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ABSTRACT 

PROTEOMICS STUDY OF PRE-HARVEST SPROUTING IN WHEAT 

PRAMOD KHADKA 

2016 

 Pre-harvest sprouting (PHS) of wheat (Triticum aestivum L.) is a condition 

characterized by the early germination of spikes during moist environmental conditions. 

PHS lowers yield, degrades the quality of grain and thus limits the profits of wheat 

producers groups. During this investigation, proteomics studies of PHS-resistant and 

PHS-susceptible wheat embryos were conducted at different imbibition time periods via a 

cutting-edge technology called iTRAQ. Proteomic analysis revealed that 190 

differentially expressed proteins might be involved in various cellular functions, such as 

carbohydrate metabolism, nitrogen metabolism, stress response, redox regulation, ATP 

synthesis, and protein translation, during this untimely germination of the wheat embryo.  

Hierarchical clustering analysis revealed the expression pattern of proteins in each of the 

resistant and susceptible germplasm and relative abundance of respective proteins 

between the two germplasm. Expression of stress-related and inhibitors proteins was 

found to be important in maintaining seed dormancy in resistant germplasm; whereas 

over-expression of energy metabolism related proteins was observed in PHS-susceptible 

germplasm for the production of energy required for seedling growth. ABA appeared to 

be involved in seed dormancy, directly or indirectly by controlling the expression of 

several LEA and EMB-1 proteins. A higher level of ROS production was observed in 

PHS-susceptible germplasm. Through bioinformatics analysis, a Thioredoxin h protein 
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was found to be a central player in controlling PHS in wheat and synthesis of methionine 

was found to be major metabolic control of the seedling establishment. 
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Chapter 1 

1. Review of Literature 

1.1. Wheat 

Wheat (Triticum aestivum L.) is one the most important crop on earth. It is grown 

in most countries except in hot, humid tropical regions.  Wheat is the most widely grown 

crop in the world (17% area) and provides 21% of the food calories for more than 4.5 

billion people throughout the world (Von Braun 2007). Wheat can be grounded into flour 

which is a key ingredient in foods such as bread, noodles, and tortillas due to its unique 

viscoelastic properties. Wheat is an important source of carbohydrates, proteins, minerals 

and vitamins and one-fifth of the calories consumed by humans around the world are 

derived from wheat products. Due to its high nutritional value, good storing and 

transporting ability, wheat is considered as an important food crop.  

Wheat belongs to family Poaceae (Gramineae) which includes major crop plants 

such barley (Hordeum vulgare L.), oat (Avena sativa L.), rye (Secale cereale L.), maize 

(Zea mays L.) and rice (Oryza sativa L.). Morphological, cytogenetic and molecular 

studies have shown that common wheat originated from the natural hybridization of three 

different wild diploid grasses belonging to Triticum and Aegilops genera approximately 

8,000 years ago. Wheat is allohexaploid  plant which consists of 21 pairs of 

chromosomes  (2n = 6x = 42, AABBDD genomes) (Mayer 2014) and has an estimated 

genome size of 16,700 Mb/1C (Singh 2008) with an estimate of 94,000 to 96,000 genes 

in its genome (Brenchley, et al. 2012).  
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1.1.1. Wheat Production in the United States 

The United States is one of the largest producer of wheat in the world after China, 

European Union, and India. In the US, almost every state is involved in agricultural 

wheat production (Figure 1.1). According to the USDA in the year 2014, 26,630.335 

million bushels of wheat was harvested worldwide and 2,025.651 million bushels of 

wheat was harvested in the US alone.  In year 2014/2015, 113.89 million acres of land 

was used for wheat plantation in the United States. Wheat varieties grown in the United 

States are classified as “winter wheat” or “spring wheat,” depending on the season in 

which they are planted.  About 70-80 percent of total US production is occupied by 

winter wheat. These varieties are usually sown in fall and harvested in early to mid-

Figure 1.1. Wheat production areas in the United States (Source: National Association of 

Wheat Growers, 2013). 
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summer of the following year. During winter, young plants become dormant and resume 

further growth during the subsequent spring season. Winter in Northern Plains are harsh, 

so spring wheat and durum wheat are planted in springtime and harvested in late summer 

or fall of the same year. Based on kernel color, hardiness and uses, the US wheat is 

further divided into six major classes (Table 1.1). 

Table 1.1. Different classes of wheat grown in the US (Kadariya, 2014) 

Class Name Description Uses 

I Hard Winter 

Red Wheat 

About 40% of all of the wheat grown 

in the United States is hard winter red 

wheat. 

Mostly grown in the Plains states as 

well as the northern states. 

It is used for making pan 

bread Asian noodles, 

hard rolls, flat bread, 

general purpose flour, 

and as an improver for 

blending. 

II Hard Spring 

Red Wheat 

It comprises about 24% of the wheat 

grown in the United States. 

Mostly grown in Northern plains. 

Specialty bread, hearth 

bread, rolls, croissants, 

bagels, pizza crust, and 

to improve flour blends. 

III Soft Winter 

Red Wheat 

It comprises about 25% of the wheat 

grown in the United States. 

Mainly grown in the eastern states. 

Cakes, cookies and 

crackers. 

IV Hard Winter 

White 

Wheat 

This is the newest class of the US 

wheat and comprises of only about 

1% of the wheat grown. 

 

 

It is great for making 

Asian noodles, whole 

wheat, pan bread and 

flat bread. 

 

V Soft Spring 

White 

Wheat 

Generally grown in a few eastern 

states and in the Pacific Northwest 

and California. 

Accounts for about 7% of the wheat 

grown in the United States. 

Great for making for 

cakes and pastries. 

VI Durum 

Wheat 

It comprises only about 3% of the US 

wheat is durum, mostly grown in 

North Dakota. 

For making pasta 

products, couscous and 

Mediterranean bread. 
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According to the USDA, South Dakota is the fourth largest producer of wheat in 

the US. In the year 2014, 131,260,000 bushels of wheat was harvested in South Dakota 

which consists of 59,400,000 bushels of winter wheat and 71,860,000 bushels of spring 

wheat. 

1.1.2. Wheat kernel morphology 

The wheat kernel is one seeded fruit known as caryopsis.  Wheat kernels are 

generally oval shaped, although some kernels have diverse shapes ranging from almost 

spherical to long, narrow and flattened shapes. The grain is usually between 5 and 9 mm 

in length, and weighs between 35 and 50 mg.  The wheat kernel has a crease that extends 

almost to the center of the kernel (Evers and Millar 2002).  

In general, the wheat seed contains three major parts: the seed coat, the 

endosperm and the embryo (Figure 1.2). The seed coat is composed of dead cells and 

serve as a barrier between the embryo and outer environment (Bewley J. D. 1994). 

Generally, a wheat kernel contains approximately 84% endosperm, 6.5 % aleurone, 4.5 % 

pericarp, 2.5 % seed coat and 2.5 % embryo. The true seed coat is the testa and it is 

thought to be responsible for permitting water to enter inside the wheat embryo.  

Endosperms consists of two parts, aleurone, and endosperm The aleurone layer encloses 

the endosperm and it is made up of large thick walled cells filled with functional proteins 

and nutritional components (Evers and Millar 2002). The fully developed endosperm 

reserves both carbohydrate and protein. The endosperm consists of large cells which 

stores starch granules. These starch granules are surrounded by thin layer of adherent 

proteins. The embryo is capable of developing a new plant, so it is considered as the most 
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important part in grain. The scutellum is shield like structure which lies between 

endosperm and embryonic axis. 

 

1.1.3. Germination of wheat kernel 

Seed germination is a physiological process, which results in the emergence of the 

embryo from the seed coverings (Bewley, et al. 2006). As the seed germinates it begins to 

develop and eventually turn into a mature plant. Germination usually begins with water 

uptake by the seed and ends with the emergence of the embryonic axis through the 

structures surrounding it (Bewley J. D. 1994).  Absorption of water within kernel 

increases the hormonal activity. Increased Gibberellic acid (GA3) will cause the release 

of hydrolytic enzymes, α-amylase (De Laethauwer, et al. 2013). The dissolved GA3 turns 

on certain genes in aleuronic cells leading to their transcription. The mRNA thus 

Figure 1.2. Anatomy of wheat kernel (Source: http://www.wheatfoods.org/). 
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produced is transported to the cytoplasm, where ribosomes begin the process of making 

amylase. The amylase protein starts the enzymatic cleavage of starch present in the 

aleurone into sugar molecules. The released sugar is transported to the embryo where it 

acts as fuel for the growth of embryo (Figure 1.3), which results in the emergence of the 

radical from the seed coat (Gao, et al. 2013).  

1.2. Pre-harvest sprouting  

Pre-harvest sprouting (PHS) is precocious germination of grains within the wheat 

spikes before harvest (Derera, 1989).  Environmental conditions like high temperatures 

and drought during grain filling have a significant effect on the expression of sprouting in 

wheat (Biddulph, et al. 2005). PHS occurs when physiologically mature grain is exposed 

to rain and high humidity before harvest and these environmental conditions lead to the 

absorbance of moisture by the wheat kernel from the air (Thomason et al., 2009).  

Figure 1.3. Germination process of wheat (Koning, 1994). 
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In general, pre-harvest sprouting affects all crops including wheat. PHS is known 

to cause a huge amount of financial loss to cereal producers. It is recognized as one of the 

main factors, which downgrades the bread-making quality of the wheat (Imtiaz, et al. 

2008). Many regions in the world including USA, Canada, Australia and Europe are 

affected by sprout damage in wheat. Sprouted grain can be difficult to thresh resulting in 

harvest losses and sprouted grain is a factor resulting in a reduced economic return for the 

producer. Due to its sporadic occurrence through certain years, it is difficult to estimate 

economic losses caused by PHS to producers (Derera, 1989). Direct annual losses caused 

by PHS worldwide can reach up to the US $1 billion (Bewley, et al. 2006). 

1.2.1. Effects of PHS on wheat grain quality 

The wheat kernel is mainly composed of carbohydrates and proteins. PHS results 

in premature germination of the embryo in the wheat kernels on the head (Figure 1.4) 

while still in the field (Groos, et al. 2002).  For the germination of the new plant, series of 

physiological changes occurs in kernels to produce required energy and nutrients. So, 

sprouted wheat produces enzymes such as amylases, proteases, and lipases which break 

down starch, protein and oil, respectively (Simsek, et al. 2014b). The action of these 

enzymes causes major anatomical as well as physiochemical changes in the morphology 

of the seed. When the wheat kernel gets wet, it becomes bleached and has a soft mealy 

texture. Hormonal activity within the kernel increases and cause the release of hydrolytic 

enzymes such as α-amylase. This α-amylase hydrolyze the carbohydrate reserves and 

these are used by growing embryo. Along mealy texture, reduced test weight, lower 

milling yield, and flour with reduced falling numbers are symptoms of PHS damage 

(Derera, 1989). 
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1.2.1.1. Starch degradation 

Starch accounts for the about 70 – 80 % of the total dry weight of wheat grain 

(Simsek, et al. 2014a). It is also very important for determining the processing and eating 

quality of various products from wheat. Starch consists of two components: amylose and 

amylopectin. The typical levels of amylose and amylopectin are 25-28% and 72-75%, 

respectively in wheat flour (Colonna & Buleʹon, 1992).  

Amylases are the enzymes that hydrolyze starch. Three major types of amylase 

based on their mode of action are endo-amylases (α-amylases), exo-amylases (β-amylase, 

glucoamylases, α-glucosidases), and debranching enzymes (iso-amylases and limit 

Figure 1.4. Physical damage caused by PHS; A: Spike of PHS-resistant germplasm; B: 

Spike of PHS-susceptible germplasm; C: Grain of PHS-resistant germplasm; D: Grain of 

PHS-susceptible germplasm. 
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dextrinase). The presence of amylase in wheat provides enough evidence of starch 

degradation during maturation, storage and processing of food. 30% of total proteins 

synthesized during germination is α-amylase (Mohamed, et al. 2009). As α-amylase 

degrades starch granules, PHS has a profound effect on starch properties.  

 

 

Scanning electron microscopy (SEM) studies (Figure 1.5) have suggested that the 

enzymatic hydrolysis of starch granules starts from the surface, generating pits, enlarging 

existing pore size and penetrating into an interior granule. This produces a honeycomb-

like structure which has reduced gelation and pasting ability (Naguleswaran, et al. 2012). 

Many studies have revealed that PHS damage results in significant changes in 

physicochemical properties of the starch. Due to higher activity of α-amylase, PHS 

 Figure 1.5. Scanning electron micrographs of large (A–C) and small (D–F) wheat starch 

granules hydrolyzed (Naguleswaran et al. 2012). 
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results in reduced resistance of starch granules to swelling and this results in lowered 

paste viscosity in PHS-susceptible wheat varieties (Simsek, et al. 2014a). Thus, the 

hydrolytic activity of α-amylases during PHS causes structural changes in the endosperm 

by degradation of starch granules leading to inferior grain quality. 

1.2.2. Protein degradation 

The protein content of wheat grains may vary between 10% - 18% of the total dry 

matter (Šramková, Gregová, et al. 2009). Wheat storage proteins are a rich reservoir of 

nitrogen, sulfur and carbon required for  the growth of wheat seedlings (Shafqat 2013). 

Chemically, wheat proteins can be separated into two groups: the high molecular weight 

insoluble gluten and low molecular weight soluble proteins (Simsek, et al. 2014b). The 

soluble group consists of albumins, globulins, and peptides, and can be dissolved in 

aqueous mediums. The insoluble proteins represent 80-85% of wheat storage proteins. 

Gluten proteins have maximum value in terms of food processing and quality (Shewry, et 

al. 2002).  Wheat proteins quantity and quality are critical factors in determining the 

quality of wheat and quality of bread flour. Gluten proteins composition is believed to 

have a high correlation with dough strength and baking quality (Simsek, et al. 2014b). 

When mixing flour with water, gluten proteins enable the formation of a cohesive 

viscoelastic dough which is capable of holding gas produced during fermentation and 

oven-rise, resulting in the typical fixed open foam structure of bread after baking 

(Veraverbeke and Delcour 2002).  

PHS affects the rheological properties of wheat due to increased proteolytic 

activity that hydrolyzes storage proteins rapidly (Shafqat 2013).  Proteolytic enzymes 

break high molecular weight proteins into smaller fractions resulting in decreased 
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elasticity and strength of dough (Capocchi, et al. 2000). The increased proteolytic 

enzyme activity in sprouted wheat results in increased amount of free asparagine which is 

a precursor of acrylamide formed during bread baking. Studies have shown that 

acrylamide  has potential risks of carcinogenic activity in human (Tareke, et al. 2002). 

All the studies suggest that elevated endoprotease activity in sprouted wheat causes 

degradation of proteins which reduces the wheat quality and leads towards economic 

losses to the producers (Simsek, et al. 2014b).  

1.2.2.1. Fiber degradation 

Wheat is an important source of dietary fiber. Dietary fiber contains lignin and 

polysaccharide components of plants which are indigestible by enzymes present in the 

human gastrointestinal tract. Several researchers have reported the beneficial effects of 

fiber consumption in protection against heart disease and cancer, regulation of glucose 

absorption and prevention of constipation (Šramková, Kraic, et al. 2009). The bran 

consists of the pericarp, testa, and hyaline and aleurone layers. Arabinoxylans is a major 

component of wheat endosperm cell walls (Šramková, Gregová, et al. 2009). As 

arabinoxylan is present in high amount in wheat, it affects wheat grain and wholemeal 

flour functionality during processing and bread making (Shafqat 2013).They improve 

dough handling properties and stability spring and loaf volume. 

In germinating wheat, arabinoxylans degrading enzymes are also produced 

causing structural changes in the cell wall components which affect arabinoxylans’ 

physiochemical properties in solution and their impact on food systems (Courtin and 

Delcour 2001). 
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1.2.3. Effect of PHS on end-product quality of wheat 

Numerous studies have also shown the PHS has a negative impact on the quality 

parameters of different products of wheat such as noodles, Arabic flatbreads (Edwards et 

al., 1989), bread, cookies, pies (Lorenz et al., 1983). Effects of PHS on wheat quality 

depend directly upon the types of product to be produced and the processing methods to 

be used. Bread baked from sprout damaged wheat has a decreased volume, compact 

interior, and a dark crust. Flour milled from the endosperm of sprouted wheat produces 

bread that is porous, sticky, and has low loaf volume (Mansour, 1993). As starch is 

degraded by α-amylase during mixing and fermentation, the water holding capacity of 

starch is also reduced. It leads to a sticky dough, which causes handling problems, a more 

open coarse crumb structure and gummy crumb (Fu, et al. 2014). The extreme stickiness 

of dough causes requirement of extra special handling which can disrupt the bakery 

operations (Paulsen and Auld, 2004). Bread loaves made from sprouted wheat are often 

grayish in color (Fu, et al. 2014).  

Sprout damage affects both quality and processing of different types of noodles 

and pasta. According to many pasta processors, high levels of sprout damage cause 

production problems such as uneven extrusion, strand stretching, and irregularities in 

drying, that is, checking or cracking of strands during storage. Most importantly the pasta 

made cannot withstand overcooking and becomes soft or mushy. Sprouting raises 

alkaline activity in the kernels which can increase discoloration of the noodles up to five 

times more than the normal kernel (Singh 2008). As the appearance of noodles and pasta 

is the first critical factors considered by consumers to evaluate the quality, this increased 
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discoloration can make noodles and pasta unattractive and undesirable (Hatcher and 

Symons 2000).  

Pre-harvest sprouting causes damage in three-folds: 1) loss in wheat yield, 2) 

reduction in test weight of wheat, and 3) low-quality products of wheat. The loss in yield 

and reduced test weight directly impact the profit of the farmers, while the reduction in 

end-products causes great loss to milling and cereal companies. Studies revealed that if 

the wheat kernel contains more than 4% of the damage it is classified as not suitable for 

the human consumption and price could be reduced by 20%–50% (Simsek, et al. 2014a). 

These damaged grains are usually fed to animals so farmers get discounted price which 

leads to substantial economic loss.  

1.3. Factors affecting pre-harvest sprouting 

Pre-harvest sprouting is a complex phenomenon which is affected by various 

factors. The major factors affecting PHS include environment conditions, seed dormancy, 

seed coat permeability and color, α-amylase activity, endogenous hormones levels, 

functional proteins, genes, and quantitative trait loci (QTLs) (Gao, et al. 2013). The roles 

of various factors have been described in details in the following text. 

1.3.1. Role of seed dormancy 

Seed dormancy can be defined as the temporary arrest of seed germination under 

the favorable conditions (Gubler, et al. 2005).  It is the type of adaptive strategy 

developed my some species to survive in adverse environmental conditions. In other 

words, we can say that dormancy provides a strategy for seeds to inhibit germination in 

order to reduce the risk of premature death of new plant in unfavorable environmental 
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conditions (Bewley, et al. 2006). For the process of germination, many factors such as 

availability of water, air, temperature, light conditions and certain chemicals play a 

crucial role. In some conditions, the seed may still fail to germinate even with the 

presence of all required conditions. Such types of seed are known as dormant. Dormancy 

induction, maintenance, and release in the seed are closely related to PHS. In the case of 

wheat, seed dormancy is considered as the most important factor for resistance against 

PHS.  

On the basis of the timing of development, dormancy can be divided as primary 

and secondary dormancy. Primary dormancy of seed is initiated during seed maturity and 

it depends on both environmental and genetic factors. Usually, seeds dispersed from 

dormant state mother plant develops primary dormancy (Bewley 1997). Secondary 

Figure 1.6. Induction of primary and secondary dormancy (Kermode, 2005). 
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dormancy is usually initiated in mature seeds which have already lost their primary 

dormancy (Gubler, et al. 2005). Secondary dormancy may be developed due to prolonged 

inhibition of germination by unfavorable factors which may be either internal or external 

(Dahal 2012).   

Mechanism of seed dormancy can also be classified as seed-coat imposed 

dormancy and embryo related dormancy. Seed-coat imposed dormancy is the type of 

dormancy which is imposed by embryo surrounding structures such as endosperm, 

pericarp or seed coat and other floral organs (Dahal 2012). Studies revealed that embryos 

were still viable and were able to germinate when the seed coat was removed and 

embryos were provided favorable conditions for germination (Kadariya 2014). Mainly 

cereals, conifers, and dicots have developed seed-coat imposed dormancy (Kermode 

2005). Seed-coat is usually hard and waxy which restricts the absorption of water and 

gases required for seed germination.  

Seed-coat also stores some germination inhibitors such as flavonoids (Debeaujon, 

et al. 2007) which may delay the germination, can lead to seed-coat imposed dormancy 

(Bewley J. D. 1994) . The cells of seed coat decide the resistance of the seed towards 

PHS. If the epidermal cells of the seed coat are loosely arranged, the seed will be easily 

permeable for the exchange of water and gases, thus resulting in the susceptibility to PHS 

while, the tight arrangement of the epidermal cells in seed coat ensures resistance to PHS 

(Gao, et al. 2013).  

 Another type of dormancy is known as embryo related dormancy is intrinsic to 

the embryo and is not related to other tissues surrounding the embryo. Many researchers 

found that isolated embryo was not able to germinate even they provided favorable 
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conditions for the germination (Dahal 2012). This type of dormancy is developed mainly 

due to the presence of growth inhibitors and absence of growth regulators. This type of 

dormancy is released when the seeds are stored for a long time and moisture content in 

the embryo reduces to a certain level, a phenomenon known as after-ripening (Bewley 

1997). Embryo related dormancy is found in Rosacea and in wild species of oat 

(Kermode 2005).  

Seed dormancy is maximum when the seeds are physiologically mature. When 

seeds enter desiccation process, the dormancy is slowly released. Longer the seeds 

remain in the desiccated state, seeds become less dormant and more prone to the 

germination. As internal seed dormancy level decreases, seed can quickly pass the 

dormancy threshold during the early stage of desiccation. At this stage, PHS can occur 

when the environmental conditions are favorable (Obroucheva and Antipova 2000). Also, 

loss of primary dormancy is responsible for pre-harvest sprouting in wheat. 

1.3.2. Roles of abscisic acid and gibberellic acid 

Abscisic acid (ABA) and gibberellic acid (GA) are two plant hormones which are 

directly related with seed germination and dormancy. These both are related with 

“physiological dormancy”, a reversible type of dormancy located in plant embryo. 

Though both ABA and GA are linked functionally but they act antagonistically in the 

expression of dormancy and germination (Bewley 1997). Many studies have revealed that 

ABA is important in dormancy induction during seed development while GA is important 

in promoting germination in non-dormant seeds (Pisipati 2008).  

Abscisic acid is directly related to initiation and maintenance of seed dormancy 

and prevention of precocious hydrolysis of stored starch granules (Dahal 2012).  ABA 
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content increases during seed development and it regulates main processes involved in 

maintaining the dormancy of seed (Bewley 1997). External application of ABA has 

shown to suppress the embryonic germination.  In developing grain, the concentration of 

ABA is higher in embryo than in endosperm. Immature seed is rich in ABA and the 

amount of ABA present in the grain decreases when it reaches maturation (Pisipati 2008). 

The level of ABA is critical for both dormant and non-dormant seeds because ABA 

maintains embryos in a developmental mode during early seed development until they are 

fully matured and have accumulated sufficient amount of reserves required for the 

successful germination and subsequent seedling establishment (Kermode 2005). Pre-

harvest sprout damage is catalyzed by α-amylase by breaking the starch accompanied by 

the proteolysis of the grain proteins (Walker-Simmons 1987). ABA is found to suppress 

the activity of the α-amylase as well as its synthesis by inhibiting the GA3- enhanced α-

amylase synthesis in aleuronic cells (Dahal 2012). 

During the course of development, seeds change their sensitivity to ABA. A study 

done by Walker-Simmons (1987) revealed that there is a positive correlation was 

observed between wheat embryo sensitivity to ABA level and, resistance to germinating 

seed development and dormancy after maturation. The study also showed the differences 

in sensitivity to ABA in developing embryos between sprouting resistant and susceptible 

cultivars. Embryos from the resistant cultivars continued to exhibit sensitivity towards 

ABA even after reaching desiccation but susceptible varieties failed to do that.  

Gibberellic acid is a bioactive growth regulator which is associated with plant 

growths and diverse developmental functions such as seed germination (Singh 2008). GA 

play a vital role in dormancy release. During embryo development, GA levels are usually 
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high but when seeds reach maturity most GA are deactivated (Ogawa, et al. 2003).  The 

level of GA again increases at the onset of germination just prior to radicle formation. 

GA is not involved in the control of seed dormancy but it plays an important role in 

germination by (i) increasing embryo growth potential , and (ii) weakening the tissues 

surrounding radicle and reducing the mechanical barrier provided by seed coat (Bewley 

1997; Pisipati 2008). When GA is applied, it can switch off the inhibitory effect of ABA 

and promote germination in seeds. An excessive amount of GA stimulates the 

degradation of GA signaling repressor protein known as DELLA proteins, via ubiquitin-

proteasome pathway (Silverstone, et al. 2001). This process now stimulates the 

downstream events of germination of seed.  When GA is released, it triggers aleurone 

cells to secrete hydrolytic enzymes such as α-amylases, which supplies the endosperm 

reserves to support the germination process. GA released from the embryo can also 

trigger several responses such as gene induction, down-regulation, and up-regulation of 

secretory responses.  

1.3.3. Role of amylase  

The α-amylase enzyme is widely found in plants and plays various roles in many 

physiological processes in plants, including hydrolysis of α-1, 4-glycosidic bond present 

in the saccharides.  There are two major types of alpha-amylases in wheat, α-AMY-1 

located on homologous chromosome 6 and α-AMY-2 located in chromosome 7 (Gale, et 

al. 1983). GA3 could regulate the expression level of α-amylase-1 and α-amylase-2 in 

plants (Marchylo, et al. 1984). The activity of α-amylase increases quickly as enough 

water is absorbed by seed and significant difference in activity was observed between the 

resistant and susceptible varieties of wheat to PHS (Gao, et al. 2013). The α-amylase-1 
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isozymes are found in more abundance in first days (1-2) of germination while α-

amylase-2 isozymes increased after 3 days of germination (Sargeant 1980). The 

combination of α-amylase/subtilisin inhibitors (ASI) and α-amylase-1 were able to reduce 

the catalytic activity of α-amylase and increase the resistance of barley against PHS 

(Yuan, et al. 2004).  

1.3.4. Role of environment 

Environmental factors including temperature, rainfall and high relative humidity 

play a role in the expression of sprouting and dormancy in wheat. The change in 

environmental conditions during the grain filling and maturation period can have 

significant impacts on dormancy expression. Temperature is one of the most important 

environmental factors that influences the induction and expression of seed dormancy. In 

wheat, low temperatures during grain filling  increases seed dormancy but as the grain 

reaches its maturity, low temperatures during imbibition reduces expression of the 

dormancy and helps in germination (Nyachiro, et al. 2002). Mares (1993) found that 

rainfall during the 20 days prior to harvest accounted for almost 85% of the variation in 

dormancy. He found that seeds which received more rain were highly susceptible to 

sprouting. Rainfall and high humidity during the grain ripening stage were found to 

decrease grain drying and dormancy level while, water stress levels and high 

temperatures were found to increase grain drying rates and dormancy (Lunn, et al. 2002).   

Environmental stresses such as temperature variation, moisture content, and 

salinity are also known to trigger the synthesis of ABA in plants (Biddulph, et al. 2005) 

which impacts the dormancy in mature grain. The sensitivity of embryos towards ABA 

was observed during high temperature and drought conditions as compared to low 
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temperatures and irrigated conditions. ABA biosynthesis and genes regulating catabolism 

of GA was found to be increased during winter season resulting in increased dormancy 

while increased ABA catabolism and GA synthesis was observed in spring season which 

resulted in the release of dormancy in Arabidopsis seeds (Footitt, et al. 2011).  Effect of 

seed coat color on dormancy are also depending upon environmental conditions during 

the development of the wheat seed. No significant difference in dormancy between red 

and white wheat was observed under dry conditions, whereas the red lines were more 

dormant at maturity making them more resistant to sprouting than white genotypes  

(Torada and Amano 2002). 

1.3.5. Genes controlling PHS 

Pre-harvest sprouting is a complex trait and is controlled by genotypes, 

environments and interaction between these factors (Marzougui, et al. 2012). PHS in 

wheat is regulated by both embryonic and coat-imposed pathways controlled by separate 

genetic systems (Himi, et al. 2002). Seed coat color is associated with  seed dormancy 

and PHS-susceptibility is associated with white grain color while resistance is associated 

with red grain color (Torada and Amano 2002). Red wheat genotypes showed 

consistently higher falling number than the white wheat genotypes (Rasul, et al. 2012) 

indicating that in general red wheat genotypes are comparatively PHS-resistant than 

white wheat. The color of the seed is usually determined by R (Red grain color) genes 

and is heritable to the offspring (Gao, et al. 2013). Three R1 genes (R-A1, R-B1 and R-

D1) control seed coat red color and dominant alleles of R genes (present in each 

chromosomes 3A, 3B, and 3D) promote biosynthesis of red phlobaphenes and have a 

pleiotropic effect on dormancy. Wheat R1 gene increases seed dormancy by increasing 
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the sensitivity of embryo towards ABA (Himi, et al. 2002) and it encodes MYB-type 

transcription factor (Himi and Noda 2005). Multiple-parental mating systems study 

revealed that both additive and dominance effects are responsible for PHS resistance 

(Kadariya, et al. 2011).  

In maize, transcription factor VIVIPAROUS-1 encoded by Vp-1 gene is known to 

play an important role in induction and maintenance of dormancy (McCarty, et al. 1991). 

Inactivation of Vp-1 gene in maize leads to disruption of embryo maturation and 

promotes germination of embryos while still attached in the cob (vivipary). Vp-1 

homologues genes were mapped in  at 30cM from R locus in the long arm of group 3 

chromosomes of wheat and identified as taVp 1 gene (Bailey, et al. 1999).  

ABA-insensitive 3 (ABI3) and GA-insensitive (GAI) genes identified in 

Arabidopsis mutants are key players during the germination process (Koornneef, et al. 

2002). ABI3 orthologs, GAI orthologs and reduced height 3 (RHT3) (Flintham and Gale 

1982), has been identified in wheat and are reported to have similar functions. Delay of 

germination 1 (DOG 1) in Arabidopsis (Bentsink, et al. 2006), seed dormancy 4 (SDR4) 

in rice (Sugimoto, et al. 2010) and TaPHS1, a wheat homolog of mother of flowering time 

(MFT) on short arm of chromosome 3A (Liu, et al. 2013) are some of the recently cloned 

genes related to seed dormancy and germination. Down-regulation of thioredoxin gene 

(Trx h9) was found to reduce pre-harvest sprouting in wheat (Ren, et al. 2012).  

1.4. Proteomics studies in plants 

Genomic studies have provided valuable information about the structure and 

function of a gene in living organisms.  Knowledge about the complete DNA sequence is 
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helpful to understand the biology of organisms but many biological processes can be 

studied only at the protein level.  Proteomics is defined as the systematic analysis of the 

proteome, the protein complement of genome (Pandey and Mann 2000), which permits 

quantitative and qualitative estimation of number of proteins that specifically impact  

cellular biochemistry, and therefore give precise investigation of cellular state or system 

changes during growth, development, and response to environmental factors (Chen and 

Harmon 2006). “Expression proteome” of a cell consists of an entire set of proteins 

expressed in a cell while the “functional proteome” examines the protein-protein 

interactions on a genome-wide scale which attempt to study functional pathways (Kocher 

and Superti-Furga 2007). Therefore, a comprehensive protein analysis can provide a 

unique global perspective on how these molecules interact and cooperate to create and 

maintain a working biological system. 

There are a wide range of methods, reagents, instrumentation and data analysis 

tools available to design a proteomics experiment (Pandey and Mann 2000). A Standard 

proteomics approach consists of four basic stages: 1) sample preparation, 2) Sample 

extraction/fractionation/purification, 3) mass spectrometry analysis, and 4) data analysis. 

Optimizations can be done in each step to ensure that most useful and instructive data is 

gained. Variations can be done during the steps of extraction, separation, and labeling. 

Although experimental design and sample preparation are equally important but labeling 

or modifications of proteins and their separation plays a vital role for successful 

proteomics experiment.  
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1.4.1. Gel-based proteomics 

Traditionally, the main analytical techniques used in proteomics study have been 

gel electrophoresis. Electrophoresis can be used to separate the macromolecules, 

especially proteins, according to their size, charge and conformation (Smithies 2012). A 

gel usually formed by cross-linked polymerization of acrylamide and N,N’-

Methylenbisacrylamide is suitable supporting medium for electrophoresis (Raymond and 

Weintraub 1959). Sodium dodecyl sulfate gel electrophoresis (SDS-PAGE) is one of the 

most used techniques for the identification of the proteins due to its low cost and 

adequate resolution. SDS-PAGE separates the protein molecules according to their 

molecular mass. One-dimensional SDS-PAGE, when coupled with appropriate software, 

can be used for plant finger-printing (Supek, et al. 2008). Though SDS-PAGE combined 

with band cutting, trypsin digestion, and Liquid chromatography (LC) separation remains 

to be widely used proteomics approach (de Godoy, et al. 2006),  the resolution of SDS-

PAGE is insufficient in terms of large scale proteome research.  

The two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) separates 

the proteins in two different steps, first in-gel Isoelectric Focusing (IEF) of proteins to 

separate them according to their isoelectric point (pI), and then SDS-PAGE to separate 

proteins according to their molecular mass (O'Farrell 1975; Gorg, et al. 2004). Due to its 

two-dimensional separation, it has a better resolving power and is, therefore, suitable for 

the analysis of complex samples. Coomassie brilliant blue and silver nitrate are two of the 

most generally used stains for the visualization of the proteins in the gel. Coomassie 

brilliant blue binds to basic and aromatic amino acids of proteins and can detect the 

protein at Nanogram level (De St. Groth, et al. 1963) whereas silver nitrate can bind 
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covalently cross-linked to the proteins when used with formaldehyde and can detect 

protein at Picogram level (Rabilloud 1990).  

The difference gel electrophoresis (DIGE) is another modification of 2D-PAGE 

which differentiates two protein samples in a single gel. This is achieved by labeling the 

samples with different color fluorescent dyes and running simultaneously on the same 

gel. Most commonly dyes used in DIGE are cyanine dyes known as Cy2, Cy3 and Cy5 

dyes which react with free amino groups (amino terminus and amino groups of lysine 

residues) of the proteins (Unlu, et al. 1997). After the electrophoretic separation, the 

intensities of fluorescence originating from three different samples are quantified by a 

digital fluorescence scanner. 

Two-dimensional gel electrophoresis provides several advantages by allowing us 

to obtain a final analytical image which is quantitative and reproducible but there are 

some disadvantages associated with these methods. Undoubtedly, the resolution of 

proteins having higher molecular mass will increase, but it will decrease the resolution of 

low molecular weight proteins present in the sample. Despite numerous optimization 

techniques used during electrophoresis, all the proteins present in a given sample will not 

be revealed, thus leading to loss of information. It was shown that there was a loss of 

more than 50% protein yields (Zhou, et al. 2005).  Most of the times one spot in the gel 

can contain more than one protein, which can cause the quantification of the individual 

proteins more challenging. Thus, the analysis of protein by electrophoresis is limited to 

the study of the most abundant proteins which makes it unsuitable to a high throughput 

screening.  
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1.4.2. Mass spectrometry (MS) 

Mass spectrometry has emerged as a very powerful experimental tool for 

proteome analysis due to its sensitivity and ability to identify a large number of proteins 

present in the complex mixtures. In proteomics, mass spectrometers are used to identify 

proteins, detect their covalent modifications including post-translational modifications 

and glycosylation, and characterize and control the quality of recombinant proteins 

(Mann, et al. 2001). MS is used by coupling with 2D-DIGE to detect proteins and 

peptides from spots of interest in the gel. For a mass spectroscopy based proteomics, the 

spots are picked and digested by trypsin followed by fractionation of the peptide by liquid 

chromatography (LC). The variable level of laser shots is applied to the sample in Mass 

Spectrometer to convert the peptides into ions for the identification of proteins via 

Tandem MS method.  

1.4.3. Gel-free proteomics 

Apart from the quantification of the proteins intact in gel after electrophoresis, the 

peptide-based quantification of proteins by MS is continuously increasing. In this 

process, proteins are directly submitted for enzymatic digestion and the mixture of 

resulted peptides are separated and analyzed by MS. These approaches are less sample 

consuming and provide the most accurate protein identification.  Currently, two 

approaches are used for the quantification of peptides, namely, the label-free 

quantification and stable-isotope labeling quantification. Both the quantification methods 

are relative i.e., they determine the relative abundance of the corresponding peptides by 

the ratio of the intensity of ions in each sample (Deracinois, et al. 2013).  In the case of 

label-free quantification, the samples to be compared are prepared separately and 
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analyzed individually by MS/MS. This technique relies on two methods, (i) the 

comparison of mass spectra and (ii) the comparison of spectral counting (Bondarenko, et 

al. 2002; Wang, et al. 2008).  The isotope labeling quantification is based on 

characteristic labeling of proteins or peptides. These approaches utilize the fact that the 

peptides tagged with different stable isotopes exhibit same chromatographic and 

ionization properties, then will be detected in the same spectrum but can be distinguished 

from each other by a mass shift caused by the isotope used for tagging (Abdallah, et al. 

2012; Deracinois, et al. 2013). Two types of labeling are used in this method, the first 

type is metabolic labeling in which labeling is carried out during protein synthesis 

through the introduction of the label in  growth medium and second type is chemical or 

enzymatic labeling applied later in the proteomics experiment through a chemical 

reaction (Schulze and Usadel 2010). Metabolic labeling includes Stable isotope labeling 

by amino acids in cell culture (SILAC) and 14N/15N labeling whereas chemical labeling 

includes Proteolytic labeling, Isotope-coded affinity tags (ICAT), Isotope-coded protein 

labeling (ICPL), Tandem mass tag (TMT), and Isobaric tags for relative and absolute 

quantification (iTRAQ).  

1.4.3.1. Isobaric tags for relative and absolute quantification (iTRAQ) 

iTRAQ labeling is based on the covalent labeling of amino groups of peptides 

which allows simultaneous identification of protein and their relative quantification 

(Deracinois, et al. 2013). The chemical label consists of a reporter chemical group, a 

balance chemical group and a chemical group reactive on primary amines. Each label 

consist of a peptide reactive group (NHS ester) and an isobaric tag of 145 Da (for 

iTRAQ-4plex) or 305 Da (for iTRAQ-8plex) which contains a balancer group (carbonyl 
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group having mass range 28-31 Da for iTRAQ-4plex  and 184-192 Da for iTRAQ-8plex) 

and a reporter group (based on N-methyl piperazine) which is joined by a fragmentation 

site (Figure 1.7). There are eight chemically identical isobaric tags named: 113,114, 115, 

116, 117, 118, 119, and 121 which have overall same mass (Ross, et al. 2004; Abdallah, 

et al. 2012). The peptide reactive group specifically attaches to free primary amino 

groups-N-termini and ε-amino groups of lysine residues.  

Each sample to be analyzed is digested by trypsin and labeled with a single 

iTRAQ label which is then mixed for tandem mass analysis. The labeled peptides are 

separated by two-dimensional LC. The separated fractions are then subsequently 

analyzed by using MS and tandem mass spectrometry (MS/MS). Same peptides from 

each sample appear as a single peak in MS spectrum due to the isobaric nature of these 

reagents. After collision induced dissociation, the balancer group dissociates from the 

iTRAQ reagent (Aggarwal, et al. 2006). Intensities of the peaks after MS/MS scans 

derived from the 8-plex iTRAQ reporter ions detected in the 113-121 m/z region is used 

for the identification and relative quantification of the proteins. Data acquired is always 

Figure 1.7. Schematic representation of iTRAQ reagents (adapted from Broad 

Institute). 

Mass = 184-192 Da 
Mass = 113-121 Da 

Total mass = 305 Da 
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compared to a reference sample, and the quantity of each peptide is expressed as a ratio 

relative to the reference sample (Bantscheff, et al. 2007).  One of the major advantages of 

iTRAQ is that it allows parallel proteomic analysis of eight different samples with high 

sensitivity which conserves a significant amount of time. Also, the peptide sequence 

coverage of iTRAQ labeled peptides detected during MS analysis are similar to those 

obtained during other MS-based approaches which confirm that there is no negative 

effect of reagent in the fragmentation (Aggarwal, et al. 2006).  

1.5. Proteomics studies of seed germination and pre-harvest sprouting 

Proteomics is an important approach to studying the pre-harvest sprouting 

mechanism because it gives an ultimate account of differential gene expression during 

this process. By studying the changing patterns of protein expression during seed 

development can give a clearer overview of the events during the process. Proteomics of 

germination and dormancy process has been studied in lot of plants including 

Arabidopsis (Gallardo, et al. 2002a), rye (Secale cereale) (Masojć and Kosmala 2012; 

Masojć, et al. 2013), rice (Oryza sativa) (Yang, et al. 2007; Kim, et al. 2009), Norway 

maple (Acer platanoides) (Staszak and Pawłowski 2014), Mung bean (Vigna radiata) 

(Ghosh and Pal 2012), Castanea crenata (Nomura, et al. 2007), barley (Hordeum 

vulgare) (Finnie, et al. 2002), and wheat (Kamal, et al. 2009; Mak, et al. 2009; Shin, et al. 

2009; He, et al. 2015). Proteins involved in metabolism, especially those involved in the 

carbohydrate metabolic pathways including glycolysis, TCA, fermentation, 

gluconeogenesis, glyoxylate cycle, and pentose phosphate pathway were present in 

higher abundance in germinating rice seeds (Yang, et al. 2007). These changes indicate 

that germination requires large amounts of energy and nutrition which is provided by the 
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seed itself. Increased amount of β-amylase, a major enzyme involved in carbohydrate 

degradation and ATP synthase indicates that the role of energy production in essential for 

germination. Down-regulation of the storage proteins during germination suggests that 

storage proteins are degraded by proteases to produce amino acids, peptides, which are 

used as a precursor for the synthesis of new proteins required for the germination (He, et 

al. 2015). The role of both ABA and GA in Arabidopsis seed germination was discussed 

by using proteomics approach (Gallardo, et al. 2001). Reactive oxygen species (ROS) are 

produced by the plant in response to biotic and abiotic stresses. Increased level of 

proteins related to stress response such as superoxide dismutase and ascorbate peroxidase 

in mung bean cotyledons suggests that adaptation of seeds against stress is important for 

successful seed germination (Ghosh and Pal 2012). Proteins involved in cytoskeleton 

formation including tubulins were up-regulated in the embryo of developing tomato seeds 

suggesting that cell is frequently progressing toward mitosis (de Castro, et al. 1995). 

Proteins involved in protein degradation, protein folding, cytoskeletal activities, and 

energy metabolism-related enzymes were observed in higher abundance during the first 

three days of germination of wheat embryo while β-amylase, protease inhibitors, alcohol 

dehydrogenase, peroxidases, and ADP-glucose phosphorylase showed decrease in 

abundance during the time period (Mak, et al. 2009).  

Some of the researchers have focused their research on comparing the proteome 

between PHS-susceptible and PHS-resistant lines. A Higher level of dimeric alpha-

amylase inhibitor and xylanase inhibitor in PHS-resistant lines suggests that 

accumulation of these particular defense proteins is important for the PHS-resistance in 

rye  (Masojć, et al. 2013). The rate of protein degradation also plays a role in premature 
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germination. Masojć, et al. (2013) hypothesized that the different rates of protein 

degradation due to proteasome activity and a higher level of glutathione s transferase can 

induce PHS in rye. Proteins related with PHS in both wheat and rye include 

peroxiredoxin, xylanase inhibitor, RNA binding protein, and heat shock proteins (Kamal, 

et al. 2009; Bykova, et al. 2011; Masojć, et al. 2013) 

1.6. Conclusion 

Wheat is one of the most widely grown crops in the world. Pre-harvest sprouting 

is known as the condition of in-spike germination of physiologically mature grain before 

harvest due to unfavorable environmental conditions including rainfall and high moisture 

content in the air. This results in significant amount of lost in yield and affects the 

nutritional and functional quality of wheat flour. Understanding the mechanism behind 

PHS has been done in the past by using conventional methods but using newer 

approaches including proteomics helps to increase the knowledge about PHS at 

molecular and cellular level. Because proteins are the translated version of genes, 

proteomic analysis is a useful tool that can be used to envision and contrast mixtures of 

proteins expressed in a specific process and to gain crucial information about individual 

proteins involved in a specific biological process. The analysis of the proteome changes 

in response to development, disease, or environment is the ultimate goal of comparative 

proteomics. As embryo plays an important role during seed germination, so protein 

profile analysis of the embryo of dormant and non-dormant seeds may be helpful to 

understand the complex mechanism of this process. Although different proteomics 

studies have been done on pre-harvest sprouting, those investigations were done by using 

conventional gel-based techniques. iTRAQ analysis is more reliable than those 
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conventional methods and it will help us to identify a sufficient number of proteins to 

predict a pathway and  conduct protein-protein interaction analysis. This study focuses on 

comparing the differentially expressed proteins in the embryo of PHS-resistant and 

susceptible germplasm and identifying key players at molecular levels.  
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Chapter 2 

2. Proteomics study of pre-harvest sprouting in wheat 

2.1. Introduction 

Wheat (Triticum aestivum L.) is the most widely grown (17% area) crop in the 

world and provides 21% of the food calories and 20% of the protein for more than 4.5 

billion people throughout the world (Von Braun 2007). Many kinds of wheat cultivars are 

grown and used for the production of commercial foods such as bread, noodles, biscuits, 

pasta, and cakes. 

 Pre-harvest sprouting (PHS) is the germination of the premature seeds within the 

grain head before harvest (Kadariya 2014; Shu, et al. 2015). It occurs when 

physiologically mature grain is exposed to rain and high humidity before harvest that 

leads to the absorbance of moisture by the wheat kernel from the air (Thomason 2009). 

After absorbance of moisture, the kernel is bleached and its texture turns “mealy” 

(Bassoi, et al. 2006). The exposure of wheat kernels to moist conditions at ripening stage 

triggers a sequence of physiological processes, including the release of various plant 

hormones such as gibberellic acid (GA) (Bassoi, et al. 2006; Imtiaz, et al. 2008). GA 

released by soaked kernel promotes the synthesis and secretion of hydrolytic enzymes 

including α-amylase and proteases (Gale and Lenton 1987; Yu 2012). This increase in the 

amount of hydrolytic enzymes causes carbohydrates and proteins reserves in grains to be 

hydrolyzed. Due to the degradation of carbohydrate and protein reserves, the yield of 

wheat is reduced and the affected crop is unsuitable for processing.  Ultimately the flour 

quality is downgraded which results in sticky crumb, compact interiors and undesirable 



44 

 

 

4
4
 

color in baking products (Derera, et al. 1977; Edwards, et al. 1989). Noodles made from 

the sprouted wheat flour results in decreased elasticity and increased discoloration as 

compared to noodles made from sound wheat flour (Hatcher and Symons 2000).  PHS 

thus restricts production and end-use applications of wheat which results in financial 

losses of almost $1 billion dollars worldwide to growers, millers, and bakers (Bewley, et 

al. 2006).  

PHS is a complex trait which is dependent on several factors such as spike and 

plant morphology, environmental conditions during seed maturation, the presence of 

inhibitors (ABA) or regulators (GA) of germination, the level of α-amylase activity in 

wheat kernels, genes and others  (Gubler, et al. 2005; Bykova, et al. 2011; Yücel, et al. 

2011). Viviparous -1 family genes are found to be associated with PHS-resistance in 

wheat and maize (Chang, et al. 2011) whereas R allele genes which are associated with 

seed coat color is associated with PHS-resistance in wheat (Flintham, et al. 2002; Hristov, 

et al. 2012).  Several genomics studies have been carried out in cereal species which 

concluded that the numerous quantitative trait loci (QTL) are involved in regulation of 

dormancy in plants (Gale, et al. 2002; Masojć, et al. 2013). In wheat, QTL for PHS-

resistance  are distributed over all 21 chromosomes (Zhang, et al. 2014) and QTL that 

demonstrate major effects on PHS-resistance are found on chromosomes 2B, 3A,  4A, 6B 

and 7D (Munkvold, et al. 2004; Mares, et al. 2005; Liu, et al. 2011; Cabral, et al. 2014).  

Genomic studies have provided the blueprint of  PHS mechanism in wheat, but a 

study of spatial and temporal expressions, functions and interactions of gene products is 

necessary for the validation purpose (Eldakak, et al. 2013). Information carried by 

genetic material (DNA) is translated to proteins via mRNA, so proteomics can be an 
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important tool to understand the global genes expression profiles and their function in 

response to developmental or environmental stimuli (Wang, et al. 2015).  Recent 

advances in proteomics have provided an important tool to compare a mixture of proteins 

and identify the role of specific proteins in biological processes (Liu, et al. 2015).  

Proteomics studies of PHS-resistant and PHS-susceptible kernels allows the identification 

of differentially expressed PHS-related genes, even if they are clustered with other loci 

(Bykova, et al. 2011; Masojć and Kosmala 2012). These studies were performed by using 

2D-DIGE but these 2D-gel based techniques have several limitations such as low 

identification rate of proteins, low reproducibility, and difficulty in separation of 

hydrophobic proteins. Isobaric tag for relative and absolute quantitation (iTRAQ) has 

emerged as a powerful technique to perform quantitative proteome analysis and it allows 

identification of more proteins and can provide reliable quantitative information as 

compared to the traditional techniques (Karp, et al. 2010; Unwin, et al. 2010; Ma, et al. 

2014). The embryo is known to play a crucial role during seed germination in plants (He 

and Yang 2013), so protein profile expression analysis of PHS-resistant and susceptible 

cultivars may be helpful in understanding the complex mechanism of this process in 

molecular level. This study focuses on finding the key protein that controls PHS 

mechanism and discovering genes controlling those proteins in wheat.  

2.2. Materials and methods 

2.2.1. Plant materials 

Two Korean winter wheat cultivars (Figure 2.1) were grown at the National 

Institute of Crop Science, Rural Development Administration (RDA). First one is 
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Baegjoong, a white winter wheat which is susceptible to pre-harvest sprouting (showing 

moderate rate of  pre-harvest sprouting, 23.9%) and another one is Sukang, a red winter 

wheat which is tolerant to sprouting (showing low rate of pre-harvest sprouting, 0.2%) 

(ChidSoo, et al. 2008; ChlulSoo, et al. 2009).  

 

2.2.2. Study design and overview 

The objective of the study was to compare the difference in proteins expressed in 

wheat embryo of two wheat germplasm (Baegjoong and Sukang) over a time course 

spanning 48 hours (different time points are 0 hrs, 12 hrs, 24 hrs and 48 hrs) where seeds 

were imbibed in water for 48 hrs to trigger sprouting. Samples were named A, B, C and 

D for Sukang 0 hrs, 12 hrs, 24 hrs and 48 hrs of treatment and E, F, G, H for Baegjoong 0 

hrs, 12 hrs, 24 hrs and 48 hrs of treatment respectively. Wheat embryos of 4 different 

time points were collected and processed for proteomics analysis. The ratio of the protein 

expression in the same cultivar at the different time periods and the ratio of protein 

Figure 2.1. Korean wheat cultivars used in the study; A: PHS-susceptible, 

Baegjoong; B: PHS-resistant, Sukang. 

A B 
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expression at the same time period in different cultivars were used for the proteomics 

study.  

Figure 2.2.Cultivar and treatment for sample collection. 

2.2.3. Protein isolation from dissected embryos 

The wheat embryos from freshly harvested and 48 hrs imbibition treated seeds 

(samples A-H) were isolated and were snap frozen and grounded to a very fine powder 

using mortar and pestle under liquid nitrogen and stored at -80 °C until used. Total 

protein was isolated according to the modified phenol-based procedure of Hurkman and 

Tanaka (Hurkman and Tanaka 1986). Isolated embryos (0.1g) were suspended in 4mL of 

homogenization buffer (0.9 M Sucrose, 10mM EDTA, 0.4% 2-mercaptoethanol, 100mM 

Tris-HCL [pH 8.8] and equal volume of Tris saturated phenol. The mixture was 

transferred to a 50mL polypropylene tube, mixed and incubated for 30 min at 4 °C. 

Centrifugation for 15 min at 5000 rpm 4 °C was done and the phenol phase was collected 

after that. Proteins were then precipitated overnight with 5 volumes of ice-cold 0.1 M 

ammonium acetate in methanol at -20 °C. Centrifugation at 5000 rpm for 10 min was 

done and protein pellet was washed thoroughly twice in 20mL of 0.1 M ammonium 
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acetate in 100% methanol. The protein pellet was washed twice with ice-cold 80% 

acetone with a final wash in 70% ethanol. The protein was air dried and stored at -80 °C 

until further processing.  

2.2.4. iTRAQ labeling and MS/MS 

The embryo protein pellet samples were re-suspended in 0.1% SDS, 500mM 

triethylammonium bicarbonate [pH 8.5], and 5 M urea and then subjected to sonication 

on ice. Protein concentrations were determined by a modified Bradford assay (BioRad, 

Hercules, CA, USA). The iTRAQ labeling, protein identifications, were performed at the 

Applied Biomics. The samples (40µg protein in 0.05% SDS and 1.5 M urea) were 

reduced, alkylated with methyl methanethiosulfate, and trypsin-digested. After digestion, 

samples were labeled with iTRAQ reagents (8-plex kit, Applied Biosystems, USA) 

following manufacturer’s guidelines.  

Table 2.1. Samples labeling for iTRAQ analysis 

Label 113 114 115 116 117 118 119 121 

Sample A B C D E F G H 

 

After labeling embryo proteins, the peptides were mixed and vacuum dried. 

Labeled peptides were applied to an OASIS® medium cation exchange (MCX) extraction 

cartridge (Waters Corporation, Milford, MA, USA) to remove trypsin, excess hydrolyzed 

iTRAQ reagents and for buffer exchange. Strong cation exchange (SCX) fractionation 

was done for all labeled peptides (Lund, et al. 2007). Peptides selected from fractionation 
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were subjected to LC separation and spotted onto a MALDI target using Tempo TM LC 

MALDI system. MS data were acquired on a 4800 MALDI TOF/TOF as described 

previously (Smith, et al. 2009).   

2.2.5. iTRAQ data analysis 

Protein pilot v3.0 software, which utilizes the ParagonTM scoring (Shilov, et al. 

2007) and ProgroupTM protein grouping algorithms (ABI/MDS-Sciex, Toronto, Canada) 

was used to analyze MS/MS spectral data. Searches were made against NCBI non-

redundant whole protein database. The search parameters included iTRAQ 8-plex peptide 

label, quantitation mode, trypsin enzyme, cysteine methyl methanethiosulfonate 

alkylation reagent, thorough search mode, biological modifications (includes >220 post-

translation and artifact modifications) and minimum detected protein threshold of 10% 

instrument element defines resistance, MS and MS/MS, 0.15 Da and 0.4 Da, respectively. 

Proteomics System Performance Evaluation Pipeline (PSPEP) (Tang, et al. 2008) 

algorithm was incorporated into ProteinPilot to estimate the False Discovery Rate (FDR). 

Confidence score of at least 95%, the Unused score greater than 1.3 and a global FDR 

estimation lower than 5% were the parameters used for the identification of a protein. 

2.2.6. Bioinformatics analysis 

Proteins were examined using Uniprot database (Consortium 2007) and more 

information about protein function was retrieved. Information of proteins which were 

involved in metabolic pathways were retrieved from Kyoto Encyclopedia of Genes and 

Genomes (KEGG database) (Kanehisa, et al. 2010). Hierarchical clustering was done by 

using Gene Cluster 3.0 software and visualized in Java TreeView software. Analysis of 

protein-protein interaction (PPI) was followed by three steps: (1) Protein sequence of all 
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differentially expressed proteins were run for BLAST in NCBI against non-redundant 

protein sequence (nr) database for Arabidopsis homologs; (2) All accession numbers 

retrieved from BLAST were collected for PPI using STRING database version 9.1 

(Franceschini, et al. 2013); and  (3)  Primary interaction retrieved from STRING database 

was portrayed in Cytoscape 3.3.0 software (Cline, et al. 2007) along with categorization 

of their functions and expression patterns. 

2.3. Results  

2.3.1. Protein expression profiles during PHS 

Our iTRAQ-based quantitative proteome characterization revealed the proteins 

involved in premature seed germination in wheat. A global profiling of quantitative 

proteome was obtained from the embryos at 0 hrs, 12 hrs, 24 hrs and 48 hrs time period 

using the biological replicates detected 306 different proteins (Appendix 1). A 1.5-fold 

cut-off was used to implicate significant changes in the abundance of differentially 

expressed proteins (DEPs) during pre-harvest sprouting. Of 306 non-redundant proteins 

identified, 190 showed more than 1.5-fold changes in protein expression in at least one of 

the ten comparisons and therefore identified as DEPs (Appendix 2). Total of 114 proteins 

were found to be differentially expressed in at least one of the time effect comparison in 

Sukang, out of which 60 were found to be up-regulated in at least one of the time period, 

57 were found to be down-regulated at least once. In the case of Baegjoong, 117 proteins 

were found to be expressed significantly out of which 72 were found to be down-

regulated and 65 were found to be up-regulated at least once in the time period. A total of 
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176 proteins were found to be in significantly different abundance between two cultivars 

at same time period at least once.  

  

2.3.2. Differential protein expression during PHS 

Hierarchical clustering analysis (HCA) was performed to display the dynamic 

expression patterns of the proteins (Figure 2.4). The log-transformed expression ratios of 

A B 

C D 

E F 

Figure 2.3. Venn diagrams of differently expressed proteins. A: Proteins differently 

expressed in Sukang; B: Proteins differently expressed in Baegjoong; C: The number 

of DEPs upregulated in Sukang; D: The number of DEPs upregulated in Baegjoong; E: 

The number of DEPs down-regulated in Sukang; F: The number of DEPs 

downregulated in Baegjoong. 
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the proteins identified by iTRAQ were used. Gene cluster 3.0 software with Euclidean 

distance similarity metric and average linkage method were used as parameters. Java 

Treeview software was used to visualize the clusters.  
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Figure 2.4. Heat map of proteins expressed during the experiment. Ten different 

experimental groups are shown horizontally and protein GI number vertically. A: 

Proteins up-regulated in Sukang; B: Proteins up-regulated in Baegjoong; C: Proteins 

up-regulated in both Sukang and Baegjoong; D: Proteins down-regulated in both 

Sukang and Baegjoong: E: Protein not regulated  in either genotype but different in 

abundance among various time periods. 
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2.3.3. Functional classification of identified proteins 

According to molecular functions listed on the UniProt and Gene Ontology 

website, the 190 DEPs were classified into eleven functional categories. These thirteen 

functional categories in which proteins were involved in are Carbohydrate metabolism, 

Nitrogen metabolism, Stress-induced, ATP synthesis, Lipid metabolism, Redox 

regulation, Transporters, Storage protein, Protein biosynthesis/Degradation, Nucleic acid 

binding, Inhibitors, Cytoskeleton and Unknown function.  

2.3.4. Protein-protein interaction analysis 

Protein-protein interactions have a key role in cellular level. Catalysis of the 

different metabolic pathway, regulation of transcription or post-transcription are few 

Figure 2.5. Functional categorization of the differentially expressed proteins expressed 

during pre-harvest sprouting. 
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examples of protein-protein interaction. To find the interaction between differentially 

expressed proteins during pre-harvest sprouting we used STRING database (http://string-

db.org/). We found 60 homolog proteins in Arabidopsis (Appendix 3), which were 

differentially expressed in at least 2 time periods in PHS-resistant or -susceptible cultivar.  

 

Most of the stress related proteins and chaperone proteins were seen to be 

interacting with other groups of proteins. Three chaperone proteins, PHB2, PHB3, and 

Figure 2.6. Protein-protein interaction map for Arabidopsis homologs of differentially 

expressed proteins (at least in 2 time periods) in PHS-resistant or PHS-susceptible 

cultivar. Interaction data was derived from STRING database, and visualized in 

Cytoscape 3.3.0 with discrete mapping of protein interaction and their function. 
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AT3G18190 are involved in a variety of cellular processes including response to stress 

and cell division. Most of the ribosomal proteins have a higher number of interactions but 

that was among themselves. Among ribosomal proteins, EIF2 has more than six 

interactions in total and it was interacting with chaperone proteins and stress related 

proteins. ATP3 protein, which is related to ATP production and ALDH7B4 which is 

involved in stress response has also more than 8 interactions and looks like central 

connecting elements in the network. Most of the proteins having more interactions were 

related to stress response, ATP synthesis, redox regulation and carbohydrate metabolism. 

This interaction suggests that up-regulation or down-regulation of these central proteins 

in the network may affect the expression pattern of other proteins present in the network. 

As stress related proteins seem to be the key proteins in the network, so the differential 

expression of these proteins may trigger a signal in breaking the dormancy in wheat.   

2.4. Discussion 

2.4.1. Metabolism and energy supply 

Glycolysis, tricarboxylic acid (TCA) cycle, and the mitochondrial electron 

transport chain are essential steps for energy production for various cellular functions. 

Ten proteins responsible for the starch metabolism were identified. Sucrose synthase 

enzyme was also identified as DEP and is up-regulated in 24 hrs sample in Baegjoong. In 

developing seeds, sucrose synthase is responsible for the accumulation of starch by 

hydrolyzing sucrose into fructose and UDP-glucose (Ghosh and Pal 2012). UGPase 

(UTP:glucose 1-phosphate uridylyltransferase) was found to be up-regulated in both 

cultivars and it was more accumulated in the PHS-susceptible cultivar. Depending on a 
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metabolic status of the tissue, UGPase is involved in sucrose synthesis or breakdown. 

Involvement of UGPase in sucrose degradation was also observed in developing barley 

endosperm (Eimert, et al. 1996). Beta-amylase enzyme, which is a major enzyme for the 

degradation of starch is up-regulated in both of the cultivars. In the beginning, it 

remained steady in Baegjoong and showed up-regulation of more than 3 folds in 48 hrs 

time period. In germinating seeds, beta-amylase is slowly accumulated and is 

significantly increased during 1-4 days of germination (Yamasaki 2003) and it is usually 

produced in aleurone layer of seed where the degradation of the starch usually takes 

place. Han, et al. (2014) concluded that in germinating rice embryo, starch accumulation 

was more in early stages followed by the rapid degradation after 24 hrs time periods.  The 

up-regulation of the beta amylase enzyme at 48 hours in Baegjoong indicates that the 

more carbohydrate metabolism occurs in the later periods of imbibition.  

By the process of synthesis and degradation of sucrose, the glucose could be 

transformed into glucose phosphate. The glucose phosphate then enters glycolysis and 

TCA cycle. The breakdown of carbohydrate molecules by glycolysis is important during 

germination. The ATP produced by glycolysis is an important energy source in the 

absence of photosynthesis in seedlings (Andre and Benning 2007). As glucose is 

responsible for delaying germination in some plants like Arabidopsis thaliana (Dekkers, 

et al. 2004) the breakdown of glucose seems to be vital for germination of seeds. Totally, 

6 proteins that are involved in glycolysis cycle were detected in this experiment. Most of 

the proteins were accumulated more in Baegjoong. Two proteins including 

Phosphoglucomutase and Pyruvate kinase were accumulated more in the initial stage and 

then remained steadily accumulated in all of the time periods in Baegjoong. Andre and 
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Benning (2007) observed that seeds of mutant Arabidopsis deficient in plastidic pyruvate 

kinase were unable to perform metabolism of storage oil and utilize externally applied 

sucrose for hypocotyl elongation in the dark conditions. Pyruvate dehydrogenase E1 

component was observed to be up-regulated in all of the time periods in PHS-susceptible 

wheat cultivar and have been accumulated in more abundance as compared to the 

resistant cultivar. The pyruvate dehydrogenase complex is a multi-enzyme complex 

which catalyzes the oxidative decarboxylation of pyruvate to yield acetyl-CoA and 

NADH (Tovar-Mendez, et al. 2003). This protein links two primary metabolic pathways, 

glycolysis, and TCA cycle and is responsible for control of metabolic flow in the 

organisms (Luethy, et al. 2001).  

The anaerobic respiratory pathway, fermentation, was found to be existed in the 

PHS-susceptible cultivar. This was supported by the more accumulation of alcohol 

dehydrogenase in Baegjoong in 12 hrs. Alcohol dehydrogenase (ADH) enzyme catalyzes 

the two-step reaction of alcoholic fermentation to produce ethanol. In the scarcity of 

oxygen, TCA cycle will be negatively affected and in that case, fermentation pathway 

may help to provide ATPs for the energy production (He, et al. 2011). ADH is involved 

in coleoptile growth under oxygen-limiting conditions and deficiency of ADH negatively 

impacts the growth of coleoptile (He, et al. 2015). 

The final product of glycolysis, pyruvate is transferred into mitochondria and is 

used as the substrate for TCA cycle (He, et al. 2011). In our study, we identified 8 

differentially expressed proteins (DEPs) related with TCA cycle.  Most of the DEPs 

related with TCA cycle were up-regulated in Baegjoong cultivar. Succinate 

dehydrogenase, a complex enzyme bound to the inner mitochondrial membrane is 
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responsible for the oxidation of succinate to fumarate was found to be up-regulated in 12 

hrs sample and then down-regulated in 24 hrs and 48 hrs samples of Baegjoong in this 

experiment.  NAD-dependent isocitrate dehydrogenase (NAD-IDH) is up-regulated in 24 

hrs sample of Baegjoong, and this protein is a key enzyme which catalyzes the oxidative 

carboxylation of isocitrate to 2-oxoglutarate, NADH, and CO2. Up-regulation of these 

TCA related enzymes in the initial stage in PHS-susceptible cultivar implies that TCA 

cycle is very active during the early embryo development stages, mainly providing 

energy for the embryo development.  

In our study, we observed that Glucose-6-phosphate dehydrogenase showed 

abnormal up-regulation in the PHS-susceptible wheat cultivar. This protein was up-

regulated in 24 hrs time period in Baegjoong and was accumulated 25 folds compared to 

Sukang at same time period. Glucose-6-phosphate dehydrogenase along with 6-phosphate 

gluconate dehydrogenase catalyze the initial steps of the pentose-phosphate pathway. 

Swamy and Sandhyarani (1986) observed that the activity of the enzymes participating in 

pentose phosphate pathway was sharply increased in embryonic axis of non-dormant 

lines of peanut seeds from 24 hrs to 96 hrs of germination and concluded that Pentose-

phosphate pathway plays crucial role in breakage of dormancy in peanut seeds and 

Glucose-6-phosphate dehydrogenase plays a key role in control of the pentose phosphate 

pathway.  Roberts (1977) has suggested that pentose-phosphate pathway controls 

germination in certain graminaceous seeds by increasing glucose catabolism. The release 

of dormancy in seeds demands an increase in glucose oxidation by the pentose shunt for 

forming particular metabolites needed to complete reactions such as protein synthesis and 

this reaction requires NADPH which is produced in pentose phosphate pathway (Neish 
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1960; Kovacs and Simpson 1976). NADPH also reduces proteins with disulfide bridges 

of the thioredoxin type by activating NADPH-dependent enzyme thioredoxin reductases. 

These reduced proteins may activate enzymes that are necessary for germination in non-

dormant lines (Taylorson 2012).The activity of Glucose-6-phosphate along with 6-

phosphate gluconate dehydrogenase was found to be increased in susceptible seeds while 

both were decreased in dormant seeds of wild oats during germination test (Kovacs and 

Simpson 1976).  

Lipoxygenases (LOX) are iron-containing dioxygenases that catalyze the 

oxygenation of polyunsaturated fatty acids and is widely distributed in plants and animals 

(Holtman, et al. 1996). PHS-resistant lines showed less accumulation of the LOX in all of 

the time periods as compared to the susceptible lines in the experiment. Though it is 

unclear that how LOX plays a role in breaking the dormancy but it is observed that it 

helps in the mobilization of storage lipids in cucumber and soybean seedlings (Feußner 

and Kindl 1992).  

ATP synthesis is an essential part which plays a pivotal role in energy 

transduction in living cells (He, et al. 2015). In our study, we identified that 3 ATP 

synthase alpha subunit and 2 mitochondrial electron transfer subunit were accumulated 

more than 1.5 folds in PHS-susceptible cultivar throughout the experiment. This indicates 

that energy metabolism continuously increased the process of germination in Baegjoong. 

Other proteins which were involved in oxidative phosphorylation process in 

Mitochondria such as NADH-ubiquinone oxidoreductase 75 kDa subunit was also found 

to be accumulated more in the PHS-susceptible cultivar. Overexpression of these proteins 
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suggests that whole mitochondrial ATP synthesis in seed embryos may contribute to 

breaking the dormancy prematurely in the PHS-susceptible germplasm. 

 

Figure 2.7. Proteins involved in energy metabolism. Most of the proteins were found to 

be upregulated in Baegjoong. 

Carbohydrates are generally stored in the form of sucrose in wheat embryos and 

are used as fuel for the germination.  The up-regulation of energy production (Glycolysis, 

TCA) related proteins (Figure 2.7) and more accumulation of these proteins in PHS-

susceptible germplasm was a specific feature detected in this proteomics study. Kovacs 

and Simpson (1976) hypothesized that the pentose phosphate pathway and glycolysis-

tricarboxylic acid pathways are involved in the control of seed dormancy. Up-regulation 

of most of the energy metabolism related proteins and more accumulation of those 

proteins in Baegjoong suggests that elevated synthesis of the proteins involved in energy 
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metabolism may be required to initiate storage protein mobilization and to achieve the 

high rates of germination in the PHS-susceptible cultivar.  

2.4.2. Nitrogen metabolism 

Thirteen proteins involved in Nitrogen related metabolism were observed in this 

study. Glutamate decarboxylase was up-regulated in 48 hrs sample of PHS-susceptible 

germplasm. Glutamate carboxylase is known to produce gamma butyric acid (GABA) by 

decarboxylation of L-glutamic acid. Inatomi and Slaughter (1971) reported steady growth 

in glutamate decarboxylase activity during the germination of barley seeds. They reported 

that the activity of glutamate decarboxylase was steady during the embryo soaking but 

once the growth began the activity rose rapidly. The accumulation of Glutamate 

decarboxylase indicates the increase in GABA-shunt pathway which is responsible for 

providing carbons for oxidation in TCA cycle is an important step required for 

germination of seeds (Oh and Choi 2001). Another protein putative aminotransferase was 

found to be up-regulated in PHS-susceptible cultivar in all of the time periods. 

Asparagine synthetase catalyzes the asparagine biosynthesis in plants using glutamine as 

nitrogen donor. This protein is known to play an important role in nitrogen re-allocation 

during germination of legume plant seeds (Rognes 1970). Overexpression of the 

asparagine aspartate synthetase resulted in a change in seed nitrogen content along with 

the increase of free amino acids in Arabidopsis (Lam, et al. 2003). So up-regulation of 

this protein in wheat may be important for the growth of the seedlings. 

One carbon metabolism (C1) is a major cellular event that occurs during 

germination and subsequent post-germination growth. This process is mediated by 

tetrahydrofolate coenzymes and C1 transfer reactions result in the synthesis of purines, 
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metabolism of amino acids, biogenesis of mitochondrial and chloroplastic proteins and 

methionine synthesis (Jabrin, et al. 2003). Serine hydroxymethyltransferases (SHMTs) 

are important enzymes that participate in cellular C1 metabolism and in the 

photorespiratory conversion of glycine into serine (Besson, et al. 1995; Douce and 

Neuburger 1999). In our study, we identified two isoforms of SHMTs, which showed up-

regulation in all of the time periods of PHS-susceptible cultivar and down-regulation in 

PHS-resistant. Methionine synthase is another important enzyme involved in methionine 

cycle (Figure 2.8) which is a part of C1 metabolism. It catalyzes the formation of L-

methionine from L-homocysteine, which is the last step of methionine synthesis. In 

plants, methionine functions not only as building blocks of protein but it also acts as the 

precursor of S-Adenosyl methionine which is the primary methyl group donor and 

precursor of polyamines, lignin, pectin and the ripening plant hormone ethylene . As 

ethylene plays a crucial role in plant growth and development (Rodriguez‐Gacio and 

Matilla 2001) these precursors enzymes involved in the biosynthesis of methionine may 

play an important role in the control of seed germination. The accumulation of 

methionine synthase in Arabidopsis seeds was highest after 1 day of imbibition in water 

which indicated that methionine synthase along with S-adenosylmethionine synthetase is 

fundamental components which control the metabolism in the transition from an inactive 

to a highly active state during seed germination (Gallardo, et al. 2002a). Ethylene is also 

involved in  regulating the expression of cysteine proteinase genes and it's protein 

complex which results in the removal of seed dormancy (Borghetti, et al. 2002). In our 

study, we identified 4 methionine synthase enzyme which was up-regulated in 24 hrs 

sample of the PHS-susceptible wheat cultivar. They have up-regulated almost 2 folds in 
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PHS-susceptible cultivar during 24 hrs of imbibition. Most of the embryonic cells are 

arrested in G1-phase of cell cycle and high rate of DNA synthesis is required for seeds to 

switch from quiescent to proliferating stage during imbibition (Gallardo, et al. 2002b) and 

the C1 metabolic pathway seems to be important for synthesis of purines and pyrimidines 

required for DNA synthesis and subsequent growth of imbibed seeds 

 

2.4.3. Stress induced proteins 

A number of stress/defense related proteins are expressed during wheat grain 

development. The main functions of these proteins are to protect the seed from various 

biotic and abiotic stresses like drought, salt, osmotic stress, extreme temperatures, and 

Figure 2.8. The role of methionine biosynthesis in seed germination. Red arrow 

indicates the proteins that were found to be upregulated in PHS-susceptible germplasm. 
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several pathogenic microorganisms. This study revealed that 17 stress/defense related 

DEPs during the process of germination. Some of the proteins were labeled as late 

embryogenesis abundant (LEA) proteins and heat shock proteins (Hsp) which are 

exclusively synthesized during seed development. In our study, we identified 5 LEA 

including Dehydrin and Early methionine labeled polypeptide which was found to be 

down-regulated in the PHS-susceptible cultivar. Early methionine labeled polypeptide 

and Glycine-rich protein peptide is embryo specific in nature and both plays role in 

maintaining the minimum level of hydration to prevent the denaturation of cytoplasmic 

components. Kalaiselvi and Manickam (1999) have reported the role of this protein 

during imbibition by controlling water uptake and characterized this protein as an 

abscisic acid responsive protein. Early methionine labeled protein was in higher amount 

in susceptible cultivar before imbibition but is sharply down-regulated after imbibition. 

Early methionine labeled protein is directly linked with ABA, an inhibitor of germination 

in plants. According to  Williamson and Quatrano (1988), the level of Early methionine 

labeled protein sequence is replaced by germination-specific sequences during 

germination. In the absence of ABA, there was no accumulation of early methionine 

labeled protein at detectable levels in the wheat embryo (Williamson, et al. 1985) . As the 

level of this protein is regulated by the amount of endogenous ABA present inside the 

embryo, we can conclude that this protein represents the amount of ABA present inside 

the embryo. As the germination proceeds, the ABA is down-regulated in PHS-susceptible 

cultivar but ABA remains same or up-regulated in PHS-resistant cultivar to inhibit the 

process. Another protein that is directly linked with the ABA is EMB-1 protein which is 

usually found in developing embryo of the carrot (Shiota, et al. 2004). EMB-1 is thought 



66 

 

 

6
6
 

to be related to the proteins which act as hydration agent to protect the cellular 

components of the embryo from desiccation when seeds become dormant (Wurtele, et al. 

1993). In our study, we found that there was steadily down-regulation of EMB-1 protein 

in the PHS-susceptible cultivar. Dehydrin has a specific role in calcium binding which 

has a significant role on signaling process and regulation of secondary messenger 

transmission (Ma, et al. 2014). Dehydrin was found to be up-regulated by ABA and 

decrease in quantity was observed during dormancy breaking and germination of Norway 

maple seeds (Pawłowski 2009). Gene expression analysis of seed dormancy breaking in 

wild oat showed that GA treatment causes the reduction in transcripts level of LEA, 

whereas ABA treatment increased transcripts level of LEA (Li and Foley 1995). All of 

the evidence support the fact that LEA proteins are directly regulated by ABA to inhibit 

germination in various plants and up-regulation of these proteins in PHS-resistant line 

also confirms that this is a regulatory machinery used by resistant wheat seeds to protect 

themselves from pre-harvest sprouting under unfavorable conditions.  

The involvement of  heat shock proteins (HSP) in assembly and degradation of 

protein complexes suggests that they can play an important role in diverse cellular 

processes such as stress response and protein metabolism (Neuwald, et al. 1999). Six 

HSPs including member of HSP70 and HSP90 was identified in our study. One HSP 

which is a member of HSP70 chaperone family was identified which was accumulated in 

all time periods in susceptible cultivar, suggesting that these HSPs have protective 

function during seed maturation and throughout germination (Mak, et al. 2009). One 

uncharacterized protein was found to be up-regulated in PHS-susceptible cultivar which 
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was induced by brassinosteroid. Brassinosteroid is found to enhance the seed germination 

by inhibiting the activity of ABA on seed germination (Zhang, et al. 2009).  

2.4.4. Inhibitors 

In our study, we identified 5 inhibitors that were differentially expressed in our 

experiment.  Sugang had increased the level of Trypsin inhibitor CMx precursor and 

Defensin protein as compared to PHS-susceptible Baegjoong. Trypsin inhibitor is known 

to play a role in inhibition of alpha-amylase activity and protection of storage proteins 

from exogenous proteases released from fungi and insects (Ghosh and Pal 2012). 

Defensin protein is known to have diverse function including inhibition of protein 

synthesis and inhibition of alpha-amylase activity (Odintsova, et al. 2007). The resistance 

to PHS in various cereals including rye can be reduced when the seed coat is subjected to 

rupture by pests during the course of development (Masojć, et al. 2013). More than 2-fold 

difference in accumulation of these proteins in PHS-resistant cultivar was observed in our 

study so this suggests that these two proteins are important for PHS-susceptibility in 

wheat. Serpins are another class of proteins identified in this study. Serpins proteins are 

also known to play a role in inhibition of proteinases, which play a role in growth, 

development of plant and stress responses in the plant. For the protection of storage 

proteins from rapid digestion, Serpins are usually accumulated in the germinating wheat. 

Previous research has shown that serpin was highly expressed under salt and cold stresses 

(Lampl, et al. 2010). Masojć, et al. (2013) observed more than 2 fold accumulation of 

serpin in PHS-susceptible rye and concluded that serpin could be a candidate gene for 

regulation of PHS. As serpin is highly accumulated in PHS-susceptible cultivar, defense 

and inhibitor proteins seem to be important for PHS susceptibility in wheat.  
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2.4.5. Redox Regulation 

When plants are exposed to biotic or abiotic stresses, it can induce the production 

of reactive oxygen species (ROS) (Figure 2.9) which includes superoxide (O2
-), hydrogen 

peroxide (H2O2), hydroxyl radicals (.OH), or singlet oxygen (1O
2) are important 

molecules in plant biological processes. These ROS are produced in various processes 

including mitochondrial electron transfer chain reaction (Gomes and Garcia 2013).These 

ROS are known to play role in endosperm weakening, seed reserves mobilization, and 

programmed cell death  in aleurone layer (El-Maarouf-Bouteau and Bailly 2008).  

Leymarie, et al. (2012) observed ROS accumulation in germinating seeds of 

Arabidopsis thaliana and concluded that ROS plays a role in gibberellin signaling to 

break dormancy in seeds. In our study, along with the ATPase molecules, we identified 

two isoforms of cytochrome c1 complex involved in mitochondrial electron transfer 

chain were upregulated in the PHS-susceptible cultivar.  

     Figure 2.9. Reactive oxygen production during oxidative phosphorylation. 
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In response to these toxic materials, the plant produces some defense proteins 

including superoxide dismutase, catalases, thioredoxin (Ma, et al. 2014). A higher level 

of anti-oxidant protection is needed to PHS-susceptible lines during the germination as 

compared to the PHS-resistant line. ROS-scavenging enzymes may play a protective role 

during premature germination (Masojć, et al. 2013). Glyoxalase I is responsible for 

Lactoglutathione lyase activity which causes the detoxification of methylglyoxal, a 

highly toxic electrophilic glycolytic by-product that inactivates both proteins and nucleic 

acids (Liu, et al. 2015).  Lower expression of glyoxalase I in transgenic tobacco plant 

caused the accumulation of methylglyoxal resulting in the inhibition of seed germination 

(Yadav, et al. 2005), thus increased the level of glyoxalase I in wheat may be responsible 

for breaking the dormancy. Four proteins were identified which were related to 

glyoxalase domain and found to be accumulated in all of the time periods except 24 hrs 

imbibition time.  

Peroxidases, which catalyzes oxidoreduction between hydrogen peroxide and 

various reductants (Hiraga, et al. 2001) was also identified in this study. We found that all 

the peroxidases were up-regulated in PHS-resistant cultivar. Peroxidase activity (Figure 

2.10) is directly related to the oxygen uptake capability of the seed and the level of 

oxygen availability is the major factor determining the germination of rice embryo 

(Navasero, et al. 1975).  Lower activity of peroxidase present in the hull of rice seed 

increased amylase and dehydrogenase activity resulting in the breakage of dormancy 

(Seshu and Dadlani 1991). Gaspar, et al. (1977) hypothesized that the low peroxidase 

activity is linked with alpha amylase activity and germination of wheat. Sufficiently low 

peroxidase activity in the embryo along with minimum auxin level is responsible for 
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activating alpha amylase synthesis in the endosperm which helps in the germination of 

wheat. 

Peroxiredoxin is an antioxidant which is expressed in the aleurone and embryo 

layer during the late developmental phase of seeds and is encoded by dormancy related 

gene Per1 in barley seeds and is involved in the protection of aleurone and embryo cells 

against free radical damage during imbibition of dormant seeds (Stacy, et al. 1996). 

Peroxiredoxin helps to prevent the radical attack of lipids, enzymes and provides cells 

with efficient machinery to detoxify oxides like hydrogen peroxide, alkyl 

hydroperoxides. Under stressed conditions, peroxiredoxin is involved in inhibition of the 

germination (Wood, et al. 2003). When wheat seeds were treated with ABA, the up-

Peroxidases  

Figure 2.10. Predicted model for the role of ROS and ROS scavenging enzymes in 

dormancy release and germination. (Modified from (El-Maarouf-Bouteau and Bailly 

2008)). Peroxidase was found to be upregualted in PHS-resistant germplasm. 
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regulation of peroxiredoxin was observed, suggesting the role in maintaining the 

dormancy of wheat (Bykova, et al. 2011). Some authors believe that peroxiredoxin is not 

directly involved in maintaining the dormancy of wheat but it helps to inhibit the 

germination of wheat under stressed conditions (Haslekås, et al. 2003). In our study, we 

observed that two form of 1-Cys peroxiredoxin and peroxiredoxin were accumulated 

more in the resistant cultivar. 

 In our study, we found that Thioredoxin h has been up-regulated in 12 hrs and 24 

hrs in PHS- susceptible cultivar. Thioredoxin h is a redox-active compound found in all 

almost all organisms. During the process of seed germination, thioredoxin h is known to 

break the intramolecular disulphide bonds of storage proteins, increase amino acid 

metabolism by up-regulating glutamate dehydrogenase, glutamate oxaloacetic 

transaminase, and glutamic pyruvic transaminase (Guo, et al. 2013) and reducing 

oxidized protein which leads to increased solubility and mobilization of carbon and 

nitrogen for growth of new seedling (Wong, et al. 2004). The overexpression of 

thioredoxin h in the endosperm of the barley (Hordeum vulgare) accelerated the 

germination along with the release of starch hydrolyzing enzyme and reduction of the 

storage protein (Guo, et al. 2007). Thioredoxin h, when overexpressed in the barley 

endosperm is believed to communicate directly with the embryo and the aleurone layer, 

to accelerate the germination process and appearance of alpha-amylase. It is also possible 

that thioredoxin h enhances the synthesis of GA in the embryo (Wong, et al. 2002). 

Thioredoxin gene was found to be targeting diverse group of proteins involved in various 

functions such as carbon metabolism, cell wall synthesis, protein biogenesis and 

degradation, signal transduction (Figure 2.11) in germinating seeds of Medicago 
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trancatula seeds (Alkhalfioui, et al. 2007) and in  wheat seeds (Wong, et al. 2004).  The 

down-regulation of the thioredoxin h can assist the seeds to maintain their dormancy 

during adverse conditions. Down-regulation of thioredoxin h9 gene in barley delayed the 

expression of the target proteins which led to the suppression of pre-harvest sprouting 

(Li, et al. 2009). The antisense thioredoxin h gene when incorporated in the transgenic 

wheat, weakened the metabolism of wheat seeds by decreasing the amount of proteins 

which were involved in the metabolism process. This leads to the inhibition of the 

germination process, eventually protecting the seed from pre- harvest sprouting (Guo, et 

al. 2007).    

Figure 2.11. Hypothetical model showing the role of Thioredoxin in breaking the 

dormancy and germination of seeds. Green represents process upregulated by Trx and 

Red represent process downregulated by Trx (Adapted from (Guo, et al. 2013)). 
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Glutathione S-transferases (GSTs) are induced by several biotic and abiotic 

factors including heat shock, salt stress and hormonal treatments such as ethylene, auxin 

and abscisic acid (Gong, et al. 2005). GSTs have diverse functions including oxidative 

stress resistance, detoxification (Edwards and Dixon 2005). Two isoforms of GSTs were 

identified in our study, which showed less accumulation at 12 hrs time period in PHS- 

susceptible cultivar and one isoform showed more accumulation in 24 hrs time period in 

the susceptible cultivar. The role of GSTs in breaking the bud dormancy has been 

described in various woody plants including oak (Ueno, et al. 2013) and Japanese 

chestnut (Nomura, et al. 2007). The higher activity of GST in the dormant seed as 

compared to the germinating seeds was reported in Trifolium alexandrinum (Ragaa Reda 

Hamed 2015). A Higher level of glutathione transferase activity seems to be responsible 

for the initiation of PHS in rye (Masojć, et al. 2013) and same can also be true for wheat. 

2.4.6. Storage proteins 

Germination and the growth of seedling need a large amount of nutrition and 

energy, which is provided by the components stored by seed itself (Yang, et al. 2007). 

Storage proteins are the classes of enzymes do not have enzymatic function and mainly 

store amino acids for the growing seedling (Murray 1979). Wheat storage proteins are a 

rich source of carbon, nitrogen, and sulfur which are required for the growth of wheat 

embryo (Shafqat 2013).  During the period of germination, these proteins are degraded by 

proteases and they are further hydrolyzed to amino acids. These amino acids are 

mobilized to the embryonic axis where it supports the growth and provide the energy 

(Ramakrishna 2007).  Nine storage proteins were identified in this study and all of these 

storage proteins showed down-regulation in PHS- susceptible cultivar at 12 hrs and 24 
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hrs time period. Down-regulation of storage proteins and up-regulation of protein 

catabolism related proteins was observed during the germination of rice seeds (He and 

Yang 2013). In our study we identified the proteases like carboxypeptidase, Aspartic 

proteinase were up-regulated in the PHS-susceptible cultivar.  Oil storage protein 

Oleosin, 15kDa softness protein, embryo globulin were found to be down-regulated in the 

PHS-susceptible cultivar. The proteolysis of 3 isoforms of globulin protein along with 

embryo globulin was identified in our study. Generally, globulin proteins accumulate 

during seed maturation before dormancy but it is consumed during the germination of 

seed. Up-regulation of the globulin protein is controlled by ABA in maize before 

dormancy (Ueno, et al. 2013). The up-regulation of Globulin protein in PHS-resistant 

wheat line suggests that the activity of ABA is higher resulting in the dormancy while 

down-regulation of globulin in PHS-susceptible suggests that the amount of ABA is 

lower resulting in the release of dormancy.  

Oleosins are lipid-associated proteins and present in seed and pollen as oil storage 

vesicles (Crowe, et al. 2000). They functions as docking sites for lipases during 

mobilization of triglyceride stores upon germination(Bowman, et al. 1988). Oleosin gene 

expression is regulated by ABA with the help of ABA insensitive3 (ABI3) (Crowe, et al. 

2000) and it was observed that ABA up-regulated the transcripts of oleosin in embryo 

and endosperm of Arabidopsis thaliana (Penfield, et al. 2006). Low accumulation of this 

protein in PHS-susceptible cultivar indicates the lower activity of ABA and release of 

dormancy in wheat kernels.  
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2.4.7. Cytoskeleton and cell cycle regulation 

Five proteins involved in cytoskeleton structure construction and cell cycle were 

found to be up-regulated in both cultivars but the accumulation was higher in Baegjoong 

and all of them showed more accumulation in 24 hrs time period. Profilin was observed 

in higher amount in the germinating embryo of tomato seeds and found to be increased 

during the germination process. In Arabidopsis, profilins are known to play a role in cell 

elongation and cell shape maintenance (Ramachandran, et al. 2000). β-tubulin was 

observed to be up-regulated in PHS-susceptible line and remained steadily accumulated 

in the embryo during the process of germination. The expression of β-tubulin is required 

for the passage through the cell cycle. The amount of β-tubulin was observed to be 

increased in germinating embryo of tomato seeds within 48 hrs of imbibition and this 

suggested that beta tubulin is probably related to the progression of cell cycle towards 

mitosis, which might occur during the visible germination of the seedlings (de Castro, et 

al. 1995). β-tubulin accumulation leads to cell expansion, division and growth of the 

radicle through seed coat in Acer plantanoids seeds (Pawłowski, et al. 2004) and in 

axillary buds of Norway maple during dormancy breaking (Bergervoet, et al. 1999). So 

the accumulation of β-tubulin can be an indicator of dormancy release process in seeds. 

The construction of microtubule may help in the formation of plant structures during the 

rapid growth of the seedling (Kim, et al. 2009). Up-regulation and accumulation of the 

cytoskeleton-related proteins in PHS-susceptible cultivar suggests that cell division and 

growth was activated after imbibition. 

 



76 

 

 

7
6
 

2.4.8. Nucleic acid binding proteins 

Nucleic acid binding protein play role in the various molecular process such as 

replication of DNA, transcription and post-transcription regulation of RNAs in living 

organisms. We found that more than 11 proteins were identified in both the cultivars and 

showed a different regulation pattern. Glycine-rich RNA-binding proteins are involved in 

post-transcriptional regulation of gene expression in plants under stress conditions and  

they were found to be down-regulated by application of GA and up-regulated by ABA in 

Norway maple leaves tree seeds (Pawłowski 2009). In beech (Fagus sylvatica) seeds, the 

expression of these ABA-responsive glycine-rich proteins corresponds with the level of 

seed dormancy (Nicolás, et al. 1997). ABA-responsive cDNA of dormancy-related gene 

GRPF1, which encodes glycine-rich RNA binding protein was found to be associated 

with the degree of dormancy and decline of these genes caused the release of seed 

dormancy in beech seeds (Mortensen, et al. 2004). In our study, we identified, that there 

was up-regulation of these proteins in 12 hrs and 48 hrs of the time period in PHS-

resistant cultivar, so this may suggest that these proteins are also involved in maintaining 

seed dormancy in wheat seeds too. Another protein which is a nascent polypeptide-

associated complex (NAC) which acts as a protector of nascent chains from premature 

interaction with other cellular proteins is known to play a role in transcription regulation 

and mitochondrial protein import. This protein was found to be down-regulated in all of 

the time periods of PHS-resistant germplasm. The application of GA causes the down-

regulation of this protein in beech seeds (Pawłowski 2007).  
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2.4.9. Protein biosynthesis, folding and degradation 

In total, 45 proteins that are related to protein biosynthesis, initiation, folding, and 

degradation were identified in this study. Twenty nine proteins were involved in 

ribosome biosynthesis, 6 in the initiation of translation and 10 proteins were involved in 

protein assembly and degradation. Almost all of the proteins involved in protein 

biosynthesis showed up-regulation in at least one time period in PHS-susceptible line and 

were steadily accumulated. Whenever the dry grains get contact with water, rapid 

assembly of ribosomes and mRNAs takes place which initiates the synthesis of other 

protein components (Mory, et al. 1972).  

The ubiquitin-proteasome group including 26s proteasome subunits were 

observed to be accumulated more in 48 hrs time period in PHS-susceptible line. The 

ubiquitin-proteasome system is known to regulate plant development and cell division by 

regulating different cellular signals (Moon, et al. 2004). High accumulation of this 

proteasome may be involved in degradation of proteins involved in proteins which are 

used during cell division and cell structure construction (Kim, et al. 2009). We can 

hypothesize that proteasome-mediated protein degradation could be an essential pathway 

for premature germination of wheat seedlings.  

2.5. Conclusions 

Our results demonstrated that iTRAQ based quantitative proteome analysis is a 

powerful technique for investigating proteins involved in pre-harvest sprouting in wheat. 

Our proteomics study finds 190 differentially expressed proteins during pre-harvest 

sprouting. Several proteins showed contrasting expression pattern and few showed 
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similar expression pattern in PHS-resistant and PHS-susceptible germplasm. DEPs 

involved in cellular metabolism along with protein degradation and ROS production 

displayed significant up-regulated pattern in PHS-susceptible cultivar while proteins 

involved in stress response and inactivation of proteases showed up-regulated pattern in 

PHS-resistant germplasm. One protein thioredoxin has been seen to controlling the whole 

mechanism of PHS in wheat. Protein-protein interaction analysis also revealed some key 

protein controlling the PHS mechanism. Our results have provided comprehensive 

proteome insights into PHS mechanism and increased our understanding of the molecular 

mechanism involved.  
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Appendices 

Appendix 1. List of all the proteins identified by iTRAQ as DEPs 

S.N. Protein GI # Protein name 

1  gi|100620  sucrose synthase (EC 2.4.1.13) - barley (fragment) 

2  gi|10799810  cold-regulated protein [Hordeum vulgare subsp. vulgare] 

3  gi|10799832  ribosomal protein L11-like [Nicotiana tabacum] 

4  gi|11124572  triosephosphat-isomerase [Triticum aestivum] 

5  gi|112784981  11-beta-hydroxysteroid dehydrogenase-like protein 

[Triticum aestivum] 

6  gi|113595  RecName: Full=Aldose reductase; Short=AR; AltName: 

Full=Aldehyde reductase 

7  gi|115435412  Os01g0226400 [Oryza sativa Japonica Group] 

8  gi|115436636  Os01g0375000 [Oryza sativa Japonica Group] 

9  gi|115447473  Os02g0634900 [Oryza sativa Japonica Group] 

10  gi|115453877  Os03g0577000 [Oryza sativa Japonica Group] 

11  gi|115474137  Os07g0683900 [Oryza sativa Japonica Group] 

12  gi|115475824  Os08g0308100 [Oryza sativa Japonica Group] 

13  gi|115589736  serine hydroxymethyltransferase [Triticum monococcum] 

14  gi|116310428  H0305E08.6 [Oryza sativa Indica Group] 

15  gi|116788110  unknown [Picea sitchensis] 

16  gi|119316  RecName: Full=EMB-1 protein 

17  gi|119388709  alcohol dehydrogenase ADH1 [Triticum monococcum 

subsp. aegilopoides] 

18  gi|12247762  1-Cys peroxiredoxin [Triticum durum] 

19  gi|125577046  hypothetical protein OsJ_33805 [Oryza sativa Japonica 

Group] 

20  gi|135398  RecName: Full=Tubulin alpha-1 chain; AltName: 

Full=Alpha-1-tubulin 

21  gi|145356472  predicted protein [Ostreococcus lucimarinus CCE9901] 

22  gi|147641186  RecName: Full=Defensin Tm-AMP-D1.2 

23  gi|147805491  hypothetical protein VITISV_020895 [Vitis vinifera] 
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24  gi|147809809  hypothetical protein VITISV_006493 [Vitis vinifera] 

25  gi|149390973  60S ribosomal protein l3 [Oryza sativa Indica Group] 

26  gi|15219078  histone H2A protein 9 [Arabidopsis thaliana] 

27  gi|15225353  Succinyl-CoA ligase [GDP-forming] subunit beta 

[Arabidopsis thaliana] 

28  gi|15230764  ATP-citrate lyase B-1 [Arabidopsis thaliana] 

29  gi|15233565  40S ribosomal protein S30 [Arabidopsis thaliana] 

30  gi|15240075  succinate dehydrogenase [ubiquinone] flavoprotein subunit 

1 [Arabidopsis thaliana] 

31  gi|15982879  AT4g39730/T19P19_120 [Arabidopsis thaliana] 

32  gi|162463575  LOC732740 [Zea mays] 

33  gi|162464317  putative RH2 protein [Zea mays] 

34  gi|164471780  aspartate aminotransferase [Triticum aestivum] 

35  gi|16580747  glyoxalase I [Oryza sativa Japonica Group] 

36  gi|167004  embryo globulin [Hordeum vulgare subsp. vulgare] 

37  gi|167081  peroxidase BP 1 [Hordeum vulgare] 

38  gi|167113  aldose reductase-related protein [Bromus inermis] 

39  gi|168035593  predicted protein [Physcomitrella patens subsp. patens] 

40  gi|168052699  26S proteasome regulatory complex, ATPase RPT6 

[Physcomitrella patens subsp. patens] 

41  gi|169777  beta-amylase [Oryza sativa Japonica Group] 

42  gi|1709779  RecName: Full=Profilin-1 

43  gi|1709798  RecName: Full=26S protease regulatory subunit 6B 

homolog 

44  gi|1710521  RecName: Full=60S ribosomal protein L24 

45  gi|1731990  serine carboxypeptidase II, CP-MII [Hordeum vulgare 

subsp. vulgare] 

46  gi|18076790  phosphoglucomutase [Triticum aestivum] 

47  gi|18479038  glutathione transferase [Hordeum vulgare subsp. vulgare] 

48  gi|186886337  ATPase F1 alpha subunit [Patosia clandestina] 

49  gi|190684059  peroxiredoxin [Triticum aestivum] 

50  gi|195637330  60 ribosomal protein L14 [Zea mays] 
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51  gi|195648210  NADH-ubiquinone oxidoreductase 75 kDa subunit [Zea 

mays] 

52  gi|195658145  60S ribosomal protein L23 [Zea mays] 

53  gi|20067415  glutathione transferase [Triticum aestivum] 

54  gi|20139964  RecName: Full=40S ribosomal protein S7 

55  gi|20140865  RecName: Full=Translationally-controlled tumor protein 

homolog; Short=TCTP; AltName: Full=HTP 

56  gi|205830697  RecName: Full=Unknown protein 18 

57  gi|2130114  trypsin inhibitor CMx precursor - wheat 

58  gi|215398468  globulin 3C [Triticum aestivum] 

59  gi|215398472  globulin 3B [Triticum aestivum] 

60  gi|218202406  hypothetical protein OsI_31924 [Oryza sativa Indica 

Group] 

61  gi|219363167  guanine nucleotide-binding protein beta subunit-like 

protein [Zea mays] 

62  gi|224029551  unknown [Zea mays] 

63  gi|224055335  predicted protein [Populus trichocarpa] 

64  gi|224133986  predicted protein [Populus trichocarpa] 

65  gi|225216858  26S protease regulatory subunit S10B [Oryza nivara] 

66  gi|226502949  60S ribosomal protein L5-1 [Zea mays] 

67  gi|226503517  6,7-dimethyl-8-ribityllumazine synthase [Zea mays] 

68  gi|226533868  heat shock protein 70 [Triticum aestivum] 

69  gi|239923157  lipoxygenase 2 [Triticum aestivum] 

70  gi|242072750  hypothetical protein SORBIDRAFT_06g013980 [Sorghum 

bicolor] 

71  gi|242092600  hypothetical protein SORBIDRAFT_10g008820 [Sorghum 

bicolor] 

72  gi|242041881  hypothetical protein SORBIDRAFT_01g043980 [Sorghum 

bicolor] 

73  gi|2454602  Barperm1 [Hordeum vulgare subsp. vulgare] 

74  gi|2493650  RecName: Full=RuBisCO large subunit-binding protein 

subunit beta, chloroplastic; AltName: Full=60 kDa 

chaperonin subunit beta; AltName: Full=CPN-60 beta 

75  gi|2506825  RecName: Full=Linoleate 9S-lipoxygenase 1; AltName: 

Full=Lipoxygenase 1 



106 

 

 

1
0
6
 

76  gi|255538610  deoxyuridine 5'-triphosphate nucleotidohydrolase, putative 

[Ricinus communis] 

77  gi|255544189  pyruvate kinase, putative [Ricinus communis] 

78  gi|26017213  cold regulated protein [Triticum aestivum] 

79  gi|283777738  26S protease regulatory subunit-like protein [Lolium 

perenne] 

80  gi|284518928  ozone-responsive stress-related protein [Triticum aestivum] 

81  gi|291061974  putative pyruvate dehydrogenase E1 component alpha 

subunit [Triticum aestivum] 

82  gi|295311633  ATPase subunit 1 [Citrullus lanatus] 

83  gi|295841344  benzoxazinone:UDP-Glc glucosyltransferase [Triticum 

aestivum] 

84  gi|296085461  unnamed protein product [Vitis vinifera] 

85  gi|300087069  aldehyde dehydrogenase 7b [Triticum aestivum] 

86  gi|307108094  hypothetical protein CHLNCDRAFT_144796 [Chlorella 

variabilis] 

87  gi|310656772  putative oleosin [Triticum aestivum] 

88  gi|315113249  Chain A, Localization Of The Large Subunit Ribosomal 

Proteins Into A 5.5 A Cryo-Em Map Of Triticum Aestivum 

Translating 80s Ribosome 

89  gi|315113285  Chain k, Localization Of The Large Subunit Ribosomal 

Proteins Into A 5.5 A Cryo-Em Map Of Triticum Aestivum 

Translating 80s Ribosome 

90  gi|315113286  Chain p, Localization Of The Large Subunit Ribosomal 

Proteins Into A 5.5 A Cryo-Em Map Of Triticum Aestivum 

Translating 80s Ribosome 

91  gi|315113289  Chain t, Localization Of The Large Subunit Ribosomal 

Proteins Into A 5.5 A Cryo-Em Map Of Triticum Aestivum 

Translating 80s Ribosome 

92  gi|32400861  40S ribosomal protein, partial [Triticum aestivum] 

93  gi|32400871  ribosomal Pr 117, partial [Triticum aestivum] 

94  gi|326489031  predicted protein [Hordeum vulgare subsp. vulgare] 

95  gi|326489278  predicted protein [Hordeum vulgare subsp. vulgare] 

96  gi|326489533  predicted protein [Hordeum vulgare subsp. vulgare] 

97  gi|326489651  predicted protein [Hordeum vulgare subsp. vulgare] 

98  gi|326490684  predicted protein [Hordeum vulgare subsp. vulgare] 
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99  gi|326492474  predicted protein [Hordeum vulgare subsp. vulgare] 

100  gi|326493350  predicted protein [Hordeum vulgare subsp. vulgare] 

101  gi|326493416  predicted protein [Hordeum vulgare subsp. vulgare] 

102  gi|326493440  predicted protein [Hordeum vulgare subsp. vulgare] 

103  gi|326494304  predicted protein [Hordeum vulgare subsp. vulgare] 

104  gi|326494618  predicted protein [Hordeum vulgare subsp. vulgare] 

105  gi|326495152  predicted protein [Hordeum vulgare subsp. vulgare] 

106  gi|326495158  predicted protein [Hordeum vulgare subsp. vulgare] 

107  gi|326495978  predicted protein [Hordeum vulgare subsp. vulgare] 

108  gi|326496415  predicted protein [Hordeum vulgare subsp. vulgare] 

109  gi|326505912  predicted protein [Hordeum vulgare subsp. vulgare] 

110  gi|326506996  predicted protein [Hordeum vulgare subsp. vulgare] 

111  gi|326508588  predicted protein [Hordeum vulgare subsp. vulgare] 

112  gi|326509707  predicted protein [Hordeum vulgare subsp. vulgare] 

113  gi|326509813  predicted protein [Hordeum vulgare subsp. vulgare] 

114  gi|326509875  predicted protein [Hordeum vulgare subsp. vulgare] 

115  gi|326510121  predicted protein [Hordeum vulgare subsp. vulgare] 

116  gi|326510613  predicted protein [Hordeum vulgare subsp. vulgare] 

117  gi|326513238  predicted protein [Hordeum vulgare subsp. vulgare] 

118  gi|326514754  predicted protein [Hordeum vulgare subsp. vulgare] 

119  gi|326515336  predicted protein [Hordeum vulgare subsp. vulgare] 

120  gi|326517334  predicted protein [Hordeum vulgare subsp. vulgare] 

121  gi|326520285  predicted protein [Hordeum vulgare subsp. vulgare] 

122  gi|326521510  predicted protein [Hordeum vulgare subsp. vulgare] 

123  gi|326523589  predicted protein [Hordeum vulgare subsp. vulgare] 

124  gi|326524658  predicted protein [Hordeum vulgare subsp. vulgare] 

125  gi|326526545  predicted protein [Hordeum vulgare subsp. vulgare] 

126  gi|326526663  predicted protein [Hordeum vulgare subsp. vulgare] 

127  gi|326527459  predicted protein [Hordeum vulgare subsp. vulgare] 

128  gi|326529599  predicted protein [Hordeum vulgare subsp. vulgare] 

129  gi|326531070  predicted protein [Hordeum vulgare subsp. vulgare] 
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130  gi|326532234  predicted protein [Hordeum vulgare subsp. vulgare] 

131  gi|34105768  ribosomal protein L3 [Triticum aestivum] 

132  gi|356497538  PREDICTED: U-box domain-containing protein 35-like 

[Glycine max] 

133  gi|356533344  PREDICTED: histone H4-like [Glycine max] 

134  gi|356554910  PREDICTED: LOW QUALITY PROTEIN: ubiquitin-60S 

ribosomal protein L40-like [Glycine max] 

135  gi|357112267  PREDICTED: 40S ribosomal protein S21-like 

[Brachypodium distachyon] 

136  gi|357112336  PREDICTED: vicilin-like antimicrobial peptides 2-2-like 

[Brachypodium distachyon] 

137  gi|357112407  PREDICTED: uncharacterized protein LOC100835762 

[Brachypodium distachyon] 

138  gi|357112720  PREDICTED: asparagine synthetase [glutamine-

hydrolyzing]-like [Brachypodium distachyon] 

139  gi|357113428  PREDICTED: probable mitochondrial-processing peptidase 

subunit beta-like [Brachypodium distachyon] 

140  gi|357118316  PREDICTED: annexin D1-like [Brachypodium distachyon] 

141  gi|357119715  PREDICTED: uncharacterized protein LOC100832830 

[Brachypodium distachyon] 

142  gi|357121590  PREDICTED: 4-alpha-glucanotransferase DPE2-like 

[Brachypodium distachyon] 

143  gi|357121721  PREDICTED: hydroxysteroid 11-beta-dehydrogenase 1-

like protein B-like [Brachypodium distachyon] 

144  gi|357119807  PREDICTED: 5-methyltetrahydropteroyltriglutamate--

homocysteine methyltransferase-like [Brachypodium 

distachyon] 

145  gi|357130051  PREDICTED: peroxidase 12-like [Brachypodium 

distachyon] 

146  gi|357133773  PREDICTED: cytochrome b-c1 complex subunit 9-like 

[Brachypodium distachyon] 

147  gi|357138252  PREDICTED: 60S ribosomal protein L35a-3-like isoform 1 

[Brachypodium distachyon] 

148  gi|357148479  PREDICTED: T-complex protein 1 subunit eta-like 

[Brachypodium distachyon] 
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149  gi|357155679  PREDICTED: 5-methyltetrahydropteroyltriglutamate--

homocysteine methyltransferase-like [Brachypodium 

distachyon] 

150  gi|357164666  PREDICTED: 60S ribosomal protein L14-1-like 

[Brachypodium distachyon] 

151  gi|357444565  Bifunctional polymyxin resistance arnA protein [Medicago 

truncatula] 

152  gi|357449963  Heat shock protein [Medicago truncatula] 

153  gi|357497049  Cytochrome c1 heme protein [Medicago truncatula] 

154  gi|37703720  putative aminotransferase AGD2 [Oryza sativa Japonica 

Group] 

155  gi|384248889  hypothetical protein COCSUDRAFT_37026 [Coccomyxa 

subellipsoidea C-169] 

156  gi|38567717  B1358B12.15 [Oryza sativa Japonica Group] 

157  gi|388496264  unknown [Lotus japonicus] 

158  gi|388501178  unknown [Lotus japonicus] 

159  gi|390979705  globulin-3A [Triticum aestivum] 

160  gi|3915037  RecName: Full=Sucrose synthase 2; AltName: 

Full=Sucrose-UDP glucosyltransferase 2 

161  gi|401138  RecName: Full=Sucrose synthase 1; AltName: 

Full=Sucrose-UDP glucosyltransferase 1 

162  gi|4586602  pyruvate kinase [Cicer arietinum] 

163  gi|464145  beta-amylase [Hordeum vulgare subsp. vulgare] 

164  gi|464630  RecName: Full=60S ribosomal protein L27 

165  gi|50725631  putative 40S RIBOSOMAL PROTEIN S13 [Oryza sativa 

Japonica Group] 

166  gi|50897038  methionine synthase [Hordeum vulgare subsp. vulgare] 

167  gi|520936  gamma-TIP-like protein [Hordeum vulgare subsp. vulgare] 

168  gi|544242  RecName: Full=Endoplasmin homolog; AltName: 

Full=Glucose-regulated protein 94 homolog; Short=GRP-94 

homolog; Flags: Precursor 

169  gi|55832255  putative glutamate decarboxylase [Hordeum vulgare] 

170  gi|5668671  Beta-tubulin [Zinnia elegans] 

171  gi|607198  15kDa grain softness protein, partial [Triticum aestivum] 

172  gi|607202  15kDa grain softness protein [Triticum aestivum] 
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173  gi|6136111  RecName: Full=UTP--glucose-1-phosphate 

uridylyltransferase; AltName: Full=UDP-glucose 

pyrophosphorylase; Short=UDPGP; Short=UGPase 

174  gi|61657604  dehydrin [Triticum durum] 

175  gi|6175480  RecName: Full=Xylose isomerase 

176  gi|6850878  ribosomal protein S27 [Arabidopsis thaliana] 

177  gi|68655500  methionine synthase 2 enzyme [Hordeum vulgare subsp. 

vulgare] 

178  gi|6911551  heat shock protein 70 [Cucumis sativus] 

179  gi|7208784  60S ribosomal protein L6 [Cicer arietinum] 

180  gi|728594  glycine rich protein, RNA binding protein [Hordeum 

vulgare subsp. vulgare] 

181  gi|73912433  aspartic proteinase [Triticum aestivum] 

182  gi|74048999  eukaryotic translation initiation factor 5A1 [Triticum 

aestivum] 

183  gi|7407154  human tumor protein-like protein [Hordeum vulgare] 

184  gi|75279910  RecName: Full=Serpin-Z1B; AltName: Full=TriaeZ1b; 

AltName: Full=WSZ1b; AltName: Full=WZS2 

185  gi|7594641  Early-methionine-labeled polypeptide [Secale cereale] 

186  gi|7620561  F1 ATPase alpha subunit [Gnetum ula] 

187  gi|77554944  Bifunctional aminoacyl-tRNA synthetase, putative, 

expressed [Oryza sativa Japonica Group] 

188  gi|8918502  glucose-6-phosphate dehydrogenase [Triticum aestivum] 

189  gi|8980491  thioredoxin h [Triticum aestivum] 

190  gi|242037055  hypothetical protein SORBIDRAFT_01g048270 [Sorghum 

bicolor] 

191  gi|226528260  uncharacterized protein LOC100273170 [Zea mays] 

192  gi|242058321  hypothetical protein SORBIDRAFT_03g030950 [Sorghum 

bicolor] 

193  gi|242062930  hypothetical protein SORBIDRAFT_04g031810 [Sorghum 

bicolor] 

194  gi|242090681  hypothetical protein SORBIDRAFT_09g021660 [Sorghum 

bicolor] 

195  gi|2443757  cyclophilin [Arabidopsis thaliana] 
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196  gi|2511541  DNA-binding protein GBP16 [Oryza sativa Japonica 

Group] 

197  gi|253783729  glyceraldehyde-3-phosphate dehydrogenase [Triticum 

aestivum] 

198  gi|256708473  thioredoxin-dependent peroxidase [Leymus chinensis] 

199  gi|27461579  ATPase F1 alpha subunit, partial (mitochondrion) 

[Ecdeiocolea monostachya] 

200  gi|28172907  cytosolic 3-phosphoglycerate kinase [Aegilops tauschii 

subsp. tauschii] 

201  gi|28192421  dehydroascorbate reductase [Triticum aestivum] 

202  gi|294462212  unknown [Picea sitchensis] 

203  gi|224966968  glyceraldehyde-3-phosphate dehydrogenase [Ipomoea nil] 

204  gi|195658029  lipoprotein [Zea mays] 

205  gi|20067417  glutathione transferase [Triticum aestivum] 

206  gi|20467367  ATPase beta subunit [Ephedra viridis] 

207  gi|218184502  hypothetical protein OsI_33537 [Oryza sativa Indica 

Group] 

208  gi|224059642  predicted protein [Populus trichocarpa] 

209  gi|224098390  predicted protein [Populus trichocarpa] 

210  gi|22607  14-3-3 protein homologue [Hordeum vulgare subsp. 

vulgare] 

211  gi|226316439  fructose-bisphosphate aldolase [Secale cereale] 

212  gi|226316441  fructose-bisphosphate aldolase [Triticum aestivum] 

213  gi|226495599  40S ribosomal protein SA [Zea mays] 

214  gi|226497596  LOC100281932 [Zea mays] 

215  gi|226499592  LOC100282460 [Zea mays] 

216  gi|115440881  Os01g0834500 [Oryza sativa Japonica Group] 

217  gi|115459800  Os04g0551800 [Oryza sativa Japonica Group] 

218  gi|115468394  Os06g0538000 [Oryza sativa Japonica Group] 

219  gi|118484047  unknown [Populus trichocarpa] 

220  gi|118484894  unknown [Populus trichocarpa] 

221  gi|122022  RecName: Full=Histone H2B.1 

222  gi|122044864  RecName: Full=Histone H2B.2 
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223  gi|129916  RecName: Full=Phosphoglycerate kinase, cytosolic 

224  gi|13925731  cyclophilin A-1 [Triticum aestivum] 

225  gi|14717940  ATP synthase beta subunit [Ardisia crenata] 

226  gi|148508784  glyceraldehyde-3-phosphate dehydrogenase [Triticum 

aestivum] 

227  gi|162457723  luminal-binding protein 2 precursor [Zea mays] 

228  gi|1498388  actin, partial [Zea mays] 

229  gi|168016452  predicted protein [Physcomitrella patens subsp. patens] 

230  gi|195622050  40S ribosomal protein SA [Zea mays] 

231  gi|195635409  histone H4 [Zea mays] 

232  gi|300808467  poly(ADP-ribose) polymerase [Hordeum vulgare subsp. 

vulgare] 

233  gi|301666340  translocase of inner membrane 17 [Triticum aestivum] 

234  gi|302595830  RecName: Full=Ubiquitin-40S ribosomal protein S27a; 

Contains: RecName: Full=Ubiquitin; Contains: RecName: 

Full=40S ribosomal protein S27a; Flags: Precursor 

235  gi|315113298  Chain K, Localization Of The Large Subunit Ribosomal 

Proteins Into A 5.5 A Cryo-Em Map Of Triticum Aestivum 

Translating 80s Ribosome 

236  gi|32401367  cyc07 [Triticum aestivum] 

237  gi|32478662  cytosolic glyceraldehyde-3-phosphate dehydrogenase 

[Triticum aestivum] 

238  gi|326487540  predicted protein [Hordeum vulgare subsp. vulgare] 

239  gi|326487628  predicted protein [Hordeum vulgare subsp. vulgare] 

240  gi|326488061  predicted protein [Hordeum vulgare subsp. vulgare] 

241  gi|326488131  predicted protein [Hordeum vulgare subsp. vulgare] 

242  gi|326488173  predicted protein [Hordeum vulgare subsp. vulgare] 

243  gi|326493636  predicted protein [Hordeum vulgare subsp. vulgare] 

244  gi|326493772  predicted protein [Hordeum vulgare subsp. vulgare] 

245  gi|326494674  predicted protein [Hordeum vulgare subsp. vulgare] 

246  gi|326497111  predicted protein [Hordeum vulgare subsp. vulgare] 

247  gi|326497219  predicted protein [Hordeum vulgare subsp. vulgare] 

248  gi|326497973  predicted protein [Hordeum vulgare subsp. vulgare] 

249  gi|326499075  predicted protein [Hordeum vulgare subsp. vulgare] 
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250  gi|326501362  predicted protein [Hordeum vulgare subsp. vulgare] 

251  gi|326501462  predicted protein [Hordeum vulgare subsp. vulgare] 

252  gi|326502266  predicted protein [Hordeum vulgare subsp. vulgare] 

253  gi|326510251  predicted protein [Hordeum vulgare subsp. vulgare] 

254  gi|326511289  predicted protein [Hordeum vulgare subsp. vulgare] 

255  gi|326511321  predicted protein [Hordeum vulgare subsp. vulgare] 

256  gi|326513840  predicted protein [Hordeum vulgare subsp. vulgare] 

257  gi|326513948  predicted protein [Hordeum vulgare subsp. vulgare] 

258  gi|326490934  predicted protein [Hordeum vulgare subsp. vulgare] 

259  gi|326491885  predicted protein [Hordeum vulgare subsp. vulgare] 

260  gi|326491897  predicted protein [Hordeum vulgare subsp. vulgare] 

261  gi|326519769  predicted protein [Hordeum vulgare subsp. vulgare] 

262  gi|326527541  predicted protein [Hordeum vulgare subsp. vulgare] 

263  gi|326529469  predicted protein [Hordeum vulgare subsp. vulgare] 

264  gi|326531902  predicted protein [Hordeum vulgare subsp. vulgare] 

265  gi|3309243  aconitase-iron regulated protein 1 [Citrus limon] 

266  gi|332713695  elongation factor 1-alpha [Deschampsia antarctica] 

267  gi|33318663  ATP synthase beta subunit [Dioon purpusii] 

268  gi|34538473  caleosin 1 [Hordeum vulgare] 

269  gi|34582341  RecName: Full=ATP synthase subunit beta, chloroplastic; 

AltName: Full=ATP synthase F1 sector subunit beta; 

AltName: Full=F-ATPase subunit beta 

270  gi|357110922  PREDICTED: 60S ribosomal protein L9-like 

[Brachypodium distachyon] 

271  gi|357111367  PREDICTED: 60S ribosomal protein L4-1-like 

[Brachypodium distachyon] 

272  gi|357113738  PREDICTED: 40S ribosomal protein SA-like 

[Brachypodium distachyon] 

273  gi|357121199  PREDICTED: UDP-arabinopyranose mutase 1-like 

[Brachypodium distachyon] 

274  gi|357124822  PREDICTED: 40S ribosomal protein S2-4-like 

[Brachypodium distachyon] 

275  gi|357125156  PREDICTED: 60S ribosomal protein L7-2-like isoform 1 

[Brachypodium distachyon] 



114 

 

 

1
1
4
 

276  gi|357126908  PREDICTED: 40S ribosomal protein S10-like 

[Brachypodium distachyon] 

277  gi|357134623  PREDICTED: 40S ribosomal protein S4-like 

[Brachypodium distachyon] 

278  gi|357134729  PREDICTED: glucose and ribitol dehydrogenase homolog 

[Brachypodium distachyon] 

279  gi|357140576  PREDICTED: 60S ribosomal protein L6-like 

[Brachypodium distachyon] 

280  gi|357160854  PREDICTED: heat shock cognate 70 kDa protein 2-like 

[Brachypodium distachyon] 

281  gi|363814563  uncharacterized protein LOC100778713 [Glycine max] 

282  gi|37780996  putative 40S ribosomal protein S5, partial [Vitis vinifera] 

283  gi|380697316  GAPDH, partial [Oncidium hybrid cultivar] 

284  gi|399414  RecName: Full=Elongation factor 1-alpha; Short=EF-1-

alpha 

285  gi|4158232  reversibly glycosylated polypeptide [Triticum aestivum] 

286  gi|417745  RecName: Full=Adenosylhomocysteinase; 

Short=AdoHcyase; AltName: Full=S-adenosyl-L-

homocysteine hydrolase 

287  gi|449450860  PREDICTED: elongation factor 2-like [Cucumis sativus] 

288  gi|51038130  putative embryo-specific protein Ose731 [Oryza sativa 

Japonica Group] 

289  gi|525291  ATP synthase beta subunit [Triticum aestivum] 

290  gi|585783  RecName: Full=GTP-binding nuclear protein Ran/TC4 

291  gi|6017812  ATP synthase beta subunit [Myrothamnus flabellifolia] 

292  gi|6682246  putative 40S ribosomal protein S23 [Arabidopsis thaliana] 

293  gi|48716271  putative fibrillarin [Oryza sativa Japonica Group] 

294  gi|49328013  putative 60S ribosomal protein L37a [Oryza sativa Japonica 

Group] 

295  gi|49343245  cytosolic malate dehydrogenase [Triticum aestivum] 

296  gi|50058579  F1-ATPase alpha subunit [Iseia luxurians] 

297  gi|68655466  putative S-adenosylhomocystein hydrolase 2 [Hordeum 

vulgare subsp. vulgare] 

298  gi|7431022  glucose and ribitol dehydrogenase homolog - barley 
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299  gi|75336483  RecName: Full=ATP synthase subunit beta, chloroplastic; 

AltName: Full=ATP synthase F1 sector subunit beta; 

AltName: Full=F-ATPase subunit beta 

300  gi|7708452  ATP synthase beta subunit [Irvingia malayana] 

301  gi|81176509  atp1 [Triticum aestivum] 

302  gi|944842  ATP/ADP carrier protein [Triticum turgidum] 

303  gi|94502565  ATPase subunit 1 [Zea mays subsp. mays] 

304  gi|108708022  Cupin family protein, expressed [Oryza sativa Japonica 

Group] 

305  gi|89280711  ATP synthase F0 subunit 1 [Oryza sativa Indica Group] 

306  gi|110270498  heat shock protein 90 [Triticum aestivum] 
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Appendix 2. Proteins identified as DEPs (showing relative expression and functional categorization) 

GI # Uniprot ID Protein Name 
Protein abundance ratio 

B/A C/A D/A F/E G/E H/E E/A F/B G/C H/D 

1. Stress induced proteins (17)  

 gi|326495158 F2CS54  predicted protein [Hordeum vulgare subsp. vulgare] 1.359 1.362 1.525 0.862 0.918 0.524 1.595 0.986 1.077 0.559 

 gi|6911551 Q9M4E7  heat shock protein 70 [Cucumis sativus] 0.825 0.635 0.762 1.056 1.04 1.036 0.728 0.908 1.195 1.011 

 gi|357449963 G7IQ96  Heat shock protein [Medicago truncatula] 0.89 0.603 0.738 0.889 0.999 0.868 0.799 0.778 1.326 0.96 

 gi|544242 P36183 

 RecName: Full=Endoplasmin homolog; AltName: 

Full=Glucose-regulated protein 94 homolog; 

Short=GRP-94 homolog; Flags: Precursor 0.865 1.905 0.748 1.208 1.123 1.595 0.775 1.055 0.458 1.687 

 gi|226533868 C3V133  heat shock protein 70 [Triticum aestivum] 1.124 0.88 1.207 1.056 0.824 0.623 1.663 1.522 1.56 0.875 

 gi|10799810 F2DAA1 

 cold-regulated protein [Hordeum vulgare subsp. 

vulgare] 1.298 1.084 0.996 2.442 1.328 1.07 1.034 1.894 1.268 1.133 

 gi|26017213 Q8H0B8  cold regulated protein [Triticum aestivum] 0.628 1.906 1.263 0.795 0.929 0.725 1.132 1.396 0.552 0.663 

 gi|284518928 D3K1B4 

 ozone-responsive stress-related protein [Triticum 

aestivum] 0.925 0.989 0.811 0.628 1.346 1.036 0.874 0.578 1.192 1.14 

 gi|326513238 F2EHN7  predicted protein [Hordeum vulgare subsp. vulgare] 0.825 1.274 1.122 0.413 0.209 0.597 1.482 0.724 0.244 0.805 

 gi|300087069 D9IFB7  aldehyde dehydrogenase 7b [Triticum aestivum] 1.126 0.764 1.805 0.95 1.67 1.994 0.891 0.733 1.951 1.005 

 gi|147805491 A5B2N0  hypothetical protein VITISV_020895 [Vitis vinifera] 0.964 1.18 1.156 1.06 0.662 0.983 1.022 1.094 0.574 0.887 

 gi|2454602 O22462  Barperm1 [Hordeum vulgare subsp. vulgare] 2.333 0.594 1.368 0.253 0.734 0.311 1.746 0.184 2.16 0.405 

 gi|326526545 F2DQB8  predicted protein [Hordeum vulgare subsp. vulgare] 2.29 4.358 1.898 0.606 0.547 0.727 4.241 1.093 0.532 1.656 

 gi|119316 P17639  RecName: Full=EMB-1 protein 0.914 1.238 1.018 0.381 0.392 0.536 1.212 0.492 0.384 0.651 

 gi|326532234 F2ECH4  predicted protein [Hordeum vulgare subsp. vulgare] 1.929 1.691 2.001 0.583 0.391 0.399 2.245 0.661 0.52 0.457 

 gi|7594641 Q9LD94  Early-methionine-labelled polypeptide [Secale cereale] 0.912 1.505 0.906 0.174 0.157 0.548 2.052 0.382 1 1.267 

 gi|61657604 Q5CAQ2  dehydrin [Triticum durum] 0.748 1.093 0.776 0.483 0.255 0.976 1.255 0.79 0.293 1.61 

2. Redox regulation (17) 
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 gi|167113 Q39284  aldose reductase-related protein [Bromus inermis] 1.014 0.902 1.049 1.031 0.654 1.05 1.206 1.194 0.87 1.271 

 gi|113595 P23901 
 RecName: Full=Aldose reductase; Short=AR; AltName: 
Full=Aldehyde reductase 0.914 0.805 0.913 0.97 0.645 1.024 1.066 1.102 0.856 1.221 

 gi|8980491 Q9LDX4  thioredoxin h [Triticum aestivum] 1.198 0.515 0.589 2.838 1.746 1.122 0.543 1.254 1.846 1.056 

 gi|12247762 Q9AXH7  1-Cys peroxiredoxin [Triticum durum] 1.105 1.044 0.914 0.757 0.809 0.847 0.889 0.593 0.689 0.841 

 gi|190684059 D0PRB4  peroxiredoxin [Triticum aestivum] 1.105 1.044 0.914 0.757 0.809 0.847 0.889 0.593 0.689 0.841 

 gi|357130051 I1HE64 

 PREDICTED: peroxidase 12-like [Brachypodium 

distachyon] 1.046 1.016 0.874 0.753 0.633 0.809 0.847 0.593 0.528 0.799 

 gi|326515336 F2E8A9  predicted protein [Hordeum vulgare subsp. vulgare] 1.357 1.21 0.914 0.608 0.54 0.656 1.085 0.473 0.484 0.794 

 gi|326521510 F2DZ09  predicted protein [Hordeum vulgare subsp. vulgare] 0.822 1.158 1.003 1.095 1.09 0.815 0.694 0.918 0.667 0.587 

 gi|167081 Q40069  peroxidase BP 1 [Hordeum vulgare] 0.952 0.967 0.896 0.845 0.678 0.877 0.776 0.671 0.546 0.776 

 gi|242072750 C5YEU0 
 hypothetical protein SORBIDRAFT_06g013980 
[Sorghum bicolor] 2.18 0.788 2.039 0.755 0.372 0.751 2.561 0.864 1.21 0.963 

 gi|326489533 F2E325  predicted protein [Hordeum vulgare subsp. vulgare] 0.763 1.107 0.905 1.213 0.989 0.974 1.062 1.644 0.949 1.166 

 gi|16580747 Q948T6  glyoxalase I [Oryza sativa Japonica Group] 0.974 1.573 1.482 1.288 0.871 1.434 1.184 1.524 0.657 1.169 

 gi|326493416 F2CQP8  predicted protein [Hordeum vulgare subsp. vulgare] 0.512 0.709 0.947 0.991 0.757 0.891 0.822 1.551 0.879 0.789 

 gi|326520285 F2EJ79  predicted protein [Hordeum vulgare subsp. vulgare] 1.133 3.094 4.01 1.068 0.599 1.709 2.32 2.129 0.45 1.009 

 gi|326506996 F2DKF4  predicted protein [Hordeum vulgare subsp. vulgare] 2.344 2.105 3.779 1.789 1.076 2.248 2.549 1.896 1.305 1.547 

 gi|18479038 Q8VWW3 
 glutathione transferase [Hordeum vulgare subsp. 
vulgare] 1.449 1.204 1.246 0.718 1.294 0.851 1.267 0.612 1.364 0.882 

 gi|20067415 Q8RW04  glutathione transferase [Triticum aestivum] 1.275 0.596 0.912 0.786 0.821 0.808 1.107 0.664 1.528 1.001 

3. Inhibhitors (5) 

 gi|75279910 P93693 

 RecName: Full=Serpin-Z1B; AltName: Full=TriaeZ1b; 

AltName: Full=WSZ1b; AltName: Full=WZS2 0.905 2.288 1.834 2.958 4.889 8.345 0.328 1.046 0.703 1.525 

 gi|2130114   trypsin inhibitor CMx precursor - wheat 1.446 0.824 2.389 1.791 1.806 4.5 0.276 0.333 0.605 0.53 

 gi|147641186 P84964  RecName: Full=Defensin Tm-AMP-D1.2 1.003 0.682 0.373 0.804 0.632 0.951 0.564 0.441 0.523 1.467 

 gi|326489278 F2DB00  predicted protein [Hordeum vulgare subsp. vulgare] 1.046 1.006 0.974 1.202 1.831 1.211 0.919 1.029 1.675 1.165 
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 gi|357112336  

 PREDICTED: vicilin-like antimicrobial peptides 2-2-

like [Brachypodium distachyon] 0.768 0.665 0.781 1.231 0.844 1.379 0.837 1.307 1.064 1.509 

4. Carbohydrate metabolism (25) 

A. Sugar/Starch Metabolism  (10) 

 gi|100620   sucrose synthase (EC 2.4.1.13) - barley (fragment) 0.866 1.24 1.116 1.166 1.71 0.999 1.04 1.364 1.435 0.95 

 gi|357121590 I1GRF8 

 PREDICTED: 4-alpha-glucanotransferase DPE2-like 

[Brachypodium distachyon] 1.699 1.628 1.61 0.627 0.38 0.824 2.308 0.83 0.539 1.206 

 gi|3915037 O24301 
 RecName: Full=Sucrose synthase 2; AltName: 
Full=Sucrose-UDP glucosyltransferase 2 1.257 1.195 0.876 0.968 0.738 1.066 1.217 0.913 0.752 1.512 

 gi|401138 P31922 

 RecName: Full=Sucrose synthase 1; AltName: 

Full=Sucrose-UDP glucosyltransferase 1 0.83 1.148 1.053 1.162 1.646 1.032 0.998 1.361 1.433 0.998 

 gi|6175480 Q40082  RecName: Full=Xylose isomerase 2.08 2.155 1.847 0.964 1.452 0.865 1.511 0.682 1.019 0.722 

 gi|169777 Q42989  beta-amylase [Oryza sativa Japonica Group] 1.764 1.236 2.032 0.753 1.263 4.216 0.495 0.206 0.506 1.047 

 gi|464145 P16098  beta-amylase [Hordeum vulgare subsp. vulgare] 1.62 1.879 1.702 1.264 0.62 3.692 0.545 0.414 0.18 1.206 

 gi|8918502 Q9LRJ1  glucose-6-phosphate dehydrogenase [Triticum aestivum] 0.79 0.06 0.54 1.37 3.04 0.53 0.51 0.86 25.05 0.52 

 gi|295841344 D5MTD9 

 benzoxazinone:UDP-Glc glucosyltransferase [Triticum 

aestivum] 0.998 0.481 0.718 0.552 1.154 0.309 1.413 0.762 3.396 0.62 

 gi|6136111 Q43772 

 RecName: Full=UTP--glucose-1-phosphate 
uridylyltransferase; AltName: Full=UDP-glucose 

pyrophosphorylase; Short=UDPGP; Short=UGPase 3.893 5.089 5.72 0.311 1.561 0.87 7.844 0.61 2.41 1.217 

B. Glycolysis (7) 

 gi|11124572 Q9FS79  triosephosphat-isomerase [Triticum aestivum] 0.892 0.806 0.884 0.617 1.431 1.009 0.804 0.542 1.429 0.936 

 gi|18076790 Q8VX48  phosphoglucomutase [Triticum aestivum] 1.451 1.618 0.715 0.938 0.863 0.485 2.432 1.532 1.299 1.682 

 gi|242092600 C5Z7K8 

 hypothetical protein SORBIDRAFT_10g008820 

[Sorghum bicolor] 1.053 0.735 0.431 0.909 0.781 0.743 1.116 0.938 1.188 1.963 

 gi|291061974 D4P3E7 

 putative pyruvate dehydrogenase E1 component alpha 

subunit [Triticum aestivum] 0.883 0.833 1.08 1.864 5.176 1.546 0.617 1.269 3.838 0.902 

 gi|326495152 F2CS51  predicted protein [Hordeum vulgare subsp. vulgare] 0.702 1.313 0.625 0.948 1.353 1.697 0.908 1.194 0.936 2.515 

 gi|4586602 Q9SXU6  pyruvate kinase [Cicer arietinum] 1.643 3.349 1.546 0.819 1.173 1.653 1.679 0.815 0.589 1.832 

 gi|255544189 B9RGK5  pyruvate kinase, putative [Ricinus communis] 0.702 1.313 0.625 0.948 1.353 1.697 0.908 1.194 0.936 2.515 
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C. Fermentation (1) 

 gi|119388709 A9U8F7 
 alcohol dehydrogenase ADH1 [Triticum monococcum 
subsp. aegilopoides] 0.702 0.9 1.052 1.074 0.767 1.099 1.032 1.538 0.88 1.1 

D. TCA Cycle (7) 

 gi|145356472 A4SAL7  predicted protein [Ostreococcus lucimarinus CCE9901] 2.375 2.753 1.434 1.508 0.66 0.491 2.28 1.409 0.547 0.796 

 gi|15240075 O82663 
 succinate dehydrogenase [ubiquinone] flavoprotein 
subunit 1 [Arabidopsis thaliana] 2.375 2.753 1.434 1.508 0.66 0.491 2.28 1.409 0.547 0.796 

 gi|15225353 O82662 

 Succinyl-CoA ligase [GDP-forming] subunit beta 

[Arabidopsis thaliana] 0.542 1.133 0.479 1.215 1.255 0.95 1.024 2.237 1.136 2.075 

 gi|326493350 F2CQL5  predicted protein [Hordeum vulgare subsp. vulgare] 1.523 1.155 1.806 1.396 2.262 1.286 1.443 1.288 2.829 1.048 

 gi|326523589 F2DCZ4  predicted protein [Hordeum vulgare subsp. vulgare] 0.925 0.839 0.786 0.999 1.315 0.499 0.992 1.043 1.556 0.643 

 gi|15230764 Q9C522  ATP-citrate lyase B-1 [Arabidopsis thaliana] 1.009 0.591 1.191 1.091 2.118 1.721 0.698 0.736 2.508 1.03 

 gi|326493440 F2CQR0  predicted protein [Hordeum vulgare subsp. vulgare] 1.53 1.117 0.817 1.045 0.849 0.926 1.29 0.857 0.982 1.492 

5. Lipid Metabolism (5) 

 gi|239923157 C6K7G3  lipoxygenase 2 [Triticum aestivum] 0.879 0.888 0.928 1.061 1.603 0.728 1.034 1.216 1.87 0.829 

 gi|2506825 P29114 
 RecName: Full=Linoleate 9S-lipoxygenase 1; AltName: 
Full=Lipoxygenase 1 0.746 0.862 0.919 0.967 1.287 1.222 1.478 1.866 2.208 2.005 

 gi|326509875 F2CWD2  predicted protein [Hordeum vulgare subsp. vulgare] 0.885 0.966 1.117 0.658 0.667 0.513 1.73 1.254 1.196 0.81 

 gi|357119715 I1GPU2 

 PREDICTED: uncharacterized protein LOC100832830 

[Brachypodium distachyon] 1.057 1.449 1.173 1.192 0.923 1.002 1.555 1.709 0.992 1.357 

 gi|225216858 Q401N7  aspartic proteinase [Triticum aestivum] 0.677 0.783 0.689 0.695 0.607 0.863 0.744 0.743 0.577 0.95 

6. Nitrogen Metabolism (13) 

 gi|164471780 B0FRH4  aspartate aminotransferase [Triticum aestivum] 2.21 1.198 1.688 1.009 0.768 1.18 2.169 0.965 1.392 1.547 

 gi|357112720 I1H6K4 

 PREDICTED: asparagine synthetase [glutamine-

hydrolyzing]-like [Brachypodium distachyon] 0.288 1.042 1.04 2.894 3.095 2.628 0.173 1.688 0.514 0.445 

 gi|37703720 Q10MQ2 

 putative aminotransferase AGD2 [Oryza sativa Japonica 

Group] 0.316 0.773 0.994 1.318 0.609 1.046 0.512 2.079 0.403 0.549 

 gi|55832255 Q5EXM3  putative glutamate decarboxylase [Hordeum vulgare] 1.387 0.769 0.716 0.624 1.328 1.642 1.029 0.451 1.778 2.409 
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 gi|115589736 A6XMY5 

 serine hydroxymethyltransferase [Triticum 

monococcum] 1.144 1.227 1.24 2.113 1.63 2.307 0.941 1.694 1.252 1.787 

 gi|125577046 A3CB05 
 hypothetical protein OsJ_33805 [Oryza sativa Japonica 
Group] 0.628 0.669 0.343 2.099 1.867 1.516 0.328 1.067 0.917 1.479 

 gi|357119807 I1GPV3 

 PREDICTED: 5-methyltetrahydropteroyltriglutamate--

homocysteine methyltransferase-like [Brachypodium 
distachyon] 0.9 0.862 1.112 1.169 2.027 1.054 0.985 1.221 2.317 0.971 

 gi|357155679  

 PREDICTED: 5-methyltetrahydropteroyltriglutamate--

homocysteine methyltransferase-like [Brachypodium 

distachyon] 0.895 0.864 1.112 1.169 1.99 1.069 0.976 1.202 2.25 0.996 

 gi|50897038 Q6BCT3  methionine synthase [Hordeum vulgare subsp. vulgare] 0.894 0.88 1.07 1.114 1.967 1.024 1.005 1.22 2.251 0.951 

 gi|68655500 F2DLU9 

 methionine synthase 2 enzyme [Hordeum vulgare subsp. 

vulgare] 0.905 0.89 1.112 1.169 2.02 1.028 1.022 1.241 2.322 0.933 

 gi|226503517 B6SNG5  6,7-dimethyl-8-ribityllumazine synthase [Zea mays] 0.488 0.687 0.467 0.964 1.189 1.062 0.451 0.866 0.781 1.045 

 gi|326489031 F2E2C7  predicted protein [Hordeum vulgare subsp. vulgare] 1.24 1.025 0.723 1.075 0.786 1.286 0.565 0.477 0.434 1.026 

 gi|255538610 B9R7S7 

 deoxyuridine 5'-triphosphate nucleotidohydrolase, 

putative [Ricinus communis] 1.059 1.039 0.784 1.091 1.197 0.733 0.132 0.132 0.152 0.126 

7. Storage Proteins (9) 

 gi|167004 Q03678  embryo globulin [Hordeum vulgare subsp. vulgare] 1.145 1.095 1.121 1.009 0.617 1.085 0.866 0.743 0.488 0.856 

 gi|215398468 B7U6L3  globulin 3C [Triticum aestivum] 1.142 1.19 1.149 1.02 0.69 1.16 0.92 0.8 0.58 0.95 

 gi|215398472 B7U6L5  globulin 3B [Triticum aestivum] 1.139 1.195 1.152 1.03 0.635 1.193 1.183 1.042 0.629 1.252 

 gi|390979705 I6QQ39  globulin-3A [Triticum aestivum] 1.099 1.144 1.133 1.042 0.641 1.172 0.858 0.789 0.478 0.905 

 gi|242041881 C5WUN6 
 hypothetical protein SORBIDRAFT_01g043980 
[Sorghum bicolor] 1.148 0.673 0.799 1.075 0.917 0.788 0.715 0.652 0.976 0.72 

 gi|310656772 I3NM41  putative oleosin [Triticum aestivum] 1.167 1.478 2.564 1.421 1.095 1.675 0.903 1.04 0.67 0.594 

 gi|607198 Q43657 

 15kDa grain softness protein, partial [Triticum 

aestivum] 1.966 1.107 1.553 1.109 0.69 1.694 0.7 0.384 0.437 0.779 

 gi|607202 Q43659  15kDa grain softness protein [Triticum aestivum] 1.966 1.107 1.553 1.109 0.69 1.694 0.7 0.384 0.437 0.779 

 gi|326529599 F2EBM4  predicted protein [Hordeum vulgare subsp. vulgare] 1.883 1.322 1.604 0.809 0.588 1.565 1.197 0.501 0.533 1.192 

8. ATP synthesis (4) 
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 gi|186886337 B2LHU2  ATPase F1 alpha subunit [Patosia clandestina] 0.971 1.37 1.363 1.123 1.023 0.981 1.415 1.595 1.058 1.039 

 gi|195648210 B6U2J0 
 NADH-ubiquinone oxidoreductase 75 kDa subunit [Zea 
mays] 1.824 1.458 2.153 0.783 0.982 0.229 3.894 1.627 2.626 0.423 

 gi|295311633 D5I3B4  ATPase subunit 1 [Citrullus lanatus] 0.85 0.99 1.09 1.16 1.02 1.03 1.16 1.54 1.19 1.04 

 gi|7620561 Q9MM39  F1 ATPase alpha subunit [Gnetum ula] 0.971 1.37 1.363 1.123 1.023 0.981 1.415 1.595 1.058 1.039 

9. Transporter proteins (9) 

 gi|357133773 I1HJM2 
 PREDICTED: cytochrome b-c1 complex subunit 9-like 
[Brachypodium distachyon] 0.901 0.604 0.565 1.591 1.026 1.062 0.793 1.363 1.347 1.521 

 gi|357497049 G7KN99  Cytochrome c1 heme protein [Medicago truncatula] 0.589 0.972 0.79 0.904 1.005 0.831 1.023 1.529 1.059 1.097 

 gi|116788110 A9NVU9  unknown [Picea sitchensis] 0.613 0.847 1.588 1.354 2.001 1.861 0.796 1.713 1.885 0.952 

 gi|296085461 D7TFC0  unnamed protein product [Vitis vinifera] 1.325 0.449 1.152 1.119 0.85 1.118 0.964 0.793 1.829 0.955 

 gi|326508588 F2DL45  predicted protein [Hordeum vulgare subsp. vulgare] 1.39 0.755 1.156 0.848 1.578 1.486 1.155 0.686 2.417 1.515 

 gi|520936 D2KZ38 
 gamma-TIP-like protein [Hordeum vulgare subsp. 
vulgare] 0.641 0.943 0.694 0.963 2.452 0.993 0.659 0.966 1.717 0.963 

 gi|326509813 F2CWA1  predicted protein [Hordeum vulgare subsp. vulgare] 1.224 1.269 1.362 1.718 1.244 1.337 1.193 1.631 1.171 1.195 

 gi|326510121 F2CWQ6  predicted protein [Hordeum vulgare subsp. vulgare] 0.398 0.922 0.438 1.212 2.224 1.275 0.549 1.628 1.325 1.629 

 gi|388496264 I3S7F6  unknown [Lotus japonicus] 0.589 0.972 0.79 0.904 1.005 0.831 1.023 1.529 1.059 1.097 

10. Cytoskeleton (5) 

 gi|135398 P14640 

 RecName: Full=Tubulin alpha-1 chain; AltName: 

Full=Alpha-1-tubulin 1.597 1.151 1.74 0.879 1.685 0.974 1.336 0.843 1.957 0.763 

 gi|1709779 P52184  RecName: Full=Profilin-1 1.228 1.468 3.28 1.43 1.473 1.022 1.7 1.929 1.708 0.541 

 gi|5668671 Q9STC9  Beta-tubulin [Zinnia elegans] 1.855 1.682 1.469 1.006 1.704 0.747 1.831 0.967 1.857 0.95 

 gi|7407154 Q9M5G3  human tumor protein-like protein [Hordeum vulgare] 1.124 0.934 1.062 0.947 1.297 0.887 1.094 0.897 1.521 0.932 

 gi|20140865  

 RecName: Full=Translationally-controlled tumor 

protein homolog; Short=TCTP; AltName: Full=HTP 1.124 0.934 1.062 0.947 1.297 0.887 1.094 0.897 1.521 0.932 

11. Nucleic acid binding (12) 

 gi|162464317 Q2MJJ9  putative RH2 protein [Zea mays] 1.05 1.78 0.97 1.07 1.28 1.43 1.21 1.20 0.87 0.98 

 gi|326505912 F2D7X4  predicted protein [Hordeum vulgare subsp. vulgare] 0.97 1.61 1.25 1.18 0.65 0.91 1.44 1.71 0.58 0.83 
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 gi|356533344 I1L934  PREDICTED: histone H4-like [Glycine max] 1.75 1.18 1.49 1.21 1.31 1.12 1.08 0.72 1.20 1.81 

 gi|168035593 A9SV98  predicted protein [Physcomitrella patens subsp. patens] --- --- --- 0.22 1.27 --- --- 0.21 1.51 0.92 

 gi|326510613 F2CXF2  predicted protein [Hordeum vulgare subsp. vulgare] 1.15 0.72 0.89 0.93 0.62 1.29 0.62 0.49 0.54 0.68 

 gi|326517334 F2DY62  predicted protein [Hordeum vulgare subsp. vulgare] 0.32 0.49 0.52 1.76 1.24 1.12 0.31 1.67 0.79 1.43 

 gi|728594 Q40052 

 glycine rich protein, RNA binding protein [Hordeum 

vulgare subsp. vulgare] 1.50 1.30 1.52 0.97 1.80 1.49 1.44 0.91 2.00 1.00 

 gi|15219078 Q9C944  histone H2A protein 9 [Arabidopsis thaliana] 0.693 1.414 1.997 0.583 0.693 1.233 1.597 1.309 0.783 1.006 

 gi|115435412 Q5NAF6  Os01g0226400 [Oryza sativa Japonica Group] 0.636 0.769 0.844 0.707 0.541 0.814 0.899 0.973 0.633 0.884 

 gi|307108094 E1ZD10 
 hypothetical protein CHLNCDRAFT_144796 [Chlorella 
variabilis] 0.6 1.01 1.438 1.006 0.635 1.17 1.373 2.244 0.865 1.14 

 gi|115447473 B4FKM1 

 guanine nucleotide-binding protein beta subunit-like 

protein [Zea mays] 0.79 0.79 0.87 1.01 1.60 1.11 0.76 0.95 1.54 0.63 

 gi|326495978 F2D690  predicted protein [Hordeum vulgare subsp. vulgare] 0.487 0.412 0.481 1.688 1.73 1.394 0.439 1.481 1.846 1.298 

12. Protein Biosynthesis/Degradation (45) 

A. Ribosomal protein (29) 

 gi|77554944 Q2QS12 
 Bifunctional aminoacyl-tRNA synthetase, putative, 
expressed [Oryza sativa Japonica Group] 1.063 1.357 0.9 1.282 3.098 2.87 0.549 0.645 1.254 1.787 

 gi|10799832 Q9FSF6  ribosomal protein L11-like [Nicotiana tabacum] 1.052 0.904 0.852 1.296 1.359 0.903 0.632 0.758 0.951 0.684 

 gi|115453877 Q75G91  Os03g0577000 [Oryza sativa Japonica Group] 1.308 0.743 1.097 0.538 1.121 1.223 1.056 0.423 1.595 1.202 

 gi|149390973 A6MZT4  60S ribosomal protein l3 [Oryza sativa Indica Group] 0.695 1.245 0.523 1.493 1.124 2.32 0.512 1.072 0.463 2.317 

 gi|195637330 B6TM00  60 ribosomal protein L14 [Zea mays] 1.366 2.935 2.904 0.836 0.71 1.045 2.007 1.197 0.486 0.737 

 gi|195658145 B6UGQ7  60S ribosomal protein L23 [Zea mays] 0.908 0.746 0.695 1.137 0.955 1.82 0.609 0.743 0.781 1.628 

 gi|20139964 Q9ZNS1  RecName: Full=40S ribosomal protein S7 1.074 0.908 0.776 1.047 0.77 1.13 1.033 0.981 0.877 1.536 

 gi|218202406 B8BDC7 

 hypothetical protein OsI_31924 [Oryza sativa Indica 

Group] 0.726 1.656 2.221 0.759 0.757 0.817 2.43 2.473 1.112 0.913 

 gi|32400861 Q7X9K6  40S ribosomal protein, partial [Triticum aestivum] 0.48 0.698 0.795 3.169 0.338 1.019 0.477 3.069 0.232 0.624 

 gi|32400871 Q7X9K1  ribosomal Pr 117, partial [Triticum aestivum] 0.908 0.746 0.695 1.137 0.955 1.82 0.609 0.743 0.781 1.628 

 gi|326492474 F2E3U8  predicted protein [Hordeum vulgare subsp. vulgare] 1.158 0.853 1.306 1.017 1.125 0.986 1.323 1.133 1.746 1.02 
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 gi|326496415 F2D0U3  predicted protein [Hordeum vulgare subsp. vulgare] 0.95 0.77 0.897 2.3 2.863 2.031 0.489 1.153 1.821 1.129 

 gi|326524658 F2EA93  predicted protein [Hordeum vulgare subsp. vulgare] 0.96 1.156 0.893 1.152 1.551 1.659 0.806 0.942 1.082 1.527 

 gi|326531070 F2EC14  predicted protein [Hordeum vulgare subsp. vulgare] 1.169 2.949 1.884 0.675 0.493 0.858 2.338 1.316 0.392 1.086 

 gi|34105768 Q6V959  ribosomal protein L3 [Triticum aestivum] 0.689 1.21 0.783 1.191 1.326 1.843 0.68 1.146 0.746 1.633 

 gi|357112267 I1H5K3 

 PREDICTED: 40S ribosomal protein S21-like 

[Brachypodium distachyon] 3.102 2.009 1.921 0.517 0.619 0.651 1.553 0.252 0.479 0.537 

 gi|357138252 I1IFL2 

 PREDICTED: 60S ribosomal protein L35a-3-like 

isoform 1 [Brachypodium distachyon] 1.591 1.437 2.229 0.937 0.651 1.362 1.293 0.742 0.587 0.806 

 gi|357164666 I1IZM4 
 PREDICTED: 60S ribosomal protein L14-1-like 
[Brachypodium distachyon] 1.345 2.722 2.728 0.765 1.142 0.965 2.213 1.227 0.929 0.799 

 gi|464630 Q05462  RecName: Full=60S ribosomal protein L27 1.369 2.967 2.93 0.848 0.637 1.058 1.975 1.192 0.424 0.728 

 gi|6850878 Q9M2F1  ribosomal protein S27 [Arabidopsis thaliana] 0.647 0.886 0.896 1.01 1.165 1.321 0.703 1.068 0.926 1.057 

 gi|7208784 Q9M3Z0  60S ribosomal protein L6 [Cicer arietinum] 0.853 0.822 0.516 0.8 1.019 1.069 0.792 0.723 0.983 1.676 

 gi|115436636 Q5ZCV4  Os01g0375000 [Oryza sativa Japonica Group] 1.587 1.249 0.615 0.809 1.11 0.999 0.983 0.488 0.874 1.63 

 gi|1710521 P50888  RecName: Full=60S ribosomal protein L24 0.604 0.843 0.778 0.968 1.099 0.996 0.74 1.154 0.965 0.967 

 gi|326494304 F2D1K5  predicted protein [Hordeum vulgare subsp. vulgare] 1.175 1.344 1.634 1.502 1.288 2.204 0.585 0.728 0.561 0.805 

 gi|326509707 F2CW48  predicted protein [Hordeum vulgare subsp. vulgare] 2.215 3.836 5.159 1.001 0.842 0.896 3.823 1.684 0.84 0.677 

 gi|388501178 I3SEG3  unknown [Lotus japonicus] 0.951 0.545 0.694 0.758 0.798 0.466 0.647 0.502 0.949 0.444 

 gi|50725631 Q69UI2 
 putative 40S RIBOSOMAL PROTEIN S13 [Oryza 
sativa Japonica Group] 0.493 0.57 0.705 0.71 0.838 1.125 0.75 1.051 1.105 1.221 

 gi|357113428 Q0WWR7  40S ribosomal protein S30 [Arabidopsis thaliana] 1.385 0.97 1.195 1.066 1.166 0.536 1.024 0.768 1.233 0.469 

 gi|226502949   60S ribosomal protein L5-1 [Zea mays] 1.005 0.645 0.776 1.331 0.75 1.175 0.673 0.868 0.783 1.04 

B. Initiation (6) 

 gi|115475824 Q32SG2  LOC732740 [Zea mays] 1.047 0.887 0.928 1.721 1.039 0.497 0.795 1.273 0.932 0.434 

 gi|326490684 A5ALZ4  hypothetical protein VITISV_006493 [Vitis vinifera] 2.72 1.52 2.37 0.67 1.46 1.10 2.06 0.49 1.99 --- 

 gi|15233565 Q3S4I1 

 eukaryotic translation initiation factor 5A1 [Triticum 

aestivum] 0.953 0.997 1.005 0.662 0.657 0.506 1.147 0.777 0.756 0.589 
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 gi|384248889 Q6YS69  Os08g0308100 [Oryza sativa Japonica Group] 2.053 2.556 2.419 0.439 0.72 0.641 3.656 0.762 1.032 0.988 

 gi|73912433 F2D4I8  predicted protein [Hordeum vulgare subsp. vulgare] 0.482 0.352 0.699 0.712 1.599 1.106 0.619 0.891 2.814 1 

 gi|2493650 F2DXB7  predicted protein [Hordeum vulgare subsp. vulgare] 1.218 1.069 0.649 0.766 0.928 0.644 1.099 0.673 0.955 1.114 

C. Protein folding and degradation (10) 

 gi|168052699 C0J9X5  26S protease regulatory subunit S10B [Oryza nivara] 0.888 0.934 0.83 0.992 1.03 1.137 1.109 1.206 1.224 1.55 

 gi|1709798 D3G8A3 
 26S protease regulatory subunit-like protein [Lolium 
perenne] 1.237 0.875 0.744 2.084 1.406 2.104 0.531 0.872 0.855 1.533 

 gi|1731990 I1H862 

 PREDICTED: probable mitochondrial-processing 

peptidase subunit beta-like [Brachypodium distachyon] 0.445 0.318 1.095 2.738 2.164 1.348 0.556 3.334 3.792 0.699 

 gi|283777738 Q43831 

 RecName: Full=RuBisCO large subunit-binding protein 

subunit beta, chloroplastic; AltName: Full=60 kDa 

chaperonin subunit beta; AltName: Full=CPN-60 beta 1.001 1.076 0.731 1.077 1.67 0.549 0.924 0.968 1.436 0.708 

 gi|219363167 I0YVF3 
 hypothetical protein COCSUDRAFT_37026 
[Coccomyxa subellipsoidea C-169] 0.926 0.962 1.072 1.175 0.529 1.298 0.866 1.072 0.477 1.07 

 gi|162463575 P54778 

 RecName: Full=26S protease regulatory subunit 6B 

homolog 0.843 0.532 0.669 0.806 0.698 1.162 0.715 0.667 0.94 1.268 

 gi|147809809 F2CT80 
 serine carboxypeptidase II, CP-MII [Hordeum vulgare 
subsp. vulgare] 0.619 0.403 0.861 1.402 1.198 1.876 0.514 1.135 1.53 1.143 

 gi|357148479 I1HXE7 

 PREDICTED: T-complex protein 1 subunit eta-like 

[Brachypodium distachyon] 1.126 0.762 0.742 0.843 1.161 1.374 1.191 0.868 1.818 2.25 

 gi|74048999 A9TJJ6 
 26S proteasome regulatory complex, ATPase RPT6 
[Physcomitrella patens subsp. patens] 1.584 1.797 1.576 0.776 0.87 0.641 2.111 1.008 1.023 0.876 

 gi|326514754 Q6H852  Os02g0634900 [Oryza sativa Japonica Group] 0.544 0.874 0.875 1.129 1.053 1.237 0.635 1.284 0.767 0.916 

13. Unknown (23) 

 gi|115474137 Q6Z4N6  Os07g0683900 [Oryza sativa Japonica Group] 0.838 0.5 0.738 1.114 0.714 0.94 0.878 1.137 1.253 1.14 

 gi|116310428 Q01IK5  H0305E08.6 [Oryza sativa Indica Group] 1.721 0.647 1.836 0.945 1.474 0.429 1.57 0.839 3.579 0.374 

 gi|15982879 Q93ZG8  AT4g39730/T19P19_120 [Arabidopsis thaliana] 0.896 1.567 1.379 0.915 0.525 0.891 0.932 0.928 0.313 0.615 

 gi|224029551 C0PF85  unknown [Zea mays] 0.686 0.981 0.592 1.746 1.495 1.255 0.625 1.55 0.954 1.353 

 gi|224055335   predicted protein [Populus trichocarpa] 0.734 1.161 1.003 1.311 1.857 1.133 0.681 1.186 1.091 0.785 

 gi|224133986   predicted protein [Populus trichocarpa] 0.773 1 0.769 1.029 1.141 0.998 1.224 1.587 1.399 1.621 
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 gi|315113249  

 Chain A, Localization Of The Large Subunit Ribosomal 

Proteins Into A 5.5 A Cryo-Em Map Of Triticum 
Aestivum Translating 80s Ribosome 0.413 0.915 0.703 1.377 1.319 1.489 0.652 2.118 0.94 1.41 

 gi|315113285  

 Chain k, Localization Of The Large Subunit Ribosomal 

Proteins Into A 5.5 A Cryo-Em Map Of Triticum 

Aestivum Translating 80s Ribosome 1.466 2.486 2.697 0.954 0.745 1.057 2.173 1.378 0.652 0.869 

 gi|315113286  

 Chain p, Localization Of The Large Subunit Ribosomal 

Proteins Into A 5.5 A Cryo-Em Map Of Triticum 

Aestivum Translating 80s Ribosome 0.758 0.833 0.652 2.603 3.663 1.02 0.559 1.87 2.46 0.893 

 gi|315113289  

 Chain t, Localization Of The Large Subunit Ribosomal 
Proteins Into A 5.5 A Cryo-Em Map Of Triticum 

Aestivum Translating 80s Ribosome 1.181 1.151 1.152 1.117 1.662 1.14 0.808 0.744 1.169 0.816 

 gi|326494618 F2DH57  predicted protein [Hordeum vulgare subsp. vulgare] 1.475 1.238 1.464 1 1.02 1.009 1.55 1.023 1.279 1.089 

 gi|326526663 F2E048  predicted protein [Hordeum vulgare subsp. vulgare] 0.819 0.676 1.422 0.644 0.644 0.705 1.147 0.877 1.094 0.58 

 gi|326527459 F2EKY2  predicted protein [Hordeum vulgare subsp. vulgare] 0.555 1.091 0.716 0.85 0.157 0.936 0.918 1.369 0.132 1.225 

 gi|356497538  
 PREDICTED: U-box domain-containing protein 35-like 
[Glycine max] 0.998 0.657 1.075 1.392 1.008 0.971 0.946 1.286 1.454 0.872 

 gi|356554910  

 PREDICTED: LOW QUALITY PROTEIN: ubiquitin-

60S ribosomal protein L40-like [Glycine max] 0.836 0.699 0.67 1.067 1.248 1.093 0.864 1.074 1.543 1.436 

 gi|357112407 I1H5X4 
 PREDICTED: uncharacterized protein LOC100835762 
[Brachypodium distachyon] 0.789 0.636 0.719 1.217 0.784 1.05 0.763 1.146 0.941 1.136 

 gi|357118316  

 PREDICTED: annexin D1-like [Brachypodium 

distachyon] 1.625 2.004 0.859 1.606 1.365 0.686 0.861 0.829 0.587 0.701 

 gi|357121721  
 PREDICTED: hydroxysteroid 11-beta-dehydrogenase 1-
like protein B-like [Brachypodium distachyon] 1.921 1.639 1.621 1.219 0.547 1.002 1.29 0.797 0.431 0.813 

 gi|357444565  

 Bifunctional polymyxin resistance arnA protein 

[Medicago truncatula] 0.804 0.855 0.389 2.11 2.142 1.658 0.536 1.371 1.344 2.332 

 gi|38567717 Q6MWE2  B1358B12.15 [Oryza sativa Japonica Group] 1.803 0.9 1.339 1.395 2.336 1.582 1.027 0.774 2.667 1.238 

 gi|112784981 Q0GJJ2 

 11-beta-hydroxysteroid dehydrogenase-like protein 

[Triticum aestivum] 0.778 0.692 0.478 1.734 1.118 1.026 0.677 1.469 1.094 1.482 

 gi|326489651 F2E384  predicted protein [Hordeum vulgare subsp. vulgare] 1.524 1.017 0.818 1.029 0.745 0.431 1.179 0.775 0.864 0.633 

 gi|205830697   RecName: Full=Unknown protein 18 0.473 0.541 0.286 1.809 1.325 2.231 0.262 0.977 0.643 2.087 
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Appendix 3. Arabidopsis homologs of proteins (similarity derived from NCBI BLAST) 

S.N. Name of proteins Accession TAIR 

Symbol 

Percentage 

similarity 

1 aldehyde dehydrogenase 7B4 

[Arabidopsis thaliana]  

NP_175812.1  ALDH7B4  80% 

2 Nascent polypeptide-

associated complex subunit 

alpha-like protein 1 

[Arabidopsis thaliana]  

NP_187845.1  AT3G12390

  

85% 

3 chaperonin subunit, putative 

[Arabidopsis thaliana]  

AAM66101.1 AT3G18190 79% 

4 putative 

phosphatidylethanolamine-

binding protein [Arabidopsis 

thaliana]  

NP_195750.1  AT5G01300 57% 

5 LEA protein in group 3 

[Arabidopsis thaliana]  

BAA11017.1  ECP63 44% 

6 Em-like protein GEA6 

[Arabidopsis thaliana]  

NP_181546.1  GEA6 73% 

7 peroxidase 12 [Arabidopsis 

thaliana]  

NP_177313.1  AT1G71695 59% 

8 thioredoxin H5 [Arabidopsis 

thaliana]  

NP_175128.1  TRX5 59% 

9 ATP-citrate lyase B-1 

[Arabidopsis thaliana]  

NP_187317.1  ACLB-1 100% 

10 Succinyl-CoA ligase [GDP-

forming] subunit beta 

[Arabidopsis thaliana]  

NP_179632.1  AT2G20420 100% 

11 pyruvate kinase [Arabidopsis 

thaliana]  

NP_001078275.

1 

AT3G52990 79% 

12 xylose isomerase [Arabidopsis 

thaliana]  

NP_568861.3  AT5G57655

  

76% 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15221042
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15221042
http://www.ncbi.nlm.nih.gov/protein/15221042?report=genbank&log$=prottop&blast_rank=1&RID=9WNWVX0U015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15230476
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15230476
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15230476
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15230476
http://www.ncbi.nlm.nih.gov/protein/15230476?report=genbank&log$=prottop&blast_rank=1&RID=9X3D2MXP015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_21595439
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_21595439
http://www.ncbi.nlm.nih.gov/protein/21595439?report=genbank&log$=prottop&blast_rank=1&RID=9WNWVX0U015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15240946
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15240946
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15240946
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15240946
http://www.ncbi.nlm.nih.gov/protein/15240946?report=genbank&log$=prottop&blast_rank=1&RID=9WNWVX0U015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1526424
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1526424
http://www.ncbi.nlm.nih.gov/protein/1526424?report=genbank&log$=prottop&blast_rank=1&RID=9WNWVX0U015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15225645
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15225645
http://www.ncbi.nlm.nih.gov/protein/15225645?report=genbank&log$=prottop&blast_rank=1&RID=9WNWVX0U015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15217539
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15217539
http://www.ncbi.nlm.nih.gov/protein/15217539?report=genbank&log$=prottop&blast_rank=1&RID=9WPSA7KF014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15219537
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15219537
http://www.ncbi.nlm.nih.gov/protein/15219537?report=genbank&log$=prottop&blast_rank=1&RID=9WPB8NP4014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15230764
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15230764
http://www.ncbi.nlm.nih.gov/protein/15230764?report=genbank&log$=prottop&blast_rank=1&RID=9WS8PBN101R
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15225353
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15225353
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15225353
http://www.ncbi.nlm.nih.gov/protein/15225353?report=genbank&log$=prottop&blast_rank=1&RID=9WS8PBN101R
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_145332819
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_145332819
http://www.ncbi.nlm.nih.gov/protein/145332819?report=genbank&log$=prottop&blast_rank=1&RID=9WS8PBN101R
http://www.ncbi.nlm.nih.gov/protein/145332819?report=genbank&log$=prottop&blast_rank=1&RID=9WS8PBN101R
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_30696904
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_30696904
http://www.ncbi.nlm.nih.gov/protein/30696904?report=genbank&log$=prottop&blast_rank=1&RID=9WS8PBN101R
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13 4-alpha-glucanotransferase 

DPE2 [Arabidopsis thaliana]  

NP_181616.3  DPE2 60% 

14 glucose-6-phosphate 

dehydrogenase 6 [Arabidopsis 

thaliana]  

NP_198892.1  G6PD6 76% 

15 succinate dehydrogenase 

[ubiquinone] flavoprotein 

subunit 1 [Arabidopsis 

thaliana]  

NP_201477.1  SDH1-1 100% 

16 hydroxysteroid dehydrogenase 

1 [Arabidopsis thaliana]  

NP_568742.1  At5g50700  49% 

17 hydroxysteroid dehydrogenase 

5 [Arabidopsis thaliana]  

NP_192740.1  HSD5  55% 

18 aspartic proteinase A1 

[Arabidopsis thaliana]  

NP_172655.1  APA1 70% 

19 asparagine synthetase 

[glutamine-hydrolyzing] 

[Arabidopsis thaliana]  

NP_190318.1  ASN1 73% 

20 aspartate aminotransferase 3 

[Arabidopsis thaliana]  

NP_196713.1  ASP3 83% 

21 6,7-dimethyl-8-

ribityllumazine synthase 

[Arabidopsis thaliana]  

NP_181933.1  COS1 76% 

22 glutamate decarboxylase 1 

[Arabidopsis thaliana]  

NP_197235.1  GAD 69% 

23 serine 

transhydroxymethyltransferase 

1 [Arabidopsis thaliana]  

NP_195506.1  SHM1 86% 

24 serine 

hydroxymethyltransferase 4 

[Arabidopsis thaliana]  

NP_193129.1  SHM4 80% 

25 seed storage albumin 1 

[Arabidopsis thaliana]  

NP_194444.1  SESA1 34% 

http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_42569818
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_42569818
http://www.ncbi.nlm.nih.gov/protein/42569818?report=genbank&log$=prottop&blast_rank=1&RID=9WS8PBN101R
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15237485
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15237485
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15237485
http://www.ncbi.nlm.nih.gov/protein/15237485?report=genbank&log$=prottop&blast_rank=1&RID=9WS8PBN101R
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15240075
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15240075
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15240075
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15240075
http://www.ncbi.nlm.nih.gov/protein/15240075?report=genbank&log$=prottop&blast_rank=1&RID=9WS8PBN101R
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_18423187
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_18423187
http://www.ncbi.nlm.nih.gov/protein/18423187?report=genbank&log$=prottop&blast_rank=1&RID=9X3D2MXP015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15234888
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15234888
http://www.ncbi.nlm.nih.gov/protein/15234888?report=genbank&log$=prottop&blast_rank=1&RID=9X3D2MXP015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15221141
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15221141
http://www.ncbi.nlm.nih.gov/protein/15221141?report=genbank&log$=prottop&blast_rank=1&RID=9X1A5HSU015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15232775
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15232775
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15232775
http://www.ncbi.nlm.nih.gov/protein/15232775?report=genbank&log$=prottop&blast_rank=1&RID=9WSZWFF2014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15239078
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15239078
http://www.ncbi.nlm.nih.gov/protein/15239078?report=genbank&log$=prottop&blast_rank=1&RID=9WSZWFF2014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15224809
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15224809
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15224809
http://www.ncbi.nlm.nih.gov/protein/15224809?report=genbank&log$=prottop&blast_rank=1&RID=9WSZWFF2014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15237949
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15237949
http://www.ncbi.nlm.nih.gov/protein/15237949?report=genbank&log$=prottop&blast_rank=1&RID=9WSZWFF2014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15235745
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15235745
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15235745
http://www.ncbi.nlm.nih.gov/protein/15235745?report=genbank&log$=prottop&blast_rank=1&RID=9WSZWFF2014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15236375
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15236375
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15236375
http://www.ncbi.nlm.nih.gov/protein/15236375?report=genbank&log$=prottop&blast_rank=1&RID=9WSZWFF2014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15236992
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15236992
http://www.ncbi.nlm.nih.gov/protein/15236992?report=genbank&log$=prottop&blast_rank=1&RID=9WSZWFF2014
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26 mitochondrial F1-ATPase, 

gamma subunit [Arabidopsis 

thaliana]  

BAE98585.1  ATP3 76% 

27 NADH-ubiquinone 

oxidoreductase subunit 

[Arabidopsis thaliana]  

NP_568550.1  EMB1467 78% 

28 V-type proton ATPase subunit 

B2 [Arabidopsis thaliana]  

NP_001190954.

1 

VAB2 96% 

29 putative ubiquinol-cytochrome 

c reductase subunit 9 

[Arabidopsis thaliana]  

NP_190841.1  AT3G52730 76% 

30 ubulin alpha-6 chain 

[Arabidopsis thaliana]  

NP_193232.1  TUA6 96% 

31 tubulin beta-2/beta-3 chain 

[Arabidopsis thaliana]  

NP_568959.1  TUB2 97% 

32 small nuclear 

ribonucleoprotein, putative 

[Arabidopsis thaliana]  

AAM63846.1 AT1G20580

  

78% 

33 small nuclear 

ribonucleoprotein G 

[Arabidopsis thaliana]  

NP_187757.1 AT3G11500 89% 

34 glycine-rich RNA-binding 

protein 8 [Arabidopsis 

thaliana]  

NP_849524.1  AT4G39260 74% 

35 60S ribosomal protein L35a-3 

[Arabidopsis thaliana]  

NP_177567.1  AT1G74270 82% 

36 40S ribosomal protein S30 

[Arabidopsis thaliana]  

NP_194668.1  AT2G19750 100% 

37 60S ribosomal protein L14-1 

[Arabidopsis thaliana]  

NP_179635.1  AT2G20450 84% 

38 40S ribosomal protein S25-2 

[Arabidopsis thaliana]  

NP_179752.1  AT2G21580 83% 

39 60S ribosomal protein L40-1 

[Arabidopsis thaliana]  

NP_565836.1  AT2G36170

  

96% 

http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_110740981
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_110740981
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_110740981
http://www.ncbi.nlm.nih.gov/protein/110740981?report=genbank&log$=prottop&blast_rank=1&RID=9WU3K9D7015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_18421656
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_18421656
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_18421656
http://www.ncbi.nlm.nih.gov/protein/18421656?report=genbank&log$=prottop&blast_rank=1&RID=9WU3K9D7015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_334187279
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_334187279
http://www.ncbi.nlm.nih.gov/protein/334187279?report=genbank&log$=prottop&blast_rank=1&RID=9WU3K9D7015
http://www.ncbi.nlm.nih.gov/protein/334187279?report=genbank&log$=prottop&blast_rank=1&RID=9WU3K9D7015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15231675
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15231675
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15231675
http://www.ncbi.nlm.nih.gov/protein/15231675?report=genbank&log$=prottop&blast_rank=1&RID=9WU3K9D7015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15233627
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15233627
http://www.ncbi.nlm.nih.gov/protein/15233627?report=genbank&log$=prottop&blast_rank=1&RID=9WU3K9D7015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_18424620
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_18424620
http://www.ncbi.nlm.nih.gov/protein/18424620?report=genbank&log$=prottop&blast_rank=1&RID=9WU3K9D7015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_21555384
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_21555384
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_21555384
http://www.ncbi.nlm.nih.gov/protein/21555384?report=genbank&log$=prottop&blast_rank=1&RID=9X1A5HSU015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15229773
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15229773
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15229773
http://www.ncbi.nlm.nih.gov/protein/15229773?report=genbank&log$=prottop&blast_rank=1&RID=9WU3K9D7015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_30692256
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_30692256
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_30692256
http://www.ncbi.nlm.nih.gov/protein/30692256?report=genbank&log$=prottop&blast_rank=1&RID=9WU3K9D7015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15221191
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15221191
http://www.ncbi.nlm.nih.gov/protein/15221191?report=genbank&log$=prottop&blast_rank=1&RID=9WUXP043015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15233565
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15233565
http://www.ncbi.nlm.nih.gov/protein/15233565?report=genbank&log$=prottop&blast_rank=1&RID=9X1A5HSU015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15225356
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15225356
http://www.ncbi.nlm.nih.gov/protein/15225356?report=genbank&log$=prottop&blast_rank=1&RID=9WUXP043015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15226590
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15226590
http://www.ncbi.nlm.nih.gov/protein/15226590?report=genbank&log$=prottop&blast_rank=1&RID=9WUXP043015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_18404062
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_18404062
http://www.ncbi.nlm.nih.gov/protein/18404062?report=genbank&log$=prottop&blast_rank=1&RID=9X3D2MXP015
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40 transducin/WD40 repeat-like 

superfamily protein 

[Arabidopsis thaliana]  

NP_182152.2  AT2G46290 77% 

41 60S ribosomal protein L22-2 

[Arabidopsis thaliana]  

NP_187207.1  AT3G05560 80% 

42 60S ribosomal protein L36-2 

[Arabidopsis thaliana]  

NP_850697.1  AT3G53740 81% 

43 class II aaRS and biotin 

synthetases superfamily 

protein [Arabidopsis thaliana]  

NP_191771.1  AT3G62120 75% 

44 60S ribosomal protein L27-3 

[Arabidopsis thaliana] 

NP_193236.1  AT4G15000 84% 

45 60S ribosomal protein L32-1 

[Arabidopsis thaliana]  

NP_193544.1  AT4G18100 86% 

46 60S ribosomal protein L14-2 

[Arabidopsis thaliana]  

NP_194439.1  AT4G27090 82% 

47 AT4G34670 [Arabidopsis 

thaliana]  

BAH57033.1  AT4G34670 84% 

48 40S ribosomal protein S15-3 

[Arabidopsis thaliana]  

NP_196512.1  AT5G09500 85% 

49 At5g27700 [Arabidopsis 

thaliana]  

ABK32166.1  AT5G27700 78% 

50 26S proteasome regulatory 

subunit [Arabidopsis thaliana]  

AAL32634.1  EIF2 68% 

51 eukaryotic translation 

initiation factor 5A-2 

[Arabidopsis thaliana]  

NP_173985.1  FBR12  82% 

52 nucleolar GTP-binding protein 

NSN1 [Arabidopsis thaliana]  

NP_187361.1  NSN1 64% 

53 cytoplasmic ribosomal protein 

L18 [Arabidopsis thaliana]  

AAA69928.1  RPL18 82% 

http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_30690306
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_30690306
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_30690306
http://www.ncbi.nlm.nih.gov/protein/30690306?report=genbank&log$=prottop&blast_rank=1&RID=9X1A5HSU015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15230008
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15230008
http://www.ncbi.nlm.nih.gov/protein/15230008?report=genbank&log$=prottop&blast_rank=1&RID=9WUXP043015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_30693900
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_30693900
http://www.ncbi.nlm.nih.gov/protein/30693900?report=genbank&log$=prottop&blast_rank=1&RID=9X3D2MXP015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15228692
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15228692
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15228692
http://www.ncbi.nlm.nih.gov/protein/15228692?report=genbank&log$=prottop&blast_rank=1&RID=9WUXP043015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15233637
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15233637
http://www.ncbi.nlm.nih.gov/protein/15233637?report=genbank&log$=prottop&blast_rank=1&RID=9WUXP043015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15236757
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15236757
http://www.ncbi.nlm.nih.gov/protein/15236757?report=genbank&log$=prottop&blast_rank=1&RID=9WUXP043015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15236981
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15236981
http://www.ncbi.nlm.nih.gov/protein/15236981?report=genbank&log$=prottop&blast_rank=1&RID=9WUXP043015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_227204363
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_227204363
http://www.ncbi.nlm.nih.gov/protein/227204363?report=genbank&log$=prottop&blast_rank=1&RID=9WUXP043015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15242434
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15242434
http://www.ncbi.nlm.nih.gov/protein/15242434?report=genbank&log$=prottop&blast_rank=1&RID=9WUXP043015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_117168167
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_117168167
http://www.ncbi.nlm.nih.gov/protein/117168167?report=genbank&log$=prottop&blast_rank=1&RID=9X1BGG4N014
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_17064960
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_17064960
http://www.ncbi.nlm.nih.gov/protein/17064960?report=genbank&log$=prottop&blast_rank=1&RID=9X1A5HSU015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15222741
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15222741
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15222741
http://www.ncbi.nlm.nih.gov/protein/15222741?report=genbank&log$=prottop&blast_rank=1&RID=9X1A5HSU015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15231373
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15231373
http://www.ncbi.nlm.nih.gov/protein/15231373?report=genbank&log$=prottop&blast_rank=1&RID=9WUXP043015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_606970
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_606970
http://www.ncbi.nlm.nih.gov/protein/606970?report=genbank&log$=prottop&blast_rank=1&RID=9WUXP043015
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54 26S proteasome non-ATPase 

regulatory subunit RPN12A 

[Arabidopsis thaliana]  

NP_176633.1  RPN12a 53% 

55 40S ribosomal protein S13-2 

[Arabidopsis thaliana]  

NP_567151.1  RPS13A 86% 

56 regulatory particle triple-A 

ATPase 3 [Arabidopsis 

thaliana]  

NP_200637.1  RPT3 91% 

57 regulatory particle triple-A 

ATPase 5A [Arabidopsis 

thaliana]  

NP_187204.1  RPT5A 91% 

58 serine carboxypeptidase-like 

27 [Arabidopsis thaliana]  

NP_187456.1  SCPL27 66% 

59 prohibitin 2 [Arabidopsis 

thaliana]  

NP_171882.1  PHB2  78% 

60 prohibitin 3 [Arabidopsis 

thaliana]  

NP_198893.1  PHB3  72% 

 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15217661
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15217661
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15217661
http://www.ncbi.nlm.nih.gov/protein/15217661?report=genbank&log$=prottop&blast_rank=1&RID=9X1A5HSU015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_18411224
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_18411224
http://www.ncbi.nlm.nih.gov/protein/18411224?report=genbank&log$=prottop&blast_rank=1&RID=9WUXP043015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15237159
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15237159
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15237159
http://www.ncbi.nlm.nih.gov/protein/15237159?report=genbank&log$=prottop&blast_rank=1&RID=9X1A5HSU015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15230005
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15230005
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15230005
http://www.ncbi.nlm.nih.gov/protein/15230005?report=genbank&log$=prottop&blast_rank=1&RID=9X1A5HSU015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15231911
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15231911
http://www.ncbi.nlm.nih.gov/protein/15231911?report=genbank&log$=prottop&blast_rank=1&RID=9X1A5HSU015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15219569
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15219569
http://www.ncbi.nlm.nih.gov/protein/15219569?report=genbank&log$=prottop&blast_rank=1&RID=9X3D2MXP015
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15237488
http://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_15237488
http://www.ncbi.nlm.nih.gov/protein/15237488?report=genbank&log$=prottop&blast_rank=1&RID=9X3D2MXP015
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