2-1958

South Dakota Corn Performance Tests, 1957

D. E. Kratochvil
South Dakota State University
D. B. Shank
South Dakota State University

Bonnemanm

Follow this and additional works at: http:/ / openprairie.sdstate.edu/agexperimentsta_circ

Recommended Citation

Kratochvil, D. E.; Shank, D. B.; and Bonnemanm, "South Dakota Corn Performance Tests, 1957" (1958). Agricultural Experiment Station Circulars. Paper 136.
http://openprairie.sdstate.edu/agexperimentsta_circ/136

1957

corn performance tests

AGRONOMY DEPARTMENT
 AGRICULTURAL EXPERIMENT STATION SOUTH DAKOTA STATE COLLEGE, BROOKINGS

What Is Its Maturity Rating?

The number of days it takes a corn variety to mature is often listed by those who handle hybrid seed corn. Maturity can vary a great deal, depending on where the hybrid is grown. One that matures in 85 to 90 days in Minnehaha County may require 95 days further north. For this reason a hybrid's maturity should be determined in the area or areas where it is recommended.

Days required to reach maturity, when determined in areas where the seed is produced, are often not valid in large areas where the seed is sold. This publication lists the moisture percent at harvest rather than trying to rate a variety on length of time (days) to maturity. When trials over several years show a hybrid has a low enough moisture percent to keep safely in the crib, it is believed this better indicates its suitability to the area than to say it has a maturity of a certain number of days.

South Dakota

Corn Performance Tests, 1957

D. E. Kratochvil, D. B. Shank, and J. L. Bonnemann ${ }^{1}$

Yield trials on those corn hybrids currently most popular among farmers are conducted each year by the Agronomy Department of the South Dakota Agricultural Experiment Station. The purpose is to supply farmers and ranchers with information on the relative performing ability of the various hybrids when they are subjected to similar envirommental conditions such as rainfall, soil moisture, and fertility level. Such information, when used as a guide in selecting hybrids for planting, can aid the farmer in obtaining maximum yields under his field conditions.

In 1957, 14 tests were planted throughout South Dakota. Each contained from 20 to 40 entries planted in replicated plots. Yields, moisture percentages at harvest, and in some cases lodging, were obtained and are presented in the tables in this publication.

Most areas of the state entered the 1957 season with extremely low reserves of subsoil moisture. Above normal rainfall over most of the state during the months of April, May, and June supplied adequate moisture for abundant growth of corn. There were only two stations, Brookings and Vermillion, which were below normal moisture for the entire growing season. Highmore and Cottonwood were considerably above normal with a plus 8.67 and 7.42 inches for the growing season, respectively.

Although adequate moisture was available, corn was retarded in germination and early growth by low temperatures. All areas in which test plots were grown had below normal temperatures for April, May, and June. This below normal temperature was greatest at Vale during May when this station reported an average departure from normal of a minus 4.6 degrees, while Brookings reported an average minus departure of 4.5 degrees for June. July temperatures were near normal, or slightly below, over most of the state; however, the temperatures dropped in August and September so that all stations reported minus departures from normal for both months. The greatest departures were minus 7.5 and 5.2 degrees at Vermillion and Menno, respectively, during September. The low temperatures during August, September, and October resulted in slow maturing of the corn crop over the entire state.

[^0]Frost held off until into October in many areas. This lack of a killing frost coupled with the low temperatures caused the corn crop to dry slowly. Many fields of corn were picked too wet for cribbing, and considerable corn was still in the field in December at which time kernels on some of the ears of varieties that were of a long season maturity for the area were turning brown while still on the stalk.

The moisture content of all test plots harvested was considerably above long time averages. Late maturing hybrids, though producing more weight at harvest time in each test, were carrying so much moisture it would have required ultimate artificial drying to have cribbed such varieties. This year's results would seem to indicate farmers should use extreme care in selecting a hybrid which is adapted to their length of growing season, and refrain from using those hybrids which require excessive length of season to produce cribbable corn.

LOCATION OF THE 1957 TRIALS

Tests were conducted in the eight agricultural areas into which the state has been divided (see figure 1). These eight areas have been established on the basis of soil types, rainfall, temperature, and elevation as they affect crop production. At least one test was located in each area. Two trials were in areas $2,3,5$, and 8 and three in area 1 . The exact location of these trials, the cooperator, soil type, and dates of planting and harvesting are presented in table 1. Anyone evaluating and selecting hybrid varieties should refer to the trials conducted nearest the area in which the hybrid is to be planted.

Table 1. Location of the 1957 Tests

District	ct County	Cooperator	Post Office	Soil Type	$\begin{gathered} \text { Date } \\ \text { Pl:inted } \end{gathered}$	$\begin{gathered} \text { Date } \\ \text { Harvested } \end{gathered}$
1	Butte	Newell Irrigation and Dry Land Ficld Station	Newell	Pierre clay (irrigated)	Junc +	Nor. 14
1	Butte	Newell Irrigation and Dry Land Ficld Station	Newell	Pierre clay (dryland)	June 3	Oct. 29
1	Butte	Al Shecler	V'alc	Valc sandy loam	May 31	$\begin{array}{r} \text { Yov. } 12 \\ \& 13 \end{array}$
2	Fall River	Jim Varvel	Oral	Ansclmo sandy loam	$\begin{array}{r} \text { May } 28 \\ \& 29 \end{array}$	$\begin{array}{r} \text { Oct. } 30 \\ \text { \& } 31 \end{array}$
2	Jackson	Range Ficld Station*	Cottonword	Pierre clay loam	Junc 3	Oct. 15
3	McPherson	North Central Station*	Eurcka	Williams loam	May 29	Oct. 22
3	Hydc	Central Station*	Highmore	Williams loam	May 29	Oct. 21
t	Brown	Robert Schuller	Claremont	Very fine sandy loam	May 10	Oct. 31
5	Codington	Northeast Expt. Farm*	Watcrtown	Kranzburg silt loam	May 28	Oct. 17
5	Brookings	Agri. Expt. Station	Brookings	Vienna loam	May 24	Oct. 24
6	Brule	Dalc Cook	Chamberlain	Reliance silty clay loam	May 30	Oct. $1+$
7	Hutchinson	Southcast Expt. Farm*	Menno	Bonilla loam	May 27	Oct. 1
8	Minnchaha	Walter Nordstrom	Garretson	Moody silt loam	May 31	Oct. 25
8	Clay	Clarence Dose	Wakonda	Waubay silty clay loam	May 10	Oct. 28

[^1]
SELECTION OF ENTRIES

To select entries for the tests, a survey was conducted to determine the hybrids most farmers buy in the agricultural area represented by each test. Information was obtained on the hybrids of companies that registered their corn with the South Dakota State Department of Agriculture. The survey included recommendations by representatives of the corn companies producing and registering the hybrids, lists submitted by county agents located in the areas where the tests were conducted, information from the Livestock and Crop Reporting Service, and variety preference as expressed by farmers in general. Facilities permitted testing only the most widely used hybrids.

METHOD OF PLANTING AND HARVESTING

Planting. Each group of entries in each test was planted in four or five replications. Within these replications, plots of individual hybrids were located at random. Each plot consisted of 2 rows of 10 hills each, or the equivalent if the corn was drilled rather than checked. Planting was done at the rate of 3 kernels per hill for the checked plots and 1 per hill for the drilled plots (except under irrigation where planting rate was increased). Tests located with farmer-cooperators received the same fertilizer applications and cultural treatments as did the farmer's corn. Planting dates are given in table 1.

Harvesting. The test plots were picked at the time general harvesting was going on in the surrounding area. The corn from each plot was picked separately and weighed. After weighing, samples for moisture determination were taken on three replications of the plots. This was accomplished

by selecting 12 ears at random, taking a 1 -inch cross section from the middle of each ear by means of a machine built for this purpose, and placing the 12 cross sections in a paper bag. The samples were weighed when taken in the field; then they were oven-dried at $102^{\circ} \mathrm{C}$. in the laboratory, reweighed, and the moisture percentages determined. Harvesting dates are given in table 1.

TEMPERATURE AND RAINFALL

The information presented in table 2 on climatic conditions at the various stations nearest the corn trials is based on reports of the Monthly Climatological Data, U. S. Department of Commerce, Weather Bureau, Huron, South Dakota. Anyone wishing to know the weather conditions under which the corn test for the area in question was grown should check the information listed for the station closest to the trial.

MEASURING PERFORMANCE

Yield. The yield reported for each hybrid or variety in each test is the average obtained for all replications, expressed in bushels per acre on the basis of 15.5% moisture. All yields were computed from the field weights, which had been corrected according to the moisture content of the individual entries. At the bottom of tables 3 through 16 is given the minimum amount for each test by which two entries must differ in yield for that difference to be considered statistically significant.

A slight amount of variation can occur between entries of equal performance potential due to field conditions, such as variations in soil fertility, slope, and stand differences. Therefore, mathematical determinations have been made to establish how great a difference between two entries is necessary before it can be said that it is a true difference rather than a chance variation. For example, in Brookings County (table 12), a difference of 8 bushels per acre in the yield of two entries is required before it can be said that one has a superior yielding ability over the other. This difference, required for signficance, varies from test to test depending upon the amount of chance variation within each.

The average yield of all entries appears at the bottom of the yield column in each table.

Moisture content. The moisture content at harvest is given for each entry in the tables. This is the amount of moisture in the ear corn expressed in percentages. At the bottom of the moisture percentage column appears the average moisture percent of all entries. Moisture content is directly related to maturity, and because maturity is of primary consideration in South Dakota, these figures are very important when an evaluation of the various entries is made.

Performance rating. Yields for each entry in each test were converted to percentages by comparing them with the average yield of all entries.

Table 2. Temperature and Precipitation for the 1957 Corn Growing Season*

Station and District	Temperature in Degrees F.				Precipitation in Inches				Frost Free Days \dagger
	Month	Average	Departure From Normal	Average Departure	Month Total	Season Total	Departure From Normal	Total Departure	
Newell	May	54.5	-0.9		3.56		+0.98		
	Junc	61.5	-2.7		3.07		-0.16		
(1)	july	73.9	+0.4		2.53		$+0.78$		
	Aug.	70.9	- 11.3		1.60		+0.33		
	Sept.	57.7	-2.9	-1.28	1.18	11.94	+0.05	+1.98	139
Valc	May	52.0	- 4.6		4.52		+1.83		
	June	63.6	-1.6		2.68		-0.80		
(1)	July	74.4	+0.4		2.20		+0.32		
	Aug.	71.2	-0.2		1.74		+0.47		
	Scp.	57.4	-3.5	-1.90	. 70	11.84	-0.47	+1.35	149
Hot Springs (2)	May	53.7	-3.1		5.65		+2.61		
	Junc	62.8	-3.5		3.33		+0.32		
	July	74.2	-1.1		1.33		-0.79		
	Aug.	72.6	-0.6		1.19		-0.52		
	Scpt.	58.4	-4.4	-2.54	1.29	12.79	-0.04	$+1.58$	119
Cotlunwood	May	55.0	-2.3		5.14		$+2.57$		
	Junc	64.7	-2.1		5.43		+2.53		
(2)	July	75.8	-0.1		1.63		-0.24		
	Aug.	73.4	-0.3		3.33		$+2.08$		
	Sept.	60.3	-2.7	-1.50	. 99	16.52	0.00	+7.42	171
Eurcka	May	53.7	-2.6		3.91		+1.51		
	Junc	62.7	-2.4		3.51		-0.51		
(3)	July	74.1	+1.3		3.61		+1.24		
	Aug.	68.8	-1.8		4.06		+1.86		
	Sepr.	56.5	-3.7	-1.84	2.75	17.84	$+1.45$	$+5.55$	153
Highmore	May	54.8	-2.4		5.29		$+3.11$		
	Junc	64.4	-2.3		4.38		$+0.67$		
(3)	July	74.4	-0.5		5.00		$+3.20$		
	Aug.	71.7	-1.1		2.82		+083		
	Sept.	58.3	-4.5	-2.16	2.07	19.56	+0.86	+8.67	165
Aherdeen	May	54.0	-3.5		4.95		$+2.71$		
	Junc	63.4	-3.4		4.05		+0.01		
(4)	July	75.8	+1.9		2.50		-0.11		
	Alug.	69.9	-1.7		1.29		-0.87		
	Scpt.	57.1	-3.9	-2.12	1.60	14.39	+0.17	+1.91	160
Watertown		52.5	-3.6		5.68		+2.88		
	June	63.3	-2.5		2.75		-1.06		
(5)	July	75.3	+2.7		. 46		-2.38		
	Aug.	68.7	-1.4		3.47		+0.82		
	Scpt.	56.4	-3.7	-1.70	1.98	14.34	+0.05	+0.31	133
Brookings	May	54.2	-3.4		4.52		$+1.87$		
	Junc	62.9	-4.5		+. 00		+0.01		
(5)	July	75.8	+2.1		.97		-1.09		
	Aug.	69.0	-2.3		1.90		-1.00		
	Scpt.	56.9	-4.7	-2.56	1.35	12.74	-0.75	-0.96	125
Pukwana	May	56.4	-3.2		4.11		+1.75+		
	Junc	63.0	-3.3		3.37		+0.06*		
(6)	July	76.8	-0.6		. 88		-0.88*		
	Aug.	73.0	-1.8		2.37		+0.35 ${ }^{+}$		
	Sept.	60.0	-4.7	-2.72	2.12	12.85	+0.72+	2.00	132
Menno	May	57.7	-2.3		5.17		$+1.93$		
	Junc	67.1	-3.0		5.57		+1.29		
(7)	July	77.3	+0.6		4.49		+2.11		
	Aug.	73.2	-0.8		1.52		-1.54		
	Scpt.	59.6	-5.2	-2.14	1.92	18.67	-0.06	+3.73	152
Sioux Falls	May	56.0	-2.1		4.69		+1.51		
	Junc	66.7	-1.3		5.41		+1.16		
(8)	July	78.6	+3.8		2.80		-0.20		
	Aug.	71.1	-1.3		3.76		+0.48		
	Scpt.	59.1	-3.3	-0.84	2.66	19.52	-0.27	$+2.68$	158
Vermillion	May	57.9	-3.8		4.17		+1.08		
	Junc	68.7	-2.8		2.37		-1.97		
(8)	Ju!y	78.1	+0.6		4.29		+1.15		
	Aug.	72.1	-3.2		1.62		-1.51		
	Scpt.	58.7	-7.5	-3.34	3.14	15.59	+0.46	-0.79	148

*From Monthly Climatological Data, U. S. Department of Commerce, Weather Bureau, Huron, S. D.

+ Number of day's between the last spring temperature of $32^{\circ} \mathrm{F}$. or lawer and the first fall temperature of $32^{\circ} \mathrm{F}$. or lower.
+Figures not in Climatological Data; Figured from previous year's normal.

Similar calculations were made for moisture at harvest time after first subtracting each moisture content from 100 so that the varieties would be ranked according to their ability to produce sound, rather than soft, corn. The performance rating which appears in the tables for each entry was then found as follows:

$$
\frac{6(\text { Yield percentage })+4(\text { Moisture percentage })}{10}
$$

Stand. A reduction in the number of hills below 100% may indicate several things-either that the seed of an entry was unable to produce a good stand under the environmental conditions prevailing for the test or that something destroyed either the kernels before germination or the young plants. Thin stands reduce yields, and since this work is designed primarily to test yielding potential of the various entries, corrections in yield were made for missing hills according to the formula:

$$
\mathrm{CW}=\mathrm{FW}\left(\frac{\mathrm{H}-0.3 \mathrm{M}}{\mathrm{H}-\mathrm{M}}\right)
$$

where CW $=$ corrected weight, FW $=$ field weight, $\mathrm{H}=$ number of hills planted per plot, and $\mathrm{M}=$ number of missing hills. No yield corrections were made for minor variations in stand, that is, less than three stalks per hill. Also no corrections were attempted for poor stands in drill plots.

Lodging. In some tests information is given on lodging. Root lodging is expressed as the percentage of stalks that leaned 30 degrees or more from the perpendicular at the ground level.

Average yields over a period of years. Many of the entries included in the 1957 trials were also tested in previous years. This makes possible the calculation of 2 -, 3-, 4-, and 5- year averages in some cases. Averages involving the greater number of years are shown first in the tables, as these data give more information than only 1 year's results. In any one year an entry may fluctuate in its relative value because of specific environmental conditions under which the test was conducted. Averages for a period of years will tend to iron out these environmental variations.

In the table for any one area test, a hybrid is shown with only two yields no matter how many years it has been included in the trials. The average yield for the total number of years the hybrid has been tested and the results from the current year are shown. These yields are shown in comparison to the average yield of all entries for the current year and total years in which the hybrid was included.

The hybrids having more than one year's results are found in the table in order of the long time average yield and not as to yield or performance rating for the current season. Where hybrids have been in a test only one year they are arranged on the basis of the performance rating. A hybrid or variety was included in the averages only when it was the same variety each year and secured from the same source.

Black Hills Area

Butte County. ${ }^{2}$ Two trials, one irrigated and one on dryland, were carried on at the Newell Irrigation and Dry Land Field Station in 1957. In addition, another irrigated test, located on the Al Sheeler farm near Vale, was rum so that results might be obtained on Vale sandy loam as well as on the Pierre clay soils of the Newell Station.

Climatic conditions were not favorable for sound, dry corn. A wet spring delayed planting until about June 1 and a wet fall with frost occurring quite late caused high moisture percentages at harvest time. The monthly mean temperatures were below normal during all months but July.

Butte County (dryland). This test was conducted on the Newell Station on a field which had been planted to a grass trial in 1956 and which had failed. It was Noble-bladed twice, disced, and harrowed before planting corn in 1957. Stands were thimned to 7,500 plants per acre. Planting was completed June 3 and harvesting October 29 . Pheasants damaged the corn, selecting the earlier, drier entries in preference to the late maturing, higher moisture content hybrids.

Table 3. Area 1 (Butte County) 1957 Corn Performance Tests on Dryland-Clay Soil

Hybrid or Variety	Acre Yield Bu.	Moisture Percent	1957		
			Yield Bu.*	Moisture Percent	Performance Rating
3-Year Average \dagger					
Sokota S. D. 250	- 31	31	23	42	1
Sokota S. D. 220	30	23	18	35	2
Blacks Hills Special	26	33	12	40	8
Jacques 853J	25	27	10	+1	10
Average of 4 entries tested 3 years	28	29	-	-	-
2-Year Average					
DeKalb 56	16	36	15	39	5
Average of 5 entries tested 2 years	16	36			
Pioneer 395	... -	-	16	35	3
Pioneer 388	.. -	-	16	39	4
Kingscrost KC6	-	-	14	39	6
Funk G-18	-	-	15	46	7
Disco 96-WR	. -	-	11	40	9
DeKalb 59 .-.	. -	-	11	48	11
Pfister P. A. G. 28	. -	-	8	40	12
Kingscrost KC3	-	-	7	35	13
Funk G-11A .-.-	-- -	-	8	46	14
Average	--- -	-	13	40	-

[^2]${ }^{2}$ Tests in Butte County (tables 3, 4, 5 and Fall River County (table 6) were conducted as cooperative work between the Agricultural Research Scrvice, USDA, U. S. Irrigation and Dry Land Field Station, Newell, South Dakota and the South Dakota Agricultural Experiment Station.

Black Hills Area

Butte County (irrigated clay soil). The field used for the irrigated test on the Newell Station had been in alfalfa since 1953 and was plowed in the fall of 1956. After discing and leveling, and prior to planting, approximately 70 pounds of available nitrogen as $33-0-0$ and 20 pounds of available phosphate as $0-43-0$ were drilled into the field. Stands were thinned to 18,000 plants per acre. Planting was performed on June 4 and harvesting on November 14. The corn was irrigated July 13 and 14 , August 3 and 4, and on August 22.

Table 4. Area 1 (Butte County) 1957 Corn Performance Tests on Irrigated Land-Clay Soil

 | Hybrid or Variety |
| :--- | :--- |

*Differences in yield of less than 8 bushels per acre are not statistically significant.

Black Hills Area

Butte County (irrigated sandy soil). This test was conducted on the Al Sheeler farm located just northwest of Vale, South Dakota. The field was spring plowed following a crop of sugar beets in 1956. Prior to plowing approximately 250 pounds of $24-20-0$ and several loads of manure were spread on the field. Stands were 18,000 plants per acre. The corn was planted May 31 and harvested November 12 and 13. The plots were irrigated twice. Damage occurred to the plots in the form of hail which occurred three times, twice being quite severe in its effect, and from raccoons which destroyed the earlier entries to a greater extent than the later maturing ones.

Table 5. Area 1 (Butte County) 1957 Corn Performance Test on Irrigated LandSandy Soil

Hybrid or Variety	Acre Yield Bu.	Moisture Percent	1957		
			$\begin{aligned} & \text { Yield } \\ & \text { Bu.* } \end{aligned}$	Moisture Percent	Performance Rating
5-Year Average \dagger					
Funk G-18	115	30	103	32	4
Sokota S. D. 270	108	30	103	31	5
S. D. 262	-104	29	95	310	11
DeKalb 56	103	26	89	30	13
S. D. 220	97	23	66	27	18
Average of 5 entries tested 5 years	105	28		-	\cdots
4-Year Average					
S. D. 250	- 108	27	99	29	10
Average of 6 entries tested 4 years	106	27	-	-	+*
2-Year Average					
Kingscrost KS4	117	27	106	32	2
DeKalb 62	105	28	103	31	6
Kingscrost KA3	98	26	88	30	15
Average of 9 entries tested 2 years	104	25	-	-	-
Disco 101-A	-	-	109	32	1
DeKalb 222	- -	-	109	36	3
Funk G-26 .-.--	-	-	104	34	7
Sekota S. D. 400	- -	-	102	33	8
Pioneer 388	- --	-	99	27	9
Funk G-11A	-	-	93	29	12
DeKalb 59	- -	-	94	36	14
Pfister P. A. G. 32	-	-	86	28	16
Pfister P. A. G. 28	- -	-	72	28	17
Jacques 907J	-	-	40	26	19
Average	--	-	93	30	-

*Differences in yield of less than 10 bushels per acre not statistically significant.

+ Data for the 5 -year average was taken from the years $1952,54,55,56,57$.

West River Area

Fall River County. This test was on the farm of Jim Varvel, located $1 \not \underline{1 ⁄ 2}$ miles northeast of Oral. Corn followed corn in this case. The field was spring plowed and 120 pounds of nitrogen in the form of anhydrous ammonia were applied prior to planting. Stands were 18,000 plants per acre. Planting was done May 28 and 29 and harvesting on October 30 and 31. The plots were irrigated four times. Hail seriously damaged the plants once in late June.

Table 6. Area 2 (Fall River County) 1957 Corn Performance Tests on Irrigated Land-Sandy Loam

Hybrid or Variety	Acre Yield Bu.	Moisture Percent	19 st		
			Yield Bu.*	Moisture Percent	Performance Rating
2-Year Avorage					
S. I). +20 (Fxptl. \# 13)	121	30	102	42	1
Sokota S. D. 604	- 119	29	93	42	8
DeKalb 410	- 118	27	94	41	5
Pionecr 349	-114	29	88	42	13
Kingscrost KO4	114	31	88	43	15
Kingscrost KS5	114	27	91	39	7
S. D. 622 (Exptl. \#19)	112	31	88	43	16
Disco 101-A	. 111	26	91	38	4
Pionecr 377A	107	24	92	36	3
S. D. 270	100	25	80	37	17
Average of 10 entries					
tested 2 years .	_- 113	28	-	-	-
DeKalb 409	-	-	98	39	2
Funk G-11A	- -	-	89	36	6
Pfister P. A. G. 277	-	-	95	44	9
Funk G-18	-- -	**	87	38	10
Pfister P. A. G. 234	-	-	90	42	11
Jacques 1053JA	-	-	86	39	12
Cargill 102N	-	-	86	41	14
Pioneer 373	-	**	82	42	18
Average	-. -	-	90	40	-

[^3]
West River Area

Jackson County. With rainfall total 7.4 inches greater than normal for the period of May l to September 30, yields of corn at the Range Field Station were excellent. This was the first year since 1.953 that corn has successfully produced a crop at this station. The com was planted June 3 and harvested October 15, at which time the moisture content of all varieties was very high. Certain hybrids were found to have been injured considerably by coons. It will be noted that the coon damage appears to have been on the earlier maturing varieties and probably accounts for their lower yields in comparison to later varieties.

Table 7. Area 2 (Jackson County) 1957 Corn Performance Tests
Hybrid or Variety

* Differences in yield of less than 13 bushels per acre are not statistically significant.
$\dagger 3$-year averages are from 1951, 1953, and 1957 tests. The 2 -year averages are from the 1953 and the 1957 tests. Drought eliminated the $1952,54,55$, and 56 crops.
\ddagger These two varieties were completely damaged by coons.
§These varicties were slightly damaged by coons.

North Central Area

McPherson County. Above normal rainfall and below normal temperatures for the corn growing season existed at the North Central Station in 1957. The corn trials were planted May 29 on land following small grain which had received 160 pounds of 16-20-0 fertilizer per acre preceding the small grain and 10 tons of manure before the corn. The moisture content of the corn was above 5-year averages at harvest time which was October 22. Yields were exceedingly high for this area with later varieties showing the highest yields reflecting the longer than normal growing season. Frost was not received at this station until October 17.

Table 8. Area 3 (McPherson County) 1957 Corn Performance Tests

Hybrid or Variety	$\begin{aligned} & \text { Acre Yield } \\ & \text { Bu. } \end{aligned}$	Moisture Percent	1957		
			Yield Bu.*	$\begin{aligned} & \text { Moisture } \\ & \text { Percent } \end{aligned}$	$\begin{gathered} \text { Performance } \\ \text { Rating } \end{gathered}$
5-Year Average					
Pioncer 388	43	25	65	36	5
Sokota S. D. 220	+0	$2+$	58	35	15
Wisconsin 240	37	21	55	31	16
DcKalb 46	37	23	55	33	18
Nodak 301	36	24	51	33	24
Average of 5 entries tested 5 years	39	23	-	-	-
4-Year Average					
Sokota S. D. 250	39	32	71	42	2
Kingscrost KE7	32	$2+$	50	32	23
Average of 7 entries tested 4 years	35	26	-	-	-
3-Year Average					
S. D. Exptl. \#18	37	24	62	34	6
Nodak 305	36	25	57	33	14
Prister P. A. G. 28	36	28	61	36	10
S. D. Exptl. \#17	33	22	60	34	8
S. D. 210 (Exptl. \#16)	33	22	51	32	22
Gurney 85 ..-.......-......-	31	26	56	35	20
Average of 13 entries tested 3 years	34	25	-	-	-
2-Year Average					
Funk G-18	- 49	37	69	42	4
Pfister P. A. G. 32	45	30	64	37	7
S. D. AES 101	38	18	48	25	21
Agsco Morclen 77	34	19	43	26	25
Average of 17 entries tested 2 years	42	27			
DeKalb 59	... -	-	76	42	1
Pioneer 390	. -	-	67	39	3
Disco 95-W	-	-	65	41	9
S. D. Exptl. \#16A	-	-	59	33	11
Funk G-11A	-	-	59	36	13
Cargill 530	-	\cdots	58	35	12
Haapala H-340	-	-	61	$+2$	17
Jacques 955J	- -	-	59	39	19
Average	----	-	59	35	-

[^4]
North Central Area

Hyde County. The Hyde County plots on the Central Station at Highmore rotate with small grain. Fertilizer practices call for 200 pounds of $16-20-0$ mixed fertilizer per acre before small grain and 100 pounds $16-20-0$ and 10 tons of manure per acre previous to corn. Soil moisture and seedbed were excellent on May 29 when the trials were planted. With 8.7 inches above normal rainfall for the growing season the yields at this station were considerably above 5 -year averages. Moisture content of the corn at harvest, October 21 , was above average but was lower at this station than otherstations in 1957.

Table 9. Area 3 (Hyde County) 1957 Corn Performance Tests

*Differences in yield of less than 8 bushels per acre are not statistically significant.

North James River Area

Brown County. Yields in this trial were equal to 5-year averages. Low temperatures and only slightly above average rainfall made the growing season near normal in this area; however the damp, cool fall clrying period prevented corn from reaching average moisture content at harvest time. The test was planted May 10 and harvested October 31.

Table 10. Area 4 (Brown County) 1957 Corn Performance Tests

Hybrid or Varicty	$\begin{aligned} & \text { Acre Yield } \\ & \text { Bu. } \end{aligned}$	Moisture Percent	1597		
			Yield Bu.*	Moisture Percent	Performance Rating
5-Year Average					
Kingscrost KSt	66	21	76	29	5
Sokota S. D. 270	66	21	67	27	18
Sokota S. D. 250	64	18	69	27	13
Pioncer 388	62	18	66	23	14
DeKalb 58	62	24	72	25	6
Average of 5 entries tested 5 years	64	20	-	-	-
4-Year Average					
Funk (3 -18	66	21	72	27	11
Disco 101A	63	23	72	30	12
Average of 7 entries tested 4 years	64	21	-	\sim	\cdots
3-Year Average					
Pfister P. A. G. H $^{\text {d }}$	64	19	74	29	10
United Hagic L'H26	61	17	74	25	4
Kingscrost KB4	63	21	70	30	15
Tomahawk ta	57	20	60	27	20
Average of 11 entries tested 3 years	62	19	-	-	-Tr
2-Year Average					
Jaccjucs 1053J	70	22	81	30	3
Pfister P. A. G. 32	61	20	71	24	9
Funk G-26	52	23	45	29	7
Peavey PV97	45	22	34	29	22
Average of 15 entries tested 2 years	64	22	-	-	-
DcKalb 236	--	-	81	27	1
Pioncer 383	- -	--	78	25	2
S. D. Exptl. \#26	-	-	73	27	8
Haapala H135A	-	-	69	29	16
Farmer 205	\ldots	a-	66	24	17
Cargill 102N	- -	-	68	31	19
Gurney 85	---	-	58	26	21
Average			68	27	

[^5]
Northeast Area

Codington County. The test in Codington County was on the Northeast Experimental Farm, 15 miles north of Watertown. Climatic conditions were nearly normal at this station except for cool temperatures cluring May and June and cool, wet weather the later part of September and through October. The season resulted in above average yields with late hybrids which usually fail to mature having the higher yields in 1957. Fertilizers containing 60 pounds of available nitrogen and 40 pounds of $\mathrm{P}_{2} \mathrm{O}_{5}$ were applied previous to the corn planting. Planting was done on May 28 and harvesting on October 17.

Table 11. Area 5 (Codington County) 1957 Corn Performance Tests
Hybrid or Variety
*Differences in yield of less than 7 bushels per acre are not statistically significant.

Northeast Area

Brookings County. Yields in this test were very similar to those in 1956; however they were slightly above 5-year averages. The moisture content at harvest for most hybrids were nearly double those in 1956. This would seem to reflect the below normal temperatures of May, June, August, and September with .91 inches below normal rainfall for the growing season. It will be noted that longer season hybrids produced highest yields but with the late fall and the cool, wet weather they had trouble in drying to a moisture content safe for cribbing. A rotation of 2 years small grain, 1 year corn is employed. Fertility is maintained on these plots by 150 pounds of 16-20-0 mixed fertilizer each year previous to small grain and 10 tons of manure previous to corn. Planting was done on May 24 and harvesting on October 24 .

Table 12. Area 5 (Brookings County) 1957 Corn Performance Tests

Hybrid ur Variety	Acre Yield Bu.	Moisture Percent	Root Lodging Percent	1957		
				Yield Bu. \dagger	Moisture Percent	Performance Rating
5- Year Average						
I) isco 1()1-A	76	22	4	81	31	7
S. I). 250	75	22	3	80	30	8
Sokota S. I). 270	75	25	8	80	31	9
S. D. 262	74	23	13	73	28	19
Sokota S. D. 400	74	25	7	78	30	12
Kingscrost KS4	72	25	8	81	31	11
Tomahawk 14	72	$2+$	6	76	32	20
Pioncer 388	70	20	-	68	22	22
Average of 8 entries tested 5 years	73	23	-	-	-	-
3-Year Average						
Haapala H-130	69	25	14	77	37	24
Kingscrost KS5	64	24	2	74	35	25
Average of 10 entries tested 3 years	67	22	-	-	-	-
2-Year Average						
Pfister P. A. G. 62	86	24	4	84	32	4
Funk G-26	84	23	1	82	30	6
Jacques 1053 JA	83	$2+$	4	81	34	13
Average of 13 entries tested 2 years	84	22	-			
Funk G-24A	-- -	-	-	90	35	1
Cargill 655	. -	-	-	85	30	2
I) cKialb 222	-	-	-	85	34	3
Pfister P. A. G. 55	-	-	-	82	30	5
Pioncer 377-A	-	-	-	78	29	10
Van V81	-	-	-	83	38	14
United Hagic UH 36A	- -	-	-	83	39	15
Farmer 205	- -	-	-	73	26	16
S. 1). Exptl. \#25	-	-	-	73	27	17
I)cKalb 59	-	-	-	76	31	18
(Jurney 100	-	-	-	74	31	21
Master F73	- -	-	-	75	33	23
Average	-	-	-	79	31	-

[^6]
South Central Area

Brule County. Below normal temperatures plus above normal moisture during May resulted in such a poor stand on this trial area that at harvest time the yields were not sufficient to make comparative yields between hybrids. The data in the following table is a summary of information obtained from tests of previous years through 1956.

Table 13. Area 6 (Brule County) 1956 Corn Performance Tests

Hybrid or Variety	Acre Yield Bu .	Moisture Percent	1956		
			$\begin{aligned} & \text { Yield } \\ & \text { Bu. } \end{aligned}$	Moisture Percent	Performance Rating
5-Year Average \dagger					
DeKalb 410	49	23	52	10	15
S. D. 250	46	18	46	7	25
S. D. 262	45	21	58	9	4
Farmer 273	4	22	54	14	14
S. D. 270	41	20	4	7	27
Sokota S. D. 400	+1	21	48	11	23
Average of 6 entries tested 5 years	44	21	-	-	-
4-Year Average \dagger					
Pioneer 388	50	12	57	10	6
Average of 7 entries tested 4 years	49	12	-	-	-
3-Year Average \dagger					
Gurney 100	49	16	52	11	16
Average of 8 entries tested 3 years	52	14	-	-	-
2-Year Average \dagger					
Pioneer 383	-. 65	13	55	9	9
Vinton V-14	-- 64	19	59	13	5
DcKalb 248	61	16	51	12	20
Funk G-26	- 49	16	43	12	28
Average of 12 entries tested 2 years	56	15			
Pfister P. A. G. 57	. -	-	72	11	1
Cornhusker 83	-	-	63	18	2
Trojan F-99	-	-	60	14	3
Haapala H130	-	-	59	16	7
Jacques 1108J	-. -	-	57	13	8
Sokota S. D. 604	-	-	56	16	11
Cargill 105N	-	-	54	9	10
Funk G-30A	-	-	54	14	12
Tekseed 45A	-	-	54	15	13
Turner N14A	--	--	53	14	17
Curry C-57	-	-	53	15	18
Kingscrost KS4	-	\cdots	51	10	19
United Hagic UH +1A	-	-	51	14	21
Disco 101-A	-	-	48	11	22
Tomahawk 42	-	-	+8	14	$2+$
Pfister P. A. G. 62	-	-	45	8	26
Beeghly Ia. 4376	-	-	43	16	29
Average	---	-	53	12	

[^7] +1955 test is not included in the average.

South James River Area

Hutchinson Couniy. The test in Hutchinson County was on the Southeast Experimental Farm, 4 miles east of Menno. Climatic conditions were favorable at this station in 1957. Rainfall totaled 3.7 inches above normal for the corn growing season and temperatures were near normal except for May, June, and September. The low September temperatures (5.2 degrees below normal) resulted in high moisture content corn which dried very slowly, preventing corn picking until late October and into November in this area. Alkali spots within the plot area eliminated two of the four replications planted; therefore the results in the following table for 1957 are based on only two replications and any conclusions drawn should be made with this in mind. The plots were located on land which grew small grain in 1956. Fertilizer applied consisted of 60 pounds of nitrogen and 40 pounds of available $\mathrm{P}_{2} \mathrm{O}_{\mathrm{i}}$ per acre. The test was planted May 27 and harvested October 1.

Table 14. Area 7 (Hutchinson County) 1957 Corn Performance Tests

Hybrid or Varicty	$\begin{gathered} \text { Acre Yield } \\ \text { Bu. } \end{gathered}$	Moisture Percent	1957*		
			$\begin{aligned} & \text { Yield } \\ & \text { Bu. } \dagger \end{aligned}$	Moisture Percent	$\begin{aligned} & \text { Performance } \\ & \text { Rating } \end{aligned}$
4-Year Average					
DeKalb +10	51	21	40	+1	17
Sokota S. D, 400	48	15	+1	20	t
Pionecr 352	48	21	37	34	18
Turner T+8	46	23	Ht	39	$10 \ddagger$
Average of 4 entries tested 4 years	48	20	-	=	-
3-Year Average					
Tcksecd 115	+.. ${ }^{\text {+2 }}$	23	49	39	5
S. 1). 622 (Exptl. \# 19)	+1	24	46	+2	9
Sokota S. D. $60+\ldots$	39	23	38	$+1$	23
Disco 108AA	37	21	39	40	19
Gurney 118A	39	33	48	73	7
Funk G-i5A	37	27	35	48	26
Farmer 427Δ	36	36	37	42	25
Average of 11 entries tested 3 years	38	24	-	-	-
2-Year Average					
Pfister P. A. G. 244	-.. 32	22	tt	30	6
Curry C-49	30	19	t+	26	3
Funks G-76	- 29	24	+1	32	12
Jacoturon J39	30	29	45	42	$10 \pm$
Moews $1+\ldots$	27	25	39	36	15
Renk is Sons R +105 A	28	28	40	42	21
Average of 17 entries tested 2 years	30	26			
Pianeer 329 .-...	-	4	53 46	29	2
Pfister P. A. G. 62	-	-	46	25	2
Green Acres 67	-	-	45	+0	8
Tomalawk +3	-	-	$+1$	34	13
Cargill 939	-	-	42	35	14
United Hagie UH47A	-	-	$+1$	42	16
Jacques 1108JA	-	-	37	36	20
Kingscrost KT2	-	-	37	37	22
Vinton V38	-	-	34	33	24
Haapala H257	-	-	31	52	27
Average	-	-	41	38	-

[^8]
Southeast Area

Minnehaha County. Temperatures were below normal cluring May, June, August, and September with rainfall 2.7 inches above normal for the growing season. These conclitions resulted in above average yields of very wet corn when harvested October 25 . The test was on land following small grain. It was planted May:31 and harvested October 25.

Table 15. Area 8 (Minnehaha County) 1957 Corn Performance Tests

Hybrid or Variety	$\begin{aligned} & \text { Acre Yield } \\ & \mathrm{Bu} . \end{aligned}$	Moisture Percent	1957		
			Yicld Bu.*	Moisture Percent	$\begin{aligned} & \text { Performance } \\ & \text { Rating } \end{aligned}$
5-Year Average					
United Hagie UH 32A	71	28	75	+1	16
S. D. 270 -	- 67	22	75	33	4
S. D. 400	64	25	69	36	20
Average of 3 entries tested 5 years	67	25			
4-Year Average					
Pioncer 371	71	25	80	37	3
Sokota S. D. 604	71	31	72	42	17
Average of 5 entries tested 4 years	69	26	-	-	-
3-Year Average					
Funk G-30A	6.4	29	74	39	13
Carlson C-6	61	30	73	+1	21
Average of 7 entries tested 3 years	63	27			
2-Year Average					
DeKalb 410	77	30	77	39	8
Kingscrest KOt	78	33	73	+1)	18
Cargill 180	78	33	78	+1	11
Tomahawk 22	7.4	29	72	37	14
Renk \& Sons R222A	69	28	70	35	15
Average of 12 entries tested 2 years	74	30			
DcKalb 409	- -	-	85	40	1
Pioneer 3+9	- -	-	81	39	2
Haapala H257	-	-	81	+1	5
Jacçues 1108J	\square	-	77	39	6
Pfister P. A. G. 62	-	-	75	36	7
Farmer 259	-	\leftarrow	75	37	9
Disco 107AA	- -	-	73	37	11
Moews 1 HEE	. -	\pm	75	+1)	12
Teksced 115	-	-	74	42	19
Masters F77	$=$	-	66	35	22
Gurney 110		-	72	+3	23
Funk G-2 A A	-	-	71	$+1$	2.4
Pfister P. A. G. 55	-	-	66	35	25
Iowealth 90 ...-...	- -	-	60	34	26
Average	二	+	73	38	

[^9]
Southeast Area

Clay County. Weather clata for this trial is that taken at Vermillion. These data show the area to have had very low temperatures for May, June, August, and September and 0.79 inches below normal rainfall for the growing season. The plot is approximately 20 miles from Vermillion and crops in the plot area indicated considerably less rainfall had been received than the crops in the Vermillion area. The test was on land following small grain. The yields were considerably less than 5 -year averages and would be more so than indicated in the following table except for the very low yields due to drought in 1956 which lowered 3 -, 4 -, and 5 -year averages. Com from this test was the clriest of any trial harvested this fall. The climatic conditions of the area which have existed for the 1956-57 season tended to bring out larger environmental differences. The experimental error was high for the test and large differences between varieties is necessary before one hybrid is really better in performance than another. The plot was planted May 10 and harvested October 28.

Table 16. Area 8 (Clay County) 1957 Corn Performance Tests

Hybrid or Variety	Acre Yield Bu.	Moisture Percent	1957		
			Yield Bu.*	Moisture Percent	Performance Rating
*	5-Year Average				
Pioneer 349	- 66	17	46	21	2
DeKalb 627 -	- 65	19	41	24	7
DeKalb 410	63	15	46	19	I
Tomahawk 78	64	20	33	24	19
Pioncer 352	61	18	39	24	9
Farmer 427A	58	18	30	24	27
Sokota S. D. 604	57	18	35	27	17
Average of 7 entries tested 5 years \qquad	62	18	-	1	-
3-Year Average					
Funk G-75A	52	21	39	27	12
Pfister P. A. G. 244	49	18	37	22	13
Green Acres 395	49	22	32	27	23
Curry C-49	45	20	31	27	26
Average of 11 entries tested 3 years	48	19	-	\cdots	\cdots
2-Year Average					
S. D. 622	48	20	47	26	3
Cornelius C49	43	19	34	26	1518
Pfister P. A. G. 277	38	19	37	24	14
Kingscrost KT7	38	21	34	28	22
Albertson C76	36	19	35	26	16
Turner T48	34	24	26	32	31
Average of 17 entries tested 2 years \qquad	41	19	-	T	-
Iowealth AQ	-	-	45	24	4
S. D. Exptl. \#24	-	-	42	26	5
S. D. Exptl. \#23	-	-	41	25	6
Jacques 1158J	-- -	-	40	24	8
Disco 111-AA	- -	-	38	22	10
Cargill 255	-	-	38	24	11
Kingscrost KT9	-	-	38	30	15
Haapala H257	-	-	32	23	20
Moews 524A	-	-	35	31	21
Teksced 111A	-	-	31	26	24
Funk G-76	-	-	32	29	25
United Hagic UH52B	\square	F	32	31	28
Jacobson J39	-	-	29	23	29
Vinton V-35	-	-	25	25	30
Average	-	-	36	26	-

- Differences in yield of less than 11 bushels per acre are not statistically significant.

[^0]: ${ }^{1}$ Assistant Agronomist, Agronomist, and Assistant Agronomist, respectively, South Dakota Agricultural Experiment Station.

[^1]: *Substations of the South Dakota Agricultural Experiment Station.

[^2]: *Differences in yield of less than 8 bushels per acre are not statistically significant.
 +1953-55-57 Data used to determine 2 and 3 year averages; crop failures in 1954-56 due to drought.

[^3]: *Differences in yield of less than 10 bushels per acre not statistically significant.

[^4]: *Differences in yield of less than 9 bushels per acre are not statistically significant.

[^5]: *Differences in yield of less than 8 bushels per acre are not statistically significant.

[^6]: *No root lodging data taken in 1957, figures represent data from previous jears. \dagger Differences in yield of less than 8 bushels per acre are not statistically significant.

[^7]: *Differences in yield of less than 16 bushels per acre are not statistically significant.

[^8]: *The 1957 data based \bullet n two replications. Alkali spots in the plot prevented using the data from other replications.
 +1)ifferences in yield of less than 7 bushels per acre are not statistically significant.
 \ddagger These two varieties were tied in their performance scores.

[^9]: *Differences in yield of lessthan 11 bushels per ac:e are not staristically significant.

