Resource Requirements for Different Levels of Income on Faulk County, South Dakota Farms and Ranches

D. E. Umberger

R.D. Helfinstine

Follow this and additional works at: http://openprairie.sdstate.edu/agexperimentsta_bulletins

Recommended Citation

Umberger, D. E. and Helfinstine, R. D., "Resource Requirements for Different Levels of Income on Faulk County, South Dakota Farms and Ranches" (1968). Bulletins. Paper 548.
http://openprairie.sdstate.edu/agexperimentsta_bulletins/548

RESOURCE REQUIREMENTS for Different Levels of Income on Faulk County Farms and Ranches

CONTENTS

Highlights 5
Introduction 7
Present Agriculture. 8
Production Requirements 9
Determination of Minimum Resources for Different Labor Incomes 11
Changing Livestock Enterprises As It Affects
Resource Requirements 15
Changing Land Prices As It Affects Resource Requirements 20
Implications for Adjustments 23
Appendix 25

LIST OF TABLES

ilo. Page

1. Assumed Áverage Prices Paid and Received by Farmers, Faulk County, South Dakota 12
2. Land use and Livestock as Programmed for !!inimum Resource kequirements for Different Labor Incomes 13
3. Financial Highlights of Programs for Hinimum Resource Requirements for نifferent Labor Incomes 13
4. Programmed Land Use and Livestock with Different Livestock Organizations for liinimum Resources to Earn \$3000 Labor Income (§uO Land Price) 16
5. Financial Highlights of Programming finimum Resource Requirements to Earn $\$ 3000$ Labor Income with Different Livestock Organizations (\$60 Land Price) 16
6. Progranmed Land Use and Livestock with Different Livestock Organizations for Minimum Resources to Earn $\$ 5000$ Labor Income (\$60 Land Price) 17
7. Financial Highlights of Programming liinimum Resource Requirements to Earn $\$ 5000$ Labor Income with Different Livestock Organizations (\$60 Land Price) 17
§. Programmed Land Use and Livestock with Different Livestock Organizations for Minimum Resources to Earn $\$ 3000$ Labor Income (C Land Price) 18
8. Financial Highlights of Programming liinimum Resource Requirements to Earn $\$ 3000$ Labor Income with Different Livestock Urganizations (0 Land Price). 18
9. Programned Land Use with Different Livestock Organizations for Hinimum Resources to Earn $\$ 5000$ Labor Income (O Land Price) 19
10. Financial Highlights of Programming Ninimum Resource Requirements to Earn $\$ 5000$ Labor Income with Different Livestock Organizations (0 Land Price) 19
11. Programmed Land Use and Livestock with Different Land Prices and for Minimum Resource Requirements to Earn $\$ 3000$ Labor Return 20
12. Financial Highlights of Programming Minimum Resource Requirements to Earn $\$ 3000$ Labor Returns with Different Land Prices 21
13. Programmed Land Use and Livestock with Different Land Prices and for Minimum Resource Requirements to Earn \$5000 Labor Return. 21
14. Financial Highlights of Programming Minimum Resource Requirements to Earn $\$ 5000$ Labor Return with Different Land Prices 22

List of Tables Cont.)
ivo. Page
16. Programmed Land Use and Livestock with Different Land Prices and for Hinimum Resource Requirements to Earn $\$ 10,000$ Labor Return. 22
17. Financial Highlights of Progranming Minimum ResourceRequirements to Earn $\$ 10,000$ Labor Return with Different LandPrices23

HIGHLIGHTS

The purpose of this study was to determine the minimum resources (land, labor, cash or credit) required to earn $\$ 3,000, \$ 5,000$ or $\$ 10,000$ annual labor income in Faulk and nearby counties with comparable land.

Linear progranming determined that some or all of the following crops should be included in the most profitable plans: corn, wheat, oats, flax, corn silage and alfalfa.

Fattening of purchased feeder calves was determined to be the most profitable enterprise. However, few ranchers include this enterprise, perhaps because of high risk. If a rancher restricts himself to a beef cow herd he would require 6,000 acres additional land to net the same income. If he neither buys calves or stockers for fattening nor raises hogs he will need 1,600 acres more land. If he doesn't buy calves or stockers for fattening he will need over 300 acres more land.

Changing land values as they affect the acres required to earn various levels of labor income are as follows:

For \$3,000 --
$\$ 0$ per acre land requires 578 acres;
$\$ 30$ per acre land requires 728 acres;
$\$ 60$ per acre land requires 1,016 acres;
$\$ 75$ per acre land requires 1,370 acres.
For \$5,000 --
$\$ 0$ per acre land requires 836 acres;
$\$ 30$ per acre land requires 1,001 acres;
$\$ 60$ per acre land requires 1,613 acres;
$\$ 75$ per acre land requires 2,279 acres.
For \$10,000 --
$\$ 0$ per acre land requires 1,564 acres;
$\$ 30$ per acre land requires 2,131 acres;
$\$ 60$ per acre land requires 3,280 acres;
$\$ 75$ per acre land requires 4,843 acres.

RESOURCES REQUIRED FOR DIFFERENT LEVELS OF INCOME ON FAULK COUNTY, SOUTH DAKOTA FARMS AND RANCHES

Dwaine E. Umberger and Rex D. Helfinstine $\begin{array}{lll}1 & 2 & 3\end{array}$

Abstract

"Aost farmers and ranchers in Faulk County, as well as in other counties, are interested in learning tie minimain amount of resources (land, labor and cash or credit) needed to earn different incomes. This bulletin presents the results and implications of comprehensive and sneedy linear nrogranming work that determined the minimun resources required by a farmer or rancher to earn a labor income of $\$ 3,000$, or 55,000 or $\$ 10,000$ per year in Faulk County. Later renorts are planned to present tıe results of similar work for other areas of South Dakota.

Faulk County is a transition area between fams and ranches with each being interspersed witn the other. Accordingly, the term ranch as used later, will refer to either farm or ranch.

Current developments in electronic computing allow us to readily compute the best way to organize given ranch resources for the highest profit or, alternativelv, the minimum resources to earn a jiven incone. Linear progranming as a technique for solving ranch management problems means adaptation of electronic data processing to the budgeting process long used in solving ranch management problems. Eotn the computer and budgeting process involve trial and error methods of comnaring alternatives to find the best plan. However, the sneed of electronic data processing allows comparison of almost unlimiteci alternatives rather than just for a few as in budgeting. This means greater assurance of obtaining the most nrofitable alternative.

[^0][^1]Linear programming requires a more precise mathematical statement of all requirements. Botn methods require the same type of basic figures - labor, equinment, capital requirements for each enterprise, and production rates for each crop and livestock enterprise.

PRESENT AGRICULTURE

Faulk County, the specific area under study, is located in State Economic Area 2 A (figure 1). This area includes Campell, Edmunds, Faulk Hand, Hughes, Hyde, ifcPherson, Potter, Sully, and Walworth Counties. Results of the study apply specifically to Faulk County, but may apply in a general way to other counties :ditn similar soils and resources.

Present Farming
liajor crops grown in Faulk County include wheat, oats, corn, and alfalfa. Land considered not suited for cultivation is used for native hay and pasture. Tynes of ranches range from primarily livestock to cash-grain, denending upon the relative proportion of cropland and preference of the onerator.

Feeder cattle raising has been the cnief livestock enternrise since it adapts itself to using both the native pasture and hay. Feed grains are used by some ranchers for fattening cattle or raising hogs or sheen.

The average size of ranch in Faulk County has been increasing since the 1930's. This may reflect the pressure to comensate for declining profits per unit from higher fixed investment in equiprient. Higher fixed investment in equipment has arisen from substitution of equiment for labor as encouraged by improved tecnnology and high labor costs. Panchers find that unit costs may be reduced and total profits increased by enlarging their ranches. Chanjes in number of farms (ranches) and average size of farms in Faulk County are illustrated by the following U.S. Census figures:

Census Year	Number of Farms	Averagc size, acres
1890	-	237
1900	-	660
1910	-	476
1920	\ldots	586
1930	\ldots	575
1940	302	709
1950	766	734
1959	602	1005
1964	528	1138

Soils

Faulk County lies on an undulating glacial plain that becones less undulating from west to east. ${ }^{4}$ Claypan and poorly drained soils are found more frequently toward the western part of the County. This situation means that the proportion of cronland decreases as one travels fron east to west.

Soil fertility on cropland, althouqh generally adequate. nay need replenisment with nitrogen fertilizer and organic matter. A fe: areas have a water erosion problem arising fron slope and character of the soil.

Climate

Extreme change characterizes the weather in Faulk County. Temneratures have ranged from 20° to 40° below zero in winter to more than 100° in July and August. Winds up to 60 miles an hour are not uncommon. Hailstorms may wipe out a crop in minutes. At Faulkton, the county seat, 102 iailstorms of varying intensities have occurred in the 56-year period $1000-$ 1956. Ainnual precipitation at the Faulkton weather station has averaned nearly 18 incnes for the past 45 years. But the extreme variation in annual precinitation .from 10 to more than 27 inches -- results in similar variation in crop yields.

PRODUCTION REQUIREMENTS

Detemination of minimuin ranch resources required to earn given income levels by linear programiang necessitates that production and cost requirements for crops and livestock be mathematically specified. Assumptions, which are required to be made, may not describe precisely any one ranch in Faulk County. However, the physical and financial results from using such assumntions should be useful for indicating the level of profitability from alternative ranching systems.

Land

It was assumed that each acre of land was typical of Faulk County. This assumption allows one to detemine the minimum acres of land required for different levels of living and use of the size ranch so detemined for programing minimum

[^2]otner resources. Each acre was assumed to be made un as follows: ${ }^{5}$

Cropland	
Class a (most favorable)	$(10.4 \%$
Class u (Subject to erosion)	(20.4)
Class c (Unfavorable soil conditions)	(9.5)
Class d (Excess water problems)	(2.8)
ivative hay and pasture	12.5%
Range	
Other	
	TOTAL

Crops

Recommended cropping practices were assumed to be followed on the rancies under study. Average yiclds under this assumntion were estimated by Soutin Lakota State University agronomists for the averafe acre of cron land planted in Faulk County as follows:

Corn, bu.	23.7
Corn silage, T.	4.5
Oats, bu.	36.2
Barley, bu.	25.1
Wheat on cropland, bu.	16.1
Wheat on fallow, bu.	17.5
Flax, bu.	9.7
Alfalfa Hay, ton	1.3
Hative Hay, ton	0.67
Native pasture. A.U.4.	0.55.

Other assumed figures and additional details for crops on averane prices paid and received, costs of machinery and equinment, overhead costs and labor requirements are presented in appendix tables $A-1, A-2, \cap-3$ and $A-4$.

Crop enterprises considered in the analysis included wheat, corn grain, corn silage, oats, flax, barley and alfalfa hav. These crons were considered in rotations practiced in the area and recommended by agronomists at South bakota State University. Continuous one-crop systems were not considered since they are not recommended nor practiced to any extent.

Livestock

Livestock enterorises considered included 11 different beef cattle or calf systems and one hog system. A 92% calf crop was assumed for the cowcalf enterprise with one-sixth of the cows replaced annually. Average annual sales were one-sixth of a 1,000 -pound cull cow and 76% of a 430 -nound calf, with calves weaned the latter part of October.
${ }^{5}$ South Dakota Conservation Needs Committee, South Dakota Soil and Water Conservation Needs Inventory, May 1962.

Other livestock enterprises included feeding steer calves on alternative rations and weights for different lengths of time. A stocker enterprise wintered 430 -pound calves on a ration of either silage or grain plus hay, followed by pasturing to a 700-pound weight in late summer. Four calf feeding systems involved obtaining 430-pound steer calves in October, wintering and feeding in drylot with or without silage to a l,050-pound choice grade the following October. An alternative involved pasturing for 3 months and marketing as a 1,100 pound choice steer.

The hog enterprise included a gilt with 7.5 pigs weaned per litter, pigs farrowed in the spring and sold as 225 -pound market hogs in the fall, with one gilt retained for replacement.

Further assumptions on costs, prices and production are given in appendix tables $A-1, A-9, A-10$, and $A-11$.

Basis of Analysis
Estimated future prices and costs used in the analysis are basic to the results one obtains. Those used in this study represent an estimate of future prices and are considered to be internally consistent.

Prices paid and received by ranchers in Faulk County were assumed to be as given in table 1.

DETERMINATION OF MINIMUM RESOURCES FOR DIFFERENT LABOR INCOMES

Land in Faulk County was considered to be the most limiting resource since ranchers have little opportunity to rent or buy additional land at prevailing prices. Accordingly the programming was set up to minimize land requirements but allow labor and capital to be used up to the level where returns equal costs. Important factors other than land in determining minimum resources required by a typical Faulk County rancher for earning labor incomes of $\$ 3,000, \$ 5,000$ or $\$ 10,000$ include income goals, level of management, production rates, available labor, costs and prices, and availability of other resources. ${ }^{6}$

Important assumptions in the analysis include:

1. Operators desire maximum labor income.
2. Labor supply: operator furnishes up to 3,000 man-hours per year, additional labor may be hired at $\$ 1.25$ per hour.

[^3]3. Managerial ability: adequate to allow adoption of improved practices.
4. Resource ownership: all assets, including land, machinery, equipment and livestock are fully owned with no rent or interest paid out.
5. Wheat acreage limited to county average allotments.

For Various Income Levels

Minimum resources required to earn $\$ 3,000$ labor income are indicated in tables 2 and 3. Land requirements are 1,016 acres; labor requirements 3,122 hours; and total capital requirements $\$ 100,136$. A labor income of $\$ 3,000$ required an annual gross income of $\$ 34,109$. The most profitable source of income, representing 91% of gross sales, was from feeding purchased calves.

Minimum resources for earning $\$ 5,000$ labor income are likewise shown in tables 2 and 3. Land requirements come to 1,613 acres; labor requirements to 4,269 hours; and capital requirements to $\$ 155,546$. This labor income of $\$ 5,000$ required an annual gross income of $\$ 54,320$ with 90% of gross sales accounted for by fat cattle.

Table 1. Assumed Average Prices Paid and Received by Farmers, Faulk County, South Dakota

I tem	Unit	Price
Prices Paid: (Dolars)		
Livestock:		
Yearling steer purchased (April)	cwt.	23.26
Yearling feeder steer bought (October)	cwt.	23.08
Steer Calf bought (October)	cwt.	25.28
Gilt (breeding Stock)	unit	60.00
Prices Received:		
Crop products:		
Wheat	bu.	1.82
Oats	bu.	. 53
Barley	bu.	. 81
Flax	bu.	2.75
Corn	bu.	1.09
Livestock products:		
Choice steer sold (October)	cwt.	24.15
Choice steer sold (April)	cwt.	23.97
Yearling Stocker steer (October)	cwt.	23.08
Steer calf (October)	cwt.	25.28
Cull cow	cwt.	13.04
Market sows (farrowed once)	unit	54.57
Butcher hogs (late spring litter)	cwt.	15.82

Minimum resources necessary for earning a $\$ 10,000$ labor income are tabulated in tables 2 and 3 . For this return 3,180 acres of land, 7,146 hours of labor and $\$ 298,651$ are required. This labor income required a $\$ 98,766$ gross income of which 80% was derived from fat cattle sales, 7% from hogs and 13% from wheat and flax sales.

Table 2. Land Use and Livestock as Programmed For Minimum Resource Requirements for Different Labor Incomes

	Level of Labor Income		
	\$3,000	\$5,000	\$10,000
Corn, acres	166	264	528
0ats, acres	106	168	224
Barley, acres	0	0	0
Wheat, acres	78	124	370
Flax, acres	25	39	80
Corn silage, acres	9	15	4
Alfalfa, acres	49	77	213
Fallow	9	14	5
Total, crop acres	442	701	1424
Native hay, acres	75	119	179
Rangeland, acres	464	738	1441
Other, acres	35	55	136
Total, all land, acres	1016	$1 \overline{613}$	3180
Feed calves, drylot, head	36	58	16
Feed calves, pasture, head	83	131	279
Gilt and litter, litters	0	0	21

Table 3. Financial Highlights of Programs for Minimum Resource Requirements for Different Labor Incomes

| | Level of Labor | | Income |
| :--- | ---: | ---: | ---: | ---: |
| | $\$ 3,000$ | $\$ 5,000$ | $\$ 10,000$ |
| Investment | | | |
| Land and Buildings, dol. | 64,044 | 101,637 | 206,742 |
| Machinery and Equipment, dol. | 11,640 | 14,732 | 19,621 |
| Operating capital, dol. | 24,452 | 39,177 | 72,288 |
| Total capital, dol. | 100,136 | 155,546 | 298,651 |
| | | | |
| | | | |
| | | | |
| Income and Expenses | 34,109 | 54,320 | 98,766 |
| Gross Income, dol. | 25,583 | 40,039 | 71,925 |
| Expenses, dol.a | 3,352 | 5,323 | 10,824 |
| Land charges, dol.b | 3,246 | 3,958 | 6,017 |
| Machinery costs, dol. | 3,000 | 5,000 | 10,000 |

[^4]
General Considerations

The most profitable cropping plans for the different income levels included all crops considered except barley. A small change in resource requirements yield relationships, or prices, would allow barley to replace oats.

Specific cropping plans varied with land class and income level. Class "a" cropland had corn-wheat and corn silage-wheat rotations for the three income levels. Class "b" cropland rotations included corn-oats for the $\$ 3,000$ and $\$ 5,000$ levels, and corn-oats and corn-wheat for the $\$ 10,000$ level.

Class "c" cropland rotation included wheat-corn-flax and 3 years of alfalfa for the three income levels. The rotation on class "d" cropland included flax-wheat-fallow for all three levels. The wheat allotment restriction, representing the average allotment for the County, proved to be a restriction only at the $\$ 10,000$ income level. Other resources could be used more advantageously in alternate enterprises.

Labor requirements varied seasonally according to crop planting, cultivating and harvesting requirements. Operator labor was considered available by periods as follows:

1. November 16 to March 15 -
2. March 16 to April 30 -
3. May 1 to July 15 -
4. July 16 to September 30 -
5. October 1 to November 15 -

508 hours
210 hours
493 hours
583 hours
306 hours.

It was profitable to hire additional labor during period 2 and 3 at the three income levels. In addition it was profitable to hire labor at higher income levels in other labor periods. The number of hours of labor to be hired during the different periods was as follows:

Period

Income Level

1. November 16 - March 15
2. March 16 - April 30
3. July 16 - September 30
4. October 1 - November 15 TOTAL

Income Level		
	$\$ 5,000$	$\$ 10,000$
$\$ 3,000$	0	
0	320	793
128	654	1676
229	271	929
0	116	547
0	1361	4095

Appendix table A-6 presents crop labor requirements and seasonal distribution.

Previous programming results indicated generally that the most profitable ranch organization included the fattening of purchased feeder calves. However, few Faulk County ranchers fatten purchased feeder calves, according to a recent survey of a group of 40 ranchers in the county. Perhaps the explanation lies in the risks associated with cattle feeding. Either or both crop production and prices fluctuate from year-to-year resulting in unpredictable high, low or intermediate income. Large amounts of capital or credit are required to be available to an operator if he is to continue in business.

Many operators in Faulk County apparently tried to diversify their enterorises in order to reduce risk. The effects of likely changes in livestock enterprises upon minimum resources and net incomes were examined.

Three different organizations were programmed:

1. An organization not allowing the purchase of feeder calves nor stockers (B);
2. An organization not allowing the purchasing of feeder calves nor stockers nor hog raising (C);
3. An organization allowing only a beef cow herd as a livestock enterprise (D).

Programming results to attain a $\$ 3,000$ labor return for these different organizations, assuming a $\$ 60$ land price, are presented in tables 4 and 5 . Land requirements increase from 1,016 acres for the basic organization to 1,349 for B, to 2,604 for C and to 6,109 for D. Total capital requirements increase from $\$ 100,136$ for the basic organization to $\$ 133,358$ for B, to $\$ 217,451$ for C, and to $\$ 494,113$ for D.

Implications of these results for Faulk County ranchers are important. If a rancher decides he will not buy calves or stockers for fattening (B), he will need approximately a half section more land to make the same $\$ 3,000$ income. If he decides he will neither buy calves or stockers for fattening nor raise hogs (C), he will need an additional 1,600 acres. On the other hand, if only a beef cow herd will be kept (D), more than 6,000 additional acres will be required to make $\$ 3,000$ net labor income. The cost of restricting the enterprises a rancher will consider is readily apparent.

Similar results and implications are apparent in programming minimum resources for a $\$ 5,000$ income (Tables 6 and 7). Land requirements (\$60 land) increase from 1,613 acres for the basic organization to 2,246 acres for B, to 4,760
for C : to 11,164 for D. Increases in land requirements when enterorise choicos are restricted are apparent.

Programmed results for $\$ 3,000$ and $\$ 5,000$ labor incomes are presented in táles 8, 9, 10 and 11 .

Table 4. Programmed Land Use and Livestock with Uifferent Livestock Organizations for ilinimum Resources to Earn \$3,000 Labor Income (\$60 Land Price)

	Basic	Livestock Organization		
		B^{1}	c^{2}	D^{3}
Corn, acres	166	243	308	721
Oats, acres	106	141	-	305
Barley, acres	0	0	130	0
Wheat, acres	78	103	294	690
Flax, acres	25	34	158	371
Corn silage, acres	9	-	-	-
Alfalfa, acres	49	64	124	292
Fallow	9	1	117	274
Total, crop acres	442	586	1,131	2,653
Native hay, acres	75	79	124	289
Rangeland, acres	464	627	1,238	2,907
Other, acres	35	57	111	260
Total, all land, acres	1,016	1,349	2,604	6,109
Beef cow and calf, head	0	34	67	204
Feed calves: drylot, silage, head	d 36	0	0	0
Feed calves: pasture, no silage, head	83	26	51	0
Gilt and litter, litters	0	50	0	0

Table 5. Financial Highlights of Programming linimum Resource Requirements to Earn \$3,000 Labor Income with Different Livestock Organizations (\$60 Land Price)

	Livestock Orqanization			
	Basic	B^{1}	c^{2}	D^{3}
Investment				
Land and Buildings, dol.	64,044	86,943	160,201	374,606
Machinery and Equipment, dol.	11,640	15,002	18,154	32,023
Operating capital, dol.	24,452	31,413	39,096	88,479
Total capital, dol.	100,136	133,358	217,451	494,113
Income and Expenses				
Gross Income, dol.	34,109	26,911	47,173	73,804
Expenses, dol.	25,583	14,462	30,634	47,640
Land charges, dol.	3,352	4,452	8,593	20,158
Machinery Costs, dol.	3,246	3,651	4,946	9,006
Labor Income, dol.	3,000	3,000	3,000	3.000

[^5]
Table 6. Programmed Land Use and Livestock with Different Livestock Organizations for Minimum Resources to Earn $\$ 5,000$ Labor Income (\$60 Land Price)

	Basic	Livestock Organization		
		B^{1}	c^{2}	u^{3}
Corn, acres	264	388	562	1,319
Uats, acres	168	235	238	558
Uarley, acres	0	0	0	0
wneat, acres	124	173	539	1,262
Flax, acres	39	58	289	678
Corn silage, acres	15	\cdots	\cdots	-
Alfalfa, acres	77	107	227	533
Fallow	14	15	214	501
Total, crop acres	701	$\overline{976}$	2,069	4,851
Hative nay, acres	119	129	227	529
Kangeland, acres	738	1,059	2,471	5,812
Uther, acres	55	97	205	430
Total, all land, acres	1,613	2,246	4,760	11,164
Beef cow and calf, head	0	57	123	372
Feed calves: drylot, silage, head	d 50	0	0	0
Feed calves: pasture, no silage, nead	131	43	93	0
Gilt and litter, litters	0	110	0	0

Table 7. Financial Highlignts of Programming Minimum Resource Requirements to Earn \$5,000 Labor Incoine with Different Livestock Organizations (Sou Land Price)

Basic	Livestock Organization		D^{3}
	B^{1}	c^{2}	
101,637	146,928	292,854	684,597
14,732	16,378	27,920	49,480
39,177	61,632	73,630	163,888
155,546	224,938	394,404	897,965
54,320	52,259	67,740	145,862
40,039	35,095	39,648	89,496
5,323	7,412	15,706	36,841
3,958	4,752	7,386	14,525
5,000	5,000	5,000	5,000

[^6]Table 8. Programmed Land Use and Livestock with Different Livestock Organizations for Minimum Resources to Earn $\$ 3,000$ Labor Income (0 Land Price)

	Livestock Organization			
	Basic	Bl	c^{2}	0^{3}
Corn, acres	100	105	150	162
Oats, acres	91	95	59	64
Barley, acres	9	0	0	0
Wheat, acres	4	15	98	106
Flax, acres	4	15	21	23
Corn silage, acres	0	-	-	-
Alfalfa, acres	28	29	41	45
Fallow	15	5	8	8
Total, crop acres	251	264	377	408
Native hay, acres	66	39	59	45
Rangeland, acres	251	283	404	456
Other, acres	10	21	29	32
Total, all land, acres	578	607	869	941
Beef cow and calf, head	0	15	28	32
Feed calves: drylot, no silage, head	41	0	21	0
Feed calves: pasture, no silage, nead	42	12	0	0
Gilt and litter, litters	0	37	0	0

Table 9. Financial Highlights of Programming Minimum Resource Requirements to Earn \$3,000 Labor Income with Different Livestock Organizations (0 Land Price)

[^7]Table 10. Programmed Land Use with Different Livestock Organizations for Minimum Resources to Earn $\$ 5,000$ Labor Income (0 Land Price)

	Basic	Livestock Organization		
		Bl	c^{2}	D^{3}
Corn, acres	137	154	213	157
Oats, acres	87	140	84	66
Barley, acres	0	0	0	0
Wheat, acres	64	22	139	150
Flax, acres	7	22	30	81
Corn silage, acres	8	-	-	-
Alfalfa, acres	40	43	58	63
Fallow	20	6	11	60
Total, crop acres	363	387	535	577
Native hay, acres	62	57	84	63
Rangeland, acres	395	415	573	632
Other acres	16	32	42	56
Total, all land, acres	836	891	1234	1328
Beef cow and calf, head	0	22	39	44
Feed calves: drylot, silage, head	30	0	0	0
Feed calves: drylot, no silage, h	ead0	0	30	0
```Feed calves: pasture, no silage, head```	68	17	0	0
Gilt and litter, litters	0	54	0	0

Table 11. Financial Highlights of Programming Minimum Resource Requirements to Earn $\$ 5,000$ Labor Income with Different Livestock Organizations (0 Land Price)


[^8]Previous analysis assumed an average land price of $\$ 60$ per acre. It may be of interest to detemine the effects of different land prices upon minimum resource requirements. Land prices were assumed to be zero, \$30 and $\$ 75$ per acre for comparison with $\$ 60$. Zero land prices do not occur, but represent a situation of unencumbered ownership where the owner does not consider a return from land necessary.

Programming results show that for a $\$ 3,000$ labor income, land requirements are 578 acres with zero land value, 728 acres with $\$ 30$ land, 1,016 acres with $\$ 60$ land and 1,370 acres with $\$ 75$ land (table 12). Corn acreage similarly ranges from 100 to 224. Total capital requirements range from $\$ 26,829$ to $\$ 154,537$ (table 13).

For a $\$ 5000$ labor income land requirements are 836 acres with zero land value, 1,081 acres with $\$ 30$ land, 1,613 acres with $\$ 60$ land, and 2,279 acres with $\$ 751$ and (table 14). Acres of corn range from 137 to 387 (table 14). Total capital requirements vary from $\$ 32,799$ to $\$ 247,261$ (table 15).

In programming for a $\$ 10,000$ labor income land requirements were determined to be 1,564 acres with zero 1 and value, 2,131 acres with $\$ 30$ land,

Table 12. Programmed Land Use and Livestock with Different Land Prices and for Minimum Resource Requirements to Earn $\$ 3000$ Labor Income

	\$0	Land Price Per Acre		
		\$30	\$60	\$75
Corn, acres	100	113	166	224
Oats, acres	91	114	106	143
Barley, acres	9	11	0	0
Wheat, acres	4	6	78	106
Flax, acres	4	6	25	22
Corn silage, acres	0	13	9	13
Alfalfa, acres	28	35	49	65
Fallow	15	16	9	26
Total, crop acres	251	314	442	599
Native hay, acres	66	70	75	101
Rangeland, acres	251	329	464	636
Other, acres	10	15	35	34
Total, all land, acres	578	728	$1 \overline{016}$	1370
Feed calves, drylot, no silage, head	41	0	0	0
Feed calves, dry lot silage, head	0	50	36	49
Feed calves, pasture, no silage, head	42	56	83	111

3,280 acres with $\$ 60$ land and 4,843 acres with $\$ 75$ land (table 16). Acres of corn ranged from 255 to 836 (table 16). Capital requirements vary from $\$ 57,201$ to $\$ 524,832$ (table 17).

Table 13. Financial Hignlights of Programming Minimum Resource Requirements to Earn $\$ 3000$ Labor Income with Different Land Prices

	Land Price Per Acre			
	$\$ 0$	$\$ 30$	$\$ 70$	
Investment				
Land and Buildings, dol.	2133	24,564	64,044	106,859
Macninery and Equipment, dol.	9260	9,850	11,640	14,602
Operating capital, dol.	15,431	20,394	24,452	33,076
Total capital, dol.	26,829	54,808	100,136	154,537
Income and Expenses				
Gross Income dol.	21,940	27,900	34,109	46,143
Expenses, dol.a	17,204	20,887	25,583	33,828
Land cnarges, dol.	0	1,201	3,352	5,651
Machinery costs, dol.	2,375	2,813	3,246	3,664
Labor Income, dol.	3,000	3,000	3,000	3,000

[^9]Table 14. Programmed Land use and Livestock with Different Land Prices and for Minimum Resource Requirements to Earn \$5000 Labor Income


Table 15. Financial Highlights of Programming Minimum Resource Requirements to Earn $\$ 5000$ Labor Income with Different Land Prices

$\frac{\text { Land } \operatorname{Pr}}{\$ 30}$	$\frac{\text { Per Acre }}{\$ 60}$	\$75
35,771	101,637	178,489
11,850	14,732	15,382
26,647	39,177	53,490
74,268	155,546	247,261
36,966	54,320	71,019
6,851	40,039	51,744
1,784	5,323	9,401
3,331	3,958	4,874
5,000	5,000	5,000

[^10]Table 16. Programmed Land Use and Livestock with Different Land Prices and for Minimum Resource Requirements to Earn $\$ 10,000$ Labor Income

	\$0	Land Price Per Acre		
		\$30	\$60	\$75
Corn, acres	255	349	628	836
Oats, acres	163	222	224	506
Barley, acres	0	0	0	0
Wheat, acres	120	163	370	371
Flax, acres	38	63	80	718
Corn silage, acres	15	19	4	0
Alfalfa, acres	75	102	213	213
Fallow	13	13	5	40
Total, crop acres	$\overline{679}$	925	1424	$2 \longdiv { 0 4 }$
Native hay, acres	116	155	179	256
Rangeland, acres	715	946	1441	1735
Other, acres	54	79	136	168
Total, all land acres	1564	$2 \longdiv { 1 3 1 }$	3280	4843
Feed calves, drylot, silage, head	56	72	16	0
Feed calves, pasture, no silage, head	127	173	279	413
Gilt and litters, litters	0	2	21	74

Table 17. Financial Highlights of Programming Minimum Resource Requirements to Earn $\$ 10,000$ Labor Income with Different Land Prices

	Land Prices Per Acre			
	\$0	\$30	\$60	\$75
Investment				
Land and Buildings, dol.	4,676	70,387	206,742	379,735
llachinery and Equipment, dol.	14,705	14,928	19,621	30,824
Operating capital, dol.	37,820	52,041	72,288	714,273
Total capital, dol.	57,201	137,356	298,651	524,832
Income and Expenses				
Gross Income, dol.	52,667	71,344	98,766	146,871
Expenses, dol.a	39,046	53,234	71,925	108,962
Land Charges, dol.b	0	3,515	10,824	19,976
Hachinery costs, dol.	3,621	4,595	6,017	7,976
Labor Income, dol.	10,000	10,000	10,000	10,000

[^11]
## IMPLICATIONS FOR ADJUSTMENTS

It is evident from the programming results that ranchers in Faulk County may earn a $\$ 3,000$ return with somewhat less land than included on the average ranch in Faulk County (1,138 acres according to the 1964 census). However, in order for a rancher to earn a $\$ 5,000$ labor income, land requirements are nearly 600 acres above the average size. If $\$ 10,000$ is considered necessary labor income, land requirements would nearly triple over the $\$ 3,000$ level (tables 12, 13, 14, 15, 16, 17).

In general, the increase in minimum resources to obtain higher income levels requires nearly the same enterprise combination for the different levels. Particularly, there is little change from the $\$ 3,000$ to the $\$ 5,000$ level. At the $\$ 10,000$ income level with corn and wheat increased in relation to other crop enterprises, the hog enterprise becomes profitable to have in place of some of the dry-lot calf feeding.

It may be noted that the minimum resource ranch had a slightly higher percentage of crop acreage devoted to corn production, with corn replacing
small grain. Perhaps, higher production of corn reflects the type of livestock enterprise included in the plan.

The greatest contrasts in organization of the minimum resource ranch compared with a typical ranch (as shown by the U.S. Census for Faulk County) are in the livestock enterprises. The programmed organization included only a livestock activity of buying calves and selling choice fat cattle. However, few ranchers in Faulk County presently include similar livestock enterprises. Perhaps, the reason may be that large amounts of capital and more managerial ability are required by the enterprise. Also, cattle feeding involves more risk than other livestock enterprises.

Perhaps, one reason cattle feeding is not prevalent in the area may be lack of capital or credit for carrying out such an enterprise. One observes that credit institutions are reluctant to loan money for cattle feeding when neither they nor the applicant has much knowledge of the profits and risks of cattle feeding. Still it would appear that livestock feeding by the better operators could be a desirable way to increase incomes.

## APPENDIX

## Appendix Tables

Table A-1	Assumed Average Prices Paid and Received by Farmers,   Faulk County, South Dakota
Table A-2	Estimated Operating and Ownership Cost of Machine   Complement, 1280 Acre Farn, Faulk County
Table A-3	Assumed Per Acre Overhead Costs in the Model of this   Study, Faulk County
Table A-4	Assumed INonallocated Annual Overhead Costs for a 1280   Acre Farm, Faulk County
Table A-5	Estimated Average Yields Per Acre Using Recommended Cropning   Practices, by Land Class, Faulk County
Table A-6	Estimated Per Acre Labor Requirements and Seasonal   Distribution for Selected Dryland Crops
Table A-7	Average Dates for Selected Cropping Operations,   Faulk County
Table A-8	Assumed Per Acre Variable and Overhead Costs for Average   Crop Yield, Faulk County
Table A-9	Specified Variable Costs and Capital Requirements per Unit   of Livestock Enterprises, Faulk County
Table A-10Resource Restrictions Used in Initial Tableau for Representative   Farm Situation, Faulk County	
Table A-1lDescription of Activities Considered for Representative   Farm Situation, Faulk County	

Table A-1 Assumed Average Prices Paid and Received by Famers, Faulk County, South Uakota

I tem	Unit	Price
		(Uollars)
Prices Paid:		
Seeds:		
Wheat	bu.	2.65
Barley	bu.	1.76
Oats	bu.	1.33
Corn (hybrid)	bu.	12.90
Flax	bu.	3.50
Alfalfa	cwt.	44.02
Li vestock:		
Yearling steer purchased (April)	cwt.	23.26
Yearling feeder steer bought (October)	cwt.	23.08
Steer Calf bought (October)	cwt.	25.28
Gilt (breeding Stock)	unit	60.00
Labor	hour	1.25
Custom Rates:		
Combine, small grain	acre	3.50
Haystack moving	unit	6.00
Fuel and Lubricants:		
Gasoline	gal.	. 25
Motor oil	gal.	1.25
Lubricant	1 l.	. 22
Prices Received:		
Crop products:		
Wheat	bu.	1.82
Oats	bu.	. 53
Barley	bu.	. 81
Flax	bu.	2.75
Corn	bu.	1.09
Livestock products:		
Choice steer sold (October)	cwt.	24.15
Choice steer sold (April	cwt.	23.97
Yearling Stocker steer (October)	cwt.	23.08
Steer calf (October)	cwt.	25.28
Cull cow	cwt.	13.04
Market sows (farrowed once)	unit	54.57
Butcher hogs (late spring litter)	cwt.	15.82

Table A-2 Estimated Operating and Ownership Cost of Nachine Complement, 1280 Acre Farm, Faulk County

aEstimates based on survey of Faulk County Farmers and ASAE 1965 Agricultural Engineers Yearbook.
Estimates from 1965 Agricultural Engineers Yearbook.
CEstimates based on Official 1965 Tractor and Farm Equipment Guide.
${ }^{d}$ Interest on investment, depreciation, insurance and taxes.
éstimates assume machine used enough to wear out during its useful life, i.e. minimum cost estimates.
$\mathrm{f}_{\text {Repair }}$ and service cost of machine only.
gariable cost per hour.

Table A-3 Assumed Per Acre Overhead Costs in the Model of this Study, Faulk County

Item	Cost
	(Dol7ars)
Interest on land	
Land Tax	3.30
Insurance (liability)	.81
Depreciation and Maintenance, fences	.004
Total overhead cost per acre	-.29

aWhen assumed land price is 60 dollars and interest rate is 5.5 percent.

Table A-4 Assumed Nonallocated Annual Overhead Costs for a 1280 Acre Farm, Faulk County

I tem	Inves tment	Annual Cost
	(Dollars)	
Machinery Fixed Costs:		
Machine Set		1,145 ${ }^{\text {a }}$
Pick-up Truck, 1/2 ton	1350	
Interest on investment		98
Depreciation		330
Gas, oil, and lubrication		265
Repairs		80
Insurance		60
License		20
Wagons (2) with hoist	430	92
Fuel Tank (300 gal.)	90	8
Tools and equipment	300	50
Miscellaneous:		
Telephone and electricity		175
Tax service and bookkeeping supplies		50
Insurance (liability and employee)		52
Total specified overhead costs		2,227

${ }^{a}$ Includes interest, insurance, and taxes from Table 14.

Table A-5 Estimated Average Yields Per Acre Using Recommended Cropping Practices, By Land Class, Faulk County

I tem	Unit	$a^{\text {Yie }}$	$\begin{gathered} \text { d by } \\ \text { b } \end{gathered}$	$\begin{aligned} & \text { Id Class } \\ & \mathrm{c} \end{aligned}$	d	Weighted   Average ${ }^{\text {a }}$
Crop :						
Corn	bu.	30	23	24	20	23.7
Corn Silage	cwt.	116	86	90	76	90.0
Oats	bu.	40	36	34	30	36.2
Barley	bu.	30	26	20	17	25.1
Wheat ${ }^{\text {b }}$	bu.	19	15.5	15	13	16.1
Wheat on fallow	bu.	21	17	16	14	17.5
Flax	bu.	11	9	10	9	9.7
Alfalfa Hay	bu.	1.6	1.3	1.1	1.3	1.3
Wative Hay -- Estimated yield was . 67 Ton						
Wative Pasture -- Estimated yield was . 55 AU:l						

${ }^{\mathrm{a}}$ The weighted average is the sum of the average yield for each land class times the percent that land class is of the total.
${ }^{b}$ Assumes wheat on row crop or small grain.

Table A-6 Estimated Per Acre Labor Requirements and Seasonal Distribution for Selected Dryland Crops

Crop	$\begin{aligned} & \text { Han-hours } \\ & \text { per acre } \\ & \text { Total } \end{aligned}$	Percent D March 16 to April 30	$\begin{aligned} & \text { tion of La } \\ & \frac{\text { Tiay } 1 \text { to }}{\text { July } 15} \end{aligned}$	$\frac{\text { by Period }{ }^{\text {b }}}{\text { July } 16 \text { to }}$	October 1 to November 15
Corn grain	2.74	0	62	0	38
Corn silage	$2.25{ }^{\text {c }}$	0	76	24	0
Oats	1.65	32	10	58	0
Barley	1.65	32	10	58	0
Wheat	1.65	34	10	56	0
Flax	2.79	19	35	46	0
Alfalfa hay	1.98	0	52	45	3
Native hay	$1.04{ }^{\text {d }}$	0	0	96	4
Fallow	. 81	0	0	100	0

[^12]Taiole A-7 Average Dates for Selected Cropping Operations, Faulk County

I tem	Vate
Start field work	April 10
Start seeding spring wheat	April 10
Finisn seeding spring wheat	May 10
Finisn seeaing oats and barley	Hay 17
Finish seeding flax	Hay 22
P low for corn	riay 17
Plant corn	Hay 24 to June 5
Small grain spraying	June 7
Row crop spraying	June 21
First row crop cultivation	June 14
Second row crop cultivation	July 12
Start summer fallow	June 14
First crop tame nay	June 14
Second crop tame hay	August 10
Harvest native hay	August 18
Swath spring wneat	August 10
Swath oats	August 5
Sivath Uarley	August 6
Swath flax	August 20
Start cutting corn silage	September 14
Pick corn	October 1
Start fall field work	September 17
	into October

Source: Compiled by Erwin Ullricn from records of the Crop and Livestock Reporting Service.

Table A-8 Assumed Per Acre Variable and Overhead Costs for Average Cron Yield, Faulk County

	Corn grain	$\begin{array}{r} \text { Corn } \\ \text { silage } \\ \hline \end{array}$	Wheat	Wheat after fallow	0ats	Barley	Flax	Fallow	Alfalfa hay	Native hay
	(Dollars)									
Variable Costs:										
Tractor power	2.62	1.88	1.86	1.86	1.86	1.86	2.03	1.29	1.16	1.57
Repairs	. 75	. 44	. 51	. 51	. 51	. 51	. 57	. 04	. 54	. 25
Seed	1.81	1.81	2.65	2.65	2.05	2.20	2.62		1.10	
Chemical	2.45	2.45	. 36	. 36	. 10	. 30	. 28	. 36	. 43	
Fertilizer	3.25	3.92	2.98	1.08	2.75	2.63	4.90		1.23	
Custom		6.00							1.25	1.20
Interest	. 76	. 94	. 59	. 45	. 52	. 53	. 73	. 05	. 40	. 14
Overhead Costs:										
Depreciation	2.69	1.61	2.03	2.03	2.00	2.00	2.37	. 30	. 98	. 49
I. T. and S. ${ }^{\text {a }}$	. 79	. 45	. 64	. 64	. 64	. 64	. 79	. 06	. 36	. 18
Total specified costs	15.12	19.60	11.62	9.58	10.53	10.67	14.29	1.10	7.45	2.83

[^13]Table A-9 Specified Variable Costs and Capital Requirements per Unit of Livestock Enterprises, Faulk County

I tem	Beef cow	Stocker steersilage	Feeder steerdrylot	Amou   Feedier steerpasture	$\begin{aligned} & \frac{\text { per }}{\text { Dryead }} \\ & \text { yearlings } \\ & \text { period } \end{aligned}$	Dryl ot yearlings neriod 1 and period	Gilt and litter
	[Dollars						
Variable Costs: $60.07{ }^{\text {a }}$							
Supplement ${ }^{\text {a }}$	6.66	2.35	20.07	13.15	13.51	27.02	60.39
Veterinary	4.75	2.78	3.78	3.78	3.78	7.56	7.09
Taxes	4.56	2.17	2.17	2.17	3.23	6.49	1.20
Equipment	3.63	6.03	8.41	7.86	7.11	12.26	11.87
Total	21.40	14.33	30.70	26.96	26.63	51.33	30.46
Livestock	228.15	108.70	108.70	108.70	161.56	324.38	60.00
Building and Equipment	39.54	25.70	30.18	30.18	30.18	30.18	80.18
Capital ${ }^{\text {b }}$	289.09	148.73	169.58	165.85	218.57	405.89	241.26

[^14]Table A-10 Resource Restrictions Used in Initial Tableau for Representative Farm Situation, Faulk County

Item	Row	Unit	Initial Level
Class a land	RO1	Acre	0.0
Class b land	R02	Acre	0.0
Class c land	R03	Acre	0.0
Class d land	R04	Acre	0.0
Native Hay	R05	Acre	0.0
Hative Pasture	R06	AVM	0.0
Wheat Allotment	R07	Acre	0.0
Period One Labor	R08	Hour	508.0
Period Two Labor	R09	Hour	210.0
Period Three Labor	R10	Hour	493.0
Period Four Labor	R11	Hour	533.0
Period Five Labor	R12	Hour	306.0
Total Capital	R13	Dollar	0.0
Annua 1 Capital	R14	Dollar	0.0
Hay to Harvest	R15	Ton	0.0
Feed Grain Transfer	R16	CWT. C. E.	0.0
Wheat Transfer	R17	Bushel	0.0
Flax Transfer	R18	Bushel	0.0
Grain to Feed	R19	CWT. C. E.	0.0
Hay Equivalent	R20	CWT.	0.0
Silage	R21	CHT.	0.0
Calf Transfer	R22	Animal	0.0
Period Une Yearling Transfer	R23	Animal	0.0
Period Two Yearling Transfer	R24	Animal	0.0
Livestock for Sale	R25	CWT.	0.0
Income Requirement	R20́	Dollar	Varies

Taule A-ll vescription of Activities Considered for Representative Faria Situation, Faulk County

Activity vescription
Unit of lleasure

Cropland
Class a Lailu kotations

Pul	Corn-meat	Acre
Pui	Corn silage-wneat	Acre
Puj	Corn-warley	ficre
$\mathrm{P}^{\mathrm{j} 4}$	Corn silage-varley	Acr
Puo	Corn-oac	Acre
Puu	wheat-vat-fallow	Acre
P 37	Wheat-wheat-fallow	Acro
P	Flax-wneat-fallo.i	Acr
Pug	Larlej-corio-oat-alfalfa (3 years)	hare
Pij	nincat-corn-ivarley-alfalfa (3 years)	Acre
P11	Wheat-corn-corn silage-oat-alfalfa (3 years)	Acre
P1\%	Wheat-corn-corn silage-oat-alfalfa ( 3 years)	ficr
P13	. heat-corii silage-corn-flax-alfalfa (3 years)	ficre
$\mathrm{P}_{14}$	nileat-corn-flax-fallow	hCr
P1	dineat-corn-vat-fal low	Acre
${ }_{P} 10$	Barley-corn-varley-alfalfa (3 years)	Acre
P17	Barley-corn silage-iarley-alfalfa (3 years)	Acre
P100	Uat-corn-oat-alfalfa (3 years)	Acre

Class u Lanu kotations

$P_{\text {Ply }}$	Corn-wileat	Acre
$\mathrm{P}_{20}$	Corn-barley	Acre
P:1	Corn silage - varley	Acre
P	Corn-oats	Acre
$\mathrm{P}_{23}$	wheat-wneat-fallow	Acre
$\mathrm{P}_{24}$	Flax-wneat-fallow	Acre
$\mathrm{P}_{2}$	Wheat-coril-oat-alfalfa (3 years)	acre
P20	Wheat-corn silage-oat-alfalfa (3 years)	Acre
$\mathrm{P}_{27}$	Flax-corn-oat-alfalfa (3 years)	Acre
P20	Barley-corn-oat-alfalfa (3 years)	Acre
P	Corn silage-oat-alfalfa (3 years)	Acre
P	Uarley-corn-varley-alfalfa (3 years)	Acre
P31	טarley-corn silage-barlcy-alfalfa (3 years)	Acre
$P_{32}$	Uat-corn-oats-alfalfa (3 years)	Acr

## Class c Land Rotations

$P_{33}$	Wheat-corn-flax-alfalfa (3 years)	Acre
$\mathrm{P}_{34}$	Wheat-corn-oat-alfalfa (3 years)	Acre
P 35	Flax-corn-oat-alfalfa (3 years)	Acre
${ }^{\text {P }} 36$	Corn-oats-alfalfa (3 years)	Acre
P37	Corn silage-oats-alfalfa ( 3 years)	Acre
$\mathrm{P}_{38}$	Wheat-corn silage-oat-alfalfa (3 years)	Acre
P39	Wheat-oat-alfalfa (4 years)	Acre
$\mathrm{P}_{40}$	Wheat-oat-alfalfa (3 years)	Acre
$\mathrm{P}_{41}$	Oat-corn-oat-alfalfa (3 years)	Acre
$\mathrm{P}_{42}$	Oat-corn silage-oat-alfalfa (3 years)	Acre
$\mathrm{P}_{43}$	Barley-corn-barley-alfalfa (3 years)	Acre
Clas	d Land Rotations	
$P_{44}$ $P_{45}$	Wheat-wheat-fallow Flax-wheat-fallow	Acre Acre

Table A-11 continued.

Activity Description
Unit of lleasure

Cropland (continued)

${ }^{P} 40$	Wheat-corn-oat-alfalfa (3 years)	Acre
P47	Wheat-corn silage-oat-alfalfa (3 years)	Acre
P40'	Flax-corn-oat-alfalfa (3 years)	Acre
P49	Barley-corn-oat-alfalfa (3 years)	Acre
P 50	Barley-corn silage-oats-alfalfa (3 years)	Acre
P 51	Oat-alfalfa (3 years)	Acre
P ${ }^{\text {52 }}$	Oat-corn-oat-alfalfa (3 years)	Acre
$P_{53}$	Oat-corn silage-oat-alfalfa (3 years)	Acre
P54	Barley-corn-barley-alfalfa (3 years)	Acre
P 5	liative Hay	Acre

## Livestock Enterprises

$P_{56}$	Beef-cow and calf	Cow - Calf
$P_{56}$	Stockers, silage-hay ration	Head
$P_{58}$ Stockers, grain-hay ration	Head	
$P_{59}$ Feed calves in drylot, silage-hay	Head	
$P_{60}$	Feed calves in drylot, grain-hay	Head
$P_{61}$	Feed calves on pasture, silage-hay	Head
$P_{62}$	Feed calves on pasture, grain-hay	Head
$P_{63}$	Feed yearlings: period one, silage-hay	Head
$P_{64}$	Feed yearlings: period one, no silage-hay	Head
$P_{65}$	Feed yearlings: period one and two,	
$P_{66}$	Feed yearlings: period one and two,	Two head
$P_{67}$	Gilt and one litter	

Purchase and Sale of Livestock

$\mathrm{P}_{68}$	Sell feeder calf	Head
$\mathrm{P}_{68}$	Buy feeder calf	Head
$\mathrm{P}_{70}$	Sell stocker	Head
$\mathrm{P}_{71}$	Buy period one yearling	Head
$\mathrm{P}_{72}$	Buy period two yearling	Head
$\mathrm{P}_{73}$	Sell Livestock	Hundred weight

## Hire Labor

$\mathrm{P}_{74}$	Hire period one labor	Hour
$\mathrm{P}_{75}$	Hire period two labor	Hour
$\mathrm{P}_{76}$ Hire period three labor	Hour	
$\mathrm{P}_{77}$ Hire period four labor	Hour	
$\mathrm{P}_{78}$ Hire period five labor	Hour	
$\mathrm{P}_{79}$ Borrow capital	Dollar	
$\mathrm{P}_{8}$ Feed feed grain	Corn equivalent	
$\mathrm{P}_{81}^{81}$	Sell feed grain	Corn equivalent
$\mathrm{P}_{82}$	Sell wheat	Bushel
$\mathrm{P}_{83}$	Sell flax	Bushel
$\mathrm{P}_{84}$	Feed hay	Ton
$\mathrm{P}_{85}^{05}$	Buy land	Acre


[^0]:    $1_{\text {Formerly }}$ researcn assistant, Economics Department, Agricultural Exneriment Station, South Dakota State University, and Professor of Economics, Agricultural Experiment Station, South Dakota State University, respectively.

    ZUmberger, Dwaine Edward, '!linimum Resource Requirements for Specified Levels of Income in Faulk County, South Dakota," South Dakota State University I.S. thesis. 1967.

[^1]:    ${ }^{3}$ Special acknowledgment is given to Professors John T. Sanderson and Wallace G. Aanderud of the Economics Department for advice and guidance on this study.

[^2]:    ${ }^{4}$ For more details sce: Fred C. Westin et al, "Soils of South Dakota", Soil Survey Series Pamphlet No. 3, Agronomy Department, (Revised July 1967), South Uakota State University, Brookings, South Dakota, 1959.

[^3]:    ${ }^{6}$ Labor income is defined as residual returns for operator labor and management after market rates have been paid for all other resources.

[^4]:    ${ }^{\text {a }}$ Includes operating and overhead expenses with $7 \%$ interest on capital
    ${ }^{\mathrm{b}}$ Assumes land value of $\$ 60$ per acre and $5.5 \%$ interest charge. Land charges and other interest charges are available for living expenses.

[^5]:    Livestock organization not allowing the purchase of feeder calves or stockers.
    ${ }^{2}$ Livestock organization not allowing the purchase of feeder calves or stockers nor hog raising.
    ${ }^{3}$ Livestock organization allowing only a beef cow herd as a livestock enterprise.

[^6]:    Livestock organization not allowing the purchase of feeder calves or stockers.
    2 Livestock organization not allowing the purchase of feeder calves or stockers nor hog raising.
    3 Livestock organization allowing only a beef cow herd as a livestock enterprise.

[^7]:    $\overline{\text { Livestock organization not allowing the purchase of feeder calves or stockers. }}$
    ${ }^{2}$ Livestock organization not allowing the purchase of feeder calves or stockers nor hog raising.
    $3^{3}$ Livestock organization allowing only a beef cow herd as a livestock enterprise.

[^8]:    Livestock organization not allowing the purchase of feeder calves as stockers.
    ${ }^{2}$ Livestock organization not allowing the purchase of feeder calves or stockers nor hog raising.
    ${ }^{3}$ Livestock organization allowing only a beef cow herd as a livestock enterprise.

[^9]:    ${ }^{\text {a }}$ Includes operating and overhead expenses with $7 \%$ interest in capital.
    ${ }^{b}$ Assumes $5.5 \%$ interest charge.

[^10]:    ${ }^{\text {a }}$ Includes operating and overhead expenses with $7 \%$ interest on capital.
    ${ }^{b}$ Assumes $5.5 \%$ interest charge.

[^11]:    ${ }^{\mathrm{a}}$ Includes operating and overhead expenses with $7 \%$ interest in capital. b Assumes $5.5 \%$ interest charge.

[^12]:    ${ }^{\mathrm{a}}$ Tractor hours are approximately 10 percent lower.
    ${ }^{\text {Distribution will vary if fall plowing is assumed. }}$
    ${ }^{{ }^{\text {D }} \text { Does not }}$ include time for custom chopping and hauling.
    ${ }^{d}$ Does not include time for custom stack-moving.

[^13]:    ${ }^{\text {a }}$ Insurance, Taxes and Shelter.

[^14]:    ${ }^{\text {a }}$ Protein, salt, and mineral requirements are for silage feeding. When silage was not included in the ration, protein requirements were smaller.
    ${ }^{b}$ Capital is the sum of total variable costs, livestock investment and average buildings and equipment investment.

