and does not imply endorsement of the product by the author, the
Agronomy, Horticulture and Plant Science Department, or South Dakota State University.
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Digital elevation map (DEM) of 30m x 30m was downloaded from United States
Geological Survey (USGS, 2016). Landfire website and elevation points were extracted from

DEM. (http://www.landfire.gov/NationalProductDescriptions?.php).

Semi-variances were calculated using Equation 3.3, where y(h) is the semi-variance for
lag distance h, N is the number of samples, A is the test value for sample i, X is the location of
sample i. and X + h represents the distance between two sample locations (Nielsen and

Wendroth, 2003).
N(h)

1 2
y(h) = INGD) ; [4;(X;) — Ai(X; + h)] 3

The selected interpolation methods tested were: Trend Surface Analysis (TSA), Inverse
Distance Weighting (IDW), Ordinary Kriging (OK), and Linear Regression (LR) using elevation
as an independent variable. These interpolation models were tested to map NDVI and crop yield.
Finally, interpolation accuracy was evaluated using Root Mean Square Error (RMSE) and

correlation coefficient (Trangmar et al., 1985).

The relationship between distance and the semi-variance values were determined using
the spherical, exponential, and Gaussian models. Crop yield and NDVI maps were developed.

Interpolation accuracy was evaluated using RMSE and correlation coefficient (r).


http://www.landfire.gov/NationalProductDescriptions7.php
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The RMSE was calculated:

n 2
Zizl(XObsi - Xmodel,i)

RMSE =
> " (34
Where, Xobs is observed values and Xmodel is modelled values at time/place i.
: - D XY —nXY
(Correlation Coefficient) r = (3.5

\/sz—n)?z\/ZYz—nY2

3.3 Results and Discussion

The NDVI data was positively skewed with the Skewness and Kurtosis values of 0.25
and 2.28, respectively. Similarly, the yield data was positively skewed with the skewness and
Kurtosis values of 2.82 and 120.2, respectively. The kurtosis for a normal distribution is 3.0. The
NDVI kurtosis value indicates that there are fewer and less extreme outliers when compared to a

normal distribution while for yield has more outliers and is more peaked than normal.

If the (nugget/sill)*100 is < 25% then the spatial distribution of the data has a strong
relationship, while 26-75% is a moderate relationship, and > 75% is a weak spatial dependence.
Whereas, 100% shows there is no spatial correlation (Di Virgilio et al., 2007). Accordingly, in
our data the best spatial dependence of NDVI and crop yield was found by using the Exponential
semivariogram models, when compared to Spherical and Gaussian due to the lower nugget to sill

ratio criteria (See Figures 3.2a, 3.2b, and Tables 3.1, 3.2).



Figure 3.2 2014 Exponential semivariogram models fit for Normalized Difference Vegetation
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Coordinates 44°55'30" to 45°28'30” N and 97°50'9" to 98°28'34” W. Dominant study site soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS,

2016b].
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Table 3.1 2014 Semivariogram models and parameters for models for Normalized Difference
Vegetation Index (NDV1) at Pierpont, SD.

Parameters Semivariogram Nugget Sill Nugget/Sill Range

at Pierpont* Model () (C,tC) (%) (m)

NDVI Spherical 0.00404 0.0056 71.7 178
Exponential 0.00125 0.0087 14.4 60
Gaussian 0.00573 0.0040 142.1 101

*44°55'30" to 45°28'30"N and 97°50'9" to 98°28'34"W. (Dominant soils: Calciaquolls,
Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS, 2016b]).

C, = Nugget Semi-variance, C, = Partial sill semi-variance

Table 3.2 2014 Semivariogram models and parameters for models for corn (Zea mays) yield at
Pierpont, SD.

Parameters Semivariogram Nugget Sill Nugget/Sill Range
at Pierpont* Model (Co) (Cot+Ca) (%) (m)
Yield Spherical 0.0241 0.025 95 105
Exponential 0 0.051 0 33
Gaussian 0.0088 0.040 22 34

*44°55'30" to 45°28'30"N and 97°50'9" to 98°28'34"W. (Dominant soils: Calciaquolls,
Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS, 2016b]).

C, = Nugget Semi-variance, C, = Partial sill semi-variance
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Table 3.3 2014 Comparative analysis of interpolation methods and their correlation coefficient
and Root Mean Square Error (RMSE) for Normalized Difference Vegetation Index (NDVI) at
Pierpont, SD.

Element at Interpolation Correlation
RMSE
Pierpont* Method Coefficient
TSA: Linear TS 0.422 0.096
TSA: Quadratic TS 0.429 0.096
IDW: k=1 0.463 0.099
NDVI
IDW: k=2 0.478 0.094
OK 0.544 0.089
Linear Regression (LR) 0.460 0.094

TSA= Trend Surface Analysis, TS=Trend Surface IDW= Inverse Distance Weighting

OK= Ordinary Kriging, LR el IV= Linear regression using elevation as an independent variable
k= class of nearest neighbor

*44°55'30" to 45°28'30"N and 97°50'9" to 98°28'34"W (Dominant soils: Calciaquolls,
Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS, 2016b]).

Spatial interpolation methods were tested for interpolating NDVI and crop yield, Tables
3.3 and 3.4, respectively. Ordinary Kriging was found to have relatively highest correlation
coefficient (0.544) or R?= 0.3 and lowest RMSE (0.089), respectively for NDVI and therefore
was selected for interpolation. Whereas, Inverse Distance Weighting (IDW) with k = 2 was
found to have relatively highest correlation coefficient (0.413) or R*= 0.2 and lowest RMSE

(0.223) for yield and therefore was selected for interpolation.
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Table 3.4 Comparative analysis of interpolation methods and their correlation coefficient and
Root Mean Square Error (RMSE) for 2014 corn (Zea mays) yield at Pierpont, SD.

Element at Interpolation Correlation
RMSE

Pierpont* Method Coefficient
TSA: Linear TS 0.262 0.235
TSA: Quadratic TS 0.364 0.228
Yield IDW: k=1 0.368 0.233
IDW: k=2 0.413 0.223
OK 0.396 0.235

TSA= Trend Surface Analysis, TS=Trend Surface, IDW= Inverse Distance Weighting, OK=
Ordinary Kriging, k= class of nearest neighbor

*44°55'30" to 45°28'30"N and 97°509" to 98°28'34"N (Dominant soils: Calciaquolls,
Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS, 2016b]).

Figures 3.3, 3.4, and 3.5 demonstrate the interpolated surfaces of 2014 corn yield using
different interpolation methods. The lower values of yield were obtained in areas where there
were low NDVIs and that could be attributed to lower elevations, accumulation of salts, water
logging, or a combination of one or more factors. Figures 3.6, 3.7, 3.8, and 3.9 shows the
interpolated surfaces of NDVI using different interpolators. Previous research on yield variability
on a small plots and large fields have shown similar result of variation of yield in time and space
due to soil and other climatic factors (Bhatti et al., 1991; Di Virgilio et al., 2007; Vieira and Paz
Gonzalez, 2003). Characterization of spatial heterogeneity of landscape vegetation cover from
the modeling of the variogram of high spatial resolution NDVI data showed that land use is a
major factor for variability (Garrigues et al., 2006). In our study differences in the NDVI values
could be as result of differences in soil property (particularly, EC, and SAR) that ultimately

resulted in differences in 2014 corn yield and NDVI values.
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Figure 3.3 Corn (Zea mays) yield (2014) interpolated surface map of the study area (Pierpont,
SD) using the Inverse Distance Weighting interpolation method.

Pierpont GPS: 44°55'30” to 45°28'30"N and 97°50'9" to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS,
2016b]).
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Figure 3.4 Corn (Zea mays) yield (2014) interpolated surface map of the study area (Pierpont,
SD) using Trend Surface interpolation method.

Pierpont GPS:44°55'30” to 45°28'30"N and 97°509" to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS,

2016b]).
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Figure 3.5 Corn (Zea mays) yield (2014) interpolated surface map of the study area (Pierpont,

SD) using the Ordinary Kriging interpolation method.
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Pierpont GPS:44°55'30" to 45°28'30"N and 97°50'9" to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS,

2016D]).
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Figure 3.6 Normalized Difference Vegetation Index (NDVI1 bare soil) interpolated surface map
(2014) of the study area (Pierpont, SD) using the Ordinary Kriging interpolation method.

Pierpont GPS:44°55'30" to 45°28'30"N and 97°50'9" to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS,

2016b]).
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Figure 3.7 Normalized Difference Vegetation Index (NDVI V1) interpolated surface map (2014)
of the study area (Pierpont, SD) using the Ordinary Kriging interpolation method.

Pierpont GPS:44°55'30" to 45°28'30"N and 97°509" to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS,
2016h]).
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Figure 3.8 Normalized Difference Vegetation Index (NDVI V4) interpolated surface map (2014)
of the study area (Pierpont, SD) using the Ordinary Kriging interpolation method.

Pierpont GPS:44°55'30" to 45°28'30"N and 97°50'9" to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS,
2016b]).
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Figure 3.9 Normalized Difference Vegetation Index (NDVI V6) interpolated surface map (2014)
of the study area (Pierpont, SD) using the Ordinary Kriging interpolation method.

Pierpont GPS:44°55'30” to 45°28'30"N and 97°50'9" to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls [USDA-NRCS,
2016b]).

3.4 Conclusions

Geospatial models coupled with remote sensing methods, including MSR, were used to
analyze and predict the spatial dependence of NDVI values and corn yield and gave insight about
for spatial prediction of unknown spatial variables. However, detailed analysis of other soil
attributes are needed to give a better understanding of spatial variability at different scales. In
future studies, unmanned aircraft should be tested with their high resolution image capability. In
addition, testing more and relevant interpolation methods and other geospatial approaches,
including multivariable and spatial classification techniques, should be done to determine if they
would be more helpful in understanding the relationship of the different attributes. The study of
reflectance signatures at different crop growth stages as an indicator of plant stress and salt level

could also be another area of future research.
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4. CHAPTER IV

WATER INFILTRATION AND SOIL DISPERSION AS AFFECTED BY

AMMENDEMENTS
Abstract

Soils with sodic properties significantly affect water infiltration by altering soil physical
and chemical properties leading to runoff and loss of topsoil through erosion. Surface
amendments (SA) and cropping systems (CS) are used to reduce the sodium level in the soil and
improve soil physical properties. The objectives of this study were 1) compare different soil
remediation strategies particularly the influence of SA (gypsum, calcium chloride, and elemental
sulfur) and CS in a corn (Zea mays) soybean (Glycine max) rotation system on water infiltration
by double-ring (ponded) and Cornell sprinkler infiltrometer, and 2) evaluate the effect of variable
cation concentrations on the dispersion of bentonite clay and selected soil samples. A field study
was conducted in three locations: White Lake (2013-2015), Redfield (2014-2015), and Pierpont
(2014-2015) in Eastern South Dakota. Infiltration rates (IR) and runoff rates (ROT) were
computed. A randomized complete block design with 4 replications was used. The treatments
were: cover crop and surface amendments. The cover crop was a mixture of barley (Hordeum
vulgare L.) and sugar beet (Beta vulgaris) seeded at the rate of 34 kg ha' and 4.5 kg ha?,
respectively. There were significant differences among the chemical amendments in 2013 in
White Lake and 2014 and 2015 in Redfield. Cover crop treatments significantly improved
ponded infiltration at Pierpont in 2014. The infiltration rate and runoff rate measurements using
Cornell infiltrometer showed no significant differences among treatments in all locations. The

results of this study suggest that chemical amendments influenced double-ring water infiltration
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more than the cover crop treatments in White Lake and Redfield, whereas, cover crop influenced
infiltration more at Pierpont. Monitoring of the experiment in the long-term could be useful.
Significantly higher turbidity was measured in NaCl solutions at different concentrations when
compared with similar concentrations of CaCl, or MgCl: solutions. There was no significant
difference in CaCl, and MgCl, solutions at variable concentrations. Therefore, effect of Mg?*
and Ca?* solutions on clay dispersion demonstrates that the two ions have more flocculating
effect than dispersion at the concentrations tested. Turbidity can be used as an indicator/measure

of clay dispersion potential in salt-affected soils.

Keywords: Bentonite clay, Cornell sprinkler infiltrometer, dispersion, double-ring infiltration,
flocculation, sodic properties, turbidity, saline, sodic, saline-sodic.
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4.1 Introduction

Saline-sodic soil genesis is a major form of soil degradation resulting in the decline of
agricultural productivity and environmental quality. Millions of hectares of these soils have
formed worldwide. With improved management these soils could produce more food, fiber, and
energy to feed the ever increasing world population (Qadir et al., 2007). In addition, above
average precipitation and changes in land use and management in the last few decades coupled
with extensive tile drainage installation have aggravated saline-sodic soil formation (Franzen,

2007).

Previous reports have identified factors that affect water infiltration into the soil
including: soil structure, texture, pores (size, distribution, and orientation), slope, and organic
matter content (Bronick and Lal, 2005; Tisdall and Oades, 1982); soil vegetative cover (Meek et
al., 1992); antecedent water content and rainfall intensity (Radke and Berry, 1993); and water
management (Agassi et al., 1986). Soils with sodic properties affect water infiltration into soil by
altering soil physical properties (structure, porosity, and bulk density) that ultimately lead to
increased runoff and loss of topsoil (Chi et al., 2012; Hulugalle et al., 2010; Rengasamy and
Olsson, 1991). Clay-size fraction dispersion caused by high exchangeable Na* levels causes soil

structural degradation and poor permeability (Amezketa, 1999; Sumner, 1993).

Water turbidity is a measure of water clarity and measured by nephelometric turbidity
units (NTU) (Davies-Colley and Smith, 2001). Sediments from surface erosion are a major
source of turbidity (Alexander et al., 1998; Lettenmaier et al., 1991; Wong et al., 2010). Sodic
conditions can cause soil organic matter loss by increasing dispersion of aggregates and,

increasing bulk density (Wong et al., 2010).
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Reclamation of sodic soils using tillage has been found to be effective in improving water
infiltration and reducing runoff (Hulugalle et al., 2010), however the interactive effect of
different chemical amendments and cropping systems on Northern Great Plains (NGP) saline-
sodic soils has not been tested. The objectives of this study were: to evaluate the effectiveness of
surface chemical amendments and cover crops in improving water infiltration measured using
the ponded infiltration method in saline-sodic soils; and to evaluate the effect of selected cation

concentrations on the dispersion and flocculation of bentonite clay and selected NGP soils.

4.2 Materials and Methods

4.2.1 Sites description and experimental set up

A field study was conducted in three locations: White Lake (43°40'31"N, -98°45'50"W),
Redfield (44°58'10"N, -98°27'52"W), and Pierpont (45°30'31"N, -97°53'50”"W) in Eastern South
Dakota. Sites were selected in 2013 and three years of field study (2013-2015) were conducted in
White Lake and in Redfield and a two years were conducted in Pierpont. Prior to treatment
application the surface soil salt level of the sites were determined (Table 4.1). The area is known
to have a corn (Zea mays), sorghum (Sorghum bicolor), and soybean (Glycine max) crop
rotation. Occasionally, spring wheat (Triticum aestivum) and oats (Avena sativa) are planted as

part of a 3-year rotation with corn and soybeans.

The dominant soils at the Redfield, Spink County study site were Harmony-Aberdeen
silty clay loams (0-2 % slopes), Winship-Tonka silt loams (0-1 % slopes), and Great Bend-
Beotia silt loams (0-2 % slopes). Whereas, the dominant soils at the White Lake, Aurora County

study site were Beadle-Dudley complex (0-3 % slopes), Delmont-Talmo complex (6-15 %
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slope), Houdek and Ethan loams (2-6 % slopes) (USDA-NRCS, 2016a; 2016b). Kranzburg-
Brookings silt loams and Nahon-Aberdeen-Exline silt loams with slopes of 2 to 6 and 0 to 2,

respectively, were the two dominant soil series at the Pierpont (Day County) research site.

The study used a randomized complete block design with 4 replications. The treatments
were soil surface amendments and cover crop (cover crop and non-cover crop). Barley (Hordeum
vulgare L.) and sugar beet (Beta vulgaris) were seeded at the rate of 34 kg ha* and 4.5 kg ha?,
respectively. Sugar beet and barely were mixed at their recommended rate and planted in 6 rows
between the main crop (corn, soybean, and sorghum). The date of cover crop planting was based
on the growth stage of the main crop and the soil conditions. For corn and sorghum the cover
crop planting was done when the main crop growth stage was between V4 and V6. Whereas the
cover crop planting in soybean field was conducted between V stage (unfolding of trifoliate
leaves, the final number of trifoliate’s depends on the soybean variety and the environmental
conditions) and R1-beginning flowering - plants have at least one flower on any node (Clark,
2008; Fehr et al., 1971; Vaughan and Evanylo, 1998). Soil surface amendments application rates

are summarized in Table 2.2.

4.2.2 Soil chemical analysis
Soil EC, pH, and soluble cation concentrations were determined from a saturated extract (Table
4.1). Electrical conductivity was determined using a conductivity probe (PC 2700, Oakton
Instruments Vernon Hills, IL). Cation concentrations of Na*, Ca®*, and Mg?* were measured
using flame atomic adsorption spectrophotometry (200 A, Buck Scientific, Norwalk, CT)

(Rhoades, 1982). Sodium adsorption ratio (SAR) was calculated using Equation 4.1.



SAR =

[Na*]

([Ca“] + [Mg2+]>

2

1/2

Table 4.1 Initial soil properties mean values by soil depth and location

@.
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1)

Electrical Conductivity

Sodium Adsorption

(EC) (dS/m) pH Ratio (SAR)
Salt Depth (cm)
Sites Composition | 0-7.5 | 7.5-15 | 15-30 | 0-7.5 | 7.5-15 | 15-30 | 0-7.5 | 7.5-15 | 15-30
Redfield* Saline 8.0 6.2 6.5 7.3 7.8 7.8 3.6 3.3 3.0
White : , 10.2 8.2 7.3 7.6 7.4 75 | 170 | 178 | 123
Lake** Saline-sodic
Pierpont*** | Saline-sodic | 20.0 | 19.0 | 180 | 7.9 7.5 75 | 19.0 | 23.0 | 16.0

*44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).
**43°40'31"N, -98°45'50"W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls).
***45°30'31"N, -97°53'50"W (Dominant soils: Hapludolls, Natrudolls).

Source of soil information: USDA-NRCS, Soil Survey Division (2016b).

n= 4 (Redfield); n=5 (White Lake); n=5 (Pierpont).

4.2.3 Ponded infiltration measurements

Water infiltration was measured at 32 points at each research site location using a double-

ring with a 12 cm radius inner ring water infiltrometer (Figure 1). In situ soil moisture

measurements of the surface soil were measured with a moisture probe (Table 4.2). The ring was

driven into the soil to a depth of 4 cm and the infiltration measurements were conducted for

about 60 minutes (Reynolds and Elrick, 1990). Field water infiltration measurements were done

5 months after application of the treatments (October 2013) and each consecutive year after

harvest (2013 to 2015). Additional field infiltration and runoff measurements were taken with a

Cornell Sprinkle Infiltrometer after harvest in 2015 (Ogden et al., 1997). Cornell infiltration

measurement showed different values compared to double-ring water infiltration measurement
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due to surface structure breakdown, dispersion, and surface sealing due to water drops that

occurred during field measurement.

Infiltration Rate (IR)

The infiltration rate (IR), reported in mm h™%, was calculated as:

AQ (4.1)

IR =
A x At

Where AQ is the volume of water collected during a given time period, At, and A is the cross-
sectional area of the soil columns.

Figure 4.1 Infiltration measurement at White Lake, SD.

4.2.4 Bentonite clay and soil dispersion

A laboratory experiment was conducted to evaluate the effect of variable concentrations
of selected cations (Ca?*, Mg?*, Na*) on the dispersion and flocculation of bentonite clay and
selected NGP soils. Bentonite clay soil material (10 g) was placed in a 250 mL Erlenmeyer flask
and 200 mL of 0.1, 0.2, or 0.3 M CaCl,, MgCl>, or NaCl were added. The suspension was shaken

for 1 hr and allowed to settle for 24 hours. A 50 mL subsample of the suspension was taken. The



68

level of suspended soil materials was determined by measuring absorbance at 650 nm using a
colorimeter to measure turbidity.

A second part of experiment was conducted to evaluate the effect of variable cation Ca?*,
Mg?*, Na*) concentrations on the dispersion of selected NGP saline-sodic and normal (non-
saline, non-sodic) soils. Soil samples were collected from four locations (Pierpont, Andover, and
White Lake in 2014; and Brookings in 2016). Forty g of soil was placed in a 250 mL Erlenmeyer
flask and a 200 mL of 0.1, 0.2, or 0.3 M CaCl,, MgCl», or NaCl were added. The experiment was
replicated 4 times. The suspension was shaken for 1 hr and allowed to settle for 24 hr and a 50
mL subsample of the suspension was taken. The level of suspended soil materials was

determined by measuring absorbance at 650 nm using a colorimeter to measure turbidity.

4.2.5 Statistical analysis
Infiltration rates variability and turbidity differences were tested for analysis of variance
(ANOVA) using SAS version, SAS Institute, Cary, NC (SAS, 2007). Statistical differences were

declared significant at a = 0.05 level.

4.3 Results and Discussion

4.3.1 Ponded Infiltration Measurements
Average precipitation and temperature of the research sites for the months of April to
October and soil moisture content of the research plots are shown Table 4.2. Month by month
precipitation and temperature is reported in chapter 2, Figures 2.1 to 2.5. The measured double-
ring water infiltration rate was significantly different due to surface treatments in 2013 at White

Lake, but treatments were not significantly different in consecutive years (2014 and 2015). The
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sulfur treatment was significantly higher in 2013 when compared to the control and was
numerically higher in 2014 and 2015. Cover crop did not significantly influence ponded water
infiltration in all years at White Lake (Table 4.3).

Table 4.2 Mean annual precipitation, mean annual temperature, and % antecedent soil moisture
at research sites.

Soil Average_ Apri_l to October Average April to October
Research Sites | Moisture Precipitation (mm) Temperature (°C)
(%) 2013 2014 2015 2013 2014 2015
Redfield* - - 46 81 - 15 17
White Lake** 36.8 51 46 54 15 16 17
Pierpont*** 29.5 66 (9 years average) 16 (9 years average)

Source: South Dakota Climate and Weather, 2016

*44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).
**43°40'31"N, -98°45'50"W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls).
***45°30'31"N, -97°53'50"W (Dominant soils: Hapludolls, Natrudolls).

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.

Table 4.3 Saturated water infiltration rates (double-ring) of surface amended soils and cover crop
treatments from 2013-2015 at White Lake, SD.

Infiltration rate (mm h™?)
Treatments at White Lake 2013 n 2014 n 2015 n
Surface Amendments (SA) +
CaCl 236°7 7 1832 8 -
No-treatment 182° 3 922 8 1192 8
Gypsum (CaS04-2H20) 130° 6 1352 8 -
Sulfur (S) 5352 6 1372 4 1492 8
Cropping System (CS) 1+
CC 3022 12 1292 14 1272 8
NCC 3372 10 1452 14 1412 8
ANOVA P>F
SA 0.024 0.563 0.650
CS 0.463 0.742 0.823
SA*CS 0.776 0.805 0.250

tMeans with different letters within a column, treatment are significantly different at P < 0.05.
1CC = cover crop (sugar beet and barley); NCC = non-cover crop.

**43°40'31"N, -98°45'50"W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.



70

The measured water infiltration rates for the treatments tested were significantly different
at Redfield in 2014 at the 0.05 level. Both gypsum and sulfur significantly increased infiltration
rates in 2014 with no significant difference in 2015 when compared to the control. Similar to
White Lake (2013 and 2014) the cover crop treatments did not show a significant difference in
Redfield plots (Table 4.4). Water infiltration measurements were also done at Pierpont in 2014
and 2015. There were no significant differences in both years for the chemical amendments.
However, there was a significant difference for cover crop treatment in 2014 (Table 4.5). The
results of the double-ring water infiltration study suggest that chemical amendments influenced
water infiltration more than cover crop treatments in White Lake and Redfield. Whereas cover
crop influenced ponded infiltration more in the Pierpont study site. Because soil and parent
materials differ at the three locations more studies on different soils and parent materials are
needed. The water infiltration variation could be attributed to soil differences among sites,
changes in soil properties as a result of surface amendment application (mainly sulfur and
gypsum), and cover crop. The influence of the treatments is site specific. The infiltration rate and
runoff rate measurements using Cornell infiltrometer showed no significant difference among
treatments (amendment and cover crop) in all locations (Table 4.6). The differences in results
obtained from each study sites is attributed to the differences in soil properties, salinity levels,
sodicity, parent materials, and precipitation. Similar results were found in previous findings on
the effects of amendments and salt concentration on infiltration of sodic soils (Agassi et al.,
1981; Robbins, 1986). However, research on the impact of cover crop in salt affected soil is very
limited. The recorded values of double-ring water infiltration were much higher when compared
to the Cornell infiltration due to soil dispersion (breakdown of soil structure) and surface sealing

of soil pores when using Cornell infiltration process when compared to the seepage with the
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double-ring water infiltration measurement (Ben-Hur et al., 1987; van Es, 2015). This could be
part of the reason that higher infiltration rates were recorded in double-ring when compared to

Cornell infiltration measurements.

Table 4.4 Saturated water infiltration rates (double-ring) of surface amended soils and cover crop

treatments from 2014-2015 at Redfield, SD.

Infiltration rate (mm h'1)
Treatments at Redfield 2014 n 2015
Surface Amendments (SA)T
CaCl, 144b¢t 7 -
No-treatment 42° 7 2132
Gypsum (CaS0O4-2H,0) 3622 8 -
Sulfur (S) 535° 8 6492
Cropping System (CS)71+
CcC 2307 16 2842
NCC 3118 14 5782
ANOVA P>F
SA 0.013 0.060
CS 0.445 0.170
SA*CS 0.861 0.232

tMeans with different letters within a column, treatment are significantly different at P < 0.05.

$CC = cover crop [barley (Hordeum vulgare L.) and sugar beet (Beta vulgaris)]; NCC = non-cover crop.

*44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016.

Table 4.5 Saturated water infiltration rates (double-ring) of surface amended soils and cover crop

treatments from 2014-2015 at Pierpont, SD.

Infiltration rate (mm h1)
Treatments at Pierpont 2014 n 2015
Surface Amendments (SA)
CaCl, 223 7 -
No-treatment 1162 7 2362
Gypsum (CaS04-2H,0) 1952 8 -
Sulfur (S) 1632 8 3332
Cropping System (CS) 11
CC 247° 16 3792
NCC 101° 14 2302
ANOVA P>F
SA 0.5243 0.4829
CS 0.0114 0.3743
SA*CS 0.3723 0.3579

tMeans with different letters within a column, treatment are significantly different at P < 0.05.

1CC = cover crop [barley (Hordeum vulgare L.) and sugar beet (Beta vulgaris)]; NCC = non-cover crop.

**%45°30'31"N, -97°53'50"W (Dominant soils: Hapludolls, Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Table 4.6 Comparison of infiltration rate and runoff rate (using Cornell sprinkle infiltrometer) two years after surface amendment and

cover crop treatments.

**White Lake *Redfield ***Pjerpont
Infiltration Infiltration Infiltration

Treatments rate Runoff rate rate Runoff rate rate Runoff rate

mm ht mm ht mm ht mm ht mm ht mm ht

2015

Surface Amendments
(SA) +
No-treatment 5.32f 0.40% 558 0.372 5.38 0.359?
Sulfur (S) 5.3% 0.45% 572 0.322 5.4 0.340%
Cropping System (CS) *
CC 5.32 0.43% 582 0.332 552 0.3762
NCC 5.3% 0.41% 548 0.362 548 0.4462
ANOVA P>F
SA 0.337 0.337 0.383 0.408 0.474 0.474
CS 0.688 0.688 0.173 0.630 0.597 0.597
SA*CS 0.298 0.298 0.348 0.182 0.848 0.848

+Means with different letters within a column, treatment are significantly different at P < 0.05.

tCC, cover crop; NCC, non cover crop.
*44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls);

*%43°40'31"N, -98°45'50"W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls);

**%45°30'31"N, -97°53'50"W (Dominant soils: Hapludolls, Natrudolls), Soil Survey Division, 2016b.
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4.3.2 Turbidity as a measure of dispersion

Table 4.7 Soil chemical properties of the tested soils.

Locations EC (dS/m) pH SAR soil type

White Lake* 13 7.6 17 Saline Sodic
Pierpont** 20 8.0 19 Saline Sodic
Andover*** 18 7.7 8 Saline
Brookings*** 3.9 7.8 - None saline, none sodic
Bentonite - 8.2 -

*44°58'10"N, -98°27'52"W (Dominant soils: Hapludolls, Natrudolls, Argiudolls).
**43°40'31"N, -98°45'50"W (Dominant soils: Argiustolls, Natrustolls, Haplustolls, Calciustolls).
**%45°30"31"N, -97°53'50"W (Dominant soils: Hapludolls, Natrudolls).

*HH*44° 19" 7"N,-96° 46' 56"W (Dominant soil: Hapludolls).

Source of soil information: USDA-NRCS, Soil Survey Division (2016b).

Selected soil chemical properties of the tested soils and bentonite clay are presented in
Table 4.7. Results of the lab study showed significant differences for the chemical treatments and
the different salt concentrations for all selected soils and bentonite clay. There was significantly
higher turbidity in NaCl solutions at different concentrations when compared to similar
concentrations of CaCl, and MgCl> solutions (see Tables 4.8 and 4.9) for the saline, sodic and
saline-sodic soils studied (except for 0.1 M on the White Lake soil). The turbidity measurements
of CaCl, and MgCl. solutions at variable concentrations were not significantly different from
each other (except for 0.3 M on the White Lake soil) and were less turbid than NaCl solutions
(See Figure 4.2, Table 4.8, and Table 4.9). The highest turbidity was recorded in NaCl treated
soil for saline, sodic and saline-sodic soils while the highest turbidity measurements in the
bentonite clay and Brookings soils were with distilled water. This increased turbidity could be
attributed to higher dissolved organic matter level in the Brookings soil and the fine clay
particles of the bentonite clay. In previous studies, smaller particle sizes have contributed the
higher turbidity reading (Cuker et al., 1990; Cuker and Hudson Jr, 1992). In other studies similar
results of dispersion of organic matter being increased with dispersion of clay was reported

(Fitzpatrick et al., 1994; Naidu et al., 1993).
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Figure 4. 2 Bentonite clay and selected soils turbidity measurement after treated with variable concentration of salts (Logarithmic
scale of base 10).



Table 4.8 Effect of salt concentration on soil dispersion (turbidity as an indicator) of three different salt affected soils, a normal soil
and bentonite clay.

Soil Sampling Locations n=12

Andover Pierpont White Lake Brookings
Treatments (Saline) (Sodic) (Saline-sodic) | (Normal) Bentonite Clay

Turbidity in Turbidity in Turbidity in Turbidity in Turbidity in
Salts (S) (NTU) (NTU) (NTU) (NTU) (NTU)
NaCli
01M 44 32 23.32 95.02 21.0° 89.8P
0.2M 31,52 24.32 98.52 20.8° 77.0°
0.3M 40.82 20.3% 107.02 25.5° 88.0°
Distilled H.0O 7.5° 10.5° 7.8° 659.32 15002
ANOVA P>F 0.001 0.040 <.0001 <.0001 <.0001
CaCl2-2H:20
0.1M 20.32 18.02 79.32° 19.3° 62.3°
02M 14.02 21.02 90.02 13.5° 58.3P
0.3M 18.52 15.02 745° 8.0° 57.8°
Distilled H.0O 7.52 10.5° 7.8°¢ 659.32 15002
ANOVA P>F 0.312 0.047 <.0001 <.0001 <.0001
MgCl-6H,0
0.1M 13.0° 12.82 84.52 27.5° 59.3P
0.2M 14.82 14.32 83.32 9.5° 55.8P
0.3M 27.02 13.02 95.02 21.5° 58.8°
Distilled H.0O 7.5° 10.52 7.8° 659.32 15002
ANOVA P>F 0.033 0.137 <.0001 <.0001 <.0001

tMeans with different letters within a column, treatments are significantly different at P < 0.05.
1S=Salt type; NaCl=sodium Chloride; CaCl,-6H.O= Calcium Chloride Hexahydrate;
MgCl,-2H>0= Magnesium Chloride Dehydrate;

C=Concentration in molarity; 0.1, 0.2, and 0.3 M

NTU=Nephelometric Turbidity Unit.


http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwi52q6nydLLAhUsn4MKHQbDArIQFggiMAE&url=http%3A%2F%2Fwww.endmemo.com%2Fchem%2Fcompound%2Fcacl26h2o.php&usg=AFQjCNEdbnIdo5KuDBRJrG_PGnj2tdaKTA&bvm=bv.117218890,d.amc
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Table 4.9 Effect of salt type on soil dispersion (turbidity as an indicator) of three different salt affected soils, a normal soil and
bentonite clay.

Soil Sampling Locations n=12

Andover Pierpont White Lake Brookings
Treatments (Saline) (Sodic) (Saline-sodic) | (Normal) Bentonite Clay

Turbidity in Turbidity in Turbidity in Turbidity in Turbidity in
Salts Concentration (NTU) (NTU) (NTU) (NTU) (NTU)
0.1Mi%
NaCl 44,32 23.3°2 95.0 21.0° 89.8°
CaClz-2H,0 20.3P 18.0 ® 79.32 19.3P 62.3°¢
MgClz-6H20 13.0° 12..8 ¢ 84.52 275" 59.3 ¢
Distilled H,0 75 10.5°¢ 7.8° 659.3 2 1500 @
ANOVA P>F 0.003 0.007 <.0001 <.0001 <.0001
02M 1%
NaCl 3152 2432 98.52 20.8° 77.0°
CaCl,-2H,0 14.0° 21.0% 90.0 % 13.5° 58.3 ¢
MgCl,-6H,0 14.8° 14.3 bc 83.3° 95" 55.8 ¢
Distilled H.0 75° 105¢ 7.8°¢ 659.3 2 1500 2
ANOVA P>F <.0001 0.015 <.0001 <.0001 <.0001
03M1%
NaCl 40.8 @ 20.32 107.02 255" 88.0°
CaClz-2H,0 18.5 ¢ 15.0 ® 7450 8.0° 57.8°¢
MgCl-6H,0 27.02 13.0° 95.02 215" 58.8
Distilled H.0 75°¢ 10.5° 7.8°¢ 659.32 1500 2
ANOVA P>F 0.007 0.049 <.0001 <.0001 <.0001

tMeans with different letters within a column, treatments are significantly different at P < 0.05.
1S=Salt type; NaCl=sodium Chloride; CaCl.:6H.O= Calcium Chloride Hexahydrate;
MgClz-2H,0= Magnesium Chloride Dehydrate;

C=Concentration in molarity; 0.1, 0.2, and 0.3 M

NTU=Nephelometric Turbidity Unit.
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4.4 Conclusions

Sulfur appeared to improve double-ring water infiltration in all years and locations
(although values were not always statistically significant). However, significant differences
among the chemical amendments were observed in year 2013 in White Lake and 2014 in
Redfield. A cover crop treatment seems to have a positive effect at Pierpont soil in terms of
improving double-ring water infiltration. The infiltration rate and runoff rate measurements using
Cornell infiltrometer showed no significant differences among the treatments in all locations.
The experiment needs to be monitored longer (5 years or more) as a permanent plot trial since

soil physical property change often requires time to obtain the anticipated result.

The effect of Mg?* and Ca?* solutions on clay dispersion suggest that the two ions have
more flocculating effect than dispersion for the concentrations studied on the soils tested. Na*
had more dispersion effect (increased turbidity) as seen in many previous studies. However,
additional experiments are needed to be conducted at higher ion concentrations on a wider
variety of salinity and sodicity levels in various parent materials soils under field conditions.

Turbidity can be used as an indicator of clay dispersion in salt affected soils.
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5. CHAPTER YV

SPATIAL VARIABILITY ANALYSIS OF SELECTED SOIL ATTRIBUTES IN

SALINE-SODIC SOIL

Abstract

Soil spatial variability in the northern Great Plains of USA is related to natural (topographic,
vegetation, time, parent material, and climate) and anthropogenic (management and landuse
change) factors. The objective of this study was to describe the spatial variability of selected soil
properties at a landscape scale and define spatial class. The study was conducted at Pierpont, SD
with dominant soils of Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and
Natrudolls. A total of 169 grid points (62 x 62 m grid) were laid out in the field in 2014. The
field was planted with corn (Zea mays). Soil pH, electrical conductivity (EC) and sodium
adsorption ratio (SAR) were analyzed. Mollic depth and lime depth were measured at each grid
points. Semivariograms fit for exponential, spherical, and Gaussian models were tested. Spatial
class was developed using nugget to sill ratio. Analysis of variance for soil attributes were made
to test if there is variation due to differences in soil series. Global Moran’s | and local Moran’s 1
statistics were performed. The exponential model was the optimum fit for mollic depth, lime
depth, pH, EC, and SAR with nugget to sill ratio of 0, 0, 45, 17, and 49, respectively. EC and
SAR showed moderate spatial dependence whereas the other parameters showed strong spatial
dependence. At the V1, V4, and V6 growth stages the exponential model was the optimum fit for
NDVI with a value of nugget to sill ratio of 23, 0, and 25, respectively. At all plant growth
stages the NDVI had showed strong spatial dependence. Analyses of variance of all the

parameters measured were significantly different at P < 0.05.
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Mollic depth, lime depth, and EC showed slight positive spatial autocorrelation with Moran s
statistic value of 0.193, 0.106, and 0.337 and significantly small p-values at alpha 0.05. So the
null hypothesis of random distribution was rejected for these variables. Whereas the Global
Moran’s I statistics value and the z-score of SAR was very small and p-value was insignificant.
SAR showed random distribution. Patterns of local spatial autocorrelation were assessed from a
generated map using Local Moran’s I. Semivariogram modelling and Moran’s I of soil

attributes and NDV1 data can help to quantify spatial heterogeneity in saline-sodic soils.

Key words: Semivariogram, clustering, dispersion, soil spatial variability, northern Great Plains,
NDVI, saline-sodic soil, Argiudolls, Calciaquolls, Endoaquolls, Hapludolls, interpolation,

Natrudolls, Calciudolls, mollic depth, lime depth, EC, SAR, and soil moisture.
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5.1 Introduction

Soil properties distribution in a field or landscape are variable in terms of time and space
(Corwin et al., 2003). In-depth understanding of the spatial and temporal distribution of these
properties at all levels (field, landscape, or watershed) is useful to make sound management

decisions in natural resource conservation and agriculture (Cambardella et al., 1994).

Several methods have been used to estimate spatial variability of soil physical and
chemical properties (Cambardella et al., 1994; Goovaerts, 1998), soil apparent electrical
conductivity (Corwin and Lesch, 2005), soil moisture (Vinnikov et al., 1996), infiltration
(Sharma et al., 1980), and several other properties. Several attempts were also made to estimate

variability at various scales (Cambardella et al., 1994; Nielsen et al., 1973).

Semivariogram models are used to characterize the spatial variability of soil attributes.
(Goovaerts, 1998). Spatial dependence can be expressed as a percentage ratio of nugget
semivariance to the sill semivariance with a value < 25 % (strong spatial dependence), 26-75 %
(moderate spatial dependence), and > 75 % (weak spatial dependence) (Schlesinger et al., 1996).
However, soil spatial variability studies in saline sodic soils of the Northern Great Plains have
not been well studied in the past and there is very little information available as to the spatial

variability of properties in saline-sodic soils.

Therefore, this study was conducted to describe the spatial variability of selected soil
properties at a landscape scale and define spatial class for measured soil variables in selected

Northern Great Plains (NGP) soils.
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Objectives

i. To assess the global and local spatial autocorrelation and variability of selected soil
attributes

ii.  Evaluate the differences in soil properties due to soil series.

5.2 Materials and Methods

A field measurement was conducted in Pierpont in Day County, South Dakota (44°55'30"
to 45°28'30"N and 97°509" to 98°28'34"W in April 2014. The dominant soils in the study area
were Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls (USDA-
NRCS, 20164a; 2016b).

A total of 169 grid points (62 x 62 m) were laid out in the field. Multispectral
Radiometer (MSR) readings were taken by holding the MSR 2 m above the surface and 1 m
diameter data was collected at each grid point in corn (Zea mays) field in April 2014. The
readings were taken between 10 am to 3 pm.

Soil samples were taken from each grid point. Mollic depth, till depth (glacial till parent
materials), and lime depth were measured at each grid point after sampling soil using soil
sampling probe. Soil samples from 0-7.5 cm consisted of 10 subsamples collected with a 1.9 cm
diameter soil probe. Each sample was dried at 40°C, ground, sieved (<2 mm), stored in plastic
bags and analyzed for pH, electrical conductivity (EC), water soluble cations, sodium adsorption
ratio (SAR) (Page, 1982).

Water soluble cation concentrations (Na*, Ca%*, and Mg?*), EC, and pH and were
determined from a saturated extract. One hundred and fifty grams of air-dry soil was weighed

and mixed with distilled water until saturated. The mixture was covered and allowed to
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equilibrate for 24 hours. After 24 hours, the soil solution was extracted using a Bichner funnel
apparatus and vacuum. All extracts were stored at 4°C until they were analyzed for pH, EC, Ca,

Mg, and Na (Rhoades, 1982). Sodium adsorption ratio (SAR) was calculated using the following

equation.
[Na*]
SAR = 7
([Ca“] + [Mg“])
2

Data exploration was made to evaluate the normality of the data. Exponential, spherical, and
gaussian semivariograms were fitted for the selected variables (see Appendix V and Figures 5.1
to 5.5). The details (nugget, sill, and range) of the models were determined.. Spatial class was
developed for selected soil variables using the nugget to sill ratio as an indicator. Generally,
semivariograms with higher range indicates spatial autocorrelation, whereas, higher sill values

indicates more variation between neighbors samples.

The normalized difference vegetation indices (NDV1) were computed using the following
equation:

NIR — Red
NIR + Red

NDVI =
Semi-variances were calculated using equation below, where y(h) is the semi-variance for lag
distance h, N is the number of samples, A is the test value for sample i, X is the location of

sample i. and Xi + h represents the distance between two sample locations (Nielsen and

Wendroth, 2003).

N(h)
1
Y = 5rs Z [4:CXD) = 4K+ )2
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Analysis of variance (ANOVA) was performed for selected soil attributes (EC, SAR, lime
depth, mollic depth, till depth and soil moisture) and NDVI was computed for the crop growth
stage (V1, V4, and V6) of corn (Zea mays). Spatial autocorrelation was tested for selected soil
attributes using Global Moran’s I statistics and clsutering and dispersion was detected using
local local Moran’s I statistics (Anselin, 1995). The test was applied for selected soil attributes

including mollic depth, lime depth, electrical conductivity, and sodium adsorption ratio.

5.3 Results and Discussion

5.3.1 Correlation of soil properties

The soil properties selected at each grid point were correlated with each parameter. The
raw correlation matrix is based on Appendix V, Table 3. A summary of the significant

correlations from this matrix is given in Table 5.1.

Yield was positively correlated with elevation and lime depth content while negatively
correlations were seen with salinity, sodicity and soil moisture properties. Elevation was
positively correlated with yield and chlorophyll negatively correlated with salinity, sodicity,
moisture level, mollic depth, redox depth and depth to till. This demonstrates how erosion and

water interact on the landscape to affect yield and soil properties studied
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Table 5.1 Summary of significant correlation relationship for selected soil properties.

Soil Property

Significantly positively
correlated*

Significantly negatively
correlated*

(n=169)
SMV1, ECV1, EC, SAR, Yld, Elev
Soil moisture E (SME) MD
Soil moisture V1 (SMV1) | EC V1, EC, SAR, MD, SME | Yld, Elev
EC, SAR, MD, RD, TD, Yld, Elev
EC V1 (EC V1) SME,SMV1
Chlorophyll V4 (CV4) Elev, pH MD
Yield (Yld) Elev, LD EC, pH, SAR, SME, SMV1, ECV1
CV4,Yld EC, SAR, MD, RD, TD, SME,
Elevation (Elev) SMV1, ECV1
SAR, MD, RD, SME, Yld, Elev
EC 0-3 inch depth SMV1ECV1
pH 0-3 inch depth RD, CV4 LD, Yld
MD, RD, SME, Yld, Elev
SAR 0-3 inch depth SMV1ECV], EC
Lime depth (LD) MD, RD, TD, YId pH
RD, TD, SME, SMV1, Elev, CV4
Mollic depth ECV1], EC, SAR,, LD
TD, ECV1, EC, pH, SAR, Elev
Redox depth (RD) LD, MD
Till depth (TD) ECV1, LD, RD, MD Elev

Pierpont coordinate: (44°55'30” to 45°28'30"N and 97°50'9” to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). Source of soil
information: USDA-NRCS, Soil Survey Division, 2016b.
E= Emergence (crop), EC = electrical conductivity, SAR = sodium adsorption ratio, V1=one leaf
with collar visible, V4= four leaves with collar visible

*significant at 0.05 alpha level.
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5.3.2 Data Exploration
Detailed statistics of the data exploration are summarized in Table 5.2. All the measured
soil data (mollic depth, lime depth, EC, and SAR) have showed a distribution of positive
skewness. Whereas, all the calculated NDVI value were negatively skewed. The transformed

data was not improved when compared to the raw data (original).

Table 5.2 Descriptive statistics showing data distribution for the variables measured at Pierpont.

Parameter n Min Max Mean Std.Dev. Skewness Median Pr>F

Mollic Depth 168 0.00 49.0 21 10.88 0.61 18.00 <.0001
Lime Depth 168 0.00 40.0 17 9.18 0.08 16.00 <.0001
EC 168 0.00 258 2.0 3.84 3.79 0.07 0.0140
SAR 168 0.00 213 15 2.67 3.74 0.58 0.0008
NDVI E 168 0.14 023 0.2 0.02 0.25 0.18 0.0012
NDVI V1 168 0.00 0.27 0.8 0.06 -2.35 0.19 0.1125
NDVI V4 168 0.00 031 01 0.11 -2.58 0.20 0.2553
NDVI V6 168 0.09 0.79 05 0.16 -0.81 0.55 0.0077

Pierpont coordinate: (44°55'30” to 45°28'30"N and 97°509” to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). Source of soil
information: USDA-NRCS, Soil Survey Division, 2016b.

E= Emergence (crop), EC = electrical conductivity, SAR = sodium adsorption ratio,
NDVI=normalized difference vegetation indices, V1=one leaf with collar visible, V4= four
leaves with collar visible, V6=six leaves with collar visible.
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5.3.3 Semivariogram model fitting

Spatial variability of the different soil attributes measured is summarized in Table 5.3.
Mollic depth had a strong spatial dependence and fitted well all the models tested (with the

exponential model being the optimum fit with 0 nugget to sill ratio and RMS=10.15).

Similarly, the exponential model was the optimal fit for lime depth, pH, EC, and SAR
with nugget to sill ratio of 0, 45, 17, and 49, respectively. EC and SAR showed moderate
dependence whereas the other parameters showed strong spatial dependence. Spatial variability
of the NDV1 values are summarized in Table 5.4. The exponential model was the optimum fit for
NDVI at V1, V4, and V6 stage with a value of nugget to sill ratio of 23, 0, and 25, respectively.
At all stages the NDVI showed a strong spatial dependence. Similar results of spatial variability
and model fitting were reported in earlier research (Burrough, 1983; Gessler et al., 1995;
Goovaerts, 1998). Semivariogram fit for all other soil properties and NDVI values are presented

in Appendix V (Figures 3 to 12).
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Parameter Model Nugget  Sill Range  Nugget/Sill Root-Mean- Spatial
Ratio Square Class
Mollic depth  Exponential  0.0000 133.5 0.001 0 10.15 S
Spherical 0.0000 121.0 0.001 0 10.03 S
Gaussian 0.1228 1229 0.001 0.1 10.06 S
Lime depth Exponential  0.0000 91.7 0.001 0 9.64 S
Spherical 40179 87.0 0.001 5 9.67 S
Gaussian  34.3257 88.6  0.001 39 9.66 M
EC Exponential  8.0082 179  0.010 45 3.54 M
Spherical 9.1545 17.3  0.008 53 3.50 M
Gaussian  10.5491 176  0.007 60 3.47 M
pH Exponential ~ 1.4332 8.4 0.001 17 2.87 S
Spherical 6.0567 8.4 0.001 72 2.89 M
Gaussian 6.4498 84 0.001 77 2.84 wW
SAR Exponential 4.1089 8.4 0.009 49 2.55 M
Spherical 45440 8.0 0.007 57 2.53 M
Gaussian 5.1224 8.1 0.006 63 2.50 M

Pierpont coordinate: (44°55'30” to 45°28'30"N and 97°509” to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). Source of soil
information: USDA-NRCS, Soil Survey Division, 2016b.
S=strong, M=moderate, W=weak, EC= electrical conductivity, SAR=sodium adsorption ratio.

Table5.4 Variogram models for NDVI1 at different crop growth stage.

Parameter Model Nugget  Sill Range Nugget/Sill Root-Mean- Spatial
Ratio Square Class
NDVI V1 Exponential 0.0010 0.004 0.012 23 0.04 S
Spherical 0.0014 0.004 0.012 33 0.04 M
Gaussian 0.0016 0.005 0.012 30 0.04 M
NDVI V4 Exponential  0.0000 0.018 0.012 0 0.03 S
Spherical 0.0000 0.022 0.012 0 0.03 S
Gaussian 0.0015 0.031 0.012 5 0.04 S
NDVIV6 Exponential  0.0074 0.030  0.007 25 0.11 S
Spherical 0.0116 0.029  0.007 40 0.12 M
Gaussian 0.0141 0.029  0.005 49 0.12 M

Pierpont coordinate: (44°55'30" to 45°28'30"N and 97°509” to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls). Source of soil
information: USDA-NRCS, Soil Survey Division, 2016b. S= strong, M=moderate, W=weak
NDVI=normalized difference vegetation indices, VV1=one leaf with collar visible, V4= four

leaves with collar visible, V6=six leaves with collar visible.
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Mollic Depth Lime Depth Till

Soil Series} (inches) n (inches) n EC(dS/m) |n |SAR n depth(inches) | n SM (%) n
Brookings 26 + 6.1bc 55 |24 +6ab 55 30£29 |37 |2+£21b 37 | 36 +8.6abc 53 | 30+4.7abc |29
McKranz 15 + 10.5d 19 |8 +£5.7d 19 6.0£7.0b 15 |4+4.0b 15 |32+ 11.4bcd |19 |30+ 3.6ab 18
Deposition 41 +3.9a 7 25+4.4ab |4 40+x32b |5 |[3%£25Db 5 43 + 4.2abc 4 34 +3.9ab 7
Beotia 35+ 7.5a 4 24 +23.3ab | 2 50+18b |2 |3+1.4b 2 42 + 6.9abc 4 32 +2.4ab 4
Kranzburg 14 +2.3d 32 [ 15+£3.2bcd | 32 2+3.5b 28 | 1£2.0b 28 |29+6.0cd 32 | 28+4.2abc |18
Harmony 42 + 4.8a 4 25+76ab |4 20£08b |2 |1+0.6b 2 50 + 5.5a 3 31+ 1.3ab 4
Buse 9+5.8d 5 6 + 7.8de 5 20 £0.0b |1 |1+0.0b 1 19 £ 0.0de 1 30 +2.6abc |3
Vienna 10 £ 2.2d 7 14 +3.1bcd | 7 1.0 £06b |5 |1+0.2b 5 16 + 2.6e 7 28 + 6.5abc | 3
Barnes 11 +2.6d 13 |13+£5.0cd |13 1.0 £08b |9 |1+0.6b 9 12 £ 0.0e 1 23 + 2.6¢d 4
Hamerly 13 +2.1d 4 0£0.0e 4 1.0 +00b |1 |1£0.0b 1 nd - 27 +£0.0abc |1
Svea.like 29 + 6.9abc 6 29 + 6.9a 6 1.0 £0.1b |3 |1+0.3b 3 36 +£0.0abcd |1 14 +0.0d 1
Aastad 18 + Obcd 1 18 +0.0bcd | 1 0.4 +0.0b 1 |1+0.0b 1 nd - nd -
Aberdeen 33 + 0ab 1 21 +0.0abc |1 2+0.0b 1 |3x0.0b 1 36 +0.0abcd |1 32 +0.0ab 1
Bearden 17 + 3.1bcd 3 12+38cd |3 1.0 £04b |3 |2+15b 3 45+ 3.8 3 28+ 1.labc |3
Putney 42 £ 0a 1 15+0.0bcd | 1 nd Nd - 48 +0.0ab 1 30+0.0abc |1
Nahon 42+ Oa 1 16 £0.7bcd | 2 30+13b |2 |3+£0.2b 2 48 + 0.0ab 1 34 +2.0ab 2
Huffton 30 + Oabc 1 13+0.0bcd |1 1.0 £00b |1 |1+0.0b 1 42 + 0.0abc 1 25+0.0bcd |1
Heil 29 + Oabc 1 21 +0.0abc |1 0.3+£0.0b 1 |1+0.0b 1 nd - 37 +£0.0a 1
Badger 32 + 0ab 1 15+0.0bcd |1 40 £00b |1 |7£00ab |1 nd 24+0.0bcd |1
Saline 40+ 5.7a 2 14 +8.5bcd | 2 14 +16.5a |2 12+13.6a | 2 44 + 0.0abc 36 +2.3a 2
ANOVA P>F | <.0001 <.0001 0.0314 0.0018 <.0001 0.0002

+tMeans with different letters within a column, treatments are significantly different at P < 0.05.

Pierpont coordinate: (44°55'30" to 45°28'30"N and 97°50'9” to 98°28'34”"W (Dominant soils: Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls,

and Natrudolls). Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
EC= electrical conductivity, SAR=sodium adsorption ratio, SM= soil moisture, dS/m= deciSiemens per meter, n=number of samples, nd= not determined
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5.3.4 Analysis of variance and Moran’s I statistics
Analysis of variance was performed to test if there is variation in soil series for selected
soil attributes. Accordingly, all the parameters (mollic depth, lime depth, till depth, EC, SAR,
and SM ) measured were significantly different at P < 0.05. The selected soil properties are used
in South Dakota to classify and organize soils into management groups. The thickest mollic
depths were recorded for the following series, Beotia, Putney, Nahon, Harmony Deposition

(unidentified), and saline (unidentified) soil series (see Table 5.5).

Svea soil series had the greatest lime depth whereas; the Hamerly series had lime at soil
surface. Saline (unidentified) had the highest EC (14 dS/m). Aastad and Heil had the lowest EC
value of 0.3 and 0.4 dS/m, respectively. Harmony had the highest till depth (50). Heil and Saline
(unidentified) soil series had the highest moisture content (37 and 36%, respectively). Svea like

soil series had the lowest (14%).

Moran’s I statistics measure of the degree of spatial correlation present in a spatial data
set. In Moran’s I statistics, a value closer to one indicates presence of positive spatial
autocorrelation. Any value close to zero indicates the absence of spatial auto correlation
(Anselin, 1995). Results of the Global Moran’s I test are presented in Table 5.6. Maps of the
local Moran’s I are shown in Figures 5.1 to 5.5. Mollic depth, lime depth, and EC showed slight
positive spatial autocorrelation with Moran’s statistic value of 0.193, 0.106, and 0.337,
respectively, and significantly small p-values at alpha 0.05 (Table 5.6). So the null hypothesis of
random distribution was rejected for these variables. Whereas the Moran’s I statistics value and
the z-score of SAR and pH were very small the p-values were insignificant and showed random
distribution. Patterns of local spatial autocorrelation were assessed from a generated map using

Local Moran’s I.
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Mollic depth shows a pattern of high-high and low-low correlation. That means areas of
high mollic depth values are surrounded by areas of high mollic depth and vice versa (see Figure

5.1). Similar results were found for lime depth and EC (see Figures 5.2 and 5.3, respectively).

Table 5.6 Summary of spatial autocorrelation of selected soil attributes using Global Moran’s 1.

Variable Moran's Index Expected Index Variance z-score  p-value Pattern

Mollic depth 0.193 -0.00595 0.0042 3.0637  0.0022  Clustered
Lime Depth 0.106 -0.00595 0.0042 1.7286  0.0839  Clustered
EC 0.337 -0.00595 0.0040  5.4154 0.0001 Clustered
SAR 0.088 -0.00595 0.0037 1.5390 0.1238 Random
pH 0.094 -0.00595 0.0041 15533 0.1203 Random

Pierpont coordinate: (44°55'30" to 45°28'30"N and 97°50'9” to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).

Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.

EC= electrical conductivity, SAR=sodium adsorption ratio.

A significance level of 0.05, a z score would have to be less than —1.96 or greater than 1.96 to be
statistically significant. Global Moran's | evaluates whether the pattern expressed is clustered,
dispersed, or random. When the Z score indicates statistical significance, a Moran's | value near
+1.0 indicates clustering while a value near —1.0 indicates dispersion.
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Figure 5.1 Interpolated map showing the clustering of mollic depth using local Moran’s I test.

Pierpont, SD coordinates: (44°55'30" to 45°28'30"N and 97°50'9” to 98°28'34"W (Dominant
soils: Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Figure 5.2 Interpolated map showing the clustering of lime depth using local Moran’s I test.

Pierpont, SD coordinates: (44°55'30" to 45°28'30"N and 97°50'9" to 98°28'34"W (Dominant
soils: Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.



IDW Prediction Map

EC (dS/m) ike
B 0.13-0.39
B 039-049
049-075
075-14

B 1428

N 2e-6
@  Not Significant
© Cluster High
@  High Outlier
®  Low Outlier
» Cluster Low

o 01 02 0.4 Kilometers
L 1 1 L : J

Figure5.3 Interpolated map showing the clustering of EC using local Moran’s I test.

Pierpont, SD coordinates: (44°55'30" to 45°28'30"N and 97°50'9" to 98°28'34"W (Dominant
soils: Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Figure 5.4 Interpolated map showing the clustering of SAR using local Moran’s I test.

Pierpont, SD coordinates: (44°55'30" to 45°28'30"N and 97°50'9" to 98°28'34"W (Dominant
soils: Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016.
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Figure 5.5 Interpolated map showing the clustering of pH using local Moran’s I test.

Pierpont, SD coordinates: (44°55'30" to 45°28'30"N and 97°50'9" to 98°28'34"W (Dominant
soils: Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.

5.4 Conclusions

This study clearly showed using geospatial statistics particularly, local Moran’s I,
semivatiogram modelling of soil attributes, and NDVI data, could help to quantify spatial
heterogeneity in saline-sodic soils. Thus, a better understanding of the spatial pattern of the
measured soil variables in saline sodic soils can easily be captured. It also showed soil series
variation for all the measured soil attributes and demonstrates the need to further explore and
examine other soil attributes not covered in this study. Integrating high resolution imagery for

NDVI and other indices could be an area of future research in saline-sodic soil.
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APPENDICES

Appendix I: SAS and R codes

SAS Code for ANOVA

data one;

input CCT$ SA$ Rep VARI;
cards;

Run;

proc glimmix;

class CCT SA Rep;

model VAR1 = CCT SA CCT*SA ;
random Rep;

Ismeans SA CCT*SA / diff;
Ismeans CCT / bylevel lines;
Ismeans SA/ bylevel lines;

run;

proc sort data=one out=onel;

by CCT,;

run;

proc means data=onel n mean std;
var VAR1,

by CCT,;

run;

proc sort data=one out=onez2;

by SA;

run;

proc means data=one2 n mean std;
var VARI];

by SA;

run;

100

SAS codes used for ANOVA
Data;

Input TRT$ REP NDVI;
Cards;

proc gim;

class TRT REP ;

model NDVI = TRT REP*TRT ;
test h.=TRT e=REP*TRT,

means TRT/duncan alpha=0.01 e=REP*TRT;
PROC PRINT;

RUN;




R Code used for spatial analysis

Pierpont data - semivariograms and kriging
# Before starting, we need to have both the gstat package loaded
load libraries

library(rgdal)

library(sp)

library(gstat)

library(lattice)

library(RColorBrewer)

library(raster)

#library(tiff)

install.packages (tiff)

setwd(""C:/Users/Girma/Desktop/girma')
ppt <- read.csv("'data.csv")

dem.grid <- readGDAL("dem2.tif")
names(dem.grid) <- "elevation"
image(dem.grid)

# Generate an empty grid for spatial interpolation

library(sp)

# Specify the min and max coordinates and cell size in the E-W direction
xcoords <- seq(586050, 586900, 10)

# Specify the min and max coordinates and cell size in the N-S direction
ycoords <- seq(5040000, 5040800, 10)

# Expand to all possible combinations of these coordinates

gridcoords.sp <- expand.grid(xcoords, ycoords)

# Use same coordinate names as in your point file

names(gridcoords.sp) <- c("x", "y")

# Make into a spatial points object
coordinates(gridcoords.sp) <- ~ X +y

# Make gridded

gridded(gridcoords.sp) <- TRUE

# Look at the grid

plot(gridcoords.sp)
write.csv(gridcoords.sp, "datagrid.csv")

# Read in two datasets — the sample points and the prediction grid

# These are two gstat sample datasets — can be accessed by typing data(meuse)

# and data(meuse.grid). Here, we read them from text files as an example
data.sdf <- read.csv("data.csv")

data.grid <- read.csv("datagrid.csv")

data <- read.csv("data.csv")

class(data.sdf)

names(data.sdf)
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# Make the data frame into a spatial data object for use with gstat
coordinates(data.sdf) <- c("x", "y")

class(data.sdf)

summary(data.sdf)

# We can access spatial locations directly with the coordinates() function
coordinates(data.sdf)[1:5,]

# Plot the spatial pattern of ACSA concentrations
bubble(data.sdf, zcol="E")

# Examine the distribution of E concentrations
attach(data.sdf@data)

hist(E)

qggnorm(E)

hist(sqrt(E))

ggnorm(sqrt(E))

hist(log(E))

qanorm(log(E))

# Plot the semivariogram cloud
E.cll <- variogram(log(E) ~ 1, data=data.sdf, cloud=TRUE)
plot(E.cll)

# Generate an empirical semivariogram for the sgrt of E concentrations
E.vgm <- variogram(log(E) ~ 1, data=data.sdf, width = 70, cutoff=350)
plot(E.vgm)

E.vgm

# Explicitly specify the width of the “bins”

E.vgm2 <- variogram(log(E) ~ 1, data=data.sdf, width = 70, cutoff=350)
plot(E.vgm2)

E.vgm2

# Explicitly specify width of bins and maximum lag distance

E.vgm3 <- variogram(log(E) ~ 1, data=data.sdf, width = 70, cutoff=350)
plot(E.vgm3)

E.vgm3

# Generate an anisotropic semivariogram with four direction classes
E.vgma <- variogram(log(E) ~ 1, data=data.sdf, alpha=c(0, 45, 90, 135))
plot(E.vgma)

E.vgma

# Fit a spherical semivariogram function



# Need to specify starting values for the fit

plot(E.vgm3)

E.fit <- fit.variogram(E.vgm3, model=vgm(psill=0.0005, model="Sph", range=350,
nugget=0.0001))

E.fit

plot(E.vgm3, E.fit)

# Fit an exponential semivariogram function

E.fit2 <- fit.variogram(E.vgm3, model=vgm(psill=0.0005, model="Exp", range=350,
nugget=0.0001))

E.fit2

plot(E.vgm3, E.fit2)

# Fit a Gaussian semivariogram function

E.fit3 <- fit.variogram(E.vgm3, model=vgm(psill=0.0005, model="Gau", range=350,
nugget=0.0001))

E.fit3

plot(E.vgm3, E.fit3)

# Examine the prediction grid
class(data.grid)

names(data.grid)
coordinates(data.grid) <- c("x", "y")
class(data.grid)

gridded(data.grid) = TRUE
class(data.grid)

summary(data.grid)

# Fit first- and second-order trend surface models

# Specify trend-surface modeling using the degree argument

predict.trl <- krige(log(E) ~ 1, locations=data.sdf, newdata=data.grid, degree=1)
predict.tr2 <- krige(log(E) ~ 1, locations=data.sdf, newdata=data.grid, degree=2)

# Set blue-pink-yellow as default color ramp for trellis graphics (including spplot)
trellis.par.set(sp.theme())

# Generate maps of trend-surface predictions
spplot(predict.trl, zcol="varl.pred")
spplot(predict.tr2, zcol="varl.pred")

# Cross-validate the trend surface models

crossval.trl <- krige.cv(log(E) ~ 1, locations=data.sdf, degree=1)
crossval.tr2 <- krige.cv(log(E) ~ 1, locations=data.sdf, degree=2)
# Mean absolute error

mean(crossval.trl$residual)

mean(crossval.tr2$residual)
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# Root mean squared error
sgrt(mean(crossval.tri$residual’*2))
sgrt(mean(crossval.tr2$residual™2))

# Correlation between predicted/observed
cor(crossval.tri$observed, crossval.trl$varl.pred)
cor(crossval.tr2$observed, crossval.tr2$varl.pred)
# Visually assess predicted versus observed
plot(crossval.trl$observed, crossval.trl$varl.pred)
# add the 1:1 line

abline(0, 1, Ity=2)

plot(crossval.tr2$observed, crossval.tr2$varl.pred)
abline(0, 1, Ity=2)

# Generate inverse distance weighting prediction for k=1

# Call the idw function and specify the idp parameter

predict.idwl <- idw(log(E) ~ 1, locations=data.sdf, newdata=data.grid, idp=1)
# Generate inverse distance weighting prediction for k=2

predict.idw2 <- idw(log(E) ~ 1, locations=data.sdf, newdata=data.grid, idp=2)

# Generate maps of inverse distance weighting predictions
spplot(predict.idwl, zcol="varl.pred")
spplot(predict.idw2, zcol="var1.pred")

# Assess prediction accuracy using cross-validation

# Supply idp as a list element to the set argument
crossval.idwl <- krige.cv(log(E) ~ 1, set=list(idp=1), data.sdf)
crossval.idw2 <- krige.cv(log(E) ~ 1, set=list(idp=2), data.sdf)
cor(crossval.idwl1$observed, crossval.idwl$varl.pred)
cor(crossval.idw2$observed, crossval.idw2$varl.pred)
sgrt(mean(crossval.idwl1$residual”*2))
sgrt(mean(crossval.idw2$residual”*2))
plot(crossval.idwl$observed, crossval.idwl$varl.pred)
abline(0, 1, lty=2)

plot(crossval.idw2$observed, crossval.idw2$varl.pred)
abline(0, 1, lty=2)

# Ordinary kriging

# Include a fitted semivariogram as the model argument

E.krige <- krige(log(E) ~ 1, locations=data.sdf, newdata=data.grid, model=E.fit)
spplot(E.krige, zcol="varl.pred")

names(E.krige)

spplot(E.krige, zcol="varl.var")

crossval.krige <- krige.cv(log(E) ~ 1, locations=data.sdf, model=E.fit)
cor(crossval.krige$observed, crossval.krige$varl.pred)
sgrt(mean(crossval.krige$residual®2))
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plot(crossval.krige$observed, crossval.krige$varl.pred)
abline(0, 1, Ity=2)

# Linear regression using elevation as an independent variable

predict.iv <- krige(log(E) ~ elevation, locations=data.sdf, newdata=dem.grid)
spplot(predict.iv, zcol="varl.pred")

# Root mean squared error

sgrt(mean(crossval.iv$residual™2))

# Correlation between predicted/observed

cor(crossval.ivdobserved, crossval.ivévarl.pred)

# Kriging with external drift using elevation as an independent variable

E.vgm2 <- variogram(log(E) ~ elevation, data=data.sdf)

E.fit2 <- fit.variogram(E.vgm, model=vgm(psill=0.0005, model="Sph", range=350,
nugget=0.0001))

predict.ed <- krige(log(E) ~ elevation, locations=data.sdf, newdata=dem.grid, model=E.fit2)
spplot(predict.ed, zcol="varl.pred")

crossval.ed <- krige.cv(log(E) ~ elevation, locations=data.sdf, model=E.fit2)

accuracy.ed <- accstats(crossval.ed$observed, crossval.ed$varl.pred, "ED")

# Kriging with external drift using elevation as an independent variable

E.vgm2 <- variogram(log(E) ~ elevation, data=data.sdf)

E.fit2 <- fit.variogram(E.vgm, model=vgm(psill=0.0005, model="Sph", range=350,
nugget=0.0001))

predict.ed <- krige(log(E) ~ elevation, locations=data.sdf, newdata=dem.grid, model=E.fit2)
spplot(predict.ed, zcol="varl.pred")

crossval.ed <- krige.cv(log(E) ~ elevation, locations=data.sdf, model=E.fit2)

accuracy.ed <- accstats(crossval.ed$observed, crossval.ed$varl.pred, "ED")

#Extract eleveation points from DEM

file<- list.files("C:\\Users\\Girma\\Desktop\\girma", "*.tif")
a<-raster(file[1])

plot(a)

elevation<-extract(a, data.sdf)

elevation

cbind(data.sdf@data,elevation)

projection(data.sdf) <- "+proj=utm +zone=14 +datum=WGS84 +units=m +no_defs
+ellps=WGS84 +towgs84=0,0,0"

proj4string(data.sdf)<-"+proj=utm +zone=14 +datum=WGS84 +units=m +no_defs
+ellps=WGS84 +towgs84=0,0,0"

install.packages("plotKML")
library(plotKML)
plotKML (data.sdf["yield"])




Appendix IlI: Soils of the study sites

Table 1 Soil of the research site with area of coverage.
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US Soil Mapping units

Study Site Dominant soils Soil Classification . :
containing named soil (ac)
Redfield*, SD Harmony Fine, smectitic, frigid Pachic Argiudolls 1,189,440
Aberdeen Fine, smectitic, frigid Glossic Argiudolls 2,062,270
Winship Fine-silty, mixed, superactive, frigid Pachic Argiudolls 202,190
Tonka Fine, smectitic, frigid Argiaquic Argiudolls 13,902,240
Bend Fine-silty, mixed, superactive, mesic Typic Haplustolls 44,600
Beotia Fine-silty, mixed, superactive, frigid Pachic Hapludolls 1,448,060
White Lake** SD  Beadle Fine, smectitic, mesic Typic Argiustolls 1,869,900
Dudley Fine, smectitic, mesic Typic Natrustolls 2,754,850
Delmont Fine-loa_my over_sandy_or sandy-skeletal, mixed, 1,029,770
superactive, mesic Typic Haplustolls
Talmo Sand skeletal, mixed, mesic, udorthentic Hapludolls 472,420
Houdek Fine-loamy, mixed, superactive, mesic Typic Argiustolls  6,9483,40
Ethan Fine-loamy, mixed, superactive, mesic Typic Calciustolls 5,517,300
Pierpont*** SD Kranzburg Fine-silty, mixed, superactive, frigid Calcic Hapludolls 2,665,320
Brookings Fine-silty, mixed, superactive, frigid Pachic Hapludolls 1,752,790
Nahon Fine, smectitic, frigid Calcic Natrudolls 1,000,250
Aberdeen Fine, smectitic, frigid Glossic Natrudolls 2,062,270
Exline Fine, smectitic, frigid Leptic Natrudolls 1,095,090
Brookings****SD  Brookings Fine-silty, mixed, superactive,frigid Calcic Hapludolls 1752790
Vienna Fine-loamy, mixed, superactive,frigid Calcic Hapludolls 1721590

*44°58'10"N, -98°27'52"W, **43°40'31"N, -98°45'50"W, ***45°30'31"N, -97°53'50"W, **** 44° 19' 7"N,-96° 46' 56"W

Source of soil information: USDA-NRCS, Soil Survey Division (2016b).
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Appendix I11: Interpolated maps of selected soil attributes using different interpolation methods.

Figure 1 Interpolated electrical conductivity (EC) measured at V1 (first leaf) stage of corn (Zea
mays) overlaid on soil series at Pierpont , SD saline sodic soils
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Pierpont, SD coordinates: (44°55'30" to 45°28'30"N and 97°50'9" to 98°28'34"W (Dominant
soils: Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Figure 2 Interpolated soil moisture measured at V1 (first leaf) stage of corn (Zea mays) overlaid
on soil series at Pierpont , SD saline sodic soils
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Pierpont, SD coordinates: (44°55'30" to 45°28'30"N and 97°50'9" to 98°28'34"W (Dominant
soils: Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.




Appendix IV: ANOVA tables

Table 2 ANOVA summary of soil attributes and NDV| values, soil series as independent

variable at Pierpont.

NDVI E 0.0012** 156
NDVI V1 0.1125 142
NDVI V4 0.2553 88

NDVI V6 <.0001*** 156
Soil Moisture E 0.0055** 91

Soil Moisture V1 0.2353 155
Soil Moisture V4 0.1262 156
Soil Moisture V6 0.4364 156
ECV1 <.0001*** 156
EC V4 0.0012** 156
EC V6 <.0001*** 156
Chlorophyll V4 0.5424 139
Chlorophyll V6 0.0077** 156
EC 0-3 0.0140* 112
pH 0-3 0.6894 24

SAR 0-3 0.0008*** 112
Lime depth <.0001*** 154
Mollic depth <.0001*** 155
Redox depth <.0001*** 79

Till depth <.0001*** 125
Yield <.0001*** 156

Pierpont coordinate: 45°30'31"N, -97°53'50"W (Dominant soils: Hapludolls, Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division (2016b).

NDVI= Normalized Difference Vegetation Index, E=emergence, V1= first leaf, V4=four leaves,
V6=six leaves, EC= electrical conductivity, SAR=sodium adsorption ratio.

*Significant at P < 0.05.

** Significant at P < 0.01.

*** Significant at P < 0.001.



Appendix V: Soil variability

Semi variance

Semi variance

v-102
2,668

2426 ::, :
2.183
1.941
1.698
1.455
1.213
087
0.728 ¥ T
0.485

0.243

0 0107 0215 0322 0429 0537 0644 0751 0858 0966 1073 1718
— Model » Binned 4 Averaged Distance (Degree), h-10 2

Distance

v-102
2 668

2428 et

2183

1.698
1.455
1213

097

0728 it

0485

0243

1] 0107 0215 0322 0429 0537 0644 0751 0858 0966 1073 118
= Model « Binned 4 Averaged Distance (Degree). h-10 2

Distance

Semi variance

Semi variance

110

y-102
2668

2426 ::; :
2183
1.941
1698
1455
1213
0.97
0.728 R
0.485

0.243

1] 0107 0215 0322 0429 0537 0644 0751 0858 0866 1073 118
= Model = Binned = Averaged Distance (Degree). h 10 2

Distance

y-102
2668

2426 ':': .

2183

1.698
1.455
1213
0.97
0728 ';:- e
0.485

0243

0 0107 0215 0.322 0429 0.537 0.644 0751 0.858 0.966 1.073 1.18
— Model + Binned + Averaged Distance (Degree). h-10 2

Distance

Figure 3 Semivariograms fit for NDV1 at V1 stage of corn (Zea mays) at Pierpont, SD field:
stable (a), exponential (b), Spherical (¢) and Guassian (d)models.

Pierpont coordinate: (44°55'30” to 45°28'30"N and 97°50'9"” to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.



111

y-102
2.859 y-102
2.859 =~
2599 BT
2599 G == S =R
2.339 .. o . L~
2339 b S +
208 .
Q Q 2.08
o 1.82 Q
c c
O
.0 1.56 =
- —
©
S . o
£ 1.04 e
(] Q
%) 078 )
0.52
0.26
o 0107 0215 0322 0429 0537 0644 0751 0853 0966 1073 118 0 0107 0215 0322 0429 0537 0644 0751 0858 0966 1073 1.18
= Model « Binned <+ Averaged Distance (Degres), h 10 2 = Model + Binned < Averaged Distance (Degres). h-10 2
102
2 s;‘am v o
: s 291
dlo Lo
e LSt T S
2599 . -+ S 2,646
Cc .- I
2339 Fie o
R 2381
[}
&) I3) 217
< Q
© c 1.852
= ©
© = 1.587
> ©
é > 1323
O E 1.088
(%] (]
0.794
(%]
0.529
0.265
0 0107 0215 0322 0420 0537 0644 0751 0858 0966 1073 1.18
= Model « Binned < Averaged Distance (Degres). h-10 2 o 0.107 0215 0322 0429 0537 0644 0751 0858 0.966 1073 1.18
— Model + Binned + Averaged Distance (Degree). h 10 2

Figure 4 Semivariograms for NDVI at V4 stage of corn (Zea mays) at Pierpont, SD field: (a)
stable, (b) exponential), Spherical (c) and Guassian (d) models.

Pierpont coordinate: (44°55'30” to 45°28'30"N and 97°50'9"” to 98°28'34”"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Figure 5 Semivariograms for NDVI at V6 stage of corn (Zea mays) at Pierpont, SD field: (a)
stable, (b) exponential), Spherical (c) and Guassian (d) models.

Pierpont coordinate: (44°55'30” to 45°28'30"N and 97°50'9"” to 98°28'34”"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Figure 6 Semivariograms for mollic depth at Pierpont, SD field: (a) stable, (b) exponential),

Spherical (c) and Guassian (d) models.
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Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.

113



y102
283 . v102
288
2618
. 2618
a
2356 b
2356
2,095 o w
2095
Q o
(=) 1833 c
c © 1.833
© 1571 =
— — 1571
= ©
©
1309 >
> — 1309
1.047 g E
E + 1.047
o ' &
N 0.785 0788
0524 ¥ 0524
+ . o .
0.262 5ok 0262
.. &, g oo § ooflo, & 8
0 0103 0207 031 0413 0517 062 0723 0827 09 1033 1137 0 0103 0207 031 0413 0517 062 0723 0827 093 1033 1137
= Model + Binned +# Averaged Distance (Degree). h 10 3 = Model « Binned + Averaged Distance (Degree). h-10 3
102
Z;B M 10
288
8 2618 ) 2618
c C ()
m 2356 C 2356 d
E 2095 g 2095
> ©
e 1833 S 1833
E 1871 e 1571
] S
(%] 1.309 (% 1.309
1.047 1.047
0785 0785
0524 0524
0262 0262
.t L, Y H Ce e, 5, 8
0 0103 0207 031 0413 0517 062 0723 0827 083 1033 1.137 0 0103 0207 031 0413 0517 062 0723 0827 093 1033 1137
= Model « Binned + Averaged Distance (Degree). h 10 3 = Model « Binned 4 Averaged Distance (Degree), h-10 3

Figure 7 Semivariograms for lime depth at Pierpont, SD field: (a) stable, (b) exponential),
Spherical (c) and Guassian (d) models.

Pierpont coordinate: (44°55'30" to 45°28'30”"N and 97°50'9" to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.

114



115

y-1071 y-107!
3872 < —— 3872
352 CETTT 352 b
3168
Q 3168
O
[} 2816 c
O o 2816
= 2484 =
© < 2464
E 27112 >
> — 2112
— 176 E
E ) 1.76
1.408 )
()] o
wn 1.408 -
. + »
M. .1 - "‘ = .
R . +
o . + I -
. C ORI T %
+ .. -‘
0 016 0321 0481 0641 0801 0962 1122 1282 1442 1603 1763 .
= Model + Binned + Averaged Distance (Degree). h 10 3 [ g &
0 016 0321 0481 0641 0801 0962 1122 1282 1442 1603 1763
— Model + Binned + Averaged Distance (Degree). h-10 3
y-10 v
3872 3872
352 352
C Q
O
3168 c 3168 d
(O] ©
[S) 2816 = 2316
= ©
(8] 2464 > 2464
— —
f>U 2nz E 2112
é 176 8 1.76
Q 1.408 1.408
(%]
1.056 = . - o
+ - bod
+ C OO T + +
0.704 L A A
] . : 2 0
0.352 0352 * Rog
. d ° - i
0 016 0321 0481 0641 0801 0962 17122 1282 1442 1603 1763 &4
_ . 3 0 016 0321 0481 0641 0801 0962 1122 1282 1.442 1.603 1.763
Model + Binned  Averaged Distance (Degree). h 10 = Model + Binned + Averaged Distance (Degree). h-10 3

Figure 8 Semivariograms for pH at Pierpont field: (a) stable, (b) exponential), Spherical (c) and
Guassian (d) models.

Pierpont coordinate: (44°55'30” to 45°28'30"N and 97°50'9"” to 98°28'34”"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Figure 9 Semivariograms for EC at Pierpont field: stable, exponential), Spherical and Guassian
models.

Pierpont coordinate: (44°55'30" to 45°28'30"N and 97°50'9” to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Figure 10 Semivariograms for SAR at Pierpont field: (a) stable, (b) exponential), Spherical ()
and Guassian (d) models.

Pierpont coordinate: (44°55'30" to 45°28'30"N and 97°50'9" to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Figure 11 Semivariograms fit for NDVI at bare soil/emergence stage of corn (Zea mays) at
Pierpont field: stable, (b) exponential), Spherical and Guassian models.

Pierpont coordinate: (44°55'30” to 45°28'30"N and 97°50'9"” to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Figure 12 Semivariograms fit for corn (Zea mays) yield at Pierpont, SD field: stable, (b)
exponential), Spherical and Guassian models.

Pierpont coordinate: (44°55'30" to 45°28'30"N and 97°50'9" to 98°28'34"W (Dominant soils:
Calciaquolls, Argiudolls, Calciudolls, Endoaquolls, Hapludolls, and Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division, 2016b.
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Table 3 Correlation matrix of soil attributes
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SAR
ECO- | pHO- | 0-3
SM SM EC | Chlorophyll 3inch | 3inch | inch Lime_ | Mollic | Redox | Till

Properties E V1 V1 V4 Yield | Elevation | depth | depth | depth | depth depth | depth | depth
Soil moisture E 1.00 | 0.17** | 0.24** -0.02 -0.31** | -0.50** | 0.20**| 0.01 |0.24**| 0.06 |0.35** | 0.12 0.05
Soil moisture V1 1.00 | 0.45** -0.02 -0.16* -0.24** 1 0.36** | -0.06 | 0.34** | 0.05 0.15* | -0.01 | 0.03
EC V1 1.00 -0.09 -0.30** | -0.38** | 0.91** | -0.11 | 0.77**| -0.01 | 0.18** | 0.25* | 0.16*
Chlorophyll V4 1.00 -0.03 0.27** | -0.05 | 0.40**| -.010 -0.10 | 0.15** | -0.13 | -0.05
Yield 1.00 0.34** | 0.24** | 0.37** | 0.37** | 0.30** | 0.02 0.02 0.00
Elevation 1.00 0.28** | -0.10 | 0.31**| 0.11 | 0.36** | 0.35** | 0.30**
EC 0-7.5cm
depth 1.00 | -0.08 | 0.81** | -0.03 | 0.17** | 0.17** | 0.09
pH 0-3 inch
depth 1.00 | -0.06 | -0.33** | -0.01 | 0.15* | -0.12
SAR 0-7.5 cm
depth 1.00 -0.07 | 0.22** | 0.21** | 0.12
Lime depth 1.00 | 0.63** | 0.45** | 0.32**
Mollic depth 1.00 | 0.52** | 0.66**
Redox depth 1.00 | 0.73**
Till depth 1.00

Pierpont coordinate: 45°30'31"N, -97°53'50"W (Dominant soils: Hapludolls, Natrudolls).
Source of soil information: USDA-NRCS, Soil Survey Division (2016b).
NDVI= Normalized Difference Vegetation Index, E=emergence, V1= first leaf, V4=four leaves, V6=six leaves, EC= electrical

conductivity, SAR=sodium adsorption ratio.* Significant at 0.05, **significant at 0.01




121

VITA

Girma A. Birru was born on October 10, 1973 in Kebri Dehar from Almaze Mengesha and
Abebe Birru. He received his Diploma and BSc from Addis Ababa University (Plant Science) in
1992 and 1998, respectively, and MSc from University of Jordan (Agricultural Resources and
Environment) in 2002. For his PhD study he joined South Dakota State University in 2013 and

received the PhD in Plant Science in 2016 under the supervision of Dr. Douglas Malo.



	South Dakota State University
	Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange
	2016

	Spatial Variability Analysis and Reclamation of Saline-Sodic Soils in the Northern Great Plains
	Girma Birru
	Recommended Citation


	tmp.1471290829.pdf.szuS4

