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Interannual variation in biomass burning and fire
seasonality derived from geostationary satellite
data across the contiguous United States
from 1995 to 2011
Xiaoyang Zhang1, Shobha Kondragunta2, and David P. Roy1

1Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, South Dakota, USA, 2NOAA/NESDIS/
Center for Satellite Applications and Research, College Park, Maryland, USA

Abstract Wildfires exhibit a strong seasonality that is driven by climatic factors and human activities.
Although the fire seasonality is commonly determined using burned area and fire frequency, it could also
be quantified using biomass consumption estimates that directly represent biomass loss (a combination of
the area burned and the fuel loading). Therefore, in this study a data set of long-term biomass consumed
was derived from geostationary satellite data to explore the interannual variation in the fire seasonality and
the possible impacts of climate change and land management practices across the Contiguous United States
(CONUS). Specifically, daily biomass consumed data were derived using the fire radiative power retrieved
from Geostationary Operational Environmental Satellites series with a pixel size of 4–10 km from 1995 to
2011. Annual fire seasonality metrics including the fire season duration, the timing of the start, peak, and end
of the fire season, and interannual variation and trends were derived from the 17 year biomass consumed
record. These metrics were associated with climatic factors to examine drivers and mediators of fire
seasonality. The results indicate that biomass consumed significantly increased at a rate of 2.87 Tg/yr;
however, the derived fire season duration exhibited a shortening trend in various states over the western
CONUS and no significant trend in most other regions. This suggests that the frequency of extreme fire events
has increased, which is perhaps associated with an observed increase of extreme weather conditions. Further,
both the start and the end of the fire season exhibited an early shift (1.5–5 d/yr) in various eastern states
although a late shift occurred in Arizona and Oregon. The interannual variation and trend in the fire seasonality
was more strongly related to temperature in the western CONUS and to precipitation in the southeast.
The Palmer Drought Severity Index was found to effectively reflect interannual variations in total biomass
consumed although it was poorly correlated to the fire seasonality metrics. The results indicate that across
the CONUS, the spatial patterns of the start, peak, and end of the fire season shift regularly in various
regions in response to latitudinal gradients of temperature variation.

1. Introduction

Wildfires have a significant influence on ecosystem structure and function, trace gas emissions, carbon cycle,
air quality, energy feedbacks to the climate system, regional socioeconomic conditions, and future land use
planning [Chapin et al., 2003; Randerson et al., 2006; Balshi et al., 2007, 2009]. These influences may vary
greatly with the seasonal occurrence and activity of wildfires [Russell-Smith et al., 2009; Le Page et al., 2010a;
Ge et al., 2013]. The principal characteristics of fires in a region are often referred to as the fire regime, usually
characterized in terms of the seasonality, frequency, spread patterns, intensity, fuel consumption, and
severity of fires [Bond and Keeley, 2005; Gill, 1975]. As the climate becomes warmer over a long time scale, the
fire season is likely to be shifted and altered with more widespread and frequent fires [Intergovernmental
Panel on Climate Change (IPCC), 2007], and in the United States, the fire season is expected to lengthen with
earlier and later annual start and end dates respectively [Westerling et al., 2006]. This could lead to a change of
both spatial fire patterns and fire regimes [Kasischke et al., 1995; Weber and Flannigan, 1997; Flannigan et al.,
2000]. How fire regimes will change in the face of shifting human populations, alterations in land use
practices, and the impacts of climate change remains unclear [Chuvieco et al., 2008; Bowman et al., 2009].

Determination of the fire seasonality at regional and global scales is important for characterizing fire regimes,
variation in biomass burning emissions, and fire climate impacts [Pausas and Keeley, 2009; Le Page et al., 2010b].
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Several climate-related indices have been developed to describe potential fire seasonality. Specifically, the Fire
Potential Index has been designed to quantify a season that is susceptible to fire ignition; it is derived by
integrating meteorological factors (temperature and relative humidity), fuel maps, and long-term normalized
difference vegetation index variations derived from the advanced very high resolution radiometer or the
MODIS (Moderate Resolution Imaging Spectroradiometer) satellite systems [Burgan et al., 1998; Huesca et al.,
2009]. The Chandler Burning Index provides an index of fire susceptibility that is based on temperature and
relative humidity, and has been used to indicate eco-climatic fire seasonality globally [Chandler et al., 1983;
Le Page et al., 2010b].

Fire seasonality has also been estimated using various fire regime attributes including the fire frequency,
burned area, fire intensity, and fire severity [Weber and Flannigan, 1997]. Historical fire inventories of burned
area and fire frequency are commonly used for monitoring wildfire properties. For example, time series of
historical burned area at different time scales [Riaňo et al., 2007; Pereira et al., 2011] have been used to
quantify the fire season length and the timing of the start of the fire season [Taylor and Skinner, 2003; Lee et al.,
2006; Westerling et al., 2006], and the reported time between the first wildfire discovery date and the last
wildfire control date has been applied to derive the long-term variation in the fire season [Westerling
et al., 2006].

Satellite observations available over the last several decades provide synoptic repeat coverage observations
with fire monitoring capabilities [Roy et al., 2013]. The frequency and seasonality of fire can be derived in a
demonstrably reliable manner from satellite data, usually as summary statistics of satellite-derived burned
area maps or active fire counts [Chuvieco et al., 2008; Csiszar et al., 2005; Giglio et al., 2006; Chen et al., 2011;
Magi et al., 2012]. The fire radiative power (FRP) can be directly retrieved from middle-infrared wavelength
remotely sensed data at the locations of active fire detections. The FRP is directly proportional to the rate
of fuel consumption and so is a function of the fuel loading, the combustion efficiency, and the subpixel
burned area [Wooster et al., 2003]. As a result, the time integration of FRP over the duration of the fire, termed
the fire radiative energy (FRE), has been used to estimate Biomass Consumed in Dry Mass (BCDM) for Africa
[Ellicott et al., 2009] and globally [Kaiser et al., 2009, 2012; Zhang et al., 2012]. The temporal integration of
FRP to FRE is sensitive to the satellite sampling and cloud and smoke obscuration, as fires may not be burning
at the time of satellite overpass, or may be sensed when the fire is not fully burning, and because the fire
behavior can fluctuate rapidly in space and time [Smith and Wooster, 2005; Kumar et al., 2011; Boschetti and
Roy, 2009]. These factors limit particularly the utility of polar-orbiting satellites that overpass only several
times per day at the equator and midlatitudes. Geostationary systems sense the Earth every 15 to 30min
and so are less sensitive to these issues. For example, satellite FRP-derived fuel consumption amounts for
African savanna grasslands have been shown to be in broad agreement with literature values [Roberts et al.,
2009]. Therefore, it is advantageous to use high temporal frequency geostationary biomass consumed
estimates to examine the fire seasonality because this quantity directly represents biomass loss (a combination
of the burned area and the fuel loading) and can be generated at sufficiently high temporal frequency to be
less sensitive to cloud and smoke obscuration.

This study investigated the fire seasonality and its interannual variation by analyzing time series of daily
BCDM across the contiguous United States (CONUS) from 1995 to 2011. A 17 year BCDM data set was first
generated from FRP observations retrieved from Geostationary Operation Environmental Satellites (GOES).
The time series of BCDM was then used to estimate annual fire seasonality metrics including the fire season
duration, and the timing of the start, peak, and end of the fire season. The interannual variation and trend
in the fire seasonality during the past 17 years were further analyzed. Finally, the impact of climate change on
fire season changes was investigated.

2. Methods
2.1. GOES Fire Radiative Power Data and Biomass Combusted Estimation

The Wildfire Automated Biomass Burning Algorithm (WF_ABBA) V65 fire product [Prins et al., 1998; Weaver
et al., 2004] was used. Although FRP is theoretically a function of fire size and fire temperature that can be
derived for subpixels using a bispectral approach [Peterson et al., 2013a, 2013b], WF_ABBA derives FRP using
the approach established by Wooster et al. [2003], which is based on the difference of middle-infrared
spectral radiances between a fire pixel and ambient background pixels. WF_ABBA FRP has a temporal
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resolution of 30min and a spatial resolution of 4 to 10 km varying across the CONUS with the GOES-E imager
view zenith angle. The 30min product is available from 1995 to 2011 but the data for 1996 were discarded
because of noise issues observed for this year. The WF_ABBA V65 fire product provides the time of fire
detection, the fire location latitude and longitude, an instantaneous estimate of FRP, a Global Land Cover
Characterization (GLCC) ecosystem type (http://edc2.usgs.gov/glcc/globdoc2_0.php), and a quality flag. The
product has only been available since GOES 8 became operational in 1995. This is because the imager
onboard the GOES 8 and later satellites offers higher temporal and spatial resolution (4 km at nadir), greater
radiometric sensitivity, and improved navigation, compared to the visible infrared spin scan radiometer
atmospheric sounder onboard the previous GOES 7 [Prins et al., 1998]. Potential imitations of the WF_ABBA
V65 fire product are described in the context of this research in section 4.

The diurnal variation in FRP data for each individual fire pixel was simulated to reconstruct any missed FRP
observations in the WF_ABBA product due to cloud and saturated pixels that were discarded [Zhang et al.,
2012]. Briefly, the diurnal pattern was reconstructed by fitting a climatological FRP diurnal pattern to the
available fire FRP observations in a given pixel. The climatological FRP diurnal pattern was generated for five
CONUS ecosystem types based on good quality FRP from 2002 to 2005. The ecosystems were reclassified
from the 96 GLCC ecosystem types provided in WF_ABBA into forests, savannas, shrublands, grasslands,
and croplands. Assuming that the shape of the FRP diurnal pattern is similar to the climatology in a given
ecosystem, the magnitude of the reconstructed FRP for an individual fire pixel was controlled by the
observed good quality FRP data and the shape was controlled by the climatological FRP [Zhang et al., 2012].
This approach can also replace the saturated fire pixels, but the actual value is possibly underestimated
because the fire temperature in such pixels is generally high.

The daily biomass combusted in dry mass was calculated from the simulated diurnal FRP at pixel locations
where the WF_ABBA V65 product detected fire. Wooster [2002] demonstrated a linear relationship between
fuel consumption and total emitted fire radiative energy as follows:

BCDM ¼ FRE� β ¼ ∫
t2

t1 FRPdt� β (1)

where BCDM is the biomass consumed (kg), FRP is the fire radiative power (MW), FRE is the fire radiative
energy (MJ), t1 and t2 are the beginning and ending times (s) of biomass burning, and β is biomass
combustion rate (kg/MJ). Fires do not necessarily burn for a whole day and instantaneous fires may not be
continuously detected by GOES due to the impact of cloud cover, smoke, cool and/or small fires releasing
limited fire energy, and other detection factors. Consequently, the fire duration was determined by assuming
that the fire could be extended by 2 h prior to and after the instantaneous fire detections if there were more
than three fire observations (all quality levels) within a day [Zhang et al., 2011]. Otherwise, the FRPs for less
than three fire occurrences were used to stand alone.

The biomass combustion rate (β) is assumed to be a constant. This is due to the fact that the energy content
of dry biomass does not vary considerably across different ecosystems and fuel types [Pooter and Villar, 1997;
Chapin et al., 2002] and that the actual heat yield of a fire event is little influenced by environmental factors
including slope, fuel arrangement, and wind speed [Whelan, 1995; Scott, 2000]. Because satellite-derived FRE
represents all the energy released from fires, the calculation of biomass consumed could include the
contribution from dead organic matter at the surface and the soil. The relationship between the amount
of biomass burned and FRE has been investigated based on both laboratory and field measurements, and
although the fuel types and locations were different, the β variation has been found to be limited. Field-
controlled experiments have indicated that the combustion rate is 0.368 ± 0.015 kg/MJ for Miscanthus grass
(including woody oak and hickory) with a fuel moisture of 12% [Wooster et al., 2005]. Laboratory-controlled
experiments in a combustion chamber have demonstrated that the rate is 0.453 kg/MJ for mixed fuel
beds (pine needles, pine branches, fir twigs, fir foliage, live herbaceous, senesced grass, and big sagebrush)
with a dead fuel moisture contents of 7.1% (±1.3%) and live moisture content of up to 44.8% [Freeborn et al.,
2008]. Because the latter contains a wide range of fuel types and fuel moisture contents, the biomass
combustion rate of 0.453 kg/MJ was adopted for this study.

2.2. Detection of Fire Seasonality From Daily Biomass Consumed

Daily biomass consumed was computed for each CONUS GOES pixel with a fire detection. Because fire
occurrence is episodic, it is impractical to describe the daily variation using a numerical function for a pixel. As

Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002518

ZHANG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1149

http://edc2.usgs.gov/glcc/globdoc2_0.php


an alternative, the cumulative
distribution was used to functionalize
the daily variation in combusted
biomass. After testing several curve
fitting models, the sigmoid model was
selected to describe the temporal
distribution of cumulative biomass
consumed as follows:

BCDMc tð Þ ¼ BCDMT

1þ eδþ γt (2)

BCDMT ¼ ∑
T

t¼1
BCDM tð Þ (3)

where BCDMc(t) is the cumulative
biomass consumed (kg) up to day of
year t, BCDMT is the total annual
biomass consumed (kg), BCDM(t) is the

daily biomass consumed (kg) calculated from equation (1), T is the total number of days in a year (365 or 366
for leap years), and γ and δ are the shape parameters of the equation defined using the Levenberg-Marquardt
method [Press et al., 1997].

Fire season metrics were derived from (2), specifically, the start, peak, end, and duration of the fire season. It
was assumed that the start and end of a fire season occurred on the days of the year when BCDMc(t) reached
10% and 90% of the total annual biomass consumed, respectively (Figure 1). The peak fire season was
calculated by identifying the middle day within a moving 60 day window where the maximum 60 day BCDM
occurs during a year. The moving window size was determined by analyzing the minimum fire season
duration, which was about 2 months across the CONUS.

2.3. Analysis of Spatial and Temporal Variation of Biomass Consumed and Seasonality

Because of the spatiotemporally discrete nature of the biomass consumed, the values from individual GOES
pixels were aggregated to a spatial scale of a quarter degree grid, 1° grid, and at state level, respectively.
The aggregation was undertaken by taking the arithmetic mean for the fire season metrics and the total
for the biomass consumed. Both the spatial pattern and interannual variation in the fire seasonality were
examined in grid cells. At the state level, the biomass consumed was stratified based on the forest, savanna,
shrubland, grassland, and cropland ecosystem types to investigate the contribution of different ecosystems
to biomass consumed. The interannual variation and trend at a state scale were further analyzed using an
ordinary least squares (OLS) method that does not consider the effect of serially correlated residuals. Note
that the possible autocorrelation in the time series may exaggerate the statistical significance in the trend
analysis using OLS [Thejll and Schmith, 2005].

2.4. Climate Data and Comparison With Biomass Consumed Seasonality

It has been demonstrated using different methods that climate factors such as the antecedent and current
temperature, precipitation, and the degree of drought are important factors in mediating fire [Balshi et al.,
2009; Littell et al., 2009]. We recognize that these and other multiple factors may combine in complex ways
[Archibald et al., 2009;Westerling et al., 2011], but in this study a simple analysis was conducted to investigate
each of these factor independently on the derived BCDM fire season metrics.

Climate data from 1995 to 2011 were acquired from the NOAA National Centers for Environmental Prediction
(NCEP) North America Regional Reanalysis (NARR), which have been demonstrated to be effective in
investigating fire weather forecasting [Peterson et al., 2010]. The NCEP NARR produces 3-hourly precipitation
and temperature data at a spatial resolution of 32 km (approximately 0.25°) [Mesinger et al., 2006], which were
aggregated to daily data in this study. In addition, the monthly Palmer Drought Severity Index (PDSI; known
operationally as the Palmer Drought Index) was obtained from the NOAA National Climatic Data Center
(http://www1.ncdc.noaa.gov/pub/data/cirs/) for individual states from 1995 to 2011. The PDSI was originally
developed by Palmer [1965] with the intention of measuring the cumulative departure in surface water

Figure 1. Schematic for determination of the fire seasonality.
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balance. It incorporates antecedent and current moisture supply (precipitation) and demand (potential
evapotranspiration) into a hydrological accounting system to measure the duration and intensity of long-
term drought. The intensity of drought during the current month is dependent on the current weather
patterns plus the cumulative patterns of previous months [Dai, 2011]. Consequently, positive PDSI values
indicate wetter than normal conditions, while negative values suggest levels of drought as follows: normal
(0 to �0.5), incipient drought (�0.5 to �1.0), mild drought (�1.0 to �2.0), moderate drought (�2.0 to �3.0),
severe drought (�3.0 to �4.0), and extreme drought (< �4.0).

The climate parameters were statistically correlated to the fire seasonality using an ordinary least
squares method. Specifically, the means of the start and the end of the fire season in the 17 years were
correlated to the means of the temperature, precipitation, and the PDSI derived for the current and the
previous month at state scales, respectively. Further, for each state, the 17 annual BCDM estimates were
compared with the mean state PDSI. In these analyses, only the significant correlations (P value< 0.1)
were discussed.

3. Results
3.1. Spatial and Temporal Pattern of Biomass Consumed

The annual biomass consumed was computed as equation (3). Figure 2a presents the spatial distribution
of the average annual BCDM across the CONUS from 1995 to 2011. On average, fires burned 52.7 ± 26.5 Tg
dry biomass per year. As expected, the largest consumption appeared in the western CONUS where fuel
loads and burned areas are greater, followed by the southeastern region, and by the Mississippi valley
where fires are particularly prevalent [Zhang et al., 2008]. Figure 2b shows the standard deviation of
the annual biomass consumed, which reflects the interannual variation in a 0.25° grid cell. The standard
deviation was large in high BCDM regions, which closely followed the spatial pattern of long-term average
BCDM. The coefficient of variation of these data (cv: standard deviation/mean) was greater than unity
in some local areas. The large interannual variation in a given region is mostly attributed to individual
extreme fire events. For example, the fire event of 1–20 June 2011 in Arizona (111°W, 34°N to 108°W,
32.5°N) burned 9.25 Tg of dry mass (Figure 3), which accounts for 8.8% of the CONUS BCDM for 2011.

The biomass consumed varied greatly by
state and ecosystem over the 17 years.
The largest biomass burning occurred in
the following 10 states: California, Idaho,
Texas, Montana, Arizona, Oregon,
Kansas, Florida, Arkansas, and Nevada,
which account for 67% of total BCDM
(Figure 4). On average, the proportion of
BCDM is 53.9% in forests (mainly in
California, Idaho, Montana, Oregon, and
Florida), 11.7% in savannas (mainly in
California, Arizona, Colorado, Kansas,
and New Mexico), 35.2% in shrublands
(mainly in Texas, Nevada, California,

Figure 3. Daily development of biomass consumption for an individual
fire event that occurred in Arizona (111°W, 34°N to 108°W, 32.5°N) from
1 to 20 June 2011.

Figure 2. (a) Average of annual biomass combusted and (b) standard deviation of annual biomass consumed in a 0.25° grid
for 1995–2011.
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Idaho, and Arizona), 7.7% in grasslands (mainly in Kansas, Texas, Florida, California, and Montana), and 14.1%
in croplands (mainly in Arkansas, Texas, Kansas, Florida, and Montana).

The interannual variation in overall biomass consumed presents an increasing trend across the CONUS
(Figure 5). The annual CONUS BCDM increased significantly at a rate of 2.87 Tg/yr (P value= 0.035). For the five
CONUS ecosystem types the increase rate was 1.47 Tg/yr (P value= 0.089) in forest, 0.52 Tg/yr (P value= 0.003) in
savanna, 1.48 Tg/yr (P value= 0.016) in shrubland, 0.36 Tg/yr (P value= 0.007) in grassland, and 0.42 Tg/yr
(P value= 0.012) in cropland (Figure 5). During this period, very high BCDM occurred in 2000, 2007, and 2011.
The increase of biomass consumed over the CONUS can be mainly attributed to the contribution of only a few
states. The states both with a significantly increased trend (P value< 0.1) and with more than 2% of the total
average annual CONUS biomass consumed were New Mexico (0.208 Tg/yr), Oklahoma (0.116 Tg/yr), Florida

(0.143 Tg/yr), Arizona (0.399 Tg/yr), Texas
(0.679 Tg/yr), and California (0.358 Tg/yr).

3.2. Spatial Pattern of Fire Biomass
Consumed Seasonality

The seasonality of fire was derived using
the sigmoidal function (equation (2)),
which describes the cumulative
distribution of biomass consumed. In
general, the cumulative BCDM exhibits
one of two different types of temporal
trajectory that are illustrated in Figure 6
for the state of Californian for 2002 and
2007. The results for 2002 are typical of
most states and years where there are
no extreme fire events with the
cumulative BCDM increasing gradually
as more fires occur through the fire
season. The results for 2007 show an
abrupt increase in the cumulative BCDM
because of a very large fire event
occurring after several small fire events.
These very large fire events result in
slightly greater errors in the functionally
fitted curve, but their impact is expected
to be negligible compared to the
general pattern of the temporal BCDM.
Moreover, the fitted temporal pattern

Figure 4. Mean and standard deviation of BCDM from 1995 to 2011 for individual states across the CONUS.

Figure 5. Interannual trend in biomass consumption from 1995 to 2011.
(a) Total BCDM across CONUS and (b) BCDM in the five CONUS ecosystems
reclassified fromGLCCecosystem types provided in theWF_ABBA fire product.
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smoothes any temporally irregular
variation of the estimated daily BCDM.
Overall, the sigmoidal function fits daily
biomass consumed well, with R2> 0.95
and P value< 0.00001 for the greater
majority of years and 1° grid cells.

The start of the fire season (Figure 7a)
occurs first (January–February) in the
southeast CONUS (particularly, day of
year (DOY) 56 ± 30 in Florida) and shifts
to later in the spring further northward
and westward. The fire season start is
also early (February and March) in some
of the South West and Central States

(Texas, Oklahoma, and Arkansas). The latest start of the fire season is in June in the northwest CONUS and
other states southeast of the Great Lakes. Figure 8a shows the mean start of the fire season for contiguous
states from Texas to Washington and indicates a fire season start date difference of 97 days from DOY 86 ± 20
(Texas) to 184 ± 24 (Idaho). Along the east coast, the fire occurrence was limited, except in Florida and
Georgia, but the spatial variation of the start of the fire season shifted by 103 days from DOY 56± 30 in Florida
to DOY 158± 18 in Pennsylvania (Figure 8b).

The peak day of biomass burning varies from June to mid-August in the majority of the CONUS (Figure 7b).
The peak occurs early (June) in the central parts of the CONUS and some eastern regions and occurs later
(end of July to early August) in the northwest. Interestingly, the earliest peak occurs in Florida (in March) while

Figure 6. Examples of fitting temporal trajectories to cumulative BCDM
(equation (2)) in California 2002 and 2007 data.

Figure 7. (a–c) The 17 year average and (d–f ) interannual variation of the fire seasonality metrics defined at a 1° grid. Day of
year mean start, peak, and end of the fire season, and corresponding standard deviation start, peak, and end of the fire
season. All grid cells had at least one GOES fire detection over the 17 years.
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the latest peak occurs in Alabama (in September); both are located in the southeastern region. This pattern is
perhaps associated with agricultural practices [McCarty, 2011] and dry conditions in Florida (illustrated in
section 3.4). It could also be associated with lightening fires that are particularly prevalent in Florida and the
Gulf States [Orville et al., 2002; Peterson et al., 2010].

The end of the fire season mainly occurs from August to October (Figures 7c). It arrives late in the southeast
CONUS in states such as Alabama, Georgia, and Louisiana, where the fire season ends mid- to late October.
In western states, such as Texas, California, and Oregon, the fire season ends at the end of September. In
contrast, the fire season ends early in Florida (223 ± 37), Vermont (216± 53), and Wisconsin (219 ± 41). It also
ends relatively early (August) in the Corn Belt, which is likely to be associated with agricultural practices
[Tulbure et al., 2011].

The interannual variation in the start, peak, and end of the fire season (Figures 7d–7f) is for most regions quite
high. The illustrated standard deviations indicate the following differences: the start of the fire season
variation is greater than 1 month for most states and up to 3 months in the central states (Figure 7d), for
the peak the variation is less than 1 month in the western CONUS and as large as 3 months in the central and
eastern CONUS (Figure 7e), and for the end of the fire season the variation is less than 1 month in western
and southeastern CONUS and again up to 3 months in the central states (Figure 7f).

Considering individual states, the duration of the fire season varies from 2 to 6 months (Figure 9).
Although the biomass consumed is greatest in the western and mountain states of Idaho, Montana,
Oregon, Arizona, and California, the corresponding fire season durations are less than 3.5months. In
contrast, the fire season is longest in the south and southeast, including in Oklahoma, Florida, Louisiana,
Alabama, South Carolina, and Georgia, where the fire season lasts as long as 6months. For most states, the
fire season duration varies among years and differs by less than 1 month, but the difference can be as

Figure 8. Regular spatial shifts (from south to north) in the start of the fire season for states in (a) Middle West and
(b) east coast.

Figure 9. Mean 17 year fire season duration (circles) and standard deviations (vertical lines) for all the CONUS states.
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great as 2 months in some regions such
as Vermont and South Dakota. At the
state level, the interannual variation of
the start, peak, and end of the fire
season, particularly the peak, is negatively
correlated to the 17 year average annual
biomass consumed (Figure 10). In
other words, the fire season metrics
show small interannual variation in
the states where biomass burning
occurs frequently. This is likely because
fire occurrences are episodic events
which are randomly distributed within
a potential fire season.

3.3. Interannual Trend in Fire Biomass Consumed Seasonality

In general, the fire seasonality metrics have significant interannual trend in several states but significant
trends were not evident over the entire CONUS. Below only those states with significant trends (P value< 0.1)
for the start, end, and duration of the fire season, respectively, are discussed. A significant trend for an earlier
start of the fire season (1.5–5 d/yr) occurred for Alabama, Arkansas, Georgia, Iowa, Kansas, Louisiana,
Mississippi, Ohio, Oklahoma, South Carolina, Texas, Virginia, and Wisconsin. In contrast, a significant trend for
a later start of the fire season occurred for Arizona (2.1 d/yr) and Oregon (2.2 d/yr).

The end of the fire season tended to shift to an earlier date in several states. A significant trend occurred for
Alabama, California, Colorado, Florida, Georgia, Kansas, Kentucky, Louisiana, Maine, Maryland, Mississippi,
Missouri, North Carolina, North Dakota, Nebraska, South Carolina, Tennessee, Texas, Virginia, and West
Virginia. The rate of shift was 1.5–5 d/yr, which is similar to the start of the fire season shifts.

The fire season duration only showed significant trends in eight states. They were Alabama, Arizona, California,
Colorado, Louisiana, Maryland, Minnesota, and Tennessee. Among these, the fire season duration reduced in
Arizona (4.0 d/yr, P value= 0.039), California (2.5 d/yr, P value= 0.066), and Colorado (3.6 d/yr, P value= 0.04),
with the biomass consumed being largest in California and fifth largest in Arizona.

3.4. Variation in Biomass Consumed Seasonality With Climate Changes

The spatial distribution of the fire seasonality in this study shows that high seasonal temperatures lead to
an earlier start and later end to fires (Figures 7 and 8). In the Middle West, the spatial shift in the start of
the fire season certainly follows the warm spring temperature, which arrives early in Texas and late in Idaho.
This is also apparent in the eastern region from Florida to Pennsylvania. The shift of timing spans about
4 months from the end of February (Florida) to the end of June (Idaho) for the start of the fire season and
3 months from early August (Vermont) to late October (Alabama) for the end of the fire season. This
latitudinal gradient is associated with the northward (in spring) and southward (in autumn) progress of
temperature. However, a regular pattern of spatial shifts in all the fire season metrics across the entire CONUS
is not evident. Clearly, the spatial pattern of the fire seasonality is more complex than the seasonal variation
in temperature because factors including the precipitation (fuel moisture), fuel abundance and spatial
structure, and sources of fire ignition may also play significant roles [Morgan et al., 2008; Archibald et al., 2009;
van der Werf et al., 2008; Westerling et al., 2011].

Climate change has evident significant impacts on the interannual variation in the fire seasonality in some
states. The start of the biomass burning season is negatively correlated with anticipated and current
temperature at state scales. It is found that the interannual temperature variation has a significant influence
on the start of the fire season in Maine, North Dakota, Oregon, Nevada, Pennsylvania, Ohio, Illinois, Indiana,
Virginia, Kentucky, Tennessee, Texas, Arkansas, Mississippi, and Louisiana. For example, the start of the fire
season in Oregon, where BCDM accounts for 6% over the CONUS, has been delayed 2.2 d/yr (P value= 0.079)
and appears to be related to the decrease in temperature from spring to early summer (Figure 11). The
annual time series in Oregon indicates that relatively high temperatures in March–April induce early fire

Figure 10. Relationship between the standard deviation of the state
mean fire seasonality (start, peak, and end metrics) with the state mean
annual BCDM. Results computed at the state level (symbols) with respect
to the 17 years of data.
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occurrences, such as in 2004, 2007, and 2010, while low spring temperatures delay the fire season occurrence,
such as in 2002, 2006, 2008, and 2011.

Interannual variation in the end of the fire season is also influenced by antecedent temperature. A significant
correlation is found in the states of Washington, Montana, North Dakota, Wisconsin, South Dakota, Nevada,
Iowa, Utah, Nebraska, Illinois, Arizona, Arkansas, and Alabama. In Arizona, for example, the end of the fire
season is significantly associated with temperature change in September (P value = 0.057) (Figure 12), which
is prior to the end of the fire season. In other words, the fire season tends to end early with a low temperature
in September in Arizona.

High precipitation is generally associated with a delay in the start of the fire season and a later end of the fire
season. The start of the fire season was significantly correlated with precipitation in the current and previous
month for Minnesota, South Dakota, Iowa, Illinois, Missouri, Tennessee, Arkansas, South Carolina, Louisiana,
Georgia, and Florida. Detailed correlations for Florida and Georgia, where biomass burning emissions are
the greatest in the eastern region, are illustrated in Figure 13. Generally, in Florida, an early start to the
fire season corresponds to dry conditions in January and February, so that the start of the fire season is
significantly correlated to precipitation in January and February (P value< 0.08). In Georgia, the start of
the fire season has similar variation with monthly precipitation. Spring precipitation was high before 1999,
which seems to have resulted in the start of the fire season occurring later in May, whereas after 2001
early spring (January and February) was relatively dry and the fire season started earlier in February and March.
Further examination indicates that the fire season presents a trend to an earlier start (5.5 d/yr, P value< 0.005)
in response to a significant precipitation (January–March) reduction trend (P value< 0.05) (Figure 13b). The end

Figure 11. Annual variation in the start of the fire season with the spring (March and April) and early summer (May and June)
mean temperature in Oregon. For reference, the day of the year (DOY) for 1 April and 1 June are 91 and 152, respectively.

Figure 12. Annual variation in the end of the fire season with the mean August and September temperatures in Arizona.
For reference, the day of the year (DOY) for 1 September is 213.
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of the fire season was significantly
correlated with precipitation in
Washington, Idaho, Vermont, Wisconsin,
California, Utah, Indiana, Missouri,
Georgia, Alabama, and Mississippi.

The fire seasonality and the degree of
biomass consumption are expected to
be impacted by drought. Our analysis
indicates that both the start and end of
the fire season have a generally poor
correlation with the PDSI in the current
and previous month. A significant
correlation between the PDSI and the
start of the fire season occurred for
Washington, Minnesota, North Dakota,
Tennessee, South Carolina, Mississippi,
Louisiana, and Florida, while a significant
correlation for the end of the fire season
occurred for Idaho, Minnesota, Oregon,
Wyoming, Illinois, Colorado, Texas,
Arkansas, and Florida. The correlations
were positive or negative, which implies
more complexity than the simple

assumption that the fire season occurs earlier and ends later in accordance with the PDSI-derived severe or
extreme drought score. By contrast, the 17 annual BCDM estimates compared with the mean state PDSI had
significant exponential relationships (Figure 14) for 19 states which are Washington, Maine, Oregon, New
York, California, Utah, Ohio, Illinois, Indiana, Colorado, West Virginia, Kentucky, New Mexico, Tennessee,
Texas, Georgia, Mississippi, Louisiana, and Florida. These PDSI results should be treated with caution as the
PDSI may not to identify droughts on timescales shorter than 12months when monthly PDSI values are
used [Vicente-Serrano et al., 2010]. However, our result suggests that the PDSI is an effective index for
reflecting the interannual variation of total biomass consumed.

4. Discussion
4.1. Uncertainty of Biomass
Burning Estimates

This study has focused on the
interannual and seasonal variations in
BCDM. Therefore, any systematic
uncertainties in the BCDM will have
limited impact. The uncertainty in the
BCDM mainly comes from the GOES FRP
data and the underlying assumptions
implicit in the conversion of FRP to
BCDM. It is established that the
calculation of biomass consumed from
FRP data is sensitive to the satellite
sampling, as fires may not be burning at
the time of satellite observation, or may
be sensed when the fire is not fully
burning, and because the fire behavior
can fluctuate rapidly in space and time
[Smith and Wooster, 2005; Kumar et al.,
2011; Boschetti and Roy, 2009]. However,

Figure 13. Annual variation in the mean state January to May precipita-
tion (bars) with the start of the fire season (dashed line) in (a) Florida and
(b) Georgia.

Figure 14. Relationship between the state mean annual BCDM and the
state mean Palmer drought index (PDSI) for (a) two western states and
(b) two southeast states for the 17 years of data.

Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002518

ZHANG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1157



these factors likely have limited impacts on the state level fire seasonality and interannual variation because
they mainly occur randomly in any annual period. However, FRP sampling issues associated with clouds and
satellite active fire detection capabilities may introduce more systematic biases and are discussed below.

Satellite FRP is only computed when there is an active fire detection. Active fire detection is precluded,
however, when fires are obstructed by cloud cover, optically thick smoke, and perhaps by overstory
vegetation for certain surface fires [Giglio et al., 2003; Roy et al., 2008]. By analyzing precipitation, fire history,
and cloud mask data, GOES active fire detection omission errors over the Brazilian Amazon were quantified
as 11% [Schroeder et al., 2008]. As most of the CONUS is not more cloudy than the Brazilian Amazon, it is
reasonable to assume a similar level of GOES active fire detection omission error for this study. The
methodology to model the diurnal variation in FRP data at individual fire pixel locations (section 2.1) largely
negates the impact of transient clouds. However, if clouds persist for the duration of the fire, then there is
no FRP data to reliably model from. The incidence of this issue is not possible to quantify. If we assume that
the occurrence of cloud obscuration is random with respect to fire time and duration, then cloud impacts
on the results of this study can be ignored. If the degree of persistence of cloudiness over the duration of fires
changed in some systematic manner over the 17 years of the study, then a systematic temporal bias would
be introduced. However, time series of seasonal anomalies of total cloud cover present no trend over the
CONUS for this study period [Warren et al., 2007].

Only actively flaming or shouldering fires that are sufficiently large and/or hot to be detected will have
associated FRP data [Prins and Menzel, 1992; Giglio et al., 2003; Roberts et al., 2005; Zhang et al., 2011]. For
these reasons, it is established that geostationary satellite data may have significant active fire omission
errors [Roberts and Wooster, 2008]. The GOES satellite viewing geometry varies in a temporally fixed manner
with pixel sizes varying from 4 to 10 km across the CONUS. Consequently, the northwestern CONUS, which is
observed with the highest GOES view zenith angles, has reduced likelihood of active fire detection due to the
coarser spatial resolution. Comparison of Landsat-mapped burned areas with GOES active fire detections
indicated that the GOES imager detects about 40% of small fires (<1 km2) and more than 80% of large fires
(>10 km2) across the CONUS [Zhang et al., 2011]. The large number of undetected small fires accounts
for a burned area of less than 5% and the small number of large cool fires that were undetected could
contribute more error, which together lead to an estimated GOES detection error across the CONUS of less
than 15% [Zhang et al., 2011]. Fundamentally, any contribution from small and cool fires that are undetected
by GOES will not be considered in this study, and therefore, any trends in small and cool fire BCDM are
unexamined by this study.

This paper is concerned with BCDM. Following standard convention, and as discussed in section 2.1, we
assumed that the biomass combustion rate (β) used in equation (1) was constant. The impact of fuel
dryness on the biomass combustion rate has not been well quantified in satellite-based FRE studies. A
recent laboratory study indicated that fuel moisture could cause an uncertainty of as much as 11% in the
biomass combustion rate [Smith et al., 2013]. However, because fuel is generally dried before burning,
we assume a constant combustion rate, as have other researchers [e.g., Ellicott et al., 2009; Roberts et al., 2009;
Kaiser et al., 2012].

4.2. Independent Comparison With Other Biomass Consumed Data Sets

There is no reliable way to validate biomass consumed data sets at landscape scale, because validation
of BCDM requires accurate measurements of biomass consumed in fire events, which are currently
unavailable over large areas and are too expensive and time-consuming to obtain. Instead, to further
verify the quality of the BCMD estimates, they were compared with other similar data sets that are also
not validated.

First, the daily CONUS biomass consumed estimates for 2010 were compared with estimates derived using
the MODIS vegetation property-based fuel system and burned area estimated from subpixel fire size in the
GOES WF_ABBA fire product [Zhang et al., 2008]. The daily total estimates in these two data sets were
comparable with a relative difference of 5.7%, and a strongly significant linear relationship (R2 = 0.88) with a
slope of 0.968 ± 0.019 [Zhang et al., 2012]. Because the fire sources in these two estimates were all from GOES,
the comparison only verifies that the FRE is an effective proxy to replace burned area and fuel loading for the
estimates of biomass burning from wildfires.
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Second, the CONUS annual biomass consumed estimates were compared with biomass consumed defined
by the Global Fire Emissions Database (GFED3.1) [van der Werf et al., 2010] for 1997 to 2010. GFED biomass
consumed estimates are derived from model outputs and calibrated MODIS fire products and do not use FRP
data. Comparison results show that the estimates of annual biomass consumed during the 14 years correlate
with the GFED estimates well (P< 0.001) but are larger than GFED by a factor of 1.2 to 3.3. We note that GFED
emissions are thought to be underestimated over the CONUS [Al-Saadi et al., 2008; Kaiser et al., 2012].

Third, the annual biomass burning estimates were compared with three forest biomass consumption estimates
derived for the western CONUS for 2002 to 2006 by Ghimire et al. [2012]. These estimates were 6.88 TgC/yr
(based on forest inventory data, tree mortality, and burned severity from Monitoring Trends in Burn Severity
(MTBS) where only large fires (>4 km2) were included), 29 TgC/yr (derived from MODIS active fires and land
cover-based fuel loading), and 7 TgC/yr (derived from MTBS burned area and Fuel Characteristics
Classification System fuel loading (Wildland Fire Emissions Information System, http://wfeis.mtri.org/)). The
biomass burning calculated in our study for the forest ecosystem over the western CONUS for 2002 to 2006was
10.4 TgC/yr derived from the mean annual BCDM estimates by assuming a 0.45 dry biomass carbon proportion
[Schlesinger, 1991]. This value is within the range of the three estimates reported by Ghimire et al. [2012].

4.3. Impacts of Human Activity on Biomass Burning and Seasonality

Human pyrogenic activities have also altered the variation in the fire seasonality across CONUS and are
thought to be due to land use practices, primarily agriculture [McCarty, 2011; Tulbure et al., 2011]. These
synoptic studies of agricultural burning have been driven by satellite data; however, satellite mapping of
agricultural fires is known to be challenging [Roy et al., 2008]. Biomass burning in cropland is related to field-
clearing practices and to crop harvest. In the Corn Belt, winter wheat (October to April) is harvested and
burned in April and May before the next planning of corn or soybean [Le Page et al., 2010b]. This timing
matches well with the start of biomass burning occurrences detected from BCDM in this study.

The long-term BCDM seasonality reveals an early shift trend in the central CONUS where agricultural lands
are dominant. This shift has occurred at both the start and the end of biomass burning season, which leads
to no significant trend in the fire season duration. This early shift is likely to be attributed to changes in
human agricultural practices: in order to increase crop yield by lengthening grain fill periods, there has
been a trend to earlier planting dates [Kucharik, 2006; Conley and Santini, 2007]; accordingly, corn and
soybean planting dates have advanced by 0.4 and 0.49 d/yr, respectively, from 1981 to 2005, and both
crop types have experienced a trend to earlier harvest dates [Sacks and Kucharik, 2011]. This trend in crop
practice illustrates the early shift of the fire seasonality well, although the shift rate in crop season is smaller
than the shift of the fire season. In much of the CONUS, a biannual rotation between corn and soybeans is
common but multiple crops rotated over several years can also occur [Plourde et al., 2013]. It should be
noted that our approach, which detects only the start of the first season and the end of last fire season
during a year within a grid cell of state, will not detect multiple fire cycles that may occur. If the number of fire
cycles varies interannually, such as where fires are related to crop rotation, the detected fire seasonality
would present a large variability.

5. Conclusions

Long-term biomass burning derived from geostationary satellite data was used to investigate the interannual
variation in biomass consumed and the fire seasonality. The results show that biomass consumed across
the CONUS significantly increased at a rate of 2.87 Tg/yr, while there is considerable interannual variation. The
increased rate is largest for forests, followed by shrubland, savannas, croplands, and grasslands. However,
the seasonal length of biomass burning has revealed no significant change, except for a shortening trend
in several states over the western CONUS. This suggests that the frequency of extreme fire events could
increase with the increase in extremeweather conditions [IPCC, 2012], such as summer drought extremes and
the duration of these droughts.

The spatial pattern of the fire season shows pronounced variability. The timing spans about 4 months
from the end of February (Florida) to the end of June (Idaho) for the start of the fire season, 5 months from
early April (Florida) to mid-September (Alabama) for the peak season, and 3 months from early August
(Vermont) to the end of October (Alabama) for the end of the fire season. Although the spatial pattern of the
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fire season is complex because it is controlled by numerous factors across the CONUS, it appears to shift
regularly in various local regions in response to the latitudinal gradient of temperature variation.

The fire seasonality presents considerable interannual variation and significant trends in the start and end
of the fire season occur in various states. The preliminary results of this study indicate that the trends are
more strongly associatedwith temperature in thewest andwith precipitation in the southeast. Literature review
suggests that agricultural practices may explain fire seasonality changes, particularly in the central CONUS.
While the PDSI was found to have been an effective index reflecting interannual variation in the total biomass
consumed, it had limited correlation with the fire seasonality. Importantly, the reported state level correlations
between the fire season metrics and antecedent monthly temperature and precipitation simply demonstrate
potential climate influences. Independent examination of these factors provides useful insights but we
recognize that these and other multiple factors may combine in complex ways. The correlations are only
significant in some states because other factors may dominate. The temporal and spatial pattern of biomass
consumed from wildfires is the final consequence of a sequence of influences from climate, fuel loadings, land
cover and land use, and lightning and anthropogenic sources of ignitions, which are complex to disaggregate.

The frequency and seasonality of fire have conventionally been derived by examination of summary statistics
of satellite-derived burned area maps or active fire counts. In this study the biomass consumed derived
from geostationary satellite data are reported and so are not expected to reveal the same patterns as
conventional approaches. The use of biomass consumed estimates is more directly appropriate to studies
of biomass burning emissions, including carbon and aerosol amounts, as it is well established that emissions
are dependent on the fuel condition and the fire behavior which are not reliably defined using conventional
remote sensing techniques but are captured by the temporal integration of geostationary FRP. Further
research to compare the fire seasonality derived using the reported approach with more conventional
approaches is recommended.
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