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PROBLEM STATEMENT 

 

Increasing temperature and precipitation are the major contributors for the 

expanding saline and sodic areas in the Northern Great Plains. Climate and land-use 

changes combined with Northern Great Plains high sodium parent materials have 

increased both salinization and sodification risks. Techniques and methods are needed to 

track and manage this growing problem.  Objectives of this research study were to 1) 

compare three chemical amendments (calcium chloride, sulfuric acid and gypsum) with 

water to determine the remediation strategies on water permeability and Na transport in 

undisturbed soil columns and 2) to develop a remote-sensing model that can be used to 

identify the extent of soil salinization problem.  
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ABSTRACT 

SOIL SALINITY STUDY IN NORTHERN GREAT PLAINS SODIUM AFFECTED 

SOIL 

TULSI P KHAREL 

2016 

 

Climate and land-use changes when combined with the marine sediments that 

underlay portions of the Northern Great Plains have increased the salinization and 

sodification risks. The objectives of this dissertation were to compare three chemical 

amendments (calcium chloride, sulfuric acid and gypsum) remediation strategies on 

water permeability and sodium (Na) transport in undisturbed soil columns and to develop 

a remote sensing technique to characterize salinization in South Dakota soils.   Forty-

eight undisturbed soil columns (30 cm x 15 cm) collected from White Lake, Redfield, 

and Pierpont were used to assess the chemical remediation strategies.  In this study the 

experimental design was a completely randomized design and each treatment was 

replicated four times.   Following the application of chemical remediation strategies, 45.2 

cm of water was leached through these columns.  The leachate was separated into 120- 

ml increments and analyzed for Na and electrical conductivity (EC).  Sulfuric acid 

increased Na leaching, whereas gypsum and CaCl2 increased water permeability. Our 

results further indicate that to maintain effective water permeability, ratio between soil 

EC and sodium absorption ratio (SAR) should be considered.  
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In the second study, soil samples from 0-15 cm depth in 62 x 62 m grid spacing 

were taken from the South Dakota Pierpont (65 ha) and Redfield (17 ha) sites.  Saturated 

paste EC was measured on each soil sample. At each sampling points reflectance and 

derived indices (Landsat 5, 7, 8 images), elevation, slope and aspect (LiDAR) were 

extracted. Regression models based on multiple linear regression, classification and 

regression tree, cubist, and random forest techniques were developed and their ability to 

predict soil EC were compared.  Results showed that: 1) Random forest method was 

found to be the most effective method because of its ability to capture spatially correlated 

variation, 2) the short wave infrared (1.5 -2.29 µm) and near infrared (0.75-0.90 μm) 

were very sensitive to soil salinity; 3) EC prediction model using all 3 season (spring, 

summer and fall) images was better on state wide validation dataset compared to 

individual season model. Finally, in eastern South Dakota, the model predicted that from 

2008 to 2012, EC increased in 569,165 ha or 13.4% of the land seeded to corn (Zea mays 

L.) or soybeans (Glycine max L). 
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Chapter 1 

Developing criteria for identifying high risk saline/sodic soils 

 

Summary 

 

Climate and land-use changes combined with Northern Great Plains high sodium 

parent materials have increased the salinization and sodification risks. The objectives in 

this study were to assess the effectiveness of chemical remediation on improving soil 

health and to determine benchmarks for identifying high risk saline/sodic soils.  Forty 

eight soil columns (16 per site) collected from three sites of South Dakota (White Lake, 

Redfield and Pierpont) were used for this purpose. The undisturbed soil columns were 

treated one of four treatment (none, CaCl2, gypsum, and sulfuric acid).  To track water 

movement all columns were treated with KBr.    The movement of Na, Br, and other salts 

through the soil was quantified.  At the beginning of the study all columns were 

characterized as saline/sodic.  A completely randomized design was used with four 

treatments and four replications. 45.2 cm of water was leached through these columns.  

The leachate was collected in 120-ml increments, which were analyzed for Na, Br, and 

EC.  The permeability of the soil was calculated and soil columns were dissected and 

analyzed for Br, Na, Ca, and Mg.  At the initiation of the experiment, all columns 

demonstrated by-pass flow.  The amount of by-pass flow decreased with increasing EC to 

SAR ratio.   The H2SO4 treatment increased Na leaching, whereas gypsum and CaCl2 

increased water permeability. These findings were attributed to gypsum and CaCl2 

providing a Ca source that helped rebuild the soil structure.  Our result further indicated 

that to maintain effective water permeability, soil EC to SAR ratio should be >1.   
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Introduction 

 

Climatic records indicate that spring temperatures and rainfall have increased in 

the Northern Great Plains (NGP) (Hatfield et al., 2011; Schrag, 2011;  Kunkel et al., 

2013; Shafer et al., 2014), and these changes, when combined with improved genetics, 

crop insurance, and better equipment contributed to the conversion of 728,000 ha of 

South Dakota grassland to cropland between 2006 and 2012 (Reistma et al., 2015), and 

the conversion of 216,000 ha of North Dakota grasslands to cropland between 2007 and 

2008 (McCombie, 2009). Climate and land-use changes when combined with high 

sodium concentrations in one of the region’s parent material (marine sediments) have 

increased the salinization and sodification risks. The regions marine sediments contain 

high concentrations of both Na and other salts.  Worldwide, salinization and sodification 

are often linked to irrigation, whereas in South Dakota and North Dakota the expanding 

problem is associated with increased spring precipitation, and warmer temperatures.   In 

soils derived over marine sediments, a rising water table provides an opportunity to 

transport subsurface salts to the soil surface through capillary action (Rhoades and 

Halverson, 1976; Seelig, 2000, Carlson et al., 2016).  

In the NGP, it is estimated that 10.6 million hectares of Minnesota (20,100 ha), 

Montana (4,380,000 ha), Nebraska (56,800 ha), North Dakota (2,350,000 ha), South 

Dakota (3,442,000 ha) and Wyoming (445,344 ha) land are impacted by saline conditions 

(Seelig, 2000; Millar, 2003; Hopkins et al., 2012; Carlson et al., 2013; Soil Survey Staff), 

and over 2 million hectares of land are impacted by high Na concentration in South 

Dakota (1,200,000 ha) and North Dakota (800,000 ha) (Millar, 2003; Seelig, 2000).  In 

these soils, the common Na containing salts are sodium sulfate (Na2SO4) and sodium 
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carbonate (Na2CO3).  High Na minerals can also result in high soil pH which can reduce 

the availability of some nutrients (N, P, Fe, Mn, Cu, and Zn).    In a saline soil that 

contains free lime (CaCO3), the maximum pH is approximately 8.4, whereas in sodic 

soils that contains Na2CO3, the pH can increase above this value.   

The impacts of saline-affected soils on food security and the economic viability of 

rural communities has been staggering.  For example, due to high salt concentrations 

[EC≥ 4 dS/m] there is an annual economic loss of $26.2 million/year on 113,000 ha of 

land located in the South Dakota counties of Beadle, Brown, and Spink (NRCS, 2012), 

and a loss of $150 million in North Dakota’s Red River Valley (Hadrich, 2012). With 

over 10.6 million ha of saline soils in the NGP in a vulnerable position and many more 

worldwide quicker assessing techniques and effective management strategies are needed. 

 Historically, salt classification of soils has been based on EC using the saturated 

paste method and Sodium Absorption Ratio (SAR).  Based on these values, the soil is 

classified as normal (EC<4dS/m and SAR <13 mmolc
 
L

-0.5
), saline (EC>4dS/m and SAR 

< 13 mmolc
 
L

-0.5
), saline-sodic (EC>4 dS/m and SAR>13 mmolc

 
L

-0.5
) or sodic 

(EC<4dS/m and SAR>13 mmolc
 
L

-0.5
).  The traditional remediation strategy of installing 

tile drainage and leaching with high quality water can result in serious problems in the 

NGP.  Draining these sites, may accelerate the problems. Recommended solutions to the 

problem include applying a chemical treatment such as gypsum, calcium chloride, or 

elemental S, followed by planting salt tolerant plants, such as  kochia (Kochia scorparia) 

and foxtail barley (Hordeum jubatum) (Custer, 1976).  Following drainage, farmers in 

this region have observed elevated yields for few years.  However, high yields do not last, 

and can be followed by soil dispersion if the Na concentrations are high.     
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In sodic soils, the addition of gypsum (or some other soluble calcium 

amendments) can increase the potential for Na to leach.  However, if the sodium-affected 

soil also contains high salts, adding gypsum may increase iron deficiency chlorosis in 

soybeans (Franzen and Richardson, 2000).  In addition, if the soil is saturated with 

gypsum, the application of gypsum will have minimal impact on soil remediation.  The 

objectives in this study were to assess the effectiveness of chemical remediation on 

improving soil health and to determine benchmarks for identifying high risk saline/sodic 

soils  

Materials and Methods 

Study site 

 

The experiment was designed to mimic the instillation of tile drainage in the 

regions saline and saline/sodic soils.  In the Northern Great Plains, EC of rain water is 

low and generally < 0.015 dS/m (http://nadp.sws.uiuc.edu/nadpdata/register.asp).  

Throughout semi-arid glaciated regions, there are landscapes and soils that are 

characterized as having high concentrations of sodium as well as other salts. The regions 

saline/sodic soils are generally found in poorly drained footslope areas, and they are often 

devoid of vegetation.  

Collecting soil columns 

 

 Forty-eight  undisturbed soil columns with the dimensions of 30 cm length by  15 

cm diameter were collected between 2011 and 2012 from 3 South Dakota sites (White 

Lake, 43°40’32’’ N and 98°45’50’’ W; Redfield, 44°58’10’’N and 98°27’45’’W; 

Pierpont, 45°30’35’’ N, 97°53’47’’W). Soil at White Lake was fine montmorrilonitic, 

http://nadp.sws.uiuc.edu/nadpdata/register.asp
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messic typic aguistolls. Soil at Redfield site was fine, smectitic, frigid, pachic argiudolls. 

Soil at Pierpont site was fine, smectitic calcic natrudolls.  For baseline soil properties, soil 

samples (0- to 15- and 15- to 30- cm) collected adjacent to the column were air-dried (40° 

C), ground, and sieved through 2 mm screen.  Approximately, 150 ml of Type I (high 

purity deionized nanopure) water was added to 250 g of ground samples to make a 

saturated paste. Saturated paste extracts were analyzed for soil pH (USSL, Handbook 60, 

1954), EC (dS/m) (Whitney, 2015), Na (ppm), Ca (ppm) and Mg (ppm) (Warncke and 

Brown, 2015) concentrations. Soil pH and EC were measured with accumet Excell XL60 

(Fisher Scientific) instruments, while Na, Ca and Mg were measured with an Atomic 

Absorption spectrometer, model 200A (Buck Scientific). SAR values were calculated 

after converting Na, Ca and Mg readings to mmolc
 
L

-1
. The SAR values were converted 

to exchangeable sodium percentage (ESP) using Oster and Sposito (1980).   
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Table 1.1 Range of values for initial chemical properties of surface 15 cm soil. 

 

   
Saturated Paste 

  
 

  
Study pH EC SAR Na Ca Mg ESP CEC N C 

  
dS/m 

 
µg/ml µg/ml µg/ml % cmolc/kg g/kg g/kg 

White lake 8-8.4 7.7-17.7 2.8-20.5 351-3437 369-694 538-1628 2.8-22.5 44 2.3 23.5 

Redfield 8-8.8 3.2-9.9 1.7-6.2 176-1036 216-508 157-1046 1.3-7.3 41 2.3 24.8 

Pierpont 7.5-8.4 1.8-22.3 2.2-20.2 151-5032 259-1902 68 -2590 1.9-22.2 39 1.6 18.0 

 

 

Table 1.2 Chemical treatments applied to columns. 

     Treatments 

Study  Gypsum CaCl2 H2SO4 

  kg/ha kg/ha kg/ha 

White lake  5050 4300 930 

Redfield  1483 1432 315 

Pierpont  5050 4300 930 
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Salt treatment calculation 

 

 Based on baseline soil ESP values (Table 1.1), the salt treatments for each site 

were calculated. Soil from White Lake and Pierpont had an average exchangeable sodium 

percentage of 15%, whereas Redfied soil had a maximum ESP value of 7%.  Treatment 

rate calculated based on these values were identical for White Lake and Pierpont and 

lower rate for Redfield site. For all sites, the target ESP value was 3%.  The calculation 

for estimating the chemical remediation treatment was based on a cation exchange 

capacity of 25 cmolc kg
-1

 soil and a bulk density of 1.3 g cm
-3

. The amount of reagent 

grade CaCl2  (CaCl2.2H2O), H2SO4, and gypsum (CaSO4. 2H2O) were calculated for the 

surface 15 cm soil (Carlson et al, 2015) (Table 1.2). Potassium bromide (KBr) was 

applied at 0.874 g per column (Clay et al, 2004) as a water movement tracer. The soil 

columns were placed on wooden bench prepared to hold them for the experiment. Acid 

washed sand (10% hydrochloric acid) was placed at the base of each soil column.  

The columns were preconditioned by leaching them with 1 pore volume (PV) of 

type I (nanopure) water.  One PV of water corresponds 14.7 cm of rainfall for White 

Lake site and 11.3 cm of rainfall for Redfield and Pierpont site. Twenty-four hour after 

preconditioning, the chemical remediation and KBr treatments were applied to the 

columns. Each of the salt treatment was prepared with 50 ml of water. Hence, 50 ml of 

H2SO4 (1.05M), 50 ml of CaCl2 dissolved solution and 50 ml of nanopure water was 

applied uniformly at the top of soil surface as H2SO4, CaCl2 and control treatment. For 

gypsum treatment, reagent grade powder gypsum was applied uniformly at the surface 

and 50 ml water was added later.  
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Following the surface treatments, 2 pore volumes of type I water was applied to 

the columns. The leachate was separated into 120 ml increments, which were analyzed 

for pH, Br, EC and Na. Following the first leaching, the experiment was repeated 24 

hours later.  In the second leaching experiment, chemical remediation treatments were not 

applied.   Leachate was collected in 120 ml increments and analyzed for pH, Br, EC and 

Na. 

 Total sodium removed from each soil column during entire leaching period was 

calculated using the equation:   

          
     

    
                         

     [1] 

where,  i to n was the number of leachate samples, leachate volume was 120 mL, and  

      was the concentration of Na in each leachate sample. 

 At the end of the leaching experiment, the soil samples of the columns from 

White Lake were separated into the 0-5, 5-10, 10-15 and 15-30 cm depth interval.  Soil 

columns from Redfield and Pierpont were separated into the 0-5, 5-10, 10-15 and 15-23 

cm depth intervals.  The dried and ground soil samples were analyzed for pH, EC, Na, 

Ca, and Mg. 

Data/Statistical analysis 

 

 Analysis of covariance was performed on displaced Na setting initial SAR value 

as a covariate in the model. Data were analyzed using R-statistical program (R Core 

Team, 2015). Analysis of variance (ANOVA) was performed after adjusting initial SAR 

and volume of water leached to a constant value for the treatment comparisons.  By-pass 

water flow was evaluated by comparing Br transport through and remaining in the soil.  
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The statistical R package “lsmean” was used to determine the treatment impacts on Na 

movement.  For nonlinear permeability data visualization local regression smoothing 

(LOESS) was used in R. Predicted value from LOESS were used to identify critical SAR 

and EC value assuming 1 mm hr
-1

 permeability as a critical point.  

 

Finding critical point of EC to SAR ratio 

 

Locally weighted polynomial regression (LOESS) was used to establish 

relationship between permeability to SAR ratio with EC to SAR ratio. Smooth LOESS 

function was then used for further calculation. The approach used for this calculation 

was: 

1. Find LOESS predictions which represent permeability to SAR ratio (Y) for each 

value of EC to SAR ratio (X) in data set, 

2. Set the critical permeability to 1 mm/hr and use the LOESS predicted value (Y) to 

find corresponding SAR value using the equations:   
            

   
      

       

   
              

      

 
, 

3. Insert new SAR value for each X into data set to find corresponding EC value using 

the equation,     
  

   
            , and   

4. Define the relationship between new SAR and EC (Fig 1.5) as the critical EC and 

SAR values for maintaining soil permeability. 

 A similar procedure was followed to calculate the EC and SAR values required to 

maintain 2 mm/hr permeability through soil column. 
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 Results and Discussion 

Site characteristics 

 The three sites had slightly different characteristics (Table 1.1).  At White Lake 

(WL), the soil pH of the saturated paste ranged from 8 to 8.4 and the saturated paste EC 

ranged from 7.7 to 17.7 dS/m.  The sodium concentration in the saturated paste ranged 

from 351 to 3437 ppm.  At Redfield, the soil pH of the saturated paste ranged from 8 to 

8.8, whereas the EC ranged from 3.2 to 9.9 dS/m.  At this site, the sodium concentration 

ranged from 176 to 1036 ppm, and the calculated SAR value ranged from 1.7 to 6.2 

mmolc L
-0.5

.  At Pierpont (PP) the soil pH ranged from 7.5 to 8.4 and the EC ranged from 

1.8 to 22.3 dS/m.  The SAR ranged from 2.2 to 20.2 mmolc L
-0.5

.  The sodium 

concentration ranged from 151 to 5032 ppm.  The chemical amendments added to the 

three soils were slightly different.  White Lake and Pierpont had identical treatments, 

whereas Redfield had much lower rates (Table 1.2) due to different initial soil ESP 

values.   

Leaching experiment 

 

 The amount of bromide recovered with 0.5 and 2 PV of leaching water was 40 

and 90% of the applied Br (Table 1.3). The rapid transport of Br through the columns 

indicates that by-pass flow occurred. In by-pass flow, a portion of the soil column is 

bypassed by the water flowing through the soil.  A characteristic of by-pass flow is that 

the tracer (Br
-
) appears to flow faster than the water. Others have used Br to track water 

flow and by-pass flow.  For example, Clay et al. (2004) reported similar results in a non-

saline/sodic soil where they found only 18, 40 and 57% Br recovery during 0.25, 0.5 and 
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0.75 PV leachate collection, respectively.  In this experiment, Br
-
 was measured in the 

leachate prior to 1 pore volume being collected.  If bypass flow did not occur, then Br 

should not have been collected before 1 pore volume.   
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Table 1.3 Bromide (%) recovered and Na (mg) leached during leaching process and 

change in soil salinity parameters (dNa, dEC, dSAR) before and after leaching in soil 

columns. 

    

Bromide 

recovered     Na Leached   

Change in Soil 

Column  

Treatment   

0.5 

PV 

2 

PV 

4 

PV   

0.5 

PV 

2 

PV 

4 

PV   dNa dEC dSAR 

  

-----  %  ----- 

 

--------  mg  ------- 

 

mg dS/m 

 White Lake 

        

 

  Gypsum 

 

41 90 97 

 

2736 3767 5111 

 

1818 7.96 8.4 

CaCl2 

 

48 95 100 

 

4015 5045 6191 

 

1232 7.31 0.4 

H2SO4 

 

40 85 94 

 

5157 6186 6910 

 

2101 8.6 1.2 

Control 

 

33 92 98 

 

2630 3660 4903 

 

2683 10.78 7.5 

P value 

 

NS NS NS 

 

*** *** *** 

 

NS NS NS 

LSD 

     

876 931 729 

 

 

  Redfield 

         

 

  Gypsum 

 

31 90 97 

 

807 1391 2432 

 

140 2.73 2.5 

CaCl2 

 

40 93 100 

 

441 1025 2057 

 

253 3.12 3.2 

H2SO4 

 

43 92 99 

 

761 1345 2440 

 

305 3.72 3.5 

Control 

 

43 90 97 

 

768 1353 2376 

 

239 3.96 2.5 

P value 

 

NS NS NS 

 

0.06 0.12 0.11 

 

NS NS NS 

LSD 

     

226 

   

 

  Pierpont 

         

 

  Gypsum 

 

53 89 95 

 

3077 4794 6654 

 

1839 10.7 9.5 

CaCl2 

 

39 86 94 

 

3271 4988 6962 

 

2965 14.6 14 

H2SO4 

 

41 89 94 

 

3642 5358 7056 

 

1763 10 11.4 

Control 

 

51 92 100 

 

1862 3579 5153 

 

1820 11.5 10 

P value 

 

NS NS NS 

 

*** *** *** 

 

NS NS NS 

LSD           695 731 717         
Note: ! Total Na corresponds for  177 cm2 surface area and 30 cm depth (White Lake) and 23 cm depth (Redfield and 

Pierpont). 

*0.874 g KBr (587 mg Br) was applied in each column as water tracer 
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Figure 1.1 Percent Bromide left in control treatment as affected by A) EC to SAR ratio of 

the soil at the beginning (i=initial), B) EC to SAR ratio of the soil at the end of leaching 

process (f=final), and C) Difference of EC to SAR ratio between beginning and end 

samples. 
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At the end of the leaching study, the % of Br remaining in the soil was related to 

the soil EC to SAR ratio (Fig.1.1). Given, that the KBr was uniformly applied to the soil 

surface, it is logical to assume that the amount of Br remaining in the soil at the end of 

the experiment was related to by-pass flow.  Soils with high percentages of Br remaining 

had high by-pass flow and soils with low amounts of Br remaining had relatively low by-

pass flow.  The EC to SAR ratio at the beginning of the experiment was directly related 

to the amount of Br remaining in the surface soil (Fig 1.1A).  This interpretation is based 

on the findings of Flury et al. (1994), who reported that structureless soils had limited by-

pass flow, whereas soils with moderate structure had strong by-pass flow characteristics.   

The soil EC/SAR ratio at the end of the experiment had an opposite relationship 

to the amount of remaining Br in the surface soil (Fig 1.1B). To evaluate the cause of this 

relationship, we compared the amount of Br remaining in the soil vs the change in the 

EC/SAR ratio (Fig. 1.1C).  This comparison suggested that depending on the status of the 

soils physical conditions, the relative amount of Na lost from the soil changes.  In soils 

with relatively high amounts of Br remaining in the soil, the EC/SAR ratio decreased, 

whereas in soils with low amounts of Br remaining the opposite was true.   These results 

suggest that sodification was dependent on soil structure.  In soils with high levels of Br 

remaining, the relative amount of Na increased, whereas in soils with low Br remaining, 

the relative Na concentration decreased.   

At all sites and locations, water percolating through the soil removed salts 

contained in the soil which resulted in decreases in the surface soil EC value (Table 1.3).  

Others have observed similar findings (Carter and Fanning, 1964; Carter and Robbins, 

1978). In columns collected from White Lake 45 cm of water reduced the EC value in the 
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surface 30 cm 74%.   Similar decreases were observed for Redfield and Pierpont where 

EC decreases of 70% were measured in the surface 23 cm.  The percent decreases were 

less than the general rule of leaching proposed by Bresler et al. (1982) where 1 m of 

water was required to remove 80% of the salt from surface meter of soil. Differences 

between Bresler at al. (1982) and this study were attributed to by-pass water flow.   

Associated with the decrease in the soil EC was a decrease in soluble Na 

contained in the soil. At White Lake, the amount of soluble Na contained in the soil prior 

to the study ranged from 3600 mg (or 203 g/ m
2
) in the control to 2030 mg (115 g/ m

2
) in 

the CaCl2 treatment.  After the study was completed, the amount of soluble Na remaining 

in the columns ranged from 420 mg (23.73 g/m
2
) in the H2SO4 to 916 mg (51.75 g/ m

2
) in 

the control.  Higher leached sodium in White Lake columns are attributed to a greater 

amount of water leaching through the soil (6 PV= 88.2 cm).  Pierpont and Redfield 

columns were leached with 4 PV (45.2 cm) of water only. After adjusting the total 

amount of leached Na to the 4 PV, columns from White Lake and Pierpont had similar 

results (Table 1.3) 

The water by itself contributed to the rapid loss of Na at each site. Compared to 

the H2SO4 treatment, percolating water alone removed 73, 71 and 97% of Na in Pierpont, 

White Lake and Redfield columns respectively. Several other have reported similar 

findings (Overstreet et al., 1951; Jury et al., 1979).  However, water-based remediation 

can be slow (Abrol and Bhumbla, 1973). During leaching with water, the dissolution of 

calcite, gypsum and even silicate minerals (Rhoades et al., 1968) provide Ca source to 

replace Na. Hence this process depends on presence of Ca-bearing minerals in the soil.  
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 Na removed from these columns was influenced by their initial Na concentration 

and  SAR value. Analysis was performed after adjusting SAR covariate for Na leaching. 

The adjusted amount of Na leached are shown in Table 1.3. Analysis of covariance shows 

that none of the chemical treatments were effective in removing sodium from the 

Redfield column.  These results are attributed to low Na concentration in these columns.  

In the White Lake columns, only two chemical treatments H2SO4 and CaCl2 removed 

more sodium when compared to control (water) treatment. In this soil, gypsum did not 

accelerate Na loss. At Pierpont, all chemical treatments effectively removed more sodium 

from the soil. Others have reported mixed results (Sharma, 1971; Parther et al., 1978; 

Yahia et al., 1975). Differences in CaSO4 and CaCl2 as external Ca source to replace Na 

from the soil come from their difference in solubility. CaCl2 being more soluble appeared 

to be more effective in Na removal than gypsum. The impact of H2SO4 on Na removal 

was attributed to it lowering the soil pH which solubilized CaCO3.  Others have reported 

that gypsum can be very effective.   Sharma (1971) reported improved hydraulic 

conductivity and aggregate stability up to 30-cm depth by applying gypsum. 

Shanmuganathan and Oades (1983) reported that flocculating effect of gypsum is not 

only due to the replacement of Ca to Na but also due to the maintenance of electrolyte 

concentration in the soil system. Similar to our White Lake result, Parther et al. (1978) 

found more Na removed by H2SO4 treatment compared to gypsum treatment in 

calcareous sodic soil. Yahia et al. (1975) also showed more water penetration in columns 

treated with H2SO4 than gypsum.  

 Findings from this study suggest installing tile drainage will result in a decrease in 

soil EC, and that a portion of the cations leached from the soil will be Na. Decrease in 
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soil EC however did not corresponded with the expectation of general rule of leaching 

hence further investigation is needed. Using chemical amendments along with leaching 

water enhanced the reclamation process. Sulfuric acid was a better chemical amendment 

at facilitating Na removal than CaCl2 or gypsum. 

Water permeability relationship with EC and SAR  

 

Soil permeability is the ultimate test for sodic and saline-sodic soil management. 

Permeability on these soils is affected by salt (especially Na, Ca and Mg) concentration 

and composition. Several authors indicated Na to Ca ratio (Gardner et al., 1959; Quirk 

and Schofield, 1955; Shainberg and Caiserman, 1971; Pearson, 2009) is more important 

for water permeability. SAR is widely used index to characterize sodic soil and a soil 

with index value greater than 13 considered to be a sodic soil.  Sodium can result in the 

swelling and dispersion of the clay platelets, which in turn reduces water permeability 

(McNeal et al., 1966). Other factors that can create unfavorable physical structure for 

permeability are soil texture, low organic matter, and high swelling-type clays (USSL, 

1954).  

  For the columns collected at White Lake there was a good relationship between 

the soil initial SAR value and water permeability (mm/hr) (Fig. 1.2). The curve suggests 

that at a SAR value of 7 mmolc
 
L

-0.5
 the permeability approached 1 mm hr

-1
. Considering 

1 mm hr
-1

 as a critical permeability (Sumner et al., 1998) this relationship suggests that 

the classification of sodic soils with SAR > 13 mmolc
 
L

-0.5
 is not appropriate for NGP 

soils. Low SAR soil has shown a dispersive behavior in other studies too and hydraulic 

conductivity dropped to 1 mm hr
-1

 even at ESP value of 3-5 (McIntyre, 1979) in 
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Australian soil. That may be the reason why an ESP value 6 was used by Northcote  and 

Skene (1972) to define sodic soils. Sumner et al (1998) explained two possible reason of 

these differences with USSL (1954) established ESP value 15 (or SAR 13 mmolc
 
L

-0.5
), 

First, higher electrolyte concentration in water used to leach in California (3-14 mmolc
 
L

-

0.5
 )  compared to deionized water used in other studies, and second, lighter textured soil 

used in California compared to clay soil used in other studies. 
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Figure 1.2 Permeability (mm/hr) as a function of initial soil SAR value  

 

 

Figure 1.3 Water permeability (mm hr
-1

) as affected by the soil column initial EC and 

SAR value. 

mm/hr 
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Relationship between water permeability and SAR value differed for the three 

sites (Fig 1.2). These differences were attributed to differences in soil texture, organic 

matter, and the types of salts contained in the soil. Permeability as a function of both EC 

and SAR (Fig. 1.3) for all 3 sites combined did not show conclusive results. Several 

studies (USSL, 1954; Gardner et al., 1959) reported that ESP (or SAR) and EC interact 

on water permeability hence salinity classification adopted both EC and ESP in their 

definition. Shanmuganathan and Oades (1983) used ESP/EC ratio for their study and 

found dispersible clay content (%) increased linearly with increasing ESP/EC ratio in the 

soil. In our case, both permeability and EC value were divided by their respective SAR 

value. The relationship between these two parameters (Fig. 1.4) shows that permeability 

per unit of SAR increases with increasing EC to SAR ratio. Figure 1.4 further indicates 

that soil with EC to SAR ratio below 2 should be considered carefully for water 

permeability. Permeability itself is affected by several factors and if it is affected by SAR 

then the relation is a function of both EC to SAR ratio. Additionally this relationship is 

not a linear hence interpretation becomes difficult without additional analysis.  Most of 

the soil with SAR values of 5 or greater   showed relatively low EC to SAR ratio (Fig. 

1.5A) in our study and these were the soils where water permeability management should 

be considered. Conversely, soil with less than 5 SAR value contained relatively higher 

EC to SAR ratio.  Since this relationship came from 3 different locations with different 

soil types, this relation is explored more to make a general trend for the NGP soil.  
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Figure 1.4 Water permeability per unit of SAR value as affected by the EC to SAR ratio. 

 

 

 

 

Figure 1.5 Relationship between A) soil EC to SAR ratio vs. soil SAR value, B) Na 

concentration (ppm) and EC (dS/m) of leaching solution. Data shown are for all 3 sites 

combined. 
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Figure 1.6 Required soil EC (A) and EC to SAR ratio (B) to maintain 1 and 2 mm/hr 

permeability at different soil SAR levels. Both EC and SAR were calculated as described 

in method section “Finding critical point of EC to SAR ratio”. 

 

Figure 1.7 Water Permeability per unit of SAR as a response of soil EC/SAR ratio at 

different leaching period (1 PV = 11.3 cm water for Redfield and Pierpont site  and 14.7 

cm for White Lake Site) 
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Figure 1.8. Salt treatment effect on water permeability at 2 pore volume of water 

leaching. 
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Critical EC to SAR ratio for water permeability 

 

Soil EC required for each level of soil SAR to maintain critical water permeability 

were calculated. Resulting EC and SAR (Fig. 1.6 A and B) calculated for both 1 mm hr
-1

 

and 2 mm hr
-1

 water permeability showed  that EC to SAR ratio needed to maintain  

permeability were higher for soil with low SAR value and required EC to SAR ratio 

decreased with increasing SAR value. Additionally to maintain 2 mm hr
-1

 water 

permeability, EC to SAR ratio should be increased. 

To maintain a water flow rate of 1 mm hr
-1

EC to SAR ratio required was 2 for a 

soil with SAR value of 1 mmolc
 
L

-0.5
.   This ratio decreased to 1, 0.8 and  0.6 with SAR 

values of 5, 10 and 20 mmolc
 
L

-0.5
 , respectively (Fig 1.6B). Similarly, to maintain 2 mm 

hr
-1

 permeability, soil with 1 SAR required 2.7 times higher EC and it decreased to 1.4, 

1.0 and 0.8 and with SAR value 5, 10 and 20, respectively. This decreasing trend of EC 

requirement with high sodium soil might be due to the solubility and availability of other 

salt species during sodium leaching process as shown in fig. 1.5B for EC and sodium 

content of leaching water.  

 These results show that soil permeability and soil EC to SAR ratio were related 

and to maintain permeability the ratio should be > 2. This can be achieved by adding Ca 

amendments if soil EC is lower than the required ratio. Additionally, our results showed 

that soil permeability decreased over time and that a higher EC/SAR ratio was needed to 

maintain permeability later in the leaching process (Fig. 1.7). 

 To assess how treatment affected water permeability behavior, data were again 

square root transformed to make relationship linear and graph was visually assessed. 
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Visually, two calcium source treatments (Gypsum and CaCl2) were superior on 

maintaining water permeability compared to non Ca treatments (Fig. 1.8). These results 

are attributed to gypsum and calcium chloride providing a calcium source.   

Conclusion 

 

This study suggests that installing tile drainage will result in a decrease in soil EC, 

and that a portion of the cations leached from the soil will be Na. The relative loss of Na 

was dependent on soil structure.  In soils with high amounts of Br remaining in the 

surface soil the EC/SAR ratio decreased.  This decrease is attributed to an increase in the 

relative Na concentration,   In soils with low amount of Br remaining in the surface soil, 

the EC/SAR ratio increased.  This increase is attributed to an decrease in the relative Na 

concentration in the soil. Using chemical amendments along with leaching water 

enhanced the reclamation process as Na and other salts were removed. H2SO4 is the best 

amendment followed by CaCl2 and gypsum to leach Na from the NGP region soil. 

To maintain soil permeability, soil EC to SAR ratio should be considered.  Most 

of the soil with low SAR (<5) in this region contained relatively higher EC to SAR ratio 

(>1.5) than the required ratio (>1) for effective water permeability. EC to SAR ratio of 1 

was required to maintain electrolyte concentration by salt addition in soil with SAR value 

5 and above. Ca source such as gypsum appears better to maintain required ratio. 
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Chapter 2 

The development and use of a remote sensing soil salinity model for assessing 

salinity changes in South Dakota  

 

Summary 

 

Increasing temperature and precipitation are the major factors contributing to the 

expansion of the Northern Great Plains saline and sodic soils. The objective of this study 

was to develop a remote-sensing model that can be used to identify the extent of this 

growing problem. Soil samples from 0- to15- cm depth in 62 x 62 m grid spacing were 

taken from Pierpont (65 ha) and Redfield (17 ha) sites in South Dakota. The saturated 

paste EC vales were measured on these soil samples. At each sampling points reflectance 

and derived indices (Landsat 5, 7, 8 images), elevation, slope and aspect (LiDAR) were 

extracted.  Multiple linear regression, classification and regression tree, cubist, and 

random forest method were compared for soil EC prediction.  Random forest method was 

found to be the most effective method because of its ability to capture spatially correlated 

variation. Results show that short wave infrared, SWIR (1.5 -2.29 µm) bands (B5 and B7 

in Landsat 7 and Landsat 5, and B6 and B7 in Landsat 8) and near infrared, NIR band 

(B4 in Landsat 5) were sensitive with soil salinity. Soil EC were predicted using spring, 

summer, fall or a combination of the three season imagery showed that predicted EC was 

influenced by sampling date and crop type. Soil EC predicted using multi-year spring 

images showed higher R
2
 (0.56) value with specific field validation data set (Redfield), 

whereas EC predicted using all 3 season images showed better R
2 

(0.26) with the state 

wide validation data set. In South Dakota, the model predicted that from 2008 to 2012, 
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the soil EC values increased in 569,200  ha or 13.4% of the land seeded to corn or 

soybeans.   

 

Introduction 

Worldwide, balancing food and energy production is a complex problem because, 

depending on the region, climate oscillations may positively or negatively impact 

climatic risks.  The problem is confounded by a shrinking land base for producing food.  

For example, according to the USDA NASS, 30 million ha of US farmland were taken 

out of production between 1990 and 2012.  Reduction in farmland acres intensifies the 

demands on all current farmland, just to replace products from those areas, let alone boost 

outputs to nourish an increasing global population. In the NGP, climate change has 

increased spring rainfall and temperatures, making the growing of annual crops less risky 

(Schrag, 2011; Clay et al., 2014; Cook et al., 2015; Reitsma et al., 2015).  However, 

associated with the reduced risk of drought is an increased erosion risk. In NGP 

landscapes, greater rainfall causes water tables to rise, which enables sodium (Na
+
) and 

other salts contained in subsoil marine sediments, to be transported with capillary water 

to the soil surface. Over time, small problem areas can become large expanses.  

In the NGP, it is estimated that 10.6 million hectares of Minnesota (20,100 ha), 

Montana (4,380,000 ha), Nebraska (56,800 ha), North Dakota (2,350,000 ha), South 

Dakota (3,442,000 ha) and Wyoming (445,344 ha) land are impacted by saline conditions 

(Schrag, 2011; Cook et al., 2015;  Seelig, 2000; Millar, 2003; Hopkins et al., 2012; 

Carlson et al., 2013),  and over 2 million hectares of land are impacted by high Na 

concentrations in South Dakota (1,200,000 ha) and North Dakota (800,000ha) (Millar, 
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2003; Seelig, 2000).  Worldwide, salinization and sodification are often linked to 

irrigation, whereas in South Dakota and North Dakota the expanding problem is 

associated with increasing spring precipitation, higher temperatures and capillary rise of 

salts to the rooting zone.   

Globally, saline and Na
+
 effected soils are separated into at least three groups: 

saline (high total salts), saline/sodic (high total salts and Na
+
), and sodic (high Na

+
) 

(Rhoades and Halverson, 1976). The classification of a salt-affected soil into one of these 

groups is based on the soil electrical conductivity (EC) and the amount of Na
+ 

on the 

cation exchange sites. Sodic soils are characterized as having a Na
+
 adsorption ratio 

(SAR) > 13 mmolc
  
L

-0.5
, whereas in the NGP, soils are at risk when the SAR increases 

above 5 mmolc
  
L

-0.5
 (He et al., 2015a, 2015b). Suarez et al. (2008) had similar results for 

irrigated systems in California and reported that infiltration decreased as SAR increased 

from 2 to 4 mmolc
  
L

-0.5
.  

The traditional approach to remediate a saline/sodic soil in the arid, irrigated 

regions of the Southwestern United States is to:  1) apply water with a low electrical 

conductivity (EC), 2) add a source of calcium (gypsum, lime), and 3) allow for adequate 

drainage, which is most commonly done by installing tile drainage (Seelig, 2000, Carlson 

et al., 2013; Hopkins et al., 2012; He et al., 2014).  However, in semi-arid non-irrigated 

systems, such as those observed in the NGP and Australia, these remediation steps may 

actually worsen the problem (Northcote and Skene, 1972; McIntyre, 1979). The failure of 

traditional  salt-affected soil best management practices (BMP) in dryland systems are 

attributed to the failure to account for differences in the EC values of water leaching 
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through the soil, differences in soil texture, and the failure to consider the water cycling 

across the topographic relief (Sumner et al., 1998; Suarez et al., 2008).  

 

 

 

 

 

 

 

 

Figure 2.1 The effects of ‘traditional’ remediation of salt-affected 

soils in the NGP.  After drainage was implemented, gully 

formation can be observed after 2.5 cm of rainfall (right) and the 

topsoil became dispersed (left). Sediment and excess 

agrochemicals are transported to stream, rivers, and the 

atmosphere. Farmers consider this problem as an economic loss, 

while environmentalists would assess such events as preventable 

tragedies. 

.   
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These fragile salt-affected soils often found in riparian zone near streams and 

river. Within agricultural field, the lower lying landscape positions are developing to the 

saline/sodic soil. Sparse plant growth on these saline/sodic soils, when combined with 

high water flow with destabilized soil aggregates, results in silt-laden runoff (Fig 2.1). 

Sediments (sand, silt and clays) may settle in region’s hydroelectric power reservoirs and 

affect local infrastructure. Salts are transported much further and may impact water 

quality used for several purposes such as drinking, irrigation, recreation and aquatic 

habitat along the lengths of the Missouri and Mississippi river systems, and into the Gulf 

of Mexico. Locally, the economic consequences of saline soils are staggering. Due to 

high salt concentrations [EC≥ 4 dS/m], the economic loss on 113,000 ha in SD Beadle, 

Brown, and Spink counties has been estimated at $26.2 million per year (NRCS, 2012), 

and in North Dakota’s Red River Valley, the loss is estimated at $150 million per year 

(Hadrich, 2012).  

One of the consequences of saline and sodic soil development is the creation of 

soil profiles which change soils reflectance characteristics (Schmid et al., 2009; Rao et 

al., 1995; Joshi et al., 2002).  However, depending on the magnitude and cause of the 

problem, different reflectance characteristics are possible.  In an extreme condition, salt 

accumulations can result in a white crust on the soil surface.  Under these conditions soils 

with a mineral crust have 70 to 90% reflectance in the 500- to 1,000- nm wavebands 

(Howari et al., 2002).  However, the degree of reflectance is influenced by the mineral 

composition.  For example, gypsum had a lower reflectance than calcite in the 1,500-, to 

2500- nm wave bands.  Other studies (Nawar et al., 2014; Metternicht and Zinck, 2003;  
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Schmidt et al., 2009; and Sidike et al., 2014) showed that reflectance decreased with 

salinity and sodicity.  

Soil EC prediction using Landsat images is the continuation of the classical model 

of soil (Jenny, 1941) modified to accommodate new information and tools available 

today (McBratney et al., 2003; Lobell et al., 2015). Different layers of indirect soil 

information are used to predict particular soil property such as soil EC.  Since spatial 

resolution of model inputs are very detailed compared to classical soil map developed for 

each mapunit, output will be a valuable information for land managers.  

 In summary, researchers have used variety of remote sensing data and techniques 

to assess and map soil salinity. Recent work in Red River valley, North Dakota indicates 

that long term vegetation index (EVI and NDVI) can be used to assess soil salinity 

(Lobell et al., 2010). Their work involved for regional scale soil salinity assessment using 

moderate resolution imaging spectroradiometer (MODIS) imagery. For the field scale I 

hypothesize that using long term spring season Landsat imagery when soil is covered 

minimally with the vegetation will be a more direct method to assess soil salinity. I tested 

this hypothesis using variety of machine learning techniques. Overall objective of this 

study is to develop a remote sensing model that can be used to identify the extent of this 

growing saline problem in the Northern Great Plains. 

 

 

 

 



36 
 

 
 

Materials and Methods 

 

Sample collection and processing 

 

Two sites, Pierpont (45.4751  N, 97.8359  W, 65 ha) and Redfield (44.9250  N, 

97.4760  W, 17 ha) were selected for this study.   The soils at both sites were formed on 

glacially deposited parent materials that overlaid marine sediments.  The soil textures at 

the sites ranged from silt loams to silty clays, and the slope ranged from 0- to 9-% at 

Pierpont and from 0- to 6- % at Redfield.  

Soil samples (0-to 7.5- and 7.5- to 15- cm) were collected from a 62 by 62 m grid 

in November and July 2013 from Pierpont and Redfield sites, respectively. Each sample 

consisted of composite of 15 cores that were randomly collected from a 1 m
2
 sampling 

area.   At Pierpont, 204 samples were collected, whereas at Redfield, 41 samples were 

collected.  Coordinates of all sampling points were located with a differentially corrected 

global positioning system (DGPS).   

Soil samples were air dried (40° C), ground, and sieved through 2 mm screen. 

Approximately 150 cm
3
 of Type I (high purity deionized nanopure) water was added to 

250 g of ground soil to make saturated paste. The saturated pastes were equilibrated for > 

8 hours before soil solution extraction.   The soil EC (dS/m) of the solution extract was 

measured with a conductivity probe (PC 2700, Oakton Instruments, Vernon Hills, IL), 

and the concentration of Na
+
, Ca

2+
, and Mg

2+
 were measured using flame atomic 

adsorption spectrophotometry (200 A, Buck Scientific, Norwalk, CT). For Na
+ 

and Mg
2+

 

analyses the samples were diluted using a calcium suppressant solution (La2O3·HCl 
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solution) (National Soil Survey Center, 1996). Sodium adsorption ratios (SAR) were 

calculated using Equation 1.  

           [1] 

  

 

Based on the soil EC, the soil samples were separated into 5 categories (<2, 2-4, 4-10, 10-

20 and >20 dS/m), and based on the SAR values,  the samples were separated into 4 

categories (<4, 4-6, 6-13 and >13 mmolc L
-0.5

).  Summary statistics of these data are 

provided in Table 2.1.    

 For model validation, a set of 65 soil samples from the 0- to 15- cm were 

randomly collected from 8 different sites of eastern South Dakota (Fig. 2.2). Processing 

and analysis followed the procedures described above. 

 As a secondary validation, gridded soil survey geographic (gSSURGO) data from 

natural resource conservation service (NRCS), US Department of Agriculture was used. 

Saturated paste soil EC from SSURGO data were first aggregated for each map unit and 

then extracted for 3730 data points across eastern South Dakota.  
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Table 2.1 Summary statistics of soil grouping for EC and SAR from Pierpont, SD. 

Salinity 

# 

sample Mean CI(95%)* Elevation Slope Moisture 

EC N EC(dS/m) EC(dS/m) m % % 

EC0-2 81 0.82 0.10 420. 0 1.30 28.4 

EC2-4 48 3.00 0.15 417.7 1.58 30.2 

EC4-10 32 5.64 0.51 416.6 1.37 31.2 

EC10-20 12 13.16 1.70 416.1 1.70 27.8 

EC20-42 31 28.62 1.71 415.5 2.35 35.0 

       

SAR 

 

SAR  SAR    

SAR0-4 142 1.42 0.17 418.9 1.41 25.4 

SAR4-6 18 4.84 0.31 416.1 1.78 27.2 

SAR6-13 34 8.72 0.66 416.1 1.91 29.4 

SAR13-43 10 22.30 6.80 416.0 2.18 34.9 

*CI= Confidence Interval at 95%  

 

 

Figure 2.2 Sixty five validation samples collected from 8 eastern sites of South Dakota. 

At each site, samples were collected to represent gradient of soil salinity along the 

landscape. 
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Ground based reflectance and moisture sensing 

 

 At Pierpont, the surface soil (0-6 cm) moisture at each sampling point was 

measured on 17 May 2014 using a handheld soil moisture meter ML3 ThetaProbe (TH2O 

Theta soil moisture meter, Dynamax, Houston, TX). This instrument measured 

volumetric soil moisture content using dielectric constant of mineral soil. Simultaneous to 

the soil moisture measurements, surface soil reflectance was measured using a 

multispectral radiometer (MSR16R Crop Scan unit, Crop Scan Inc., Rochester, MN). The 

Crop Scan simultaneously measured reflected and incoming energy in 450- to 1750- nm 

range. Reflectance was measured between 1100 and 1400 hours (Chang et al., 2004).  At 

each sampling points, 3 readings were collected and averaged. 

Model building process using Landsat 8 and DEM image  

Landsat 8 operational land imager/thermal infrared sensors (OLI/TIRS) images 

(2013 and 2014) with <30% cloud cover were obtained for Pierpont and Redfield site.  

Digital reflectance values for the thermal infrared (TIRS) band 10 (10.60 – 11.19 µm) 

and band 11 (11.50 -12.51 µm) were converted to top of atmosphere (TOA) radiance 

using “rLandsat8” package in R. The reflectance and radiance values, from each of the 

soil sampling points, were combined with elevation, slope and aspect information derived 

from a light detection and ranging (LiDAR) digital elevation model.   Sampling points 

were randomly split into 134 points for model development and 70 points for model 

validation.  Multiple linear regression, classification and regression tree, cubist and 

random forest methods were used for model development and comparisons. 
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Classification and Regression Tree (CART), introduced by Breiman et al. (1984) 

is a statistical data mining technology. It divides data based on binary recursive 

partitioning method and is not affected by non-linearity in data structure. Breiman et al. 

(1984), and Steinberg and Colla (1995) provide the details of these methods. Cubist and 

Random forest methods are extension of the regression and classification method. 

Random Forest is specifically suitable for small number of observations with large 

number of variables (small n large p), high order interaction and correlated variables. 

Several authors used these method to estimate crop yield and soil properties (Pachepsky 

et al., 2001; Shatar and McBratney, 1999;  Howari, 2003; Masoud and Koike, 2006) 

After developing these machine learning algorithms for soil EC, models were 

compared using coefficients of determination (R
2
), mean square error (MSE) and 

semivariance of the model residuals. The R
2
 and MSE values are a measures on the 

strength of the relationship between the measured and predicted values. Semivariance of 

model residual provides an assessment of the models ability to remove spatial correlation. 

Unlike random variables, regionalized variable such as soil electrical conductivity exhibit 

spatial continuity (Webster and Oliver, 2001) and this can be assessed by semivariogram. 

Semivariogram is a plot of the semivariance of a property (regionalized variable) over a 

set of distances called lag. Semivariance measures dissimilarity of a property over a range 

of distance. In our case soil EC was spatially correlated up to 200 m.   

Time series of Landsat 7 and Landsat 5 images  

 Time series image of Landsat 7 and Landsat 5 were used for two separate 

assessment purpose. First, images from 1999 to 2015 were used to identify best 

responsive bands to soil EC. For this purpose, soil data were grouped low to high EC into 
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5 categories (<2, 2-4, 4-10, 10-20 and >20 dS/m) and time series of reflectance on those 

sampling points were analyzed. For the older images, they were calibrated using Chander 

et al. (2009) and for the newer images they were calibrated using coefficients provided 

with image metadata (Google Earth Engine Team, 2015). Time series data were 

statistically analyzed for monotonic trend using Mann-Kendall test. This test is non-

parametric and does not require residuals to be normally distributed. This test assesses if 

a variable is monotonically going upward or downward over the time period even though 

the trend may or may not be linear. 

Second, Landsat 5, 7 and 8 TOA images from 2005 to 2013 were used to track 

changes in soil EC over time. Less than 30% cloud covered images for three time periods 

(April-May as a spring image, June-August as a summer image, and September-October 

as a fall image) were used for this purpose. These three time periods represent three 

growth periods (growth initiation, vegetative growth and reproductive/maturity stages).   

For each growth period, 3-year median values of reflectance and vegetation indices 

(Table 2.2) image were created. For example, spring median image for 2008 were created 

from the all cloud free images available during spring season from 2007 to 2009. Soil EC 

was predicted using 3 year median images with the random forest model. A planetary 

scale mapping platform Google Earth Engine API was used at this stage. Predicted EC 

and change was assessed using the eastern South Dakota landuse change data set 

(Reistma et al., 2015). A total of 3,733 data points corresponding to cropland both in 

2006 and 2012 were used for this purpose. For each point, growing season (April 1 - 

September 30) total precipitation (mm), maximum and minimum temperature (ºK) and 

soil properties were extracted. Gridded surface meteorological data (GridMet) from 
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University of Idaho was used for precipitation and temperature extraction while gridded 

soil survey geographic (gSSURGO) database from NRCS was used for soil properties. 

Finally, all the points were grouped based on land capability class (LCC) for summary 

statistics. 

 

 

Table 2.2 Reflectance indices used for soil salinity prediction 

Indices used for this study 

Normalized difference moisture index, NDMI =  (SWIR - NIR)/(SWIR+NIR)  

Normalized difference vegetation index, NDVI = (NIR-R)/(NIR+R)  

Normalized difference water index, NDWI = (NIR-Green)/ (NIR + Green) 

Mid Infrared Burn Index,  MIRBI= (10*B7) - (9.8* B6) + 2.00 

Salinity Index (Landsat8), SI =        

Normalized difference Salinity Index, NDSI = (B4 - B5)/ (B4 + B5) 

Brightness Index, BI =           

Soil Adjusted Vegetation Index, SAVI = 1.5[(NIR - RED) / (NIR + RED + 0.5)] 
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Results and Discussions 

Reflectance characteristics over EC and SAR range 

Surface reflectance decreased with increasing salinity (Fig. 2.3A). This is in 

contrast to other studies that reported the contrary (Schmid et al., 2008; Rao et al., 1995, 

Joshi et al., 2002). In the NGP, several factors may be responsible for the differences.  

First, soils with high salinity are often found in footslope areas where the soil moisture 

content may be very high.  Since water absorbs more and reflects less light compared to 

bare soil, we can expect lower reflectance in lower part of the landscape (footslope and 

toeslope). To verify if the difference in reflectance was attributed to differential soil 

moisture, the soil moisture content of the different EC classes were compared.  This 

analysis suggests that on May 17, the moisture content of soils with EC < 20 dS/m were 

similar (Fig. 2.4, Table 2.1).  Soils with EC>20 dS/m had higher soil moisture contents 

and were generally located in footslope areas (Table 2.1). In all of the soils, white salts 

were generally not present on the soil surface.     

  Landsat-8 reflectance values were lower than MSR-Crop Scan reflectance value 

(Fig. 2.3A and B). This could have due to differences in sensors (Nawar et al., 2014) and 

atmospheric distortion as Landsat 8 image used were top of atmosphere reflectance or it 

could be due to other factors since these two readings were taken a month apart. Both 

Landsat-8 and MSR-Crop scan data indicate that reflectance decreased with increasing 

salinity.  Nawar et al (2014) showed similar trend in field soil reflectance using portable 

spectroradiometer (FieldSpec-FR, ASD) and Landsat-7 ETM+ over EC range 3.8 to 58.6 

dS/m. Similar results are shown by  Metternicht and Zinck (2003),  Schmid et al. (2009), 

and Sidike et al. (2014). 
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Figure 2.3 Surface reflectance, A) April 17, 2014 Landsat 8, and B) May 17, 2014, MSR-

CropScan as affected by soil electrical conductivity (EC) levels at Pierpont site.   
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Figure 2.4  Volumetric soil moisture content  (6 cm depth) recorded on May 17, 2014 at 

Pierpont site shows slightly higher moisture content at grid points with EC>20, but there 

was no difference in moisture content  in other grid points. 
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Figure 2.5 Surface reflectance (April 17, 2014 Landsat-8) as affected by Sodium 

Absorption Ratio (SAR) levels at Pierpont site.   
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  Reflectance was higher when soil SAR was low (Fig. 2.5).   These results 

indicate that reflectance of soil with a SAR value <4 mmolc 
 
L

-0.5
 is very different than 

soil with a SAR > 4  mmolc
 
L

-0.5
.   Reflectance decreased 11- to 16-% from soil with SAR 

< 4 mmolc
 
L

-0.5
 to soils with SAR values between 4- to 6-  mmolc L

-0.5
.  Reflectance 

decreased further with higher SAR soil value but this decrease was subtle, ranging only 

0.31 -2.2 % across the bands. 

Correlation analysis 

Both surface soil EC and SAR were strongly correlated with fall bands and 

indices compared to spring and summer (Table 2.3). Highest correlation was found with 

blue band (B2) for both EC (r=0.79
*
) and SAR (r=0.61

*
). Thermal bands (B10 and B11) 

were more important in spring season when ground was not covered by green vegetation. 

For DEM parameters elevation was strongly correlated with soil salinity and sodicity. 

Time series analysis of Landsat 7 and Landsat 5 data  

Time series data (1999-2015, Landsat 7 and 1999-2011, Landsat 5) were 

statistically analyzed for monotonic trend using Mann-Kendall test (Mann, 1945; 

Kendall, 1975; Hipel and McLeod, 1994). This test is non-parametric and does not 

require residuals to be normally distributed. This test assesses that if the variable is 

monotonically going upward (positive τ) or downward (negative τ) over the time period 

even though trend may or may not be linear. Mann-Kendall test on Landsat 7 time series 

(Table 2.4) showed statistically significant negative τ (-0.07) for short wave infrared 

(SWIR) bands (B5 and B7). This trend was observed on soil with higher EC (EC class 

>20 dS/m). Most probably these points are the EC hotspot where vegetation grows 
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sparsely. Correlation analysis in Table 2.3 indicates that SWIR band (B6 and B7 of 

Landsat 8) are negatively correlated with EC and SAR during spring season. Hence, 

further decline on these bands as shown by Mann-Kendall test indicates that hot spot or 

salinity intensity increased from 1999 to 2015.  

Mann-Kendall test on Landsat 5 time series (Table 2.5) showed that the NIR (B4) 

had a negative τ along with short wave infrared (SWIR) bands (B5 and B7).  Response of 

NIR band was observed in all soil EC classes. Mann-Kendall test further allowed us to 

pick the most responsive bands for salinity assessment. Our study showed best band to 

monitor soil EC changes are SWIR and NIR even though several other bands showed 

strong linear correlations (Table 2.3).  These results are in agreement with Shrestha 

(2006) and Bannari et al. (2008).    
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Table 2.3 Correlation between Landsat 8 TOA reflectance bands, indices and DEM 

parameters with surface soil EC and SAR at Pierpont  

  Spring Summer Fall 

Band/index Wavelength 

(µm) 

EC SAR EC SAR EC SAR 

B1 0.43 - 0.45 0.35 0.30 0.60 0.54 0.75 0.61 

B2 0.45 - 0.51 -0.02 0.04 0.61 0.51 0.79 0.61 

B3 0.53 - 0.59 -0.32 -0.17 0.46 0.36 0.61 0.55 

B4 0.64 - 0.67 -0.40 -0.33 0.39 0.36 0.66 0.50 

B5 0.85 - 0.88 -0.42 -0.38 -0.46 -0.45 -0.64 -0.49 

B6 1.57 - 1.65 -0.43 -0.42 0.49 0.43 0.62 0.50 

B7 2.11 - 2.29 -0.26 -0.34 0.55 0.49 0.63 0.54 

B9 1.36 - 1.38 0.49 0.29 0.05 0.03 -0.33 -0.15 

B10 10.60 - 11.19 -0.49 -0.45 -0.07 0.00 -0.57 -0.44 

B11 11.50-12.51 -0.50 -0.47 0.06 0.04 -0.41 -0.33 

        

BI  -0.42 -0.37 -0.42 -0.41 -0.61 -0.46 

NDVI  0.03 -0.05 -0.56 -0.54 -0.73 -0.55 

NDSI  -0.03 0.05 0.56 0.54 0.73 0.55 

NDMI  -0.11 -0.17 0.60 0.55 0.70 0.54 

NDWI  -0.25 -0.38 -0.61 -0.56 -0.74 -0.60 

SAVI  -0.18 -0.24 -0.56 -0.53 -0.70 -0.54 

SI  -0.29 -0.22 0.48 0.43 0.74 0.56 

MIRBI  0.65 0.45 0.18 0.20 0.51 0.51 

        

Elevation  -0.51 -0.46 - - - - 

Slope  0.36 0.20 - - - - 

Aspect  0.11 0.14 - - - - 
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Table 2. 4 Mann-Kendall test for monotonic trend (τ) of Landsat 7 time series (1999 – 

2015) data. P-value are for two-sided test. 

Band Wavelength EC <2 (n =81) EC >20 (n=31) EC 10-20 (12) 

 

(µm) τ P value τ P value  τ p-value 

B1 0.45-0.52 -0.008 0.83 -0.017 0.67 -0.01 0.76 

B2 0.52-0.60 -0.01 0.71 -0.023 0.55 -0.02 0.61 

B3 0.63-0.69 -0.01 0.76 -0.029 0.47 -0.02 0.57 

B4 0.77-0.90 -0.01 0.74 -0.018 0.68 -0.01 0.74 

B5 1.55-1.75 -0.045 0.27 -0.075 0.07 -0.06 0.14 

B6 10.40-12.50 0.02 0.53 0.032 0.42 0.03 0.46 

B7 2.09-2.35 -0.03 0.37 -0.07 0.09 -0.055 0.18 

B8 0.52-0.90 -0.03 0.46 -0.02 0.57 -0.018 0.66 

 

 

Table 2.5 Mann-Kendall test for monotonic trend (τ) of Landsat 5 time series (1999 – 

2011) data. P-value are for two-sided test. 

Band Wavelength EC <2 (n =81) EC >20 (n=31) EC 10-20 (n=12) 

 

(µm) τ P value τ P value  τ p-value 

B1 0.45-0.52 -0.06 0.38 -0.02 0.78 -0.03 0.61 

B2 0.52-0.60 -0.05 0.42 -0.02 0.80 -0.03 0.61 

B3 0.63-0.69 -0.07 0.32 -0.04 0.50 -0.05 0.47 

B4 0.76-0.90 -0.15 0.02 -0.17 0.01 -0.16 0.02 

B5 1.55-1.75 -0.007 0.91 -0.13 0.05 -0.10 0.13 

B6 10.40-12.50 0.01 0.79 0.02 0.78 0.01 0.82 

B7 2.08-2.35 0.02 0.75 -0.13 0.06 -0.10 0.14 
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Soil surface EC model comparison using 2013 and 2014 April image 

Soil EC data was positively skewed to right with Pearson skewness coefficient of 

2.01. Hence EC variable was log-transformed for further analysis in model building 

stage.   

Semivariance of surface soil EC (Fig. 2.6) shows that they were spatially 

correlated up to 200 m. One of the criteria for model selection was to identify how much 

spatial autocorrelation was reduced by the model. For comparison, semivariogram range 

value was fixed to 100 m distance and the resulting sill values of different models were 

compared. For the beginning, models developed on April 17, 2014 image were compared. 

Inputs used were image bands, indices developed from those bands and DEM parameters. 

The reason to use single image was to remove other confounding factors and compare 

models and bands that appear important for salinity prediction.  

Multiple linear regression was performed in stepwise method. Overall, all models 

(linear regression, LR; regression tree, RT; cubist; and random forest, RF) showed fairly 

high R
2
 (>70%) value on training data set (Table 2.6). Random forest showed highest R

2
 

(0.77) on validation data set. Semivariance (sill value) of the model residuals shows that 

only random forest method was able to completely remove spatial correlation. Linear 

regression method was weakest in terms of modeling autocorrelation (sill value = 0.89). 

Important variables selected by linear regression were, B6 (1.57 - 1.65 µm), B5 

(0.85 - 0.88 µm), NDVI, and elevation. Random forest showed B6 (1.57 - 1.65 µm), B7 

(2.11 - 2.29 µm), NDVI, B10 (10.60 - 11.19 µm), B11 (11.50-12.51 µm) and Elevation 

as major contributor on the model. To identify important Landsat 8 bands, random forest 
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model was rerun with those bands only (DEM was removed). Rerun model showed 

SWIR bands B7, B6 and thermal band B11 and B10 were the important bands for the EC 

prediction (Fig 2.7). Important variables were determined by increase in mean square 

error (MSE) when these variables were removed from the fitted model. Short wave 

infrared (SWIR) band B6 and B7 appeared very important as their removal from fitted 

model increased MSE nearly 20%. 

Random forest model was chosen for further analysis. Principle component (PC) 

of image bands (B1-7 and B10-11) of year 2013 and 2014 and DEM parameters 

(elevation, slope and aspect) were compared. Additional data set from Redfield was used 

as independent validation site. Results showed that model predictability was similar to 

the original bands. Predictability (R
2
 value) within Pierpont site (both for training and 

validation data) were high but it decreased when tested in the independent test site, 

Redfield. Predictability was lower when previous crop was corn (2013, R
2
= 0.25) 

compared to soybean (2014, R
2
= 0.40) in the training site (Pierpont). This might be due 

to higher soil coverage by corn stover compared to soybean stubble. Combining two 

years (2013 and 2014) improved predictability at both validation (R
2
= 0.82) and test (R

2
= 

0.50) site. Addition of DEM further increased soil EC predictability.  Figure 2.8 and 2.9 

shows the predicted map using this method for both Pierpont and Redfield site. 
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Figure 2.6 Semivariance of surface soil EC (0- to7.5- cm). EC data were natural log 

transformed. 
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Table 2.6 Model comparison for predicted soil surface EC using 2014 Landsat image. 

Data points were randomly divided between training (n=134) and validation (n=70) set 

for Pierpont site. Landsat image bands, DEM and reflectance indices were used for model 

building. Models compared were linear regression (LR), regression tree (RT), cubist and 

random forest (RF) methods. 

Model 
Training 

R
2
 

Validation 

R
2
 

RMSE Bias 
Range 

(m) 

Sill 

value 
nugget 

LR* 0.76 0.65 0.028 -0.028 100 0.89 0.05 

RT 0.75 0.68 0.79 -0.12 100 0.67 0.06 

Cubist 0.79 0.71 0.75 -0.02 100 0.55 0.07 

RF 0.70 0.77 0.68 -0.03 100 0.06 0.11 

Note: * Multiple linear regression was performed with stepwise selection method. Variable to enter and 

stay were defined at p-value 0.2 and 0.05 respectively. Variable with high variance inflation ratio (VIF>15) 

were removed from the model. 

 

 

 

Figure 2. 7 Variable of Importance plot of Random Forest model for surface soil EC 

prediction. Variables with higher % increase in mean square error (MSE) are most 

important for the model. Variables are coded as A14SRB= April 2014 Surface 

Reflectance Band, and A14RadB= April 2014 Radiance Band. 
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Figure 2.8 Observed soil EC in dS/m (left) and predicted log of EC (right) using Random 

Forest method for Pierpont site.  Model used principle component of both 2013 and 2014 

April image surface reflectance + DEM parameters (R
2
= 0.78). 

 

 

 

Figure 2.9 Redfield observed soil EC in dS/m(left) and predicted log of EC (right) using 

Random Forest model developed from Pierpont data.  Model used principle component 

of both 2013 and 2014 April image surface reflectance + DEM parameters (R
2
 =0.56). 
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Soil EC prediction for state of South Dakota  

  

Random forest model as indicated best in previous stage was used to predict soil 

EC for state of South Dakota. Planetary scale mapping platform Google Earth Engine 

API was used for this purpose.  Both sites (Pierpont and Redfield) were used as training 

data and separate 65 samples collected from eastern South Dakota as model validation 

data. In this stage, combination of all 3-season image (3 year median image such as 2011-

2013 median spring, summer and fall images for EC year 2012) showed highest R
2
 with 

state wide validation data set (R
2
 = 0.26) and relationship was better with SSURGO 

database EC value (Table 2.8). EC map produced by this method (3-year median images) 

are shown in figures 2.10 and 2.11 and summary statistics of all 3-season model predicted 

EC in Table 2.7. These results indicate that combining all 3-season images improve EC 

prediction in regional scale. EC predicted using all 3-season image was used to detect 

change in acreages in eastern South Dakota. 
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Figure 2.10 Predicted EC (dS/m) eastern South Dakota using spring season covariates. 

 

 

 

Figure 2.11  Predicted EC (dS/m) for eastern South Dakota using all 3 season covariates 

(Spring + Summer + Fall). Refer Table 2.8 for validation result. 
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Table 2.7 Summary of predicted electrical conductivity (dS/m) using 3-year Landsat 

image + elevation model for each of 6 land capability class (LCC) in eastern South 

Dakota cropland data points. 

EC 

Year LCC Mean Median S.D. Min Max N 

2008 1 2.3 1.7 1.9 0.7 18.7 334 

2008 2 3.0 2.0 2.8 0.5 22.3 2524 

2008 3 2.8 1.9 2.4 0.5 15.5 422 

2008 4 3.2 2.2 2.6 0.7 15.4 349 

2008 5 3.2 1.8 3.8 1.0 15.1 25 

2008 6 4.1 3.1 3.7 0.7 17.5 76 

2010 1 2.3 1.9 1.6 0.6 13.8 334 

2010 2 2.8 2.1 2.2 0.4 18.3 2524 

2010 3 2.9 2.1 2.2 0.6 13.4 422 

2010 4 3.6 2.4 3.0 0.6 16.5 349 

2010 5 3.2 2.1 3.0 0.6 12.7 25 

2010 6 4.4 3.0 3.7 0.8 15.4 76 

2012 1 3.4 2.3 2.8 0.5 19.7 334 

2012 2 4.2 2.8 3.4 0.3 23.1 2524 

2012 3 4.1 3.1 3.2 0.4 17.6 422 

2012 4 5.0 3.6 4.0 0.7 16.9 349 

2012 5 4.3 2.8 3.6 1.3 14.7 25 

2012 6 6.2 4.4 4.7 0.6 19.1 76 

 

Table 2.8 Validation of the Random Forest model based on soil EC values from the 

SSURGO soil mapping units.  This validation only included fields that were cropped with 

soybeans and corn. 

LCC N SSURGO Database  EC  (dS/m) 
Model EC and SSURGO 

EC relationship 

 
 

Mean-

Rep* 
S.D. 

Mean-

High* 
S.D. 

  

1 334 1.10 0.88 2.16 1.50 2008EC = 0.9 x + 1.51,  

2 2524 1.41 1.84 2.67 2.97 R
2
 =0.63),  (Pr =0.06) 

3 422 1.43 2.23 2.70 3.82 2010EC = 1.1 x + 1.25,  

4 349 2.01 2.59 3.62 4.02 R
2
=0.62,  (Pr= 0.06) 

5 25 2.40 2.08 4.00 3.21 2012EC =1.3 x + 2.24,  

6 76 2.24 2.83 4.00 4.46 R
2
=0.50,  (Pr=0.11) 

*SSURGO table EC Representative (Mean-Rep) and EC High (Mean-High) value 
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EC change from 2008 to 2012 in eastern South Dakota 

 

 Soil EC predicted using all 3 season image (Table 2.7) ranged from 2.3 to 6.2 for 

LCC 1 to 6 over the year 2008 to 2012. Predicted soil EC closely matched with SSURGO 

database EC (Table 2.8). Predicted EC were always higher than SSURGO representative 

EC value. Measured soil EC at Pierpont and Redfield (245 sampling points, data not 

shown) showed similar higher value compared to SSURGO soil EC value.  Aggregated 

over soil map unit, surface soil EC value we observed at Pierpont and Redfield site was 

3.9 (±2.5) while SSURGO EC value for those points were 1.0 (±0.3). Coefficient of 

determination (R
2
) between SSURGO database EC representative value and predicted EC 

was 0.63, 0.62 and 0.50 for EC year 2008, 2010 and 2012 respectively (Table 2.8). 

Strong relationship of predicted soil EC with SSURGO database indicates that multiyear 

Landsat image can be very useful to predict soil salinity at higher spatial resolution. 

Soil EC was more affected by previous year’s growing season precipitation than 

the current year precipitation for each EC-year (Table 2.9 and 2.10). EC increased with 

previous year’s precipitation in 2008 (Table 2.10) while it decreased with current year 

precipitation in 2008 and 2012.  Growing season maximum temperature always showed 

positive relationship with soil EC whereas minimum temperature showed no relationship 

at all during same period.  

The result of such a trend can be implied that precipitation from previous year that 

contributes to water table rise and that eventually bring salt to the surface with increasing 

temperature (Eisenlohr and Sloan, 1968; Anderson et al., 2012). Spring rainfall has 
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increased in the region (Clay et al., 2014). For example, precipitation increased from 41 

to 63 cm since 1939 in Brookings South (Anderson et al., 2012). This rise in temperature 

and higher rainfall reduced the risk of growing annual crops in the region (Schrag, 2011; 

Clay et al., 2014; Cook et al., 2015; Reitsma et al., 2015). Reistma et al., 2015 reported 

728,000 hectares of land were converted from grassland to croplands in South Dakota 

between 2006 and 2012 due to this favorable weather condition. However this conversion 

from grassland to cropland reduced transpiration, which further increased water table 

rise, salinization and sodicity.   

EC predicted using all 3 season images (Table 2.11) shows that salinity in eastern 

South Dakota increased on 13.4% of the corn soybean acreages from year 2008 to 2012.  

This calculation is based on at least 4 dS/m increase in EC value. This threshold value (4 

dS/m) was chosen considering the standard deviation of predicted EC (Table 2.7). 

Acreage with increased soil EC was lower (8.3%) with spring season image model 

compared to all 3-season image model. This is because spring season model predicted 

soil EC to be very high in each year (Fig 2.10) and the predicted values were always high 

compared to SSURGO soil EC value. Hence more reliable estimation appears to be 

model developed using all 3-season image for the region (Fig. 2.11). 

EC change per LCC was evaluated using eastern South Dakota land-use change 

dataset (Table 2.12). Most of the data points were in LCC 2 and we observed 12.7 % of 

those data points showed increase in soil EC from year 2008 to 2012.  
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Table 2.9 Weather Data for each of the Land capability class during model estimation 

period. Growing season is April 1 to September 30. For each EC year, weather data are 

shown for previous year (Year Before) and same year growing season. 

 

LCC 

Growing Season 

Precipitation (mm) 

Growing Season 

Tmax (K) 

Growing Season 

Tmin (K) 

EC 

Year 

 

Year 

Before 

Same 

Year 

 

Year 

Before 

Same 

Year 

 

Year 

Before 

Same 

Year 

2008 1 466.0 460.0 

 

297.3 296.0 

 

284.7 283.1 

2008 2 490.4 439.8 

 

297.4 296.3 

 

284.4 282.7 

2008 3 499.6 445.4 

 

297.0 296.0 

 

284.2 282.6 

2008 4 503.0 446.7 

 

297.6 296.5 

 

284.6 282.9 

2008 5 474.1 462.6 

 

297.5 296.3 

 

284.7 283.1 

2008 6 500.5 442.8 

 

297.6 296.5 

 

284.5 282.8 

2010 1 435.6 755.4 

 

295.4 297.0 

 

282.9 284.6 

2010 2 411.9 641.3 

 

295.6 297.0 

 

282.6 284.3 

2010 3 413.7 623.4 

 

295.3 296.7 

 

282.5 284.2 

2010 4 431.0 669.7 

 

295.8 297.2 

 

282.8 284.5 

2010 5 445.6 741.8 

 

295.6 297.1 

 

282.9 284.6 

2010 6 415.6 690.7 

 

295.8 297.2 

 

282.7 284.4 

2012 1 468.6 342.2 

 

298.2 300.9 

 

283.9 285.1 

2012 2 452.0 318.6 

 

298.2 300.9 

 

283.6 284.9 

2012 3 455.6 329.2 

 

297.9 300.4 

 

283.4 284.7 

2012 4 455.5 318.2 

 

298.5 301.1 

 

283.8 285.0 

2012 5 493.1 340.6 

 

298.3 301.1 

 

283.9 285.2 

2012 6 464.5 318.4 

 

298.5 301.2 

 

283.7 285.0 

 

Table 2.10 Relationship between weather data and predicted soil EC. For each EC year 

linear relationship between weather data are shown for previous year (Year Before) and 

same year growing season. 

EC Year Variable Linear Relationship 

  

Year Before Same Year 

2008 Precip.(mm) 0.03x - 8.1,  R
2
=0.37 -0.03x +16.0, R

2
=0.22 

2008 Tmax (ºK) 1.58x -468, R
2
= 0.38 2.12x - 625, R2= 0.66 

2010 Precip.(mm) No linear relationship No linear relationship 

2010 Tmax (ºK) 2.83x -833, R
2
= 0.65 2.4x -707, R

2
= 0.38 

2012 Precip.(mm) No linear relation -0.06x +24.50, R
2
 =0.47 

2012 Tmax (ºK) 2.91x- 866, R
2
=0.46 1.8x -537, R

2 
=0.28 
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Table 2.11 Acres and percentage affected by at least 1 standard deviation (4 dS/m , based 

on Table 2.7) EC increase in eastern South Dakota corn + soybean field pixels.  

EC model 2008-2010 2010-2012 2008-2012 

 hectares % hectares % acres % 

All 3 Season 106540 2.5 462991 10.9 569165 13.4 

Spring Season 201329 4.8 315083 7.4 349931 8.3 

Total Corn + Soy area in 2014 for eastern South Dakota was 4237065 ha. 

Percentages are Calculated based on Corn + Soybean pixels in crop data layer 

(CDL) 2014. 

 

 

Table 2.12 Percentage change in sol EC for each of LCC based on 3730 eastern South 

Dakota cropland data points. Points with >1 SD increase in soil soil EC was used to 

calculate these percentage. 

LCC 
Total 

Observation 

>1 SD 

increase 
Change 2008 EC (dS/m) 2012 EC (dS/m) 

 
# of points # of Points  % Mean Median Mean Median 

1 334 35 10.5 2.3 1.7 3.4 2.3 

2 2524 321 12.7 3.0 2.0 4.2 2.8 

3 422 56 13.3 2.8 1.9 4.1 3.1 

4 349 62 17.8 3.2 2.2 5.0 3.6 

5 25 2 8.0 3.2 1.8 4.3 2.8 

6 76 16 21.1 4.1 3.1 6.2 4.4 
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Conclusions 

 

This paper tests series of hypotheses starting from how ground based and 

remotely sensed reflectance respond to soil salinity to what machine learning techniques 

effectively utilize that reflectance to map soil salinity. Our result shows that within 

agricultural fields in NGP, soil reflectance decreases with both soil EC and SAR. 

Random forest method was the most effective machine learning techniques to map soil 

salinity because of its ability to capture spatially correlated variation. In addition,  this 

paper explored  what bands can be used to monitor soil salinity changes in long run and 

results show that SWIR bands (B5 and B7 in Landsat 7 and Landsat 5,  and B6 and B7 in 

Landsat 8) and NIR (B4 in Landsat 5) were more sensitive to increasing soil salinity. 

Finally soil EC was predicted for eastern South Dakota using spring, summer, fall and all 

3-season combined images. Predicted soil EC was influenced by crop type and the 

residue cover. Results show that spring image was best input for EC prediction using 

random forest model for a specific field but all 3-season image combined was better for 

regional level estimation. Estimated acres with increased soil EC in eastern South Dakota 

from 2008 to 2012 was 569,165 ha or 13.4 % of soybean and corn acreages in this region.   
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