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ABSTRACT 

USING REMOTE SENSING AND BIOGEOGRAPHIC MODELING TO 

UNDERSTAND THE OAK SAVANNAS OF THE SHEYENNE NATIONAL 

GRASSLAND, NORTH DAKOTA, USA 

 

MANDIRA SIGDELPHUYAL 

2016 

Oak savannas are valuable and complex ecosystems that provide multiple 

ecosystem goods and services, including grazing for livestock, watershed regulation, and 

recreation. These ecosystems of the woodland-prairie ecoregion of the Midwestern 

United States are, however, in danger of disappearing. The Sheyenne National Grassland, 

North Dakota, a protected Prairie grassland-savanna, is a representative of such rare 

habitats, where oak savanna is found at the landscape scale. In this research, I map the 

distribution patterns of oak savanna in the Sheyenne using a combination of remote 

sensing and geospatial datasets, including landscape topography, soils, and fire 

disturbance. Further, I interpret the performance of a suite of advanced Species 

Distribution Modeling approaches including Maximum Entropy, Random Forest, 

Generalized Boosted Model, and Classification Tree to analyze the primary 

environmental and management factors influencing oak distributions at landscape scales. 

Woody canopy cover was estimated with high classification accuracy (80-95%) for two 

study areas of the Sheyenne National Grassland. Among the four species distribution 

modeling approaches tested, the Random Forest (RF) approach provided the best 



xv 
 

predictive model. RF model parameters indicate that oak trees favor gently sloping 

locations, on well-drained upland and sandy soils, with north-facing aspect. While no 

direct data on water relationships were possible in this research, the importance of the 

topographic and soil variables in the SDM presumably reflect oak preference for 

locations and soils that are not prone to water saturation, with milder summer 

temperatures (i.e. northern aspects), providing conditions suitable for seedling 

establishment and growth. This research increases our understanding of the biogeography 

of Midwestern tall-grass oak savannas and provides a decision-support tool for oak 

savanna management. 

 

Key words: Oak Savanna, Woodland-Prairie, Midwestern Ecoregion, Sheyenne National 

Grassland, Species Distribution Model, Biogeography 
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 INTRODUCTION CHAPTER 1:

1.1. Problem Statement and Description 

 Savannas are ecosystems with mixtures of trees or shrubs and herbaceous species 

(mostly grasses) (Hill, Román, and Schaaf 2011;  Hanan & Lehmann 2011). They tend to 

occur in seasonally heterogeneous environments, with distinct wet and dry, or warm and 

cold, seasons.  Prior work (e.g. Grundel, Pavlovic, and Bollinger 2007) suggested that 

globally, savannas once occupied about 1.6 billion hectares, or approximately 20% of the 

global land area (Hill, Román, and Schaaf 2011). Savannas provided some 30% of 

terrestrial net primary production (NPP) and supported diverse flora and fauna (Lehmann 

et al. 2014).  

 Savannas globally, including oak savannas in the central United States, are 

vulnerable to both climate and land use change (Apfelbaum and Haney 1987; Nielsen, 

Kirschbaum, and Honey 2003; Peterson, Reich, and Wrage 2007). Prior to Anglo-

European settlement in North America, savannas covered more than 50 million hectares 

(e.g. Nielsen et al. 2003; Coop and Givnish 2007; Grundel, Pavlovic, and Bollinger 

2007). However, in the Midwest, the original savannas have been altered or degraded 

through human activities such as transformation to agriculture, grazing, fire suppression, 

and increases in woody vegetation. Thus, savannas, including oak savannas, are 

increasingly rare native ecosystems, and are in need of protection and restoration. 

Ecosystem restoration provides richer biodiversity and enhances ecosystem services 

(Benayas et al. 2009). Hence, managers of the remaining US savannas need improved 
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understanding of the drivers and constraints on oak establishment and survival to protect 

these vulnerable systems, particularly at landscape scale (Schröder and Seppelt 2006). 

 Our understanding of species-environment relationships is challenging, at point to 

global scales, because of the limitations in data and technology. Geographic information 

system (GIS) and remote sensing techniques, however, may help mapping the savannas 

and improve our understanding of the biogeography of oaks and oak savannas, the impact 

of disturbances (Luoto and Heikkinen 2003; Roy et al. 2011; Schetter et al. 2012), and 

their relationship with different environmental variables. In addition, the development of 

Species Distribution Models (SDMs) may help us understand the drivers of current 

species distribution patterns, and thereby allow us to  predict the future distribution of 

species in space and time as climate and anthropogenic pressures change (Thuiller 2003; 

Elith and Leathwick 2009). SDMs employ several distinct statistical approaches, with 

varying predictive abilities (Thuiller 2004; Elith and Graham 2009).  Thus, choosing an 

appropriate SDM for a particular application (e.g. predicting where oak savannas might 

occur), and deriving biographical insight from those models is a complex task (Santana et 

al. 2010).  

1.2.Thesis statement and Research objectives  

 This research is a case study of a protected Prairie grassland and oak savanna 

ecosystem in the woodland-prairie ecoregion of the Midwestern United States: the 

Sheyenne National Grassland (SNG) of North Dakota. The SNG is representative of the 

remaining Midwestern oak savanna ecosystems. However, there is not an accurate record 

of current distribution of oaks in the SNG as well as the physical and biotic factors that 

http://link.springer.com/search?facet-author=%22Timothy+A.+Schetter%22


   3 
 

control the presence of oak in this protected landscape. Based on research in other 

savannas (e.g. Sankaran et al. 2008) and in other Tallgrass prairie regions (e.g. Knapp et 

al. 1999), the density and tree cover in the Sheyenne is likely to vary with local 

environmental factors including climate, fire, topography, soil, and biological factors 

such as grazing and Native American activities (Leitner et al. 1991; Wolf 2004). These 

environmental factors that controlled oak distributions and created the savanna 

ecosystems of the SNG are the focus of this research.  

 In order to gain biogeographical understanding of oak savanna in the SNG, I 

developed the main hypothesis for this research that the non-random distribution of oaks 

in the SNG is constrained by the combination of soil types and topography, and 

modulated by disturbances (particularly fire). In order to test this hypothesis, this research 

also developed two main objectives:    

1. To understand the particular driving factors that created non-random distribution of 

trees in the landscape. 

2. To compare and contrast SDMs fitted using distinct statistical approaches. 

In addition, to test the proposed hypothesis and to meet the objectives, in this research, I 

try to answer the following research questions:  

1. What is the spatial distribution pattern of grassland-savannas and, in particular, 

woody canopy cover in the Sheyenne National Grassland? 

2. What are the main biogeographic factors that determine tree distribution in the 

grassland? 
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3. To what extent do different statistical SDM techniques contribute new or 

contrasting understanding of the controls on species distributions?  

 I conducted the biogeographical analysis of current oak distribution using freely 

available statistical software 𝐵𝐼𝑂𝑀𝑂𝐷2 (BIOdiversity MODelling; Thuiller 2003) written 

for the R-programming language to answer my research questions. 𝐵𝐼𝑂𝑀𝑂𝐷2 facilitates 

the calculation of multiple SDMs using different statistical approaches. I used BIOMOD2 

to compare fitted models and the physical and biological covariates that provide most 

explanatory power for observed tree cover distributions within the Sheyenne study area.  

 The analysis provides key insights into the physical and biotic drivers impacting 

oak-savanna distribution at the landscape scale. It also delivers foresight for ecosystem 

conservation and managers, as well as new insights for scientists and students interested 

in biogeography and management of US mid-continental oak savannas. 
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 LITERATURE REVIEW CHAPTER 2:

2.1. Biogeography   

2.1.1. Introduction 

 Biogeography is a branch of geography that studies the distribution of different 

species including plants, animals, and others by examining how the physical environment 

affects them and shapes their distribution in space and through geological time. The 

definition of biogeography stated here is a general definition: definitions vary based on 

individual research interest, background, and understanding (Millington et al. 2011). 

Accordingly, biogeography has developed various sub-disciplines through time, including 

historical, conservation, ecological, analytical, and applied biogeography (Millington 

et.al. 2011). These sub-disciplines have contributed significantly to a variety of 

biogeographic and ecological theories, including speciation and evolution, and the role of 

glaciation, continental drift, extinction, dispersal, and other processes in controlling 

regional and global species distributions. The research reported here combines ideas from 

ecological and analytical biogeography to analyze the distribution of species (i.e. oak 

trees) in terms of their relation with physical and biotic environments using spatial and 

ecological niche modeling techniques (Santana et al. 2008; 2010; Blumler et al. 2011; 

Millington et al. 2011).  

 Malanson (2011) stated that in recent decades geographers have adopted 

complexity theory or “complex adaptive system theory” in their research to understand 

ecosystem function. Complexity theory assumes that the combined effect of multiple 

environmental factors determines the distribution of certain species, and thus those 
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factors need to be considered together to understand species distribution patterns. This 

research also assumes that multiple environmental factors (physical, biotic, and human-

induced) are potentially important for oak distribution in the Sheyenne National 

Grassland. 

2.1.2. Biogeographical understanding of species distribution 

 Biogeographers study biophysical factors that determine species range limits and 

how species change over time. Biogeographic research in vegetation dynamics, 

vegetation-environment patterns, and human impacts on biota has long been conducted 

(Veblen 1989; Young et al 2003). Species distributions at various geographic levels (e.g., 

global, regional, landscape, local, and micro (point) level) have fascinated bio-

geographers for centuries (e.g. Alexander Von Humboldt), and different biogeographical 

theories for species distribution patterns have emerged. However, it is still challenging to 

understand the factors that determine the distribution and dynamics of species diversity 

because of the limitations in data and technology (Pennisi 2005; Eiserhardt et al. 2011). 

 The encroachment of woody plants into grassland and conversion of open 

woodlands and savannas into shrublands, have been reported as a global phenomenon 

during the past decade (Maestre et al. 2009). Schlesinger and Pilmanis (1998) suggested 

that, in general, the transition from one ecosystem to another is accompanied by changes 

in the spatial pattern of soil resources and topography of the location. Further, Veblen 

(1989) and Young et al (2003) synthesized savanna studies and concluded that savanna 

dynamics could change over both short and long time intervals in relation to variable 

weather and long-term climate as a function of fire suppression, hydro-geomorphic 
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conditions, drought, insect outbreaks, and soil moisture availability. However, the effect 

of each variable is location, scale, and time dependent.  

 Geographic studies on species distributions and diversity provide important 

insights into the roles played by different environmental variables, including abiotic and 

biotic environments (Mistry 2011), as well as dispersal and biogeographic history of a 

particular species in a certain area (Gill and Beardall 2001; Eiserhardt et al. 2011). These 

studies increase the understanding of the drivers of species distribution at different spatial 

and temporal scales. 

2.1.3. Importance of scale for species diversity and distribution  

 Species distribution and diversity relationships are often scale dependent (Diniz 

Filho et al. 2010; Tamme et al. 2010; Mutke 2011). Climate is the major driver for 

distribution of species at different scales, particularly, at global or regional scale (Bailey 

2002; Schickhoff 2011). Broad-scale climatic patterns limit the extent of biomes (Bailey 

2002), including the savanna biomes (Ritchie & Haynes 1987). Abiotic factors, 

particularly, temperature, precipitation, soil characteristics, and topography (which are 

directly or indirectly influenced or modified by climate) also determine the size and 

shape of species distributions at global, continental, and regional scales (Willis and 

Whittaker 2002; Coblentz and Riitters 2004).  

 Regional scale studies of African savannas suggest that woody cover is 

determined by the availability of resources (e.g. Sankaran et al. 2005; Bucini & Hanan 

2007; Sankaran et al. 2008; Hanan & Lehmann 2011), such that maximum tree cover is 

constrained by mean annual precipitation (MAP) (Hanan & Lehmann 2011). However, 
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the combination of other disturbances such as fire frequency, grazing intensity, and soil 

texture or other nutrients also have direct and indirect impact on growth and regeneration 

via seed of woody vegetation (Sankaran et al. 2004). Research also suggests that savanna 

tree density can be limited by regional changes in herbivore abundance (e.g. Ritchie, 

Tilman, and Knops 1998). 

 At finer scale, local topography, hydrology, and geology can affect the species 

composition and tree density in savannas (Mistry 2011). At these fine spatial scales, the 

influence of biotic factors such as interactions among species (competition for resources, 

predation, and mutualism; Turner 2005) and combinations of abiotic factors, including 

local variation in soil properties and hydrology, orientation and exposure to direct 

sunlight, nutrient distributions, and other microclimate conditions, become progressively 

more important (Hortal et al. 2010; Eiserhardt et al. 2011). However, these factors may 

become less influential as the spatial extent increases. 

2.1.4. Oak Savanna  

2.1.4.1. Definition  

 Oak savannas are typically comprised of oak species (Bur Oak, Quercus 

macrocarpa, and other Quercus species) growing within the larger matrix of diverse 

prairie grasses and forbs, with tree canopy cover generally < 50% (Bradley et al. 2006; 

Coop and Givnish 2007). Oak seedlings are shade tolerant, and in certain circumstances 

oaks can form dense stands because of their longevity, resistance to fire, and ability to 

recolonize following disturbances (McShea and Healy 2002). 
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2.1.4.2. Importance of oaks and oak savannas 

 Oak woodlands have various ecological, environmental, and economic values. 

They are important for sustaining diverse groups of the North American floras and faunas 

(McWilliams et al. 2002). Because of their open structure (i.e. low canopy cover), these 

ecosystems are attractive to many species of wildlife and birds (game and non-game), 

while providing additional ecosystem services including provision of fodder for wild and 

domestic herbivores (Folliott, McShea, and Healy 2002; Sere et al. 2008). In addition, 

well-developed oak savannas promote high infiltration and groundwater recharge during 

the wet season, and a gradual release of water during the dry season, and thus, are 

important for watershed maintenance (Folliott, McShea, and Healy 2002). Further, oak 

timber and acorns are commercially important (McWilliams et al. 2002). They also have 

various cultural, aesthetic, and recreational values (Ffolliott, McShea, and Healy 2002).  

2.2.4.3.  Oak Savanna in the Woodland-Prairie Ecoregion of the Midwestern USA 

2.2.4.3.1. Extent of oak savannas 

 The Midwestern oak savanna was once an extensive ecosystem that covered some 

11-13 million hectares stretching from Texas to Manitoba, Canada (Nielsen, Kirschbaum 

and Honey 2003). However, Nuzzo (1986) estimated only about 0.02% (2,600 ha) of 

undisturbed Midwest oak savanna remains (Restated in Brudvig and Asbjornsen 2005 ; 

Schetter et al. 2013). This highly dynamic vegetation community developed along 

ecotone between the grasslands and prairies.  



   10 
 

  According to Kuchler’s (1964) original “Potential Natural Vegetation (PNV
1
) 

map (Appendix X) and the later modified version (Version-2000, see Figure 1; USDA 

Forest Service 2000), oaks are the major vegetation types, particularly of the eastern 

USA. Further, the Midwestern region oak map (see Figure 3; extracted from the PNV 

v2000 map data) represents the potential dominant areas of oaks and oak savannas 

existence. These maps indicate that oak savannas were widespread in the grasslands and 

prairies of the Great Plains and woodlands to the east (details in Figure 3).  

 Figure 1 and Figure 3 also show that oak and oak savanna in the Midwestern 

regions has a mixed distribution, with other vegetation species, particularly, pine, 

hickory, and bluestem. The distribution of “Northeastern oak-pine” in the Midwest is 

negligible (see Figure 3; some small patches are at near to the Lake Michigan). Other 

vegetation types in the region include ‘Plains grassland’, “Prairie’ in SD, ND, NE, KS, 

and also in western and south-western part of MN and northern part of Iowa and 

‘Northern hardwoods’, ‘Great lakes pine forest, and ‘Spruce-Fir’ in eastern and 

northeastern parts of MN,WI, and MI respectively. 

 

 

 

 

 

                                                           
1 PNV (or PNV map) is the “climax” vegetation of an area, projected considering certain environemntal constrants but 

without human and natural disturbances (USDA Forest service 2014). 
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Figure 1: The Potential Natural Vegetation version 2000 (v2000)
2
 map of the USA 

representing different projected vegetation types. The different colors in the 

map represent the locations of the different vegetation species. (Note: Because 

of the large map and map legends size, map legends are separated in Figure 2; 

source: USDA Forest Service, Fire, Fuel and Smoke Science Program, Rocky 

Mountain Research Station 2014 online).  

 

 

 

 

 

                                                           
2
 “This map is based on a terrain-matched refinement of Kuchler's Potential Natural Vegetation (PNV) map. Kuchler's 

PNV map was digitized for the conterminous United States, then adjusted to match terrain using a 500 meter Digital 

Elevation Model, 4th Code Hydrologic Unit delineations, and Ecological Subregions (Bailey's Sections). These 

biophysical data layers were integrated with current vegetation layers, Resource Planning Act's Forest Types and Forest 

Densities of the United States, and USGS EROS Data Center's Land Cover Characterization database, to develop 

generalized successional pathway diagrams. Expert regional panels refined the PNV map based on these successional 

pathways” (USGS Forest Service, Fire, Fuel and Smoke Science Program, Rocky Mountain Research Station 2014 

(online)). 
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Figure 2: Map Legends for the Figure 1. 
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Figure 3: Oak and oak savanna distribution in the Midwestern United States
3
 created by 

extracting the Potential Natural Vegetation version 2000 (v2000) data (Inset by: 

Mandira SigdelPhuyal, data source: USGS Forest Service, Fire, Fuel and Smoke 

Science Program, Rocky Mountain Research Station, Fire Science Laboratory 

2014 online). The legend colors were created to match with the Figure 1 

legends, and this map excluded other projected vegetation except oaks that are 

shown in the Figure 1. 

 

 

 

 

 

                                                           
3 Note: in this map (Figure 3), the precence of “Northeastern oak-pine” species is negligible; some small patches are 

occupying at the far eastern and northeastern parts (near to the Lake Michigan) of Wisconsin and Illinois respectively, 

which are difficult to see in this large scale image. 
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2.2.4.3.2. History and management factors  

 In the tallgrass prairie regions, the historical development and long-term 

expansion of oaks has been reported since the arrival of Europeans (Gibbens et al. 2005, 

652). Several disturbance factors including frequency and intensity of fire, extensive 

land-use practices, and insects and disease outbreaks have been identified as having 

significant influence on oak establishment (Kellman, Miyanishi, and Hiebert 1985; 

Abrams, McShea, and Healy 2002; Nielsen, Kirschbaum, and Honey 2003). Such 

changes in the landscape, including the transition of grassland to shrub and tree 

dominated ecosystems were historically explained by considering the influence of factors 

such as climate, topography, soils, and large mammal grazing (including the interaction 

among those mentioned factors; Gleason 1922). However, bio-geographers, ecologists, 

naturalists, and other nature conservation and management scientists (Bader 2001) still 

debate the specific factors that determine the species composition and vegetation 

structure in these mixed woody-herbaceous (“tree-grass”) systems.  

 Coop and Givnish (2007) argued that the presence of woody species in US 

grassland in recent decades might depend upon the interactions among spatio-temporal 

variables including soil moisture availability and livestock grazing. Climate, however, 

has both direct and indirect influence in determining soil properties, topographic relief, 

vegetation structure, and fire frequency (Camill et al. 2003). Those heterogeneous 

landscape factors might have a significant influence on the distribution of woody species, 

including oak.  
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In addition, other research (e.g. Kellman and Sanmugadas 1985; Apfelbaum and 

Haney 1987; and Bock and Bock 1997) examined the impact of fire frequency and 

burning practices in restoring and maintaining the grassland oak savannas of the USA. 

These studies emphasize the role of fire in maintaining oak savannas in the woodland-

prairies eco-tones of the Central United States. Other studies found that, in the absence of 

fire, oak regeneration is prevented by mesic species and characteristics of herbs (e.g. 

Apfelbaum and Haney 1987; Briggs et al. 2005; Brudvig and Asbjornsen 2005; Peterson, 

Reich, and Wrage 2007; George and Alonso 2008; Harrington and Kathol 2009; and 

Considine et al. 2013). Other disturbances such as drought, grazing, and tree harvesting 

can also alter oak stand structure both indirectly through altering fire behavior and 

directly by removing trees and creating gaps (Hayes and Holl 2003; Considine et al. 

2013). In recent years, sensor and data management technologies have made possible 

satellite observation of wildfire frequency and extent in the grassland-savanna region 

(Roy et al. 2011), improving our ability to identify the role of fire in ecosystem processes 

at regional scales.  

2.2.4.4. A case study of the Sheyenne National Grassland Oak Savanna  

 The undulating sand-dune landscape of oak savanna contributes to the remarkable 

scenic quality of the Sheyenne National Grassland. Bur oak savanna is a characteristic 

habitat of tall grass prairies including the SNG. It represents the remaining 1% of the 

original (i.e. ~ 13 million hectors; Domek 1998) oak savanna of the USA. However, 

Domek (1998) stated that, oak savanna and their quality are declining, and one of the 

main reasons for such decline in the SNG is that, oak savannas are not considered within 

the National Wilderness Preservation System conservation and management plan. This 
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statement is still valid, and thus, the management focus is only to Tallgrass Prairie (B. 

Stotts, US Forest Service, Lisbon, North Dakota, personal interview on October 10, 

2014). The United States Geological Survey (USGS) Northern Prairie Wildlife Research 

Center (NPWRC) and the Grassland Heritage Foundation (GHF) also found several 

similar causes of oak savanna decline, including loss and fragmentation of habitat by 

agricultural conversion, fires, intensive livestock grazing, recreational activities, and the 

lack of spatially resolved information on oak savanna distributions (Apfelbaum and 

Haney 1991; Domek 1998).  

 Bryan Stotts (ranger of the SNG; US Forest Service, Lisbon, North Dakota, 

personal interview on October 10, 2014) also agreed that one of the major causes for 

declining oak savanna quality and quantity in the Sheyenne might be lack of information 

on appropriate management strategies. He added that low appreciation of the ecosystem 

goods and services provided by the oak savannas might also lead to oak savanna 

degradation in the SNG and elsewhere. 

 While, there is anecdotal evidence for the loss of oak-savanna, no prior work has 

mapped oak distributions in the SNG. Furthermore, no scientific research has been 

conducted to determine the physical and biotic factors that control the presence of oak-

savannas in this protected landscape. Without understanding the major drivers that 

determine the presence and absence of oak-savannas in the grassland by the land 

managers and conservationist, it is difficult to apply proper management practices.  
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2.1.Species Distribution Modeling and Uses 

 Species Distribution Models (SDMs) are the tools that establish relationships 

between species occurrences and biophysical and environmental conditions. These 

modeling tools are becoming increasingly popular in many biogeographical and 

ecological applications (Anderson et al. 2006; Peterson et al. 2006). Numerous 

researchers (e.g. Guisan and Thuiller 2005; Garzon et al. 2006; Kelly et al. 2007; Gastón 

and García-Viñas 2011; van Gils et al. 2012) have used varieties of species distribution 

modeling methods to understand how physical and biotic drivers impact species 

distributions and community assembly. Based on these studies, SDMs can be used to 

estimate past, present, and future probability of species occurrence based on 

environmental conditions. These tools are also useful to predict species abundance, 

identify potential locations for rare and endangered species habitats, and estimate the 

potential spatial patterns of biological invasion. 

2.2.1. Development of SDMs and Model Selection 

 Lazo (2013, 14) described that how SDMs are associated with the following three 

classes of techniques:  

1) Profile techniques: requiring only species presence data 

2) Discriminative techniques: requiring presence and absence data, and  

3) Mixed-modeling approaches: using a combination of profile and discriminative 

methods mentioned above (1 and 2).  
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 SDM algorithms are also classified as regression methods, machine-learning 

methods, classification methods, and enveloping methods. Thuiller, Georges, and Engler 

(2013; revised in 2015) made available the 𝐵𝐼𝑂𝑀𝑂𝐷2 package in R-programming 

language that implements multiple SDM approaches, including the following:  

1. Artificial Neural Networks (ANN) 

ANN is a machine-learning method for predicting response vs explanatory 

variable relationships (Franklin 2010). 

2. Surface Range Envelope (SRE) 

SRE predicts the impact of climate on species in different environmental 

condition. This model works for broad scale (regional scale) species probability 

distribution modeling. 

3. Generalized Boosted Regression Model (GBM): 

GBM implements Boosted Regression Trees (BRT) and Gradient Boosted 

Regression models (Friedman et al. 2000; Friedman 2001; Moisen et al. 2006) 

which provides efficient non-parametric methods for fitting data with reliable 

predictive abilities (Thuiller et al. 2006). 

4. Classification Trees Analysis (CTA) Model  

CTA is a standard regression-tree method, which tests and evaluates multiple 

decision-trees with cross-validation on subsets of the training data (Lewis 2000).  

5. Generalized Linear Models (GLM) 
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GLMs utilize linear techniques to predict species geographical distributions based 

on independent environmental data layers. GLM uses both presence and absence 

data, with alternative models evaluated based on AIC and BIC criterion. 

6. Random Forest (RF) Model:  

Breiman and Cutler's random forest approach is a powerful machine-learning 

method, and is considered to provide maximum prediction accuracy (Breiman 

2001; Cutler et al. 2007). It has an ability to cope with non-linear relationships 

between response variables and driver variables and potential interactions 

between driver variables (Rodriguez-Galiano et al. 2012). Further, it can be used 

with both presence only, and presence-absence data sets (e.g. Thullier et al. 2014), 

and is flexible with both categorical and continuous data sets. 

7. Generalized Adaptive Model (GAM):  

This is a non-parametric model that provides better prediction performance if both 

presence and absence data are available. Instead of using linear or quadratic 

relationship to fit the predictor, it uses independent smoothing functions 

(Zaniewski, Lehmann, and Overton 2002). 

8. Maximum Entropy (MaxEnt): 

MaxEnt is another machine learning method, which works with presence only 

data to predict species distributions in environmental space based on a limited 

sample (Phillips, Dudík, and Schapire 2004).  
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This research tests the performance of the RF, CTA, GBM, and MaxENT modeling 

approaches (i.e. those models most suited to the presence/absence data available for oak 

distributions in the SNG).   

2.2.2. Model Comparison and Evaluation of Drivers 

 Model comparison and evaluation of environmental drivers that cause the 

distribution of species in a particular study area, and model accuracy assessments are 

based on comparative analysis of the predictive performance of the models (Hanspach et 

al. 2010; Guo and Liu 2010; Santata et.al. 2010). In BIOMOD2, several statistics are 

provided to compare model types and assess goodness-of-fit, including Akaike 

Information Criterion (AIC) or Bayesian  Information Criterion (BIC), Area Under the 

Curve (AUC) or Receiver Operating Characteristics (ROC), Cohen’s Kappa (K), and 

True Skills Statistics (TSS) test (Thuiller 2003; Thuiller et al. 2003). Generally, model 

comparison is performed based on AUC (herein 𝐵𝐼𝑂𝑀𝑂𝐷2, ROC) value.  If a model has 

AUC or ROC > 0.85, such model has strong predictive performance (Lazo 2013).  

2.3. Summary of Chapter 2 

 Many of the woodland-prairie ecotone studies discussed above have tried to 

identify the causes of oak-savannas distributions in North America and causes for their 

decline, and most relate their work to discussions of the factors that determine the 

distribution of trees in the savannas at regional and global scales. However, few if any of 

these studies used the species distribution modeling approach proposed here to examine 

the role of physical environmental factors to determine the distribution of trees at 

landscape scales in North American oak savannas. 
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 A localized analysis of the drivers of oak-savannas distribution will allow a better 

understanding of the current- status of these systems, identify the drivers of oak ability to 

persist in Tallgrass prairie, and develop the potential for management of tree density in 

the woodland-prairie ecotone region. By developing a fuller understanding of oak 

savanna ecology and biogeography, and selection of improved predictive models, we will 

provide managers with tools for better management of the remaining oak savanna 

woodlands of the region. 
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 METHOD CHAPTER 3:

3.1. Geographically Framing the topic 

3.1.1. Ecoregion: A broad scale understanding of ecosystem function 

 Ecoregions are the “areas of general similarity in ecosystem and in the type, 

quality, and quantity of environmental resources” (Omernik 1995). They relate to 

environmental characteristics and provide a geographically coherent context for studying 

the change of environmental features including land cover and land use (Omernik 1995; 

Loveland and Merchant 2004). Thus, they provide a spatial framework for understanding 

ecosystems and to guide ecosystem research, assessment, monitoring, and management 

(Loveland and Merchant 2004; Omernik 2004; Matlock and Morgan 2011).   

According to Bailey (2002; 2004), at broad scales (i.e. “mesoscale” or regional 

level), hierarchies of ecosystems are in the form of all small ecosystems residing within 

the large ecosystems, thus, the regional scale ecosystem approach is useful for planning 

and management of ecosystems. Further, the proposed ecoregion concepts encourage 

studying ecosystem functions considering the relation of different environmental factors 

such as climate, topography, soil, vegetation, culture, and so forth (Omernik 2004). 

Midwestern oak savannas appeared in various ecological regions based on 

individual ecoregions delineation maps (e.g. Bailey 1976 and 1995 maps by USDA 

Forest service; Omernik 1987 and 1995 (updated); and the Olson et al. 2001 (World 

Wildlife Fund (WWF) system)). Omernik ecoregions delineation corresponded to 

different levels of precision of climatic conditions and vegetation characteristics, where, 
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patterns and composition of biotic and abiotic factors (including physiography, geology, 

climate, soils, vegetation, land use, hydrology) are important in determining an ecological 

region. However, Bailey’s ecoregion concept is climatology based, where variability in 

climate and climate driven factors are considered as the primary controllers over more 

localized ecosystems. In this research, I will use Omernik Level IV ecoregions in order to 

build general understanding of critical ecosystem aspects of the SNG, because Omernik 

Level IV (see Figure 4) is a local level ecoregion created by modifying and subdividing 

the Level III ecoregion. This is a more detailed map, and provides more specific local 

characteristics than other ecoregion maps. It helps me develop biogeographical 

understanding of oak savanna distribution in the protected landscape while considering 

together the other environmental factors. 
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Figure 4: Omernik Level-III and IV ecoregions classification map of North Dakota state 

including with USA ecoregions map
4
 (Source:  USA map; US EPA Office of  

Environmental Information (OEI), Data: US EPA office of Research and 

Development (ORD) 2015; ND map and legends; Bryce et al. 1996 (color 

poster map); map modified by: Mandira SigdelPhuyal).  

 

 

                                                           
4
 Numbers in the map represent different (Level III) ecoregions and sub ecoregion (Level IV), and different colors in 

the map indicated various level of ecoregions and sub ecoregions boundaries. Two red stars inside the Sand Deltas and 

Beach Ridges ecoregion (southeast corner of ND) are the location of the SNG study areas.  
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3.2. Study Area 

3.2.1. Geographic Location 

 The Sheyenne National Grassland (SNG), the major part of the Sheyenne Ranger 

District, which is a part of Dakota Prairie Grassland (DPG), is in North Dakota, USA. 

The area is located approximately 460 North latitude and 970 West in the two counties of 

Ransom and Richland. The SNG comprises about 28,400 ha of public and about 26,200 

ha of privately owned land, and the US Forest Service manages the public lands 

(Scheiman, Bollinger, and Johnson. 2003; Svedarsky and Van Amburg 1996; Manske 

and Barker 1988). It consists of two units (see Figure 5): the main north unit near the 

village of McLeod, comprises ~27,000-hectare, while the south unit is located near to the 

city of Hankinson, occupies a smaller (~1,000-hectare) area (Cunningham, Johnson, and 

Svingen 2006). Both units are analyzed in this study, which are represented as Sheyenne-

1 and Sheyenne-2 (or SNG1 and SNG2) respectively. The grassland regions are located 

in the ‘Beach Ridges and Sand Deltas’ecoregion (Figure 4 and Figure 5) of Omernik 

level IV ecoregions map. This ecoregion is on the geological formation i.e. delta 

formation, featuring some flat deltic plains to numorous choppy sand dune landscape 

structures (Bryce et al. 1996). 
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Figure 5: Geographical location of two different units of the Sheyenne national Grassland 

study area representing a part of the Level IV ecoregion (Figure 4): Beach 

Ridges and Sand Delta Ecoregion boundary and study area features. 
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3.2.2. History  

 The SNG is located on the Sheyenne Delta, which was formed during the 

Wisconsin glaciation where the Sheyenne River flowed into the southwest corner of the 

glacial Lake Agassiz leaving the area with sedimented layers of sandy soil (Stroh 2002) 

(see Figure 6c). The nickname of the area is “Sand Hill”, also called “Dakota Sand Hills”. 

Following extensive farming and the great drought of the mid-1930, the area was in 'Dust 

Bowl’ conditions and the extreme hardships caused many landowners to abandon the 

land and migrate west. To overcome or to mitigate the adverse consequences of the ‘Dust 

Bowl’, and to establish the SNG, several actions were implemented as shown in the Table 

1 below. 
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 Table 1: History of the SNG establishment processes 

(Source: Ransom County online) 

 

 

Actions  Year Objectives or Consequences 

Sheyenne River Land Utilization Project 

(under Agricultural Adjustment 

Administration (AAA)) 

1935 Resettlement plan completed 

The Bankhead-Jones Farm Tenant Act   

The Land Utilization Project passed from 

AAA to the Resettlement Administration 

1937 For the acquisition of the sub-

marginal farm lands 

 

Administration of the Project was 

transferred to the Soil Conservation Service  

(SCS) 

1938 To ensure rehabilitation of the 

drought-devastated grasslands 

Formation of the Sheyenne Valley Grazing 

Association (Non-profit organization of 

local landowners) 

1941 To graze cattle on the surrounding 

federal land by Association 

members 

Land transferred to National Forest Service 

(NFS) 

1954 Land use practice changed to 

reestablish vegetative cover  

The Sheyenne River Land Utilization 

project was formally named the Sheyenne 

National Grassland 

1960 Further controls on grazing 

practices led to improvements in 

grassland condition. 
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3.2.3. Topography and features 

 The SNG has a gently rolling eolian topography, shaped by windblown sand 

(Stroh 2002). The area has several shallow wetlands, hills, roads, walking trails, river 

channels, and a railroad. The meandering Sheyenne River flows through the northwestern 

and middle of the northern part of the grassland (Based on Aerial photo 2012; field visit 

2014) (see Figure 5 above).  The area has a long, snowy, cold winter and short, dry, and 

hot summer.  

 The SNG is the only National Grassland in the Tallgrass prairie region of the 

United States. It comprises native tall prairie grasses, native forest, and non-native (e.g. 

Cropland) plant species including the beautiful oak savanna habitat. The grassland 

provides habitat for 850 endemic plant species out of 1,200 endemic plant species of 

North Dakota, among them, 40 of the present plant and animal species are considered 

rare and endangered (Svedarsky and Van Amburg 1996; Sieg and Bjugstad 1994). Rare 

species include the western prairie fringed orchid, greater prairie chicken, sharp-tailed 

grouse badgers, Dakota Skipper Butterfly, and so forth. Several different tree species, 

including Bur oak, Aspen, American elm, Basswood, Cottonwood and Willow are the 

major tree species of the grassland (Stroh 2002; field visit 2014). The presence of bur 

oak, often mixed with aspen, defines the oak savanna habitat. 

 The grassland is a home of several other flora including adders, tongue fern, lady-

slippers, prairie rose, blazing stars, leadplant, and purple coneflowers, and so forth (Stroh 

2002). Other fauna such as coyote, wild turkey, white-tailed deer, skunks, and on some 
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rare occasion, moose, elk, wolves, and so forth are also present there (Ransom County 

online). 

3.2.4. Land Use Practice and Grassland Management 

 According to Bryan Stotts, a district Park Ranger (US Forest Service, Lisbon, 

North Dakota; personal interview in 10 October 2014), prescribed grazing (see Figure 6a) 

by Rancher Association leaseholders is the most common land use in the area. Prescribed 

burning (see Figure 6b) and mowing are also common practices to restore the native 

vegetation in the grassland. Other management treatment to reduce scrub encroachment 

includes herbicide application, bio-control, and use of sheep to control noxious weeds. 

 

 

 

 

 

 

 

 

 



   31 
 

Figure 6: Pictures of the SNG features, land use, disturbances, and a common soil type: a. 

cattle grazing in the SNG1 with standing cottonwood trees, b. Prescribed fire 

practice under the Bur oak trees, c. Sandy Soil Profile. (Photo by: Mandira 

SigdelPhuyal, field visit 10 October 2014) 

a.  

 

 

b.         c.  
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3.3.Methodology 

3.3.1. Data Collection 

3.3.1.1. The Ortho Imagery 

 The major data for this research is the county-level Aerial (Ortho) photos of the 

two  study areas of the SNG available for the year 2012. The United States Department of 

Agriculture, National Agricultural Imagery Program (USDA NAIP) 

(http://gisdata.nd.gov/NAIP/) collected these aerial photos.  The images are provided in 

the Multiple Resolution Seamless Database (MrSID) image file format (raster); the file 

format specially designed for processing and mapping satellite image in portable format 

(Hovanes, Deal and Rowberg 1999). The images have 1-m spatial resolution with three 

spectral bands (3-Red, 2-Green, and 1-Blue) with spatial reference and datum, NAD83 

UTM zone_ 14N and North America_1983 respectively. These images were used to 

estimate land cover and, in particular, woody canopy cover in the two study areas 

(Sheyenne-1 and 2). The woody canopy cover maps are the primary response variable for 

each study area. 

3.3.1.2. Digital Elevation Dataset 

 The Digital Elevation data (DEM) were obtained from the Red River Basin 

Mapping Initiative (RRBMI) web site (http: //gis.rrbdin.org/lidarapps.htm). The site 

provides high-resolution DEM raster datasets. They were collected using the airborne 

LiDAR, and available in two different spatial resolution (3 m and 1 m. The DEM has a 

similar spatial resolution and datum as the Ortho images, but were provided in ESRI grid 

Geographic Information system (GIS) raster format (AAIGrid but original files are in the 

http://gisdata.nd.gov/NAIP/
http://gis.rrbdin.org/lidarapps.htm
http://gis.rrbdin.org/lidarapps.htm
http://gis.rrbdin.org/lidarapps.htm
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ASCII raster format) with 32- bit pixel depth and signed integer as pixel types. For this 

research, I used the higher resolution (1m) data. I used this DEM data to generate 

topological derivatives, including slope, aspect, curvatures, and local DEM to provide a 

detailed understanding of tree distribution patterns with respect to each topographic 

variable. 

3.3.1.3. Soil Datasets 

 Soil data were available from the Web Soil Survey (WSS) 

(http://websoilsurvey.nrcs.usda.gov/). Data comes in spatial and tabular format. This 

dataset also has similar spatial reference and datum as the aerial images; however, they 

come in vector format, requiring pre-processing into 1 m raster format using GIS 

software. These datasets were used to generate soil variables, including soil classes, 

drainage, and depth of the seasonal water saturation zone (hereafter WSZone, which 

estimates the depth of the water table below the surface). The different soil variables 

were used as environmental layers for fitting the SDMs. These variables are categorized 

(i.e. categorical variables) in different soil classes by the United States Department of 

Agriculture, Natural Resource Conservation Service (USDA NRCS) based on physical 

properties. In this study, the NRCS classes were re-ranked based on soil texture with 

likely similar properties (see Table 2, under the title ‘NRCS Classes’; also see the map in 

Appendix I for SNG1) into numeric classes for ease of analysis in 𝐵𝐼𝑂𝑀𝑂𝐷2. (See Table 

2 below): 
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Table 2: Merging and re-ranking the likely similar NRCS soil texture and Drainage 

property classes. Here, two or more nearly similar NRCS soil properties are 

merged, made a one class, and re-ranked them by number for ease of analysis in 

the modelling.  

 

Categorical 

Variables  

NRCS Classes Reclassified 

Soil Texture Fine Sand/Moderately Decomposed Plant 

Materials (FS/MDPM) 

1 

Loamy Fine Sand/Loamy Sand (LFS/LS) 2 

Fine Sandy Loam/Loam/Sandy loam (FSL/L/SL) 3 

Silty Clay/Silty Clay loam/Silt loam (SC/SCL/SL) 4 

Drainage Excessively Drained (ED) 1 

Moderately well drained/Well Drained 

(MWD/WD) 

2 

Poorly drained/very poorly Drained (PD/VPD) 3 

Somewhat poorly drained (SPD) 4 
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3.3.1.4. Fire Data and Other Datasets 

 Several other GIS feature shape files of the study area, including States and 

counties boundaries, roads, railroads and water (as shown in Figure 5) were downloaded 

from the USGS Tiger-line data repository (https:// www.census.gov/geo/maps-

data/data/tiger-line.html). Management data on grazing and prescribed fire practices 

(vector data) were obtained from the SNG management and the United State Department 

of Agriculture, Forest Service (USDA FS) (http://fsgeodata.fs.fed.us/vector/lsrs.php); 

however, because of the insufficiency of grazing records, I only used fire data for the 

analysis. 

3.3.2. Data Analysis 

 For the processing of data, this research used a combination of two different 

geospatial software applications including GIS software (ArcGIS 10.1/ 10.2) and ERDAS 

Imagine (2013-14), remote sensing image analysis software. 

3.3.2.1. Dependent variable 

3.3.2.1.1. Woody Canopy cover  

 In this research, the major land cover types including the woody canopy cover of 

the study areas were classified using supervised classification techniques (Long and 

Srihann 2004) as implemented in ERDAS-Imagine and illustrated in Figure 7. 

 

 

http://fsgeodata.fs.fed.us/vector/lsrs.php
http://fsgeodata.fs.fed.us/vector/lsrs.php
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Figure 7: Land covers classification flow chart using supervised classification techniques 

in ERDAS Imagine program. 

 

 

 

 In ERDAS Imagine, I made a single study area map by combining aerial imagery 

data for the two counties, a process called image mosaicking (Vinod et al. 2007). After 

mosaicking, landscape features, in particular, the oak and aspen tree canopies of the 

savannas, relative to open grassland and the distinctive willow canopies of the seasonally 

flooded areas were separated using a supervised classification process.  

 The supervised classification approach allowed me to identify five major land 

cover classes: oak savanna, grassland, water bodies, bare ground, and other tree canopies. 

First, signature editor files containing training data (pixels) for each land cover type were 

created using the Area of Interest (AOI) tool. The signature editor tool helps to select 

several training samples in polygon (AOIs) forms and merge them making a single 
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representative class in the final classification. The Recode function was then used to 

remove biases in the classification through the combination of similar classifications to a 

single classification (Demharter et al. 2011).    

 Finally, I performed accuracy assessments with ground truth samples from 

independent sources (Google earth images).  For the accuracy assessment, 100 (SNG1) 

and 80 (SNG2) random points were projected in the classified image and assessed 

relative to ground truth images. These random accuracy points provided the percentage of 

classification accuracy. For the land cover classification accuracy, other reference data 

sources were used, including the GAP 2003 and NLCD 2006 land cover maps, personal 

contact with park personnel (interview with the Sheyenne National Grassland District 

Ranger - Bryan Stotts  on October 10, 2014), and direct field observation. The final 

classification accuracies were determined based on accuracy statistics. Generally, three 

different types of classification accuracy measures are discussed for the supervised 

classification, including the Producer and User agreements, and Kappa coefficient 

(Herold et al. 2008). The producer and user errors relate to the omission and commission 

error statistics (Muller et al. 1998), where, producer agreements equal to 1-omission error 

and the user’s agreement equals to 1-commission error. The classification accuracy 

(Kappa) also indicates the overall agreements in the classification. The higher the values 

of all three measures the better the classification agreement is considered.  

 The final classified image was used to generate an image showing the presence 

and absence of oak trees represented by number 1 and 0 respectively. The oak presence-

absence data layer provided input (dependent variable) to run the SDM models. 
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3.3.2.1.2. Presence/ Absence data (sample selection) 

 Oak presence and absence data were randomly sampled to provide input to run 

the SDMs in 𝐵𝐼𝑂𝑀𝑂𝐷2. The high spatial resolution (1 m) tree-cover (presence-absence) 

data has more than 270 million pixels for the SNG1 and more than 11 million pixels for 

the SNG2 (see Figure 8 and Figure 9). To reduce sample size and speed up analysis, sub-

sampling was necessary. Following experimentation with different numbers of data 

points, I selected a sample size of 200,000 random presence and absence points for the 

larger area (SNG1), and 100,000 random points (Presence & Absence) for the small 

study area (SNG2).  
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Figure 8: Tree (Oak Savanna) Presence and Absence Map of the SNG1 generated using 

the R programming language in 𝑩𝑰𝑶𝑴𝑶𝑫𝟐 package, showing a clear visual 

distribution of oak in different parts of the grassland. The number scale in X-

axis represents latitude and Y-axis longitude of the study area; unit is in decimal 

degree (m). 
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Figure 9: Tree Presence and Absence Map of the SNG2 generated using the R 

programming language in 𝑩𝑰𝑶𝑴𝑶𝑫𝟐 package, showing a clear visual 

distribution of oak in different parts of the grassland. The number scale in X-

axis represents latitude and Y-axis longitude of the study area; unit is in decimal 

degree (m). 

 

 

 



   41 
 

3.3.2.2. Environmental Variables  

3.3.2.2.1. Soil Variables 

 I created a soil classification table using the NRCS soil type information to 

provide attribute information on the different soil classes for the selected soil polygons of 

both study areas. The soil polygon map only contains different soil polygon names in 

symbolic form (e.g. see Appendix I for the SNG1) but it does not provide the actual soil 

properties. Thus, by spatially joining (using Join function in ArcMap) the soil properties 

table with a vector data layer, I prepared vector maps containing different soil properties. 

Later, I generated different soil variable maps in raster (grid) format (e.g. see Appendix II 

–IV for the SNG1) that are required for running the final analysis (modelling). The maps 

(raster map) were generated in 1-m spatial resolution Geotiff grid format, with consistent 

metadata (e.g. spatial reference, datum, and so forth). These maps represented the 

independent environmental variables of oak savanna. 

3.3.2.2.2. Topographic Variables 

 I used the digital elevation dataset (DEM; see Appendix V for the SNG1) to 

create the following four topographic derivative maps: slope, aspect, curvature, and local 

DEM using ArcMap version 10.1 and 10.2. 

1. Deriving a Slope raster from a DEM 

 Slope identifies the vertical change in elevation. In a raster DEM, the slope 

represents the rate of maximum change in elevation (z- value) between cells.  



   42 
 

 For this analysis, slope was derived from the original DEM using the DEM to 

Slope tool in ArcMap retaining the original spatial resolution and providing output in 

degrees. In this research, slope represented the terrain steepness, which may affect oak 

tree establishment and survival processes, and thus influence the distribution of oaks in 

the SNG.  

2. Deriving an Aspect raster from a DEM 

 Aspect represents the polar orientation of a slope from different angles such as 

zero (North), 90 (East); 180 (South), 270 (West), and the 360 (North) (see Figure 10). In 

this research, Aspect is calculated using the DEM to Aspect tool in ArcMap making all 

properties consistent with the original DEM. In my research of understanding the species 

verses environmental variables relationship (i.e. Oak vs Aspect), aspect could provide 

information about the directional pattern of oak distribution in the grassland.     

Figure 10: Aspect map of a small part of the SNG1 representing the aspect (unit = 

degree). The different colors represent aspect directions. The flat areas do not 

have any downslope direction, which is generally represented by “-1”.   

 

 

(By: Mandira SigdelPhuyal, 10/14/2014) 
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3. Deriving Local DEM from a DEM 

 Local DEM quantifies elevation changes relative to the local mean elevation. It is 

calculated over a defined distance, where the DEM itself is relative to mean sea level.  

In this research, I calculated Local DEM using the following equation in ArcMap. 

𝐿𝑜𝑐𝑎𝑙𝐷𝐸𝑀 = (𝐷𝐸𝑀 − 𝐵𝑙𝑜𝑐𝑘 𝑆𝑡𝑎𝑡) 

Where, the Block Statistic is a neighborhood function that partitions the input cells (raster 

pixel) into specified non- overlapping blocks such as 3x3, 4x4, 100x100, and so forth 

with values in each block (e.g. see Figure 11 below).  

Figure 11: Block Statistic calculation flow using MAXMIMUM as the statistics type. 

(Source: ArcGIS Help Online). 
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 The blocks can be defined in different shape including rectangular or square (used 

here), and circular; and the output can be adjusted to provide maximum, mean, minimum 

and other statistics depending on research needs. For this research, I calculated average 

(i.e. statistics type is ‘MEAN’) block statistics of each input cell by defining 500mx500m 

neighboring blocks, where the final product will provide the average elevation of the 

defined location. The analysis of mean neighborhood elevation was performed in 

ArcMap using the Neighborhood Statistics tool.   

4. Deriving Curvature from a DEM 

 Curvature is defined as the second derivative of the DEM surface and can be 

calculated in ArcMap. ArcMap allows creation of three different curvature output rasters, 

including profile curvature raster (optional), plain curvature (optional), and a combined 

curvature raster using the Curvature Tool. In this research, I used the combined curvature 

raster, where curvature value ranges from negative, zero, and positive. A negative value 

in the cell indicates the upward convex and a positive profile indicates upward concave 

surface, and a value zero (‘0’) indicates a linear surface profile. This map will allow us to 

quantify oak distribution patterns relative to curvature.  

3.3.2.2.3. Fire Disturbance Map 

 The fire frequency, disturbance maps were prepared using fire shape files 

obtained from the SNG for both study areas. The shape file has 15 years (2000-2014) of 

overlapping fire polygons. The fire frequency (presence and absence) raster map was 

obtained by stacking all the layers (fire polygons) in ArcMap. Fire frequency is the total 

number of fires observed in each pixel location during a 15-year period (hereafter 



   45 
 

FireFreq; Figure 12 and Figure 13). In this research, I interpreted the fire frequency 

numbers as shown below 

Fire frequency value,   

 0 = Fire free  

 1 and 2 = Low fire  

 3 and 4 = Intermediate fire  

 5 and 5+ = High fire 
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Figure 12: Fire frequency map of the SNG1 indicating the numbers of fires occurring 

during 15 years (2000-2014).  
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Figure 13: Fire frequency map of the SNG2 indicating the numbers of fires occurring 

during 15 years (2000-2014).  
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3.3.3. Data Interpretation 

 The high spatial resolution (1 m) of the tree cover and associated environmental 

data sets results in a total number of potential samples (i.e. Pixels) in the SNG1 domain 

of more than 270 million. For computational reasons, I randomly sub-sampled across the 

entire domain to obtain a dataset on presence-absence of oak trees, together with 

corresponding data on soil types, topography and fire history.  

3.3.3.1. Empirical Variable Analysis 

Empirical variable analysis is the simple relationships between oak occurrence 

and individule environmental variables, where, the individual relationships between the 

dependent variable (i.e. fraction of the oak canopy cover) and independent variables 

(environmental variables) plotted on the Y-axis and X-axis respectively. Here, the 

dependent variable is a fraction of the total oak savanna of the study area, calculated as: 

 
Oak Savanna Pixels

Total Pixels 
 

Where “Oak savanna pixels” are cumulative oak presence pixels in the random sample 

separated into regular interval bins across each environmental dataset, and “Total pixels” 

quantifies the total number of random points in the bin.   

 The fraction of oak presence verses environmental variables relationships are 

shown to provide an initial assessment of the potential importance of each variable. 

However, the effect of individual environmental variables on oak occurrence may be 

masked or exaggerated by correlation among variables. The detail about the trends in tree 
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occurrence relative to environmental variables is discussed in chapter 4 (Figure 20 and 

Figure 21) of this research.  

3.3.3.2. Model Selection 

 Four SDM modeling approaches: MAXENT, GBM, RT, and CRT, were selected 

for this analysis based on their ability to work with both categorical and continuous 

variables, and flexibility with non-linear relationships (see Figure 20 and Figure 21 in the 

results section) and correlation between independent variables.  

3.3.3.3. Modelling Techniques  

 For the modelling, all the environmental variables were prepared with a similar 

extent, resolution, geographical projection, and format (i.e. Geotiff grid, or other GIS 

format) for ease of analysis in 𝐵𝐼𝑂𝑀𝑂𝐷2. The R-script, techniques of modelling, and 

parameter settings were based on recommendations described by Georges and Thuiller 

(2013) and Thuiller, Georges, and Engler (2013 and 2015). Model fitting and cross-

validation was carried out using an 80 to 20 split of the dataset (setting DataSplit = 80 in 

𝐵𝐼𝑂𝑀𝑂𝐷2, such that models were fit with an 80% sub-set of the data and cross validated 

with an independent 20% sub-sample. Model results are presented for all calibrated 

models as well as full model predictions, where the performance of each model is also 

analyzed based on the entire dataset. 

3.3.3.4. Model Evaluation 

 To evaluate the predictive performance of each model, I used the predictive 

response curve (predictive response of tree cover with selected environmental variables), 
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predictive projection plots, and model performance statistics (i.e. ROC, TSS, and KAPPA 

respectively). Further, the ranking of each independent variable’s importance in the fitted 

models (“VarImp”) is used to assess each variable’s contribution to fitted models. 

However, variable importance is only useful to understand the direct effect of variables to 

the model (not the combined effect) (Thuiller, Georges, and Engler 2012).  
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 RESULTS CHAPTER 4:

4.1. Land Cover Classification 

4.1.1. Woody canopy estimate of the SNG1 

 In this research, I classified the major five land cover types of the SNG1 using the 

1-meter spatial resolution aerial imagery (Figure 14). These classes included oak 

savanna, water, bare ground, grassland, and other trees.  Here, the ‘other tree’ class 

includes some other tree species besides oak. Field visit helped me to identify the 

location of different vegetation types, which ultimately, helped with generation of 

training data to classify the distinct tree classes.  

 The SNG1 is the larger and more heterogeneous than the SNG2 and thus 

relatively more difficult to classify using the spectral bands available in the aerial 

imagery (which has just three bands) (see Figure 14). This limitation created some 

spectral confusion (Hu and Wang 2013) between land cover types (e.g. two species of 

tree with nearly similar spectral reflectance). Thus, in some cases, separating (spectrally 

and visually) objects with similar reflectance properties during classification are difficult.  

In my classification, the oak canopy class includes some aspen, since these often co-

occur in the areas typically considered as oak savanna. Further, the classification between 

grassland and bare soil was often less successful because of spectral similarity of bare 

soil and sparse herbaceous vegetation. 

 Overall classification accuracy was ~85% (see Table 3), with a 0.82 Kappa 

statistic score. The individual Kappa scores (see Table 3 and Figure 17) vary between 
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0.94 for the oak tree class to as little as 0.65 for bare soil. However, since the focus of 

this study is on oak distributions in the grassland, the relatively high accuracy of oak 

detection suggests the classification can be used for subsequent analysis. The 

classification result for the SNG1 estimated oak tree cover of ~5% with other trees 

(mostly lowland willow and cottonwood) at ~2% (see Figure 16 and Table 3).   

 Based on those classification results, the majority of oaks in the SNG1 are in the 

Northeastern part of the grassland, with distinct patches of oak in the south-west of the 

SNG1 and smaller patches (or individual trees) scattered across the area  (See Figure 15 

and for better visual see Figure 8). The patchy distribution of oaks may reflect locations 

with favorable environmental condition for seedling establishment and growth.  
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Figure 14: The mosaicked Aerial photo containing three spectral bands used in the 

classification of the SNG1 (data source:  United States Department of 

Agriculture (USDA) Farm Service Agency, National Imagery Program 

(NAIP); acquisition date July 2012). 
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Figure 15: Land cover classification map of the SNG1created using the supervised 

classification technique in ERDAS Imagine. The land cover classification in 

this map was generated using 1-meter spatial resolution aerial photo, and thus 

it is a one-meter resolution raster image. 
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Figure 16: Chart showing the comparative percentage areas covered by five different land 

covers of the SNG1. 

 

 

 

 

 

 

 

 

 

 

By: Mandira SigdelPhuyal 
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Table 3: Land covers of the SNG1 with their classification accuracy in percentage 

The SNG1 Classification Accuracy Statistics 

Land Cover 

Classes 

Area covered 

% 

User 

Accuracy 

Producer 

Accuracy 

Kappa 

Oak Savanna 5.05% 95% 95% 0.9375 

Bare Ground 20.02% 70% 100% 0.651 

Water 1.19% 75% 100% 0.706 

Grassland 71.74% 95% 58% 0.925 

Other Tree 2.01% 90% 100 0.878 

Unclassified 0.00%    

Overall Classification Accuracy = 85.00% 

Overall Kappa Statistics = 0.8125 

 

Figure 17: Land cover classification accuracies comparison chart of the SNG1 

 
By: Mandira SigdelPhuyal 

By: Mandira SigdelPhuyal 
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4.1.2. Woody canopy estimate of the SNG2 

 The SNG2 is a small area and the aerial image that I used for the classification 

was clearer compared to the SNG1. The clear visual quality of the image provided better 

classification accuracy then at the SNG1. Land cover for this area was classified into four 

different classes: trees, water, grassland, and bare ground. At the SNG2, oak trees mixed 

with aspen (as at the SNG1) are widespread with few other tree species present, thus we 

didn’t add a second tree class. 

 Overall, the land cover classification of the SNG2 is excellent, with 97.5 % 

classification and 0.94 Kappa coefficient (Table 4). Further, the individual classification 

accuracy, particularly of woody species (i.e. tree) is very high at the SNG2 (i.e. about 95 

percentage, see Table 4). 

 The overall percentage covers of the four different land cover types of the SNG2 

were calculated and shown in the Figure 18 and Figure 19. Tree cover of the SNG2 is 

markedly higher than at SNG1, with about one-fourth (25 %) tree cover (see also Figure 

9) at SNG2 (Table 3 and Table 4) which made an average 6 % oak canopy cover across 

the entire SNG (combining SNG1 and SNG2).  

 The higher woody cover of the SNG2 was reflected in the number of presence 

data points in the random samples selected for subsequent modeling compared to the 

SNG1. Thus, ~10,000 presence points out of 200,000 random (pre/abs) points sampled 

across SNG1 and ~24,000 presence points out of 100,000 random (pre/abs) points for 

SNG2.  
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Figure 18: Land cover classification map of the SNG2 created using the supervised   

classification technique in ERDAS Imagine software. This is a 1-meter spatial 

resolution map. 
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Figure 19: Chart showing the comparative percentage areas covered by five different land 

covers of the SNG1. 

 

Table 4: Land covers of the SNG2 with their classification accuracy in percentage. 

SNG2 Classification Accuracy Statistics 

Land Cover Classes Area covered 

% 

User 

Accuracy 

Producer 

Accuracy 

Kappa 

Tree 23.99% 95.24% 95.24% 0.935 

Bare Ground 1.18% 100% 100% 1 

Water 0.29% 100% 100% 1 

Grassland 74.54% 98.28% 98.28% 0.937 

Overall Classification Accuracy = 97.50% 

Overall Kappa Statistics = 0.9383 
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4.2. The empirical variables analysis 

 The empirical analysis plots of the SNG1 and SNG2 (see Figure 20 and Figure 

21) suggest that several environmental variables are correlated with oak distribution 

within the SNG. Results from both SNG1 and SNG2 showed that higher density of oak 

trees is found in courser texture and well-drained soil types. The relationship between oak 

tree cover and vertical distance to water saturation zone (hereafter, 

FracTree(oak)vsWSZone) appears bi-modal, perhaps reflecting misclassification of some 

trees (e.g. willows) growing in lowland areas with high water tables.  

 The empirical plots (Figure 20 and Figure 21) also provide interesting 

relationships between oak savanna and different topographic variables. Among the 

topographical variables, DEM and slope appear to have strong influence for oak savanna 

distribution on the grassland (in both SNG1 and SNG2), where oaks prefer sloping 

topography oriented northwards. The overall empirical results indicate that oaks 

generally dislike flat surface or clayey soil with low water drainage capacity. No clear 

patterns emerge for the relationship between oak distribution and slope convexity, 

average elevation or local elevation. Results at both SNG1 and SNG2 suggest that oak 

trees are most common in areas with moderate fire return frequency. Although the 

mechanisms for this are not known, it may reflect the combination of negative effects 

(e.g. seedling mortality in fire) with positive effects (e.g. establishment site availability 

and suitability following fire).  

 The visual analysis of oak distributions compared to environmental data-layers, 

provides some insight into likely relationships and potential mechanisms. However, in 
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multivariate situations, the true correlations may be obscured by correlations among 

variables, and we lack any predictive capability. The SDM approach will contribute 

further information on the effects of each variable and interactions among them.   
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Figure 20: The empirical variables analysis plots of the SNG1.
5
 

 

 

                                                           
5
 Here, empirical variable plot represents a simple relational plot, where the fraction of oak tree (FracTree) is plotted 

in Y-axis and environmental variables are plotted in X-axis. The variables units: DEM is in cm, slope and aspect are in 

Degree, WSZone is in cm (it indicates the depth of ground water aquifer from the surface; details of soil properties 

names see Table 2. 

By: Mandira SigdelPhuyal 
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Figure 21: The Empirical Variables Analysis plots of the SNG2
6
. 

 

 

 

                                                           
6
 Here, the empirical variable plot represents a simple relational plot, where the fraction of oak tree (FracTree) is 

plotted in Y-axis and environmental variables are plotted in X-axis. The variables units: DEM is in cm, slope and 

aspect are in Degree, WSZone is in cm (it indicates the depth of ground water aquifer from the surface. 

By: Mandira SigdelPhuyal 
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4.3. Species Distribution Model Results 

4.3.1. Model Evaluation Statistics  

 The different SDM approaches were evaluated based on ROC, TSS, and Kappa 

statistics scores, all of which have the range of 0-1. If a model has the highest positive 

evaluation statistics compared to other models, the model is accepted as the best 

predictive model. Among the different SDMs (Table 5), the Random Forest (RF) model 

produced consistently higher evaluation statistics for both study areas. The ROC and TSS 

values suggest excellent predictive ability, although the Kappa scores are relatively low, 

perhaps, because of the prevalence effect (Liu, White, and Newell 2009). The RF 

approach allows for non-linear relationships between drivers and response variables, 

whereas, the linear-based models cannot deal very well with, for example, an optimum 

response at the center of a variable range.  

 Further, based on ROC scores, the MAXENT model appeared as the second best 

predictive model for both SNG1 and SNG2 study areas. However, while the ROC scores 

are high, the lower scores of other evaluation statistics suggest the model is less effective 

than the RF.  

 

 

 



   65 
 

Table 5: Representation of different SDMs and their evaluation statistics result for the 

SNG1 and SNG2 (bold fonts show the best model across with its three major 

evaluation statistics). 

 

Models The SNG1 Full Model Statistics The SNG2 Full Model Statistics 

ROC TSS Kappa ROC TSS Kappa 

MAXENT 0.864 0.586 0.584 0.865 0.591 0.251 

RF 0.99 0.978 0.683 0.999 0.976 0.457 

GBM 0.859 0.576 0.453 0.858 0.58 0.244 

CTA 0.663 0.318 0.444 0.791 0.497 0.11 

            (By: Mandira SigdelPhuyal) 

 

 

 

 

 

 

 

 

 



   66 
 

4.3.2. Variable Importance 

 The variable importance (hereafter VarImp) is the percentage contribution of each 

independent variable in explaining oak distributions during the SDM modelling. Table 6 

shows VarImp of individual variable for the four SDM models.  

 For the SNG1, the variable importance scores (Table 6) shows the higher 

contribution of topographic variables including slope, DEM, and local-DEM among 

variables. Among the other variables, the VarImp scores indicated that fire frequency and 

soil drainage properties are influential, although results are inconsistent among models 

and these variables are generally less influential than expected based on empirical 

relationships, perhaps, because the variable interactions are better considered when all 

environmental variables are considered together (i.e. in the SDM).   

 Similar results occurred in SNG2, where, again ‘Slope’ is ranked as the most 

influential variable for all the models and the RF model appeared more effective 

compared to other models (Table 6).  As at the SNG1, both DEM and LocalDEM are 

influential at SNG2, but less so than slope. Fire frequency and drainage class are also 

influential as at the SNG1.  
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Table 6: The variable importance scores of the SNG1 and SNG2 study areas generated by 

four SDM approaches (Maximum Entropy, MAXENT; Random Forest, RF; 

Generalized Boosted Model, GBM; and Classification Tree Analysis, CTA) 

in 𝑩𝑰𝑶𝑴𝑶𝑫𝟐 (bold fonts across the columns represented the superiority of the 

models with the higher  individual variable contribution). 

 

 

 

 

 

 

 

 

MAXENTRF GBM CTA MAXENT RF GBM CTA

SNG1_Aspect 0.015 0.283 0.032 0.146 0.042 0.331 0.075 0.136

SNG1_Curvature 0.008 0.209 0 0 0.015 0.208 0.01 0

SNG1_Slope 0.146 0.532 0.494 0.965 0.244 0.508 0.361 0.388

SNG1_DEM 0.046 0.492 0.144 0.397 0.089 0.428 0.207 0.282

SNG1_LocalDEM 0.052 0.47 0.159 0 0.044 0.354 0.021 0.019

SNG1_WSZone 0.278 0.197 0.185 0 0.002 0.033 0.003 0

SNG1_Drainage 0.024 0.252 0.114 0 0.278 0.075 0.326 0.541

SNG1_SoilTexture 0.014 0.09 0 0 0.072 0.004 0 0

SNG1_FireFrequency 0.081 0.302 0.163 0 0.068 0.341 0.12 0.168

Variables Importance for the SNG2 (Full Model)

Variables
Models Models

Variables Importance for the SNG1 (Full Model)
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4.3.3. Projection Plots 

 Projection plots are the maps of projected species distribution in a defined 

geographic location as an alternative way of interpreting the performance of the SDMs. 

Here, the model projection plots (Figure 22 and Figure 23) represent model-based 

predictions of the probability of finding oak trees in the SNG1 and SNG2 respectively.  

These plots help to determine quality of model’s performance by visual comparison with 

the original (classified) oak canopy maps (Figure 8 or 15 and 9 or 18 for the SNG1 and 

SNG2 respectively).  

 The projected RF model (Figures 22-23) provided similar predictions of oak 

spatial distributions as the original estimates derived from the high-resolution aerial 

photographs. Relative to the RF model, the predictive maps using the other SDM models 

tend to over- and under-predict. This comparison again confirms the superiority of the RF 

method for prediction of oak presence and absence throughout the geographical space of 

the SNG. 
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Figure 22: 𝑩𝑰𝑶𝑴𝑶𝑫𝟐 model predictive probability of oak savanna presence
7
 in the 

SNG1. Prediction color bars scale probabilities of 0-1 over the range 0-1000 

(i.e. color scale = 1000 is equivalent to a tree probability of 1).  

 

 

 

                                                           
7
 In the Figure 22, for each map, the map title “_AllData_Full” represents the calibration of models using the full 

model. Projection unit ranges from 0 to 1000 ratio, this is similar to general 0 to 1 (or -1 to 1) probability ratio (unit). 

The values in X-axis and Y-axis represent the latitude and longitude of the location, and unit is in decimal degree.  
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Figure 23: 𝐵𝐼𝑂𝑀𝑂𝐷2 model predictive probability of oak savanna presence
8
 in SNG2. 

Prediction color bars scale probabilities of 0-1 over the range 0-1000 (i.e. 

color scale = 1000 is equivalent to a tree probability of 1). 

 

 

                                                           
8
 In the Figure 21, for each map, the map title “_AllData_Full” represents the calibration of models using the full 

model. Projection unit ranges from 0 to 1000 ratio, this is similar to general 0 to 1 (or -1 to 1) probability ratio (unit). 

Values in X-axis and Y-axis represent the latitude and longitude of the location, and unit is in decimal degree. 
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4.3.4. Predictive Response Curve Analysis 

 Predictive response curves (Figure 24 and Figure 25) are the 2D response plots of 

oak savanna verses different environmental variables, estimated using the four SDMs 

approaches. These response curves are used to understand the form (positive or negative, 

linear/non-linear, and so forth) of relationships between tree presence and the major 

drivers. 

 In this research, initially, I plotted the model predicted oak verses environmental 

variables probability distribution (for both, SNG1 and SNG2) representing oak presence 

in Y-axis and the environmental variables in X-axis. In such plots (see Appendix VI and 

VII), I introduced all initially selected environmental variables and all the selected (four 

SDMs) models. Later, given the superiority of the RF approach for predicting oak 

occurrence, I concentrated primarily on the RF response plots (Figure 24 and Figure 25) 

and the top-ranked variables shown in Table 6 and contrast results obtained using other 

SDMs.  

 For the SNG1, the response plot (see Figure 24) between oaks presence versus 

slope indicated the high correlation between oak distribution and steeper slope locations. 

Other variables such as DEM and localDEM (i.e. continuous variable) again consistently 

exert an influence but comparatively lower than Slope. DEM has a negative linear 

relationship with oak, suggesting that oak trees favor low elevation. However, DEM does 

not account for the local topographic position of a location relative to the top, mid-slope 

and bottom of local topographic features. Thus, in order to represent this local landscape 

variability, ‘LocalDEM’ was created. LocalDEM takes into account the average height of 
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each selected block so that pixels can be represented as above or below mean height for 

the block. Despite our expectation that LocalDEM would provide additional explanatory 

power, the results for this variable were inconsistent. Further, as with the empirical 

analysis (above), the Aspect variable suggests that oaks slightly favor North-facing slopes 

(e.g. 45
o
 > aspect >315

o
). 

 In the SNG2, response plots are little different from results at SNG1.  Here, 

increasing slope and elevation (particularly, LocalDEM) both appeared to favor oak 

distribution (i.e. oaks favor upland); however, slope appeared as the major driver, with 

some but hard-to-interpret roles for DEM and curvature. The fitted relationships indicated 

that the Aspect effect is also similar as that of the SNG1, where oak distribution is mostly 

on the North-facing slopes (e.g. 45
o
 > aspect >315

o
). In addition, the fitted relationship 

between fire and oak for both SNG1 and SNG2 showed the influence of moderate fire 

frequency for oak establishment, where intermediate fire frequency may favor seedling 

establishment through removal of litter and reduction in direct competition, without the 

frequent mortality of seedlings expected in regular fires. 
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Figure 24
9
: The SNG1 probability response plots of oak versus different (influential) 

environmental variables inferred using Random Forest (RF) (see. All 

comparative SDMs response plots for the SNG1 are in Appendix VI). 

 

 

 

                                                           
9 Note: in the Figure 24, DEM derivatives and fire are the continuous data. Here, the unit of DEM values are in cm, 

Slope and Aspect are in Degree, Local DEM is in meter, and fire frequency is the number of fires during the 15-years 

data. In the legend, “_Full_RF” represents the calibration of model using full model method. 
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Figure 25
10

: The SNG2 probability response plots of oak versus different (highly 

influential) environmental variables inferred using Random Forest (RF) 

model (see. All SDMs response plots for the SNG2 are in Appendix-VII). 

 

 

                                                           
10 Note: in the Figure 25, DEM derivatives and fire are the continuous data, whereas, the other remaining are 

categorical datasets, and the value in the numbers are representing the different categorical classes (detail, see Figure 

21 for each categorical dataset). Here, DEM values are in cm, Slope and Aspect are in degree, Local DEM is in meter, 

and fire frequency is in numbers of repetition of fire. In the legend, “_Full_RF” represents the calibration of model 

using full model method. 
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 DISCUSSION CHAPTER 5:

5.1. Data Selection and its effect on decision-making 

 In this research, the 1-m spatial resolution aerial photos were well-suited (relative 

to satellite data) for classification of land cover and detection of trees. The aerial 

photographic approach to this work enabled classification of individual tree canopies 

with high classification accuracy. Differences in the classification accuracies between the 

two areas of the Sheyenne (SNG1 and SNG2) may have been caused by differences in 

image quality (atmospheric effects). In addition, spectral similarity among land cover 

types can lead to misclassification, particularly, among different vegetation with similar 

reflectance properties. It might have more affected the SNG1 classification accuracy than 

SNG2 because of its relatively larger geographic extent with more diverse land cover 

types. 

 To improve land cover classification, several factors including the image spatial 

resolution, required spectral band, quality, and the geographical extent need to be 

considered together. Thus, a combination of a clear image with the higher spatial 

resolution and required spectral bands (where, the band combination provide better visual 

contrast to identify each object on the ground) provide the greatest opportunities for an 

excellent land cover classification.   

 In addition to the data used for land cover classification, other environmental 

datasets such as the 1-m spatial resolution digital elevation dataset, used to create various 

detailed topographic derivative datasets, contributed to understanding oak distribution in 
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both study areas.  Additional data sources (e.g. fire and soil data-layers) were less 

informative. This is described in more detail in the subsequent sections. 

5.2. Empirical vs Predicted result comparison  

5.2.1. Role of Soil types in oak distribution 

 Empirical variable relationship plots (Figure 20 and Figure 21) suggested that oak 

presence is highly correlated with the soil texture, particularly in areas with coarse soils 

and high water drainage capacity. However, the predicted variable response curves 

(Figure 24 and Figure 25) showed little or no impact of soil variables on oak 

establishment. The differences might be because of the available soil data, which was at a 

spatial scale (vector form) compared to other selected environmental data, where the 

level of detail may not be appropriate for small-scale analysis using the models. Thus, it 

might affect the performance of models when they implement together with the other 

continuous datasets.  

5.2.2. SDM offered contrasting results at landscape level prediction and between two 

homogeneous environments  

 The species distribution modeling approaches were able to predict where oak is 

more probable in the landscape, but the relationships with soil and topographic variables 

were not the same between the two regions of the SNG (i.e. SNG1 and SNG2). The 

performance of various SDMs differed greatly among the selected data and models. It 

was also different for each variable and each applied model. Thus, the species 

distribution models have predicted the contrasting result of oak savanna biogeography as 
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compared to empirical analysis. The differences between the SNG1 and SNG2 results 

might be that the effect of selected sample size and model instability (Hernandez et al. 

2006; Wisz et al. 2008). Although the SNG1 is large relative to the SNG2, the much 

lower tree cover (5% at SNG1 versus 25% at SNG2) meant that randomly sampled 

presence locations for the SNG1 were fewer than obtained for SNG2, which may not be 

sufficient data for efficient model prediction as compared to the data used for empirical 

analysis. 

5.2.3. Superiority of RF Approach  

 The overall model prediction statistics indicated the superiority of Random Forest 

approach to inform the oak-environment relationship among the selected four different 

SDMs: MAXENT, GBM, RF, and CTA.  The comparative analysis of models prediction 

statistics, models performance, and empirical study confirmed the RF model as the most 

successful approach for landscape level prediction. Alternatively, MAXENT might be an 

acceptable choice, However, MAXENT only uses the limited presence dataset (i.e. it 

does not use absence data), which is generally considered to be a disadvantage, and the 

MAXENT model was unstable (would often fail to converge or crash without warning) if 

we selected large data sample. 

 Relatively low tree cover, particularly in the SNG1, ultimately affected the 

number of ‘presence’ points in the random sample. It further appeared to affect the 

Random Forest model, including the other model’s predictions, and that might have 

contributed to generating some contrasting results. Thus, the predictions of RF (and may 

be other SDMs in general) might be improved using a non-random sampling to increase 
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the proportion of true presence data, rather than working with datasets that are skewed 

towards absence data.  

5.2.4. Slope: The major driver of oak savanna existence  

 The overall models including RF and other analysis predicted that, in the SNG 

oak savannas distributions are strongly influenced by the landscape topography. Based on 

my result, oaks particularly favor an open area where small hills with an intermediate 

slope exist. This result indicated that distribution of oak might also correlate with the 

well-drained, coarser soil texture, and north-facing aspects locations. These soil and 

topography variables suggest that oak seedling establishment is favored in areas that have 

minimal chance of waterlogged soils, away from valley bottoms.  

 Beside slope and soil variables, other topographic variables (LocalDEM and 

DEM) were found to be influential but inconsistent and contrasting between SNG1 and 

SNG2. LocalDEM, particularly for the SNG2, provided an important insight about oak 

savanna that they favor upland compared to the SNG1. This may be because the SNG1 

covers a large geographic extent compared to the SNG2, such that local effects in SNG1 

may have been overwhelmed by coarser-scale differences in soil or other variables. 

5.2.5. Disturbances effect 

 In my research, fire appeared as an important factor for oak establishment; 

however, it also provided contrasting results between locations and among analysis 

methods. The empirical analysis predicted that higher abundance of oak occur in 

locations of intermediate fire frequency (i.e. 3-4 fires in 15 years) and also in fire absent 



   79 
 

areas.  The RF analysis for SNG1 and SNG2 broadly confirm the empirical analysis, with 

unimodal relationships indicating a correlation between intermediate fire frequency and 

increases oak canopy cover. The apparent increase in tree covers at very low (or absent) 

fire frequency might correspond with closed-canopy formations, where, herbaceous fuel 

load is insufficient to carry a fire. However, at both SNG1 and SNG2, the analysis 

confirmed that oaks do not tolerate high and repeated fires, presumably because of 

seedling and sapling mortality.   

5.3. Field Visit: A validation tool 

 On October 10 2014, I conducted a field visit in the Sheyenne National Grassland 

as an alternate way of validating my results and for better understanding the results of my 

analysis. During the field visit, by a visual inspection of oak distribution (see Appendix 

VIII and Appendix IX) in the SNG1 and SNG2, I found a similar but still a contrasting 

relationship of oak with environmental variables such as topography, particularly DEM, 

aspect, and slope. However, this field visit helped better situate the oak species while 

selecting the sample pixels to perform supervised classification analysis. It helped to 

generate a precise woody canopy cover map. 

 In addition, the field visit provided me an opportunity to compare oak trees 

distributions and physical environmental factors. In the Sheyenne, oaks occurred on sand 

hills, but the hills might have lower than the average surrounding elevation (particularly, 

in the northeastern part of the SNG1); however, they are in good concave to convex 

pattern and well-defined slope profile. Further, the SNG2 is a small area with various 

small hills, where trees (oak) are widely distributed from the bottom of the hills to the 
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upper slopes. Thus, the predicted result comparison between slope and DEM  

(particularly, for the SNG2) is consistent with the heavy distribution of oak trees at small 

to average slope angles, which either have a low elevation or high compare to 

surrounding average elevation.  

 In addition, in the field, I noticed that oak trees are often found in mixed stands 

with other tree species, especially Aspen, and occasionally willow and cottonwood. The 

potential misclassification of oak trees resulting from these mixed species might have led 

to the DEM (and LocalDEM) relationships suggesting that oak are found at low and 

moderately higher elevations, but less frequently at intermediate elevations. 
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 CONCLUSION CHAPTER 6:

6.1. Summary of the research and results 

6.1.1. Influence of data quality in classification accuracy 

 The high spatial resolution aerial photography and multiple environmental 

datasets that I selected to map and explore oak distribution in the Sheyenne National 

Grassland provided the main input for my analysis of oak-environment relationships.  

  The land cover classification applying a supervised classification technique 

provided 80 % and 95 % overall classification accuracies, with high user and producer 

classification agreements for SNG1 and SNG2 study areas, respectively. The Sheyenne 

National Grassland has an overall oak canopy cover of ~6 %, but with marked 

(individual) differences between the larger northern block (5% oak cover) and the smaller 

southern block (25% oak cover).  

 The land cover classification, however, indicated that accuracy in land cover 

classification using the remote sensing techniques is highly variable by the extent of 

study area selected, types of data, the data selection technique, and statistical approach.  

The quality of the remote sensing data also had a large effect on our ability to classify 

trees accurately at the SNG1 (relative to the SNG2) even though the aerial survey data 

were acquired on the same date. The overall analysis suggested that oaks savannas are a 

complicated habitat to map separating from other woody vegetation with similar 

reflectance properties.  
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6.1.1. SDMs offered important understanding of grassland oaks biogeography 

 Using a variety of SDMs, 𝐵𝐼𝑂𝑀𝑂𝐷2 helped me to predict, compare, and analyze 

the effect of different environmental variables on oak savanna distribution at landscape 

level. Here, the Random Forest (RF) model proved to be flexible and superior in 

predicting non-linear species-environment relationships at a landscape level among the 

candidate Species Distribution Models (MAXENT, GBM, RF, and CTA).  

 Analysis of classified high spatial resolution aerial photographs from the 

Sheyenne National Grasslands, using statistical SDM approaches allows us to conclude 

that the oak savanna ecosystem is strongly associated with landscape topography and soil 

types, with oak trees favoring sloping locations, sandy and well-drained soils, northerly 

aspect and infrequent (but occasional) fire.  

 Controlled fires are one of the major practices for maintaining oak savanna and 

reducing the cover and density of invasive species. In general, it would appear that Bur 

Oak benefit from a low-to-moderate frequency of fires; however, the extent or frequency 

of fire should be considered carefully, since too frequent fires appears to inhibit oak 

canopy cover, presumably through reduced seedling establishment (possibly through 

increased adult mortality).  

6.2. Limitations in research and results 

 Working with the high spatial resolution geospatial datasets with large numbers of 

occurrence data and using the multiple models together in 𝐵𝐼𝑂𝑀𝑂𝐷2, several challenges 

need to be considered. The main limitations that I faced during my analysis included 
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memory space problems in computer, and the length of time it takes SDMs to run. In 

addition, the performance of SDMs depended on the data size (Hernandez et al. 2006) or 

data resolution that created similar but conflicting results between the two study areas 

(SNG1 and SNG2). Because of the limitation in model’s data holding capacity, I needed 

to sub-sample a small fraction of the SNG areas to run the model.  

 Another main problem that I realized when I started studying about the Sheyenne 

National Grassland was the available literature is that limited research has been 

conducted about the Sheyenne National Grassland, with little on the general history and 

physical geography including the woody cover analysis.  

6.3. Research Implications  

 The techniques, analysis, and results offered by this research might be a good 

source of information for a person who is interested in working with the SNG or with 

similar species-environment relationship for other areas. The land cover map and the 

woody cover classification might be the most accurate and precise data available on the 

SNG oak distributions. Thus, SNG managers and others interested in the SNG research 

could use this woody cover dataset to guide SNG management or to inform 

complementary studies.  

 In addition, this research provided important insight about general biogeography 

of remnant oak savanna of the woodland-prairie ecoregion at a landscape to local level. It 

would help grassland managers and conservationists to better identify oak habitat and to 

implement conservation and restoration policies.  
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 Further, the overall comparative model evaluation statistics suggest that scientists 

and managers could potentially use species distribution models (particularly the RF 

approach) to analyze species distributions in the Sheyenne or a different geographic 

location. This study would better help them determine the data type and appropriate 

statistical approach according to individual interest for their particular research.   

6.4. Future Work 

 The analysis and prediction results included in this research provided important 

insight into oak savanna distribution in the protected grassland-savanna of the SNG. 

However, because of possible limitation and biases in the applied data quality and data 

sufficiency, the results may not fully explain oak biogeography in North American 

Grassland like the Sheyenne. Thus, addition of other appropriate data such as long-term 

fire data, grazing history data, and more accurate soil data, possibly, from field 

measurements, may provide a more detailed understanding of bur oak biogeography in 

the SNG.  
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APPENDICES 

Appendix I: The original soil polygon of the SNG1 representing different soil physical 

properties provided by the NRCS in their Map Unit System (MUSYM). 
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Appendix II: The NRCS soil texture map of the SNG1 created in ArcMap (by: Mandira 

SigdelPhuyal). 
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Appendix III: The NRCS soil drainage classes map of the SNG1 created in ArcMap (by: 

Mandira SigdelPhuyal). 
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Appendix IV: The NRCS soil water saturation zone (WSZone) map of the SNG1 created 

in ArcMap. (Unit = cm) (by: Mandira SigdelPhuyal). 
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Appendix V: The 1-m spatial resolution original DEM map of the SNG1 created in 

ArcMap (by: Mandira SigdelPhuyal). 
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Appendix VI: Oak verses environmental variables response plot for the SNG1 predicted 

by all four SDMs.  
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Appendix VII: Oak verses environmental variables response plot for the SNG2 predicted 

by all four SDMs (by: Mandira SigdelPhuyal). 
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Appendix VIII: Oak savanna distribution in the SNG (Photo taken: 10 October 2014). 
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Appendix IX: Oak savanna distribution in the SNG (Photo taken: October 10, 2014). 
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Appendix X: Kuchler’s Potential Natural Vegetation map (original) of the United States. 
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