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A Cross Comparison of Spatiotemporally Enhanced
Springtime Phenological Measurements

From Satellites and Ground in a
Northern U.S. Mixed Forest

Liang Liang, Mark D. Schwartz, Zhuosen Wang, Feng Gao, Crystal B. Schaaf, Member, IEEE,
Bin Tan, Jeffrey T. Morisette, and Xiaoyang Zhang

Abstract—Cross comparison of satellite-derived land surface
phenology (LSP) and ground measurements is useful to ensure the
relevance of detected seasonal vegetation change to the underlying
biophysical processes. While standard 16-day and 250-m Moder-
ate Resolution Imaging Spectroradiometer (MODIS) vegetation
index (VI)-based springtime LSP has been evaluated in previous
studies, it remains unclear whether LSP with enhanced temporal
and spatial resolutions can capture additional details of ground
phenology. In this paper, we compared LSP derived from 500-m
daily MODIS and 30-m MODIS–Landsat fused VI data with
landscape phenology (LP) in a northern U.S. mixed forest. LP
was previously developed from intensively observed deciduous
and coniferous tree phenology using an upscaling approach. Re-
sults showed that daily MODIS-based LSP consistently estimated
greenup onset dates at the study area (625 m × 625 m) level with
4.48 days of mean absolute error (MAE), slightly better than that
of using 16-day standard VI (4.63 days MAE). For the observed
study areas, the time series with increased number of observations
confirmed that post-bud burst deciduous tree phenology con-
tributes the most to vegetation reflectance change. Moreover, fused
VI time series demonstrated closer correspondences with LP at the
community level (0.1–20 ha) than using MODIS alone at the study
area level (390 ha). The fused LSP captured greenup onset dates
for respective forest communities of varied sizes and compositions
with four days of the overall MAE. This study supports further use
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of spatiotemporally enhanced LSP for more precise phenological
monitoring.

Index Terms—Daily Moderate Resolution Imaging Spectro-
radiometer (MODIS), Earth Observing System (EOS) land
validation core sites, landscape phenology (LP), land surface
phenology (LSP), phenology, Spatial and Temporal Adaptive
Reflectance Fusion Model (STARFM).

I. INTRODUCTION

PHENOLOGY studies the life-cycle timing of organisms
and is a sensitive indicator of the condition and variabil-

ity of biosphere–atmosphere interactions [1], [2]. Remotely
sensed land surface phenology (LSP, see Table VI for a list of
acronyms used in this paper) provides multitemporal seasonal
vegetation change information at regional to global scales [3],
[4]. Accurately monitoring LSP is crucial for tasks such as
climate change impact assessment [5], [6], forest disturbance
surveillance [7], [8], agricultural and socioeconomic analyses
[4], [9], and ecosystem matter/energy exchange modeling [10],
[11]. However, akin to most remote sensing measurements,
the accuracy of LSP is limited by the spatial and temporal
resolutions of sensor/platform systems and is subject to ad-
ditional glitches from sensor systematic errors, atmospheric
path radiance contaminations, and surface reflectance biases
[12]–[15]. Therefore, ground validation is essential for gauging
the level of accuracy in satellite-based phenological monitoring
and for linking LSP parameters to specific phenological pro-
cesses [16]–[19].

Most LSP products are derived from time series of vegeta-
tion index [VI, e.g., Normalized Difference Vegetation Index
(NDVI) and Enhanced Vegetation Index (EVI)] time series,
which are based on data collected by polar orbiting satellite
borne sensors such as the Advanced Very High Resolution
Radiometer (AVHRR) since 1980s [20] and the Moderate Res-
olution Imaging Spectroradiometer (MODIS) since 2000s [21].
The relatively coarse spatial resolution (250 m to 1 km) and the
large temporal compositing windows [8–16 days, for filtering
cloud contamination with a maximum value composite (MVC)
approach] of the standard VI products [22] have allowed very
limited spatiotemporal detail that can be henceforth used for
deriving LSP metrics (e.g., onset of greenup and browndown)
[23], [24]. The greenup onset derived from MODIS data
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estimates the time when vegetated landscapes such as decidu-
ous forests [25] and agricultural fields [26], [27] start to turn
green in spring. However, most in situ phenological records
are available only for plant individuals at discrete locations,
missing areal representativeness that is comparable to satellite
pixels [28], with the exception of a high-resolution phenology
dataset used in our previous study [19]. These limitations make
it challenging to derive statistically meaningful comparisons
between satellite- and ground-based phenology products.

Efforts to reconcile the scale mismatch between in situ and
coarse-resolution remote sensing phenology observations have
taken either a satellite downscaling approach or a ground up-
scaling approach. Fisher et al. [29] and Fisher and Mustard [30]
utilized annual time series composited from multiyear Landsat
data to facilitate downscaling of MODIS (8-day, 500 m) phe-
nology to 30-m resolution for a closer comparison with ground
data. Liang and Schwartz [31] and Liang et al. [19] developed
an upscaling approach to generate landscape phenology (LP)
representations based on intensively collected in situ data [32]
in order to validate standard MODIS (16-day, 250 m) VI-based
LSP. A clear linkage between greenup onset and deciduous tree
leaf bud burst timing was found. Additionally, validation work
has been also done using field measurements by tower-based
spectrometers and webcams [33], [34]. These studies suggested
a general agreement between coarse-resolution LSP greenup
estimates with the spring phenology of temperate deciduous
canopies.

This study is a follow-up effort of the validation work
documented in Liang et al. [19]. The rationale of this study is
to ascertain whether spatiotemporally enhanced LSP products
could capture additional details of ground processes. Espe-
cially with the higher temporal and spatial resolution VI time
series becoming available, new opportunities are emerging
for improved LSP detection. In particular, VI derived from
the MODIS Bidirectional Reflectance Distribution Function
(BRDF) and albedo products (MCD43) [35], [36] reduce biases
from surface reflectance anisotropy from using the standard
VI product (MOD13). Daily MODIS BRDF/albedo products
are now processed to retain more usable temporal information
to capture rapidly changing surface conditions [37], [38]. Fur-
thermore, fusion algorithms have been developed to synergize
the spatial and temporal resolutions of multiple sensor data for
more detailed land surface biophysical characterization [39],
[40]. Specifically, Gao et al. [41] developed a Spatial and
Temporal Adaptive Reflectance Fusion Model (STARFM) to
blend the more frequent (i.e., daily) temporal information from
MODIS and finer (i.e., 30 m) spatial information from Land-
sat for applications that require both increased temporal and
spatial resolutions. Ju et al. [42] applied temporally complete
daily MODIS nadir-view BRDF-adjusted reflectance (NBAR)
NDVI time series for phenology monitoring. Such spatially and
temporally enhanced remote sensing products are promising for
LSP analysis with increased details [43], [44] and warrant the
need for additional ground validation.

Very limited attempts at validating the fused satellite-data-
based LSP have been made [45], [46] due to the lack of spatially
and temporally compatible field observations. Bhandari et al.
[45] pointed out the need for intensive field information similar

to that used in our previous study [19] to effectively evaluate
the fused time series. The high-resolution in situ phenology
data collected in a northern U.S. mixed forest (as used in
our previous study) provide a unique opportunity to address
this need. Moreover, in our previous validation effort target-
ing coarse-resolution MODIS LSP, the potential of this field
dataset was not fully exploited. In this paper, we performed
a cross comparison between the springtime LSP from daily
MODIS NBAR and MODIS–Landsat fused VI time series
and corresponding LP derived previously from our intensive
ground phenological observation. We hypothesize that LSP
with enhanced spatiotemporal resolutions is useful for more
precise remote sensing detection of vegetation phenology.

II. DATASETS AND METHODS

A. Ground Phenology Observation and Scaling

The field phenological observations were conducted in a
spatially and temporally intensive setting. Two 625 m × 625 m
study areas were established in the vicinity of the Park
Falls/WLEF flux tower (45.94, −90.27) located within the
Chequamegon–Nicolet National Forest, northern Wisconsin
(see Fig. 1). The two study areas represent, respectively, a
maple-pine-dominated forest patch (north) and a more mixed
aspen-fir-dominated forest patch (south). The size of each study
area was initially chosen to cover an area comparable with a
500 m × 500 m MODIS pixel with consideration of sampling
design and limited resources. The forest is mostly a mixed
second growth with dominant deciduous species including
trembling aspen (Populus tremuloides), sugar maple (Acer sac-
charum), red maple (Acer rubrum), and speckled alder (Alnus
rugosa), and dominant coniferous species such as balsam fir
(Abies balsamea), red pine (Pinus resinosa), and white cedar
(Thuja occidentalis). Among the coniferous trees, only balsam
fir showed observable spring phenology (new needle cluster
development). A cyclic sampling scheme [47] was adopted, and
a total of 288 plots with 888 trees were sampled.

Tree phenology observation followed a continuous buds-
to-leaves protocol quantifying leaf development through buds
visible (100), buds swollen (200), buds open (leaves or candles
visible, 300), leaf clusters/candles out (not fully unfolded, 400),
and leaves/needles fully unfolded (500) [32]. Percentage ranges
as specified by respective scores (0%–10% [0], 10%–50% [10],
50%–90% [50], and 90%–100% [90]) were used to further
estimate the proportion within a given canopy that had reached
a certain developmental stage. For instance, a tree canopy with
estimated 10%–50% of buds open would be attributed with a
score of 310. Beyond the leaf unfolding stage, an additional leaf
expansion (600) level was used for deciduous canopy phenol-
ogy with a slightly different percentage breakdown according
to leaf size (< 25% of full [0], 25%–50% [25], 50%–75% [50],
and > 75% [75]). Phenological observations were conducted by
observers with the help of binoculars at a bidaily frequency
over four to five weeks (from approximately late April to late
May) during the time of growing season onset. In this paper,
we included data collected for the two complete 625 m × 625 m
study areas in 2008 and 2009, as well as data from 2006 and 2007
for an initial, geographically smaller study area of 625 m×275 m.
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Fig. 1. Study site location (inset map) and diagram of study area layout. The study areas and generalized community distribution are overlaid upon fused Landsat
(EVI, 2008) greenup onset date estimates. The 500-m MODIS NBAR pixel grid is shown as parallelograms under the UTM (15 N) projection.

Fig. 2. Diagram showing the concept and steps of scaling intensively con-
ducted in situ phenological observations up to the landscape level. A previously
published figure showing more technical details of this scaling process is
available in [19, Fig. 2].

Scaling up tree phenology observations followed an eco-
logically coherent and nested hierarchical process (see Fig. 2;
cf. Fig. 1). First, individual canopy phenology was aggregated
to the population level using an arithmetic averaging of all
observations by species in each study area. Population-level

phenology was then combined into community phenology
with community compositions estimated from subpixel spec-
tral unmixing of a pair of 2.4-m multispectral leaf-on/leaf-off
QuickBird (operated by DigitalGlobe) images for separating
the portions of the deciduous, coniferous, and bare soil within
each pixel. Furthermore, study-area-level LP was produced
by aggregating community phenology with additional commu-
nity distribution information derived from supervised image
segmentation of a 1-m pan-sharpened IKONOS (operated by
GeoEye, now merged into DigitalGlobe) image. The IKONOS
image with slightly higher spatial resolution than QuickBird
was used to obtain a better discrimination of community bound-
aries. Two types of LP index were then produced: 1) specific
LP indices retaining field phenology protocol inference and
dimension as aggregated for deciduous and coniferous trees
separately, and 2) an integrated LP index mimicking satellite
VI. The integrated LP index was produced by accounting for
the differential surface reflectance contributions of deciduous
and coniferous phenology, respectively, with specified weights
(determined using QuickBird NDVI change of pure deciduous/
coniferous forest stands). Both specific and integrated LP in-
dices were available for the entire study areas, as well as respec-
tive forest communities, and were used to compare with LSP at
both the study area and community levels. Additional technical
details on field data collection and LP indices derivation are
available in [32] and [19].
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TABLE I
USABLE DATES (DOY 81–230) OF 16-DAY MODIS STANDARD VI
PRODUCTS AND DAILY MODIS NBAR DATASETS (INCLUDED ALL

CLOUD-FREE DATA FOR OUR STUDY AREAS) FOR THE NORTH

AND SOUTH STUDY AREAS (2008 AND 2009), RESPECTIVELY

B. MODIS Daily NBAR VI

The MODIS BRDF and albedo products (MCD43) have been
in production for more than a decade using the first 7 MODIS
band reflectances from both Terra and Aqua satellites [35]. The
standard Collection V005 8-day product makes use of a lin-
ear “kernel-driven” RossThick-LiSparse Reciprocal (RTLSR)
BRDF model to describe the reflectance anisotropy of each
pixel at a 500-m gridded resolution. The MODIS BRDF/albedo
1-day mode of the product emphasizes the daily observation in
an attempt to capture rapidly changing surface conditions. Daily
BRDF/albedo products have been implemented as a Direct
Broadcast algorithm and have become the standard product
in the upcoming Collection V006 reprocessing of the MODIS
archive. Cloud-contaminated pixels that were flagged in the
MODIS surface reflectance products were excluded. All cloud-
free data were incorporated in the daily products without void
interpolation, rendering maximum temporal resolution avail-
able for a location as limited only by local weather conditions.
In this paper, a magnitude inversion is performed by using the
latest daily full inversions developed with 16 days of valid
observations as the priori information for the next succeeding
day for BRDF application [37], [38]. Thus, the LSP at the study
area level was based on VI derived from the daily MODIS
NBAR data.

We used the 500-m daily MODIS NBAR VI time series
extending from day of year (DOY) 81 (late March) to 230
(late August) of each year from 2006 to 2009. This specified
time window covered the entire spring season as well as late
winter and summer growing season peak as boundary condi-
tions for curve fitting. The daily MODIS NBAR time series
tripled the number of useable/cloud-free images for our study
areas in comparison to 16-day MVC products (see Table I).
However, approximately 80% (75%–79%) of the daily images
were still affected by cloud cover or aerosols at our study
site and therefore rendered useless. The greenup onset dates
were generated using the logistic functions of time and max-
imum curvature change extraction approach from daily NBAR-
NDVI and NBAR-EVI. A Savitzky–Golay filter was used for
noise reduction before the logistic curves were fitted to the

data. According to Zhang et al. [24], the logistic function is
defined as

y(t) =
c

1 + ea+bt
+ d

where t is time in DOY, y(t) is the VI value at time t, a and
b are fitting parameters, c+ d is the maximum VI value, and
d is the initial background VI value. Greenup onset dates were
estimated as the time when the fitted logistic curve experienced
the greatest curvature change during the spring season time
window [24]. This technique is currently used for producing
MODIS global LSP products [48].

C. Data Fusion of Landsat and MODIS

Landsat 30-m data provide spatial details that are good for
monitoring land surface variations for local scale patches of
∼1 ha. However, the 16-day revisit cycle, along with cloud
frequencies, has limited its use for studying seasonal processes,
which rapidly evolve during the year. In cloudy areas, Landsat
acquisition is limited to only a few clear images per year at best,
which is insufficient for extracting reliable phenology metrics.
On the other hand, MODIS sensors aboard the NASA Earth
Observing System (EOS) Terra and Aqua satellites provide
daily global observations that are valuable for capturing rapid
surface changes and phenology, but with coarse spatial resolu-
tions (250 m to 1 km). To combine the finer spatial resolution
(30 m) of Landsat with the daily temporal frequency of MODIS,
Gao et al. [41] developed the STARFM. This model is able to
generate valuable information for applications that require high
resolution in both time and space [43]. Such data fusion process
may be understood as using daily MODIS information to make
a “time correction” to infrequent Landsat data. The predicted
images can capture rapid seasonal changes from MODIS data
while retaining the Landsat spatial details.

Several new approaches have been recently developed to
improve the initial STARFM for prediction in complex het-
erogeneous areas [49] or areas with rapidly changing land
covers [50]. In this paper, we used the original STARFM
approach to fuse Landsat and MODIS given its flexibility in
using a single Landsat and MODIS pair. The recently developed
approaches such as the Enhanced STARFM [49], the Spatial
Temporal Adaptive Algorithm for mapping Reflectance Change
[50], and the SParse-representation-based SpatioTemporal re-
flectance Fusion Model [51] require two input pairs of Landsat
and MODIS images. The STARFM approach accepts one input
pair in the prediction; therefore, it is suitable for our study area
where high-quality cloud-free Landsat images were very lim-
ited due to weather influenced by frequent polar front passing
and moisture from the Great Lakes.

Fifteen Landsat 5 Thematic Mapper (TM) and 15 Landsat 7
Enhanced TM Plus (ETM+) images (WRS-2 path 25 and row
28) from 2006 to 2009 were acquired and used in this study.
All Landsat data were calibrated and atmospherically corrected
to surface reflectance using Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) [52] downloaded from
the NASA LEDAPS website (recent version now available from
https://code.google.com/p/ledaps/). Among the 30 available
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TABLE II
LIST OF HIGH-QUALITY AND CLEAR LANDSAT IMAGES (WRS-2 PATH 25

AND ROW 28) USED TO PAIR WITH MODIS NBAR DATA FOR DATA

FUSION IN THE STUDY AREAS FROM 2006 TO 2009. DATE IS IN DOY

Fig. 3. MODIS NBAR NDVI from 2006 to 2009 in the study area overlaid
with Landsat 5 TM observations that were used to pair with the MODIS data
for fusion (cf. Table II).

Landsat images, most of them were partially covered by either
cloud or snow or had data gaps. Only five Landsat 5 TM
images (see Table II) were clear over the entire multiyear
observation period (2006–2009) and selected to pair with the
MODIS daily surface reflectance acquired from the same dates
for Landsat–MODIS data fusion processing. Since Landsat 5
and Terra/Aqua MODIS have different orbital parameters, daily
observations from the two sensors have different viewing and
solar geometries. The use of daily MODIS NBAR products
[35], [37] was therefore necessary to make sure that both
MODIS and Landsat data have similar view angles (close to
nadir) for a more consistent fusion process. As Landsat 7
images have had data gaps due to the failure of the Scan Line
Corrector (SLC) in ETM+ instrument since May 2003, they
were excluded from building Landsat and MODIS data pair for
the data fusion processing; otherwise, all the data gaps would
be carried over to the fused products. However, 15 ETM+
scenes and additional 10 TM scenes that were not used for
fusion were all used to compose the Landsat time series for
extracting phenological metrics. This approach was needed to
retain all information contained in the available Landsat scenes.
Data gaps in ETM+ images were labeled as missing values in
constructing the time-series function.

Specifically, Fig. 3 shows the annual NDVI curves from
MODIS and points from TM averaged from a subset area
around the study area (1000 × 1000 Landsat pixels). The five
clear Landsat TM images (cf. Table II) were used to build
MODIS–Landsat image pairs to cover different segments of an
NDVI annual curve. They were used to generate the synthesized
Landsat data for the entire period of 2006–2009. Ideally, the
selection of Landsat and MODIS data pair should be close
to the prediction (MODIS) date. However, as there were not

enough clear Landsat scenes available in each year to bracket
the prediction period, only one input pair was used to predict
Landsat surface reflectance for each specific annual time period
across 2006–2009. For example, we used MODIS–Landsat
image pair on April 27, 2007 (DOY = 117) and MODIS daily
nadir-view surface reflectance to produce the 30-m fused im-
ages for the early season (DOY between 100 and 139) of each
year from 2006 to 2009. This single-pair-based fusion process
as limited by available data is acceptable given that there were
no large land cover conversions from 2006 to 2009 in our
study areas and the spatial variations of land cover from year
to year remained relatively consistent. The single pair option
for STARFM was also explored and found effective in mapping
daily surface reflectance [53] and daily evapotranspiration [54]
when clear Landsat observations were limited or the changes
of surface conditions were abrupt. Previous studies further
revealed that STARFM works well when major land surface
variations are from phenology/seasonal change alone [41], [43],
[49]. Finally, the fused Landsat surface reflectances were com-
bined with all available original Landsat TM and ETM+ surface
reflectances (with SLC-off scenes included) from each year.
Temporally optimized NDVI and EVI time series at Landsat
spatial resolution for each year were in turn computed and used
to characterize LSP at the community level. For greenup onset
date extraction, the same logistic model approach [24] was used
for fused Landsat time series during the late winter to summer
time period of each year.

D. Comparing Ground and Satellite Observations

The north and south study areas, respectively, overlapped
with five and six 500-m MODIS NBAR image pixels (see
Fig. 1). A weighted extraction method was used to derive
MODIS NBAR VI values of the intersected fractions from the
full pixels. The weights were ratios of averaged NDVI changes
within the fraction and the entire corresponding MODIS pixel,
respectively, as estimated from high-resolution QuickBird im-
ages. The QuickBird-based NDVI changes were used as ground
reference and were not validated with in situ measurements.
Area-weighted averaging was then used to calculate the VI
values for each study area at different time points. For the
smaller initial study area, VI values were extracted using the
same approach. Extraction was done under native MODIS
sinusoidal projection, given a Universal Transverse Mercator
(UTM)-to-sinusoidal reprojection yields higher spatial accu-
racy [55]. The greenup onset estimates were then extracted from
the MODIS NBAR VI time series for the respective study area
polygons (north, south, and initial). Both the time series of VI
and LP indices, as well as the greenup onset dates determined
from ground and satellite measurements, were compared by
study area/year. Deciduous and coniferous LP indices were
compared with MODIS NBAR VI time series directly. The
difference between greenup onset dates estimated from VI and
deciduous LP index were quantified using the mean absolute
error (MAE) statistics. The overall relative agreement between
ground and satellite greenup measures was also evaluated with
a Spearman’s rank correlation analysis [56]. The Spearman’s
rank correlation coefficient (Spearman’s rho) quantifies the
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statistical dependence of two ranked variables and was there-
fore useful for assessing whether the ground and satellite mea-
sures matched each other in relative variations across years and
study areas. Furthermore, the integrated LP index (designed to
be comparable to VI in unit dimension [0–1]) time series were
standardized according to the following formula:

LPs =
LPobs − LPmin

LPmax − LPmin

where LPs is the standardized value, and LPobs, LPmax, and
LPmin are the observed, maximum, and minimum values, re-
spectively. The VI time series were standardized using the same
formula and cross compared with standardized LP for only
observations available on the same dates. The root-mean-square
errors (RMSEs) between the integrated LP and the respective
VI (EVI and NDVI) time series were calculated accordingly. In
addition, regression slopes for EVI and NDVI were compared
using analysis of covariance (ANCOVA) [56] to check whether
the relationships between the integrated LP and the two VI
types respectively were significantly different.

We further compared the MODIS–Landsat fused LSP with
LP at the community level. The distribution of generalized
communities for both north and south study areas is presented
in Fig. 1. Landsat resolution (30 m) data were first resampled to
5 m (using the nearest neighbor assignment) in consideration of
small-sized plant communities (e.g., grass/shrub land opening)
and for a finer partitioning of pixel values at the community
boundaries. For both VI and greenup onset date estimates, spa-
tial averages of pixels contained within respective communities
were calculated from the resampled data. For all communities,
MAE was calculated between the greenup onset dates of fused
LSP and deciduous LP by year, study area, and VI type.
MAE was also computed for individual community for all
observation years and both VI types, respectively. Assuming the
area of a community has potential influence on the accuracy of
LSP detection, we also looked at the correspondence between
MAE and community size. The Spearman’s rank correlation
analysis was used to check the agreement of the variations
of LSP greenup onset and deciduous LP full bud burst across
communities. Finally, we directly compared the fused VI and
the integrated LP index time series for all communities us-
ing VI and LP values acquired on the same dates. Similar
to the study-area-level analysis, standardization, RMSE, and
ANCOVA were used to check the levels of agreement between
VI and LP time series at the community level in terms of timing
for the targeted spring phenology process.

III. RESULTS

At the study area level, spring greenup onset dates extracted
from daily MODIS NBAR VI time series predicted deciduous
LP full bud burst dates with fairly low errors (see Table III).
Given the initial study area (625 m × 275 m) was smaller
compared to the 500-m MODIS pixel size, the comparison
was separately made for the initial study area (2006–2007)
and the two expanded and larger (625 m × 625 m) study
areas (2008–2009). The LSP greenup onset dates for the larger
study areas across the two years had an overall MAE (for both

TABLE III
GREENUP ONSET DATES (DOY) FOR EACH STUDY AREA/YEAR

ACCORDING TO STANDARD 16-DAY MODIS (FOR 2008 AND 2009 ONLY)
[19] AND DAILY MODIS NBAR AND FULL BUD BURST (FBB)

DATES (DOY) OF GROUND-BASED LP (FOR DECIDUOUS [DECI] AND

CONIFEROUS [CONI] TREES, RESPECTIVELY). LP ESTIMATES WERE

BASED ON UPSCALED MEASUREMENTS FOR A STUDY AREA. GREENUP

ONSET DATES WERE ACCORDING TO MODIS PIXEL-LEVEL

PREDICTIONS EXTRACTED FROM EACH STUDY AREA. THE MAES

(IN DAYS) WERE CALCULATED BETWEEN CORRESPONDING

LSP AND DECIDUOUS LP ESTIMATES (IN BOLD LETTER)

NDVI and EVI) of 4.48 days, slightly smaller than that of
the previous study using the standard VI product (4.63 days).
With the use of daily NBAR data, the MAE for the NDVI-
based estimate notably improved from 8.25 to 4.67 days, but
the MAE for EVI turned out to be larger (4.29 days versus 1
day in our previous study). For the north and south study areas
across 2008 and 2009, respectively, similar to results from our
previous study, daily MODIS NBAR greenup onset dates fully
captured the spatial and temporal differences of LP full bud
burst dates—both showing that phenology in 2009 was earlier
than that in 2008 and that phenology in the south study area was
more advanced than that in the north study area.

The daily NBAR VI-based greenup onset for the initial study
area had larger errors (overall MAE of 5.92 days) than that for
the complete study areas. In addition, the detected interannual
variation did not agree with that of the ground LP from 2006
to 2007. Nonetheless, relatively significant Spearman’s ranked
correlations (see Table IV) indicated that daily MODIS NBAR
VI-based greenup dates captured the overall spatiotemporal
variations across the four years at the study area level in spite
of the discrepancies (mainly from the initial study area). Ad-
ditionally, the specific MAE for EVI (2.18 and 4.29 days) was
consistently smaller than that for NDVI (6.66 and 4.67 days)
for the initial and complete study areas, respectively.

Moreover, comparison of the time series of VI and deciduous
and coniferous LP indices demonstrated the systematic dif-
ference between ground and satellite observations—landscape
phenological trajectory advanced faster than the LSP change
(see Fig. 4). However, the onset of fast VI increase largely
occurred near the time when deciduous LP reached the full
bud burst level (400), which was also in accordance to the
close match with greenup onset date estimates (cf. Table III).
When the integrated LP was compared with VI values, linear
correspondence yielded coefficients of determination values of
0.49 and 0.39 for NBAR-EVI and NBAR-NDVI, respectively,
and RMSE up to a quarter (0.23–0.26) of the data range (see
Fig. 5). ANCOVA results did not show significant differences
between the slopes of EVI and NDVI regression lines, which
were both close to and below 1. NBAR-EVI showed a slightly
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TABLE IV
SPEARMAN’S RANK CORRELATION COEFFICIENTS BETWEEN GREENUP ONSET DATES BY STUDY AREA/YEAR ACCORDING TO STUDY-AREA-LEVEL

DAILY MODIS NBAR AND COMMUNITY-LEVEL FUSED LANDSAT-BASED LSP AND CORRESPONDING GROUND-BASED DECIDUOUS FULL BUD

BURST LP. THREE STUDY-AREA-LEVEL ESTIMATES AND 11–17 COMMUNITY LEVEL ESTIMATES ACROSS FOUR YEARS PARTICIPATED

THE RANK CORRELATION ANALYSIS. STATISTICALLY SIGNIFICANT VALUES ARE INDICATED WITH ∗ (α < 0.05) AND • (α < 0.10)

Fig. 4. Side-by-side comparison of specific LP indices (deciduous—Deci; coniferous—Coni) with daily MODIS NBAR EVI and NDVI time series. The x-axis
DOY indicates day of year. The left y-axis is according to the field protocol of spring phenology; the right y-axis indicates VI ratios. All available actual
observations were included except that one obvious outlier (possibly due to the shadow effect) in the 2007 NDVI time series was removed. The segments of
logistic curves (fitted for VI data from DOY81 to 230) are provided. The full bud break reference line (400) and the location of predicted greenup onset (with a
star) on VI curves are provided in each figure (cf. Table III).

closer match with the integrated LP index than NBAR-NDVI,
as indicated by larger R2 and smaller RMSE values.

At the community level, greenup onset estimates from fused
Landsat data also agreed with deciduous LP full bud burst dates
with relatively small errors (see Table V and Fig. 6). Across
the communities, the overall MAE was 7.16 days for the initial

smaller study area and 4.11 days for the eventual expanded
study areas. The two largest communities (maple- and pine-
dominated forests) in the north study area appeared to have the
least MAE (less than two days). However, the third largest but
less distinct community (mixed aspen/fir forest, largest in the
initial study area) had relatively large errors (six to nine days).
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Fig. 5. Study-area-level comparison of the integrated LP index and daily MODIS NBAR VIs (EVI and NDVI). Only observed ground and satellite data on the
same dates (for all four years 2006–2009) were included. Standardization ([observation − minimum]/[maximum − minimum]) was applied to both LP and VI
data, and a 1 : 1 line is provided for each comparison. The ANCOVA result for the regression lines showed a p-value of 0.72, suggesting that the two slopes are
not significantly different from one another.

TABLE V
GREENUP ONSET DATES (DOY) FOR EACH COMMUNITY/YEAR ACCORDING TO THE FUSED LANDSAT ESTIMATES. THE MAES

(IN DAYS) OF LSP ESTIMATES FROM THE DECIDUOUS LP ESTIMATES (FULL BUD BURST-FBB_DECI) ARE PROVIDED.
EACH COMMUNITY HAS A SINGLE ESTIMATE FROM GROUND-BASED AND UPSCALED LP AND

SATELLITE-BASED LSP, RESPECTIVELY. AREAS OF COMMUNITIES ARE ALSO PROVIDED
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Fig. 6. MAEs of Landsat fused community-level greenup onset date estimates
from deciduous LP full bud burst dates, relative to the community size (cf.
Table V). Estimates for the initial study area (2006–2007) and the complete
study areas (2008–2009) are separately shown with different symbols.

EVI-based greenup onset estimates captured the interannual
LP difference between 2008 and 2009 consistently for all the
communities. However, interannual variations of NDVI-based
estimates for 2008 and 2009, as well as greenup onset dates for
the initial study area in 2006 and 2007, did not show a temporal
agreement for most communities. In addition, the Spearman’s
rank correlations (see Table IV) reflected a better agreement
of EVI-based greenup onset estimates at the community level
over time and space. However, LSP did not seem to capture
the spatial variations of LP across communities, as indicated by
the insignificant and inconsistent rank correlation coefficients
for each individual year and all communities. Furthermore,
direct comparisons of the integrated LP index with VI values
at the community level (see Fig. 7) showed stronger linear
agreements than those at the study area level—coefficients of
determination values were 0.72 and 0.62 for EVI and NDVI,
respectively. NBAR-EVI also showed higher R2 and smaller
RMSE than NBAR-NDVI relative to the integrated LP at the
community level.

IV. DISCUSSION

With the daily MODIS NBAR VI data, LSP estimation of
greenup onset dates at the study area level agreed with decidu-
ous LP full bud burst dates in a more consistent manner between
NDVI and EVI. Particularly in comparison with the previous
study utilizing 16-day standard MODIS VI products [19], the
overall MAE for NDVI was reduced from eight days to less
than five days. The agreement for EVI-based LSP did not show
improvement (the earlier estimate had only one day of the over-
all MAE), but it is likely that the less than five days of MAE for
greenup onset estimates represents a more realistic error level
that LSP can achieve, given the large departures between EVI
and NDVI estimates shown in the earlier study. Daily NBAR
MODIS-based greenup onset date estimation demonstrated a
slight advantage of using EVI over NDVI. In addition, EVI did
better capture the spatial and temporal variations, as indicated
by the greater rank correlation for greenup onset date estimates,
and had a closer match with the integrated LP when time series
were compared.

The daily NBAR VI provides consistent nadir views and
daily frequency needed to track phenology and reduces the
variability due to view angle change and uncertainty from large
data gaps. In our study, the use of daily NBAR MODIS VI
versus standard product has shown improvement on greenup
onset detection for NDVI only, perhaps due to the already very
close estimates for EVI in our previous study. However, these
technical improvements did seem to provide higher stability in
keeping the errors of both NDVI and EVI estimates low. The
NBAR MODIS VI was shown to be better in comparison to the
standard VI for LSP monitoring [25], [57]. This study further
utilized daily NBAR data to increase the available temporal
resolution. However, given that the BRDF retrieval uses all
cloud-free data available, it is difficult to evaluate the respec-
tive contributions of view angle correction (NBAR) and daily
retrieval frequency to improve LSP monitoring as both aspects
are important. In addition, we utilized only cloud-free data
without gap interpolation; therefore, the temporal resolution
improvement was still limited by weather conditions. Further-
more, MODIS NBAR can be based on Terra-only (MOD43),
Aqua-only (MYD43), and mixed (MCD43), and the results
showed that although our high-quality pixels were equivalent
values from Terra as from Aqua, many more high-quality pixels
were available when data from both MODIS instruments were
combined. From the perspective of maintaining long-term LSP
monitoring with MODIS NBAR, we are aware that when one
instrument fails, there will be fewer high-quality pixels for each
BRDF retrieval, but the available high-quality pixel values from
the remaining sensor will still provide consistent results.

The discrepancy with the comparisons using the initial two
years (2006 and 2007) of observation is likely related to the
spatial mismatch of ground–satellite data—the initial study
area overlapped with very small fractions of five different
MODIS pixels (see Fig. 1). Possible uncertainties with match-
ing MODIS pixels to relatively small study areas could also
arise from the MODIS gridding artifacts, which allowed spatial
shifts of observations to fit recorded signals into the predefined
grids [58]. The initial study area was about half the size of
a complete study area because our intended transecting work
was incomplete in 2006 and 2007 due to limited resources and
harsh field conditions in the initial field campaign in 2005. The
relatively larger error range for the smaller initial study area
greenup onset date detection in comparison to the complete
study areas is also shown in the community-level estimates, as
indicated in Fig. 6. The coherent spatiotemporal agreement of
LSP with LP greenup onset for the two complete study areas
further suggested that ground validation is better conducted
with observations representing areas large enough to be com-
parable with the spatial resolution of satellite data [59]. Our
transects, however, did not match a complete nominal MODIS
pixel. We were aware of this limitation but did not pursue
this given the uncertainty of the true location of a MODIS
pixel due to its inherent geolocation error (±50 m). Therefore,
additional errors may exist with extracting values from multi-
ple pixels overlapped with the study areas. Had similar work
been engaged in the future, it is recommended to preselect
sampling grids that match targeted satellite pixels as close
as possible.
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Fig. 7. Community-level comparison of the integrated LP index and MODIS-Landsat fused VIs (EVI and NDVI). Only actually observed ground and satellite
data that matched in dates (for all four years 2006–2009) were included. Standardization ([observation − minimum]/[maximum − minimum]) was applied to
both LP and VI data, and a 1 : 1 line is provided for each comparison. The ANCOVA result for the regression lines showed a p-value of 0.35, suggesting that the
two slopes are not significantly different from one another.

In addition, the change rate disagreement between the LSP
and LP trajectories indicated that the post-bud burst phenology
contributes the most to the land surface phenological change;
and the early phenological stages related to bud development
do not noticeably affect the satellite signals. This finding was
also noted in our previous study that compared interpolated
time series from the 16-day MODIS VI [19]. The current study
was based on actual observation points from the daily MODIS
NBAR data. The consistently smaller than 1 regression slope
lines for direct VI and integrated LP index comparison at
both the study area and community levels implied the same
relationship. The results confirmed that the systematic differ-
ence in time series was due to our field protocol including
phenological processes that are either undetected (e.g., bud
swollen) by or apparent (e.g., leaf unfolding) to remote optical
sensors.

Comparisons at the community level based on daily
MODIS–Landsat fused estimates yielded a similar error range
as of the study-area-level analysis. However, given the signif-
icantly improved spatial resolution, four days of the overall
MAE (for communities across the larger study areas) suggested
a prediction with good confidence. It would be more encourag-
ing if Landsat resolution LSP could have picked up the differ-
ences among the different communities, but such information
was likely lost because of the error range exceeding the subtle
intercommunity variations within the study areas. The mixed
forest investigated in this study is relatively heterogeneous in
community composition, but the forest is fairly continuous in
canopy coverage, and the expressed magnitude of phenological
difference may not be large enough to show in Landsat images.
We speculate that in more heterogeneous vegetated landscapes
with plant communities that have larger spectral reflectance
differences, the fused product may be more useful for providing
information of finer spatial variability in phenology. In addition,
the prediction seemed to be more accurate for larger and
more uniform communities, implying that the composition and

size of vegetation cover can affect the quality of information
extracted from fused LSP. On the other hand, the accuracy
of fused LSP may be affected by the limited availability of
clear-scene Landsat–MODIS pairs, which may contribute to the
overall uncertainties of community-level phenology estimates.

Recently, the LEDAPS surface reflectance product has been
quality checked by the U.S. Geological Survey (USGS) Earth
Resources Observation and Science (EROS) Center [60]. The
USGS EROS has released the Landsat surface reflectance data
record (http://landsat.usgs.gov/CDR_LSR.php), which can be
directly used in later data fusion processing. In our study, all
cloud-free Landsat data were used to generate fused LSP prod-
uct. Partially cloud-contaminated Landsat scenes may be more
useful if an accurate cloud mask is available. Several cloud
mask algorithms for Landsat imagery have been developed in
past years [61]–[64]. However, operational use at the Landsat
pixel level is still a challenge. A recently developed Fmask
algorithm [64] has demonstrated the feasibility in detecting
cloud and cloud shadows at a highly confident level, which
could pave a way to producing cloud confidence bits in the data
quality band for Landsat 8 [65].

In our initiative to cross validate LSP for two nearby study
areas, we undertook an intensive field observation approach
to overcome the scale mismatch between satellite and ground
observations. We attempted to optimize the spatial density,
temporal frequency, and areal coverage of field phenological
sampling to make it more comparable to the satellite data prod-
ucts. In addition, downscaling of coarse-resolution LSP through
fusing MODIS with Landsat data provides another perspective
to link satellite measures with ground observations, akin to the
multiyear Landsat aggregation attempt in [29]. Thus, the inno-
vations in both ground data collection and satellite data pro-
cessing enabled the current study comparing spatiotemporally
enhanced LSP and LP, collectively allowing analyses at both
the community and study area scales. Furthermore, the decidu-
ous and coniferous specific LP indices as developed through
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combining plant phenology and landscape heterogeneity al-
lowed direct comparison of physiologically meaningful plant
phenophases with land surface reflectance change. However,
high-resolution multitemporal QuickBird images were used as
ground truth in our upscaling approach for separating the effect
of deciduous and coniferous trees. This may have introduced
biases to, particularly, the reflectance-calibrated and integrated
LP index. We speculate that the upscaling of conventional
observer-based phenology data may be improved with ground
observations of similar nature as optical remote sensing, such
as approaches using spectroradiometers or networked digital
cameras [66]–[68].

The limited geographic coverage of intensively collected
field data remains a challenge to gauge the representativeness
of our validation results for broader regions. Given that our
field data covered only a small sample of the temperate mixed
forest in the U.S., similar work done in other temperate forests
would help in assessing the applicability of the results from
this study. The major hindrance of acquiring such high-density
data is the intensive field labor required. However, a more
cost-effective approach may be adopted with reduced temporal
observation frequency [32] and perhaps a combined use of
spectroradiometers/digital cameras. Therefore, it may be pos-
sible to extend the cross-comparison work from temperate
forest to other biomes and vegetation types, including agri-
cultural lands. Such usage will certainly require more testing
and validation of phenological products for these additional
vegetation types. Additionally, the application of fused LSP
needs to be further explored in study areas with diverse amounts
of landscape heterogeneity, various conditions, and vegetation
cover types to potentially enable more detailed monitoring of
vegetation changes caused by processes such as climate change
and/or natural/human disturbances.

While progress was made in this study toward phenolog-
ical product validation, future LSP validation still faces a
number of challenges. First, the validation target time period
needs to be extended from spring to autumn, particularly for
temperate biomes, therefore covering phenological transitions
marking the start and the end of growing season. The ability
of current LSP approaches may be different for greenup than
browndown. Such efforts will improve the accuracy of LSP as
inputs to biogeochemical and climatic models [69]. Second,
evaluations of different LSP products from sensors other than
AVHRR and MODIS, such as SPOT-Vegetation and MEdium
Resolution Imaging Spectrometer (MERIS), and now Visible
Infrared Imaging Radiometer Suite (VIIRS) and indices other
than NDVI and EVI [10], [59], such as MERIS Terrestrial
Chlorophyll Index [70], Leaf Area Index [71], and fraction
of Photosynthetically Active Radiation [72], will be useful
for guiding specific applications in choosing appropriate data
sources. Furthermore, it remains a challenge to reconcile differ-
ent processing algorithms that could be applied to VI time series
for extracting LSP metrics [73]. For a given sensor-specific data
stream, the spatial variations in patterns across LSP products
are likely to be relatively consistent for continental- to global-
scale pattern detection, but temporal differences among LSP
products will be manifested as uncertainties for applications at
local and regional scales.

TABLE VI
ACRONYMS AND CORRESPONDING TERMS (ONLY THOSE REPEATED

MULTIPLE TIMES ARE LISTED, ACCORDING TO THE ORDER

OF THEIR FIRST APPEARANCE IN THE TEXT)

V. CONCLUSION

The results from this study suggest that springtime LSP
derived from spatiotemporally enhanced VI data can improve
our ability to detect more detailed LP information. Compared to
16-day composited VIs, daily MODIS NBAR VI time series for
LSP derivation appeared to support more consistent estimation
of phenological transition dates across the two indices (EVI and
NDVI) with less than five days of MAE. For the study areas
investigated, daily MODIS NBAR data appeared more reliable
for LSP monitoring of rapidly changing seasonal vegetation
dynamics at coarse spatial scales. Daily MODIS NBAR data
also confirmed that post-bud burst phenology of deciduous
trees contributes the most to VI change. The daily NBAR
MODIS–Landsat fused LSP captured the greenup onset dates
of community-level phenology with the overall MAE of about
four days, with generally smaller errors for larger and more
uniformed communities. In addition, the fused VI time series
showed a closer match (lower MAE) with the integrated LP at
the community level than that of the study-area-level compari-
son from using only MODIS data. However, the community-
level LSP was not able to track small differences among
different forest communities in our study areas. The limited
number of cloud free MODIS and Landsat data available to
our study site may have influenced the overall accuracy of
fused LSP estimates. Nevertheless, the temporally and spatially
enhanced remote sensing data were shown to be useful in our
limited test for enabling more detailed phenological monitor-
ing. With data from the newest generation of Earth resource
observation efforts such as the Landsat 8 Operational Land Im-
ager and the Suomi National Polar-orbiting Partnership (Suomi
NPP) VIIRS, we are hopeful that satellite-based phenological
monitoring with enhanced spatial and temporal resolutions
will become increasingly useful for phenological applications
requiring details that are currently beyond the reach of time
composited VI or a single type of remote sensor.
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