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A Comparison of Tropical Rainforest Phenology
Retrieved From Geostationary (SEVIRI) and

Polar-Orbiting (MODIS) Sensors
Across the Congo Basin

Dong Yan, Xiaoyang Zhang, Yunyue Yu, and Wei Guo

Abstract—The seasonal and interannual dynamics of tropical
rainforests play a critical role in the global carbon cycle and
climate change. This paper retrieved and compared land surface
phenology from observations acquired by the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) onboard geostationary
satellites and the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) on polar-orbiting satellites over the Congo Basin. To
achieve this, we first retrieved canopy greenness cycles (CGCs) and
their transition timing from two-band enhanced vegetation index
(EVI2) derived from SEVIRI and MODIS data between 2006 and
2013. We then assessed the influences of SEVIRI and MODIS data
quality on the reconstruction of the EVI2 temporal trajectory, the
detection of the CGC onset and end timing, and the total number
of successful CGC retrievals. The significance of influences was
determined using the one-tailed two-sample Kolmogorov–Smirnov
test. The results indicate that diurnal SEVIRI observations greatly
increased the probability of capturing cloud-free daily EVI2 in
the rainforest-dominated region of the Congo Basin, where the
proportion of good quality (PGQ) observations during a CGC was
up to 80% higher than that from MODIS. As a result, the double
annual CGCs of the Congo Basin rainforests were well identified
from SEVIRI but sparsely detected from MODIS, whereas the
single annual CGC in the savanna-dominated northern and south-
ern Congo Basin was successfully retrieved from both SEVIRI
and MODIS. Moreover, the decreases of PGQ in an EVI2 time
series were found to significantly increase the uncertainties of
retrieved phenological timings and increase the probabilities of
CGC retrieval failures.

Index Terms—Congo basin, Moderate Resolution Imaging
Spectroradiometer (MODIS), Spinning Enhanced Visible and
Infrared Imager (SEVIRI), tropical rainforest phenology.
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I. INTRODUCTION

THE Congo Basin rainforest has a coverage of 180 million
hectares, which accounts for about 90% of the rainforests

in Africa and one-third of the world’s tropical rainforests
and represents the second largest rainforest block on Earth
[1]–[3]. Compared with the rainforests in the Amazon Basin
and Southeast Asia, the Congo Basin rainforest has experienced
significantly less anthropogenic deforestation and represents
the only intact rainforest in the world [4]. Carbon storage in
the global tropical rainforests accounts for about 40%–50%
of the total carbon in terrestrial vegetation, and the Congo
Basin rainforest is therefore a critical component of this huge
carbon pool [2]. Changes in the productivity of the Congo Basin
rainforest can impose strong influences on the global carbon
cycle [2], [5]. It is, however, challenging to model changes
in the productivity of the Congo Basin rainforest with the
scarce knowledge of rainforest phenology in this region [6],
[7]. The challenges in understanding rainforest phenology in
the Congo Basin are twofold. On the one hand, rainforest trees
have complex behaviors in leaf and reproductive phenology,
which vary across forest layers and between and within species
[5], [6], [8]. For example, the deciduousness of rainforest trees
is found to decrease toward the lower layers of rainforests
[6], and the leaf-exchange process is asynchronous within a
rainforest tree community [7]. On the other hand, the civil
conflicts in the Congo Basin make it very difficult to acquire
in situ observations [1]. Therefore, long-term studies on rain-
forest phenology based on in situ observations in the Congo
Basin are rarely seen [6].

Remote sensing represents an alternative way to acquire
long-term phenological observations of the Congo Basin rain-
forest. Instead of providing phenological observation for tree
individuals, remotely sensed photosynthetically active radia-
tion has been used to retrieve land surface phenology (LSP),
which refers to the seasonal variations in canopy greenness
over vegetated land surfaces [9], [10]. Although long-term LSP
products for Africa have been developed based on observations
from polar-orbiting sensors such as the Advanced Very High
Resolution Radiometer (AVHRR) [11] and the Moderate
Resolution Imaging Spectroradiometer (MODIS) [12], the
rainforest-dominated region in the Congo Basin remains a gap
in those products due to the prolonged duration of cloud cover.
By compositing cloud-free observations from multiple years,

0196-2892 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto: dong.yan@sdstate.edu
mailto: dong.yan@sdstate.edu
mailto: xiaoyang.zhang@sdstate.edu
mailto: yunyue.yu@noaa.gov
mailto: wei.guo@noaa.gov


4868 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 8, AUGUST 2016

Fig. 1. Distribution of land cover within the Congo Basin extracted from the MODIS IGBP land cover product. Black lines represent the country boundaries, and
yellow lines are the boundaries between the NCB, ECB, and SCB. The boundary of the Congo Basin represents the watershed boundary of the Congo River, and
it is downloadable at http://www.arcgis.com/home/item.html?id=701ea1a7435d4c70b2d7bae9e77ae0bc. Black dots represent the three randomly selected pixel
locations.

the climatological LSP for the Congo Basin rainforest has
finally been generated from polar-orbiting sensors in recent
studies [7], [13], [14]. However, the interannual variations in
LSP remain poorly understood.

The sensors carried by geostationary satellites have the ca-
pability to make frequent diurnal observations. This allows
us to obtain a larger number of daily cloud-free observations
relative to polar-orbiting sensors for a fixed location, which
is particularly important for monitoring LSP in cloud-prone
regions [15], [16]. For example, it has been demonstrated that
the shortest compositing period to acquire a cloud-free image
across the cloud-prone West Africa increases from only three
days for the Spinning Enhanced Visible and Infrared Imager
(SEVIRI) onboard the Meteosat Second Generation (MSG)
series of geostationary satellites to 16 days for AVHRR and
MODIS [15]. The interannual variations in rainforest LSP
between 2007 and 2011 across the Congo Basin has been
successfully retrieved using the SEVIRI-derived leaf area index
[17] and normalized difference vegetation index [18].

It is worth noting that the advantage of retrieving LSP
from MODIS observations lies in the finer spatial resolution
that MODIS offers compared to that by SEVIRI (250–500 m
for MODIS versus 3–5 km for SEVIRI) [7], [13]. It is therefore
interesting to compare the LSP retrievals from MODIS and
SEVIRI data and to conduct an assessment of the influences
of cloud cover on the differences in the retrieved rainforest
LSP. The assessment can provide us an understanding of the
quantified uncertainties in the retrieved LSP from MODIS,
which would benefit the fusion of LSP products from MODIS
and SEVIRI for a better LSP monitoring of the Congo Basin
rainforest. To the best of our knowledge, there have been only
two previous studies on the differences in the retrieved LSP
from MODIS and SEVIRI in the Congo Basin [17], [18].

However, the rainforest-dominated region was excluded from
the analyses in one study [17], whereas the other study focuses
on the influences of LSP retrieval algorithms (the modified
iterative interpolation for data reconstruction versus the double
logistic curve fitting) rather than on the influences imposed by
cloud cover [18].

This paper aims to compare LSP retrievals from SEVIRI and
MODIS observations across the Congo Basin and then to assess
the influences of cloud cover on LSP retrievals. To this end,
we first generated daily two-band enhanced vegetation index
(EVI2) time series between 2006 and 2013 from SEVIRI and
MODIS data. The time series of EVI2 was then used to retrieve
LSP using the hybrid piecewise logistic model (HPLM). The
quality of time series of SEVIRI EVI2 and MODIS EVI2
was further quantified, and the impacts of data quality on LSP
retrievals were finally examined.

II. BACKGROUND

The Congo Basin was divided into three subbasins based on
the 0.05◦ MODIS land cover product [19] to better describe
LSP across different ecosystems and articulate the influences of
data quality on LSP retrievals (see Fig. 1). The northern Congo
Basin (NCB) (roughly between 3◦ N and 9◦ N) is dominated by
woody savannas. The equatorial Congo Basin (ECB) (roughly
between 6◦ N and 6◦ S) is occupied by evergreen broadleaf
forests. The southern Congo Basin (SCB) (roughly between
0◦ and 12◦ S) primarily consists of woody savannas, in which
isolated patches of evergreen broadleaf forests, savannas,
deciduous broadleaf forests, and cropland/natural vegetation
mosaics exist.

LSP characterizes canopy greenness cycles (CGCs) retrieved
from remotely sensed data. It is commonly used to describe the

http://www.arcgis.com/home/item.html?id=701ea1a7435d4c70b2d7bae9e77ae0bc
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vegetation growing season or cycle from green leaf appearances
to leaf abscissions at canopy level [9], [10], [20], [21]. Instead
of exhibiting completely dormant phases, tropical rainforests
present gradual variations in seasonal leaves with the simul-
taneous reduction of old leaves and increase of new leaves
[6]. To more precisely characterize LSP across the Congo
Basin, we used “CGC” to term the seasonal greenness variation
determined from the EVI2 time series.

Previous studies have shown that tropical rainforests in the
Congo Basin have two CGCs during a year, whereas other types
of land cover only have a single annual CGC [13], [14], [17].
In this paper, we referred to the CGC initiated before and after
July as CGC in the first and second cycles, respectively. Specif-
ically, the first CGC primarily occurs in ECB and NCB which
coincides with the rainy season regulated by the northward
movement of the Intertropical Convergence Zone (ITCZ) [13].
The second CGC mainly occur within ECB and SCB when the
rainy season controlled by the southward movement of ITCZ
begins to unfold [13].

III. DATA AND METHODS

A. Generation of SEVIRI and MODIS Three-Day EVI2
Time Series

SEVIRI onboard the MSG geostationary satellites (i.e.,
MSG-8, MSG-9, MSG-10, and MSG-11) is positioned at a
fixed location of 0◦ N and 0◦ E. It is able to make a full disk scan
every 15 min, covering Africa, Europe, and the northeast corner
of South America. Across the Congo Basin, the pixel size of
the SEVIRI observation increases from the west (∼ 3× 3 km)
to the east (∼ 5× 5 km) due to the increases in the satellite
zenith angle from approximately 20◦ at 13◦ E to about 40◦ at
30◦ E [22].

We collected 30-min radiances of SEVIRI red and near-
infrared channels between 2005 and 2014, which were then
converted to top-of-atmosphere reflectances [23]. A cloud mask
for each 30-min observation was generated based on a Bayesian
approach [24]. EVI2 was calculated using [25]

EVI2 = 2.5
(NIR − RED)

(NIR + 2.4 RED + 1)
. (1)

In (1), NIR and RED are the 30-min red and near-infrared
reflectances, respectively.

Note that we calculated EVI2 instead of the commonly used
enhanced vegetation index (EVI) [26]. This is because SEVIRI
does not have a blue channel (e.g., 0.45–0.51 μm), which is
needed to derive EVI. EVI2 has similar performances to EVI in
terms of vegetation monitoring [25], and it outperforms NDVI
with increased sensitivity in densely vegetated regions [25] and
reduced sensitivity to soil backgrounds [27]. In order to elimi-
nate the variations in EVI2 caused by the varying sun–satellite
geometry, we generated a daily angularly corrected EVI2 time
series using the empirical kernel-driven model (2) developed
for SEVIRI in a previous study [28]

EVI2(θt0, δt0, φt0)

= EVI2(θt1, δt1, φt1)
(1 + C0FSt0 + C1FRt0)

(1 + C0FSt1 + C1FRt1)
. (2)

In (2), EVI2(θt0, δt0, φt0) is the modeled EVI2 under a
reference sun–satellite geometry (θt0 = 45◦, δt0 = 45◦, φt0 =
90◦), in which θ is the solar zenith angle, δ is the satellite
zenith angle, and φ is the sun–satellite relative azimuth angle.
EVI2(θt1, δt1, φt1) is the observed EVI2 at time t1. C0, and
C1 are kernel weights, which are −0.0723 and −0.0101 for
SEVIRI, respectively [28]. FS and FR represent the kernel
function that models the changes in EVI2 caused by those in
the solar and satellite zenith angles and the sun–satellite relative
azimuth angle, respectively [28]. For time t = t0 or t1

FSt =tan θt + tan δt (3)

FRt =(cosφt + 1)2(tan θt + tan δt)
1
2 . (4)

EVI2 in each 30-min observation was first converted to an
EVI2 acquired under the reference sun–satellite geometry using
(2). Daily angularly corrected EVI2 was then determined as the
maximum angularly corrected 30-min EVI2 obtained within a
day with solar and satellite zenith angles being less than 60◦.
The daily angularly corrected EVI2 was further composited
into a three-day EVI2 time series between 2005 and 2014
by determining the maximum EVI2 acquired under cloud-free
conditions. As a result, there were 122 three-day EVI2 com-
posites in each year. Each three-day SEVIRI EVI2 composite
was assigned one of the following quality assurance (QA) flags:
0—clear, 1—cloudy, 2—bad input (i.e., solar zenith angle > =
60◦ or satellite zenith angle >= 60◦), and 3—water.

We also obtained polar-orbiting satellite data for LSP re-
trievals. To match the spatial resolution of SEVIRI (i.e.,
∼3–5 km), we selected the MODIS daily surface reflectance
product (MOD09CMG collection 5: https://lpdaac.usgs.gov/
products/modis_products_table/mod09cmg) with a 0.05◦ reso-
lution (∼ 5 km) between 2005 and 2014. The MOD09CMG sur-
face reflectance product was generated based on data acquired
by the MODIS sensor onboard Terra, and it has been corrected
for angular effects using a model that has been optimized
for vegetation monitoring purposes based on tailored angular
correction coefficients for different biomes [29]. In this paper,
we chose to only use the surface reflectance product from Terra
instead of combining it with that from Aqua (MYD09CMG)
due to the following two concerns. First, the diurnal variation of
cloud cover during the rainy season in central Africa has been
reported as increasing convective clouds from morning to the
afternoon [13], which limits the chances that the MYD09CMG
product could increase the amounts of cloud-free observations.
Second, the MODIS angular correction model is less effective
in cloud-persistent regions (e.g., the tropical and high-latitude
areas) than in other parts of the world [29]. A simple combi-
nation of surface reflectance data from Terra and Aqua would
likely increases the noises in MODIS time series due to the
inconsistent sun–satellite geometries.

The MODIS daily EVI2 was further calculated using (1),
which was then composited into a three-day EVI2 time series
in the same manner as that of SEVIRI EVI2. QA flags for
MODIS three-day EVI2 composites are as follows: 0—clear,
1—snow, 2—partially cloudy, 3—cloud shadow, 4—not set,
assumed clear, 8—cloudy, 9— no observation, and 10—water.
To simplify the QA flags in LSP retrievals, we grouped the QA

https://lpdaac.usgs.gov/products/modis_products_table/mod09cmg
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flags of “partially cloudy,” “cloud shadow,” and “cloudy” as
“cloudy” and the QA flags of “clear” and “assumed clear” as
“clear.”

To compare SEVIRI EVI2 with MODIS EVI2 within the
same spatial reference system, we resampled the three-day
SEVIRI EVI2 composites to a spatial resolution of 0.05◦.
For each 0.05◦ grid, the SEVIRI pixels that fell within it
were classified into four categories based on QA flags: clear,
cloudy, bad input, and water. EVI2 for each 0.05◦ grid was
then determined based on the mean EVI2 from the majority
category (i.e., the category containing the highest number of
pixels), if the majority category was either clear sky condition
or cloud contamination. A fill value of −9999 was assigned to
the 0.05◦ grid if the majority category was either bad input or
water.

B. Detection of LSP From SEVIRI and MODIS Data and
Investigation of LSP Differences

LSP was retrieved from the 0.05◦ three-day SEVIRI and
MODIS EVI2 time series using the HPLM-based LSP detec-
tion algorithm (HPLM-LSPD) during 2006–2013. The HPLM-
LSPD was applied based on the following five steps [30].
(1) For each year between 2006 and 2013, we prepared a three-
day EVI2 time series with a total of 244 three-day EVI2 com-
posites which comprised the 61 composites from the latter half
of the preceding year, the 122 composites of the target year, and
the 61 composites from the earlier half of the succeeding year.
(2) Background EVI2 was calculated as the average of the five
largest good quality EVI2 during a dormancy period. In the con-
text of this study, the dormancy period should be interpreted as
the time period between two consecutive CGCs, which roughly
corresponds to a dry season in the Congo Basin. (3) The three-
day EVI2 time series was smoothed by removing spuriously
high value filling gaps caused by atmospheric contaminations
using nearest good quality observations, and filtering irregular
values using the Savitzky–Golay filter and a local median filter.
(4) The EVI2 temporal trajectory was then reconstructed by
fitting logistic curves to the smoothed EVI2 time series using
HPLM. (5) The timing of the CGC onset and end was defined
as the day when an EVI2 temporal trajectory exhibited the
maximum rate of change in curvature during the ascending
and descending phases, respectively [10]. The HPLM-LSPD
has two assumptions. First, the reconstructed EVI2 trajectory
should not fall below the background EVI2 during a dormancy
period. Second, the duration of the dormancy period is at least
one month.

The mean onsets and ends of CGC were calculated for each
0.05◦ grid where the CGC onset and end were detected in at
least four years between 2006 and 2013. To illustrate the overall
spatial pattern of LSP shifts across the Congo Basin, we further
computed the latitudinal averages of the mean CGC onset and
end derived from SEVIRI and MODIS EVI2s. The latitudinal
averages were calculated for each 0.05◦ interval between 8◦ N
and 12◦ S following the method developed by a previous study
[31]. Specifically, we first identified a 60-day window contain-
ing the maximum number of grids with CGC onsets, which
trimmed the irregular values in the distribution. We then com-
puted the mean value of CGC onsets within the selected 60-day

window, which represented the latitudinal average. The latitudi-
nal average in mean CGC end was derived in the same manner.

To better illustrate how SEVIRI and MODIS observations
were used in LSP retrievals, the original and reconstructed
EVI2 temporal trajectories in three pixel-based samples were
examined. These samples were randomly selected from woody
savannas in NCB and SCB and evergreen broadleaf forests in
ECB (sample locations are provided in Fig. 1). Specifically,
we compared the mean and standard deviation in CGC timing,
CGC duration, EVI2 amplitude, and ratio of EVI2 amplitude to
peak EVI2 during a CGC from 2006 to 2013.

We investigated the absolute differences between SEVIRI
and MODIS LSP retrievals on a per-pixel basis and across the
three subbasins (NCB, ECB, and SCB), respectively. On a per-
pixel basis, we calculated the absolute differences in the timing
of the CGC onset and end during the first and second cycles in
each year and further examined the mean value and the standard
deviation of the absolute differences between 2006 and 2013.
Similarly, we calculated the differences in the total number
of successful CGC retrievals from SEVIRI and MODIS data.
This calculation was carried out separately for the first and
the second CGC on a per-pixel basis. In order to characterize
and quantify the difference in CGC retrieval at the subbasin
scale, we calculated the proportions of pixels where the CGC
onset and end were detected within a year from SEVIRI and
MODIS data in NCB, ECB, and SCB, respectively, which was
considered as the CGC detection rate in a subbasin. In ECB, we
determined the CGC detection rate as the proportion of pixels
where both the CGC onset and end were successfully detected
twice in a year.

C. Evaluation of the Reconstructed SEVIRI and MODIS EVI2
Temporal Trajectories

We computed two indices to evaluate the qualities of the
original and reconstructed EVI2 temporal trajectories during a
CGC. This is because it has been shown that EVI2 obtained
outside a CGC does not affect the retrieval of the seasonal
dynamics in canopy greenness [16]. The first index is the
proportion of good quality observations (i.e., cloud-free ob-
servations) (PGQ) during a CGC, which was calculated using
a moving-window-based methodology [30]. We counted the
total number of three-day EVI2 composites within a CGC and
denoted it as T . Based on the QA flags of SEVIRI and MODIS
data, the number of good quality observations (NGQ) was then
counted using a nine-day moving window, which began at the
onset of CGC and continued until the end of CGC with a step
length of three days. A good quality observation was added to
NGQ as long as there was one cloud-free observation within
the nine-day moving window. The size of the moving window
was determined according to the finding that a reliable EVI2
temporal trajectory could be established using the HPLM as
long as one good quality observation could be obtained every
eight days [16]. PGQ was finally calculated as NGQ divided
by T . The moving-window-based PGQ has been reported as
an objective measurement of data quality for LSP retrieval
purposes [30].

The second index is the fit quality index (FQI) of the
reconstructed EVI2 temporal trajectories within a CGC, which
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was calculated using [30]

FQI =

(
1−

∑N
i=1(Mi − Oi)

2∑N
i=1

(
|Mi −O|+ |Oi −O|

)2
)

× 100%. (5)

In (5), N is the total NGQ within a CGC, and Oi and Mi

represent the ith original good quality EVI2 and the corre-
sponding HPLM-modeled EVI2, respectively. O is the mean of
the original EVI2 with good quality. FQI measures the overall
similarity between the original EVI2 with good quality and the
corresponding HPLM-reconstructed EVI2 within a CGC. The
FQI value of 0% represents the lowest degree of similarity be-
tween the original and the reconstructed EVI2, whereas 100%
indicates that the original and reconstructed EVI2 values are the
same [30]. We then investigated the differences in PGQ and FQI
between SEVIRI and MODIS EVI2 time series. Specifically,
for each 0.05◦ pixel, we calculated the absolute differences in
PGQ and FQI during each year. We further calculated the mean
value and the standard deviation of the absolute differences
from 2006 to 2013.

D. Assessment of the Data Quality Influence on EVI2
Trajectory Reconstruction and LSP Retrieval

PGQ in an EVI2 time series was hypothesized to have sig-
nificant influences on the reconstruction of the EVI2 temporal
trajectory and the retrieval of LSP. The influences could be
assessed by comparing CGC parameters retrieved from SEVIRI
and MODIS data. Therefore, we investigated the influences
by comparing the absolute differences in PGQ between the
original SEVIRI and MODIS EVI2 time series with the ab-
solute differences in the following: 1) FQI of the reconstructed
EVI2 temporal trajectories; 2) the retrieved CGC onset timing;
3) the retrieved CGC end timing; and 4) the total number
of successful CGC retrievals from 2006 to 2013. Since the
four analyses were conducted following similar procedures,
here, we only provide a detailed description of assessing the
influences of PGQ differences on the differences in retrieved
CGC onset timing. To achieve this, for each year between
2006 and 2013, we first divided all the pixels into three groups
based on the frequency distribution of the absolute differences
in PGQ (dPGQ): from the minimum to the 33th percentile,
from the 33th percentile to the 66th percentile, and from the
66th percentile to the maximum. This was to ensure that there
were comparable amounts of pixels among the three dPGQ
groups, which were hereafter referred to as G1, G2, and G3,
respectively. Note that the frequency distribution of dPGQ was
determined from PGQ differences from both the first and the
second CGC in each year. In other words, we did not distinguish
between the first and the second CGC when assessing the PGQ
influences. Second, we generated the cumulative distribution
function (CDF) of the absolute differences in CGC onset timing
in each group. Third, we performed a one-tailed two-sample
Kolmogorov–Smirnov test (KS test hereafter) between any two
CDFs from the three dPGQ groups (i.e., CDFG1 versus CDFG2,
CDFG2 versus CDFG3, and CDFG1 versus CDFG3) using the
R package “dgof” [32]. Taking the one-tailed two-sample KS
test between the CDFs from G1 and G2 as an example, the
null hypothesis was that the CGC onset timing difference in

G1 is greater than or equal to that in G2. By rejecting the
null hypothesis, the alternative hypothesis was accepted as that
the CGC onset timing difference in G1 is smaller than that
in G2 (i.e., the CDF of G1 stays above and to the left of the
CDF for G2). The aforementioned three steps were repeated for
assessing PGQ influences on the FQI differences and the CGC
end timing differences. To investigate the influences of PGQ
differences on the differences in the total number of successful
CGC retrievals, the three PGQ groups were determined using
the mean PGQ difference during 2006–2013 instead of from
individual years.

IV. RESULTS

A. Differences Between MODIS and SEVIRI EVI2 Time Series

Fig. 2 shows the differences between the SEVIRI and
MODIS EVI2 time series extracted from randomly selected
pixels in the three subbasins. The original SEVIRI EVI2 in
NCB and SCB presented distinct seasonal cycles, which var-
ied along the reconstructed EVI2 with low uncertainties [see
Fig. 2(a) and (c)]. In contrast, the original MODIS EVI2
exhibited more irregular temporal variations, and the good
quality observations were sparsely distributed along the re-
constructed EVI2. In ECB, the EVI2 observations from both
instruments were very irregular [see Fig. 2(b)]. However, the
original SEVIRI EVI2 was still able to clearly reflect the double
annual cycles of seasonal greenness variations. Nevertheless,
the original MODIS EVI2 typically only showed less than
five good observations along the reconstructed EVI2 trajectory
during a CGC, and the CGCs were poorly portrayed. In some
cases, such as during September–December in 2011 and 2012,
the CGCs were not able to be retrieved from MODIS EVI2 due
to insufficient good quality EVI2 observations.

Fig. 3 presents the spatial patterns of mean PGQ and FQI
derived from SEVIRI and MODIS data between 2006 and 2013,
respectively, along with the mean and standard deviation of
absolute differences in PGQ and FQI. The PGQ derived from
SEVIRI data was substantially higher than that derived from
MODIS data over much of the Congo Basin [see Fig. 3(a) and
(e)]. The SEVIRI PGQ was homogenously high (i.e., above
90%) except for small parts in the southeastern corner and in
the east-central Congo Basin [see Fig. 3(a)]. In contrast, the
MODIS PGQ was less than 20% at the western and eastern
edges of ECB and less than 50% in the central portion of
ECB, whereas it was relatively high in both NCB and SCB [see
Fig. 3(e)]. The stripes with low PGQ in Fig. 3(e) were caused
by gaps between neighboring Terra orbits.

The absolute PGQ difference between SEVIRI and MODIS
data increased from less than 30% in northern NCB and south-
ern SCB to between 50% and 80% over much of ECB and at the
southwest and northwest corner of NCB and SCB, respectively
[see Fig. 3(c)]. The standard deviation of the PGQ difference
was less than 20% within the Congo Basin [see Fig. 3(g)].
Despite the significant differences in PGQ, the mean FQI from
MODIS data was generally comparable with that inferred from
SEVIRI data across the Congo Basin [see Fig. 3(b) and (f)].
Specifically, both the SEVIRI and MODIS FQI varied between
40% and 60% in ECB and between 40% and 100% in NCB
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Fig. 2. Original and reconstructed EVI2 temporal trajectories at pixels randomly selected from (a) NCB, (b) ECB, and (c) SCB. Red dots on the ascending and
descending phases of a CGC represent the CGC onset and end, respectively. In each MODIS panel, those EVI2s labeled as “clear” correspond to the QA flags of
both clear and assumed clear, and those labeled as “cloudy” correspond to the QA flags of “partially cloudy,” “cloud shadow,” and “cloudy.” (a) Woody savannas
(23.3◦ E, 7.55◦ N). (b) Evergreen broadleaf forest (19.8◦ E, 0.4◦ N). (c) Woody savannas (26.95◦ E, 9.65◦ S).

and SCB. The absolute FQI difference between SEVIRI and
MODIS data and its standard deviation were generally less than
30% and 20% throughout the Congo Basin, respectively [see
Fig. 3(d) and (h)].

B. CGCs Derived From SEVIRI and MODIS Data

The statistics for three CGC metrics associated with the EVI2
temporal trajectories presented in Fig. 2 are summarized in
Table I. In northern NCB [see Fig. 2(a)], the average length
of annual CGC derived from SEVIRI and MODIS data was
comparable with a value of 300 and 302 days, respectively.
The mean EVI2 amplitude was 0.16 in SEVIRI data and 0.23
in MODIS data, whereas the ratio between EVI2 amplitude

and EVI2 peak (REVI2) was 0.442 and 0.444 for SEVIRI and
MODIS data, respectively. In southern SCB [see Fig. 2(c)],
the mean duration of CGC inferred from SEVIRI and MODIS
data was 233 and 261 days, respectively. The mean EVI2 am-
plitude was 0.32 in SEVIRI data and 0.37 in MODIS data, and
REVI2 was 0.76 and 0.64, respectively. These results indicate
that the CGC duration was longer and the EVI2 amplitude was
lower at site a relative to site c. It is likely due to the fact
that the plant composites (woody, shrub, and grass species) at
these two woody savannas sites are different. Differences in
CGC duration and amplitude resulting from changes in plant
composites have been identified by previous studies in the
African savannas [14], [33]. In ECB [see Fig. 2(b)], the average
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Fig. 3. PGQ and FQI derived from SEVIRI and MODIS data during 2006–2013. (a) Mean SEVIRI PGQ, (b) mean SEVIRI FQI, (c) the mean of absolute
difference in PGQ, (d) the mean of absolute difference in FQI, (e) mean MODIS PGQ, (f) mean MODIS FQI, (g) the standard deviation of absolute difference
in PGQ, and (h) the standard deviation of absolute difference in FQI. The white color represents water bodies, and the gray color represents the areas without
detectable CGC between 2006 and 2013. Black dashed lines represent subbasin boundaries.

TABLE I
SUMMARY OF CGC CHARACTERISTICS AT THE THREE SELECTED PIXELS IN NCB, ECB, AND SCB. SD REPRESENTS STANDARD DEVIATION

length of the first CGC was 125 days (SEVIRI) and 118 days
(MODIS), whereas the length of the second CGC was 90 days
(SEVIRI) and 100 days (MODIS). The mean EVI2 amplitude
was subtle, which was 0.09 for both the two CGCs in SEVIRI
data and 0.11 and 0.09 for the first and the second cycle in
MODIS data, respectively. REVI2 was 0.25 (first CGC) and
0.26 (second CGC) in SEVIRI time series and was 0.21 (first
CGC) and 0.17 (second CGC) in MODIS time series, respec-
tively. The standard deviation in CGC length, EVI2 amplitude,
and REVI2 varied between 13–18 days, 0.004–0.04 EVI2 units,
and 0.02–0.06, respectively.

Fig. 4 shows the spatial shift in mean CGC onset and
end timing derived from SEVIRI and MODIS EVI2s. Two
annual CGCs existed in ECB. The first CGC initiated around
mid-February [see Fig. 4(a) and (e)] and ended in June [see
Fig. 4(c) and (g)], whereas the second CGC began between
mid-August and mid-September [see Fig. 4(b) and (f)] and

ended in mid- to late November [see Fig. 4(d) and (h)]. Single
annual CGC was dominant in NCB and SCB. The mean CGC
onset in NCB varied from mid-February in the southern area to as
late as mid-April in the northern region [see Fig. 4(a) and (e)],
and the CGC end tended to occur during December [see Fig. 4(d)
and (h)]. In contrast, the mean CGC onset in SCB varied from
early September to mid-November [see Fig. 4(b) and (f)], and
the end of CGC occurred between mid-June and mid-July of
the next year [see Fig. 4(c) and (g)].

The variations in the latitudinal averages of the mean CGC
onset and end timings present the overall shift patterns of
the two annual CGCs in the Congo Basin (see Fig. 5). The
latitudinal averages of both CGC onset and end timings ex-
hibited fluctuations across the subbasins. The CGC onset and
end in the first cycle occurred during late February to early
March and during mid- to late December, respectively, within
8◦ N-6◦ S. The CGC onset and end in the second cycle
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Fig. 4. Mean onset and end of CGC derived from SEVIRI and MODIS data between 2006 and 2013 across the Congo Basin. The CGC onset in the first
cycle from (a) SEVIRI and (e) MODIS, CGC onset in the second cycle from (b) SEVIRI and (f) MODIS, CGC end in the second cycle from (c) SEVIRI and
(g) MODIS, and CGC end in the first cycle from (d) SEVIRI and (h) MODIS. Note that the onset and end of the first CGC in ECB occurs in the first and second
cycles, respectively. The onset and end of the second CGC in ECB occurs in the second and first cycles, respectively. The gray area indicates that the specified
CGC transition event was detected less than four times between 2006 and 2013. Others are the same as the illustration in Fig. 3.

Fig. 5. Spatial variations in the latitudinal averages of SEVIRI- and MODIS-
derived mean CGC onset and end timings across the Congo Basin. Note that the
two annual CGCs in ECB should be interpreted the same way as that in Fig. 4.

unfolded between mid-September and mid-October and be-
tween mid-June and mid-July in the next year, respectively,
within 4◦ N-12◦ S. The maximum of the absolute difference
between SEVIRI- and MODIS-derived latitudinal averages in-

creased from about 18 days for the CGC onset in the second
cycle to as high as 32 days for the CGC end in the second cycle.

The most evident inconsistency between the distributions
of CGC detected from SEVIRI and MODIS EVI2s was found
in ECB. Specifically, double annual CGCs derived from
SEVIRI EVI2 existed over much of ECB [see Fig. 4(a)–(d)].
In contrast, double annual CGCs derived from MODIS EVI2
distributed predominately in the central and western ECB [see
Fig. 4(e)–(h)]. In ECB, the detection rate of double annual
CGCs by MODIS was about 34% lower than that from SEVIRI
(a mean value of 73.7% and 39.4% for SEVIRI and MODIS,
respectively) (see Fig. 6). This is due to the limited cloud-free
observations in the MODIS time series [e.g., the CGC detection
failures during September–December in 2011 and 2012 at the
evergreen broadleaf forest location in Fig. 2(b)]. Relatively, the
difference in CGC detection rate between MODIS and SEVIRI
greatly reduced in NCB and SCB (see Fig. 6), where CGC was
detected at more than 95% of the pixels from SEVIRI and over
88% from MODIS. The standard deviation in CGC detection
rate increased from NCB (0.91% for SEVIRI and 1.85% for
MODIS) and SCB (1.51% for SEVIRI and 1.82% for MODIS)
toward ECB (6.07% for SEVIRI and 3.88% for MODIS)
(see Fig. 6).

Fig. 7 displays the mean and standard deviation in the
absolute timing differences between SEVIRI- and MODIS-
derived CGC onset and end timings during 2006–2013. In
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Fig. 6. Mean and standard deviation in CGC detection rate using SEVIRI and
MODIS EVI2s between 2006 and 2013 across the three subbasins. Gray and
white bars represent the SEVIRI- and MODIS-derived mean detection rates,
respectively. The error bars indicate one standard deviation from the mean.

NCB, the timing differences were mostly less than 20 days for
both CGC onset [see Fig. 7(a)] and CGC end [see Fig. 7(d)],
and the difference of 20–40 days was more widespread for
CGC onset than for CGC end. In SCB, the timing difference
was predominately less than 20 days for both CGC onset [see
Fig. 7(b)] and CGC end [see Fig. 7(c)]. However, the timing
difference of more than 20 days was also found in small areas
scattering over western, southeastern, and eastern SCB, which
might have resulted from local environmental factors that could
have significant impacts on CGC detections, such as the air
pollution [34] and adjacent water body in the Kinshasa City
(4.4◦ S, 15.3◦ E) of the Democratic Republic of the Congo.
The timing difference was mostly between 20 and 40 days
in ECB [see Fig. 7(a)–(d)]. The standard deviations of timing
differences in CGC onset and end were generally less than
20 days in NCB and SCB [see Fig. 7(e)–(h)]. The standard
deviations of less than 20 days mixed with those between 20
and 40 days in ECB [see Fig. 7(e)–(h)].

Fig. 8 shows the absolute differences in the total number
of successful CGC retrievals from SEVIRI and MODIS EVI2
time series during 2006–2013. The differences in both NCB
and SCB were generally less than two, which indicated the
comparable performances in CGC retrievals from SEVIRI and
MODIS. A major exception was found at the Bangweulu
swamps (11.5◦ S, 30.1◦ E) in southwestern SCB where the
difference was up to seven due to the likely false CGC onsets
retrieved from MODIS data as a result of prolonged cloud con-
taminations. However, substantial differences were observed
in ECB. For the first CGC [see Fig. 8(a)], the difference
mainly varied between two and six and could be larger than
six in the eastern and northwestern ECB. The difference in the
second CGC was much smaller than that for the first CGC [see
Fig. 8(b)]. The areas with a difference of more than two were
sparsely distributed across ECB.

C. Impacts of Quality of EVI2 Time Series on CGC Detections

Table II summarizes the range of dPGQ and the number of
0.05◦ pixels in G1, G2, and G3. Since the number of pixels
was set to be comparable among the three groups, the dPGQ
range in each group varied between years. Between 2006 and

2013, dPGQ was in the range of 0%–46%, 26%–60%, and
37%–98% for G1, G2, and G3, respectively. The last row of
Table II provides the range of mean dPGQ and the number
of pixels in G1, G2, and G3, based on which we assessed the
influences of PGQ differences on the differences in the total
number of successful CGC retrievals.

Fig. 9 presents the comparisons of CDFs in the FQI differ-
ences among the three dPGQ groups. Across the eight years
between 2006 and 2013, the absolute difference in FQI was less
than 10% in 50% of the pixels and less than 34% in 95% of
the pixels in all the three dPGQ groups. The KS tests showed
that, throughout the years between 2006 and 2013, the CDFs of
FQI differences were significantly different (p < 0.001) among
the three dPGQ groups, and the FQI differences in the groups
with small PGQ differences were all significantly less than
those from the groups with large PGQ differences. The only
exception was found in the comparison between the CDFs of
G1 and G2 and between G1 and G3 in 2007 [see Fig. 9(b).
While the CDF for G1 was significantly larger than that for G2
(p < 0.001), no significant difference was found between the
CDFs for G1 and G3 in 2007.

Figs. 10 and 11 present the comparisons of CDFs in the
absolute timing differences in CGC onset and end among the
three dPGQ groups, respectively. The median of CGC onset
differences was less than 19 days and less than 16 days for
CGC end differences in all the three groups. The 95th percentile
of CGC onset differences fell in the range of 41–52 days,
42–53 days, and 42–61 days during 2006–2013 for G1, G2,
and G3, respectively. Similarly, the 95th percentile of CGC end
differences was in the range of 35–46 days, 36–46 days, and
40–52 days during 2006–2013 for G1, G2, and G3, respectively.
Those results indicated that the differences in PGQ had signif-
icant influences on the timing differences in CGC onset and
end. KS tests were significant in all eight years (P < 0.0001)
when comparing the CDFs of onset or end timing differences
in G1 versus those in G3 or those in G2 versus those in G3.
Those comparisons revealed that larger timing differences in
CGC onset or end were associated with larger PGQ differences.
Similar results were also found when comparing the CDFs of
onset or end timing differences in G1 versus those in G2 in most
years, but there were some exceptions. Specifically, the timing
difference in G1 was found to be larger than that in G2 in 2006,
2007, and 2010 for the CGC onset [see Fig. 10(a), (b), and (e)]
and in 2007 for the CGC end [see Fig. 11(b)]. The case of no
significant difference between the CGC onset timing in G1 and
G2 was identified in 2013 [see Fig. 10(h)] and in 2010 for the
CGC end timing [see Fig. 11(e)].

Fig. 12 displays the comparison of CDFs for the absolute
differences in the total number of successful CGC retrievals
among the three dPGQ groups. The median of the difference
in total successful CGC retrievals was less than two in all the
three groups, whereas the 95th percentile was two, four, and
five for G1, G2, and G3, respectively. Results from KS tests
indicated that the PGQ difference had significant influences on
the differences in the total number of successful CGC retrievals
and large dPGQ resulted in large difference in successful CGC
retrievals.
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Fig. 7. Mean and standard deviation in the absolute differences between SEVIRI- and MODIS-derived CGC onset and end timings during 2006–2013. The mean
value of timing differences in (a) CGC onset in the first cycle, (b) CGC onset in the second cycle, (c) CGC end in the second cycle, and (d) CGC end in the first
cycle. The standard deviation of timing differences in (e) CGC onset in the first cycle, (f) CGC onset in the second cycle, (g) CGC end in the second cycle, and
(h) CGC end in the first cycle. Note that the two annual CGCs in ECB should be interpreted the same way as that in Fig. 4. The gray area indicates that the
specified CGC transition event was not detected during 2006–2013. Others are the same as the illustration in Fig. 3.

Fig. 8. Absolute difference in the total number of successful CGC retrievals in the (a) first and the (b) second cycle from SEVIRI and MODIS during 2006–2013.
The gray area indicates that the CGC in the specified cycle was not detected during 2006–2013. Others are the same as the illustration in Fig. 3.
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TABLE II
SUMMARY OF THE RANGE OF PGQ DIFFERENCE AND THE NUMBER OF PIXELS IN EACH GROUP. dPGQ REPRESENTS

THE ABSOLUTE DIFFERENCE IN PGQ, AND NOP IS THE NUMBER OF 0.05◦ PIXELS

Fig. 9. Comparison of CDFs for the absolute FQI differences in the three dPGQ groups and the results of KS tests. The x-axis shows the absolute FQI differences,
and the y-axis shows the proportion of pixels. Black, orange, and red step curves represent the CDF for G1, G2, and G3, respectively. The table in the lower right
corner of each panel presents the three alternative hypotheses and the corresponding significance levels.

V. DISCUSSION

This paper demonstrated that EVI2 time series from SEVIRI
and MODIS had comparable performances in detecting the

single annual CGC in the woody-savanna-dominated NCB and
SCB, whereas SEVIRI EVI2 time series outperformed that
from MODIS by detecting the double annual CGCs within
a more widespread region in the rainforest-dominated ECB.
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Fig. 10. Comparison of CDFs for the absolute timing differences in detected CGC onset in the three dPGQ groups and the result of KS tests. The x-axis shows
the absolute timing differences in detected CGC onset (number of days), and the y-axis shows the proportion of pixels. Others are the same as the illustration
in Fig. 9.

Specifically, the CGC detection rate from SEVIRI was about
34% higher than that from MODIS in ECB. The better per-
formance of SEVIRI EVI2 in ECB can be attributed to the
frequent diurnal scanning by SEVIRI, which provided much
higher chances to obtain cloud-free observations than MODIS
did. The superior performance of SEVIRI over MODIS in
terms of obtaining cloud-free observations was also reported
by a study in the cloud-prone West Africa [15]. Despite the
differences in the distribution of detected double annual CGCs
in ECB, the overall patterns of the spatial shifts in CGC onset
and end timings derived from both SEVIRI and MODIS agreed
with those identified in a previous study [17].

The difference in PGQ between MODIS and SEVIRI EVI2
time series was the main source of the inconsistencies in the
detected CGC onset and end timings. Specifically, SEVIRI
PGQ was homogeneously high over much of the Congo Basin,
whereas MODIS PGQ exhibited decreases from NCB and SCB
to ECB. PGQ differences between MODIS and SEVIRI EVI2

time series increased from less than 30% in NCB and SCB
to as high as 80% in ECB. As a result, the differences in the
detected timing of either CGC onset or end increased from
mostly less than 20 days in NCB and SCB to predominately
between 20 and 60 days in ECB, and the difference of more
than 60 days was also observed at some isolated locations
within ECB. The timing difference identified in this paper is
comparable with the result from a previous study, in which
maximum timing differences of 43 (for CGC onset) and 65 days
(for CGC end) during 2008–2009 between MODIS and SEVIRI
detections are reported [18]. Results from the KS tests between
the three dPGQ groups indicated that large timing differences
in CGC onset and end were significantly associated with large
PGQ differences in most years. However, we did identify a
few cases where relatively large timing differences were found
in groups with relatively small PGQ difference [see, e.g.,
Figs. 10(a), (b), and (e) and 11(b)] or no significant timing
difference between two dPGQ groups was identified [see, e.g.,
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Fig. 11. Comparison of CDFs for the absolute timing differences in detected CGC end in the three dPGQ groups and the result of KS tests. The x-axis shows the
absolute timing differences in detected CGC end (number of days), and the y-axis shows the proportion of pixels. Others are the same as the illustration in Fig. 9.

Figs. 10(h) and 11(e)]. This can be explained by the fact that,
since PGQ provides an overall measurement of EVI2 quality
during a CGC, the difference in PGQ might not be able to ac-
count for the difference in the retrieved timing of an individual
CGC transition event (e.g., CGC onset or end) in every case. We
believe that the differences in local PGQ around the timing of
an individual CGC transition event should be explored in those
cases.

The FQIs of the reconstructed SEVIRI and MODIS EVI2 tra-
jectories both exhibited decreases from NCB and SCB to ECB.
SEVIRI FQI was low in ECB relative to the high SEVIRI PGQ.
This was likely due to the fact that good quality observations
identified in SEVIRI data within ECB were contaminated by
partial clouds or by cirrus clouds. The method that we used for
cloud screening only classifies a pixel into cloud-free or cloudy
without applying a buffer mask to account for the residual
contaminations resulting from cloud edges. In addition, it is
difficult to identify cirrus cloud contamination since SEVIRI

is not equipped with the channel for cirrus cloud detection
(i.e., 1.36–1.38 μm) [35]. Given the relatively large pixel size
(∼3–5 km) used in this paper, some pixels with a QA flag of
“cloud-free” were likely affected by residual cloud contami-
nations, which were evident in the SEVIRI EVI2 trajectories
shown in Fig. 2(b). Specifically, some suspiciously low EVI2
values during a CGC were assigned the QA flag of “cloud-free,”
which have negative influences on SEVIRI FQI by increasing
the differences between the original EVI2 with good quality
and the corresponding reconstructed EVI2. However, a high
FQI value does not necessarily indicate that the EVI2 temporal
trajectory is reasonably reconstructed if the PGQ is limited
(e.g., the high MODIS FQI in ECB relative to the low MODIS
PGQ). For example, if there are three good quality values in a
time series of ten observations, the good quality values could
be perfectly fitted by various functions. However, the fitted
curve may not be able to represent the other seven values
reasonably. Therefore, a reliable CGC detection is possible only
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Fig. 12. Comparison of CDFs for the absolute differences in the total number
of successful CGC retrievals in the three dPGQ groups and the result of
KS tests. The x-axis shows the absolute differences in the total number of
successful CGC retrievals, and the y-axis shows the proportion of pixels. Others
are the same as the illustration in Fig. 9.

with high PGQ. PGQ differences only had limited influences on
FQI differences. Specifically, the CDFs for FQI differences in
the three dPGQ groups closely resembled each other, and the
absolute difference in FQI was less than 10% in 50% of the
pixels and less than 34% in 95% of the pixels in all the three
dPGQ groups across the eight years. This also indicates that
the HPLM is robust in the reconstruction of EVI2 temporal
trajectories from good quality observations. In other words,
observations with good quality in the EVI2 time series are
well represented in the reconstructed trajectories. Note that, if
there are locations where the duration of a dormancy period
is less than a month, the EVI2 variation (i.e., quick transition
from decreasing EVI2 to increasing EVI2) during the dormancy
period could be poorly portrayed in the reconstructed EVI2
trajectory. As a result, the retrieved timings of CGC onset and
end would be biased at those locations.

The most evident influence of PGQ difference on LSP re-
trievals was revealed by the differences in the total number of
successful CGC retrievals. Unlike the CDFs of the differences
in FQI and CGC timing, the CDFs of the differences in the total
number of successful CGC retrievals for the three dPGQ groups
differed dramatically from each other. This could be explained
by the fact that PGQ was an indicator of the overall EVI2 qual-
ity during a CGC and accounted well for the overall differences
in CGC detections from MODIS and SEVIRI time series.

VI. CONCLUSION

This paper compared the CGC retrieved from SEVIRI and
MODIS EVI2 time series across the Congo Basin between
2006 and 2013. While SEVIRI and MODIS had comparable
performances in detecting the single annual CGC within the
woody-savanna-dominated NCB and SCB, SEVIRI outper-
formed MODIS by detecting the double annual CGCs within

a more widespread region in the tropical-rainforest-dominated
ECB. The advantage of SEVIRI over MODIS in CGC retrievals
within ECB can be attributed to the frequent diurnal obser-
vations by SEVIRI, which provided higher chances to obtain
cloud-free observations. Differences in PGQ had significant
influences on the timing differences in the retrieved CGC onset
and end, and the total number of successful CGC retrievals.
This suggests that using the time series of satellite data with
limited good quality observations would result in large un-
certainties in the retrievals of phenological timing and even
cause failures in phenological cycle retrievals. This indicates
that satellite data quality would have significant impacts on the
understanding of ecosystem properties. Therefore, changes in-
ferred from satellite observations in cloud-prone regions should
be carefully interpreted.

The monitoring of global tropical rainforest phenology using
a set of geostationary satellites is very promising. Specifi-
cally, the next generation of geostationary satellites such as
the Himawari-8 has been launched in October 2014 (http://
www.data.jma.go.jp/mscweb/en/operation8/index.html), which
covers the Asia-Pacific region. The first launch of the
Geostationary Operational Environmental Satellite-R Series
(GOES-R) is scheduled in late 2016 (http://www.goes-r.
gov/mission/mission.html), which covers North America and
South America. Sensors on those satellites provide visible and
near-infrared observations at a spatial resolution of 0.5–1.0 km.
The observations from those geostationary satellites would
enhance the knowledge of long-term changes in rainforest
phenology in other major rainforest ecosystems such as the
Amazon Basin and the Asia monsoon region.
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