South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Agricultural Experiment Station Circulars SDSU Agricultural Experiment Station 11-2009 ## 2009 Precision Planted Corn Performance Trials R. G. Hall South Dakota State University, robert.hall@sdstate.edu K. K. Kirby South Dakota State University, kevin.kirby@sdstate.edu J. A. Hall South Dakota State University Follow this and additional works at: http://openprairie.sdstate.edu/agexperimentsta circ #### Recommended Citation Hall, R. G.; Kirby, K. K.; and Hall, J. A., "2009 Precision Planted Corn Performance Trials" (2009). Agricultural Experiment Station Circulars. Paper 308. http://openprairie.sdstate.edu/agexperimentsta_circ/308 This Circular is brought to you for free and open access by the SDSU Agricultural Experiment Station at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Agricultural Experiment Station Circulars by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu. **2009 Precision Planted Performance Trials** South Dakota State University • Cooperative Extension Service • U.S. Department of Agriculture ## **Tables, 2009 Corn Performance Trials** | Α | Description of 2009 corn hybrid trial locations— soil type, tillage type, prior crop, herbicide and insecticides used, and seeding date | . 5 | |----|--|------| | В | Nearest weather station precipitation and growing degree day (GDD) accumulation and average daily temperatures for each growing season month in 2009 and their departures from average (DFA) | 5-6 | | С | 2009 Glyphosate-resistant corn hybrid entries by brand/hybrid, seed product traites, and index to performance table no. (s) | 6-9 | | D | Explanation of performance table footnotes | . 9 | | Ε | Mailing addresses for seed entries in the 2009 corn hybrid trials by seed brand name | . 10 | | 1a | Warner early maturity Roundup Ready™ corn hybrid test results, 2008-09, Allen & Inel Ryckman Farm | . 11 | | 1b | Warner late maturity Roundup Ready™ corn hybrid test results, 2008-09, Allen & Inel Ryckman Farm | 12 | | 2a | South Shore early maturity Roundup Ready™ corn hybrid test results, 2008-09, Northeast Reseach Farm | . 13 | | 2b | South Shore late maturity Roundup Ready™ corn hybrid test results, 2008-09, Northeast Reseach Farm | . 14 | | За | Bancroft early maturity glyphosate-resistant corn hybrid test results, 2008-09, Erland Weerts Farm | . 15 | | 3ь | Bancroft late maturity glyphosate-resistant corn hybrid test results, 2008-09, Erland Weerts Farm | . 16 | | 4a | Brookings early maturity glyphosate-resistant corn hybrid test results, 2008-09, Plant Science Farm | . 17 | | 4b | Brookings late maturity glyphosate-resistant corn hybrid test results, 2008-09, Plant Science Farm | . 18 | | 5a | Geddes early maturity glyphosate-resistant corn hybrid test results, 2008-09, Curt Sybesma Farm | . 19 | | 5b | Geddes late maturity glyphosate-resistant corn hybrid test results, 2008-09, Curt Sybesma Farm. | 20 | | 6a | Beresford early maturity glyphosate-resistant corn hybrid test results, 2008-09, Southeast Experiment Station | . 21 | | 6b | Beresford late maturity glyphosate-resistant corn hybrid test results, 2008-09, Southeast Experiment Station | . 22 | ## C253—Precision Planted Corn 2009 Crop Performance Results is available electronically on the internet http://agbiopubs.sdstate.edu/articles/C253-09.pdf South Dakota State University, South Dakota counties, and U.S. Department of Agriculture cooperating. South Dakota State University is an Affirmative Action/ Equal Opportunity Employer and offers all benefits, services, education, and employment opportunities without regard for race, color, creed, religion, national origin, ancestry, citizenship, age, gender, sexual orientation, disability, or Vietnam Era veteran status. # 2009 Precision Planted Corn Performance Trials Robert G. Hall, Professor/Extension agronomist; Project Leader, Crop Performance Testing Kevin K. Kirby, Agricultural Research Manager Jesse A. Hall, Agricultural Research Manager > Plant Science Department Agricultural Experiment Station South Dakota State University Brookings, SD 57007-1096 This publication reports the results of the 2009 South Dakota corn hybrid performance trials for glyphosate-resistant hybrids. Information includes both the most recent 2-year and 1-year grain yields in bushels per acre and 1-year bushel weight, grain moisture at harvest, lodging percentage, and final stand percentages. These performance trials are conducted by the South Dakota Crop Performance Testing program at South Dakota State University. Corn performance trial tables are listed on the inside front cover. Environmental data is listed in tables A and B, indices of brand/hybrid entries to performance table number are listed in table C, table D has the footnote legend, and mailing addresses for seed companies are listed in table E. #### **Test Trial Locations** Trial locations, soil types, seedbed and previous crop history, soil fertility yield goals, and seeding dates are indicated in table A. The participation and efforts of our cooperators — Allen and Inel Ryckman at Warner, Al Heuer at South Shore (Northeast Research Farm), E. Weerts Farm Inc. at Bancroft, Douglas Doyle at Brookings (SDSU Plant Science Research Farm), Curtis Sybesma at Geddes, and Robert Berg and staff at Beresford (Southeast Experiment Station) — are gratefully acknowledged. #### **Seasonal Temperatures and Precipitation** Seasonal rainfall and its distribution and average temperatures at weather reporting stations nearest each test trial are reported in table B for the period April 1 to October 31. Seasonal precipitation sums were above average at Aberdeen (3.15"), South Shore (2.95", and Huron (2.25"); near average at Centerville (0.65"); and below average at Brookings (-1.38") and White Lake (-1.37"). The greatest moisture deficits tended to occur at most locations in April and May. In some areas of the state, such early season moisture deficits may have resulted in the delayed emergence of some crops seeded at their normal seeding dates. Seasonal average temperatures from April to October were at or near normal at Brookings and Centerville. Seasonal temperatures were below average at Aberdeen (-2.37°F), South Shore (-3.07°F), Huron (-2.00°F) and White Lake (-3.13°F). The monthly departures from average temperatures in June, July, and August varied from near normal at Brookings and Centerville to nearly 7°F below average at South Shore and White Lake in July. Seasonal sums of accumulated growing degree days (GDDs) varied from a low of 2,010 at South Shore to a high of 2,630 at Centerville for the April—October period. The seasonal accumulated GDDs departures from average were below average for all locations and varied from a low of -279 at Huron to a high of -588 GDDs at White Lake. If only the May to September period is considered, then the seasonal GDDs departure from average would be -224 at Aberdeen, -291 at South Shore, -162 at Huron, -171 at Brookings, -306 at Centerville, and -415 at White Lake. If one calculates the average loss in GDDs per day from May to September, the average losses were -1.5 at Aberdeen, -1.9 at South Shore, -1.1 at Huron and Brookings, -2.0 at Centerville, and -2.7 at White Lake. In summary, the growing season precipitation sums for corn varied from -1.3" below to over 3" above normal across the 6 locations tested, with the greatest precipitation generally occurring in October. In addition, the greatest monthly departures from average temperature occurred in June, July, August, and October. Generally, the GDD loss per day during the growing season was low at Huron and Brookings; slightly higher at Aberdeen, South Shore, and Centerville; and the highest at White Lake. #### **General Test Procedures** Seed companies pick the test locations where their entries are tested. Entries are placed into "early" or "late" maturity trials. The relative maturity breaks between the early and late tests are 95 days for Warner and South Shore, 100 days for Bancroft and Brookings, 105 days for Geddes, and 110 days for Beresford. Hybrids are assigned to trials based on the relative maturity rating reported by the participating seed company. This testing program does not guarantee that all entries are placed in the proper maturity trial. In some trials, borderline entries with relative maturity ratings at or near the arbitrary break between the early and late trials may crossover at a given location. In some cases this may be indicated by exceptionally high or low grain moisture contents at harvest. A higher than average moisture content may indicate the hybrid is later in relative maturity than indicated. Likewise, a lower than average moisture content may indicate the hybrid is earlier in relative maturity than indicated. A fee was charged for all entries at each location. A list of participating seed companies for 2009 is presented in table E. #### **Experimental Procedures** Entries were seeded in 3 replications, with each hybrid randomly located within each trial. Plots consisted of four 30-inch rows that were 20 feet long, with the center two rows harvested for yield. A Monosem precision row crop planter was used for seeding plots at all locations. In 2009, the precision planter was calibrated to deliver 28,750 seeds per acre, regardless of seed quality and germination percentage. No seeding rate adjustment was made for low germination. Therefore, percent stand is an indication of initial seed quality and the ability of the
seed to cope with the production environment from seeding to harvest. Soil type, land preparation, previous crop history, and fertility yield goal at each test site is outlined in table A. Seedbed preparation was good at all locations. A starter fertilizer of 100 pounds/acre of 37-18-00 was applied 2" below and 2" to the side (2 x 2) of the seed row. The weed control herbicides applied at recommended label rates are indicated in table A. #### Measurements of Performance Yields are obtained from the South Dakota Crop Performance Testing Program. Current-year and 2-year yield averages are included where hybrids have been tested in 2009 and for the past 2 years. Yield. Yield values are an average of 3 replications and are expressed as bushels per acre, adjusted to 15.5% moisture on a dry-matter basis and a bushel weight of 56 pounds. Hybrids of equal potential may yield differently because of variations in slope, soil fertility, and stand. Statistical tests were conducted to determine whether differences obtained were caused by variations in environment or were true hybrid differences. In 2009, the coefficient of variation (CV) values (a measure of experimental error) for yield was relatively low, ranging from 3 to 8% over the 6 test locations. Experimental error may be the result of several factors, including test methods, or factors such as moisture, temperature, or soil variations, or agronomic factors like seeding date, reseeding, or seed quality factors — all of which may or may not be controllable in a given year. This year, good seasonal moisture distribution and cooler than normal mid-summer temperatures were the 2 factors that were instrumental in producing good yields but very low bushel weights and high kernel moisture levels at harvest. Grain moisture content. Moisture content is expressed as the percentage of moisture in the shelled corn at harvest. Moisture is generally inversely related to maturity and is important in the evaluation of hybrids. Hybrids that provide satisfactory yields and can be stored without additional drying are desirable. During harvest, moisture values were determined by the combine moisture meter, which in turn was periodically checked with a Dickey-John GAC-2100 to verify it was within limits. In 2009, grain moisture values were higher than normal as the result of lower than normal heat unit accumulation (below average temperatures) that slowed the progress of the crop during grain filling that in turn contributed to both high kernel moisture and low bushel weight values. Use of tables. Check for the "least significant difference" (LSD) value at the bottom of each column of data averages. The LSD value indicates how much a variable such as yield must differ between 2 hybrids before there is a significant yield difference. LSD values are given at the bottom of every column where there is significant difference among the averages within the column. If differences among the averages within a column are not significant, the LSD value is reported as "non-significant" (NS). The LSD values reported in this publication can be used in two ways. In this publication the LSD value is used primarily to identify the top performance group (TPG) for 2-year yields, for current-year yields, for bushel weight, for grain moisture at harvest, for lodging (below the ear) percentage, and for final stand percentage for each test trial. In order to determine which hybrids are in the TPG for yield, use the LSD value indicated at the bottom of each yield column in any yield table. For example, let's say the column LSD value equals 15 (bu/a) and the highest yield for that column equals 155 bu/a. If you subtract the column LSD value from the highest yield, you obtain an intermediate value of 140 bu/a (155 - 15 = 140). The minimum top yield value has to be greater than this intermediate value of 140 bu., and since the yield values are rounded to the nearest bushel, it must be at least 141 bu. Thus, varieties with an average of 141 bu. or higher are included in the top-yield group. These minimum TPG values for yield are indicated at the bottom of each yield column, unless too much experimental error (high CV values) is associated with the test. Top yield hybrids are those hybrids that are equal or higher than the minimum TPG value reported at the bottom of each yield column (2-yr or 2009 yield averages). If hybrid yield differences are not significant (NS) and the CV values are 15% or less, then, by definition, all hybrids in the test are in the top-yield group. In contrast, if the column CV value is greater than 15%, then no minimum TPG value is indicated because there was too much experimental error associated with the test to make a valid determination of the TPG for yield. When comparing yield means, compare current-year averages with other current-year averages and compare 2-yr yield averages with other 2-yr averages. When evaluating 2-yr averages, do not forget to note how the entries tested for 2 years performed in 2009. Entries tested for 2 years may also have a yield value that qualifies for the TPG in the 2009 yield column. The TPG for other performance factors — such as bushel weight, percent grain moisture at harvest, percent lodging (below the ear), and percent stand (percent of seeded population) — can also be determined. In order to qualify for the TPG group, a hybrid must have a bushel weight and a final stand percentage value that is equal to or greater than the minimum reported TPG value for bushel weight or final stand percentage. Likewise, in order to qualify for the TYG, a hybrid must have grain moisture and lodging percentage values that are equal to or less than the maximum reported TPG value for grain moisture or lodging percentage. Note that yield, bushel weight, and percent stand TPG values are greater than a certain yield, bushel weight, or final stand value, or they are minimum values. In contrast, grain moisture and lodging percentages are equal to or less than a certain value to qualify for the TPG, or they are maximum values. Again, as with hybrid yields, if there are no hybrid differences for a performance factor, then, by definition, all hybrids in the test are in the TPG for that performance factor. The LSD values for the TPG can also be used to determine if two hybrids differ in performance. For example, if a test trial LSD value equals 16 bu/a, and hybrid A yields 132 bu/a while hybrid B yields 118 bu/a, then their yield difference is 14 bu/a (132-118 = 14). In this case, the two hybrids do not differ in yield because their yield difference of 14 bu/ac is equal to or less than the reported LSD value of 16 bu/a. In contrast, if hybrid C yields 114 bu/a, the yield difference between hybrids A and C is 18 bu/a (132-114=18). In this case, the yield difference of 18 bu/a is higher than the reported LSD value of 16 bu/a; therefore, hybrid A would have a significantly higher yield than hybrid C. Similarly, the LSD values for bushel weight, grain moisture, stalk lodging below the ear, and percent stand can be used to determine if any two hybrids differ in these performance factors. For example, if a test trial grain moisture LSD value equals 2% and hybrid a measures 18% and hybrid B measures 16, their grain moisture difference is 2% (18-16=2). In this case, the two hybrids do not differ in grain moisture because their moisture difference of 2% is equal to or less than the reported LSD value of 2%. In contrast, if hybrid C measures 15%, the grain moisture difference between hybrids A and C is 3% (18-15=3). In this case, the grain moisture difference of 3% is more than the reported LSD value 2%; therefore, hybrid A is significantly higher in grain moisture than hybrid C. The performance trial results for one year (2009) and for two years (2008-09) follow: #### PERFORMANCE TRIAL RESULTS BY LOCATIONS #### **Northern Locations** A brief discussion of the corn performance trial results at the various test trial locations for the past 2 years (2008-2009) and for the most recent year (2009) follow. In addition, note that all yield averages are reported as harvest yield adjusted to 15.5% grain moisture and a 56 pound bushel weight. Generally, Warner, Geddes, and Beresford exhibited the best yield and bushel weight averages, along with grain moisture levels of 17 to 27%. At South Shore, Bancroft, and Brookings the yield averages were surprisingly good, but the bushel weight averages were very low and varied from 47 to 50 pounds with high grain-moisture levels of 20 to 31%. At all locations, the coefficient of variation (a measure of experimental error) for yield was very low and only varied from 3 to 6% for 2009. The cooler than average temperatures this past summer had a significant influence that resulted in high yields but lower than average bushel weights and higher than average moisture levels at harvest at most locations. #### Warner: Early – Glyphosate-resistant trial, Table 1a. The test trial yield averages were 210 bu/a for 2 years and 230 bu/a for 2009. Hybrids that yielded 206 bu/a or more for 2 years and 234 bu/a or more for 2009 qualified for the TPG for yield. Hybrids had to differ in yield by 13 bu/a in 2009 to be significantly different, while the yield differences for 2 years were not significant (NS). Because there were no differences in yield average among the hybrids tested 2 years, all entries tested qualified for the TPG. In 2009, bushel weights averaged 52 lbs, grain moisture averaged 21%, lodging percentage averaged zero percent, and final stand percentage averaged 94%. In order for hybrids to be in the TPG for these factors, the hybrid had to average 53 lbs. or more in bushel weight, 19% or less in grain moisture, 1% or less in lodging percentage, and 94% or more for final stand percentage. Late – Glyphosate-resistant trial, Table 1b. The test trial yield averages were 220 bu/a for 2 years and 231 bu/a for 2009. Hybrids that yielded 210 bu/a or more for 2 years
qualified for the TPG for yield. Because there were no differences in yield average among the hybrids tested two years, all entries tested qualified for the TPG. Hybrids had to differ in yield by 12 bu/a in 2009 to be significantly different. In 2009, bushel weights averaged 52 lbs, grain moisture averaged 23%, lodging percentage averaged zero percent, and final stand percentage averaged 94%. In order for hybrids to be in the TPG for these factors, the hybrid had to aver- age 53 lbs. or more in bushel weight, 19% or less in grain moisture, 1% or less in lodging percentage, and 95% or more for final stand percentage. #### **South Shore:** Early – Glyphosate-resistant trial, Table 2a. The test trial yield averages were 187 bu/a for 2 years and 200 bu/a for 2009. The yield differences among those hybrids tested for 2 years were not significant (NS). Hybrids that yielded 205 bu/a or more for 2009 qualified for the TPG for yield. Hybrids had to differ in yield by 11 bu/a in 2009 to be significantly different. In 2009, bushel weights averaged 50 lbs, grain moisture averaged 20%, lodging averaged zero percent, and final stand percentage averaged 96%. In order for hybrids to be in the TPG for these factors, the hybrid had to average 52 lbs. or more in bushel weight, 18% or less in grain moisture, 1% or less in lodging, and 95% or more in final stand percentage. Late – Glyphosate-resistant trial, Table 2b. The test trial yield averages were 185 bu/a for 2 years and 192 bu/a for 2009. Hybrids that yielded 171 bu/a or more for 2 years and 204 bu/a or more for 2009 qualified for the TPG for yield. Hybrids had to differ in yield by 28 bu/a for two years and 13 bu/a in 2009 to be significantly different. In 2009, bushel weights averaged 47 lbs, grain moisture averaged 26%, lodging averaged zero percent, and final stand percentage averaged 93%. In order for hybrids to be in the TPG for these factors, the hybrid had to average 49 lbs. or more in bushel weight, 22% or less in grain moisture, and 1% or less in lodging, and 93% or higher in final stand percentage. ## Central Locations #### **Bancroft:** Early – Glyphosate-resistant trial, Table 3a. The test trial yield averages were 189 bu/a for 2 years and 179 bu/a in 2009. Hybrids that yielded 179 bu/a or more for 2 years and 183 bu/a in 2009 qualified for the TPG for yield. Hybrids had to differ in yield by 20 bu/a for 2 years and 18 bu/a in 2009 to be significantly different. In 2009, bushel weights averaged 49 lbs, grain moisture averaged 24%, lodging averaged zero percent, and percent stand averaged 90%. In order for hybrids to be in the TPG for these factors, the hybrid had to average 51 lbs. or more in bushel weight, 20% or less in grain moisture, 2% or less in lodging percentage, and 91% or more for final stand percentage. Late - Glyphosate-resistant trial, Table 3b. The test trial yield averages were 181 bu/a for 2 years and 161 bu/a in 2009. Hybrids that yielded 168 bu/a or more in 2009 qualified for the TPG for yield. Yield differences among hybrids were not significant for the 2-year period. In 2009, bushel weights averaged 48 lbs, grain moisture averaged 31%, lodging percentage averaged 1%, and the final stand percentage averaged 89%. In order for hybrids to be in the TPG for these factors, the hybrid had to average 47 lbs. or more in bushel weight, 26% or less in grain moisture, 4% or less in lodging percentage, and 90% or more for final stand percentage. #### **Brookings:** Early – Glyphosate-resistant trial, Table 4a. The test trial yield averages were 197 bu/a for 2 years and 219 bu/a for 2009. Hybrids that yielded 234 bu/a or more for 2009 qualified for the TPG for yield, while the yield differences for 2 years were not significant (NS). Hybrids had to differ in yield by 11 bu/a in 2009 to be significantly different. In 2009, bushel weights averaged 50 lbs, grain moisture averaged 23%, lodging percentage averaged zero percent, and final stand percentage averaged 93%. In order for hybrids to be in the TPG for these factors, the hybrid had to average 51 lbs. or more in bushel weight, 22% or less in grain moisture, 2% or less in lodging percentage, and 94% or more for final stand percentage. Late – Glyphosate-resistant trial, Table 4b. The test trial yield averages were 201 bu/a for 2 years and 223 bu/a for in 2009. There were no differences in yield average among the hybrids tested 2 years, so all hybrids tested qualified for the TPG. Hybrids that yielded 231 bu/a or more in 2009 qualified for the TPG for yield. Hybrids had to differ in yield by 12 bu/a in 2009 to be significantly different. In 2009, bushel weights averaged 48 lbs, grain moisture averaged 27%, lodging averaged slightly more than zero percent, and percent stand averaged 93%. In order for hybrids to be in the TPG for all performance factors, the hybrid had to average 51 lbs. or more in bushel weight, 24% or less in grain moisture, 2% or less in lodging percentage, and 95% or more for final stand percentage. ## Southern Locations Geddes: Early – Glyphosate-resistant trial, Table 5a. The test trial yield average was 211 bu/a for 2 years and 229 bu/a in 2009. The average yield differences among the hybrids tested 2 years were non-significant (NS), so all the hybrids tested qualified for the TPG. Hybrids that yielded 228 bu/a or more for 2009 qualified for the TPG for yield. In 2009, bushel weights averaged **54** lbs, grain moisture averaged **17%**, lodging percentage averaged **zero percent**, and percent final stand averaged **93%**. In order for hybrids to be in the TPG for these factors, the hybrid had to average **55** lbs. or more in bushel weight, **16%** or less in grain moisture, **2%** or less in lodging, and **93%** or more for final stand. Late – Glyphosate-resistant trial, Table 5b. The test trial yield average was 208 bu/a for 2 years and 216 bu/a for 2009. Yield differences among hybrids tested for 2 years were non-significant (NS); thus, all entries tested two years were in the TPG for yield. Hybrids that yielded 216 bu/a or more for 2009 qualified for the TPG for yield. Hybrids had to differ in yield by 18 bu/a in 2009 to be significantly different. In 2009, bushel weights averaged 52 lbs, grain moisture averaged 20%, lodging percentage averaged zero percent, and percent final stand averaged 91%. In order for hybrids to be in the TPG for these factors, the hybrid had to average 53 lbs. or more in bushel weight, 18% or less in grain moisture, 2% or less in lodging, and 95% or more for final stand. #### Beresford: Early – Glyphosate-resistant trial, Table 6a. The test trial yield averages were 225 bu/a for 2 years and 236 bu/a in 2009. There were no differences in yield average among the hybrids tested 2 years, so all hybrids tested qualified for the TPG. Hybrids that yielded 239 bu/a or more in 2009 qualified for the TPG for yield. Hybrids had to differ in yield by 14 bu/a in 2009 to be significantly different. In 2009, bushel weights averaged 52 lbs, grain moisture averaged 24%, lodging percentage averaged 1%, and final stand percentage averaged 93%. In order for hybrids to be in the TPG for these factors, the hybrid had to average 53 lbs. or more in bushel weight, 19% or less in grain moisture, 2% or less in lodging percentage, and 93% or more for final stand percentage. Late – Glyphosate-resistant, Table 6b. The test trial yield averages were 225 bu/a for 2 years and 232 bu/a in 2009. There were no differences in yield average among the hybrids tested 2 years, so all hybrids tested qualified for the TPG. Hybrids that yielded 235 bu/a or more in 2009 qualified for the TPG for yield. Hybrids had to differ in yield by 14 bu/a in 2009 to be significantly different. In 2009, bushel weights averaged 52 lbs, grain moisture averaged 27%, lodging percentage averaged 1%, and final stand percentage averaged 93%. In order for hybrids to be in the TPG for these factors, the hybrid had to average 53 lbs. or more in bushel weight, 25% or less in grain moisture, and 3% or less in lodging percentage. Table A. Description of 2009 corn hybrid trial locations-soil type, tillage method, prior crop, herbicides used, and seeding dates. | Location (County) | Soil Type | Tillage | Prior | | es Applied
el rates | Fertility
Yield Goal | Date | |---|---|--------------|---------------------------|-------------------|------------------------|-------------------------|--------| | | | Method | crop | Pre Post | | bu/a | Seeded | | Warner Harmony-Aberdeen
silty clay loam,
(Brown) 0-2% slope | | Conventional | Conventional Spring Wheat | | Roundup
once | 200 | May 7 | | South Shore
(Codington) | Kranzburg silty
clay loam,
3-6% slope | Conventional | Spring
Wheat | Dual II
Magnum | Roundup
once | 180 | May 7 | | Bancroft
(Kingsbury) | Houdek-Stickney-
Tetonka loam,
0-3% slope | Conventional | Soybean | Fall
Dual | Roundup
once | 180 | May 18 | | Brookings
(Brookings) | Barnes clay loam,
0-2% slope | Conventional | Soybean | Dual II
Magnum | Roundup
twice | 200 | May 6 | | Geddess
(Chas. Mix) | Highmore-Walke
silt loam,
0-2% slope | No-till | Winter Roundup 200 | | 200 | May 14 | | | Beresford
(Clay) | Egan-Clarno-Trent
silty clay loam,
0-2% slope | Conventional | Soybean | | Roundup
once | 210 | May 11 | Plots were seeded at 28,750 seeds per acre. Table B. Nearest weather station precipitation accumulation and average daily tempeatures for each growing season month in 2009 and departures from average (DFA), SD Office of Climate and Weather. | 0 | Wasiakla | | Monthly data - April 1 to October 31 | | | | | | | Sum or | |------------------------------|---------------------------------|-------------|--------------------------------------|--------------|--------------|--------------------|--------------|--------------
---|-----------------------| | Station (Test site) | Variable | | April | May | June | July | Aug | Sept | Oct | Average | | | Precip inches
1971-2000 avg. | '09 | 1.90
1.83 | 0.47
2.69 | 3.87
3.49 | 2.46
2.92 | 2.83
2.42 | 4.41
1.81 | 4.00
1.63 | 19.94
16.79 | | | | DFA* | 0.07 | -2.22 | 0.38 | -0.46 | 0.41 | 2.60 | 2.37 | 3.15 | | Aberdeen Airport
(Warner) | Avg.Temp°F
1971-2000 avg. | '09 | 43.0
45.4 | 56.4
57.9 | 64.0
66.8 | 68.0
72.2 | 66.5
70.5 | 63.5
59.8 | 41.4
46.8 | 57.54
59.91 | | | | DFA | -2.4 | -1.5 | -2.8 | -4.2 | -4.0 | 3.7 | -5.4 | -2.37 | | | Accum. GDDs
1971-2000 avg. | '09 | 108
111 | 309
316 | 450
498 | 549
691 | 535
644 | 431
349 | 40
143 | 2422
2752 | | | | DFA* | -3 | -7 | -48 | -142 | -109 | 82 | -103 | -330 | | | Precip inches
1971-2000 avg. | '09 | 1.09
1.96 | 1.73
2.61 | 2.70
4.01 | 3.97
2.91 | 3.60
2.85 | 1.62
2.03 | 6.53
1.92 | 21.24
18.29 | | | HE ROLL | DFA | -0.87 | -0.88 | -1.31 | 1.06 | 0.75 | -0.41 | 4.61 | 2.95 | | South Shore | Avg.Temp°F
1971-2000 avg. | ′09 | 40.7
43.2 | 54.3
56.0 | 61.9
65.3 | 64.0
70.4 | 63.9
67.8 | 61.1
57.8 | 38.1
45.0 | 54.86
57.93 | | Northeast Research Farm | | DFA | -2.5 | -1.7 | -3.4 | -6.4 | -3.9 | 3.3 | -6.9 | -3.07 | | | Accum. GDDs
1971-2000 avg. | '0 9 | 89
73 | 250
278 | 391
456 | 439
631 | 449
558 | 377
306 | 15
107 | 2010
2 4 09 | | | | DFA* | 16 | -28 | -65 | -192 | -109 | 71 | 40
143
-103
6.53
1.92
4.61
38.1
45.0
-6.9
15
107
-92
3.87
1.59
2.28
42.0
47.9 | -399 | | | Precip inches
1971-2000 avg. | '09 | 1.68
2.29 | 2.08
3.00 | 4.45
3.28 | 2.95
2.86 | 1.57
2.07 | 2.54
1.80 | | 19.14
16.89 | | | | DFA | -0.61 | -0.92 | 1.17 | 0.09 | -0.50 | 0.74 | 2.28 | 2.25 | | Huron
(Bancroft) | Avg.Temp°F
1971-2000 avg. | ′09 | 44.5
46.1 | 58.5
58.2 | 65.0
67.9 | 69.0
73.4 | 68.5
71.5 | 64.5
61.0 | | 58.86
60.86 | | | | DFA | -1.6 | 0.3 | -2.9 | -4.4 | -3.0 | 3.5 | -5.9 | -2.00 | | | Accum. GDDs
1971-2000 avg. | '0 9 | 122
124 | 344
318 | 478
536 | 58 0
719 | 587
665 | 465
378 | 54
169 | 2630
2909 | | | | DFA* | -2 | 26 | -58 | -139 | -78 | 87 | -115 | -279 | | | Precip inches
1971-2000 avg. | ′09 | 0.86
2.03 | 2.23
2.95 | 3.32
4.23 | 3.78
3.11 | 1.37
2.94 | 1.25
2.48 | 5.33
1.78 | 18.14
19.52 | |---|---------------------------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------| | | | DFA | -1.17 | -0.72 | -0.91 | 0.67 | -1.57 | -1.23 | 3.55 | -1.38 | | Brookings | Avg.Temp°F
1971-2000 avg. | '09 | 44.4
44.2 | 56.9
56.7 | 66.2
66.1 | 70.7
70.7 | 68.5
68.6 | 58.9
59.1 | 46.0
46.3 | 58.80
58.81 | | (SDSU Plant Science Farm) | | DFA | 0.2 | 0.2 | 0.1 | 0.0 | -0.1 | -0.2 | -0.3 | -0.01 | | | Accum. GDDs
1971-2000 avg. | '0 9 | 100
85 | 299
293 | 429
483 | 496
640 | 504
577 | 394
330 | 23
138 | 2245
2546 | | | 110 | DFA* | 15 | 6 | -54 | -144 | -73 | 64 | -115 | -301 | | | Precip inches
1971-2000 avg. | '09 | 1.60
2.47 | 0.94
3.65 | 4.64
3.95 | 4.82
3.35 | 2.08
2.83 | 2.16
2.26 | 4.72
1.80 | 20.96
20.31 | | • | | DFA | -0.87 | -2.71 | 0.69 | 1.47 | -0.75 | -0.10 | 2.92 | 0.65 | | Centerville, 6 SE
(Beresford) | Avg.Temp°F
1971-2000 avg. | '09 | 47.4
47.2 | 59.7
59.5 | 69.5
69.4 | 73.7
73.7 | 71.4
71.5 | 62.6
62.3 | 49.4
49.7 | 61.96
61.90 | | Southeast Experiment
Station (Test site) | | DFA | 0.2 | 0.2 | 0.1 | 0.0 | -0.1 | 0.3 | -0.3 | 0.06 | | Station (Test Site) | Accum. GDDs
1971-2000 avg. | '09 | 136
135 | 354
338 | 504
582 | 561
733 | 564
666 | 424
396 | 52
194 | 2595
3044 | | | | DFA* | 1 | 16 | -78 | -172 | -102 | 28 | -142 | -449 | | | Precip inches
1971-2000 avg. | '09 | 0.96
2.49 | 1.18
3.6 | 3.11
3.19 | 3.4
2.88 | 2.63
2.21 | 1.72
2.09 | 3.68
1.59 | 16.68
18.05 | | | | DFA | -1.53 | -2.42 | -0.08 | 0.52 | 0.42 | -0.37 | 2.09 | -1.37 | | White Lake
(Geddes) | Avg.Temp°F
1971-2000 avg. | ′09 | 43.7
47.9 | 58.0
59.7 | 65.1
69.0 | 68.0
74.5 | 67.5
72.7 | 62.7
62.8 | 49.5
49.8 | 59.21
62.34 | | | | DFA | -4.2 | -1.7 | -3.9 | -6.5 | -5.2 | -0.1 | -0.3 | -3.13 | | | Accum. GDDs
1971-2000 avg. | ' 09 | 125
148 | 340
342 | 457
567 | 570
740 | 552
696 | 426
415 | 40
190 | 2510
3098 | | | | DFA* | -23 | -2 | -110 | -170 | -144 | 11 | -150 | -588 | $[\]star$ DFA - departure from normal, difference current year is greater or less (-) than the long-term average. Table C. 2009 Glyphosate-resistant corn hybrid entries by brand/hybrid, seed product traits, and index to performance table no.(s). | Brand/Hybrid | Seed Biotech Traits [1] | Table No.(s) | | | |---|---|--|--|--| | AGSOURCE/ 3P-494+RR/YGPL
AGSOURCE/ 3T-096 VT3
AGSOURCE/ 3T-294 VT3
AGSOURCE/ 3T-302 VT3
AGSOURCE/ 3T-603B VT3 | Cb,Crw,Gly Cb,Crw,Gly Cb,Crw,Gly Cb,Crw,Gly Cb,Crw,Gly Cb,Crw,Gly | 1a, 2a
1a, 2a, 3a
1a, 2a
1b, 2b, 5a
3b, 4b, 5a | | | | AGSOURCE/ 3T-712 VT3 | Cb,Crw,Gly | 6b | | | | AGSOURCE/ 3T-799 VT3 | Cb,Crw,Gly | 1b, 2b, 3a, 4a | | | | AGSOURCE/ 3T-904 VT3 | Cb,Crw,Gly | 3b, 4b, 5a | | | | AGSOURCE/ 3T-995 VT3 | Cb,Crw,Gly | 1a, 2a, 3a | | | | AGSOURCE/ 5B-198 GTCBLL | Cb,Glu,Gly | 1b, 2b, 3a, 4a | | | | AGSOURCE/ 5X-100A RR/HXT | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 1b, 2b | | | | AGSOURCE/ 5X-805 RR/HXT | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 3b, 4b, 5a | | | | DAIRYLAND/ ST-6992 | Gly | 2a | | | | DAIRYLAND/ ST-7790 | Crw*,Glu | 2a | | | | DAIRYLAND/ ST-9003 | Cb,Crw,Gly | 4b | | | | DAIRYLAND/ ST-9006 | Cb,Crw,Gly | 6a | | | | DAIRYLAND/ ST-9395 | Cb,Crw,Gly | 1a, 2a | | | | DAIRYLAND/ ST-9500Q | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 1b, 4a | | | | DAIRYLAND/ ST-9594 | Cb,Crw,Gly | 1a, 2a | | | | DAIRYLAND/ ST-9597Q | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 1b, 2b, 4a | | | | DAIRYLAND/ ST-9703Q | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 4b | | | | DAIRYLAND/ ST-9789 | Cb,Crw,Gly | 2a | | | | DAIRYLAND/ ST-9799 | Cb,Crw,Gly | 1b | | | | DAIRYLAND/ ST-9810 | Cb,Crw,Gly | 6a | | | | DAIRYLAND/ ST9206Q | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 6a | | | | Brand/Hybrid | Seed Biotech Traits [1] | Table No.(s) | |---|--|--| | DEKALB/ DKC40-20(VT3) DEKALB/ DKC42-72(VT3) DEKALB/ DKC43-27(VT3) DEKALB/ DKC46-60(VT3) DEKALB/ DKC48-37(VT3) | Cb,Crw,Gly
Cb,Crw,Gly
Cb,Crw,Gly
Cb,Crw,Gly
Cb,Crw,Gly | 1a, 2a
1a, 2a
1a, 2a, 3a, 4a, 5a
1b, 2b, 3a, 4a
2b, 3a | | DEKALB/ DKC50-35(VT3) | Cb,Crw,Gly | 3a, 5a | | DEKALB/ DKC50-44(VT3) | Cb,Crw,Gly | 1b, 2b, 4a, 5a | | DEKALB/ DKC50-66(VT3) | Cb,Crw,Gly | 1b, 2b, 3a, 4a, 5a | | DEKALB/ DKC51-13(VT3) | Cb,Crw,Gly | 1b, 2b, 3b, 4b, 5a | | DEKALB/ DKC52-59(VT3) | Cb,Crw,Gly | 1b, 3b, 4b, 5a, 6a | | DEKALB/ DKC53-76(VT3) | Cb,Crw,Gly | 3b, 4b, 5a, 6a | | DEKALB/ DKC55-07(VT3) | Cb,Crw,Gly | 3b, 5a, 6a | | DEKALB/ DKC57-50(VT3) | Cb,Crw,Gly | 6a | | DEKALB/ DKC58-16(VT3) | Cb,Crw,Gly | 5b | | DEKALB/ DKC59-64(VT3) | Cb,Crw,Gly | 5b, 6a | | DEKALB/ DKC61-69(VT3) | Cb,Crw,Gly | 5b, 6b | | DEKALB/ DKC62-54(VT3) | Cb,Crw,Gly | 6b | | EPLEY/ E1115GT | WBcw,Cb,Bcw,Faw,Glu,Gly | 2a, 3a, 4a | | EPLEY/ E1184VT3 | Cb,Crw,Gly | 2b, 3a, 4a | | EPLEY/ EXP1307HXLLRR | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 2b, 3a, 4a | | FOUR/ STAR 6844VT3 | Cb,Crw,Gly | 6a | | FOUR/ STAR EXP6066VT3 | Cb,Crw,Gly | 6a | | FOUR/ STAR EXP9056VT3 | Cb,Crw,Gly | 6a | | FOUR/ STAR EXP9072VT3 | Cb,Crw,Gly | 6a | | G2/ GEN. 3P-595 RR/YGPL | Cb,Crw,Gly | 1a, 2a | | G2/ GEN. 5H-005 RR/HX | WBcw,Cb,Bcw,Faw,Glu,Gly | 3b, 4b, 5a | | G2/ GEN. 5H-007 RR/HX | WBcw,Cb,Bcw,Faw,Glu,Gly | 3b, 4b, 5b, 6a | | G2/ GEN. 5H-199 RR/HX | WBcw,Cb,Bcw,Faw,Glu,Gly | 1b, 2b | | G2/ GEN. 5H-210 RR/HX | WBcw,Cb,Bcw,Faw,Glu,Gly | 5b, 6a | | G2/ GEN. 5H-314 RR/HX | WBcw,Cb,Bcw,Faw,Glu,Gly | 6b | | G2/ GEN. 5H-501 RR/HX | WBcw,Cb,Bcw,Faw,Glu,Gly | 1b, 2b, 3a, 4a, 5a | | G2/ GEN. 5H-506 RR/HX | WBcw,Cb,Bcw,Faw,Glu,Gly | 3b, 4b, 5a | | G2/ GEN. 5H-506A RR/HX | WBcw,Cb,Bcw,Faw,Glu,Gly | 3b, 4b, 5a | | G2/ GEN. 5H-511 RR/HX | WBcw,Cb,Bcw,Faw,Glu,Gly | 5b, 6a | | G2/ GEN. 5H-511A RR/HX | WBcw,Cb,Bcw,Faw,Glu,Gly | 5b, 6b | | G2/ GEN. 5H-797 RR/HX | WBcw,Cb,Bcw,Faw,Glu,Gly | 1b, 2b, 3a | | G2/ GEN. 5H-905 RR/HX | WBcw,Cb,Bcw,Faw,Glu,Gly | 3b, 4b, 5a | | G2/ GEN. 5H-999 RR/HX | WBcw,Cb,Bcw,Faw,Glu,Gly | 1b, 2b, 3a, 4a | | G2/ GEN. 5X-199RR/HXT | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 1b, 2b, 3a, 4a | | G2/ GEN. 5X-210 RR/HXT | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 5b, 6a | | G2/ GEN. 5X-398 RR/HXT | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 1a, 2a, 3a, 4a | | G2/ GEN. 5X-513 RR/HXT | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 6b | | G2/ GEN. 5X-594 RR/HXT | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 1a, 2a | | G2/ GEN. 5X-707 RR/HXT | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 3b, 4b | | G2/ GEN. 5X-711 RR/HXT | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 6a | | G2/ GEN. 5X-711A RR/HXT | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 6b | | G2/ GEN. 5X-802 RR/HXT | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 1b, 2b, 3a, 4a, 5a | | G2/ GEN. 5X-911 RR/HXT | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 5b, 6a | | G2/ GEN. 5X-911A RR/HXT |
WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 6b | | HEINE/ 727VT3 | Cb,Crw,Gly | 4b | | HEINE/ 742VT3 | Cb,Crw,Gly | 4b | | HEINE/ 744RRYGCB | Cb,Gly | 4b | | HEINE/ 745VT3 | Cb,Crw,Gly | 4b | | HEINE/ 753VT3 | Cb,Crw,Gly | 4b | | HOEGEMEYER/ 3113 | Cb,Crw,Gly | 3a, 4a | | HOEGEMEYER/ 7421 | Cb,Glu,Gly | 5a | | HOEGEMEYER/ 7445 | Cb,Crw,Gly | 5a | | HOEGEMEYER/ HPT 6962 | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 4a | | HOEGEMEYER/ HPT 7757 | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 5a, 6a | | HOEGEMEYER/ HPTEXP6589 | WBcw,Cb,Bcw,Faw,Glu,Gly | 3a | | HOEGEMEYER/ HPTEXP7041 | WBcw,Cb,Bcw,Faw,Glu,Gly | 3a | | HOEGEMEYER/ HPTEXP7408 | WBcw,Cb,Bcw,Faw,Glu,Gly | 5a | | KALTENBERG/ 5355LLGTBT11 | Cb,Glu,Gly | 5a | | KALTENBERG/ 5588LLRRHXT | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 5a | | KALTENBERG/ K4053VT3 | Cb,Crw,Gly | 4a | | Brand/Hybrid | Seed Biotech Traits [1] | Table No.(s) | | | |---|--|----------------------------|--|--| | KALTENBERG/ K4149LLGT3 KALTENBERG/ K4521LLRRHXT KALTENBERG/ K5163VT3 KALTENBERG/ K5332GT KALTENBERG/ K6645LLGT3 | Cb,Crw,Gly
WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly
Cb,Crw,Gly
Gly
Cb,Crw*,Glu,Gly | 4a
4a
5a
5a
6a | | | | KALTENBERG/ K6663VT3 | Cb,Crw,Gly | 6a | | | | KRUGER/ 6006VT3 | Cb,Crw,Gly | 3b, 4b, 5b | | | | KRUGER/ 6010VT3 | Cb,Crw,Gly | 5b, 6a | | | | KRUGER/ 6013VT3 | Cb,Crw,Gly | 6b | | | | KRUGER/ 6093VT3 | Cb,Crw,Gly | 1a, 2a | | | | KRUGER/ 6097VT3 | Cb,Crw,Gly | 1b, 2b, 3a, 4a | | | | KRUGER/ 6102VT3 | Cb,Crw,Gly | 1b, 2b, 3b, 4b, 5a | | | | KRUGER/ 6116VT3 | Cb,Crw,Gly | 6b | | | | KRUGER/ 6200VT3 | Cb,Crw,Gly | 1b, 2b | | | | KRUGER/ 6205VT3 | Cb,Crw,Gly | 3b, 4b, 5a | | | | KRUGER/ 6208VT3 | Cb,Crw,Gly | 5b, 6a | | | | KRUGER/ 6213VT3 | Cb,Crw,Gly | 6b | | | | KRUGER/ 6214VT3 | Cb,Crw,Gly | 6b | | | | KRUGER/ 6295VT3 | Cb,Crw,Gly | 1a, 2a | | | | KRUGER/ 6298VT3 | Cb,Crw,Gly | 1b, 2b, 3a, 4a | | | | KRUGER/6401VT3 | Cb,Crw,Gly | 1b, 2b, 3b, 4b, 5a | | | | KRUGER/6408VT3 | Cb,Crw,Gly | 5b, 6a | | | | KRUGER/6410VT3 | Cb,Crw,Gly | 5b, 6a | | | | KRUGER/6411VT3 | Cb,Crw,Gly | 6b | | | | KRUGER/6412VT3 | Cb,Crw,Gly | 6b | | | | KRUGER/ 6490VT3 | Cb,Crw,Gly | 1a, 2a | | | | KRUGER/ 6499VT3 | Cb,Crw,Gly | 1b, 2b, 3a, 4a | | | | KRUGER/ 6606VT3 | Cb,Crw,Gly | 3b, 4b, 5b | | | | NC+/ 1775VT3 | Cb,Crw,Gly | 3a, 4a, 5a | | | | NC+/ 1982VT3 | Cb,Crw,Gly | 3a, 4a, 5a | | | | NC+/ 208-72VT3 | Cb,Crw,Gly | 5b, 6a | | | | NC+/ 210-57VT3 | Cb,Crw,Gly | 5b, 6a | | | | NC+/ 4517VT3 | Cb,Crw,Gly | 6b | | | | NC+/ 4582VT3 | Cb,Crw,Gly | 5b, 6a | | | | NUTECH/ 3T-098 VT3 | Cb,Crw,Gly | 1b, 2b, 3a, 4a | | | | NUTECH/ 3T-106 VT3 | Cb,Crw,Gly | 3b, 4b, 5a, 6a | | | | NUTECH/ 3T-110 VT3 | Cb,Crw,Gly | 5b, 6a | | | | NUTECH/ 3T-295 VT3 | Cb,Crw,Gly | 1a, 2a | | | | NUTECH/ 3T-300 VT3 | Cb,Crw,Gly | 1b, 2b, 3a, 4a | | | | NUTECH/ 3T-308 VT3 | Cb,Crw,Gly | 3b, 4b, 5b, 6a | | | | NUTECH/ 3T-313 VT3 | Cb,Crw,Gly | 6b | | | | NUTECH/ 3T-401 VT3 | Cb,Crw,Gly | 1b, 2b, 3a, 4a, 5a | | | | NUTECH/ 3T-408 VT3 | Cb,Crw,Gly | 3b, 4b, 5b, 6a | | | | NUTECH/ 3T-409 VT3 | Cb,Crw,Gly | 5b | | | | NUTECH/ 3T-413 VT3 | Cb,Crw,Gly | 6b | | | | NUTECH/ 3T-493 VT3 | Cb,Crw,Gly | 1a, 2a | | | | NUTECH/ 3T-512 VT3 | Cb,Crw,Gly | 5b, 6a | | | | NUTECH/ 3T-512A VT3 | Cb,Crw,Gly | 6b | | | | NUTECH/ 3T-600 VT3 | Cb,Crw,Gly | 1b, 2b, 3a, 4a | | | | NUTECH/ 3T-601 VT3 | Cb,Crw,Gly | 1b, 2b, 3a, 4a | | | | NUTECH/ 3T-603 VT3 | Cb,Crw,Gly | 1b, 2b, 3b, 4b, 5a | | | | NUTECH/ 3T-612 VT3 | Cb,Crw,Gly | 6b | | | | NUTECH/ 3T-706 VT3 | Cb,Crw,Gly | 3b, 4b, 5a | | | | NUTECH/ 3T-713 VT3 | Cb,Crw,Gly | 6b | | | | NUTECH/ 3T-801 VT3 | Cb,Crw,Gly | 1b, 2b, 3a, 4a, 5a | | | | NUTECH/ 3T-894 VT3 | Cb,Crw,Gly | 1a, 2a | | | | NUTECH/ 5B-804 GT/CB/LL | Cb,Glu,Gly | 3b, 4b, 5a | | | | NUTECH/ 5N-909 GTCBLLRW | Cb,Crw*,Glu,Gly | 5b, 6a | | | | PIONEER/ 33Z74 | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 6b | | | | PIONEER/ 35F44 | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 3b, 4b, 5a, 6a | | | | PIONEER/ 36V53 | WBcw,Cb,Bcw,Faw,Glu,Gly | 3b, 4b, 5a | | | | PIONEER/ 37K11 | WBcw,Cb,Bcw,Faw,Glu,Gly | 1b, 3a | | | | PIONEER/ 37N68 | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 1b, 4b | | | | PIONEER/ 38H08 | WBcw,Cb,Bcw,Faw,Glu,Gly | 1a, 2a | | | | PIONEER/ 38P43 | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 2a | | | Table C. 2009 Glyphosate-resistant corn hybrid entry index to performance table no. (s). (Continued) | Brand/Hybrid | Seed Biotech Traits [1] | Table No.(s) | | | |---------------------|------------------------------|----------------|--|--| | PROSEED/ 794 | Cb,Glu,Gly | 1a, 2a | | | | PROSEED/ 8100 | Gly | 4a | | | | PROSEED/ 8101VT3 | Cb,Crw,Gly | 5a, 6a | | | | PROSEED/ 8104 | Cb,Glu,Gly | 6a | | | | PROSEED/ 894 | Cb,Crw,Gly | 1a, 2a | | | | PROSEED/ 896 | Cb,Crw,Gly | 1b, 2b | | | | PROSEED/ 897 | Cb,Crw,Gly | 1b, 2b, 3a, 4a | | | | PROSEED/ 9102 | Cb,Crw,Gly | 5a, 6a | | | | PROSEED/ 9105 | Cb,Crw,Gly | 5a, 6a | | | | RENK/ EXP7-816VT3 | Cb,Crw,Gly | 6b | | | | RENK/ EXP8-809VT3 | Cb,Crw,Gly | 6b | | | | RENK/ RK670VT3 | Cb,Crw,Gly | 3b, 4b, 5a, 6a | | | | RENK/ RK698VT3 | Cb,Crw,Gly | 3b, 4b, 5a, 6a | | | | RENK/ RK711RRHXTRA | WBcw,Cb,Bcw,Faw,Crw*,Glu,Gly | 5b, 6a | | | | RENK/ RK744VT3 | Cb,Crw,Gly | 5b, 6a | | | | RENK/ RK760VT3 | Cb,Crw,Gly | 4b, 5b, 6a | | | | RENK/ RK822VT3 | Cb,Crw,Gly | 5b, 6a | | | | SEEDS/ 2000 9501VT3 | Cb,Crw,Gly | 1a, 2a | | | | SEEDS/ 2000 9502VT3 | Cb,Crw,Gly | 1a, 2a | | | | SEEDS/ 2000 9901VT3 | Cb,Crw,Gly | 1b, 2b, 3a, 4a | | | | WENSMAN/ W 7195VT3 | Cb,Crw,Gly | 1a, 2a | | | | WENSMAN/ W 7267VT3 | Cb,Crw,Gly | 4a | | | | WENSMAN/ W 7270VT3 | Cb,Crw,Gly | 1b, 2b, 3a, 4a | | | | WENSMAN/ W 7273VT3 | Cb,Crw,Gly | 1b, 2b | | | | WENSMAN/ W 7289VT3 | Cb,Crw,Gly | 3a | | | | WENSMAN/ W 7360VT3 | Cb,Crw,Gly | 3b, 4b, 5a | | | | WENSMAN/ W 7433VT3 | Cb,Crw,Gly | 5a | | | | WENSMAN/ W 7455VT3 | Cb,Crw,Gly | 3b, 4b, 5b, 6a | | | | WENSMAN/ W 7469VT3 | Cb,Crw,Gly | 5b, 6a | | | | WENSMAN/ W 8180 | Cb,Crw,Gly | 1a, 2a | | | [1] Insect traits - Black cutworm (Bcw), Corn borer (Cb), corn rootworm (Crw), Mexican Corn rootworm (MCrw), Northern Corn rootworm (NCrw), Western Corn rootworm (WCrw), Fall Armyworm (Faw), and Western Bean cutworm (WBcw), Crw* includes Western, Northern, and Mexican Corn rootworm. Herbicide traits - Glyphosate tolerance (Gly) and Glufosinate tolerance (Glu). NOTE: Biotech traits were obtained by referencing the product registrant trade name and seed characteristics as listed in the Know Before You Grow section at the National Corn Growers Website (http://www.ncga.com/) with the hybrid information supplied by each seed company. Since these biotech seed products change over time, growers are encouraged to verify the biotech traits of any hybrid (s) of interest with the respective seed dealer. Table D. Explanation of performance table footnotes | No. | Explanation of footnotes | |-----|--| | [1] | Entries are listed by brand/variety — entries are sorted by 2-yr then by 2009 yield average. | | [2] | Brand Relative Maturity (Rel. Mat.) – the relative maturity rating as reported by the seed company. | | [3] | Lodging Percentage – percentage of stalks broken below the ear at harvest. | | [4] | Final Stand Percentage – the number of standing stalks at harvest as a percentage of the seeded population. | | [5] | Least Significant Difference (LSD 0.05) — the difference any two values within a column must equal or exceed to be significantly different (0.05 level of probability). If the difference is less than the LSD value, the difference is nonsignificant (NS). | | [6] | Min. TPG-avg. – the minimum column value for yield, bushel weight, and final stand percentage that a hybrid must equal or exceed to be in the TPG. | | [7] | Max. TPG-avg. — the maximum column value for grain moisture at harvest, lodging percentage, or lodging score that a hybrid must equal or be less than to be in the TPG. | | [8] | Coefficient of variation (C.V.) – the percent of experimental error associated with a test trial. Ideally, the CV value for yield is less than 15%. Values less than 5% are less common, while values of 6-15% are more common. If a value exceeds 15%, the trial contained too much experimental error to be valid, so results for that trial are not reported. | Table E. Mailing addresses for seed entries in the 2009 corn hybrid trials by seed brand name | Seed Brand | Seed Company Mailing Address | | | | | | | |----------------------------|--|--|--|--|--|--|--| | AgSource | AgSource Seeds Inc., 1800 L Ave., Nevada, IA 50201 | | | | | | | | Dairyland | Dairyland Seed, PO Box 958, West Bend, WI 53095 | | | | | | | | Dekalb | Monsanto, 102 W. Carol Ave., Cortland, IL 60112 | | | | | | | | Epley Bros. | Epley Bros. Hybrids Inc., PO Box 310, Shell Rock, IA 50670 | | | | | | | | Four Star | Four Star Seed Co., 2929-335th Street, Logan, IA 51546 | | | | | | | | G-2 Genetics | G-2 Genetics, 415 S. Duff Avenue, Suite C, Ames, IA 50010 | | | | | | | | Heine | Heine Hybrid Seed Corn, 1020 E. 320th St., Vermillion, SD 57069 | | | | | | | | Hoegemeyer | Hoegemeyer Hybrids, 1755 Hoegemeyer Road, Hooper, NE 68031 | | | | | | | | Kaltenberg | Kaltenberg Seeds, 5506 State Road 19, Box 278, Waunakee, WI 53597 | | | | | | | | Kruger | Kruger Seed Co., Box A, Dike, IA 50624 | | | | | | | | NC+ | NC+, 525 South 211th Street, Elkhorn, NE 68022 | | | | | | | | NuTech | Nutech Seed, LLC, 415
S. Duff Avenue, Suite C, Ames, IA 50010 | | | | | | | | Pioneer
Proseed
Renk | Pioneer Hi-Bred International, 151 Saint Andrews Court, Mankato, MN 5600 Proseed, 701 E. Brewster St., Harvey, ND 58341 Renk Seed Co., 6809 Wilburn Rd., Sun Prairie, WI 53590 | | | | | | | | Seeds 2000 | Seeds 2000, PO Box 200, Breckenridge, MN 56520 | | | | | | | | Wensman | Wensman Seed Co., 67784 330th Street, Watkins, MN 55389 | | | | | | | Table 1a. Warner early maturity Roundup Ready corn hybrid test results, 2008-09, Allen & Inel Ryckman Farm. Seeded May 7, 2009 at 28,750 seeds per acre. | | | Yield A | verages | | Other 2009 Averages | | | | | |---|----------------------------|---|---|---|--------------------------------------|-------------------------------------|--|--|--| | Brand/Hybrid & Seed Treatment [1] | Rel.
Mat. [2] | 2-Yr
bu/a | 2009
bu/a | Bu. Wt. | Grain
Moisture
Pctg | Lodging
Pctg [3] | Final Stand
Pctg [4] | | | | SEEDS/ 2000 9501VT3 + Poncho 1250
DAIRYLAND/ ST-9594 + Poncho 250
PIONEER/ 38H08 + Poncho 250
AGSOURCE/ 3T-995 VT3 + Cruiser 250
KRUGER/ 6093VT3 + Cruiser 250 | 95
94
92
95
93 | 217
214
209
207
206 | 245
246
225
225
233 | 52
54
50
52
53 | 19
19
17
21
21 | 0
0
0
0
0 | 98
97
95
98
99 | | | | DEKALB/ DKC43-27(VT3) + Poncho 250
PROSEED/ 794 + Poncho 250
DAIRYLAND/ ST-9395 + Poncho 250
NUTECH/ 3T-295 VT3 + Poncho 250
AGSOURCE/ 3P-494+RR/YGPL + Cruiser 250 | 93
94
95
95
94 | 206 | 220
247
245
244
242 | 54
52
52
54
54 | 20
22
20
23
20 | 1
0
0
0
0 | 93
95
97
96
99 | | | | PRO SEED/ 894 + Poncho 250
KRUGER/ 6295VT3 + Cruiser 250
DEKALB/ DKC42-72(VT3) + Poncho 250
WENSMAN/ W 7195VT3 + Poncho 250
SEEDS/ 2000 9502VT3 + Poncho 1250 | 94
95
92
95
95 | | 240
236
232
232
232
232 | 51
53
54
52
53 | 20
21
19
22
21 | 0
0
0
0 | 95
95
97
97
97
89 | | | | G2/ GEN. 5X-398 RR/HXT + Cruiser 250
NUTECH/ 3T-493 VT3 + Poncho 250
DEKALB/ DKC40-20(VT3) + Poncho 250
WENSMAN/ W 8180 + Poncho 250
G2/ GEN. 5X-594 RR/HXT + Cruiser 250 | 95
93
90
95
94 | * * + + + + + + + + + + + + + + + + + + | 230
229
226
226
225 | 51
50
53
53
49 | 24
21
20
23
21 | 0
1
0
0 | 93
86
95
96
92 | | | | NUTECH/ 3T-894 VT3 + Poncho 250
AGSOURCE/ 3T-096 VT3 + Cruiser 250
G2/ GEN. 3P-595 RR/YGPL + Cruiser 250
KRUGER/ 6490VT3 + Cruiser 250
AGSOURCE/ 3T-294 VT3 + Poncho 250 | 94
95
95
90
94 | * * * * * * | 224
215
212
208
208 | 54
54
52
54
54 | 20
22
22
18
21 | 0
1
0
0 | 95
97
83
95
88 | | | | Trial avg.:
High avg.:
Low avg.:
[5] LSD(.05):
[6] Min.TPG value:
[7] Max.TPG value:
[8] Coef. of var.:
No. entries: | 94
95
90 | 210
217
206
NS
206 | 230
247
208
13
234
3
25 | 52
54
49
1
53
2
25 | 21
24
17
2
19
6
25 | 0
1
0
NS
1
372
25 | 94
99
83
5
94
3
25 | | | ^[1] Entries are listed by Brand/Hybrid and sorted by 2-yr then by 2009 yield average. * Values in **bold type** within a column are included in the top-performance group. Note that additional table footnotes are explained in table D. Table 1b. Warner late maturity Roundup Ready corn hybrid test results, 2008-09, Allen & Inel Ryckman Farm. Seeded May 7, 2009 at 28,750 seeds per acre. | | | Yield A | verages | Other 2009 Averages | | | | | |--|-------------------------------|---------------------------------|---|--|----------------------------------|-------------------------------------|--------------------------------------|--| | Brand/Hybrid & Seed Treatment [1] | Rel.
Mat. [2] | 2-Yr
bu/a | 2009
bu/a | Bu. Wt. | Grain
Moisture
Pctg | Lodging
Pctg [3] | Final Stand
Pctg [4] | | | KRUGER/ 6401VT3 + Cruiser 250
DEKALB/ DKC52-59(VT3) + Poncho 250
SEEDS/ 2000 9901VT3 + Poncho 250
KRUGER/ 6499VT3 + Cruiser 250
DEKALB/ DKC50-44(VT3) + Poncho 250 | 101
102
99
99
100 | 230
223
223
222
222 | 242
241
236
243
237 | 53
50
53
51
54 | 24
23
23
24
24
23 | 0
0
0
0 | 95
95
95
97
93 | | | NUTECH/ 3T-098 VT3 + Cruiser 250
WENSMAN/ W 7273VT3 + Poncho 250
G2/ GEN. 5H-797 RR/HX + Cruiser 250
KRUGER/ 6097VT3 + Cruiser 250
KRUGER/ 6102VT3 + Cruiser 250 | 98
98
96
97
102 | 221
221
221
220
219 | 247
243
241
237
234 | 51
52
51
50
53 | 23
23
21
23
22 | 0
0
0
1 | 95
95
97
94
93 | | | KRUGER/ 6298VT3 + Cruiser 250
DEKALB/ DKC46-60(VT3) + Poncho 250
DAIRYLAND/ ST-9799 + Poncho 250
G2/ GEN. 5H-199 RR/HX + Cruiser 250
NUTECH/ 3T-601 VT3 + Poncho 250 | 98
96
99
99
100 | 213
213
210 | 236
227
231
243
240 | 53 53 50 51 53 | 20
20
24
21
23 | 0
0
0
0 | 99
95
94
93
96 | | | G2/ GEN. 5H-501 RR/HX + Cruiser 250
G2/ GEN. 5X-199RR/HXT + Cruiser 250
WENSMAN/ W 7270VT3 + Poncho 250
DEKALB/ DKC50-66(VT3) + Poncho 250
NUTECH/ 3T-801 VT3 + Poncho 250 | 100
99
97
100
100 | No. of the last | 240
235
235
234
234 | 52
52
53
53
50 | 23
23
20
20
20
24 | 0
1
0
1 | 95
97
94
96
90 | | | G2/ GEN. 5H-999 RR/HX + Cruiser 250
PIONEER/ 37K11 + Poncho 250
NUTECH/ 3T-401 VT3 + Cruiser 250
NUTECH/ 3T-300 VT3 + Cruiser 250
KRUGER/ 6200VT3 + Cruiser 250 | 99
99
100
100
100 | 5 5 7 5 5 T | 234
233
233
231
231 | 54
49
52
52
52
52 | 22
22
24
24
24
18 | 0
0
0
0 | 92
95
96
95
95 | | | PROSEED/ 897 + Poncho 250
NUTECH/ 3T-600 VT3 + Poncho 250
G2/ GEN. 5X-802 RR/HXT + Cruiser 250
AGSOURCE/ 5B-198 GTCBLL + Poncho 250
PROSEED/ 896 + Poncho 250 | 97
100
100
100
96 | | 229
229
228
225
222 | 54
52
51
52
53 | 21
24
24
24
23 | 0
1
0
0 | 92
89
98
83
90 | | | PIONEER/ 37N68 + Poncho 250
AGSOURCE/ 3T-799 VT3 + Cruiser 250
AGSOURCE/ 3T-302 VT3 + Cruiser 250
DAIRYLAND/ ST-95970 + Cruiser 250
NUTECH/ 3T-603 VT3 + Cruiser 250 | 101
99
102
97
103 | 100 | 222
219
219
218
218 | 51
50
51
50
51 | 24
24
25
24
24 | 1
0
0
0 | 93
88
90
91
92 | | | AGSOURCE/5X-100A RR/HXT + Poncho 250
DEKALB/ DKC51-13(VT3) + Poncho 250
DAIRYLAND/ ST-9500Q + Cruiser 250 | 100
101
99 | | 216
207
207 | 48
51
51 | 25
23
24 | 0
0
0 | 92
93
91 | | | Trial avg.:
High avg.:
Low avg.:
[5] LSD(.05):
[6] Min.TPG value:
[7] Max.TPG value:
[8] Coef. of var.:
No. entries: | 99
103
96 | 220
230
210
NS
210 | 231
247
207
12
235
3
38 | 52
54
48
1
53
2
38 | 23
25
18
1
19
4 | 0
1
0
NS
1
482
38 | 94
99
83
4
95
2
38 | | ^[1] Entries are listed by Brand/Hybrid and sorted by 2-yr then by 2009 yield average. * Values in **bold type** within a column are included in the top-performance group. Note that additional table footnotes are explained in table D. Table 2a. South Shore early maturity Roundup Ready corn hybrid test results, 2008-09, Northeast Research Farm. Seeded May 7, 2009 at 28,750 seeds per acre. | | | Yield A | verages | | Other 200 | 9 Averages | | |--|----------------------------|---------------------------------|--|--------------------------------------|--------------------------------------|-------------------------------------|---| | Brand/Hybrid & Seed Treatment [1] | Rel.
Mat. [2] | 2-Yr
bu/a | 2009
bu/a | Bu.Wt. lb | Grain
Moisture
Pctg | Lodging
Pctg [3] | Final Stand
Pctg [4] | | DEKALB/ DKC43-27(VT3) + Poncho 250
AGSOURCE/ 3T-995 VT3 + Cruiser 250
KRUGER/ 6093VT3 + Cruiser 250
PIONEER/ 38H08 + Poncho 250
SEEDS/ 2000 9501VT3 + Poncho 1250 | 93
95
93
92
95 | 202
199
185
184
178 | 212
206
201
195
204 | 52
49
50
47
48 | 20
20
22
18
19 | 0
0
0
0 | 95
96
98
94
99 | | DAIRYLAND/ ST-9594 + Poncho 250
DAIRYLAND/ ST-6992 + Poncho 250
KRUGER/ 6295VT3 + Cruiser 250
DEKALB/ DKC42-72(VT3) + Poncho 250
DAIRYLAND/ ST-9395 + Poncho 250 | 94
92
95
92
95 | 176 | 213
216
215
212
212 | 51
51
49
51
49 | 16
20
19
20
19 | 0
1
0
0 | 95
95
99
96
95 | | DAIRYLAND/ ST-9789 + Poncho 250
NUTECH/ 3T-493 VT3 + Poncho 250
NUTECH/ 3T-295 VT3 + Poncho 250
AGSOURCE/
3T-294 VT3 + Poncho 250
WENSMAN/ W 8180 + Poncho 250 | 89
93
95
94
95 | STATE OF | 210
207
207
207
207
206 | 51
49
50
51
51 | 18
17
23
19
22 | 1
0
0
0
0 | 99
92
94
93
94 | | PROSEED/ 894 + Poncho 250
NUTECH/ 3T-894 VT3 + Poncho 250
DEKALB/ DKC40-20(VT3) + Poncho 250
KRUGER/ 6490VT3 + Cruiser 250
SEEDS/ 2000 9502VT3 + Poncho 1250 | 94
94
90
90
95 | 10000 | 205
205
204
203
203 | 49
49
51
53
50 | 21
20
21
19
20 | 1
0
0
0 | 95
96
94
99
93 | | DAIRYLAND/ ST-7790 + Cruiser 250
WENSMAN/ W 7195VT3 + Poncho 250
AGSOURCE/ 3P-494+RR/YGPL + Cruiser 250
AGSOURCE/ 3T-096 VT3 + Cruiser 250
G2/ GEN. 3P-595 RR/YGPL + Cruiser 250 | 90
95
94
95
95 | | 202
198
193
191
189 | 51
49
49
50
49 | 21
23
22
23
23
23 | 0
0
0
0 | 93
95
97
92
99 | | PROSEED/ 794 + Poncho 250
G2/ GEN. 5X-594 RR/HXT + Cruiser 250
G2/ GEN. 5X-398 RR/HXT + Cruiser 250
PIONEER/ 38P43 + Poncho 250
EPLEY/ E1115GT + Not reported | 94
94
95
95
93 | 10000 | 187
182
173
171
159 | 47
45
47
51
50 | 20
21
24
22
22 | 0
0
0
0 | 99
95
95
95
95 | | Trial avg.:
High avg.:
Low avg.:
[5] LSD(.05):
[6] Min.TPG value:
[7] Max.TPG value:
[8] Coef. of var.:
No. entries: | 94
95
89
30 | 187
202
176
NS
176 | 200
216
159
11
205 | 50
53
45
1
52
2
30 | 20
24
16
2
18
5
30 | 0
1
0
NS
1
557
30 | 96
99
92
4
95
3
30 | ^[1] Entries are listed by Brand/Hybrid and sorted by 2-yr then by 2009 yield average. * Values in **bold type** within a column are included in the top-performance group. Note that additional table footnotes are explained in table D. Table 2b. South Shore late maturity Roundup Ready corn hybrid test results, 2008-09, Northeast Research Farm. Seeded May 7, 2009 at 28,750 seeds per acre. | | | Yield | Averages | Other 2009 Averages | | | | | |--|---------------------------------------|--|---|--|--|-------------------------------------|--|--| | Brand/Hybrid & Seed Treatment [1] | Rel. Mat.
[2] | 2-Yr
bu/a | 2009 bu/a | Bu.Wt. | Grain
Moisture
Pctg | Lodging
Pctg [3] | Final
Stand Pctg
[4] | | | KRUGER/ 6102VT3 + Cruiser 250 DEKALB/ DKC48-37(VT3) + Poncho 250 DEKALB/ DKC46-60(VT3) + Poncho 250 DEKALB/ DKC50-44(VT3) + Poncho 250 KRUGER/ 6298VT3 + Cruiser 250 SEEDS/ 2000 9901VT3 + Poncho 250 | 102
98
96
100
98
99 | 199
196
196
194
190
187 | 209
209
200
208
197
195 | 48
50
48
47
48
49 | 25
20
21
25
24
24 | 0
0
0
1
0 | 93
93
97
92
96
92 | | | KRUGER/ 6097VT3 + Cruiser 250
WENSMAN/ W 7273VT3 + Poncho 250
KRUGER/ 6401VT3 + Cruiser 250
G2/ GEN. 5H-797 RR/HX + Cruiser 250
NUTECH/ 3T-098 VT3 + Cruiser 250
KRUGER/ 6499VT3 + Cruiser 250 | 97
98
101
96
98
99 | 182
182
181
179
169
164 | 215
181
195
196
188
186 | 46
47
50
45
46
47 | 27
31
27
24
29
29 | 0
0
0
0
0 | 97
94
96
94
96
95 | | | G2/ GEN. 5H-999 RR/HX + Cruiser 250
DEKALB/ DKC50-66(VT3) + Poncho 250
KRUGER/ 6200VT3 + Cruiser 250
EPLEY/ E1184VT3 + Cruiser 250
G2/ GEN. 5H-501 RR/HX + Cruiser 250
G2/ GEN. 5X-199RR/HXT + Cruiser 250 | 99
100
100
96
100
99 | 111111 | 217
214
213
208
203
199 | 48
49
49
48
47
47 | 23
22
21
21
24
25 | 1
0
0
0
0 | 94
94
94
94
92
91 | | | PROSEED/ 896 + Poncho 250
NUTECH/ 3T-601 VT3 + Poncho 250
PROSEED/ 897 + Poncho 250
G2/ GEN. 5H-199 RR/HX + Cruiser 250
WENSMAN/ W 7270VT3 + Poncho 250
NUTECH/ 3T-401 VT3 + Cruiser 250 | 96
100
97
99
97
100 | | 198
198
197
197
196
193 | 4 9
48
47
47
47
47
46 | 25
24
26
23
25
29 | 0
0
1
0
0 | 91
96
91
90
95
93 | | | DAIRYLAND/ ST-9597Q + Cruiser 250 DEKALB/ DKC51-13(VT3) + Poncho 250 NUTECH/ 3T-300 VT3 + Cruiser 250 AGSOURCE/ 5B-198 GTCBLL + Poncho 250 G2/ GEN. 5X-802 RR/HXT + Cruiser 250 NUTECH/ 3T-600 VT3 + Poncho 250 | 97
101
100
100
100
100 | | 192
189
184
182
180
179 | 49
47
46
47
46
47 | 24
26
31
29
26
25 | 0
0
0
0
0 | 92
94
94
84
97
87 | | | AGSOURCE/ 3T-799 VT3 + Cruiser 250
NUTECH/ 3T-603 VT3 + Cruiser 250
AGSOURCE/ 5X-100A RR/HXT + Poncho 250
AGSOURCE/ 3T-302 VT3 + Cruiser 250
EPLEY/ EXP1307HXLLRR + Cruiser 250
NUTECH/ 3T-801 VT3 + Poncho 250 | 99
103
100
102
100
100 | W ACADOMI | 173
168
165
165
162
154 | 48
48
48
48
46
45 | 29
25
31
35
30
34 | 0
0
0
0
0 | 88
87
94
95
91
91 | | | Trial avg.:
High avg.:
Low avg.:
[5] LSD(.05):
[6] Min.TPG value:
[7] Max.TPG value:
[8] Coef. of var.:
No. entries: | 99
103
96 | 185
199
164
28
171
5 | 192
217
154
13
204
4
36 | 47
50
45
1
49
2
36 | 26
35
20
2
2
22
5
36 | 0
1
0
NS
1
420
36 | 93
97
92
4
93
3
36 | | ^[1] Entries are listed by Brand/Hybrid and sorted by 2-yr then by 2009 yield average. * Values in **bold type** within a column are included in the top-performance group. Note that additional table footnotes are explained in table D. Table 3a. Bancroft early maturity glyphosate-resistant corn hybrid test results, 2009-09, E. Weerts Farm Inc. Seeded May 21, 2009 at 28,750 seeds per acre. | | D-1 | Yield A | verages | | Other 2009 Averages | | | | | |--|---------------------------------|---|--|-----------------------------------|-----------------------------------|-------------------------------|----------------------------|--|--| | Brand/Hybrid + Seed Treatment [1] | Rel.
Mat.
[2] | 2-Yr
bu/a | 2009
bu/a | Bu.
Wt. Ib | Grain
Moisture
Pctg | Lodging
Pctg [3] | Final
Stand Pctg
[4] | | | | DEKALB/ DKC46-60(VT3) + Poncho 250
DEKALB/ DKC48-37(VT3) + Poncho 250
DEKALB/ DKC43-27(VT3) + Poncho 250
WENSMAN/ W 7289VT3 + Poncho 250
NC+/ 1982VT3 + Cruiser 250 | 96
98
93
99 | 199
196
195
195
193 | 200
196
194
179
186 | 51
52
51
48
47 | 21
20
21
24
25 | 1
0
0
0 | 94
93
89
91
94 | | | | KRUGER/ 6298VT3 + Cruiser 250
G2/ GEN. 5H-797 RR/HX + Cruiser 250
NC+/ 1775VT3 + Cruiser 250
NUTECH/ 3T-098 VT3 + Cruiser 250
KRUGER/ 6097VT3 + Cruiser 250 | 98
96
97
98
97 | 189
189
189
186
186 | 186
184
174
183
175 | 49
48
49
49
47 | 23
23
25
26
25 | 0
0
1
0 | 92
87
89
92
92 | | | | KRUGER/ 6499VT3 + Cruiser 250
SEEDS/ 2000 9901VT3 + Poncho 250
EPLEY/ E1184VT3 + Cruiser 250
G2/ GEN. 5X-199RR/HXT + Cruiser 250
HOEGEMEYER/ 3113 + Poncho 250 | 99
99
96
99 | 180
175 | 168
160
201
193
193 | 48
49
48
47
51 | 27
24
18
24
21 | 1
1
0
0 | 95
82
92
90
92 | | | | AGSOURCE/ 3T-995 VT3 + Cruiser 250
HOEGEMEYER/ HPTEXP6589 + Cruiser 250
PROSEED/ 897 + Poncho 250
WENSMAN/ W 7270VT3 + Poncho 250
DEKALB/ DKC50-66(VT3) + Poncho 250 | 95
95
97
97
100 | THE STATE OF | 192
191
190
190
187 | 48
47
50
48
49 | 21
23
22
24
22 | 0
0
0
0 | 90
94
92
94
95 | | | | DEKALB/ DKC50-35(VT3) + Poncho 250
PIONEER/ 37K11 + Poncho 250
AGSOURCE/ 3T-799 VT3 + Cruiser 250
NUTECH/ 3T-300 VT3 + Cruiser 250
G2/ GEN. 5H-501 RR/HX + Cruiser 250 | 100
99
99
100
100 | 1.112.4.4 | 182
182
180
177
177 | 49
47
48
48
49 | 26
22
27
27
26 | 0
0
1
0 | 92
91
95
93
88 | | | | G2/ GEN. 5H-999 RR/HX + Cruiser 250
G2/ GEN. 5X-398 RR/HXT + Cruiser 250
NUTECH/ 3T-401 VT3 + Cruiser 250
EPLEY/ E1115GT + Not reported
AGSOURCE/ 3T-096 VT3 + Cruiser 250 | 99
95
100
93
95 | + | 175
174
173
171
171 | 50
47
50
51
50 | 24
26
26
23
24 | 0
0
0
1
2 | 87
94
91
88
92 | | | | KRUGER/ 6200VT3 + Cruiser 250
NUTECH/ 3T-801 VT3 + Poncho 250
EPLEY/ EXP1307HXLLRR + Cruiser 250
HOEGEMEYER/ HPTEXP7041 + Cruiser 250
NUTECH/ 3T-600 VT3 + Poncho 250 | 100
100
100
100
100 | ++++ | 170
169
168
165
164 | 50
48
47
48
48 | 21
32
28
26
24 | 0
0
0
0 | 89
93
94
94
78 | | | | AGSOURCE/ 5B-198 GTCBLL + Poncho 250
G2/ GEN. 5X-802 RR/HXT + Cruiser 250
NUTECH/ 3T-601 VT3 + Poncho 250 | 100
100
100 | | 161
153
151 | 48
47
48 | 28
25
25 |
0
0
0 | 75
94
77 | | | | Trial avg.:
High avg.:
Low avg.:
[5] LSD(0.05):
[6] Min.TPG value:
[7] Max.TPG value:
[8] Coef. of var.: | 98
100
93 | 189
199
175
20
179 | 179
201
151
18
183 | 49
52
47
1
51 | 24
32
18
2
20
5 | 0
2
0
NS
2
310 | 90
95
75
4
91 | | | | No. entries: | 38 | 12 | 38 | 38 | 38 | 38 | 38 | | | ^[1] Entries are listed by Brand/Hybrid and sorted by 2-yr then by 2009 yield average. * Values in **bold type** within a column are included in the top-performance group. Note that additional table footnotes are explained in table D. Table 3b. Bancroft late maturity glyphosate-resistant corn hybrid test results, 2008-09, E. Weerts Farm Inc. Seeded May 21, 2009 at 28,750 seeds per acre. | | | Yield Av | erages | | Other 2009 Averages | | | | | |--|--|---------------------------------|---------------------------------|-------------------------------------|---|-------------------------------------|--------------------------------|--|--| | Brand/Hybrid + Seed Treatment [1] | Rel.
Mat.
[2] | 2-Yr
bu/a | 2009
bu/a | Bu.Wt. | Grain
Moisture
Pctg | Lodging
Pctg [3] | Final Stand
Pctg [4] | | | | WENSMAN/ W 7360VT3 + Poncho 250
DEKALB/ DKC52-59(VT3) + Poncho 250
PIONEER/ 36V53 + Poncho 250
KRUGER/ 6102VT3 + Cruiser 250
KRUGER/ 6401VT3 + Cruiser 250 | 103
102
102
102
102
101 | 193
190
190
187
186 | 187
175
174
189
165 | 48
49
48
47
50 | 27
25
26
24
29 | 1
1
0
0 | 88
93
90
90
88 | | | | KRUGER/ 6606VT3 + Cruiser 250 | 106 | 176 | 161 | 48 | 32 | 1 | 91 | | | | G2/ GEN. 5H-506A RR/HX + Cruiser 250 | 105 | 175 | 149 | 48 | 35 | 0 | 90 | | | | KRUGER/ 6006VT3 + Cruiser 250 | 106 | 174 | 162 | 50 | 29 | 1 | 91 | | | | G2/ GEN. 5H-506 RR/HX + Cruiser 250 | 105 | 169 | 143 | 48 | 34 | 0 | 85 | | | | RENK/ RK670VT3 + Poncho 250 | 103 | 168 | 151 | 48 | 31 | 4 | 91 | | | | NUTECH/5B-804 GT/CB/LL + Cruiser 250 | 104 | + + + + | 177 | 48 | 28 | 0 | 93 | | | | RENK/ RK698VT3 + Poncho 250 | 105 | | 173 | 50 | 27 | 1 | 87 | | | | DEKALB/ DKC51-13(VT3) + Poncho 250 | 101 | | 169 | 50 | 26 | 1 | 89 | | | | DEKALB/ DKC53-76(VT3) + Poncho 250 | 103 | | 169 | 48 | 31 | 1 | 89 | | | | KRUGER/ 6205VT3 + Cruiser 250 | 105 | | 168 | 46 | 33 | 2 | 94 | | | | AGSOURCE/ 3T-904 VT3 + Poncho 250 | 104 | F + 1 + 1 | 165 | 48 | 27 | 3 | 84 | | | | NUTECH/ 3T-706 VT3 + Poncho 250 | 105 | | 164 | 49 | 32 | 0 | 90 | | | | PIONEER/ 35F44 + Poncho 250 | 105 | | 163 | 49 | 30 | 0 | 92 | | | | NUTECH/ 3T-106 VT3 + Poncho 250 | 105 | | 163 | 48 | 35 | 0 | 88 | | | | NUTECH/ 3T-408 VT3 + Cruiser 250 | 108 | | 162 | 48 | 29 | 1 | 95 | | | | AGSOURCE/ 3T-603B VT3 + Cruiser 250 | 103 | | 162 | 48 | 27 | 2 | 94 | | | | DEKALB/ DKC55-07(VT3) + Poncho 250 | 105 | | 161 | 48 | 29 | 0 | 79 | | | | G2/ GEN. 5H-905 RR/HX + Cruiser 250 | 105 | | 161 | 47 | 32 | 0 | 91 | | | | NUTECH/ 3T-308 VT3 + Poncho 250 | 108 | | 156 | 50 | 31 | 0 | 89 | | | | WENSMAN/ W 7455VT3 + Poncho 250 | 107 | | 151 | 45 | 36 | 0 | 90 | | | | G2/ GEN. 5H-007 RR/HX + Cruiser 250 | 107 | 1.4/4.4-4 | 148 | 47 | 33 | 1 | 83 | | | | G2/ GEN. 5X-707 RR/HXT + Cruiser 250 | 107 | | 148 | 50 | 37 | 0 | 81 | | | | NUTECH/ 3T-603 VT3 + Cruiser 250 | 103 | | 135 | 47 | 28 | 1 | 80 | | | | AGSOURCE/ 5X-805 RR/HXT + Poncho 250 | 105 | | 134 | 47 | 37 | 2 | 88 | | | | G2/ GEN. 5H-005 RR/HX + Cruiser 250 | 105 | | 132 | 44 | 34 | 1 | 91 | | | | Trial avg.:
High avg.:
Low avg.:
[5] LSD(0.05):
[6] Min.TPG value:
[7] Max.TPG value:
[8] Coef. of var.:
No. entries: | 105
108
101 | 181
193
168
NS
168 | 161
189
132
21
168 | 48
50
44
3
47
3
3 | 31
37
24
2
26
5
30 | 1
4
0
NS
4
225
30 | 89
95
79
5
90
3 | | | ^[1] Entries are listed by Brand/Hybrid and sorted by 2-yr then by 2009 yield average. * Values in **bold type** within a column are included in the top-performance group. Note that additional table footnotes are explained in table D. Table 4a. Brookings early maturity glyphosate-resistant corn hybrid test results, 2008-09, Plant Science Farm. Seeded May 7, 2009 at 28,750 seeds per acre. | | | Yield A | verages | | Other 2009 Averages | | | | |---|--------------------------------|---|---|--|---|------------------------------------|--|--| | Brand/Hybrid + Seed Treatment [1] | Rel. Mat.
[2] | 2-Yr
bu/a | 2009
bu/a | Bu. Wt. | Grain
Moisture
Pctg | Lodging
Pctg [3] | Final
Stand Pctg
[4] | | | HOEGEMEYER/ 3113 + Poncho 250
WENSMAN/ W 7267VT3 + Poncho 250
KRUGER/ 6298VT3 + Cruiser 250
DEKALB/ DKC46-60(VT3) + Poncho 250
DEKALB/ DKC50-44(VT3) + Poncho 250 | 95
97
98
96
100 | 202
202
201
197
197 | 223
222
233
219
219 | 52
48
51
50
52 | 23
24
23
22
23 | 0
0
0
0 | 91
92
97
96
95 | | | SEEDS/ 2000 9901VT3 + Poncho 250
KRUGER/ 6499VT3 + Cruiser 250
KRUGER/ 6097VT3 + Cruiser 250
NC+/ 1775VT3 + Cruiser 250
DEKALB/ DKC43-27(VT3) + Poncho 250 | 99
99
97
97
93 | 197
197
196
195
195 | 219
211
224
216
213 | 52
50
49
49
50 | 21
24
20
24
20 | 0
0
2
1
1 | 91
97
97
96
94 | | | NC+/ 1982VT3 + Cruiser 250
NUTECH/ 3T-098 VT3 + Cruiser 250
G2/ GEN. 5H-501 RR/HX + Cruiser 250
NUTECH/ 3T-401 VT3 + Cruiser 250
KRUGER/ 6200VT3 + Cruiser 250 | 99
98
100
100
100 | 193
191 | 217
218
245
243
240 | 47
49
49
52
52 | 24
23
24
24
21 | 1
0
0
0
0 | 96
97
95
94
95 | | | DEKALB/ DKC50-66(VT3) + Poncho 250
G2/ GEN. 5X-199RR/HXT + Cruiser 250
NUTECH/ 3T-601 VT3 + Poncho 250
WENSMAN/ W 7270VT3 + Poncho 250
DAIRYLAND/ ST-9597Q + Cruiser 250 | 100
99
100
97
97 | * | 238
237
233
226
225 | 53
50
50
52
51 | 21
24
23
23
23
23 | 0
0
0
0 | 98
94
95
96
91 | | | G2/ GEN. 5H-999 RR/HX + Cruiser 250
AGSOURCE/ 5B-198 GTCBLL + Poncho 250
DAIRYLAND/ ST-9500Q + Cruiser 250
PROSEED/ 897 + Poncho 250
KALTENBERG/ K4053VT3 + Poncho 250 | 99
100
99
97
97 | | 223
223
221
220
215 | 50
49
50
52
51 | 23
25
25
24
24 | 0
0
0
0
1 | 94
87
91
98
92 | | | EPLEY/ E1184VT3 + Cruiser 250 EPLEY/ EXP1307HXLLRR + Cruiser 250 NUTECH/ 3T-600 VT3 + Poncho 250 KALTENBERG/ K4149LLGT3 + Cruiser 250 EPLEY/ E1115GT + Not reported | 96
100
100
98
93 | | 214
212
211
211
210 | 51
49
49
50
49 | 20
25
24
26
21 | 0
1
0
0 | 90
95
89
92
95 | | | NUTECH/ 3T-300 VT3 + Cruiser 250
HOEGEMEYER/ HPT 6962 + Cruiser 250
G2/ GEN. 5X-802 RR/HXT + Cruiser 250
AGSOURCE/ 3T-799 VT3 + Cruiser 250
KALTENBERG/ K4521LLRRHXT + Poncho 250 | 100
100
100
99
100 | | 209
209
206
205
203 | 49
49
48
48
50 | 24
22
25
24
25 | 0
1
0
0
3 | 92
85
98
92
84 | | | NUTECH/ 3T-801 VT3 + Poncho 250
G2/ GEN. 5X-398 RR/HXT + Cruiser 250
PROSEED/ 8100 + Poncho 250 | 100
95
100 | 1 | 201
200
189 | 46
50
49 | 28
21
22 | 0
1
1 | 90
95
80 | | | Trial avg.:
High avg.:
Low avg.:
[5] LSD(0.05):
[6] Min.TPG value:
[7] Max.TPG value:
[8] Coef. of var.:
No. entries: | 98
100
93
38 | 197
202
191
NS
191
4
12 | 219
245
189
11
234
3
38 | 50
53
46
2
51
2
38 | 23
28
20
2
2
22
4
38 | 0
3
0
2
2
307
38 | 93
98
80
4
94
2
38 | | ^[1] Entries are listed by Brand/Hybrid and sorted by 2-yr then by 2009 yield average. * Values in **bold type** within a column are included in the top-performance group. Note that additional table footnotes are explained in table D. Table 4b. Brookings late maturity glyphosate-resistant corn hybrid test results, 2008-09, Plant Science Farm. Seeded 7 May 2009 at 28,750 seeds per acre. | | | Yield A | verages | | Other 20 | 009 Average | s | |--|---------------------------------|---------------------------------|---|--|---|---|---| | Brand/Hybrid + Seed Treatment [1] | Rel. Mat.
[2] | 2-Yr
bu/a | 2009
bu/a | Bu.Wt. | Grain
Moisture
Pctg | Lodging
Pctg [3] | Final Stand
Pctg [4] | | DEKALB/ DKC52-59(VT3) + Poncho 250
KRUGER/ 6401VT3 + Cruiser 250
PIONEER/ 36V53 + Poncho 250
WENSMAN/ W 7360VT3 + Poncho 250
RENK/
RK670VT3 + Poncho 250 | 102
101
102
103
103 | 211
209
207
206
203 | 241
235
225
233
228 | 49
51
50
48
44 | 23
23
24
27
28 | 0
0
0
0 | 94
95
96
94
96 | | G2/ GEN. 5H-506 RR/HX + Cruiser 250
KRUGER/ 6102VT3 + Cruiser 250
G2/ GEN. 5H-506A RR/HX + Cruiser 250
KRUGER/ 6606VT3 + Cruiser 250
DAIRYLAND/ ST-9003 + Poncho 250 | 105
102
105
106
103 | 203
200
200
197
194 | 212
230
208
221
209 | 46
53
48
49
47 | 30
24
30
27
30 | 0
0
0
0 | 90
96
88
92
92 | | KRUGER/ 6006VT3 + Cruiser 250
HEINE/ 744RRYGCB + Poncho 250
HEINE/ 742VT3 + Poncho 250
RENK/ RK698VT3 + Poncho 250
NUTECH/ 3T-706 VT3 + Poncho 250 | 106
104
104
105
105 | 183 | 220
243
241
240
238 | 46
50
52
51
47 | 29
23
24
25
28 | 0
0
0
0 | 96
96
92
97
93 | | NUTECH/ 5B-804 GT/CB/LL + Cruiser 250
DEKALB/ DKC53-76(VT3) + Poncho 250
G2/ GEN. 5H-905 RR/HX + Cruiser 250
KRUGER/ 6205VT3 + Cruiser 250
AGSOURCE/ 3T-904 VT3 + Poncho 250 | 104
103
105
105
104 | 100000 | 234
232
230
230
230
230 | 48
49
47
48
47 | 23
28
29
29
29
24 | 0
1
0
0 | 94
94
92
95
89 | | PIONEER/ 35F44 + Poncho 250
WENSMAN/ W 7455VT3 + Poncho 250
NUTECH/ 3T-408 VT3 + Cruiser 250
HEINE/ 745VT3 + Poncho 250
HEINE/ 727VT3 + Poncho 250 | 105
107
108
104
102 | *** | 228
228
227
227
227
225 | 50
46
48
51
49 | 26
31
27
22
27 | 0
0
0
0 | 95
96
95
94
94 | | DEKALB/ DKC51-13(VT3) + Poncho 250
G2/ GEN. 5X-707 RR/HXT + Cruiser 250
DAIRYLAND/ ST-9703Q + Cruiser 250
NUTECH/ 3T-106 VT3 + Poncho 250
RENK/ RK760VT3 + Poncho 250 | 101
107
103
105
106 | 1000000 | 223
220
219
219
219
219 | 47
46
49
47
48 | 25
34
26
29
28 | 0
0
0
0 | 96
93
93
94
87 | | PIONEER/ 37N68 + Poncho 250
HEINE/ 753VT3 + Poncho 250
NUTECH/ 3T-603 VT3 + Cruiser 250
NUTECH/ 3T-308 VT3 + Poncho 250
AGSOURCE/ 3T-603B VT3 + Cruiser 250 | 101
104
103
108
103 | 4.8.8.6.8 | 217
213
210
210
210 | 49
49
49
48
48 | 25
28
24
29
24 | 0
0
0
0
2 | 96
92
94
91
99 | | AGSOURCE/ 5X-805 RR/HXT + Poncho 250
G2/ GEN. 5H-007 RR/HX + Cruiser 250
G2/ GEN. 5H-005 RR/HX + Cruiser 250 | 105
107
105 | 1 | 207
201
175 | 47
45
45 | 29
27
36 | 1
0
1 | 94
79
88 | | Trial avg.:
High avg.:
Low avg.:
[5] LSD(0.05):
[6] Min.TPG value:
[7] Max.TPG value:
[8] Coef. of var.:
No. entries: | 104
108
101 | 201
211
183
NS
183 | 223
243
175
12
231
4
38 | 48
53
44
2
51
2
38 | 27
36
22
2
2
24
4
38 | 0
2
0
NS

2
417
38 | 93
99
79
4
95
2 | ^[1] Entries are listed by Brand/Hybrid and sorted by 2-yr then by 2009 yield average. * Values in **bold type** within a column are included in the top-performance group. Note that additional table footnotes are explained in table D. Table 5a. Geddes early maturity glyphosate-resistant corn hybrid test results, 2008-09, Curtis Sybesma Farm. Seeded May 14, 2009 at 28,750 seeds per acre. | | | Yield A | verages | Other 2009 Averages | | | | | |--|---------------------------------|---|---|--|--|-------------------------------------|--|--| | Brand/Hybrid + Seed Treatment [1] | Rel. Mat.
[2] | 2-Yr
bu/a | 2009
bu/a | Bu.Wt. | Grain
Moisture
Pctg | Lodging
Pctg (3) | Final Stand
Pctg [4] | | | PIONEER/ 36V53 + Poncho 250
WENSMAN/ W 7433VT3 + Poncho 250
DEKALB/ DKC52-59(VT3) + Poncho 250
KRUGER/ 6401VT3 + Cruiser 250
WENSMAN/ W 7360VT3 + Poncho 250 | 102
105
102
101
103 | 221
219
219
216
215 | 247
242
241
243
243 | 55
56
54
56
56 | 15
17
16
16
16 | 0
1
0
1 | 96
94
96
95
96 | | | NC+/ 1982VT3 + Cruiser 250
KRUGER/ 6102VT3 + Cruiser 250
G2/ GEN. 5H-506A RR/HX + Cruiser 250
G2/ GEN. 5H-506 RR/HX + Cruiser 250
DEKALB/ DKC50-44(VT3) + Poncho 250 | 99
102
105
105
100 | 213
211
211
211
210 | 235
240
230
226
221 | 54
56
52
52
52
53 | 15
17
18
21
16 | 1
0
1
1 | 93
94
93
89
91 | | | NC+/ 1775VT3 + Cruiser 250
KALTENBERG/ K5163VT3 + Poncho 250
HOEGEMEYER/ HPT 7757 + Cruiser 250
DEKALB/ DKC43-27(VT3) + Poncho 250
NUTECH/3T-401 VT3 + Cruiser 250 | 97
103
105
93
100 | 208
200
200
199 | 230
212
205
230
247 | 54
51
54
56
55 | 16
18
19
16
16 | 0
0
1
0 | 93
95
90
92
97 | | | G2/ GEN. 5H-905 RR/HX + Cruiser 250
H0EGEMEYER/ 7421 + Cruiser 250
DEKALB/ DKC50-35(VT3) + Poncho 250
G2/ GEN. 5H-501 RR/HX + Cruiser 250
DEKALB/ DKC50-66(VT3) + Poncho 250 | 105
104
100
100
100 | 0.000 | 246
243
242
242
242
240 | 52
55
55
55
55 | 15
18
16
16
15 | 0
0
0
0 | 94
92
97
91
93 | | | PROSEED/ 9102 + Poncho 250
KRUGER/ 6205VT3 + Cruiser 250
RENK/ RK670VT3 + Poncho 250
DEKALB/ DKC51-13(VT3) + Poncho 250
NUTECH/ 3T-706 VT3 + Poncho 250 | 102
105
103
101
105 | | 239
236
235
234
233 | 55 52 52 56 54 | 17
15
17
16
17 | 1
0
0
1
1 | 95
95
96
93
92 | | | NUTECH/ 5B-804 GT/CB/LL + Cruiser 250
HOEGEMEYER/ 7445 + Poncho 250
KRUGER/ 6200VT3 + Cruiser 250
KALTENBERG/ K5332GT + Poncho 250
KALTENBERG/ 5355LLGTBT11 + Poncho 250 | 104
103
100
104
104 | 0.0000000000000000000000000000000000000 | 232
232
231
230
230 | 55
54
55
56
52 | 17
18
15
16
16 | 0
0
0
0 | 94
94
89
90
96 | | | AGSOURCE/ 3T-904 VT3 + Poncho 250
NUTECH/ 3T-106 VT3 + Poncho 250
G2/ GEN. 5H-005 RR/HX + Cruiser 250
AGSOURCE/ 3T-603B VT3 + Cruiser 250
NUTECH/ 3T-801 VT3 + Poncho 250 | 104
105
105
103
100 | No. To E | 229
226
226
226
226
225 | 51
52
51
53
52 | 15
16
19
17
16 | 1
1
0
1 | 91
94
91
96
89 | | | RENK/ RK698VT3 + Poncho 250
NUTECH/ 3T-603 VT3 + Cruiser 250
PROSEED/ 8101VT3 + Poncho 250
G2/ GEN. 5X-802 RR/HXT + Cruiser 250
PROSEED/ 9105 + Poncho 250 | 105
103
101
100
105 | | 224
223
221
221
220 | 55
54
53
51
53 | 17
15
17
17
16 | 0
1
0
0 | 87
90
94
92
90 | | | PIONEER/ 35F44 + Poncho 250
DEKALB/ DKC53-76(VT3) + Poncho 250
DEKALB/ DKC55-07(VT3) + Poncho 250
AGSOURCE/ 3T-302 VT3 + Cruiser 250 | 105
103
105
102 | 1000 | 219
217
215
212 | 54
55
55
54 | 16
17
19
15 | 0
2
0
1 | 94
91
90
91 | | | HOEGEMEYER/ HPTEXP7408 + Cruiser 250
KALTENBERG/ 5588LLRRHXT + Poncho 250
AGSOURCE/ 5X-805 RR/HXT + Poncho 250 | 104
105
105 | | 211
205
195 | 51
50
51 | 18
17
19 | 0
0
1 | 90
93
92 | | | Trial avg.:
High avg.:
Low avg.:
[5] LSD(0.05):
[6] Min.TPG value:
[7] Max.TPG value:
[8] Coef. of var.:
No. entries: | 103
105
93 | 211
221
199
NS
199
4 | 229
247
195
19
228
5
47 | 54
57
50
2
55
2 | 17
21
15
1
16
5 | 0
2
0
NS
2
276
47 | 93
97
87
4
93 | | ^[1] Entries are listed by Brand/Hybrid and sorted by 2-yr then by 2008 yield average. *Values in **bold type** within a column are included in the top-performance group. Note that additional table footnotes are explained in table D. Table 5b. Geddes late maturity glyphosate-resistant corn hybrid test results, 2008-09, Curtis Sybesma Farm. Seeded May 14, 2009 at 28,750 seeds per acre. | | | Yield A | verages | | Other 2009 Averages | | | | |---|---------------------------------|---------------------------------|---------------------------------|--|--------------------------------------|-------------------------------------|--|--| | Brand/Hybrid + Seed Treatment [1] | Rel.
Mat.
[2] | 2-Yr
bu/a | 2009
bu/a | Bu.Wt. | Grain
Moisture
Pctg | Lodging
Pctg [3] | Final
Stand Pctg
[4] | | | DEKALB/ DKC58-16(VT3) + Poncho 250
KRUGER/ 6606VT3 + Cruiser 250
KRUGER/ 6006VT3 + Cruiser 250
WENSMAN/ W 7455VT3 + Poncho 250
WENSMAN/ W 7469VT3 + Poncho 250 | 108
106
106
107
109 | 214
214
210
210
207 | 226
218
226
220
217 | 52
54
55
50
49 | 20
18
20
20
20 | 0
1
0
0 | 92
91
92
89
93 | | | DEKALB/ DKC61-69(VT3) + Poncho 250
KRUGER/ 6208VT3 + Cruiser 250
RENK/ RK822VT3 + Poncho 250
KRUGER/ 6410VT3 + Cruiser 250
G2/ GEN. 5H-210 RR/HX + Cruiser 250 |
111
108
110
110
110 | 207
204
200 | 214
209
209
234
231 | 50
54
54
51
51 | 21
22
21
20
18 | 0
0
0
1
2 | 88
94
97
91
95 | | | KRUGER/ 6010VT3 + Cruiser 250
NC+/ 208-72VT3 + Cruiser 250
G2/ GEN. 5H-511 RR/HX + Cruiser 250
NUTECH/ 3T-408 VT3 + Cruiser 250
RENK/ RK744VT3 + Poncho 250 | 110
108
110
108
107 | | 231
225
224
222
222 | 50
52
54
53
54 | 21
19
19
20
17 | 1
0
0
0 | 91
93
87
99
86 | | | G2/ GEN. 5H-511A RR/HX + Cruiser 250
G2/ GEN. 5H-007 RR/HX + Cruiser 250
NC+/ 4582VT3 + Cruiser 250
NC+/ 210-57VT3 + Cruiser 250
NUTECH/ 3T-308 VT3 + Poncho 250 | 111
107
110
110
108 | | 222
219
218
218
217 | 54
52
52
52
52
54 | 21
17
20
21
20 | 2
1
0
1 | 89
87
95
91
91 | | | RENK/ RK711RRHXTRA + Poncho 250
RENK/ RK760VT3 + Poncho 250
G2/ GEN. 5X-911 RR/HXT + Cruiser 250
NUTECH/ 5N-909 GTCBLLRW + Cruiser 250
G2/ GEN. 5X-210 RR/HXT + Cruiser 250 | 107
106
110
109
110 | * 4.4.4.4 | 217
216
216
211
211 | 52
53
54
50
51 | 16
19
19
19
20 | 0
1
0
1 | 94
88
94
89
93 | | | DEKALB/ DKC59-64(VT3) + Poncho 250
KRUGER/ 6408VT3 + Cruiser 250
NUTECH/ 3T-409 VT3 + Cruiser 250
NUTECH/ 3T-512 VT3 + Poncho 250
NUTECH/ 3T-110 VT3 + Cruiser 250 | 109
108
109
110
110 | | 208
205
204
193
185 | 49
53
52
52
48 | 23
19
22
25
24 | 1
0
0
0
1 | 92
82
89
93
92 | | | Trial avg.:
High avg.:
Low avg
[5] LSD(0.05):
[6] Min.TPG value:
[7] Max.TPG value:
[8] Coef. of var
No. entries: | 109
111
106 | 208
214
200
NS
200 | 216
234
185
18
216 | 52
55
48
2
53
2
30 | 20
25
16
2
18
6
30 | 0
2
0
NS
2
237
30 | 91
99
82
4
95 | | ^[1] Entries are listed by Brand/Hybrid and sorted by 2-yr then by 2009 yield average. * Values in **boldtype** within a column are included in the top-performance group. Note that additional table footnotes are explained in table D. Table 6a. Beresford early maturity glyphosate-resistant corn hybrid test results, 2008-09, Southeast Experiment Station. Seeded May 19, 2009 at 28,750 seeds per acre. | | Rel. | Yield A | verages | Other 2009 Averages | | | | | |--|---------------------------------|---|---|--|-----------------------------------|-----------------------|---|--| | Brand/Hybrid + Seed Treatment [1] | Mat.
[2] | 2-Yr
bu/a | 2009
bu/a | Bu.Wt. | Grain
Moisture
Pctg | Lodging
Pctg [3] | Final Stand
Pctg [4] | | | NC+/4582VT3 + Cruiser 250
KALTENBERG/ K6663VT3 + Poncho 250
WENSMAN/ W 7455VT3 + Poncho 250
DAIRYLAND/ ST-9006 + Poncho 250
WENSMAN/ W 7469VT3 + Poncho 250 | 110
110
107
106
109 | 239
233
231
227
222 | 245
247
240
250
235 | 53
51
51
54
49 | 27
25
26
23
26 | 1
0
4
0 | 98
93
92
96
94 | | | FOUR/ STAR 6844VT3 + Cruiser 250
DEKALB/ DKC52-59(VT3) + Poncho 250
KRUGER/ 6208VT3 + Cruiser 250
RENK/ RK822VT3 + Poncho 250
DEKALB/ DKC57-50(VT3) + Poncho 250 | 108
102
108
110
107 | 221
220
217
214 | 231
232
240
228
253 | 50
53
51
52
50 | 24
18
25
25
24 | 4
1
3
1 | 85
96
94
97
96 | | | KRUGER/ 6408VT3 + Cruiser 250
NC+/ 210-57VT3 + Cruiser 250
G2/ GEN. 5H-511 RR/HX + Cruiser 250
KRUGER/ 6410VT3 + Cruiser 250
DEKALB/ DKC59-64(VT3) + Poncho 250 | 108
110
110
110
110 | • | 252
249
248
248
247 | 54
51
53
53
52 | 24
25
25
25
25
26 | 0
0
0
0
1 | 91
96
94
92
96 | | | RENK/ RK744VT3 + Poncho 250
KRUGER/ 6010VT3 + Cruiser 250
DAIRYLAND/ ST-9810 + Poncho 250
FOUR/ STAR EXP9072VT3 + Cruiser 250
NUTECH/ 3T-308 VT3 + Poncho 250 | 107
110
110
110
110 | 7 + 7 3 | 247
246
245
244
243 | 51
49
53
51
52 | 23
26
25
26
24 | 0
1
0
0 | 92
92
93
93
94 | | | KALTENBERG/ K6645LLGT3 + Poncho 250
NUTECH/ 3T-408 VT3 + Cruiser 250
RENK/ RK711RRHXTRA + Poncho 250
RENK/ RK698VT3 + Poncho 250
NC+/ 208-72VT3 + Cruiser 250 | 110
108
107
105
108 | | 243
242
241
239
238 | 50
53
51
54
51 | 24
25
24
21
24 | 1
0
0
0
0 | 90
97
93
88
91 | | | DEKALB/ DKC53-76(VT3) + Poncho 250
NUTECH/ 5N-909 GTCBLLRW + Cruiser 250
NUTECH/ 3T-512 VT3 + Poncho 250
G2/ GEN. 5H-210 RR/HX + Cruiser 250
PROSEED/ 9105 + Poncho 250 | 103
109
110
110
105 | + | 237
237
236
236
235 | 54
51
52
52
53 | 22
24
26
24
19 | 0
1
0
0 | 94
92
93
96
88 | | | NUTECH/ 3T-106 VT3 + Poncho 250
NUTECH/ 3T-110 VT3 + Cruiser 250
PROSEED/ 9102 + Poncho 250
PIONEER/ 35F44 + Poncho 250
G2/ GEN. 5X-711 RR/HXT + Cruiser 250 | 105
110
102
105
110 | **** | 234
23 4
233
233
233 | 51
50
52
53
54 | 23
27
21
21
21
25 | 0
1
2
0 | 93
92
95
95
93 | | | DAIRYLAND/ ST92060 + Cruiser 250
G2/ GEN. 5X-210 RR/HXT + Cruiser 250
FOUR/ STAR EXP6066VT3 + Cruiser 250
DEKALB/ DKC55-07(VT3) + Poncho 250
G2/ GEN. 5H-007 RR/HX + Cruiser 250 | 106
110
110
105
107 | 1 2 5 3 4 | 232
230
229
227
226 | 51
50
50
55
50 | 24
26
29
24
23 | 0
0
0
1 | 97
92
90
93
87 | | | G2/ GEN. 5X-911 RR/HXT + Cruiser 250
RENK/ RK670VT3 + Poncho 250
RENK/ RK760VT3 + Poncho 250
HOEGEMEYER/ HPT 7757 + Cruiser 250 | 110
103
106
105 | | 226
225
225
220 | 52
52
52
54 | 24
21
23
24 | 0
1
1
0 | 87
96
93
92 | | | PROSEED/ 8101VT3 + Poncho 250
PROSEED/ 8104 + Poncho 250
FOUR/ STAR EXP9056VT3 + Poncho 250 | 101
104
108 | + + - | 218
218
217 | 53
54
54 | 20
21
26 | 2
1
1 | 93
78
93 | | | Trial avg.:
High avg.:
Low avg.:
[5] LSD(0.05):
[6] Min.TPG value:
[7] Max.TPG value: | 107
110
101 | 225
239
214
NS
214 | 236
253
217
14
239 | 52
55
49
2
53 | 24
29
18
1 | 1
4
0
2 | 93
98
78
5
93 | | | [8] Coef. of var.:
No. entries: | 47 | 5
9 | 47 | 3
47 | 4
47 | 284
47 | 3
47 | | ^[1] Entries are listed by Brand/Hybrid and sorted by 2-yr then by 2009 yield average. * Values in **bold type** within a column are included in the top-performance group. Note that additional table footnotes are explained in table D. Table 6b. Beresford late maturity glyphosate-resistant corn hybrid test results, 2008-09, Southeast Experiment Station. Seeded May 19, 2009 at 28,750 seeds per acre. | | | Yield A | verages | | Other 20 | 09 Averages | | |--|--|--|---|--
--------------------------------------|-------------------------------------|----------------------------| | Brand/Hybrid + Seed Treatment [1] | Rel.
Mat. [2] | 2-Yr
bu/a | 2009
bu/a | Bu.Wt. | Grain
Moisture
Pctg | Lodging
Pctg [3] | Final Stand
Pctg [4] | | KRUGER/ 6411VT3 + Cruiser 250
KRUGER/ 6213VT3 + Cruiser 250
DEKALB/ DKC61-69(VT3) + Poncho 250
DEKALB/ DKC62-54(VT3) + Poncho 250
NUTECH/ 3T-413 VT3 + Cruiser 250 | 111
113
111
112
113 | 229
225
223 | 243
243
231
249
246 | 51
52
51
53
52 | 24
27
26
25
28 | 0
2
0
1
0 | 91
93
95
95
95 | | G2/ GEN. 5H-511A RR/HX + Cruiser 250
KRUG ER/ 6214VT3 + Cruiser 250
NC+/ 4517VT3 + Cruiser 250
AGSOURCE/ 3T-712 VT3 + Poncho 250
KRUG ER/ 6116VT3 + Cruiser 250 | 111
114
113
112
116 | THE PARTY. | 242
240
240
237
236 | 53
51
52
53
52 | 25
27
26
29
28 | 0
1
1
0 | 92
92
94
96
93 | | G2/ GEN. 5X-911A RR/HXT + Cruiser 250
NUTECH/ 3T-713 VT3 + Poncho 250
NUTECH/ 3T-313 VT3 + Cruiser 250
KRUGER/ 6013VT3 + Cruiser 250
G2/ GEN. 5X-711A RR/HXT + Cruiser 250 | 111
113
113
113
113
112 | A TOTAL STATE | 235
234
233
233
232 | 53
50
54
51
53 | 24
29
26
29
25 | 0
1
0
3
0 | 92
93
91
94
95 | | NUTECH/ 3T-612 VT3 + Poncho 250
KRUGER/ 6412VT3 + Cruiser 250
NUTECH/ 3T-512A VT3 + Poncho 250
RENK/ EXP8-809VT3 + Poncho 250
G2/ GEN. 5H-314 RR/HX + Cruiser 250 | 112
112
111
111
111 | 0.0000 | 230
228
226
226
224 | 55
52
52
52
52
52 | 28
27
28
28
28
28 | 0
0
0
1 | 90
95
95
93
92 | | G2/ GEN. 5X-513 RR/HXT + Cruiser 250
RENK/ EXP7-816VT3 + Poncho 250
PIONEER/ 33Z74 + Poncho 250 | 114
112
113 | | 220
212
199 | 51
53
51 | 28
25
27 | 1 | 94
93
91 | | Trial avg.:
High avg.:
Low avg.:
[5] LSD(0.05):
[6] Min.TPG value:
[7] Max.TPG value:
[8] Coef. of var.:
No. entries: | 112
116
111
23 | 225
229
223
NS
223
5
3 | 232
249
199
14
235
4
23 | 52
55
50
2
53
2
2 | 27
29
24
1
25
3
23 | 1
3
0
NS
3
213
23 | 93
96
90
NS
90 | ^[1] Entries are listed by Brand/Hybrid and sorted by 2-yr then by 2009 yield average. * Values in **bold type** within a column are included in the top-performance group. Note that additional table footnotes are explained in table D.