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ABSTRACT 

EFFECTS OF CORN (Zea mays L.) STOVER REMOVAL AND LEACHING ON SOIL 

TEST AND WHOLE PLANT K+ LEVELS IN CORN AND K+ FERTILIZATION/HIGH-

INPUT TREATMENTS ON SOYBEAN USING SITE-SPECIFIC MANAGEMENT TO 

INCREASE SOYBEAN (Glycine max) PRODUCTION IN SOUTH DAKOTA 

NICK J. SCHILTZ 

2016 

Potassium is important for crop production. Corn stover removal has the potential 

to reduce exchangeable and soluble soil potassium (K+) needed for optimal plant growth 

in addition to grain yield. An experiment was conducted in Aurora, SD, USA, to observe 

the effects of corn stover removal on water soluble and exchangeable soil test K+ (STK) 

levels and corn grain yields across a five-year period. Abundant K+ reserves were 

recorded between the initial and final sampling periods. While corn grain yields were 

affected by removing corn biomass, exchangeable and solution K+ levels were relatively 

unaffected by stover removal. 

Potassium fertilizer has the potential to mitigate yield decreases associated with 

corn stover removal. An on-farm cooperation amongst producers who have had an 

extensive history of corn stover removal was initiated. Two K+ fertilization rates were 

spread per acre across half-mile strips in spring 2014; 250 lbs K2O and 0 lbs K2O. Initial 

(spring) and final (fall) soil sampling quantified STK values. Stomatal conductance and 

tissue sampling indicated K+ fertilization influences on crop physiology and K+ 

concentrations, respectively. Yield monitor data from treatment strips were cleaned and 

analyzed. Yield difference maps were generated through statistical software programs to 

examine yield responses to K+ fertilizer. While yield increases were not economically 
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sufficient, a wide degree of site-specific variability existed between sampling periods and 

points, site locations, and season.  

Nitrogen (N) fertilization has the potential to increase soybean grain yield. On-

farm cooperators applied nitrogen fertilizer in the encapsulated urea nitrogen (ESN) form 

in two rates across half-mile strips at R1 growth stage in July 2014; 0 lbs N/acre and 75 

lbs N/acre strips (replicated at least twice per field). Spatial variability in yield responses 

across soil topography and elevations was seen. While yield gains were statistically 

significant after applying ESN, economic analysis proved applications of ESN on 

soybean at R3 to be uneconomical in some localities while advantageous in others. 

Offsite K+ movement may occur following precipitation after corn physiological 

maturity, presumably through leaching off of corn biomass material. Whole corn plant 

portions were collected and tested for K+ following rainfall event. The portion of K+ 

leached relative to total plant K+ concentration indicated that corn stover biomass has 

great offsite movement, occurring as a function of rainfall inch rather than cumulative 

rainfall amounts.  
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STATEMENT OF THE PROBLEM 

 It is probable that collecting corn stover biomass has a detrimental impact upon 

soil test potassium (STK) levels. Fertilizer recommendations are based on grain removal 

(Gerwing, 2005), not reflecting K+ removed in stover biomass. In order for producers to 

remain economically self-sufficient, it must be addressed whether corn stover removal 

reduces STK and grain yield. Are current fertility recommendations accurate for South 

Dakota, USA, grain producers? 

 The role precipitation plays in removing plant available K+ following 

physiological maturity is vaguely understood. Current research is available concerning 

K+ plant uptake across growth stage, but does not address plant K+ concentrations 

following physiological maturity (Below, 2013). The objective of this study was to 

examine the leaching potential of K+ off of corn biomass following maturity.  

 In-season nitrogen fertilization on soybean crops is not a common practice for 

South Dakota producers, but current research suggests nitrogen uptake through 

symbioses in the soil will not meet the fertilizer demands of producing 100-bushel 

soybean grain yields. Statistically significant soybean grain yields have been reported 

with slow-release nitrogen sources (Barker and Sawyer, 2001). The objective was to 

examine the grain yield and economic validity of slow-release nitrogen fertilization on 

soybean fields through on-farm trials. 
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CHAPTER 1 

EFFECTS OF CORN (Zea Mays L.) STOVER REMOVAL ON SOIL TEST K+ 

(STK) LEVELS IN CONTINUOUS CORN UNDER VARYING RESIDUE 

MANAGEMENT PRACTICES  

Introduction 

Continuous corn (Zea mays L.) stover (cobs, husks, leaves, tassels, and shanks) 

removal has the potential of reducing plant-available potassium (K+) for successive 

year’s crops and subsequent grain yields (Sindelar, 2013). Corn stover is commonly left 

in the field to decompose with the mineralized nutrients (K+) available to meet the 

nutrient requirements of succeeding crops, in addition to commercial K+ fertilization. 

South Dakota corn producers harvest the corn grain while less frequently the corn stover. 

Ethanol production is prominent throughout the Northern Great Plains, USA, with 14.3 

billion gallons produced in 2014 (USDOE, 2015). Removing and collecting corn stover 

biomass provides an opportunistic economic value for agricultural producers who do not 

maintain livestock operations and improving producer income levels, especially in tough 

economic periods. 

An important goal set forth by the United States Department of Energy in 2007 

was to advance cellulosic ethanol (starch/cellulosic components) energy production to 

over 16 billion gallons by 2022 (USDOE, 2008)) with the chief candidate being corn 

stover (Farrell, 2006). Corn ethanol is expected to reach production levels of 36 billion 

gallons per year by 2022 (USDOE, 2008) with 16 3 billion gallons met by crop residues 

(USDOE, 2010).  South Dakota corn growers will be tasked to meeting this goal since in 

2014, Sioux Falls, SD-based Poet Biorefineries, Inc. opened the nation’s first cellulosic 

ethanol plant in Emmetsburg, Iowa (Des Moines Register, 2014).  It is assumed a rapid 
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development will ensue once the fermentation process is established, expecting to 

produce a demand of approximately 75 million tons of stover biomass per year (Perlack, 

2005). 

Removing corn stover biomass has important yield advantages for South Dakota’s 

corn growers. Biomass accumulations negatively influence corn grain yields, identified as 

the ‘continuous corn yield penalty’ (Below, 2013). Corn stover biomass reduction has the 

capability to increase corn grain yields by 13% (Porter, 1997), 20% (Below, 2013) 22% 

(Wilhelm and Wortmann, 2004a) and as great as 29% (Peterson and Varvel, 1989). 

Sustainable residue collection can be achieved at 20% (Nelson, 2002) and 30% 

(McAloon, 2000).  Removing too much corn stover biomass results in a degradation of 

soil properties (Sindelar, 2013), including soil test potassium (STK) and yield potential. 

Wilhelm (2004b) conducted an experiment under irrigated conditions in Nebraska and 

concluded that corn grain yield was reduced 0.13 Mg per hectare when 1 Mg ha-1 stover 

was removed. Barber (1979) conducted an experiment measuring treatments of corn 

rotations with residue returned, residue removed, and six years of fallow. While not 

experienced in the short-term study conducted, Barber did cite that long-term practices 

will lead to a depletion of organic matter content. In his Indiana experiment (Barber, 

1979), after 10 years of corn stover removal, organic matter levels had decreased about 

10%. A likewise yield reduction was reported over 12 years in his Iowa study. There is 

little literature concerning safe removal levels of corn residue as it relates to potassium 

availability and corn grain yield in South Dakota.   

Fertilizer recommendations in South Dakota are made using field-based soil test 

results and corn yield goals (Gerwing, 2005). International Plant Nutrition Institute 
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estimates that 200 bushel per acre corn will remove 54 lbs K2O (grain) and an additional 

220 lbs K2O (stover concentration). Many South Dakota soils test very high for STK 

(Chapter 2). International Plant Nutrition Institute (IPNI) reported median STK values for 

South Dakota at 247 ppm (Fixen et al, 2010). South Dakota producers are reluctant to 

apply potash fertilizer, solely using soil reserves to meet uptake requirements since it is 

believed K+ is not yield-limiting. Median STK levels decreased 21 ppm from 2005 to 

2010 (Fixen, 2010) across South Dakota and other top grain producing states. Future 

yield acceleration will be tied to understanding residue removal impacts upon STK levels 

and soil quality.  

Very limited amounts of literary material are available on the effects of corn 

stover removal on STK values and corn grain yields in the Northern Great Plains. The 

dynamics of nitrogen application rate, irrigation practice, and sampling depth influences 

on the removal of K+ availability have not been tested in South Dakota in a continuous 

corn system. 

Objectives for this study include: 

1) Determine how corn stover influences STK levels and corn grain yields in a 

residue maintained or removed environment 

2) Examine how nitrogen rate, irrigation practice, and sampling depth affect STK 

levels 

3) Analyze various K+ pools (exchangeable K+ and solution K+) to examine total K+ 

availability 

MATERIALS AND METHODS 
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The research for this study was conducted at the South Dakota State University 

Research and Experimental Station near Aurora, South Dakota, from the growing seasons 

of 2008 through 2012. Site characteristics and soil information can be found in Clay et al 

(2015).  Continuous corn was grown in 20 ft. by 20 ft. blocks for five consecutive 

seasons from 2008 to 2012. Dekalb brand seed corn 48-12STXRIB (Genuity 

Roundup/Genuity SmartStax Refugee-In-The-Bag) (Monsanto Company, St. Louis, MO) 

was planted at 32,000 seeds/acre in early May each spring. The experimental design was 

a strip split-plot randomized complete block design, encompassing eight separate blocks. 

Residue treatments were either corn stover removed (60% removal) for each year or 

residue retained (0% removal). Nitrogen was applied at the V2 leaf stage at rates of 0, 75, 

and 150 lbs N/acre increments each season. In 2012, urea-ammonium-nitrate (UAN) 

(28%) was used instead of urea. Tillage treatments varied from no-tillage to tillage. The 

tillage implement was a fall chisel followed by spring cultivator. The no-till treatments 

were not tilled before planting. Water was applied as irrigation with an overhead irrigator 

at 1-inch of water per week from July 10th to August 10th as needed. The dryland plots 

relied upon natural precipitation. No phosphorus or potassium fertilizer was applied 

annually to plots. Crop protection followed similar local cultural practices.  

Soil samples were taken at the 0-6, 6-12, and 12-24 inch increments in the spring 

of 2008 and at the conclusion in fall 2012. Soil samples were air-dried, ground, and 

sieved immediately following soil sampling. Laboratory analysis for extracting available 

K+ followed protocols outlined in the North Central handbook for testing for 

exchangeable K+ (Warnacke, 2012). The amount of K+ was measured by the use of a 

Jenway model PFP7 industrial flame photometer (Bibby Scientific, Burlington, NJ). 
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Standard calibration solutions were created for 0, 1, 3, 5, 7, and 9 ppm readings (Jenway 

PFP7 Flame Photometer Operator’s Manual). Samples were diluted with Nanopure 

filtered water to obtain values within machine accuracy. Each sample was analyzed on 

three replications. Soil water soluble K+ levels was accomplished similar to the NH4OH 

extraction, using Nanopure water as an extractant. 

Corn grain yield data was collected each fall by use of a two-row plot combine 

and a weigh wagon. Yield data was adjusted to 15% grain moisture and compared 

between 2008 and 2012 for yield differences associated between treatment practices.  

Meteorological and Weather Data 

Meteorological data for growing degree days and precipitation was calculated 

through the SDSU Extension service, iGrow, for the nearest weather station closest to 

each site. Calculations were made in accordance with Reese et al (2014).  

Statistical Analysis 

 PROC GLM procedure of SAS 9.3 (SAS Institute, Inc., Cary, NC) was used to 

determine influence on 2008, 2012, and a ‘K balance’ STK levels, as well as 2008, 2012, 

and ‘Yield balance’ corn yields. N Rate*Till*Water*Block was used as error terms while 

other treatments were listed as factors. 

RESULTS AND DISCUSSION 

Meteorological and Weather Data 
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Table 1.1. 2008 Precipitation and Growing Degree Day accumulations compared to the 

30-year average at South Dakota State University, Aurora, SD, agricultural experiment 

station.  

Table 1.2. 2012 Precipitation and Growing Degree Day accumulations compared to the 

30-year average at South Dakota State University, Aurora, SD, agricultural experiment 

station. 

Precipitation was drier in 2008 than the 30-year average, but rainfall was plentiful 

from May through June during the critical time period of vegetative development (Table 
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1.1). Conditions were drier later in the summer during the later reproductive stages. 2012 

was a historically dry season across the upper Midwest. Rainfall amounts were, on the 

contrary, wetter early on and only fell below the 30-year average in July-August (Table 

1.2).  

Growing degree days are calculated in corn production to estimate plant growth 

stage and gauge development against multi-year averages. In 2008 and 2012, GDD’s 

were similar to the 30-year average (Tables 1.1 and 1.2). More GDD’s were recorded in 

2012 since temperatures were warm early in the spring and into the fall. Since growing 

degree days are a function of high and low temperatures, it can be assumed that 

temperatures accurately reflected the 30-year average. While increases in temperature 

may signify higher rates of plant growth and development, a failure to accumulate rainfall 

will diminish plant productivity.  

Exchangeable STK Results 

Results for soil sampling analysis on the exchangeable K+ pool are provided in 

Tables 1.3 through 1.9. STK levels were compared between treatments singularly and 

subsequent interactions. P-values are reported within each treatment and interaction 

alphabetical letters specify statistical significance between treatments at the 95% 

probability level.  Only data from the top 0-6” sampling depth are provided.  We only 

report significant interactions. All other interactions not reported are not statistically 

significant and have been omitted. Statistically significant exchangeable STK values 

were only assessed in the 2012 growing season and a subsequent ‘K Balance’ (2012 STK 

values - 2008 STK values).  
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Table 1.3. Exchangeable STK levels between across the nitrogen applications in 2012 

with significance denoted in letters at a=0.05.  

Nitrogen rates did influence STK level in 2012 at P<0.01 (Table 1.3), but did not 

statistically affect the K+ balance from 2012 to 2008 (not reported). The highest STK 

levels were reported in the 0 lbs N/acre plot with a subsequent decrease as N rates 

increased. A possible reason for this could be a function of plant growth as more nitrogen 

was made available for the crop, a greater demand for potassium uptake occurred. Since 

nitrogen deficiencies may have occurred, plant uptake of K+ was reduced, decreasing the 

demand for K+, leading to greater STK levels. Bar-Yosef (2014) highlighted the 

importance of an adequate nitrogen supply since the need for K+ is correlated to nitrogen 

availability. Statistically between sampling years, these differences were greater in the 0 

lbs N/a than in the 75 and 150 lbs N/acre plots. While this may be the case, the largest 

draw on exchangeable STK occurred in the 75 lbs N/acre plot than under increasing 

nitrogen rates. This draw was much larger than the other N rates used, but was not 

statistically significant at the 95% confidence interval from the 150 lbs N/a treatment 

(Table 1.3). Most nitrogen applications for South Dakota corn production are made 

around the 150 lbs N/a, so this draw may be more realistic and should be rigidly followed 

for future STK draws.  
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Table 1.4. Exchangeable STK levels between tillage treatments in 2012 with significance 

denoted in letters at a=0.05. 

 

Table 1.5. Exchangeable STK levels between tillage treatments in ‘K Balance’ with 

significance denoted in letters at a=0.05. 

 Tillage treatments influenced exchangeable STK values in 2012 at the P<0.0234 

(Table 1.4) and the K Balance (Table 1.5) at P<0.0032. Exchangeable STK values were 

higher in the tilled treatments than in the notilled treatments, perhaps a reflection of 

higher mineralization rates that occurred in the tilled environments. As more corn stover 

is made available for decomposition, net higher releases of K+ occurred, equating to 

higher exchangeable levels. The K Balance (Table 1.5) illustrated a trend for much higher 

STK values in the tilled treatments than in the notilled plots. Across the 5 year period, the 

tilled treatments gained appreciable levels of STK while the notilled plots lost an 

appreciable amount of STK. It is expected a similar process that occurred in the 2012 

sampling date occurred across the 5 year period where more K+ was released through 
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mineralization (Table 1.4). Water availability is a major concern for South Dakota corn 

producers. For many, notilled practices are the primary cultivation. Under this scenario, it 

may be more appropriate to consider the STK draws associated with notilled treatments 

reflective of current South Dakota agriculture.  

 

Table 1.6. Exchangeable STK levels between nitrogen by residue plots in 2012 with 

significance denoted in letters at a=0.05. 

 

Table 1.7. Exchangeable STK levels between nitrogen by residue plots treatments in ‘K 

Balance’ with significance denoted in letters at a=0.05. 
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 Nitrogen rates did influence exchangeable STK levels in 2012 at the P<0.0244 

(Table 1.6) and the K Balance at P<0.0262 (Table 1.7). In 2012, the highest STK value 

was recorded in the 0 lbs N/acre with residue removed plots while the greatest draw that 

took place at the 150 lbs N/a and 75 lbs N/a with reside removed in both instances. It was 

stated above that the 150 lbs N/a may be more reflective of South Dakota corn 

production, and the greatest draw was expected to have occurred wherever corn stover 

was removed and not returned for mineralization. Table 1.7 provides a K Balance for the 

5-year period. The greatest removal of STK took shape in the 150 lbs N/a with the corn 

stover removal treatment while in a similar nitrogen treatment where residue was 

returned, a net gain of STK was reported. Where residue was returned, a slower draw on 

STK occurred, regardless of nitrogen application rate (Table 1.7). As stated above, since 

residue collection programs will increase in frequency in succeeding years, a significant 

draw on STK will occur on a magnitude of 26 ppm a year (Table 1.7).  
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 Table 1.8. Exchangeable STK levels between nitrogen by irrigation by tillage plots 

treatments in 2012 with significance denoted in letters at a=0.05. 

A three-way interaction between nitrogen rate, irrigation (water) practice, and 

tillage treatment was also reported in 2012 (Table 1.8). While the complexities of each 

interaction may not be appropriate to clearly decipher, it is expected that under increasing 

nitrogen application rate combined with an ample supply of soil moisture where residue 

is removed each year, the greatest decrease in STK would occur in these plots. 

Accumulated growing season (January-August) precipitation was slightly lower in 2008 

and on par in 2012 (Tables 1.1 and 1.2). While the 0 lbs N/a with wet irrigation practice 

and tillage treatments resulted in the highest STK concentrations, the 150 lbs N/a that 

was kept under dryland conditions with a notilled environment resulted in the largest 

draw on STK (Table 1.8). A case could be made as to why the nitrogen x irrigation x 

tillage treatments tested high for K since corn stover biomass was returned and 

incorporated into the soil with varying irrigation practices. In particular, a clear trend was 

not indicated through the impact of water on STK values. This may be partially due to 

adequate water supply being available to the crop in 2012 (Table 1.2). Evidence for this 

speculation is highlighted through the water treatments not significantly influencing STK 

values in 2012 or in a K+ Balance (data not reported). Irrigation may not be as intense as 

in neighboring Corn Belt states, so a 150 lbs N/a under a dryland practice with notilled 

treatments may accurately reflect a majority of South Dakota agriculture, in which the 

lowest STK values were documented, on a magnitude of 68 STK ppm decrease (Table 

1.8).  
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Table 1.9. Exchangeable STK levels between nitrogen by tillage plots treatments in 2012 

with significance denoted in letters at a=0.05. 

 A nitrogen rate by tillage interaction was reported in 2012 at the P<0.0117 level. 

It was assumed that as the nitrogen rate decreased, less K+ would be taken into plant 

growth, resulting in a net decrease in plant K+ accumulation than in plots with increasing 

nitrogen application rates. This phenomena was noted in Table 1.9 with the 0 lbs N/acre 

under tilled treatments resulting in the largest STK. As nitrogen rate increased, the draw 

on STK increased. As such, each tilled (or incorporated) nitrogen treatment tested higher 

for STK than in its comparative nitrogen rate plot where residue was notilled (Table 1.9). 

This followed a similar trajectory as in Table 1.5 where the tilled plots tested 

significantly higher for STK than its notilled counterparts. 

While it appears that residue collection programs that would otherwise make less 

stover biomass for recycling and mineralization would have a detrimental effect on STK 

values under varying management practices, a draw on STK values was not seen under 

any circumstance on the exchangeable K+ pool, unless interacted with another 

management practice (Tables  1.6 and 1.7). Longer-term studies (greater than 5 years) 
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need to be conducted to continue to examine the effects of continuous stover removal on 

exchangeable K+ levels. It seems imperative that a future reduction in STK values would 

occur under longer-term (10+ years) management programs. 

Solution STK Results 

The readily-plant available form of water soluble K+ was also tested in this study 

and results are found in Tables 1.10 through 1.14. Refer to Methods and Materials for 

extraction techniques. Similar analysis was conducted as in the exchangeable K+ pool 

above. 

Table 1.10. Soil solution K+ soil test results between tillage treatments in 2012. Provided 

letters denote significance at a=0.05.  

Table 1.11. Soil solution K+ soil test results between tilled treatments at the K Balance. 

Provided letters denote significance at a=0.05. 
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 Tillage treatments in the solution K+ pool were significant at the P<0.0242 level 

in 2012 (Table 1.10). Across notilled and tilled environments, there was a significant 

difference at the 2012 sampling date and a statistically significant difference was 

recorded at the K Balance (Table 1.11).  As stated above, a majority of South Dakota 

agriculture incorporates the use of notill, which may be more reflective of current 

progressions.  

Tilled treatments impacted the K Balance from 2012 to 2008 at the P<0.0213 

level (Table 1.11). Tilled treatments led to an increase in STK values while in the notilled 

plots, a net decrease of STK was documented. The gains in STK can be attributed to an 

increased incorporation of corn stover residue, leading to a greater release of inorganic 

K+ into the soil through mineralization. Table 1.10’s trend for higher STK in the tilled 

treatment is in agreement with the 2012 sampling results where STK values were higher 

for the tilled treatments.  

 

Table 1.12. Soil solution K+ soil test results between residue treatments in 2012. Provided 

letters denote significance at a=0.05. 

Where residue was returned to the soil, STK levels were greater, but only 

statistically significant in 2012 (Table 1.12). These values were significant at the 

P<0.0006 level. Across site years, residue returned plots gained 1.2 ppm water soluble K+ 
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while where residue was removed, a negative K+ balance of 0.8 ppm soluble K+ occurred 

(data not reported). 

 

 Table 1.13. Soil solution K+ soil test results between residue treatments in 2012. 

Provided letters denote significance at a=0.05. 

 A tillage by residue interaction occurred with the solution K+ pool at the 

P<0.0437 level (Table 1.13). In plots where residue was maintained (or retained), STK 

values were higher, in agreement with Table 1.12. Since this organic matter was 

maintained, tillage treatments incorporated the residue into the soil, leading to higher 

STK values (Table 1.13).  

 

Table 1.14. Soil solution K+ soil test results between residue treatments in 2012. Provided 

letters denote significance at a=0.05. 
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 Nitrogen rates influenced the soil solution K Balance at the P<0.0315 level. As 

nitrogen rates increased, a net increase in K+ occurred, contrary to expected results. 

Similar trends that occurred in the exchangeable K+ pool took shape in the solution K+ 

pool. Across both K+ pools and 2012 and K Balance analysis, tillage treatments impacted 

STK values (Tables 1.4, 1.5, 1.10, and 1.11). Nitrogen rates statistically influenced 

exchangeable STK levels in 2012 (P<0.0174), and the solution K+ pool’s K balance 

(P<0.0315), but did not affect values in 2012 for soil solution K+. In 2012, as N rates 

increased, STK levels decreased, due in large part to potassium demand as plant growth 

increased. The 150 lbs N/A treatment gained water soluble K+ across the five growing 

seasons while the 0 lbs N/A plots lost K+, which was statistically significant (Table 1.14).  

Across the five-year study conducted, residue collection programs did not 

significantly influence STK values alone (data not reported). On the contrary, trends were 

developed for an increased STK value in plots where residue was maintained (Tables 

1.12 and 1.13). These interactions only occurred in the soil solution K+ pool, and a lesser 

trend was noted in the exchangeable K+ pool (Tables 1.6 and 1.7).As discussed in Table 

1.8 and subsequent analyses, a trend for the three main factors associated with nitrogen 

rate x irrigation x water is correlated to the lowest STK level. While residue collection 

programs may not singularly dictate gains or losses in overall STK, when interacted with 

a single or double factor, trends may lend credence to higher STK in the soil solution 

pool than in the exchangeable pool. This has important implications for South Dakota 

agriculture.  While solution K+ has the greatest ability to be taken into the plant, this 

represents only a small fraction of plant available K+ (Askegaard, 2003). A flux, referred 

to as a chemical equilibrium of K+, has been proposed by Bray and DeTurk (1939). It was 
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described as the equilibrium that which soil solution K+, exchangeable K+, and 

nonexchangeable (interlayer or fixed) K+ collectively maintains. Any change in K+ 

concentration amongst the pools affects the distribution of K+ held in equilibrium. 

Technically, Bray and DeTurk postulated that if a soil had a decrease in activity of 

solution K+, K+ would be released from the exchangeable or particle edges to replenish 

this pool. This replenishment can be exponential (Luebs, 1956).  

Corn Grain Data 

Corn grain yield results are displayed in Tables 1.15 through 1.27. An associated 

‘Yield Balance’ was generated showing the reflection of yields from 2012 to 2008 and 

were computed across all treatments. Analysis of variance was used to determine 

significance at the alpha=0.05 level. Residue collection and tillage programs began in fall 

2008 after harvest, similarly with tillage. For 2008, only nitrogen rate and irrigation are 

discussed. All treatments and their subsequent interactions are analyzed thereafter.  

 

Table 1.15. Corn grain results between irrigation treatments in 2008. Provided letters 

denote significance at a=0.05. 

 In accordance with Table 1.1, growing season precipitation fell below the 30-year 

average, providing an advantage for in-season water applications. Irrigation practices 

influenced corn grain yield at P<0.0017 in 2008 (Table 1.15). A large discrepancy was 
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indicated between wet and dryland plots. Corn grain yields were highest in the wet plots 

while lower in the dryland plots (Table 1.15).   

 

Table 1.16. Corn grain results between nitrogen rate treatments in 2008. Provided letters 

denote significance at a=0.05. 

 

 

Table 1.17. Corn grain results between nitrogen rate treatments in 2012. Provided letters 

denote significance at a=0.05. 
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Table 1.18. Corn grain results between nitrogen rate treatments in a calculated yield 

balance. Provided letters denote significance at a=0.05. 

Nitrogen rates influenced corn grain yield in 2008 at the P<0.0001 level (Table 

1.16), P<0.0001 in 2012 (Table 1.17), and the yield balance at P<0.0043 (Table 1.18). As 

nitrogen rates increase, expected corn grain yields should follow a likewise trend. Grain 

yields increased linearly as nitrogen rate increased. Since corn is responsive to nitrogen 

application rates, recorded yield results are as expected. Similarly, the lowest grain yield 

was at 0 lbs N/a. In Table 1.18, the largest draw on corn grain yield was at the 150 lbs 

N/a rate. Discussed earlier under the exchangeable K pool, this N rate is very reflective of 

South Dakota agriculture.  
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Table 1.19. Corn grain results between irrigation treatments in 2012. Provided letters 

denote significance at a=0.05. 

.Following a similar trend as in Table 1.15, irrigation significantly influenced corn 

grain yields at the P<0.0039 level (Table 1.19). Table 1.2 indicated that 2012 

accumulated growing season moisture on par with the 30-year average. Despite a close 

resemblance to normal rainfall, there was still an advantage for irrigation (Table 1.19).  

 

Table 1.20. Corn grain results between irrigation treatments in 2012. Provided letters 

denote significance at a=0.05. 

 

Table 1.21. Corn grain results between tillage treatments in yield balance. Provided 

letters denote significance at a=0.05. 

 Tillage treatments significantly influenced corn grain yield in 2012 at the P<0.025 

level (Table 1.20) and the yield balance at P<0.0151 (Table 1.21). In 2012, higher yields 

were reported under notilled conditions, as well as a lower yield reduction across the 
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five-year period. Under a yield balance, a substantial decrease in corn yield was 

documented in the tilled conditions.  

 

Table 1.22. Corn grain results between tillage and residue treatments in 2012. Provided 

letters denote significance at a=0.05. 

 

Table 1.23.  Corn grain results between tillage and residue treatments in yield balance. 

Provided letters denote significance at a=0.05. 

 Tillage x residue interactions were significant at the P<0.0405 level in 2012 

(Table 1.22) and at P<0.0003 in the calculated yield balance (Table 1.23). Speculation as 

to how these interactions would influence corn grain yield data expected that the corn 

grain yields would be highest in the tilled and retained environments while the lowest 

would occur in plots kept notilled with residue removed. In 2012, tilled and residue 
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retained yielded the highest yield, but was not statistically significant than the other 

treatments (Table 1.22). A calculated yield balance (Table 1.23) resulted in the greatest 

draw occurring in the tilled and removed environments.  

 

Table 1.24.  Corn grain results between residue treatments in 2012. Provided letters 

denote significance at a=0.05. 

 

Table 1.25. Corn grain results between residue treatments in the yield balance. Provided 

letters denote significance at a=0.05. 

Residue collection programs influenced corn grain yield at the P<0.025 level in 

2012 (Table 1.24) and the calculated yield balance at P<0.0001 (Table 1.25). When 

residue was returned, a particular yield advantage was documented over the residue 

removed plots. Across the five year period, it is estimated that the value of maintaining 

corn stover is 12.7 bushels (Table 1.25).  
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Table 1.26. Corn grain results between irrigation and tillage treatments in 2012. Provided 

letters denote significance at a=0.05. 

 An irrigation x tillage practice interaction significantly influenced corn grain 

yields in 2012 (Table 1.26) at P<0.039, but not the calculated yield balance (data not 

reported). Under each management practice, wetland plots out-yielded the dryland plots 

in all situations, which were significantly different. This is in accordance with Table 1.19. 

Table 1.20 indicated a yield advantage for plots which were kept notilled. With the 

interaction of irrigation with tillage practices, no clear trend was indicated in regards to 

tillage program (Table 1.26). Since many South Dakota producers incorporate the use of 

a field cultivator before the spring planting pass, it is expected the highest yield would 

have occurred in the wet x tilled plots. The wet by notilled plots out-yielded the 

expectation.  
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Table 1.27. Corn grain results between nitrogen rate and tillage treatments in the yield 

balance. Provided letters denote significance at a=0.05 

 A nitrogen rate by tillage interaction was documented and significant at the 

P<0.0003 level for the calculated yield balance (Table 1.27). In accordance with Table 

1.18, the largest decrease in corn grain yield occurred at the 150 lbs N/a application rate. 

A similar trend as in Table 1.18 was outlined in Table 1.27. As nitrogen rate increased, so 

did the overall draw on corn grain yield. In Table 1.21, the largest draw on yield was 

associated in tilled plots. When the interaction was combined, no clear trends were seen 

(Table 1.27). Under current South Dakota corn production levels, a 150 lbs N/a 

application rate with notilled treatments may be normal. Under these situations across a 

5-year period, a yield reduction of nearly 40 bushels/acre was seen (Table 1.27).  

According to Mallarino (2003) and Gerwing (2005), STK levels should not have 

been yield-limiting under any circumstances. Any yield difference should be directly 

attributable to differing management practices under separate treatments. While subtle 

statistical differences occurred between treatments associated with corn grain yield, 

residue collection treatments resulted in greater yield deficits under a complete removal 
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than a stover returned program (Table 1.22. 1.23 and 1.24). Under the five years 

conducted in this study, a negative long-term effect of stover removal was seen across 

corn grain yields of nearly 13 bushels per acre (Table 1.25). Under a residue removal 

program that incorporates tillage, we document that corn grain yields can be reduced by 

43 bushels/acre (Table 1.25). While current studies have stated that corn stover removal 

may be beneficial (Below, 2013; Porter, 1997; Wilhelm and Wortmann, 2004; Peterson 

and Varvel, 1989), we indicate a continual removal of corn stover biomass to hinder 

sustained crop yield gains. While the trends were similar, our results contradict Barber 

(1979) who postulated that corn grain yields between residue returned and residue 

removed treatments were not statistically different.  

CONCLUSION 

 A rapid development into cellulosic energy production is expected and soon to be 

a reality. Corn stover biomass accumulation can have a negative effect on corn grain 

yield following successive years of cultivation. Safe stover removal practices that 

maintain top corn yield potential while preserving environmental quality can be had. 

How stover removal affects STK levels and corn grain yields across long-term studies 

was conducted under varying management practices. While few management programs 

directly affected STK levels and corn grain yields, residue removal treatments did not 

influence exchangeable K+, but did influence STK levels when interacted with nitrogen 

application rates. Soil solution K+ pools were affected by residue collection in 2012, but 

not the overall K balance. As such, corn grain yields were also detrimentally impacted by 

residue removal, progressing further with interactions containing common South Dakota 

agricultural management practices. Future studies need to continue to address the impact 
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of corn stover biomass removal on STK levels and corn grain yield as once 

implementation of the industry begins, residue collection programs will proliferate in 

both quantity and time periods greater than the length of study in which we conducted.  
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CHAPTER 2 

SOYBEAN [GLYCINE MAX] YIELD RESPONSE WITH K+ FERTILIZATION 

FOLLOWING CONSECUTIVE YEARS OF CORN (Zea mays L.) STOVER 

REMOVAL IN SOUTH DAKOTA, USA  

INTRODUCTION 

Little on-farm research showing the impact of K+ fertilizer on fields grown to 

soybeans following consecutive years of corn stover removal presently exists. Fertilizer 

represents a significant capital expense for producers. Growers have expressed concerns 

over the increasing frequency of phenotypic and tissue test K  deficiencies present in 

fields while their soil test results indicate high or very-high STK levels. 

On-farm calibration revealed STK levels recommended little to no K fertilizer 

in fields that had a high probability of a yield response to K fertilizer at Iowa State 

University, leading to a reclassification of K interpretation classes in 2002 (Mallarino, 

2003). The widely used K recommendations used before 2003 were different than those 

developed after 2003 (Figure 2.1). 

Figure 2.1. Previous vs. new K recommendations. Adapted from Mallarino, 2003). 
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 South Dakota State University’s (SDSU) Soil Test Laboratory (before its 

closing) used the NH4OH extraction method (Warnacke, 2012), similar to Iowa State 

University. The algorithms used to determine K recommendations in South Dakota grain 

production is outlined in Gerwing, 2005. It has been reported that the average STK for 

South Dakota is 247 ppm (Fixen et al, 2010) and the average soybean yield is 43 bushels 

per acre. K fertilizer would not be recommended for South Dakota soybean producers 

using these numbers (Gerwing, 2005).  

 Recall NASS estimates of an average application rate in South Dakota of 29 lbs 

K2O per acre. International Plant Nutrition Institute (IPNI) indicates that 1.3 lbs K2O is 

removed with 1 bushel of soybean. If a South Dakota grower achieves a 60-bushel/acre 

soybean yield, 78 pounds of K2O per acre will be removed in grain yield. Obviously, the 

South Dakota grower has undersupplied K fertilizer by 49 pounds per acre, relying on 

native K-bearing mineralogy, STK, and mineralization of the previous crop to meet the 

nutritional demand for K+. There has been a reluctance to apply K fertilizer in South 

Dakota, primarily limited to wheat rotations since KCl has been shown to decrease the 

disease precedence of yield-limiting pathogens (Diaz-Zorita et al, 2004). The previously 

documented NASS estimates falls below neighboring soybean-producing states that 

apply 63-106 pounds in corn-soybean rotations, respectively, where median STK 

numbers fall below critical levels, ranging from 144-170 with 50-55% of samples testing 

below that range (Fixen et al, 2010). 

 Knowing at what STK level results in a 0% probability of a yield response to K 

fertilizer is unsettled. International Plant Nutrition Institute reports the critical level for 

STK values to be in the range of 120-200 ppm for soils having a high intrinsic cation 
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exchange capacity (Fixen et al, 2010). SDSU’s recommendations for fertilization indicate 

that above 161 ppm K, no K fertilizer is recommended (Gerwing, 2005), not in 

accordance with Iowa State recommendations (Figure 2.1). Tremendous variability exists 

and leads to frustration when determining K fertilization rates.  

 Field calibration analyzing sufficient STK readings for optimum row crop 

production (corn, soybeans) has been heavily scrutinized for over 100 years. Cyril 

Hopkins was one of the first to test the yield response of KCl fertilization on Illinois 

fields grown continuously to corn, reaching the conclusion that Illinois fields were well-

supplied with K+ after not seeing a positive yield response to K fertilizer (Hopkins, 

1915). It was assumed long ago that cultivated soils had a high intrinsic ability to hold 

and store K+, especially in arable soils that had a high percentage of 2:1 minerals (Khan, 

2014). Hanway and Weber (1971) illustrated that despite fields where STK levels showed 

low available K+, yields from K2O addition were generally small and insignificant. No 

obvious effect on plant physiological development was noted, but leaves from the low K 

testing soils appeared lighter in green color (Hanway and Weber, 1971). Khan (2014) 

concluded that STK levels are unreliable for predicting crop yield responses. Of the 2100 

yield response trials conducted (774 of which were undertaken in North America), it was 

reported that KCl fertilization was unlikely to increase yield 93% of the time, rather 

resulting in decreasing yields (Khan, 2014). This is in agreement with Farmaha (2011) 

who documented that on a Flanagan-Drummer silty loam soil in Illinois, soybean grain 

yields linearly decreased as K application rates (0, 42, 84, and 168 kg K ha-1 yr-1) 

increased in the no-tillage broadcast K application system they analyzed.  Mallarino 

(2013) reported that K applications increased soybean grain yield in only 5 of the 14 site 
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years. Borges (2001) showed that while K fertilizer increased corn and soybean yields, 

the statistically significant yields were highest at the lowest rate; 35 lbs K2O/acre.  

 However, various authors have reasoned that soybean yields can be reduced by 

50% (Nelson et al, 1946) or only marginally at 10-20% (Mallarino et al, 1991) due to K 

deficiencies. Physiologically, these losses have been attributed to a decrease in pod 

formation (Coale and Grove, 1990) and enzymatic activity (Huber, 1984), among many 

other factors. Jones (1977) concluded that soybeans experienced responsive yields tied to 

potassium fertilizer. 

 

Objectives for this study include: 

1.) Determine whether K+ fertilizer provided positive yield responses for soybeans in 

fields experiencing corn stover removal 

2.) Determine whether South Dakota State University’s fertility recommendations are 

accurate for K2O recommendations by using on-farm research  

3.) Measure the in-field variation associated with soybean grain yield response to K 

fertilization.  

MATERIALS AND METHODS 

 It has been proposed that growers conduct their own on-farm research by using 

strips to estimate if yield responses exist (Khan, 2014). We tested the hypothesis that 

potash applications to fields experiencing extensive histories of corn stover removal will 

experience yield gains to K+ fertilizer. This was intended as a pilot program initiated to 

examine whether applying K+ fertilizer could achieve soybean yield responses, paving 

the way for K+ fertilizer rate response studies. Our work expands on Mallarino (2001) 
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who discussed the possibility of large in-field variation in STK and yield responses, 

illustrating the importance of strip trials across landscapes.  

On-farm strip research fields were conducted across central South Dakota from 

Huron to Aberdeen, SD, in the growing season of 2014. Five fields were chosen in 

cooperation with South Dakota Wheat Growers Cooperative and SDSU Extension. 

Selected fields had a history (greater than two years) of corn stover removal. 250 lbs of 

K20/acre or 417 lbs of KCl potash (0-0-60) was spread preplant in early May 2014 across 

one 70 by 2640 foot pass with an air-flow TerraGator (AgCo Corporation, Duluth, 

Georgia) machine. KCl is soluble in water, allowing plant roots to rapidly uptake the 

mineral nutrient, leading to significant early season vegetative growth (Mallarino, 2013). 

Site characteristics are displayed in Appendix B. Fertilizer applications were made by the 

local South Dakota Wheat Growers Cooperative branch.  

 

Figure 2.2. Specified dates for K+ fertilization, spring soil sampling, and fall soil 

sampling dates for each site location.  

Soil samples were taken at the 0-6 inch increment on 100-foot transects in spring 

and fall 2014 (a few in early 2015). Refer to Figure 2.2 for specific sampling dates for 

each location. Early season sampling was conducted in sampling points outside of the 

plot (50-feet across) so as not to sample inside of the fertilized strip and to limit the 

degree of drift that may have occurred during the application process. The sample 
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locations were georeferenced as taken. Fall soil sampling was used to estimate end of 

season STK levels. Figure 2.3 will assist in identifying how strips and soil sampling 

periods are being compared throughout. Soil samples were oven-dried (120C), ground, 

and exchangeable K+ was quantified using the NH4OH extraction method. Soil samples 

were again collected late in the season and analyzed for seasonal (temporal) differences, 

responses to fertilization, and a temporal + fertilizer addition response.  

 Soybean plants were sampled and analyzed throughout locations on each 

fertilization strip for leaf K+ concentration and stomatal conductance since K+ has been 

linked to conductance inside of the plant (see Appendix B for dates and locations). Our 

hypothesis was that there would be elevated levels of conductance in soybean plants 

growing in the K+ fertilized strip since more K+ was made available through the 

spreading of potash fertilizer. Five soybean samples were analyzed during the R3 growth 

stage and conductance was measured across a fractionation of the soybean plant. We 

examined the newest trifoliate and the oldest trifoliate (appearing chlorotic; not necrotic). 

At the conclusion of the season, yield difference maps were generated for each site 

location.  

Analyzing Temporal Soil Sampling Differences 

 There are three different comparisons that we will make. Please refer to Figure 

2.3 for the graphic for how comparisons/analyses are made between treatment strips.  

1) Temporal (Fall to Spring) 

2) Temporal + Fertilizer Addition 

3) Fertilizer Addition Difference 
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Figure 2.3. Model for specifying how soil samples are compared throughout the analysis. 

Collecting Harvest Data 

 Each individual on-farm cooperator harvested their soybean field and plot area 

with their combines and collected yield data. Yield data was archived and imported to 

Spatial Management System Advanced (AgLeader Technology, Ames, Iowa). Yield 

monitor data was cleaned using Yield.Editor 2.0 (Sudduth, 2012) in accordance to 

procedures detailed in Appendix B.  

Weather and Climate Data 

 Meteorological data for growing degree days and precipitation was calculated 

through the SDSU Extension service, iGrow, for the nearest weather station to each site. 

Growing degree day calculations were conducted in accordance with Reese et al (2014). 

Site meteorological information can be found in Appendix B.  

Statistical Analysis 

 The kriging algorithm used in Surfer (Golden Software, Golden, Colorado) was 

used to estimate the STK levels that would have been in Comparison 3 at each site. 

Surfer kriging computer software (Golden Software, Golden, CO) was used for 
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interpolation of STK when needed. Microsoft Xcel (Microsoft Corporation, Redmond, 

Washington) was used for analysis of variance/standard deviation analysis at each 

sampling point. 

Landscape Positional Differences 

Wherever possible within fields, yield differences are described across 

topographical sections according to the diagram below in Figure 2.4.  

 

Figure 2.4. Terminology used to identify landscape positions.  

RESULTS AND DISCUSSION 

Precipitation and Temperature Data 

Precipitation and growing degree day accumulations as well as discussion of 

meteorological data for each site location are graphically and textually presented in 

Appendix B.  

Temporal Effects on STK Variability 
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The effect of time on STK values was tested by sampling each point on the No-K 

applied strip in spring and fall. Refer to Figure 2.2 for sampling dates and Appendix B for 

sampling points and STK values at each point. Table 2.1 displays the analysis of variance 

received at the Bath location between sampling periods. Numerical numbers associated 

Bath (Bath_1, Bath_2, etc.) correlate to sampling points conducted on 100-foot transects 

across the field between fall and spring.  
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Table 2.1. Analysis of variance for the temporal variability on the exchangeable STK 

values along the No-K applied strip at Bath. Numbers refer to sampling points based off 

of 100-foot transects.  

The Bath site displayed a statistically significant gain in exchangeable STK 

between spring and fall sampling periods at the P<0.05 level. In particular, a wide 
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variance was also received between sampling point (Table 2.1), and reflected across all 

site locations in Table 2.2.  

 

Table 2.2. Temporal Effect on STK variability across site location on the 0 lbs K2O/acre 

strip. Seasonal K Difference was computed as KFall-KSpring. 

Four of the five fields appreciably gained STK values between fall and spring 

sampling dates (Table 2.2). In some locations, the exchangeable STK gains were 76-239 

ppm K while in other circumstances, fields lost 80 ppm K from spring to fall. Seasonal 

sampling periods were significant at the 95% level for 4 of the five fields. In fields where 

spring K ppm was higher than in the fall (negative balance), these differences were 

statistically significant at the P<0.0001 level. Caution should be taken since a 

questionable application of K+ fertilization occurred at the Eggleston location. Fields that 

experienced a rapid increase in STK from spring to fall (positive balance), these 

differences were statistically significant at the P<0.028 level (Table 2.2). Other authors 

have reported higher exchangeable STK levels in the spring than fall (Liebhardt et al, 

1977; Peterson et al, 1980). Table 2.2 indicates a clear trend for STK to increase in the 0 

lbs K2O/acre strip, despite fertilizer addition. We cannot decipher a reason for the 

dramatic crop differences (positive or substantially negative) seen along the No-K 

applied strip STK differences across the growing season.  
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Exchangeable STK levels were compared in fall 2014 following one growing 

season to determine spatial differences between the 0 lbs K2O per acre strip between 

spring and fall sampling dates. Correlation analysis was conducted to relate STK level to 

seasonal differences in K level and displayed in Figure 2.5.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Exchangeable K temporal differences on No K-applied (fall) strips across site 

locations. X-axis relates to Fall STK values sampled along 100-foot transects on 0 lbs 

K20/acre strip. Y-axis relates to the Spring STK values sampled along the same 100-foot 

transects along the No-K (0 lbs K2O/acre) applied strip.  

 

 The results from Figure 2.5 indicate that there was a trend for higher Fall STK 

values to increase in comparison to spring STK sampling results.  
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 We wished to examine the effect of fertilizer addition on the K-applied strip if the 

fertilizer addition did increase STK values across a growing season. Assuming a 1 ppm 

rise per 8 lbs K2O/acre (Hoeft et al, 2003), the difference between fertilization strips was 

higher than expected (Table 2.3). Table 2.3 illustrates exchangeable K+ levels at each site 

location between strips along with standard deviation between sampling points. There 

was a trend for greater variance in outside sampling points versus inside of the plot, in 

accordance with values obtained in spring (Table 2.3). Each site showed a high variance 

for STK levels. 

Spring soil sampling maps of exchangeable K+ are provided in Appendix B across 

each location. Table 2.3 provides the strip averages along with standard deviation 

amongst sampling points used in each site location.  

The results from Tables 2.3 indicate that there was a trend for exchangeable K+ 

levels to increase in the treatment plot area over the untreated control in the fall sampling 

periods, presumably due in large part to K+ fertilization. Temporal variability should be 

minimal during this analysis as comparisons were made solely between fertilization strips 

during the same sampling period. We expected a 31 ppm K increase (Hoeft et al, 2003) in 

the K-applied strip versus the No-K applied strip, but gains were appreciably higher 

(Table 2.3).  
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Table 2.3. Exchangeable K between strips across fertilizer addition effects. Plot_K refers 

to the K-applied strip while Outside_K is the No-K applied strip. 

Correlation analysis was used to estimate fertilizer addition trends for fall STK 

values and differences between the 0 lbs K20/acre and potassium difference maps 

generated from soil sampling of the 250 lbs K2O/acre strip in the fall are highlighted in 

Figures 2.6. K-Differences may be either positive or negative, reflecting the difference 

between soil sampling results from predicted STK values had no K+ fertilizer been 

applied. 

 

Figure 2.6. Exchangeable K fertilizer addition differences across site locations. X-axis 

relates STK values sampled along 100-foot points along a transect on the 0 lbs K20/acre 

strip. Y-axis relates the difference between STK values sampled along 100-foot transects 
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along the 250 lbs K2O/acre strip and predicted STK values if no K-fertilizer had been 

applied. A positive difference indicates a response e to K-fertilizer while a subtraction 

illustrates a draw on STK associated with fertilizer.  

 The results from Figure 2.6 indicate that where no K+ fertilizer was applied, soil 

sampling results indicated a positive advantage for applying fertilizer. As exchangeable 

K+ values increased along the 0 lbs K2O/acre strip, lesser gains associated with fertilizer 

were noted (Figure 2.6). These results from all five fields indicate that with low 

exchangeable K+ levels, K+ fertilizer can increase STK levels while were K+ is tested 

highest along the strip,  a lower response to K+ fertilizer is expected.  

Temporal + Fertilizer Differences Effect on STK Values 

The effect of time and fertilizer addition on STK values was analyzed across site 

locations. Spring exchangeable STK levels on the K-applied strip (prior to fertilization) 

were calculated to estimate site-specific values by using Surfer (Golden Software, 

Golden, Colorado).  

Fall K-applied STK levels were statistically compared with STK levels across the 

strip as a function of fertilizer and time.  Each soil sampling point on this strip was 

compared between spring and fall sampling K results for significance. Results for Bath 

are provided in Table 2.4. 
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Table 2.4. Analysis of variance results for spring soil sampling at ‘Bath’ field along 

temporal + fertilizer addition effects on 250 lbs K20/acre strip. Numbers refer to sampling 

points based off of 100-foot transects along each potassium treatment strip. 
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K-applied STK levels (between fall and spring) were significantly different at 

P<0.0001 for the Bath location (Table 2.4), and across all other locations at the P<0.0001 

level (Table 2.5). ANOVA results displayed a tremendous degree of sampling variability 

between each sampling point (Table 2.4), which is in agreement with Tables 2.1 and 2.2. 

Our sampling variability is validated by Murrell (no date provided) who assessed the 

temporal variability in K sampling and further discussed below in Discussion section.  

Table 2.5. Exchangeable STK temporal + fertilizer addition effects across site locations 

on 250 lbs K20/acre strip.  

Analyses of K-applied strips indicate that each field had statistically significant 

increases in STK levels (fall versus spring) at the P<0.0001 level (Table 2.5). Four of the 

five fields displayed a STK increase of 175-226 ppm between spring and fall soil 

sampling. We estimated above that the effect of fertilizer addition should have increased 

STK levels 31 ppm K between strips. Table 2.3 suggests values rose appreciably higher 

than 31 ppm. Since this analysis also includes the temporal aspect of sampling, it can be 

reasoned that ‘seasonal K difference – 31 ppm’ would equate to the effect of time along 

the strip. If this is the case, our treatment strips still appreciably gained STK values, 

confirming our results in Table 2.2 along the 0 lbs K2O/acre. We did not anticipate this 

phenomenon to occur, so dramatic strip increases as a function of time and fertilizer 

addition were highly unexpected.  
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 The Eggleston farm’s STK level decreases (negative balance) may be attributable 

to a possible edge effect since the K-applied strip was placed close to the fence, leaving 

perhaps a compromised area for a valid comparison amongst treatment strips. This is due, 

in large part, to a questionable application of potassium. In fields where fall K ppm was 

higher than in the spring, these differences were statistically significant at the P<.001 

level (Table 2.3). The application of 155 lbs K2O/acre should have risen STK values at 

least 19 ppm (without considering uptake) (Hoeft et al, 2003), but a wide reduction in 

STK was noted (Table 2.5). While some authors have reported higher STK levels in the 

spring (Liebhardt et al, 1977; Peterson et al, 1980), we observed higher STK levels in the 

fall along the K-applied strip. The opposite was seen when a lower rate of K2O was 

applied (Table 2.2), where STK levels showed a clear trend to decrease in the 0 lbs 

K2O/acre strip. Increases associated with fertilizer addition range from 4-58 ppm (Table 

2.3). Table 2.5 specified that STK levels rose 175-226 (fertilizer addition + temporal 

variability), indicating that the time factor may have made 149-222 ppm K available. 

This assumption closely resembles the results in Table 2.2 where fields gained 76-239 

ppm K due in large part to seasonal differences.  

Each 100-foot sampling point in the K-applied strip showed spatial variability 

(Table 2.4). There was a clear trend for greater variance across the spring sampling 

period than in the fall period in the K-applied strip (Tables 2.4 and 2.5); there was not a 

clear trend for greater variance in spring versus fall sampling between the 0 lbs K20/acre 

strip (Table 2.2).  

Late season soil samples were taken either during R7 (beginning plant maturity) 

or post-harvest in spring 2015 preplant (due to early onset of winter 2015) (Figure 2.2). 
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While soil samples were taken outside of the plot area in the spring, the treatment area 

was soil sampled to estimate K+ levels following the 2014 growing season as reflected by 

crop uptake and K+ fertilization, among other factors.   

Correlation analyses was conducted to relate STK level to seasonal (temporal) 

plus fertilizer addition differences in K+ level in the K-applied strip and is shown in 

Figure 2.8. Potassium difference maps were created showing the loss of available K+ as a 

function of crop uptake or temporal variability for each field. It is confirmed that 

dramatic increases from fall to spring soil sampling occurred at site location (Figure 2.7).  
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Figure 2.7. Exchangeable K temporal + fertilizer addition differences between 250 lbs 

K2O/acre strip and 0 lbs K2O/acre strip. Exchangeable K temporal differences on No K-

applied (fall) strips across site locations. X-axis relates STK values sampled along 100-

foot transects on 250 lbs K20/acre strip. Y-axis relates to STK values sampled along 100-

foot transects on 0 lbs K20/acre strip 
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Fertilizer Addition/No Addition Differences on STK Values 

 STK strip differences along the No-K and K-applied strips were analyzed to 

examine whether gains along each strip were directly attributed to fertilizer addition. 

Whole field averages between No-K and K-applied strips were made as well as overall 

strip differences (positive or negative) and compared across all fields. Results are 

displayed in Figure 2.8. Analysis of variance between sampling sites are provided in 

Table 2.6.  

 

Figure 2.8. STK strip differences after one full season in relation to STK value. 

Exchangeable K is related to the STK levels obtained in the spring along each strip. 

Differences were computed as KFall - Kinterpolated and use as an average at each site 

location.  
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Table 2.6. Analysis of variances results for each site location showing the comparison 

between strip differences in K gains.  

 

 K-fertilization only minimally affected STK gains and was not significant at the 

95% confidence interval (Table 2.6). There was a trend for high spring exchangeable K 

levels to reflect lower strip differences between fall and spring (Figure 2.8). These results 

are a confirmation of Figure 2.5. Since questionable application occurred at Eggleston, 

the field was omitted from analysis. A trend also developed for fields that tested lower for 

STK values, strip differences associated with fertilization were higher (Figure 2.8).  

 

Discussion of Potassium Fertilizer Responses 
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Significant temporal responses to potassium soil testing in one season. Many 

studies have measured the temporal variability with STK levels between fall and spring 

sampling in the northern United States. Authors have reported gains ranging from 30-50 

ppm between fall and spring seasons (Murrell, 2012; Liebhardt et al, 1977; Peterson et al, 

1980). Higher seasonal gains were reported along treatment strips (Table 2.4 and 2.5) and 

on untreated strips (Tables 2.1 and 2.2) between spring to fall, contradicting previous 

research. The reasons for this dramatic increase in STK availability can be attributed to 

differences in soil moisture, freezing and thawing, and microbial activity, among many 

other factors (Murrell, no date provided). Since South Dakota soils test very high for K+ 

weathering minerals (such as mica and feldspar), it is speculated that the seasonal gains 

may be associated with more K+ being released from inherent parent material. Since soil 

samples were taken after the cycles of freezing and thawing and since two of the five 

fields were sampled late in the reproductive stages (though not physiological maturity), 

total potassium uptake was not complete. During this sampling period, the KCl fertilizer 

solubilized and became either plant-available or fixed. Lockman (1984) assessed the time 

of year variable with K soil testing by taking soil samples once a month from May 1980 

and concluding in July 1983. In the plots where K was applied in the spring (March or 

April), STK levels rose 47 ppm. Where K was not applied, values fluctuated 25 ppm 

across the growing season. We reported similar trends for appreciable gains between the 

K-applied and No-K applied strips (Tables 2.2 and 2.5) While some authors have 

reported higher soil test levels in the spring (Liebhardt et al, 1977; Peterson et al, 1980), 

we observed higher soil test levels in the fall compared to the spring (Tables 2.1-2.2, 

Figure 2.5, Tables 2.4-2.5, Figure 2.7). The trend was also for a rapid rise in STK levels 
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inside of the K-applied strips, much higher than calculated (Tables 2.3). The Eggleston 

K-applied strip decreased STK levels, which is directly attributable to a miscalculation in 

application and a possible edge effect. With only 155 lbs K2O per acre (19 ppm expected 

rise) applied, STK levels still decreased in this field (Table 2.3).  Instead, STK values 

decreased 18 ppm inside the K-applied strip.  

The precipitation totals are important (Appendix B), particularly for K+ soil 

testing results. While the direct relationship between soil moisture and STK level has 

only recently been analyzed, an increase in STK is correlated to stored or fixed potassium 

and its release in interlayer positions of clay minerals. The degree to which this process 

occurs depends largely on the mineral composition of soils, particularly between 

smectites (Stucki, 1996) and vermiculites (Bashard et al, 1968). The expectation is that 

when wet soils are dried, soils that otherwise test low in K+ showed increases in K+. 

Subsequently, soils that test high in K+ may have lower values when moisture regimes 

change. Dowdy et al (1963) graphically reported these phenomena with a Bedford soil. 

The same soil was either added (“enriched”) or left without K+ application. Dowdy 

concluded that a lower K+ testing soil released more K+ when it was dried while the 

enriched Bedford soil fixed K+ as it dried. Moisture readings were not taken during 

application as it was not believed a significant temporal response was going to occur. 

However, spring sampling conditions were taken at field capacity conditions while fall 

2014 sampling dates were taken during a drought in very dry soil. For soil samples taken 

in spring 2015, soils were not as dry as in the previous fall and the freezing and thawing 

cycles were just completing by the time samples were taken. A depletion in soil solution 

K+ can readily be replenished from other K+ pools in the soil. This flux is equated to a 
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chemical equilibrium of K+ in soils reported by Bray and DeTurk (1939). It was 

described as the equilibrium that which soil solution K+, exchangeable K+, and 

nonexchangeable (interlayer or fixed) K+ collectively maintains. Any change in K+ 

concentration amongst the pools affects the distribution of K+ held in equilibrium. The K+ 

that is fixed or nonexchangeable is held very tightly in the clay mineral lattice and will 

not be released until a shift in the K+ chemical equilibrium occurs, predominately by an 

environmental (temperature, moisture, etc.) change.  

Technically, Bray and DeTurk postulated that if a soil had a decrease in activity in 

solution K+, K+ would be released from the exchangeable or particle edges to replenish 

this pool. Luebs (1956) reported that this replenishment can be exponential in a rain event 

with very dry soils. It is unlikely that nonexchangeable K+ would have been available to 

increase STK levels on the magnitude of 100 ppm with the results we saw since it is 

fixed. Early season meteorological data is provided in Appendix B. Abundant soil 

moisture was available early in the growing season, but leveled off later in the season. 

Since soil moisture decreased, STK may be held tightly throughout the later reproductive 

stages where potassium is in highest demand by the soybean crop (Hanway, 1971; 

Bender et al, 2015).  

Four of our five fields are kept under minimum (spring disc/field cultivation) or 

no-till conditions. Nutrient stratification has been reported numerously in fields left under 

minimum tillage environments. Robbins (1991) tested the degree of potassium 

stratification over a 10-year no-till corn experiment. The surface to 8 inch increment soil 

tested 160-580 ppm K while the 4-inch depth tested 330-580 ppm K. It can be reasoned 

that subsequent inches below 8 inches would yield lower amounts of K+ since surface 
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applications of K+ are not incorporated into the soil. We only examined the surface-6 

inch increments, reporting soil testing numbers on par with STK levels on par with what 

Robbins reported in the surface-4 inch depth increment, explained primarily by 

geographical differences. Any depth lower would indicate the ability of the inherent 

mineralogy to weather and release K+, which is expected to have a great ability.  

A large issue with soil testing companies concerns whether or not soil test 

potassium is adequately quantified under current laboratory techniques. In Figure 2.1, 

new soil test recommendations were provided from extensive on-farm research Iowa 

State conducted since recommendations were not accurately associated with yield 

response. A partial reason why these changes occurred was a shift from field-moist 

samples to dried sampling analysis. Wetting and drying cycles can be vastly different 

from how potassium may be taken up in the field. Soil sampling companies typically 

extract soil cores and submit them to a soil testing lab that may dry or leave them as they 

are received. We chose to use the ammonium acetate extraction method since it is 

commonly accepted in the Northern Great Plains. When dried, soil moisture contents can 

range from 1-5% (Dowdy et al, 1963; Luebs et al, 1956). Great fluctuation in quantifying 

STK occurs when soil moisture contents of sample fall below 10% (Luebs et al, 1956). A 

large discrepancy in K+ quantification will lead to a miscalculation of exchangeable K+, 

leading to inaccurate K+ fertilization and yield responses, a general distrust of fertility 

recommendations, and a high frequency of potassium deficiencies which are currently 

diagnosed throughout the upper Midwest. 

There were clear or possible trends for potassium fertilizer to decrease STK levels 

across sampling periods and site locations (Figures 2.6 and 2.8). It can be reasoned that 
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fields with a high inherent supply of indigenous K+, potassium fertilization may decrease 

soil test levels, possibly salinity related. Figure 2.8 suggests that applications of 

potassium fertilizer will have less of an effect on increasing STK levels with soils that 

test high in exchangeable K+. There is credence that potassium fertilizer may not have an 

effect on increasing soil test levels.  

 

Yield Monitor Data 

Each on-farm cooperator was asked to export comma separated variable files 

containing yield monitor data. CSV files were cleaned using Yield Editor 2.0.7 (Sudduth, 

K.A. et al, ASABE Paper 121338243) and yield difference maps were created for all site 

locations and highlighted below using Surfer. Generation of yield difference maps 

follows the protocols outlined in Appendix B. For most fields, LiDar imagery was 

available for superimposing yield differences over maps such as elevation, soil 

topography, or soil type. Each field was analyzed on three average yield criteria; plot (K-

fertilization), check (no K-fertilization), and yield difference (Plot Yield – Expected 

Yield without Fertilizer Addition).  

We used yield monitor data from each georeferenced soil sample point to quantify 

yield. We determined whether or not yield monitor points were significantly different 

since all STK samples recorded at sites were significant between treatments (data not 

reported).   

Correlation analysis was conducted to estimate field average yield and yield 

differences associated with K-fertilization.  
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Figure 2.9. Yield difference map generated for ‘Eggleston’ farm superimposed on a 

LiDar map 

Figure 2.10. Yield difference map for ‘Roscoe’ superimposed on elevation map. (Note: 

LiDar Imagery not available at this location). 

. 

Figure 2.11. Yield difference map for ‘Bath’ superimposed on elevation map. (Note: 

LiDar Imagery not available at this location). 

Plot Average: 54.45 bushels/a 

Check average: 53.29 bushels/a 

Yield Difference Avg: 1.16 bu/a 
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Figure 2.12. Fall average yield across site locations as it relates to average field yield at K 

fertilization strips (K+NoK). Yield Difference was computed as YieldK-Applied – YieldNoK 

from georeferenced soil sampling points between. Fall average yield was calculated as 

(YieldK-Applied + YieldNo-K Applied)/2 

 

Landscape Positional Yield Changes 

 

 In Figure 2.4, we defined how landscape positions were going to be broken down 

and evaluated. Wherever possible, this analysis was done. Yield data was only made 

available in three of the five fields (Roscoe, Bath, and Eggleston). Landscape terrain 

analysis was not available at Roscoe site. No landscape position differences were seen at 

Bath site (minimal topographical change), but the Eggleston site had a degree of 

topographical differences (Figure 2.13).  
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Figure 2.13. Topographical yield difference map at Eggleston 

 Yield advantages were apparent on the lower, flatter regions (floodplain) across 

the strip than on the higher, flatter regions (shoulder) regions.  

 

Discussion of Yield Monitor Data 

 

The yield difference map, which was directly attributable to the K treatments, 

experienced increases in the field ranging from approximately +30.0 bushels per acre to -

14.2 bushels per acre in every field (Figures 2.9-2.11). Spatial differences along the two 

combined strips inside of the treatment plot are visibly seen and were specified through 

the computer software program, Surfer.  On average, incremental yield advantages or 

differences were noted across all treatments. These advantages were subtle in nature and 

generally uneconomical when comparing yield advantages with soybean market prices 

and fertilizer product plus application costs (below), providing similar results as Hanway 

and Weber (1971). Various topographical areas yielded K-fertilizer advantages. In these 

instances of positive yield response, optimum economic potassium rates need to be 

determined. Since moisture readings were not collected, future studies should assess how 

soil moisture impacts potassium availability and subsequent soybean yield.  
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The yield variability can be associated with soil topography as positive yield 

differences (attributed to K-fertilization) in the toeslope/backslope and 

floodplain/depressional portions of the plot. In these areas, yield differences ranged from 

5 to 20 bushels per acre. The speculation is that the positive yield advantages are a result 

of potassium fertilization. A hypothesized theory for the increased uptake of potassium is 

that since diffusion is directly related to soil moisture content, an increase in soil water 

levels leads to a higher degree of exchangeable K+. Place and Barber (1964) proved that 

potassium uptake increases linearly with increasing soil moisture, using Rb as a tracer. 

Their results were further supported by Danielson and Russell (1957) who illustrated the 

relationship between soil moisture content and exchangeable K.   

There were areas in the field where no yield advantages were recorded, either.  

These commonly were found across broad, flat elevated areas (summit, higher-shoulder 

regions). Our speculation is that the lack of yield responses may be salinity-related; the 

accumulation of soluble salts, such as sodium, may be hindering yield potential that 

otherwise be recorded by the potassium fertilizer. 

 The correlation analysis revealed that in high-yielding situations, K+ fertilization 

may not only increase yields, but can also decrease yields (Figure 2.12). In lower yielding 

areas of fields, there may be an advantage to applying K+ fertilizer. The Eggleston field 

received only 155 lbs K20 per acre, and a positive yield response to K+ fertilization was 

seen with decreasing yield potential (Figures 2.9 and 2.13), suggesting that yields can be 

increased from potassium fertilizer with lower rates, in agreement with Borges (2001).  

 

Tissue K+ Concentrations 
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Based upon the work conducted by Ebelhar and Varsa (2000), we examined how 

fertilizer treatments affected leaf K+ concentrations. Wherever possible, sampling points 

were overlaid on yield difference maps and displayed in Figures 2.14-2.16. By the later 

reproductive stages, soil applied potassium would have had a high probability of 

solubilizing and being taken in by the plant. Previous research had shown a statistically 

significant difference in leaf K concentrations between fertilized and unfertilized plants 

during the reproductive stages (Ebelhar and Varsa, 2000). At the R6 growth stage of each 

site, soybean plant samples were collected and partitioned into various fractions visible 

during this reproductive stage. Collectively, twenty samples from the K+ fertilization strip 

and control strip were collected. Each plant was segregated into new leaves, old leaves, 

pods (embryo kernels inside), petioles, and stems (devoid of any vegetative material). 

Samples were collected for all five producer fields and analyzed by Ward Laboratories 

(Ward Laboratories, Inc., Kearney, Nebraska) by microwave digestion for potassium 

concentration. All other macro and micronutrients were also analyzed for correlation. 

Refer to Appendix B for mineral concentrations.  

Tissue sampling results are provided in tables (Appendix B). There was no 

significance between macronutrient (P) and micronutrient concentrations (Ca, Mg, S, Zn, 

Fe, Mn, and Cu) between the K-fertilization strips, but K concentrations were 

significantly difference (Appendix B).  

An average of the P-values for K was 0.058, suggesting significance amongst K 

concentration means across the partitioned soybean plant between strips at P<0.06. 

Interestingly, K-fertilization appeared to have a negative effect upon K concentrations 

since concentrations were lower in the strip receiving the 250 lbs K2O per acre than the 0 
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lbs K20 per acre strip (Appendix B). These differences were recorded for all vegetative 

(new and old leaves, stems, petioles) and reproductive (pod with embryonic kernel 

inside) materials. Of the other nutrients sampled, no statistically significant difference 

was recorded between treatments. No visual K deficiencies (or differences) were seen 

between strips when sampling took place. Our results contradict those of Ebelhar and 

Varsa (2000) who conducted a varying potassium rate study in Illinois. While initial leaf 

tissue K+ concentrations were the lowest for the broadcast treatment during the vegetative 

stages, K+ concentrations leveled off during the reproductive stages. There was a positive 

correlation trend between K fertilizer rate and leaf K+ concentrations, early plant growth, 

and yield. 

Since K+ is considered a mobile cation, K+ concentrations were expected to be 

highest in newly developed tissue. At R6, this includes not only the newest trifoliate, but 

also the rapidly developing seed pod. The K-fertilization strip had an average K+ 

concentration of 1.228% for the newest trifoliate while the oldest leaves were higher at 

1.392%. We did see a similar expected trend between new leaves and pod K+ 

concentrations since higher K+ values were recorded in the pod regions between the K 

and No-K strips. The differences are recorded in Appendix B. They indicated a low 

difference between pod K+ concentrations in the K-applied and non K-applied strip. K+ 

concentrations were statistically significantly higher in the No-K applied strip than in the 

K-applied strip. 

Stomatal Conductance 
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Stomatal conductance was measured and recorded at the R6 growth stage. While 

leaf K+ concentrations indicate amounts of tissue K+, stomatal conductance is thought to 

be related to the physiological mechanisms that K+ functions in the plant. As K+ 

concentrations increase, greater carbon dioxide enters the plant as water vapor exits. The 

rate at which this process take place is dependent upon the boundary layer resistance and 

concentration gradient that water vapor diffuses into the atmosphere, and this rate is 

controlled by the stomatal apparatus with the guard cells. The rates that which guard cells 

open and close are directly proportional to leaf K+ concentrations (Farquhar and Sharkey, 

1982). The data showing the stomatal conductance as it relates to K+ fertilization is 

provided in Appendix B. Weather conditions are known to influence leaf porometer 

readings and were collected with the mobile cellular phone application, WeatherBug 

(Earth Network, Germantown, Maryland), and are found in Appendix B. The results of 

the conductance experiment are shown in Table 2.7. Figure 2.14-2.16 indicates where 

stomatal conductance was recorded along K-applied strips. Stomatal conductance 

conducted on the No-K applied strips was taken approximately 100-feet across from the 

K-applied points (not reported).  
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Figure 2.14. Tissue sampling and stomatal conductance sampling points highlighted in 

black dots superimposed on yield difference map for Eggleston.   

 

Figure 2.15. Tissue sampling and stomatal conductance sampling points highlighted in 

black dots superimposed on yield difference map for Roscoe. 
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Figure 2.16. Tissue sampling and stomatal conductance sampling points highlighted in 

black dots superimposed on yield difference map for Bath. 

For the fields that we received yield monitor data, there was a trend for a decrease 

in yield associated with K fertilization. This yield decrease was anywhere from 0 to 14.20 

bushels per acre (Figures 2.14-2.16).   

 



65 

 

Table 2.7. Stomatal Conductance values (mmol/m2s) measured for upper and leaves 

between K-fertilization strips.  

A wide degree of variation was received when using the leaf porometer with 

individual soybean plants in both the treatment and non-treatment areas. Conductance 

values were higher across all site locations in the upper leaves compared to the lower 

leaves. These differences were significant at the 95% confidence interval in 4 of the 10 

strips, while 6 of the 10 at the 90% confidence interval.  

There was a trend for higher conductance values on the lower leaves along the K-

applied strip than on the No-K applied strip (Table 2.7), but there appeared to be little 

correlation between conductance values along treatment strips on the upper leaves. The 

influence of K+ fertilization did not appear to provide a clear influence on conductance 

readings since two of the five site locations had higher conductance readings in the upper 

leaves on the K-fertilization strip.  

K+ concentration influences the degree of carbon dioxide entrance into the 

stomatal apparatus. We discussed earlier that we did not experience an increase in leaf K+ 

concentration in the K-applied strip. Instead, we received higher values in the No K-

applied strip. This is in accordance to our stomatal conductance values received above in 

Table 2.7.  

Economic Analysis 

 Unlike nitrogen where yearly applications are used in many cropping systems, 

potassium fertilizer rates and practices varies based upon soil test results, financial 

expenses, current or projected market futures, and can be considered a capital expense 
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over time due to its relative stability in the root zone. Our discussion will use potassium 

fertilizer applied in the potash form of 0-0-60 (N-P-K). Assuming a market price of 

$405/ton for potash, the cost per pound of potassium fertilizer is $0.36/lb K2O. We used 

250 lbs of K2O/acre for our experiments, which is a cost of $90/acre. Many agricultural 

producers have fertilizer retailers or cooperatives apply this product, with prices for 

application ranging from $5-7 per acre. A producer may spend between $95-97 per acre 

for the potassium fertilizer in which we spread.  

 We only saw incremental half-mile long strip gains from potassium fertilizer, 

ranging from 0.50 bushels to 2 bushels (Figures 2.9-2.11). We will assume a market price 

of $9/bushel for soybeans, yielding $4.50 to $18 per acre for income. It would be 

uneconomical for agricultural producers to apply whole field potassium under these 

conditions. However, along the toeslope/backslope and floodplain areas of the half-mile 

strip, we saw yield gains of 10-20 bushels, which would net a gross income of $90-180 

per acre. Under these circumstances, it would be appropriate to apply potassium fertilizer. 

On the summit and upper shoulders of each K-applied strip, we saw little advantage to 

fertilization, indicating a significant draw on finances (Figure 2.9-2.11, 2.13). 

Future Work 

 It seems imperative that a yearly draw on potassium fertilizer as a function of crop 

uptake will lead to potassium values decreasing to a critical low. Future work needs to 

focus on the dynamics of indigenous mineral weathering and how STK values change 

yearly as a result.  
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 Since we saw yield advantages in many instances, future scientists should focus 

research into examining why these increases occurred. We hypothesized as to the reasons 

above. Within these landscape positions where potassium fertilizer provided yield 

advantages, potassium rate studies should be conducted to determine economically 

optimal fertilization rates. We attempted to examine why potassium fertilizer decreased, 

did not affect yield, or provided marginal yield gains. Future work should also be geared 

towards examining the correlation between soil salinity and potassium fertilizer. The 

temporal variability with exchangeable STK levels needs to be better defined for soils 

testing high in exchangeable K+. The mineralization potential of soils having a high 

intrinsic capability of releasing K+ from inherent parent material needs to be better 

understood through a leaching experiment that attempts to quantify a soil’s ability to 

replenish potassium following events that otherwise would reduce the amount of 

exchangeable K+.  

CONCLUSION 

 While South Dakota producers may not be fully compensating for nutrient 

removal (especially in corn stover removal situations), incremental yield gains from K+ 

fertilization are minimal and generally uneconomical across a full treatment strip. Site-

specific yield gains, however, are tangible and very economical. STK values did increase 

following K+ fertilization, but generally did not increase yields, had a detrimental effect 

on leaf K+ concentration, and stomatal conductance. Agronomists and consultants must 

factor in temporal variability with STK quantification since we observed unforeseen 

fluctuations in STK sampling along 100-foot transects. Future research needs to address 

extraction methods for quantifying available potassium.   
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CHAPTER 3 

LEACHING QUANTIFICATION OF POTASSIUM (K+) IN A CONTINUOUS 

CORN (Zea Mays L.) SYSTEM FOLLOWING PRECIPITATION  

 

INTRODUCTION  

 According to Marschner (1995), potassium (K+) is the second highest absorbed 

and exported mineral in grain production. Assessing the nutrient concentrations 

partitioned to the vegetative and reproductive tissues is identified as the ‘harvest index’ 

or ‘HI’ (Below, 2013). HI reflects the percentages of nutrients removed by the grain 

compared with total plant uptake, ranging from 10-80% for many nutrients (Below, 

2013).  For potassium, it is estimated that 28% of the total K+ uptake is removed with 

grain, indicating significant K+ concentrations remaining in corn stover left to decompose 

in fields following grain harvest (Below, 2013).  K+ is held in an inorganic form in corn 

dry matter, so rainfall has the ability to leach soluble K+ from stover biomass. Mallarino 

(2011) illustrated that seasonal offsite movement of K+ occurs with precipitation. 

 Ample research is available concerning potassium concentrations and uptake 

patterns across the growing season (Mengel and Barber, 1974; Below et al, 2013; Karlen 

et al, 1987), concluding at physiological maturity. Little research is presently available 

concerning K+ leaching from corn stover biomass following physiological maturity. 

Mallarino (2011) assessed the change in K+ concentration in baled corn stover across 

time, illustrating that the largest decrease occurs from black layer to grain harvest, but 

unlike phosphorus, a steady decline was noted for K+, the magnitude of which was 

dependent upon the amount of precipitation. Schomberg (1999) measured K+ loss from 

corn residue under irrigated plus rainfall and rainfall moisture regimes. The percent of K+ 
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remaining in the corn residue decreased from 100 to 10% with 10 inches of rainfall. In 

particular, K+ releases were exponential between treatments.  

 International Plant Nutrition Institute estimates that 200 corn bushels per acre 

contains 220 lbs K2O in the corn stover, almost four times the amount of K2O removed 

yearly with grain. Grimes and Hanway (1967) documented that it took 72 days for most 

of the K+ held in corn stover to leach into the soil. Unlike nitrogen (N), K+ is water 

soluble and is displaced in the soil. It has been reasoned that close to 1 kg K ha-1 is 

displaced for every 100 mm of precipitation in a field (Johnson and Goulding, 1992). 

Ample research has been conducted concerning the ability of K+ to leach in the soil, 

including anion interactions (Tinker and Nye, 2000), large topsoil exchangeable K+ levels 

(Kayser, 2012), and interactions with varying nitrogen rates (Kayser, 2012), but little 

concerning aboveground losses from corn stover biomass.  

 Potassium is commonly removed from the soil in two processes; the loss of K+ 

in corn grain removal and leaching of K+ below the root interception zone (Askegaard, 

2003). Offsite movement of other macronutrients because of nitrogen’s high degree of 

subsurface leaching (Dinnes et al, 2002) and phosphorus’s surface runoff into 

groundwater supplies and lakes has been assessed (Alfaro, 2004), but little attention has 

been paid to K+ because of its relatively benign impact upon the environment. Research 

analyzing K+ leaching has also been scarce due to well-supplied soils with native 

indigenous K+, not considered yield-limiting (Kolahchi, 2007). A similar situation is 

occurring in South Dakota (Chapter 2).  

 Grimes and Hanway (1967) assessed the impact crop residues had on increasing 

exchangeable STK levels, postulating that large exchangeable K+ increases occurred 
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following corn harvest to spring, suggesting that STK values would be much higher in 

the zone surrounding the plant residue following decomposition; added K+ residues from 

fall = added exchangeable K+ in the spring. Chapter 2 discussed the temporal variability 

with K+ soil sampling, suggesting minimal to large (20-45%) gains in spring STK values. 

The mechanism through which K+ is added to the soil has been thought to be through 

mineralization, but is not specifically identified (Grimes and Hanway, 1967).  

 From an economic standpoint of collecting biomass, the loss of inorganic K+ 

represents a deteriorated value for the potential biofuel.  Under K-limiting conditions, 

crops will need to rely on nonexchangeable K+ instead of the readily available 

exchangeable K+. Plant extraction of this form of K+ is heavily unfeasible and will not 

solely meet plant uptake demands. An agricultural system with negative K+ balances is 

not economically or environmentally viable (Oborn et al, 2005), and crop yields will 

stagnant or decrease over time.   

  Our work sought to expand on published work on nutrient uptake and 

partitioning of various macronutrients across the growing season into the winter months, 

specifying K+ concentrations across stover fraction as a function of seasonal precipitation 

(Below, 2013). Mallarino (2011) determined that K+ is lost from the corn stover biomass 

in a field setting throughout the winter months (December-March). With plant 

concentrations of K+ known, we can compare leached K+ to total K+ concentrations, 

equating approximations of removing K+ across stover fraction. 

 

Objectives for this study include: 

1) Determine how much K+ is leached from various plant parts in corn 
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2) Establish a laboratory protocol for examining potassium leaching using biomass 

matter 

 

MATERIALS AND METHODS 

 The study was conducted at the South Dakota State University Research Station 

near Aurora, South Dakota, in east-central South Dakota. Dekalb brand seed corn 48-

12STXRIB (Genuity Roundup/Genuity SmartStax Refugee-In-The-Bag) (Monsanto 

Company, St. Louis, MO) was planted at 32,000 seeds/acre in early May. Cultural 

(fertilization and pest control) practices followed local procedures. At physiological 

maturity (R6; Hanway, 1973), individual whole corn plants were cut at the soil surface 

with a knife and separated into the following tissue fractions; new leaves (ear leaf), old 

leaves (oldest necrotic leaf), stalk (plant stem stripped off all appendages excluding the 

roots), cob (without grain), and grain (manually husked from cob). A corn stalk chopper 

was simulated with the use a wood-chipper since South Dakota corn producers 

commonly use corn stalk choppers to pulverize corn stover biomass following harvest. 

 Partitioned stover was placed into leaching columns and replicated ten times. 

The experiment was a two-factorial plot design investigating the plant component 

(vegetative or reproductive structure) and rainfall increments (1, 3, 5, 7 inches). Various 

weights were utilized for material based on collection amounts. 20 g of new leaves, 20 g 

of old leaves, 57 g of shredded whole plant material, 30 g of stalk material, 20 g of cob 

material, and 30 g of kernels, and each were individually placed into leaching columns. 

Each column had diameter dimensions of 16.8 cm by 2.54 cm. A representative column 

can be seen in figure 3.1.  
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 A plastic jug with four equidistant holes cut into the lid of the container was 

used to simulate rainfall under normal field conditions experiencing rainfall. During 

application process, particular care was used to best simulate rainfall upon biomass 

matter in a field setting. 563 cm3 of Nanopure water was dripped onto each column to 

simulate 2.54 cm (1 inch) of rainfall. 7.62, 12.7, and 17.7 cm increments of rainfall were 

added in successive increments to represent 2-inches of increased rainfall. Finely-meshed 

cheesecloth material was placed into each column to filter biomass material from 

leachate, and clear plastic tubing ran from each column that carried the sieved leachate. 

Leachate was collected into pails and 125 mL cups took a representative sample from 

each pail.  

 The amount of K+ removed in the leachate with successive rainfall increment 

was measured by the use of a Jenway model PFP7 industrial flame photometer (Bibby 

Scientific, Burlington, NJ). The procedure to measure exchangeable K+ was through the 

NH4OH method (Warnacke, 2012), but using Nanopure water instead of NH4OH. 

Standard calibration solutions were created for 0, 1, 3, 5, 7, 9 ppm readings (Jenway 

PFP7 Flame Photometer Operator’s Manual). Samples were diluted with Nanopure 

filtered water to obtain values within machine accuracy. Dilutions were typically set to 

1:8 (1 mL extract: 7 mL of Nanopure water) throughout the experiment. Each sample was 

analyzed/replicated on three separate occasions. 
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Figure 3.1. Plot design with an actual column used for analysis. 

  

  Potassium standards were analyzed between each sample until accurate values 

were obtained. Known standard stock solutions were analyzed every twenty samples. 

Machine drift was minimal over time. Polynomial equations quantified approximate K+ 

readings from the flame photometer between standard runs in parts per million (PPM). R-

squared values ranged from 0.96 to 1.00.   

Statistical Analysis 
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 PROC REG procedure of SAS 9.3 (SAS Institute, Inc., Cary, NC) was used to 

determine the impact of rainfall on the amount of K leached out of each plant partition at 

the a=0.05. The experiment contained ten replications of each plant fraction and four inch 

increments. Block and its interaction with all treatments were considered factors. Rainfall 

was considered a fixed factor.   

 

RESULTS AND DISCUSSION 

 The tables and figures that follow outline the results of the K+ leaching 

experiment. Results are reported as leachate per inch and not reported as accumulative 

amounts of leachate (Figure 3.2).  

 

 

Figure 3.2. K leachate expressed in ug/mL amongst corn biomass plant fractions across 

rainfall rates.  
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Figure 3.3. K leachate expressed in ug/mL amongst shredded corn biomass material 

across rainfall rates.  
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Figure 3.4. K leachate expressed in ug/mL amongst new leaves across rainfall rates.  
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Figure 3.5. K leachate expressed in ug/mL amongst old leaves across rainfall rates.  
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Figure 3.6. K leachate expressed in ug/mL amongst corn stalks across rainfall rates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. K leachate expressed in ug/mL amongst corn kernels across rainfall rates.  
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Figure 3.8. K leachate expressed in ug/mL amongst corn cobs across rainfall rates. 

 

 

Figure 3.9. Total K2O concentrations lost across plant biomass fractions with 7-inches of 

rainfall. Estimated total K2O (lbs/acre) as reported from Ward Laboratories (Kerney, 

Nebraska). 

 

 In accordance with Figure 3.2, rainfall played an important role in K+ leaching 

off of corn biomass fractionation. The whole plant shredded showed the greatest ability to 

displace K+ with leachate values significantly rising from 47.5 to 126.8 
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micrograms/millimeter following the application of 2 inches of rainfall (amounting to 3 

inches of accumulated precipitation) (Figure 3.3). These differences were statistically 

significant at P<0.0001 (Figure 3.2). The applications of 2 inches to successively amount 

to 5 and 7 inches of rainfall did show an increase of total K+ leachate, but instead 

displayed a negative rate of increase, stagnating at these rainfall amounts (Figure 3.3).  

 As expected, each fractionation was lower in K+ leachate among all rainfall 

rates, but similar trends were seen across all treatments among rates of K+ displacement. 

Since K+ is mobile in the corn plant, more K+ is expected in rapidly growing plant tissue. 

There was a trend for the old leaf fractionation to displace as much K+ as in the newer 

leaf fractions (Figures 3.4 and 3.5), amassing 1.7 lbs K20/acre more than the new leaves 

(Figure 3.9). This was opposite from expected as we assumed more K+ would have 

leached out of the newer leaves. The stalk, kernel, and cob fractions each showed a 

similar leaching ability with the highest leaching ability occurring with the 3-inch total 

rainfall treatment (Figures 3.2, 3.6-3.8). K+ leachate was lower in these fractions, which 

could be explained by surface area since these fractions represented a smaller total 

surface area take up of the column than did the much larger newer and old leaf fragments. 

Stalk and kernel leachate amounts were not significant at the 95% confidence interval 

(Figure 3.2). Graphically, trends for leaching capability of each fraction across rainfall 

increment are shown in Figures 3.3-3.8.  

 Figure 3.9 illustrates how much K2O leached out of each fraction across the 7-

inches of rainfall we simulated. International Plant Nutrition Institute estimates that 200 

bushel per acre corn will remove 54 lbs K2O (grain) and additional 220 lbs K2O (stover 

concentration. Recall from Chapter 2 that the average K2O application rate in South 
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Dakota is 29 pounds/acre. It is probable that the whole plant shredded treatment would 

represent what current South Dakota grain producers practice in fields. Assuming 0.27 

lbs of K2O are removed per bushel and the average South Dakota corn yield of 150 

bushels/acre, 40.5 lbs of K2O are required for corn production. It is probable that not only 

are South Dakota soils under-fertilized for production, but there may be a potential for 

that K+ to be displaced from the soil for succeeding crop years. If offsite movement of K+ 

is minimal and K+ moves into the soil, the issue of K+ leaching is minimized since it will 

become available for crop production and not negatively impacting environmental 

conditions. K+ leaching will become an issue if offsite movement occurs, reducing the 

plant-available concentrations of K+ and an increased environmental pollutant. Each plant 

fraction (old leaves, new leaves, stalk, kernel, and cob) does not equal the full whole 

plant shredded’s amount of leached K2O, so it can be reasoned that the final 9.9 lbs K2O 

would have combined to be leached in the tassel and ear husk tissues. While not 

separately tested, each fraction was included in the whole plant shredded treatment.  

 To estimate total potassium held in each corn biomass treatment, Ward 

Laboratories (Kearney, Nebraska) tested each fraction for total K+ concentration. Results 

of total K+ concentration are provided in Table 3.9.  
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Table 3.1. Total K+ concentration in each biomass sample as reported from Ward 

Laboratories (Kearney, Nebraska).  

 To determine what percentage of K+ leached out of the corn biomass material, 

we compared the relative percentages of K+ leachate to total K+ held in biomass material. 

Per inch of rainfall, we applied 563 cm3 of rainfall, amassing a total of 3941 cm3 across 

the seven inches. It is inconceivable to suggest that 3941 cm3 successfully interacted and 

leached out of the column since some leachate either adsorbed to the plant material or 

simply did not filter through the drain plug and tubing into the collection pail. For our 

argument in considering total amounts of leachate, we assumed that all of this did leach. 

For each fractionation, we calculated an average K+ leachate amount per inch. Total 

water leached was compared to the average K+ leachate and equaled grams K+. The 

calculated value was divided by grams used in each biomass fraction, equaling grams 

K/grams stover. This value indicated how much K+ was leached across seven inches. The 

laboratory results from Ward Laboratories (Kearney, Nebraska) specified through 

microwave digestion K+ concentrations in each sample. The amount of K+ leached was 

compared to total K+ concentration in each fraction to indicate what percent K+ was 

leached out. Table 3.2 shows percentages of K+ that was leached out of each appendage 

across the seven inches.  

 

Table 3.2. Relative percentages of K+ leached out of corn biomass material. 
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 In accordance with Table 3.2, the whole plant shredded material had the highest 

K+ percentage leached out of the biomass material, suggesting that K+ has a great ability 

to be leached across seven inches of rainfall. The new leaves leached a higher percentage 

than the older leaves, which is in agreement with the ability of K+ to be translocated 

throughout the plant, reaching higher levels in the newer plant growth. The cob, kernel, 

and stalk fractions had the lowest degree of K+ displacement. Successfully leaching K+ 

out of these fractions is difficult, especially in a column study. In Table 3.1, new corn leaf 

tissues were estimated at 1.04%. Our results compare closely to Mallarino (2011) who 

only assessed corn plant tissues (not specifying age). At grain harvest time, K+ 

concentration in corn leaf tissues was estimated at 1.0% (mid-October). While 

proportions of K+ loss were minimal since residue was covered with snow, losses 

accelerated in March and into April to 0.6%. With 7 inches of rainfall in our experiment, 

we leached 26.3% of the K+ held inside of the biomass material, or 0.766% K+ remaining 

in tissue. Since meteorological data was not provided in Mallarino (2011), we cannot 

estimate how similar the leaching activities were in terms of accumulated precipitation.  

 

CONCLUSION 

 While the majority of studies concerning K+ leaching have been limited 

primarily to soil or below-ground studies, we tested the hypothesis of the above-ground 

ability for K+ to leach out of corn biomass material with subsequent inches of rainfall 

with a column study. Each plant fraction experienced an increase in K+ leaching with 

rainfall, usually leaching a maximum at or around 5 inches of accumulated rainfall. 

Rainfall rates were correlated with K+ leaching, suggesting that K+ displacement may be 
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a factor of rainfall event instead of accumulated rainfall. We compared our leachate 

amounts to total K+ and reasoned that the seven inches was able to remove a significant 

portion of plant K+ concentrations. Future studies should continue to investigate the 

ability of K+ to be leached out of corn biomass material and potential environmental 

detriments should offsite movement of K+ occur.   
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CHAPTER 4 

UREA-N APPLICATIONS ON SOYBEAN [GLYCINE MAX] AT R3 

GROWTH STAGE TO DETERMINE YIELD INCREASES UNDER INTENSIVE 

MANAGEMENT 

Applying nitrogen to soybeans is not a common practice for South Dakota 

soybean growers. Soybeans are a legume crop, acquiring its nitrogen needs through a 

symbiotic association called fixation. Research has been conducted since the 1950’s to 

study the impact of nitrogen fertilizer on increasing soybean yields (Lyons, 1952). Since 

nitrogen is an intrinsical component of proteins, nucleic acids, amino acids, and 

comprises a large portion of the photosynthetic machinery, legume crops such as 

soybeans have a large demand for nitrogen (Sinclair and Horie, 1989). Soybean growers 

are continually seeking to understand how intensive management programs can increase 

soybean yields. 

Nitrogen is acquired through three main sources; biological nitrogen fixation from 

Bradyrhizobium species, soil residual nitrogen in the ammonium  (NH4
+) and  nitrate 

(NO3
-) forms, and from fertilizer supplying nitrogen (Murrell, 2012). These nitrogen 

sources are not equally proportioned for soybean uptake; 50-80% of nitrogen is supplied 

through nitrogen fixation (Salvagiotti, 2008). Under adverse conditions unfavorable for 

fixation, soil residual nitrogen has been reported to provide 40-75% of the crop’s nitrogen 

supply (Sawyer, 2000). In situations where nitrogen fixation and soil residual nitrogen 

levels do not provide sufficient nitrogen needed to achieve maximum soybean yield, 

nitrogen fertilizer can serve as a means to provide additional nitrogen needed for the crop 

(Salvagiotti, 2009). The goal of nitrogen fertilization of soybeans is that the fertilizer will 
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not substitute, but rather serve as a supplement for the nitrogen needed for the soybean 

crop. Hanway (1971) examined the soybean yield response by applying as much as 600 

pounds N per acre and finding no significant yield response. He compared that treatment 

to soybeans that had been inoculated with Bradyrhizobia bacteria that was not 

supplemented with nitrogen (Hanway, 1971).  Determining the correct amount, rate, 

timing, and placement is difficult.  

Planting conditions in the Northern Great Plains can rapidly vary from year to 

year. These include soil moisture, temperature, soil organic matter content, and pH 

(Sorenson and Penas, 1978). If a soybean seed is sown into an environment not 

conducive for optimal germination and early vegetative growth, maximum nitrogen 

fixation and yield potential will not be attained. Nitrogen fixation may begin 14 days 

(Hardy, 1971), or even 28 days after planting (Clay, unpublished data). During this time, 

the crop must rely solely on soil residual nitrogen to supply its nitrogen needs, which can 

vary based upon texture, organic matter content, or residual nitrate levels. Soils having a 

particularly clayey texture with high organic matter content and high soil nitrate levels 

are less likely to exhibit a positive yield response to N fertilization than sandy soils with 

low organic matter content and low soil nitrate levels (Schmitt, 2001; Sawyer, 2000). 

Irrigation has proven to increase the probability of a yield response; Wesley showed an 

average yield gain of 6.9 bushels/acre to low N rates applied in Kansas (Wesley, 1998).  

International Plant Nutrition Institute (IPNI) states that 4.72 pounds of nitrogen 

are required to produce 1 bushel of soybean grain (Murrell, 2012). A 55-bushel soybean 

crop will require 259.6 pounds of nitrogen. Soybean stover nitrogen content has been 

calculated to be 1.30 pounds N per 1 bushel soybean grain. A subsequent summation of 
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331.1 pounds of nitrogen are required (Iowa State University, 2007). The upper limit for 

nitrogen fixation has been suggested to be at 120 pounds per acre (Weber, 1966). Thus, to 

produce 55 bushel per acre soybeans, over 139 pounds of nitrogen must be made 

available by soil residual nitrogen content or fertilizer nitrogen applications. If the future 

goal is to produce 100 bushel/acre soybeans, 472 pounds of nitrogen will need to be 

supplied and made available to the crop. Careful nitrogen management must be 

accomplished since nitrogen is mobile in the soil and subject to leach, denitrify, or 

volatilize.  

Early season applications of nitrogen decrease the Bradyrhizobium infection and 

nitrogen fixation (Schibbles, 1998). Beard (1971) reported a reduction in early nodulation 

numbers of soybean plots receiving a rate of 56 kg/ha of nitrogen. Mean yields of plots 

receiving 0, 56, 112, or 168 kg/ha of nitrogen did not differ significantly from either a 

vegetative, reproductive, or combination application. The current hypothesis is that late 

season (during the reproductive stages) nitrogen applications may increase soybean yields 

since the nitrogen fixation process reaches a conclusion at around R3 (Wesley, 1998). 

Barker and Sawyer (2001) tested the hypothesis that soil applied nitrogen fertilizer (in 

either urea or poly coated urea fertilizer form) could increase soybean yield when applied 

during the R2 (full bloom) to R3 (beginning pod formation) growth stages (Hanway, 

1967). Results concluded that nitrogen fertilizer applications (regardless of placement, 

nitrogen treatment, or application rate) did not significantly increase soybean grain yields 

(Sawyer, 2000). Wingeyer (2014) assessed the application of urea across 0 and 60 kg N 

ha-1 treatments at the R1 (beginning flower) and R4 (full pod development) stages. He 

concluded that nitrogen applications during these stages did little to influence soybean 
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grain yields, though grain yields varied from 4.24 and 3.39 Mg Ha-1 for the irrigated and 

non-irrigated treatments, suggesting water availability may help increase soybean grain 

yields with nitrogen (urea).  

 Salvagiotti (2009) showed that early season (vegetative stages) applications of a 

controlled-release nitrogen form can reduce the inhibition of nodule development. 

Timing of application is particularly important since too early of an application will 

diminish the contribution of biological nitrogen fixation. Current suggestions are to apply 

a controlled-release nitrogen source at the R3 growth stage. A deep-banded application of 

a controlled release nitrogen source is recommended, releasing nitrogen in such a way not 

to interfere with biological nitrogen fixation, but this method is not feasible for South 

Dakota growers during the R stages. Schmitt (2001) in Minnesota provided a similar test 

of urea sources (uncoated vs. poly coated) as Salvagiotti (2009), but they applied the 

nitrogen fertilizer at the R6 growth stage (full seed development). While the poly-coated 

urea resulted in greater nitrate concentrations at the R6 growth stage than the uncoated 

form, the in-season nitrogen fertilizer plots did not significantly yield greater than the 

control (no nitrogen) plots. It may be reasoned that nitrogen uptake and assimilation 

could have been limited or compromised at such a late period of soybean growth.  

Little on-farm research has been conducted to examine if soybean yields can be 

increased with a late-season nitrogen application, particularly with encapsulated nitrogen 

(ESN), a slow-release source of nitrogen in the urea form. Much of the research available 

has been constrained to primarily plot work, generally measured in plots ranging in small 

relatively plot sizes with marginal spatial variability. We sought to determine how a 

controlled-release nitrogen form broadcasted during R3 to R4 (full pod development) 
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could be implemented on farm trials to achieve high-yielding soybeans across a half-mile 

pass. 

Objectives for this study included: 

1.) Study the relationship between established plot research on soybean-nitrogen 

treatments and compare on-farm research conducted in South Dakota, USA 

2.) Determine if ESN can increase soybean yields in South Dakota, USA 

3.) Measure the soybean yield differences from varying row spacings across South 

Dakota, USA 

 

MATERIALS AND METHODS 

Site Locations 

 Numerous locations throughout east-central and southeastern South Dakota were 

part of the on-farm research examining nitrogen applications on soybeans. Fifteen fields 

in total were used. Figure 4.1 shows where across the area they took place (shown with 

flags).  
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Figure 4.1. Map of east-central South Dakota indicating with red flags where on-farm 

ESN plots were conducted during 2014.  

Site Specifications 

 Site characteristics and soil survey data can be found in Appendix D. On-farm 

cooperators needed to have a yield monitor where data could be archived and cleaned for 

statistical analysis. Individual producers applied 75 lbs N/acre of encapsulated nitrogen 

(46-0-0) or 163 lbs of product per acre during the R3 growth stage (July 20, 2014) 

(Hanway, 1967) with a topdress fertilizer application with a spinning-spreader. Each 

treatment was replicated 3-4 times per field and plot dimensions were typically 2,640 feet 

by 70 feet (4.24 acres). The experiment was a single-factorial arrangement, assessing 

only yield response by nitrogen application as part of a pilot program into nitrogen yield 
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response in soybean crops. No other vegetative or reproductive parameters were analyzed 

in this project. 

 Agronomic management of fields followed local or historical practices according 

to grower desires. No fields received any form of nitrogen fertilizer prior to treatment 

addition. Fields were either tilled or notilled and product was not incorporated. 

 At physiological maturity (R8; Hanway, 1967), cooperating producers combined 

the entire plot area and field, archiving the yield monitor data with their combine’s 

software. Yield monitor data was cleaned according to the protocols outlined in Chapter 

5.  

Landscape Positional Differences 

 Refer to Figure 2.5 for terminology used to identify landscape positions across 

treatment strips whenever possible.  

Statistical Analysis 

 Surfer (Golden Software, Golden, Colorado) kriging was used to estimate the 

yield differences between the K+ fertilization strips and the untreated strips at each site. 

Surfer kriging computer software (Golden Software, Golden, CO) was used for yield 

interpolation when needed. Microsoft Xcel (Microsoft Corporation, Redmond, 

Washington) was used for analysis of variance estimation for each sampling point 

between sampling periods. 

 

RESULTS AND DISCUSSION 
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Table 4.1 provides plot averages for soybean yield across all site locations. 

Further analysis, including yield difference maps superimposed on LiDar imagery, can be 

found in Appendix D. Yield tables were separated via geographical locations across 

eastern South Dakota and can be found in Tables 4.1 and ANOVA results in Table 4.2. 

 

Table 4.1. Average side-by-side strip yield between ESN and check strips across site 

locations.  
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Table 4.2. Analysis of variance between ESN and check strips across all site locations.  

 Yield results varied by location among all fields analyzed. Table 4.1 indicates a 

summation of all strips across site locations. A total of 26 separate strips with ESN (75 
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lbs N/acre) and check (0 lbs N/acre) were analyzed in this study. The highest strip 

average gain from ESN application was 6.1 bushels/acre while the highest loss was 4.0 

bushels/acre. Site-specific yield differences were generated, displayed in Appendix D, 

and discussed below. Overall, the yield advantage for ESN treatment was 1.9 

bushels/acre, which was statistically significant at P<0.0014 level (Table 4.2). This is in 

accordance to recent research conducted with nitrogen on soybeans (Wingeyer, 2014) and 

similar research conducted with nitrogen available. These yield advantages were on par 

with other authors who only reported minimal gains to nitrogen fertilizer, regardless of 

product or placement. Some locations reported either no advantage or a yield reduction as 

a result of nitrogen fertilization (Table 4.1). 

Subsequently, we report that across the half-mile treatment strip, we saw a wide 

degree of spatial variability of yield response to nitrogen application (Appendix D). This 

spatial analysis is lacking in the scientific literature and thus, we sought to understand in 

what topographical or landscape position may provide an advantage to nitrogen 

fertilization. Landscape position did play a role in yield response. In the 

toeslope/backslope  and depressional areas across the strip, the difference between what 

was physically harvested versus the predicted values led credence to advantages of 10-20 

bushels per acre (Appendix D). These topographical results are consistent with Figures 

2.10-2.12 in which potassium fertilizer was analyzed  We hypothesize that this may be 

the direct result to increased levels of available nitrogen in the transpirational stream for 

nitrogen uptake since this has been identified as the main source of nitrogen acquisition 

(Tsay  et al, 2007). This theory would be in accordance with the work conducted by 

Wesley (1998) in Kansas. Our results support what Wingeyer (2014) illustrated that 
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while there was not a significant yield response to urea application, mean yields were 

higher in the treatment areas. Future work should be focused on soybean genomics on 

which genes are responsible for nitrogen assimilation and uptake. Within the localities 

where we saw yield advantages to ESN application and negative yield gains, differential 

gene expression and manipulation needs to be performed. 

In other sections of the treatment strip, we saw only incremental gains, if any 

advantage at all. The rationale for the minimal yield advantage (or disadvantage) may be 

related to untimely application of nitrogen to Rhizobia termination of nitrogen fixation 

and subsequent senescence. Since growing conditions were dry following ESN 

application, subsoil moisture may have been limited in various site locations, comprising 

the extent to which urea hydrolysis would occur. It can be assumed, as a corollary, that 

less nitrogen was available for plant uptake based upon landscape position (summit). 

Soybean planting and (as a result) growth stage varied across the state in 2014 as a result 

of a later and wetter spring than what southeast South Dakota producers are accustomed 

to. Urea held in an encapsulated nitrogen form requires time for the polymer-coating to 

be broken down and for hydrolysis to take place. If yield advantages were to occur on 

what was believed to be the optimal growth stage to apply nitrogen fertilizer to soybeans, 

the availability of nitrogen to the crop must have been made available soon following 

application and not later than expected. A wide range of growth stage or days following 

germination have been reported, as well as determining Rhizobia senescence or final 

nitrogen fixation period.   

Correlation Analysis 
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 For fields where whole strip soybean yield data was provided, we wished to 

assess how average yield in areas across the strips related to yield differences generated 

from Surfer 11.0 (Golden Company, Golden, CO). If soybean yield potential was low, it 

was reasoned that ESN application may result in incremental yield advantages. Likewise, 

if soybean grain yields were already high, ESN application may not have resulted in yield 

advantages across the treatment strip. Correlation between average yield from the O lbs 

N/acre strip and the 150 lbs N/acre strip were averaged and related to the strip yield 

differences to understand if yield environment played a role in ESN yield increases.  

Results are displayed in Figures 4.2-4.4.  

  

 

Figure 4.2. Average Yield (ESN + No ESN) (bushels/acre) across treatment strips 

reflected across yield differences (bushels/acre) recorded between soybean yield monitor 

data and residual yield data generated from Surfer 11.0. Positive yield differences 

indicate an ESN-associated yield advantage across treatment strip; negative differences 

indicate a yield deterrent from ESN application.  
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Figure 4.3. Average Yield (ESN + No ESN) (bushels/acre) across treatment strips 

reflected across yield differences (bushels/acre) recorded between soybean yield monitor 

data and residual yield data generated from Surfer 11.0. Positive yield differences 

indicate an ESN-associated yield advantage across treatment strip; negative differences 

indicate a yield deterrent from ESN application. 

 

Figure 4.4. Average Yield (ESN + No ESN) (bushels/acre) across treatment strips 

reflected across yield differences (bushels/acre) recorded between soybean yield monitor 

data and residual yield data generated from Surfer 11.0. Positive yield differences 
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indicate an ESN-associated yield advantage across treatment strip; negative differences 

indicate a yield deterrent from ESN application. 

A total of twelve fields were identified for correlation analysis. In 11 of the 12 

fields, an increase in average yield between treatment strip (ESN) and untreated strip (No 

ESN) resulted in yield advantages associated from ESN application. In higher yielding 

areas across the strip, not only were incremental yields attained, but substantial increases 

(>10 bushels/acre) occurred. Along the treatment strip, where the yields were the highest, 

the greatest yield advantage from ESN application occurred. It can be argued that ESN 

applications may be beneficial in high-yielding environments versus lower or stressed 

environments. Conversely, in the lower yielding areas of the ESN treatment strip, ESN-

associated yield decreases did occur, sometimes on the magnitude of 10-20 bushels per 

acre. We attempted to decipher why in fact these yield increases or decreases occurred, 

reasoning that they may be related to topographical position across the strip, or if an 

additional nitrogen supply in a high yielding environment played a role in increasing 

yields. 

Economics to Consider 

 Producers need to carefully weigh income and expenses when considering ESN 

fertilization on soybeans, especially in the face of difficult financial circumstances. If the 

cost per pound of nitrogen is $0.50, applying 75 lbs N acre in the ESN form in the 46-0-0 

(N-P-K) form will require $35 per acre. Application costs can vary based upon machinery 

and labor manpower, and it can be argued that capital costs of owning a spreader will 

need to be ascertained. A producer can decide to have a fertilizer retailer apply the 

product. Typically, costs of application can range from $4-7 per acre. It is reasonable to 
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assume a cooperator may have $40-45 per acre invested in ESN fertilization on soybeans 

if application rates followed what we used in our study. If a producer owns a spinning 

spreader, capital and depreciation needs to be configured. 

 Incomes must be carefully calculated to estimate expected returns to ESN 

fertilization. A composite average of 1-2 bushels per acre advantage to ESN fertilization 

at a cash market price of $9 per bushel would return $9-18 to the producer. Under these 

circumstances, it would be unprofitable to apply ESN on soybeans and would not be a 

recommended best management practice. Since we observed a magnitude of spatial 

variability with ESN yield response, in some portions of the treatment strip where we 

observed 10-20 bushel increase linked to ESN fertilization (toeslope/backslope and 

depressional areas), a grower would reap a benefit of $90-180 per acre in these 

topographical areas (Figures 4.2-4.4). As the correlation analysis indicated, economic 

benefits may occur in higher yielding situations. Likewise, in some flat, level terrain 

areas of the treatment strips, we also encountered yield reductions to the ESN 

fertilization.  

Future Work 

 Researchers need to continue to analyze under what topographical and 

geographical areas producers can expect to see advantages to ESN fertilization since we 

saw spatial variability in yield responses. Focus should also be paid on determining why 

we received yield reductions, incremental yield gains, or substantial yield increases tied 

to ESN fertilization. We hypothesized to what we consider to be the underlying causes to 

these yield responses. Figuring out the Rhizobia nitrogen fixation process and what soil 
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environmental conditions influence the fixation period (when infection initiates, how 

conditions affect rates of nitrogen fixation, and specifying when Rhizobia terminate 

fixation) needs to continue. Under landscape positions where yield gains took place, work 

should be devoted as a rate-study project to determine optimum rates of nitrogen 

fertilization since our work was confined as a pilot program with a universal rate for ESN 

fertilization that did not change across site locations. It appears that this management 

practice is only cost effective at specific sites in the fields. Understanding how soybean 

genomics that may have resulted in yield gains needs to be better understood.  

 Yield responses to nitrogen fertilization can vary based upon soil organic matter 

and nitrate-N levels. In this first year, we did not quantify either. It will be helpful going 

forward to illustrate that since such correlations have been hypothesized in the literature.  

CONCLUSION 

 Our work with supplementing soybeans with nitrogen fertilization in the ESN 

form provided interesting yield results. We observed only incremental gains across a 

composite strip, but discovered substantial gains across varying landscape positions on 

half mile strips in South Dakota, USA. Going forward, we need to study the interactions 

between yield advantages and topographical location and explain under what conditions 

soybeans can be adequately fertilized with nitrogen so as to increase yields towards the 

heralded 100-bushel landmark towards the middle portions of the 21st century.  
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Appendix A 

CHAPTER 1 

EFFECTS OF CORN (Zea Mays L.) STOVER REMOVAL ON SOIL TEST K 

LEVELS IN CONTINUOUS CORN UNDER VARYING MANAGEMENT 

PRACTICES 

 

 INTRODUCTION 

SAS Code 

Code used for assessing soil test values found below in Appendix A.1.  

data test; 
input Plot Block Tr08$ Tr12$ water$ nrate$ till$  res$ ppm08 ppm12 kbal; 
cards; 
 
102 1 NT NTR DRY 0n notill remove313 320 7 
102 1 NT NTR DRY 0n notill remove280 314 34 
401 2 NT NTR DRY 0n notill remove418 324 -94 
401 2 NT NTR DRY 0n notill remove316 375 59 
503 3 NT NTR DRY 0n notill remove349 279 -70 
503 3 NT NTR DRY 0n notill remove343 304 -39 
802 4 NT NTR DRY 0n notill remove287 305 18 
802 4 NT NTR DRY 0n notill remove275 323 48 
102 1 NTM NTM DRY 0n notill retain 313 298 -15 
102 1 NTM NTM DRY 0n notill retain 280 313 33 
401 2 NTM NTM DRY 0n notill retain 316 246 -70 
401 2 NTM NTM DRY 0n notill retain 418 349 -69 
503 3 NTM NTM DRY 0n notill retain 343 277 -66 
503 3 NTM NTM DRY 0n notill retain 349 349 0 
802 4 NTM NTM DRY 0n notill retain 287 309 22 
802 4 NTM NTM DRY 0n notill retain 275 397 123 
102 1 REM R DRY 0n till remove325 257 -68 
102 1 REM R DRY 0n till remove247 339 92 
401 2 REM R DRY 0n till remove297 337 40 
401 2 REM R DRY 0n till remove305 404 99 
503 3 REM R DRY 0n till remove286 320 34 
503 3 REM R DRY 0n till remove308 349 41 
802 4 REM R DRY 0n till remove432 303 -129 
802 4 REM R DRY 0n till remove254 362 108 
102 1 MAIN M  DRY 0n till retain 355 308 -46 
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102 1 MAIN M  DRY 0n till retain 242 305 63 
401 2 MAIN M  DRY 0n till retain 267 131 -136 
401 2 MAIN M  DRY 0n till retain 367 351 -16 
503 3 MAIN M DRY 0n till retain 374 310 -64 
503 3 MAIN M DRY 0n till retain 331 351 20 
802 4 MAIN M  DRY 0n till retain 408 319 -89 
802 4 MAIN M  DRY 0n till retain 186 291 105 
202 1 NT NTR WET 0n notill remove365 274 -91 
202 1 NT NTR WET 0n notill remove287 319 32 
301 2 NT NTR WET 0n notill remove337 316 -20 
301 2 NT NTR WET 0n notill remove272 311 40 
603 3 NT NTR WET 0n notill remove396 327 -70 
603 3 NT NTR WET 0n notill remove357 385 28 
702 4 NT NTR WET 0n notill remove378 336 -41 
702 4 NT NTR WET 0n notill remove295 307 12 
202 1 NTM NTM WET 0n notill retain 365 262 -103 
202 1 NTM NTM WET 0n notill retain 287 316 29 
301 2 NTM NTM WET 0n notill retain 337 257 -80 
301 2 NTM NTM WET 0n notill retain 272 288 16 
603 3 NTM NTM WET 0n notill retain 396 268 -129 
603 3 NTM NTM WET 0n notill retain 357 324 -32 
702 4 NTM NTM WET 0n notill retain 378 254 -124 
702 4 NTM NTM WET 0n notill retain 295 270 -25 
202 1 REM R WET 0n till remove245 190 -55 
202 1 REM R WET 0n till remove289 362 73 
301 2 REM R WET 0n till remove306 304 -2 
301 2 REM R WET 0n till remove163 277 114 
603 3 REM R WET 0n till remove409 399 -10 
603 3 REM R WET 0n till remove323 444 121 
702 4 REM R WET 0n till remove320 287 -33 
702 4 REM R WET 0n till remove312 312 0 
202 1 MAIN M WET 0n till retain 247 303 57 
202 1 MAIN M WET 0n till retain 209 315 106 
301 2 MAIN M  WET 0n till retain 283 254 -29 
301 2 MAIN M  WET 0n till retain 318 391 73 
603 3 MAIN M  WET 0n till retain 389 322 -67 
603 3 MAIN M  WET 0n till retain 389 331 -58 
702 4 MAIN M  WET 0n till retain 427 331 -96 
702 4 MAIN M  WET 0n till retain 274 369 94 
101 1 NT NTR DRY 150n notill remove269 179 -90 
101 1 NT NTR DRY 150n notill remove199 289 90 
403 2 NT NTR DRY 150n notill remove346 266 -80 
403 2 NT NTR DRY 150n notill remove324 261 -63 
502 3 NT NTR DRY 150n notill remove320 185 -135 
502 3 NT NTR DRY 150n notill remove324 321 -3 
801 4 NT NTR DRY 150n notill remove335 187 -148 
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801 4 NT NTR DRY 150n notill remove308 244 -64 
101 1 NTM  NTM DRY 150n notill retain 177 293 116 
101 1 NTM  NTM DRY 150n notill retain 199 329 130 
403 2 NTM NTM DRY 150n notill retain 193 223 30 
403 2 NTM NTM DRY 150n notill retain 324 261 . 
503 3 NTM NTM DRY 150n notill retain 324 309 -15 
503 3 NTM NTM DRY 150n notill retain 118 198 80 
801 4 NTM NTM DRY 150n notill retain 308 293 -15 
801 4 NTM NTM DRY 150n notill retain 262 252 -10 
101 1 REM R DRY 150n till remove304 192 -112 
101 1 REM R DRY 150n till remove287 340 53 
403 2 REM R DRY 150n till remove344 330 -14 
403 2 REM R DRY 150n till remove172 356 184 
502 3 REM R DRY 150n till remove225 201 -24 
502 3 REM R DRY 150n till remove265 335 70 
801 4 REM R DRY 150n till remove343 372 29 
801 4 REM R DRY 150n till remove156 208 52 
101 1 MAIN M  DRY 150n till retain 319 319 0 
101 1 MAIN M  DRY 150n till retain 299 331 32 
403 2 MAIN M  DRY 150n till retain 358 251 -107 
403 2 MAIN M  DRY 150n till retain 231 301 71 
502 3 MAIN M  DRY 150n till retain 339 346 7 
502 3 MAIN M  DRY 150n till retain 346 363 17 
801 4 MAIN M  DRY 150n till retain 317 329 12 
801 4 MAIN M  DRY 150n till retain 258 341 83 
201 1 NT NTR WET 150n notill remove325 184 -141 
201 1 NT NTR WET 150n notill remove310 204 . 
303 2 NT NTR WET 150n notill remove332 197 -136 
303 2 NT NTR WET 150n notill remove347 292 -55 
602 3 NT NTR WET 150n notill remove360 313 -47 
602 3 NT NTR WET 150n notill remove343 333 -10 
701 4 NT NTR WET 150n notill remove348 251 -97 
701 4 NT NTR WET 150n notill remove324 382 58 
201 1 NTM NTM WET 150n notill retain 325 165 -161 
201 1 NTM NTM WET 150n notill retain 310 204 -105 
303 2 NTM  NTM WET 150n notill retain 332 342 9 
303 2 NTM  NTM WET 150n notill retain 347 392 45 
602 3 NTM  NTM WET 150n notill retain 360 249 -111 
602 3 NTM  NTM WET 150n notill retain 343 309 -34 
701 4 NTM  NTM WET 150n notill retain 348 332 -17 
701 4 NTM  NTM WET 150n notill retain 324 314 -10 
201 1 R R WET 150n till remove297 311 15 
201 1 R R WET 150n till remove. 178 . 
303 2 R R WET 150n till remove341 248 -93 
303 2 R R WET 150n till remove298 315 17 
602 3 R R WET 150n till remove361 303 -58 
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602 3 R R WET 150n till remove363 309 -54 
701 4 R R WET 150n till remove192 191 -1 
701 4 R R WET 150n till remove298 359 62 
201 1 MAIN M  WET 150n till retain 301 302 1 
201 1 MAIN M  WET 150n till retain . 193 . 
303 2 MAIN M  WET 150n till retain 290 293 2 
303 2 MAIN M  WET 150n till retain 187 338 152 
602 3 MAIN M  WET 150n till retain 346 391 45 
602 3 MAIN M  WET 150n till retain 232 374 142 
701 4 MAIN M  WET 150n till retain 337 329 -8 
701 4 MAIN M  WET 150n till retain 299 333 34 
103 1 NT NTR DRY 75n notill remove303 278 -25 
103 1 NT NTR DRY 75n notill remove386 364 -22 
402 2 NT NTR DRY 75n notill remove264 162 -101 
402 2 NT NTR DRY 75n notill remove292 251 -40 
501 3 NT NTR DRY 75n notill remove298 262 -37 
501 3 NT NTR DRY 75n notill remove240 344 104 
803 4 NT NTR DRY 75n notill remove306 277 -29 
803 4 NT NTR DRY 75n notill remove323 295 -28 
103 1 NT NTM DRY 75n notill retain 386 382 -4 
103 1 NT NTM DRY 75n notill retain 303 350 47 
402 2 NT NTM DRY 75n notill retain 264 299 35 
402 2 NT NTM DRY 75n notill retain 292 358 66 
501 3 NT NTM DRY 75n notill retain 298 279 -19 
501 3 NT NTM DRY 75n notill retain 240 256 16 
803 4 NT NTM DRY 75n notill retain 323 280 -43 
803 4 NT NTM DRY 75n notill retain 306 345 39 
103 1 REM R DRY 75n till remove250 253 3 
103 1 REM R DRY 75n till remove259 278 19 
402 2 REM R DRY 75n till remove254 180 -74 
402 2 REM R DRY 75n till remove272 261 -11 
501 3 REM R DRY 75n till remove238 225 -13 
501 3 REM R DRY 75n till remove212 337 126 
803 4 REM R DRY 75n till remove360 249 -112 
803 4 REM R DRY 75n till remove. 345 . 
103 1 MAIN M DRY 75n till retain 292 284 -8 
103 1 MAIN M DRY 75n till retain 269 362 93 
402 2 MAIN M DRY 75n till retain 320 317 -3 
402 2 MAIN M DRY 75n till retain 271 275 4 
501 3 MAIN M DRY 75n till retain 236 254 18 
501 3 MAIN M DRY 75n till retain 225 268 43 
803 4 MAIN M DRY 75n till retain 275 232 -42 
803 4 MAIN M DRY 75n till retain 185 238 54 
203 1 NT NTR WET 75n notill remove426 245 -181 
203 1 NT NTR WET 75n notill remove274 249 -24 
302 2 NT NTR WET 75n notill remove276 253 -23 
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302 2 NT NTR WET 75n notill remove256 246 -10 
601 3 NT NTR WET 75n notill remove280 265 -15 
601 3 NT NTR WET 75n notill remove329 325 -4 
703 4 NT NTR WET 75n notill remove340 251 -89 
703 4 NT NTR WET 75n notill remove273 268 -5 
203 1 NTM  NTM WET 75n notill retain 426 233 . 
203 1 NTM  NTM WET 75n notill retain 274 266 -8 
302 2 NTM  NTM WET 75n notill retain 256 248 -8 
302 2 NTM  NTM WET 75n notill retain 276 345 69 
601 3 NTM  NTM WET 75n notill retain 329 250 -79 
601 3 NTM  NTM WET 75n notill retain 280 257 -22 
703 4 NTM  NTM WET 75n notill retain 340 259 -81 
703 4 NTM  NTM WET 75n notill retain 273 272 -1 
203 1 REM R WET 75n till remove300 255 -45 
203 1 REM R WET 75n till remove. 309 . 
302 2 REM R WET 75n till remove297 237 -60 
302 2 REM R WET 75n till remove215 260 45 
601 3 REM R WET 75n till remove255 295 40 
601 3 REM R WET 75n till remove186 262 76 
703 4 REM R WET 75n till remove360 316 -44 
703 4 REM R WET 75n till remove212 238 26 
203 1 M  M  WET 75n till retain 242 276 34 
203 1 M  M  WET 75n till retain 245 328 83 
302 2 MAIN M WET 75n till retain 246 250 4 
302 2 MAIN M WET 75n till retain 264 364 100 
601 3 MAIN M WET 75n till retain 325 231 -94 
601 3 MAIN M WET 75n till retain 340 269 -71 
703 4 MAIN M WET 75n till retain 371 296 -75 
703 4 MAIN M WET 75n till retain 272 229 -43 
 
 
run;*/quit; 
 
proc glm data=test; 
 title rate water till res (water main plot, nrate subplot, split plot) proc glm linear model; 
class nrate water till res block; 
model ppm12 = nrate water till res  
  nrate*water nrate*till nrate*res 
  water*till water*res 
  till*res 
  water*nrate*till 
  water*nrate*till*res 
  block block*water block*nrate block*till block*res 
  block*water*nrate block*water*nrate*till; 
random block block*water block*nrate block*till block*res block*water*nrate 
block*water*nrate*till; 
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test h=water e=block*water; 
test h=nrate e=block*nrate*water; 
test h=nrate*water e=block*nrate*water; 
test h=till  e=block*nrate*water*till; 
test h=nrate*till e=block*nrate*water*till; 
test h=water*till e=block*nrate*water*till; 
test h=water*nrate*till e=block*nrate*water*till; 
/*lsmeans nrate/ pdiff; 
lsmeans water/pdiff; */ 
means nrate/lsd; 
means nrate*res/lsd; 
means water/lsd; 
means water*res/lsd; 
means till/lsd; 
means res/lsd; 
means nrate*water/lsd; 
means nrate*till/lsd; 
means water*till/lsd; 
means till*res/lsd; 
means nrate*water*till/lsd; 
run; 

quit; 

SAS code used for assessing corn grain yields between years provided below in 

Appendix A.2. 

data test; 
input Plot Block Tr08$ Tr12$ water$ nrate$ till$  res$ ppm08 ppm12 kbal; 
cards; 

102 1 NTR  NTR DRY  0n notill remove127.7 107.3 -20.4 
401 2 NTR  NTR DRY  0n notill remove97.1 73.5 -23.6 
503 3 NTR  NTR DRY  0n notill remove132.2 110.4 -21.9 
802 4 NTR  NTR DRY  0n notill remove94.7 88.3 -6.4 
102 1 NTR  NTM DRY  0n notill retain 127.7 106.2 -21.5 
401 2 NTR  NTM DRY  0n notill retain 97.1 94.6 -2.6 
503 3 NTR  NTM DRY  0n notill retain 132.2 105.7 -26.5 
802 4 NTR  NTM DRY  0n notill retain 94.7 105.3 10.5 
102 1 R R DRY  0n tilled remove135.8 104.4 -31.4 
401 2 R R DRY  0n tilled remove102.6 93.7 -8.8 
503 3 R R DRY  0n tilled remove156.4 100.2 -56.2 
802 4 R R DRY  0n tilled remove101.0 99.9 -1.1 
102 1 MAIN MAIN DRY  0n tilled retain 97.2 112.5 15.3 
401 2 MAIN MAIN DRY  0n tilled retain 88.9 116.4 27.5 
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503 3 MAIN MAIN DRY  0n tilled retain 135.8 126.2 -9.6 
802 4 MAIN MAIN DRY  0n tilled retain 104.8 111.2 6.3 
202 1 NTR  NTR WET 0n notill remove150.0 145.8 -4.3 
301 2 NTR  NTR WET 0n notill remove144.6 136.7 -7.8 
603 3 NTR  NTR WET 0n notill remove161.3 139.3 -22.0 
702 4 NTR  NTR WET 0n notill remove144.3 133.5 -10.8 
202 1 NTR  NTM WET 0n notill retain 150.0 137.4 -12.6 
301 2 NTR  NTM WET 0n notill retain 144.6 137.2 -7.4 
603 3 NTR  NTM WET 0n notill retain 161.3 141.4 -19.9 
702 4 NTR  NTM WET 0n notill retain 144.3 144.7 0.4 
202 1 R  R  WET 0n tilled remove173.1 132.6 -40.5 
301 2 R  R  WET 0n tilled remove166.1 145.4 -20.7 
603 3 R  R  WET 0n tilled remove152.0 115.0 -37.0 
702 4 R  R  WET 0n tilled remove161.0 118.1 -42.9 
202 1 MAIN MAIN WET 0n tilled retain 170.3 159.5 -10.8 
301 2 MAIN MAIN WET 0n tilled retain 103.1 116.8 13.7 
603 3 MAIN MAIN WET 0n tilled retain 142.1 139.3 -2.9 
702 4 MAIN MAIN WET 0n tilled retain 134.4 145.7 11.3 
101 1 NTR  NTR DRY  150n notill remove19.1 140.5 121.5 
403 2 NTR  NTR DRY  150n notill remove187.0 184.0 -3.0 
502 3 NTR  NTR DRY  150n notill remove183.2 147.7 -35.5 
801 4 NTR  NTR DRY  150n notill remove166.7 149.6 -17.1 
101 1 NTR  NTM DRY  150n notill retain 19.1 134.9 115.8 
403 2 NTR  NTM DRY  150n notill retain 187.0 159.4 -27.6 
502 3 NTR  NTM DRY  150n notill retain 183.2 138.2 -44.9 
801 4 NTR  NTM DRY  150n notill retain 166.7 159.6 -7.1 
101 1 R  R  DRY  150n tilled remove173.4 120.4 -53.0 
403 2 R  R  DRY  150n tilled remove174.4 180.7 6.3 
502 3 R  R  DRY  150n tilled remove213.0 151.5 -61.5 
801 4 R  R  DRY  150n tilled remove179.2 154.3 -24.9 
101 1 MAIN MAIN DRY  150n tilled retain 165.2 169.5 4.2 
403 2 MAIN MAIN DRY  150n tilled retain 184.3 162.9 -21.3 
502 3 MAIN MAIN DRY  150n tilled retain 181.8 161.5 -20.3 
801 4 MAIN MAIN DRY  150n tilled retain 182.7 157.5 -25.2 
201 1 NTR  NTR WET 150n notill remove227.1 159.6 -67.5 
303 2 NTR  NTR WET 150n notill remove236.5 195.3 -41.3 
602 3 NTR  NTR WET 150n notill remove219.7 190.4 -29.3 
701 4 NTR  NTR WET 150n notill remove235.2 161.6 -73.7 
201 1 NTR  NTM WET 150n notill retain 227.1 171.0 -56.0 
303 2 NTR  NTM WET 150n notill retain 236.5 178.6 -57.9 
602 3 NTR  NTM WET 150n notill retain 219.7 194.4 -25.3 
701 4 NTR  NTM WET 150n notill retain 235.2 173.1 -62.1 
201 1 R  R  WET 150n tilled remove249.6 146.3 -103.3 
303 2 R  R  WET 150n tilled remove229.4 168.0 -61.4 
602 3 R  R  WET 150n tilled remove223.0 150.8 -72.2 
701 4 R  R  WET 150n tilled remove205.6 149.4 -56.2 
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201 1 MAIN MAIN WET 150n tilled retain 202.3 179.9 -22.3 
303 2 MAIN MAIN WET 150n tilled retain 200.1 181.5 -18.6 
602 3 MAIN MAIN WET 150n tilled retain 227.2 177.2 -50.0 
701 4 MAIN MAIN WET 150n tilled retain 222.5 186.4 -36.0 
103 1 NTR  NTR DRY  75n notill remove190.6 148.2 -42.4 
402 2 NTR  NTR DRY  75n notill remove136.9 129.7 -7.2 
501 3 NTR  NTR DRY  75n notill remove143.8 131.7 -12.1 
803 4 NTR  NTR DRY  75n notill remove160.6 141.5 -19.1 
103 1 NTR  NTM DRY  75n notill retain 190.6 148.6 -42.0 
402 2 NTR  NTM DRY  75n notill retain 136.9 162.8 25.9 
501 3 NTR  NTM DRY  75n notill retain 143.8 140.5 -3.3 
803 4 NTR  NTM DRY  75n notill retain 160.6 141.6 -18.9 
103 1 R  R  DRY  75n tilled remove186.3 144.3 -42.0 
402 2 R  R  DRY  75n tilled remove161.2 146.4 -14.9 
501 3 R  R  DRY  75n tilled remove164.1 144.4 -19.7 
803 4 R  R  DRY  75n tilled remove179.3 127.1 -52.2 
103 1 MAIN MAIN DRY  75n tilled retain 167.8 111.5 -56.4 
402 2 MAIN MAIN DRY  75n tilled retain 170.7 152.9 -17.8 
501 3 MAIN MAIN DRY  75n tilled retain 169.8 124.3 -45.5 
803 4 MAIN MAIN DRY  75n tilled retain 166.5 137.3 -29.2 
203 1 NTR  NTR WET 75n notill remove222.2 195.5 -26.7 
302 2 NTR  NTR WET 75n notill remove197.4 160.8 -36.6 
601 3 NTR  NTR WET 75n notill remove203.9 160.1 -43.8 
703 4 NTR  NTR WET 75n notill remove209.1 191.9 -17.2 
203 1 NTR  NTM WET 75n notill retain 222.2 179.4 -42.8 
302 2 NTR  NTM WET 75n notill retain 197.4 155.1 -42.4 
601 3 NTR  NTM WET 75n notill retain 203.9 201.7 -2.2 
703 4 NTR  NTM WET 75n notill retain 209.1 184.1 -24.9 
203 1 R  R  WET 75n tilled remove202.0 150.7 -51.2 
302 2 R  R  WET 75n tilled remove214.3 155.1 -59.3 
601 3 R  R  WET 75n tilled remove214.1 142.7 -71.3 
703 4 R  R  WET 75n tilled remove228.4 163.5 -64.9 
203 1 MAIN MAIN WET 75n tilled retain 201.4 171.0 -30.5 
302 2 MAIN MAIN WET 75n tilled retain 219.3 165.6 -53.7 
601 3 MAIN MAIN WET 75n tilled retain 189.5 177.6 -11.9 
703 4 MAIN MAIN WET 75n tilled retain 220.6 182.1 -38.5 
 
 
 
run;*/ 
; 
run ; 
 
proc glm data=test; 
 title rate water till res (watere main plot, nrate subplot, split plot) proc glm linear model; 
class nrate water till res block; 
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model ppm12 = nrate water till res  
  nrate*water nrate*till nrate*res 
  water*till water*res 
  till*res 
  water*nrate*till 
  water*nrate*till*res 
  block block*water block*nrate block*till block*res 
  block*water*nrate block*water*nrate*till; 
random block block*water block*nrate block*till block*res block*water*nrate 
block*water*nrate*till; 
test h=water e=block*water; 
test h=nrate e=block*nrate*water; 
test h=nrate*water e=block*nrate*water; 
test h=till  e=block*nrate*water*till; 
test h=nrate*till e=block*nrate*water*till; 
test h=water*till e=block*nrate*water*till; 
test h=water*nrate*till e=block*nrate*water*till; 
/*lsmeans nrate/ pdiff; 
lsmeans water/pdiff; */ 
means nrate/lsd; 
means nrate*res/lsd; 
means water/lsd; 
means water*res/lsd; 
means till/lsd; 
means res/lsd; 
means nrate*water/lsd; 
means nrate*till/lsd; 
means water*till/lsd; 
means till*res/lsd; 
means nrate*water*till/lsd; 
run; 
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Appendix B 

CHAPTER 2 

SOYBEAN Glycine max(L) Merrill) YIELD RESPONSE WITH K+ 

FERTILIZATION FOLLOWING CONSECUTIVE YEARS OF CORN (Zea mays 

L.) STOVER REMOVAL IN SOUTH DAKOTA, USA 

 

Introduction 

Meteorological Data 

 

Figure B.1. 11-year average and 2014 growing season precipitation (inches) at Eggleston, 

Hand County, and Beadle County sites.  
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Figure B.2. 11-year average and 2014 growing degree day accumulations (GDD)(degrees 

C) at Eggleston, Hand County, and Beadle County sites. 

 

Figure B.3. 30-year average and 2014 growing season precipitation (inches) for Roscoe 

site. 
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Figure B.4. 30-year average and 2014 growing degree day accumulations (GDD)(degrees 

C) at Roscoe site. 

 

Figure B.5. 30-year average and 2014 growing season precipitation (inches) for Bath site. 
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Figure B.6. 30-year average and 2014 growing degree day accumulations (GDD)(degrees 

C) at Bath site.  

Due to their close proximity between site locations (within 20 miles of each field), 

a single precipitation and temperature chart was displayed for the ‘Eggleston,’ ‘Hand 

County,’ and ‘Beadle County’ farms. Early season precipitation was above the 11-year 

average for these sites with May 2014 rainfall as 0.16 inches above the average. Rainfall 

increased 6.54 inches in June 2014, which was 2.77 inches above the normal average. 

During the critical months for vegetative and reproductive growth, precipitation leveled 

off with the average, 0.04 inches above for August 2014. As harvest commenced, the 

region fell dramatically behind the 11-year average of 17.66 inches with only receiving a 

total of 13.06 inches of rainfall during the year (Figure B.3). A twelve year average was 

computed instead of a 30-year average for these locations since irregular and possible 

inaccurate data was presented from the nearest weather stations that computed 30-year 

averages for each location. Instead, data that was highly consistent with other locations 

and deemed reliable was found in a 12-year average. The Bath and Roscoe site locations 
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received rainfall on par with the 30-year average, though conditions were drier during the 

June-early July months, but late season rainfalls during the reproductive stages of 

soybean development (Figure B.3 and B.5).  

Growing degree days are calculated in soybean production to estimate plant 

growth stage. At the Hand, Beadle, and Eggleston locations, growing degree days 

consistently followed a similar trend toward the 30-year average for growing degree day 

accumulation (Figure 3.11). Sentiment that was used to compute the 12-year average as 

determined above was used again in a similar capacity. A similar trend was noted at the 

Bath and Roscoe locations (Figures 3.5 and 3.7). Since growing degree days are a 

function of high and low temperatures, it can be assumed that temperatures accurately 

reflected the 30-year average. While increases in temperature may signify higher rates of 

plant growth and development, a failure to accumulate rainfall will diminish plant 

productivity. When rainfall is too abundant, delayed soybean productivity can occur as a 

result of  

Site Characteristics 

 The first was located in Beadle County, South Dakota, near Eggleston, SD, called 

the ‘Eggleston’ farm. The field is located at 44.294807, -98.503139. The dominant soil 

types are Betts stony loam with 6-40% slope (0.01 acres), Houdek-Ethan loams with 6-

9% slopes (6.062 acres), and Houdek-Prosper loams with 1-6% slopes (5.5 acres) (Figure 

3.1). The crop productivity index ratings ranged from 55-84 for the plot area. The 

previous crop was corn and had an extensive history of corn stover of at least three 

consecutive years. The crop sown in 2014 was soybeans following the broadcast 
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application of 250 lbs K/acre on May 1st. Soil sampling occurred on June 4, 2014 during 

the V1 (Hanway, 1963) growth stage (Figure 3.2). Crop harvest took place in early 

October 2014. Soil samples were taken every 100-feet outside of the plot following 

application where no K+ drift had occurred in order to estimate approximate K+ soil 

concentrations before application occurred. Laboratory analysis followed the ammonium 

acetate extraction method to estimate exchangeable K+.  

The second field analyzed was also in Beadle County, South Dakota, near 

Wosley, SD, named ‘Beadle’ farm. The field is located at 44.525778, -98.769420. The 

dominant soil types are Houdek loam with undulating slopes (1.3 acres), Houdek-Prosper 

loams with 0-2% slope (9.1 acres), and Tetonka silt loam (1.8 acres). Soil classification 

map is provided in Figure 3.4. The field has a crop productivity index of 57 to 88. The 

field had an extensive history of corn stover removal and the previous crop was corn. The 

crop sown in 2014 was soybeans following the broadcast application of 250 lbs K/acre on 

May 1st. Crop harvest took place in early October 2014. Soil sampling occurred on June 

4, 2014 during the V1 (Hanway, 1963) growth stage. The field was left no-till. Initial soil 

samples were taken during the V2 growth stage to quantify early season soil test K 

values. Extraction followed similar protocols as with other fields. Results of the sampling 

are provided in Figure 3.5. 

A third site location was in Hand County, SD, near Wosley, SD, named ‘Hand’ 

farm. The site is located at 44.631559, -98.155530. The dominant soil types were 

Carthage fine sandy loam with 0-2% slopes (1.8 acres), Carthage-Blendon fine sandy 

loams with 0-2% slopes (3.3 acres), Hand-Bonilla loams with 0-3% slopes (1.6 acres), 

and Hoven silt loam (0.7 acres) (Figure 3.7). Crop productivity index ratings ranged from 
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15 to 85. The field previously had corn sown, and an extensive history of stover removal 

had taken place. The crop sown in 2014 was soybeans following the broadcast 

application of 250 lbs K/acre on May 1st. Soil sampling occurred on June 4, 2014 during 

the V1 (Hanway, 1963) growth stage. Crop harvest took place in early October 2014. 

Initial spring soil samples were taken during the V2 (Hanway, 1973) growth stage along 

the parameter of the plot to quantify early season soil test K values. 

A fourth field was located near Bath, South Dakota, in Brown County, named 

‘Bath’ farm. The site location was 45.556258, -98.304250. The predominant soil type is a 

Great Bend-Beotia silt loam with 0 to 2 percent slope encompassing the entire plot area 

(Figure 3.9). The crop productivity index for the treatment area is 95. The field was no-

tilled and had an extensive history of corn stover removal. Corn was the previous crop 

and soybeans were the main crop in 2014. The crop sown in 2014 was soybeans 

following the broadcast application of 250 lbs K/acre on May 1st. Crop harvest took 

place in early October 2014. Soil sampling occurred on June 4, 2014 during the V1 

(Hanway, 1963) growth stage. Croplan 1400 soybeans were planted at 155,000 

seeds/acre. Initial soil test K values were estimated by sampling outside of the plot area 

(Figure 3.10) and extracted through the ammonium acetate method. Results of soil 

sampling are shown in Figure 3.11. A fifth farm was conducted near Roscoe, South 

Dakota, in Edmunds County called the ‘Roscoe’ field. The field is located at 45.415, -

99.6776 and has a crop productivity index that ranges from 47 to 83 across the treatment 

area. The dominant soil types are Lehr loam with 0-2% (1.31 acres), Lehr loam with 2-6 

percent slopes (0.53 acres), Vida-Zahl loams with 6-9% slopes (0.27 acres), Williams-

Bowbells loams with 3-6% slopes (1.80 acres). Asgrow (Monsanto Company, St. Louis, 
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MO, USA) 1431 soybeans were planted at 180,000 seeds per acre following the 

broadcast application of 250 lbs K/acre on May 1st, 2014. Crop harvest took place in 

early October 2014. Soil sampling occurred on June 4, 2014 during the V1 (Hanway, 

1963) growth stage (Figure 3.2). 

 

Figure B.8. Soil type and classification map derived from Web Soil Survey for 

‘Eggleston’ farm 
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Figure B.9. Soil type and classification map derived from Web Soil Survey for ‘Hand’ 

farm 
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Figure B.10. Soil type and classification map derived from Web Soil Survey for ‘Beadle’ 

farm 

 

Figure B.11. Soil type and classification map derived from Web Soil Survey for ‘Bath’ 

farm.  
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Figure B.12. Soil type and classification map derived from Web Soil Survey for ‘Roscoe’ 

farm 

Early Season Soil Sampling Points 
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Figure B.13. Map layout of “Eggleston’ farm depicting the plot area in green polygon 

with initial soil sampling points taken following emergence (June 4, 2014). 

 

Figure B.14. Map layout of ‘Bath’ farm depicting the plot area in green polygon with 

initial soil sampling points taken following emergence (June 5, 2014). 
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Figure B.15. Map layout of ‘Hand’ farm depicting the plot area in green polygon with 

initial soil sampling points taken following emergence (June 4, 2014). 
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Figure B.16. Map layout of ‘Beadle’ farm with initial soil sampling points taken 

following emergence (June 4, 2014). 

 

Figure B.17. Map layout of ‘Roscoe’ farm with initial soil sampling points taken 

following emergence (June 4, 2014). 

 

Late Season Soil Sampling Points 
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Figure B.18. Soil sampling points used at ‘Eggleston’ field for the end of season soil 

sampling points (August 16, 2014).  
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Figure B.19. Soil sampling points used at ‘Hand’ field for the end of season soil sampling 

points (August 16, 2014). 

 

Figure B.20. Soil sampling points used at ‘Bath’ field for the end of season soil sampling 

points (April 14, 2015). 
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Figure B.21. Soil sampling points used at ‘Beadle’ field for the end of season soil 

sampling points (April 14, 2015). 
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Figure B.22. Soil sampling points used at ‘Roscoe’ field for the end of season soil 

sampling points (April 14, 2015). 

 

Spring Soil Test K Results 

 

Figure B.23. Graphical representation of approximate spring soil test K levels at V2 leaf 

stage in ‘Eggleston’ farm near Eggleston, SD. 
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Figure B.24. Graphical representation of approximate spring soil test K levels at V2 leaf 

stage in ‘Hand’ farm near Wosley, SD. 
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Figure B.25. Graphical representation of approximate spring soil test K levels at V2 leaf 

stage in ‘Beadle’ farm near Wosley, SD. 

  

Figure B.26. Graphical representation of approximate spring soil test K levels at V2 leaf 

stage in ‘Roscoe’ farm near Roscoe, SD. 
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Figure B.27. Graphical representation of approximate spring soil test K levels at V2 leaf 

stage in ‘Bath farm near Bath, SD. 

Early season soil sampling results at ‘Eggleston’ farm revealed exceptionally high 

levels of exchangeable K. The plot average tested at 370 parts per million (ppm) with 

some localities reaching in excess of 500 ppm along the southern portions of the plot. The 

lowest regions tested at 198-226 parts per million of exchangeable K, still suggesting a 

plethora of plant-available potassium for uptake (Figure 3.3).  

The ‘Beadle’ County farm had the lowest exchangeable K levels as the plot 

average was 260 parts per million, only climbing to over 400 parts per million in certain 

localities, and only decreasing to 141-170 parts per million nearest the eastward end rows 

(Figure 3.9).  

The ‘Hand’ farm achieved exchangeable potassium levels on a plot average of 

375 parts per million. Values increased in areas nearest the farm site of 554 parts per 
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million, but decreased to 263 parts per million on the western portions of plot (Figure 

3.6). The explanation for the highest soil test K values along the farm site is the 

possibility of repeated manure applications onto soil locations surrounding the farm.  

The ‘Bath’ farm tested, on average, exchangeable K values that surpassed 600 

parts per million, reaching 630 parts per million, the highest for exchangeable K that 

which we studied. The highest K levels were recorded across the western half of the field 

of 650-735 parts per million. The lowest values were 487-519 parts per million along the 

eastern part of the field. Astonishingly, the highest recorded potassium reading was 1040 

ppm.  

The ‘Roscoe’ field followed a similar trend with soil test K levels among the other 

fields we analyzed. The minimum soil PPM reading was 195 and the highest was 722 

ppm, averaging 390 ppm K. The field had a pivot irrigation system, and soil test K levels 

varied considerably from 174 ppm to 333 ppm K within 128 feet along the western area 

of the plot that was irrigated. The eastern plot area of the strip did not vary in K levels as 

considerably.  

Initial soil sampling supports Fixen et al (2010) who proposed the average soil 

test K values in South Dakota of 247 ppm K. No field tested lower than an average of 

260 ppm K. However, certain locations in fields tested below 247 and even reached 

depths of 140 ppm K, suggesting possible soybean yield responses to K fertilization.  

Interpolated Spring Soil Test K Results 

The ‘Beadle’ County farm had the lowest exchangeable K levels of all locations 

with the plot average of 258 parts per million with a standard deviation of 91 ppm K. 
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Certain elevation and landscape positions varied with soil K levels. The Hand soil types 

with 0-3% elevation tested between 231-364 ppm K while similar soil types with a 0-2% 

grade tested between 174 to 336 ppm K. Drainage class characteristics showed a similar 

trend between K differences as did the elevation classes.  

The ‘Hand’ farm achieved exchangeable potassium levels on a plot average of 

361 parts per million with a standard deviation of 88 ppm K. Values increased in areas 

nearest the farm site of 454-500 parts per million K, but decreased to 195-294 parts per 

million on the western portions of plot (Figure 3.6). No differences in drainage class or 

elevation occurred along the strip. The explanation for the highest soil test K values along 

the farm site is the possibility of repeated manure applications onto soil locations 

surrounding the farm.  

The ‘Eggleston’ farm tested, on average, exchangeable K values that surpassed 

393 ppm soil test K values with a standard deviation of 79 ppm K. The minimum soil test 

K value was 288 ppm K and the highest value was 504 ppm. While the northern sampling 

points did not vary considerably, the middle plot sampling points did vary, with values 

near 288-420 ppm K within 200 feet of points. This may be due to differences in 

elevation since STK levels were lower in the shoulder and summit regions (8% grade) of 

the strip than with lower (4%) grade in the flat regions.   

The ‘Roscoe’ field followed a similar trend with soil test K levels among the other 

fields we analyzed. The minimum soil test K value was 231 ppm and the maximum value 

was 620 ppm. On average, the plot tested at 391 ppm K. Approximately half way across 

the strip (1258 feet), a pivot irrigation system is installed and used. On the first 1258 feet 
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of the field, the soil test values ranged from 231-330 ppm, but on the second 1258 feet of 

the treatment plot, the values soared from 432-620 ppm K. Elevation did not vary across 

the strip, but STK levels were consistently higher (445-620 ppm K) in the well-drained 

soils than in the ‘somewhat excessively’ wet drainage class (231-409 ppm K).  

The ‘Bath’ field had an average K-fertilization strip soil test K levels of 629 ppm 

and a standard deviation of 91 ppm K, climbing to 805 ppm in some locations and 

dipping down to 460 ppm K. The lowest soil test K levels were recorded across the 

eastern portion of the field (similar to values received on the 0 lbs K2O/acre strip. 

Likewise, highest values (680-800 ppm K) were seen on the western stretches of the plot. 

In many cases, there were similar trends and values between K-strip soil test K values 

and sampling points outside of the treatment plot. Drainage and elevation did not appear 

to affect soil test K levels as neither deviated from ‘well’ or ‘1%,’ respectively.  
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Figure B.28. Graphical representation of approximate interpolated spring soil test K 

levels at ‘Hand’ farm near Wosley, SD, on June 4, 2015. 

 

 

Figure B.29. Graphical representation of approximate interpolated spring soil test K 

levels at ‘Bath’ farm near Bath, SD, on June 5, 2015. 
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Figure B.30. Graphical representation of approximate interpolated spring soil test K 

levels at ‘Eggleston’ farm near Eggleston, SD, on June 4, 2015. 
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Figure B.31. Graphical representation of approximate interpolated spring soil test K 

levels at ‘Roscoe’ farm near Bath, SD, on June 4, 2015. 

 

 

Figure B.32. Graphical representation of approximate interpolated spring soil test K 

levels at Beadle farm near Wosley, SD, on June 4, 2015. 

 

Fall Soil Test K Levels 

Final soil sampling results at ‘Eggleston’ farm revealed exceptionally high levels 

of exchangeable K. The plot average tested at 302 parts per million (ppm) with some 

localities reaching in excess of 400 ppm along the southern portions of the plot. The 

lowest regions tested at 188-230 parts per million of exchangeable K, still suggesting a 

plethora of plant-available potassium for uptake (Figure 3.3). K values were similar to 

those seen in the spring since only 155 lbs K2O/acre was applied and not the intended 

application rate.  
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The ‘Beadle’ County farm had the lowest exchangeable K levels as the plot 

average was 481 parts per million, only climbing to over 530 parts per million in certain 

localities. The lowest values for the strip were recorded at 336 ppm (Figure 3.9).  

The ‘Hand’ farm achieved exchangeable potassium levels on a plot average of 

513 parts per million. Values increased in areas nearest the farm site of 471-644 parts per 

million, but decreased to 263 parts per million on the western portions of plot (Figure 

3.6). The explanation for the highest soil test K values along the farm site is the 

possibility of repeated manure applications onto soil locations surrounding the farm.  

The ‘Roscoe’ farm tested, on average, exchangeable K values that surpassed 779 

ppm along the potassium treatment strip. The lowest values were recorded along the 

eastern portions of the field, approaching 600-650 ppm K. Highest values were 993 ppm 

K.  The ‘Roscoe’ field followed a similar trend with soil test K levels among the other 

fields we analyzed. The minimum soil PPM reading was 364 and the highest was 906 

ppm, averaging 573 ppm K. A similar trend for K variability noted from the spring was 

seen the fall as soil test K levels varied considerably from 364 to 572 ppm K within 128 

feet along the western area of the plot that was irrigated. The eastern plot area of the strip 

did not vary K levels as considerably, similar to spring. 
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Figure B.33. Graphical representation of approximate fall soil test K levels at R5 growth 

stage in ‘Eggleston’ farm near Eggleston, SD on August 16, 2014. 
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Figure B.34. Graphical representation of approximate fall soil test K levels at R5 growth 

stage in ‘Hand’ farm near Wosley, SD on August 16, 2014. 

 

 

Figure B.35. Graphical representation of approximate fall soil test K levels at ‘Bath’ farm 

near Bath, SD, on April 14, 2015. 
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Figure B.36. Graphical representation of approximate fall soil test K levels in ‘Beadle’ 

farm near Wosley, SD, on April 14, 2015. 
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Figure B.37. Graphical representation of approximate fall soil test K levels in ‘Roscoe’ 

farm near Roscoe, SD, on April 14, 2015. 

 

2014 In-seasonal Soil Test K Differences Along K-Applied Strip 

The ‘Bath’ field had an average soil test difference of 175 ppm, outlining that 

spring potash fertilizer dramatically increased soil test K levels. At the very maximum, 

spatial points attained values near 380 ppm, but also saw some localities experiencing a 

negative result at a high of -90 ppm. The negative differences were recorded on the first 

300 feet of the fertilization strip while positive differences occurred throughout the center 

and eastern portions of the field. 

The ‘Eggleston’ field had the lowest gains from potash fertilizer, experiencing 

losses (negative differences) throughout every sampling point across the strip. The lowest 

negative difference was -19 ppm while the highest loss occurred at -175 ppm, averaging 

across the strip at -99 ppm. The losses were equally spatially placed across the strip and 

can be attributed to miscommunication since only 250 lbs 0-0-62 per acre was applied 

(155 lbs K2O/acre). 

The ‘Roscoe’ field gained appreciable soil test K levels as the average gain 

attributed to K fertilization was 204 ppm. The range of gain varied from 73 to 441 ppm. 

Gains occurred all across the strip. 

The ‘Hand’ farm received soil test K increases of 181 ppm across the field. 

Maximum gains were 514 ppm and minimally gained 7 ppm. While the highest soil tests 
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were initially recorded along the farm site nearest the field, soil K increases only 

increased linearly with the field average. 

The ‘Beadle’ county farm had the highest rate of increase contributed to K 

fertilization as the strip increased by 226 ppm per acre. Minimally, the increases were 

130 ppm, and increased maximally to 385 ppm. 

With 250 lbs K2O per acre applied, it is reasoned that soil test K levels could 

potentially have risen 20.83 ppm K per acre. Across all fields, each K fertilization 

achieved gains of close to 100 ppm K (where 250 lbs K20 per acre was applied). 

 

 

Figure B.38. Graphical representation of soil test K differences between fall 2014 and 

spring 2014 at ‘Bath’ farm near Bath, SD. 
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Figure B.39. Graphical representation of soil test K differences between fall 2014 and 

spring 2014 at ‘Eggleston’ farm near Eggleston, SD.  
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Figure B.40. Graphical representation of soil test K differences between fall 2014 and 

spring 2014 at ‘Roscoe’ farm near Roscoe, SD. 

 

 

Figure B.41. Graphical representation of soil test K differences between fall 2014 and 

spring 2014 at ‘Hand’ farm near Wosley, SD. 

 



151 

 

 

Figure B.42. Graphical representation of soil test K differences between fall 2014 and 

spring 2014 at ‘Beadle’ farm near Wosley, SD. 

 

.2014 Yield Monitor Data 
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Figure B.43. Yield monitor data overlaid on fall soil sampling points for ‘Bath’ farm near 

Bath, SD, for 2014 growing season inside the K-applied strip 
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Figure B.44. Yield monitor data overlaid on fall soil sampling points for ‘Eggleston’ farm 

near Eggleston, SD, for 2014 growing season inside the K-applied strip 

2014 Soybean Yield Difference Maps 

The generated yield difference maps are graphically displayed below.  
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Figure B.45. Yield difference map for ‘Eggleston’ farm superimposed on a soil type 

map/topographic map.  

  

   

 

Figure 

B.46. Cleaned yield monitor collected from 2014 harvest for ‘Roscoe’ farm 
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Figure B.47. Yield difference map (Chapter 6) superimposed on a soil type map for 

‘Roscoe’ farm.  

 

2014 Tissue Sampling Nutrient Results 

Leaf tissue concentrations of various macronutrient and micronutrients are 

graphically displayed below.  
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Figure B.48. In-season tissue sampling (R6 growth stage; newest trifoliates and oldest 

trifoliates) of soybean plants between K+ fertilization strip and control strip at ‘Eggleston’ 

Farm. 

 

Figure B.49. In-season tissue sampling (R6 growth stage; pods, petioles, and stems) of 

soybean plants between K+ fertilization strip and control strip at ‘Eggleston’ Farm. 
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Figure B.50. In-season tissue sampling (R6 growth stage; newest trifoliate and oldest 

trifoliate) of soybean plants between K+ fertilization strip and control strip at ‘Hand’ 

Farm. 

 

Figure B.51. In-season tissue sampling (R6 growth stage; pods, petioles, and stems) of 

soybean plants between K+ fertilization strip and control strip at ‘Hand’ Farm. 
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Figure B.52. In-season tissue sampling (newest trifoliates and oldest trifoliates) of 

soybean plants between K+ fertilization strip and control strip at ‘Beadl’e Farm. 

  

Figure B.53. In-season tissue sampling (R6 growth stage; pods, petioles, and stems) of 

soybean plants between K+ fertilization strip and control strip at ‘Beadle’ Farm. 
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Figure B.54. In-season tissue sampling (newest trifoliates and oldest trifoliates) of 

soybean plants between K+ fertilization strip and control strip at ‘Bath’ Farm. 

   

Figure B.55. In-season tissue sampling (R6 growth stage; pods, petioles, and stems) of 

soybean plants between K+ fertilization strip and control strip at ‘Bath’ Farm. 

 

Figure B.56. In-season tissue sampling (newest trifoliates and oldest trifoliates) of 

soybean plants between K+ fertilization strip and control strip at ‘Roscoe’ Farm. 
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Figure B.57. In-season tissue sampling (R6 growth stage; pods, petioles, and stems) of 

soybean plants between K+ fertilization strip and control strip at ‘Bath’ Farm. 

 

Figure B.58. Average In-season tissue sampling results from K-fertilization strip. 

 

Figure B.59. Average In-season tissue sampling results from No-K fertilization strip. 
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Figure B.60. Tissue sampling results showing difference between K-fertilization strip and 

No-K fertilization strip. 

 

Figure B.61. P-values determined for in-season tissue sampling results compared between 

K and No K fertilization strips. 

 

Stomatal Conductance 

Table B.1 illustrates weather conditions experienced during sampling time for 

stomatal conductance. 

 

Table B.7. Weather conditions at each site location for leaf porometer use 
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APPENDIX C 

CHAPTER 3 

ON-FARM RESEARCH USING ESN TO DETERMINE YIELD INCREASES 

UNDER INTENSIVE MANAGEMENT 

SAS code used for statistical procedures 

libname  stovrem "C:\nickschiltz" ; 
PROC IMPORT  
  OUT=K_leaching ( keep = Structure ug_mL Rain) 
     DATAFILE="C:\nickschiltz\K_Leaching_Experiment"  
  DBMS=Excel Replace ; 
     SHEET="SAS" ; 
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES;  
run; 
/* 
proc sql; 
create table stovrem.k_bal_wo0N as 
select plot, block, irrigate, nrate, tillage, resid ue, y_bal 
from stovrem.y_bal where nrate in ('150n','75n', '0 n'); 
*/  
proc print data =K_leaching; 
 Title  'K_Leaching_Study' ;  
 
 Proc Mixed data  =K_Leaching;  
 class  Structure ug_mL Rain ; 
 model  ug_mL = Structure|Rain/ DDFM=SATTERTH; 
 random  Structure*Rain; 
 lsmeans  Structure|Rain/ pdiff ; 
 ods  output  diffs=ppp lsmeans=mmm; 
 run; 
 %include  'C:\nickschiltz\PDMIX800.SAS' ; 
 %pdmix800(PPP,MMM,alpha= .05,sort=yes); 
quit; 
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APPENDIX D 

CHAPTER 4 

ON-FARM RESEARCH USING ESN TO DETERMINE YIELD 

INCREASES UNDER INTENSIVE MANAGEMENT 

Site Characteristics 

Only fields that which available data exists on site characteristics are provided 

below. The first field analyzed was named the ‘Hoitsma’ farm. The farm is located at 

44.72189,-96.89995. The dominant soil types were Vienna-Brookings complex with 0-2 

percent slopes that had a crop productivity index of 89. A Vienna-Brookings complex 

with 1 to 6 percent slopes was also included that had a crop productivity of 83.  
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Figure D.1. Treatment plots superimposed on a soil type map generated from Web Soil 

Survey data of ‘Hoitsma’ farm.  

The second field was named the ‘Crooks’ farm, located at 43.62294, -96.836067. 

The plot area contained a cadre of soil types with a wide range of vegetative productivity 

classes. These included a Crofton-Nora complex with 9 to 15 percent slopes (vegetative 

index of 52), Moody-Nora complex with 2 to 6 percent slopes (vegetative index of 88), 

Nora-Crofton complex with 6 to 9 percent slopes (vegetative index of 68), Trent silty 

clay loam with 1 to 3 percent slopes (vegetative index of 98), and a Whitewood silty clay 

loam with 0 to 2 percent slopes (vegetative index of 84). Soil type maps and landscape 

positions were also created for the Crooks farm shown below.  

 

Figure D.2. ESN strips outlined across an aerial image of producer field of ‘Crooks’ 

farm.  
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Figure D.3. ESN strips superimposed on a soil type map generated from Web Soil Survey 

data of ‘Crooks’ farm.  

 

Figure D.4. ESN strips displayed across elevation using LiDar imagery of ‘Crooks’ farm.  



166 

 

 

Figure D.5. ESN strips shown across landscape position obtained from Web Soil Survey 

data of ‘Crooks’ farm.  

The third field was named the ‘Converse farm.’ It is located at 44.42414, -

97.180776. The dominant soil types were a Poinsett-Buse-Waubay complex with 1 to 6 

percent slopes (vegetative index of 81), Poinsett-Buse-Waubay complex with 2 to 9 

percent slopes (vegetative index of 71), Poinsett-Waubay silty clay loams with 1 to 6 

percent slopes (vegetative index of 89), and Waubay-Badger silty clay loams (vegetative 

index of 90). Treatment areas (shown below) reflect where different nitrogen rates were 

applied. Each of the maps was superimposed on a wide range of imagery, including soil 

classification and elevation, also provided below.   
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Figure D.6. Map outlining treatment plot areas and strips used for analysis of ‘Converse’ 

farm. 

 

   

Figure D.7.  Plot treatment strips superimposed on LiDar data showing elevation 

differences of ‘Converse’ farm.  
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 Figure D.8. Plot treatment strips displayed across soil classification data obtained from 

Web Soil Survey of ‘Converse’ farm.  
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Figure D.9. ESN and control strips superimposed on elevation map derived from LiDar 

imagery of ‘Converse’ farm.  

Four fields were analyzed through a cooperation with on-farm producers through 

Hefty Seed Brand Company (Baltic, South Dakota). The first of four fields was termed 

the ‘Brian’ field and is located at 43.72595,-96.687486.  The second of four fields was 

the ‘Tuffy East’ farm that is located at 43.75838, -96.692517. The third of four fields was 

the ‘Tuffy West’ farm and is located at 43.76023, -96.706059.  The final of four fields 

was the ‘Olaf’ farm that is located at 43.7532, -96.677143. 
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Figure D.10. Collection of ESN on-farm research farms utilized through Hefty Seed 

Brand. ESN strips shown in red and check strips in green.  

 

 

Figure D.11. Hefty Seed Brand producer fields showing strip treatment areas 

superimposed across soil type maps.  

 

The eighth field analyzed was the ‘Flandreau East’ field and is located at 

44.72189, -96.685256.  
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Figure D.12. Unmanned Aerial Image obtained on September 2, 2014, with the use of an 

unmanned aerial image of ‘Flandreau East Field.’ Obtained courtesy of cooperator. 

The ninth field analyzed was the ‘Hendricks’ field that is located at 45.00711, -

97.070413.  

 

Figure D.13. Soil description of ‘Hendricks’ farm obtained for Web Soil Survey 

encompassing the ESN treatment plot area.  



172 

 

Site Yield Monitor/Yield Difference Maps of Treatment Strips 

 

Figure D.14. Cleaned soybean yield data of ‘Hoitsma’ farm showing ESN plot spatial 

yield in grey/black boxes with nearest control strip on both sides of plot yield data. 
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Figure D.15. Cleaned soybean yield data of ‘Hoitsma’ farm showing ESN plot spatial 

yield in grey/black boxes with nearest control strip on both sides of plot yield data. 

Swaths labeled according to strip treatments.  
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Figure D.16. Yield difference map (Chapter 6) superimposed on an elevation map for 

‘Hoitsma’ farm generated from LiDar imagery. 

 

 

Figure D.17. Yield difference map (Chapter 6) superimposed on a soil type map for 

‘Hoitsma’ farm. 
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Figure D.18. Tabular arrangement specifying number of treatment strips identification 

with estimated yield and yield differences associated to ESN fertilization (expansion of 

Figures)  

 

     

Figure D.19. Cleaned yield monitor data from ‘Crooks’ farm illustrating whole-yield 

grain yield with ESN treatment plot area superimposed.  
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Figure D.20. Cleaned yield monitor data illustrating yield across ESN plot and check 

areas at ‘Crooks’ farm. 

 

 

Figure D.21. Estimated dry grain yield of ‘Crooks’ farm superimposed on soil 

topography map generated from LiDar imagery.  
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Figure D.22. Yield difference map (Chapter 6) created for ‘Crooks’ farm for ESN 

treatment strips minus interpolated yield.  

 

Figure D.23. Yield difference map (Chapter 6) created for ‘Crooks’ farm with ESN 

treatment strips showing interpolated yield.  
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Figure D.24. Tabular arrangement for weigh wagon results for ‘Crooks’ farm displaying 

yield across ESN and control strips. Yield differences also shown.  

 

Figure D.25. Tabular arrangement for cleaned yield monitor results of ESN and control 

strips for ‘Crooks’ farm along with yield differences.  
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Figure D.26. Cleaned yield monitor for ‘Converse’ farm for ESN strips and control strips.  

 

Figure D.27. Tabular arrangement of Figure showing yield across ESN strips and control 

strips with yield difference maps.  
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Figure D.28. Yield difference map (Chapter 6) superimposed on an elevation/soil type 

map for ‘Converse’ farm generated from LiDar imagery 

 

Figure D.29. Yield difference map (Chapter 6) superimposed on a soil topographic map 

for ‘Converse’ farm generated from LiDar imagery 
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Figure D.30. Estimated dry soybean yield production from Hefty Seed Brand collection 

of fields with particular attention paid to ESN treatment areas across all three fields.  
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Figure D.31. Estimated dry soybean yield production from Hefty Seed Brand Collection 

of fields with particular attention paid to ESN treatment areas across all three fields. 
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Figure D.32. Estimated dry soybean grain yield of ESN treatment and control strips of 

‘Brian’ field superimposed on a soil topography map obtained from LiDar imagery.  

 

 

 

Check Average=  63.88 bu /ac

ESN Average=     67.43  bu /ac
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Figure D.33. Estimated dry soybean grain yield of ESN treatment and control strips of 

‘Olaf’ field superimposed on a soil topography map obtained from LiDar imagery. 

 

 

Figure D.34. Yield difference map (Chapter 6) for ‘Olaf’ farm generated for North and 

South ESN and control strips.  
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Figure D.35. Yield difference map (Chapter 6) superimposed on an soil topographic map 

for north and south ESN and check yield strips ‘Olaf’ farm generated from LiDar 

imagery 

 

 

Figure D.36. Estimated dry soybean grain yield for ESN and control strips superimposed 

on soil topographic map generated from LiDar imagery for ‘Tuffy East’ farm.  
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Figure D.37. Yield difference map (Chapter 6) superimposed on an soil topographic map 

for ‘Tuffy-East’ farm generated from LiDar imagery 

 

Figure D.38. Estimated dry soybean grain yield for ESN and control strips superimposed 

on soil topographic map generated from LiDar imagery for west and east strips at ‘Tuffy 

East’ farm. 
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Figure D.39. Estimated dry soybean grain yield for ESN and control strips superimposed 

on soil topographic map generated from LiDar imagery for west and east strips at ‘Tuffy 

East’ farm. 
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Figure D.40. Yield difference map (Chapter 6) superimposed on an soil topographic map 

for ‘Tuffy-East’ farm generated from LiDar imagery 

 

 

 

Figure D.41. Estimated dry soybean grain yield for ESN and control strips superimposed 

on soil topographic map generated from LiDar imagery for west and east strips at 

‘Flandreau’ farm 
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Figure D.42. Yield difference map (Chapter 6) superimposed on an soil topographic map 

for ‘Flandreau’ farm generated from LiDar imagery 

 

 

Figure D.43. Yield difference map (Chapter 6) superimposed on an soil topographic map 

for ‘Flandreau’ farm generated from LiDar imagery 
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Figure D.44. Yield difference map (Chapter 6) superimposed on an soil topographic map 

for ‘Tuffy-East’ farm generated from LiDar imagery 
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Figure D.45. Estimated dry soybean grain yield for ESN and control strips superimposed 

on soil topographic map generated from LiDar imagery for west and east strips at 

‘Holler’ farm. On-farm cooperator also tested out various row spacings around the ESN 

plots, so data is presented with both treatments.  
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Figure D.46. Yield difference map (Chapter 6) superimposed on an soil topographic map 

for ‘Holler’ farm generated from LiDar imagery. 

 

Figure D.47. Yield difference map (Chapter 6) superimposed on an soil topographic map 

for ‘Tuffy-East’ farm generated from LiDar imagery.  
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Figure D.48. Estimated dry soybean grain yield for ESN and control strips superimposed 

on soil topographic map generated from LiDar imagery for west and east strips at 

‘Hendricks’ farm.  
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Figure D.49. Estimated dry soybean grain yield for ESN and control strips superimposed 

on soil topographic map generated from LiDar imagery for west and east strips at 

‘Hendricks’ farm. 
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Figure D.50. Yield difference map (Chapter 6) superimposed on an soil topographic map 

for ‘Holler’ farm generated from LiDar imagery. 
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Figure D.51. Estimated dry soybean grain yield for ESN and control strips superimposed 

on soil topographic map generated from LiDar imagery for west and east strips at 

‘Hendricks’ farm. 
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Figure D.52. Yield difference map (Chapter 6) superimposed on a soil topographic map 

for ‘Tuffy-East’ farm generated from LiDar imagery 
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