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ABSTRACT

LAND COVER LAND USE CHANGE AND SOIL ORGANIC CARBON UNDER
CLIMATE VARIABILITY IN THE SEMI-ARID WEST AFRICAN SAHEL

(1960-2050)

AMADOU M. DIEYE

2016

Land Cover Land Use (LCLU) change affects land surface processes recognized
to influence climate change at local, national and global levels. Soil organic carbon is a
key component for the functioning of agro-ecosystems and has a direct effect on the
physical, chemical and biological characteristics of the soil. The capacity to model and
project LCLU change is of considerable interest for mitigation and adaptation measures
in response to climate change. A combination of remote sensing analyses, qualitative
social survey techniques, and biogeochemical modeling was used to study the
relationships between climate change, LCLU change and soil organic carbon in the semi-
arid rural zone of Senegal between 1960 and 2050. For this purpose, four research

hypotheses were addressed.

This research aims to contribute to an understanding of future land cover land use
change in the semi-arid West African Sahel with respect to climate variability and human
activities. Its findings may provide insights to enable policy makers at local to national
levels to formulate environmentally and economically adapted policy decisions. This

dissertation research has to date resulted in two published and one submitted paper.



CHAPTER 1

INTRODUCTION



1.1  Conceptual Overview: Climate and Land Cover Land Use Change, Drylands
and Soil Organic Carbon

It is thought that human activities since the industrial revolution, including fuel
consumption and land cover and land use change, are the main cause of the increased
concentration of greenhouse gases (GHG) such as carbon-dioxide (COy) in the
atmosphere, and therefore of climate change (IPCC 2001, 2014). Global GHG emissions
due to human activities have grown since pre-industrial times and the increase was
estimated as 70% between 1970 and 2004 (IPCC, 2014). The resulting global warming is
a global environmental concern. The natural greenhouse effect keeps the earth warmer
than it would be otherwise (Adger and Brown, 1994). Land is critical to all aspects of
human well-being and since prehistoric times has provided materials and resources for
food, health, clothing, shelter and heat (Turner Il and Meyer, 1994) and underlies most
social and cultural systems (UNEP, 2009). The global land area is 13.2 billion ha; with
12% currently under agriculture, 28% under forest, and 35% comprising grasslands and
woodland ecosystems (FAQ, 2013). In Africa, land under agriculture represents 40% of
the total area, supports the livelihoods of 80% of the population and provides
employment for about 60% of the economically active population (FAO, 2013).

Land cover refers to the observed physical cover on the earth's terrestrial surface.
Land use refers to the arrangements, activities and inputs people undertake in a certain
land cover type, for example, to produce, change or maintain that land cover (FAO, 2013)
and defines the purposes for which humans exploit a given land cover (Lambin et al.,
2006). For example, “forest” is a land cover, whereas timber production is a forest land

use. Land use establishes a direct link between land cover and the actions of people in



their environment (FAO, 2000; Loveland et al., 2000). Land use decisions are taken at all
levels, from household to national in both rural and urban areas (UNEP, 2009). Changes
in land use occur as the direct and indirect consequence of human actions (Briassoulis,
2007; Ellis, 2013). Land cover land use change (LCLUC) is the general term used to
reflect changes in land cover and/or land use, i.e., the impacts of human activities on the
surface of the earth, including the clearing of land for cultivation and grazing,
abandonment of agricultural lands, timber harvesting, reforestation, afforestation and
shifting cultivation (Houghton, 2012; Lambin et al., 2006). It is thought that LCLUC
started with the burning of land areas for hunting and accelerated dramatically with the
start of agricultural activities around 10,000 BC (Vasey, 2002) with extensive clearing
and land management practices that continue too today (Ellis, 2013). Industrialization
since the 18" century has encouraged, on the one hand, the concentration of human
populations within urban areas and, on the other hand, the intensification of agriculture in
the most productive lands and the abandonment of some marginal lands (Turner 11 and
Meyer, 1994; Briassoulis, 2007; Ellis, 2013).

One of the main challenges that policymakers and scientists generally face is the
lack of comprehensive data on the types and rates of LCLU changes (Loveland, 2002).
Practically, there are various approaches for establishing land cover land use and their
changes. In the past, national planning and mapping agencies produced maps and
information using ground surveys involving censuses, enumerations and observations
(Anderson et al., 1976). Rates of LCLU change were generally obtained from
agricultural and forestry statistics, historical accounts and national inventories.

Nowadays, with the advent of remote sensing, satellite-based land cover data sets are



developed based on the ability of satellite sensors to distinguish different land cover types
by means of their spectral signatures (Prince et al., 1990; Loveland, 2000).

Remotely sensed data offers a unique opportunity for assessing at synoptic scale
ecological systems and associated land cover and sometimes land use (Tucker et al.,
1985; Townshend and Justice, 1988; Pickup et al., 1993; Lambin and Strahler, 1994).
Land cover maps are derived from remotely sensed data using classification techniques
based primarily on statistically defined rules that allow the categorization of the pixels of
an image into a specific number of classes (Lillesand et al., 2004). Land cover mapping
and change mapping techniques are evolving rapidly as attested by a number of review
papers (Congalton, 1991; Lillesand et al., 2004; Foody et al., 2006; Hansen et al., 2008;
Hansen and Loveland, 2012; Karlson and Otswald, 2016). Land use mapping using
satellite data is more complex because different land use types are usually not
unambiguously discernable from reflected or emitted remotely sensed surface radiation.
Consequently, land use is usually deducted through a combination of remote sensing
observation, and using contextual knowledge (including field observations) and ancillary
information that links a given land cover in a region with a given land use (Lillesand et
al., 2004; Lambin, 2006; Sohl and Sleeter, 2011).

Carbon exists in five distinct reservoirs or pools, namely the atmosphere, oceans,
soils, geologic formations, and terrestrial biomass (i.e., plants and animals). These pools
are interconnected, allowing a continual redistribution (cycling) of carbon among them
(Watson et al. 1990). The term carbon sink refers to a carbon pool that takes in stores
(sequesters) more carbon than it releases and the term carbon source refers to a pool or

component of the carbon cycle that releases more carbon than it absorbs (FAO, 2002).



The redistribution of sources and sinks of carbon over the land surface is predominantly
dominated by changes in land use (IPCC, 2001). In the tropics, current rates of
deforestation are responsible for large sources of carbon; while in northern mid-latitudes
past changes in land use explain much of the observed carbon sink (Houghton, 2002).
Oceans play an important role in the global carbon cycle. The total amount of carbon in
the oceans is about fifty times greater than the amount in the atmosphere; most of the
carbon released from fossil fuels is absorbed in the oceans (Sarmiento, 1998; Bolin et al.,
1979; Popkin, 2015).

The carbon cycle involves processes that take place over seconds, days, years and
millennia (Bolin et al., 1979). Understanding of the carbon budget (i.e., the balance
between sources and sinks) still hold numerous uncertainties and ongoing scientific
questions. For example, is the amount of carbon moving from a given pool matched by
an equal amount of carbon moving out, and is the global carbon cycle in a state of
dynamic equilibrium? (Bolin et al., 1979; GEFSOC, 2006; Popkin, 2015). Presently,
research findings suggest that the terrestrial carbon budget is not in a state of balance and
scientists are still tracking down the gap between the amount of carbon emitted from
human activities (i.e., from fossil fuels burning and land use changes) and the amount of
carbon accumulated in the atmosphere and the oceans (Liu et al., 2003; Popkin, 2015; Liu
etal., 2012a, 2012b).

The evaluation and monitoring of total terrestrial landscape carbon usually require
measurement of carbon from several places, including the woody biomass, plant
understory, crops, surface litter, roots, and soil. However, such measurements are not

always achievable everywhere, or possible to collect systematically owing, for example,



to technical and financial constraints, site inaccessibility, and lack of consistent national
policy for systematic inventories (Woomer, 2004; Manlay, 2002; Liu et al., 20123,
2012b; Popkin, 2015). During the last two to three decades a number of towers mounted
with equipment were used to measure the exchange of CO,, water vapor and energy
between terrestrial ecosystems and the atmosphere (Baldochi et al., 2001). Named flux
towers, these field instruments provide information specific to one ecosystem type or
condition and their data have been applied in ecology, weather forecasting, and climate
studies, especially for sites with several years of data that can be used to quantify inter-
annual flux variations (Zhao and Li, 2015; Haszpra et al., 2015). At present over 650
tower sites are operated all over the world as part of national, regional, or global
networks; however, flux tower sites are still spatially very sparse, only about 15 are
located in Africa, mainly in Southern-Africa (Baldochi et al., 2001; Ramoelo et al.,
2014).

To overcome the spatial scarcity of readily available in situ data, estimates of
landscape total system carbon often rely on ecological models that allow simulation of
carbon stocks and dynamics, using only fewer measurements to parameterize, calibrate
and validate the models (Woomer et al., 2004; Liu et al., 2004; Tschakert et al., 2004;
Mbow, 2014; Bellassen et al., 2010; Touré et al., 2013). In this regard, numerous carbon
models, also named biogeochemical models, have been developed to simulate soil and
vegetation carbon dynamics under different land cover land use and climate scenarios
(Ardo and Olsson, 2003; Parton, 2004; Liu et al., 2004, Bellassen et al., 2010; Liu et al.,

2012; Le Quéreé et al., 2015;Wu et al., 2015).



This thesis focuses on soil organic carbon (SOC) and land cover land use change.
Excluding geological formations, soils represent the largest terrestrial stock of carbon,
about 1500 x 10™ g C (FAO, 2002); approximately twice the amount held in the
atmosphere and three times the amount held in terrestrial biomass (Batjes, 1996). Soil
carbon is present in inorganic and organic forms. Soil inorganic carbon consists of
mineral forms of carbon and carbonate minerals are the dominant form of soil carbon in
desert climates (Batjes, 1996). Organic carbon enters the soil as roots, litter, harvest
residues, and animal manure; and is stored primarily as soil organic matter (FAO, 2002).
In most soils (with the exception of calcareous soils) the majority of the carbon is held in
the form of soil organic carbon (FAO, 2002; Milne et al., 2006). Soil organic carbon is
composed of a range of materials with different biological, chemical and physical
properties and degrees of decomposition, including individual simple molecules (amino
acids, monomeric sugars, etc.), polymeric molecules (e.g., cellulose, protein, lignin, etc.),
and pieces of plant and microbial residues (Batjes, 1996; Baldock, 2007; Bationo and
Buerkert, 2001). Microorganisms, climate, irrigation and farming practices, land use and
land cover determine whether the decomposition of organic matter results in carbon being
stored in the soil in labile form (quick decomposition: years to decades) or recalcitrant
form (resistant to decomposition: centuries to thousands of years) (Batjes, 1996).

Depending on the dynamics of the organic matter, the soil may act a sink or
source of atmospheric carbon. If the carbon stocks increase with time, the soil becomes a
carbon sink; conversely, with the decreasing of the carbon stock, the soil becomes a
carbon source as carbon is moving from SOC compartments to the atmosphere (Woomer

et al., 2001; Baldock, 2007). Knowledge of carbon sinks and sources is required to draw
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up strategies to reduce the risks related to climate change (Lal, 2001). The amount of
SOC varies according to the soil texture, and also climate, vegetation and historical and
current land use (Milne et al., 2006).

The amount of SOC is expressed as mass of carbon (C) per unit area. SOC
outputs from GEMS model are expressed in g C m™, but for convenience can be
converted to Mg C ha™ as: Mg ha™ = 0.01 g m™ or conversely g m? = 100 x Mg ha™*

To quantify SOC from the field, soil samples are collected and analyzed for soil C
concentration and then soil C concentration is converted to C mass per unit area by
multiplying it with bulk density (BD) to a fixed soil depth. BD is an indicator of soil
compaction and is calculated as the dry weight of soil divided by its volume. Soil organic
matter (SOM) contains approximately 58% C; therefore, a factor of 1.72 can be used to
convert SOC to SOM (Lee et al., 2009; Woomer et al., 2004).

This thesis particularly focuses on soil organic carbon (SOC) in dryland systems.
Drylands are classified as arid, semi-arid or dry sub-humid lands; usually where the
average rainfall is less than the potential moisture losses through evaporation and
transpiration, with typically the ratio of average annual precipitation to potential
evapotranspiration ranging from 0.05 to 0.65 (UNEP, 1992). Approximately 40% of the
global land area is considered as dryland and about 40% of the human population live on
drylands (Van Boxel et al., 2004). Drylands are characterized by low productivity, sparse
plant and animal life, and low soil fertility, even without consideration of human
influences (FAO, 2011) and are vulnerable to land degradation (VVan Boxel et al., 2004;
Touré¢ et al., 2013). The African Sahel is included among the world’s drylands and is

particularly affected by climate variability as rainfed agriculture accounts for the majority



of cultivated land. This high dependency on climate has been amplified in the late 20"
century due to the reduction of nearly 30% of rainfall over a period of forty years (Sultan
et al., 2015). One approach for countering this decreasing agricultural production is seen
through the enhancement of soil fertility, although irrigation may be required (Tieszen et
al., 2004; Batjes et al., 2006).

Soil organic carbon and carbon inputs to the soil may improve soil properties such
as nutrient uptake and water holding capacity, and consequently increase land
productivity and crop yields and contribute to the restoration of degraded agro-
ecosystems (Tschakert et al., 2004; Tieszen et al., 2004; Touré at al., 2013). Soil carbon
contents and CO; fixing capacity are considered to be low in drylands (Batjes, 1996). It is
estimated that SOC in arid environments amounts approximately to 4t C ha* in the 100
cm top layer compared to 7-24t C ha™ in other regions (Batjes, 1996; Tschakert et al.,
2004). Various dryland studies have indicated that poor land management practices have
reduced SOC (Manlay et al., 2002; Tschakert et al., 2004; Bellassen et al., 2010).
Conversely, despite the low carbon fixing capacity of soils in drylands, improved
agricultural practices, such as crop rotation, livestock-crop integration, use of new crop
types, water harvesting, and afforestation and reforestation, may increase SOC (Manlay
et al., 2002; Lal, 2001; Tschakert et al., 2004; Touré et al., 2013). It is thought that if
managed properly, dryland systems may not only enhance local land productivity but
have the potential to function as a carbon sink (Tschakert et al., 2004; MEA, 2005;
Bellassen et al., 2010; Plaza-Bonilla et al., 2015). On a per unit area basis, the carbon

storage potential of dryland ecosystems is lower than for moist tropical systems,
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however, the large area of drylands means that globally they may have significant scope

for carbon sequestration (Batjes, 1999; Liu et al., 2004; FAO, 2004; Touré et al., 2013).

1.2 The Intergovernmental Panel on Climate Change (IPCC), Development of

Emission Scenarios and Climate Change Modelling

The Intergovernmental Panel on Climate Change (IPCC) is the leading
international scientific body for documenting climate change. It was established in 1988
by the United Nations Environment Programme (UNEP) and the World Meteorological
Organization (WMO) to provide the world with a clear scientific view on the current state
of knowledge in climate change and its potential environmental and socio-economic
impacts (IPCC, 2001, 2007). Since its establishment, the IPCC provides assessment
reports, which are published materials composed of scientific and technical assessment of
climate change (IPCC, 2001). Although it does not conduct any research or monitor
climate related data or parameters, the IPCC reviews and assesses the most recent
scientific, technical and socio-economic information produced worldwide relevant to the
understanding of climate change (IPCC, 2007). So far, five Assessment Reports (AR)
have been published in 1990, 1995, 2001, 2007 and 2014, termed AR1, AR2, AR3, AR4
and ARS respectively.

Climate models are mathematical representations of the climate system
components (atmosphere, land surface, ocean, and sea ice) and their interactions
(Claussen et al., 2002). Climate models can be at large scales covering the entire globe
(Global Climate Models) or downscaled to a specific region (Regional Climate Models).

Given the number of climate system components they incorporate, climate models can be
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relatively simple, e.g. Atmospheric General Circulation Models (AGCM) or Ocean
General Circulation Models (OGCM), more complex, e.g. by coupling atmospheric and
ocean models together to form Atmosphere-Ocean Coupled General Circulation models
(AOGCM), or models that integrate the atmosphere, ocean and land. According to the
IPCC (2007) climate models are based on well-established physical principles and have
been demonstrated to reproduce observed features of recent climate and past climate
changes. For example, climate models are used to generate the information for modern
day weather forecasts (Claussen et al., 2002). There is considerable confidence that
Atmosphere-Ocean General Circulation Models (AOGCMs) provide credible quantitative
estimates of future climate change, particularly at continental and larger scales. However,
confidence on these estimates is higher for some climate parameters (e.g., temperature)
than for others (e.g., precipitation) (IPCC, 2007).

It is agreed by scientists that climate projections are inherently uncertain. Climate
models simulate climate system components based on a number of simplifying
assumptions and integrate many physical processes (Randall et al., 2007). However,
some of these processes, for example, those related to clouds, occur at scales that cannot
be properly modelled. Thus, their known properties are averaged over larger scales; this
process is thought to be a significant source of uncertainty in GCM-based simulations of
future climate (Randall et al., 2007; Willems et al., 2012). Global climate models (GCM)
produce data and variables related to each of the major climate system components at
different spatial and temporal scales. Data from GCMs usually have a relatively coarse
spatial resolution (in the range of few hundred kilometers or larger), while the temporal

resolution may vary from few hours to months. GCMs may cover past or historical
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periods (called control periods or baseline periods, e.g. 1961-1990) or future periods
(called scenario simulation periods, e.g. 2000-2050) (Claussen et al., 2002; Randall et al.,
2012). Regional climate models (RCMs) are downscaled from GCMs and theoretically
have much higher resolutions. However, RCMs are prone to error propagation from the
GCMs; in addition RCMs are less available and comprehensible than GCMs (Willems et
al., 2012).

The land surface is an important component of the global climate system and due
to its location at the boundary between the atmosphere and the lithosphere, controls how
energy received from the Sun is returned to the atmosphere (Baede, 2001; Claussen,
2002). Thus, by controlling the terrestrial surface energy balance, land surface processes
influence climate change at local, regional and global levels (Baede, 2001; Zhao and Li,
2015). Key parameters generally considered within the land surface processes include the
surface albedo, surface roughness, soil moisture, land surface temperature, and land
cover. It is established that changes in these parameters may lead to variations in climate
(Baede, 2001; Randall et al., 2007; Barnes and Roy, 2010; Pielke et al., 2002)

To project future climate change, emission scenarios unfolding plausible changes
in anthropogenic factors, e.g. socio-economic development, population growth,
technology, energy and land use, are required (van Vuuren et al., 2001). These factors are
used with future scenarios of forcing agents (e.g., greenhouse gases and aerosols) to
model a suite of projected future climate changes that illustrates the possibilities that
could lie ahead (Randall et al., 2007). Until recently, the state of the art scenarios were
the ones named Special Report on Emissions Scenarios (SRES) (IPCC, 2000;

Nakicenovic et al., 2000). SRES made varying assumptions (“storylines”) regarding
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future changes of the greenhouse gas emissions (Randal et al., 2007). The Third
Assessment Report (AR3) and the Fourth Assessment Report (AR4) of the IPCC,
published respectively in 2001 and 2007, were based on SRES scenarios. However, the
SRES scenarios were criticized because they did not explicitly incorporate future policy
driven by GHG emission controls (Taylor et al., 2012).

In preparation of the 2014 ARS5, the IPCC advocated the development of new
scenarios and the scientific community, through an initiative called Coupled Model Inter-
comparison Project (CMIP5), and worked on new GHG emission scenarios that included
possible policy intervention and mitigation measures (Taylor et al., 2012; Moss et al.,
2010). The new scenarios, named ‘Representative Concentration Pathways’ (RCPs)
specify a radiative imbalance at which the atmosphere will stabilize, rather than the
greenhouse gas concentrations themselves: that imbalance is consistent with a range of
social, technological and economic pathways (Moss et al. 2010; IPCC, 2014). The RCPs
include mitigation scenarios that capture possible policy actions that could be taken to
achieve certain GHG emission targets. Four RCPs were formulated based on a range of
projections of future population growth, technological development, and societal
responses: RCP8.5, RCP4.5, RCP6 and RCP2.6. The labeling of RCP reflects an
approximate estimate of the radiative forcing in the year 2100 (relative to pre-industrial
conditions). In this way, the “highest” (most pessimistic) scenario developed is RCP8.5
corresponding to a radiative forcing that increases throughout the twenty-first century
before reaching a level of about 8.5 W m ™ at the end of the century. In the same manner,

two intermediate scenarios, RCP4.5 and RCP6 were defined, and a low so-called peak-
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and-decay scenario, RCP2.6 that peaks at 3.0 W m 2 before declining to 2.6 W m 2 in

2100 (Taylor et al., 2012).

1.3 Modeling Future land cover land use

Land cover land use change plays a determinant role in shaping the environment
and changing the global carbon cycle (Briassoulis, 2005; Houghton, 2012). In this regard,
there is a growing interest in understanding LCLU change that includes not only past and
present LCLU but also the possible future LCLU. Indeed, information on possible future
LCLU is needed for effective management and planning of resources, and to understand
and evaluate the consequences of such changes on both society and ecosystems
(Lambin et al., 2006). Scenarios of future LCLU have been advocated to study alternative
futures under different sets of assumptions given current understanding of the way that
the drivers of LCLU interact and provide ‘‘descriptions of how the future may unfold
based on ‘if-then’ propositions’” (Alcamo et al., 2008; Sohl and Sleeter, 2011); in this
regard, the major accepted driving forces of land change are biophysical and
socioeconomic (Lambin et al., 2006).

Agarwal et al. (2002) reviewed different types of models and presented a
framework to compare land-use change models with regard to their complexity, and how
well they incorporate space, time, and human decision-making. More recently, the
National Research Council (2014) classified the contemporary approaches for modeling
LCLUC in six categories including machine learning and statistical models, cellular,

spatially-disaggregated economic models, sector-based economic models, agent-based
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models and hybrid models that combine some of the previous approaches. Overall, the
goals of the models are one or many of the following: i) improve our understanding of
ecosystem and land use dynamics; ii) develop hypothesis that can be tested; iii) make
predictions and/or evaluate scenarios.

Modeling and prediction of future LCLU is difficult, not least because statistical
LCLU change trend data may not capture future changes in the LCLU driving forces,
such as economic and policy modifications acting at varying scales, or a changing
climate. In dryland systems LCLU is extensively soil moisture limited (Hiernaux and
Justice, 1986), future LCLU scenarios can therefore only be meaningfully developed
when coupled with future climate scenarios that consider precipitation (Hulme et al.,
2001; Mbow et al., 2008, 2014).

Models of future LCLU should capture the complex ways in which humans and
climate are modifying ecological systems and human societies (Batjes, 2005; IPCC,
2007). This can be done, for example, based on various plausible assumptions that allow
developing land cover land use transition scenarios. The implications of this statement
are that, given future regional climate predictions, future LCLU can be conceptualized in
a simplified way based on perceived ecosystems and human responses vis-a-vis past

climate patterns (Sohl and Sleeter, 2011; Liu et al., 2012; Karlson et al., 2016).
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1.4 Modeling Soil Organic Carbon

Soil organic carbon is a key component for the functioning of agro-ecosystems
and has a direct effect on the physical, chemical and biological characteristics of the soil
(Lal, 2001).

As mentioned in the previous sections, soil organic carbon inventories are very
sparse and in a number of countries, particularly in Africa, systematic soil carbon
measurements remain challenging and have not yet been achieved (Manlay et al., 2002;
Sambou, 2004; Mbow, 2014). Therefore, soil carbon stock dynamics are generally
estimated using modeling approaches (Liu et al. 2004; Parton et al., 2004; Woomer et al.,
2004; Lufafa et al., 2008; Touré et al., 2013; Loum et al., 2014). Well established carbon
models, such as the CENTURY model (Ardo and Olsson, 2003; Parton, 2004) allow
simulation of soil and vegetation carbon dynamics under different land management and
climate scenarios.

Other carbon models widely used include the general ensemble biogeochemical
modeling system (GEMS) (Liu et al., 2004), the Rothamsted carbon (RothC) model
(Coleman and Jenkinson, 1999) and the denitrification-decomposition (DNDC) model
(Giltrap et al., 2010). All of these models are generally spatially explicit. Typically the
modelled information is related to geographical coordinates, and so are some of the
model inputs including biophysical data (e.g., soil and vegetation characteristics), climate
data (e.g., temperature and precipitation), land management data (e.g., crop composition
and rotation), and the LCLU maps derived from remotely sensed data (Parton, 2004; Liu

et al. 2004, 2012a, 2012b; ).
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1.5  Study area and wider Sahelian context of the research

The study area of this thesis research is located in the North-west of Senegal
within the West African Sahel (Figure 1). It is bordered by the Senegal River to the North
and the Atlantic Ocean to the West. It covers 1560 km? and lies between longitudes
15°24° and 17°00° W and latitudes 15°00° and 16°42° N. It is centered around the city of
Louga, approximately 180 km north of Dakar, the capital of Senegal. The study area is
predominantly in the Sahelian, semiarid, part of Senegal, with a climate characterized by
a single yearly rainy season that lasts from June-July through September-October.
Average rainfall decreased from 400-600 mm in the 1960s to 200-400mm in the 1990s
(Fall et al., 2006). Mean monthly temperature varies from 24.5°C in January to 31.9°C in
May (Fall et al., 2006).

The study area natural vegetation includes trees, shrubs and grasses across a
diversity of ecosystems and land uses that include rainfed agriculture, irrigated
agriculture, and pastoral activities. The study area encompasses four ecoregions
(ecological zones) (Omernik, 1995), namely the Senegal River valley, the Niayes, the
Peanut basin and the Sylvo-pastoral zones (Tappan et al., 2004). Rainfed agriculture is
mainly undertaken during the rainy season in the Peanut basin. Flood recession farming
is practiced in the Senegal River valley. Irrigated crop production, largely dominated by
vegetable production, is practiced where groundwater is available in the Niayes (Photo 1).
The Sylvo-pastoral zone is typical to a Sahelian environment, where livestock, alongside
with rainfed agricultural production, is among the most important economic sectors

(Photo 2).
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Figure 1 Illustration of the thesis study area. Landsat 28.5m image in north-western Senegal,
covering 1560 km?, lying 15°24° - 17°00° W and 15°00” - 16°42° N. The boundaries of the four
main agro-ecological zones (I: Niayes; I1l: Peanut Basin; 11l: Sandy Ferlo; and IV: Senegal River
Valley) are shown as red vectors. The small box (top left) illustrates the map of Senegal with
limits of the agro-ecological zones in grey and limits of the study area in red.
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Photo 1. View of the Niayes eco-region, characterized by Photo 2. View of the Sylvo-pastoral eco-region showing
longitudinal depressions and a shallow water table. a herd of cattle arriving at a watering place, near the
Artisanal wells are dug and used for market gardening. village of Amali. The background shows trees and
Production includes carrots, onions and cabbage sold in shrubs typical of the area. Photo: A. Dieye.

Dakar, the Capital city. Photo: D. Roy.

The Sahel was the cradle of the desertification debate, however, desertification,
land degradation and LCLU change are supposed due not only to climatic factors but are
also influenced by human activities (Geist and Lambin, 2004; Herrman and Hutchinson,
2005; Nicholson, 2005, 2013; Brandt et al., 2015; Kaptué et al., 2015; Karlson and
Ostwald, 2016). In the region, sufficient and timely rainfall is particularly an issue for
arable and pastoral land uses (Hulme, 2003; Kaptué et al., 2015). During the 1970s and
early 1980s, regional rainfall was erratic and droughts were common (Hulme, 2003;
Tottrup and Rasmussen, 2004); although, since mid-1980s rainfall is believed to be
increasing again (Nicholson, 2005; Lebel and Ali, 2009; Kaptué et al., 2015; Karlson and
Ostwald, 2016). Consequently, speculation concerning a regional shift to a wetter climate
started to emerge in the literature (Brooks, 2004; Boko et al., 2007; Lebel and Ali, 2009).
It is unknown if recent observations imply a climatic shift that will continue throughout

the coming decades (Nicholson, 2013).
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Climate change predictions for West Africa suggest increased temperatures in the
next 100 years (2-6 °C warmer) with uncertain but most likely decreasing rainfall (Hulme
et al., 2001; Boko et al., 2007; Christensen et al., 2007, IPCC, 2007). Given that the
region is expected in the future to become warmer one important consequence of rising
temperatures will be higher evaporative stress on cereal crops (Blanc, 2012). As
discussed in Sections 1.2 and 1.3 global climate predictions based on recently developed
RCPs are available to establish a range of future climate scenarios. The dynamics driving
LCLU changes in the region are complex; firstly, the forces driving land use changes
operate at various levels, and encompass drivers and constraints including globalization
and international trade, international and national policies, population growth,
agricultural expansion, land tenure and local customary rights; and secondly, the driving
forces interact and affect each other. A number of studies have attested that West Africa
LCLU, including rural livelihoods, will probably continue to be strongly influenced by
the climate, i.e., precipitation (Lambin et al., 2003; Tieszen et al., 2004; FAO, 2004).
LCLU changes may have serious consequences on natural resources, for example through
their impact on soil organic carbon, water quality, and biodiversity and so livelihoods
(Bationo et al., 2001; Bellassen et al., 2010). In addition, LCLU practices such as fire,
grazing, and agriculture may affect the ecosystem composition, cycling of nutrients and
distribution of organic matter including loss of soil carbon due to land conversion, and
play a role in increasing greenhouse gases in the atmosphere (Ojima et al., 1994). Soil
carbon is particularly important in West African drylands for soil fertility and agricultural

sustainability (Tieszen et al., 2004).



21

1.6 Research Hypotheses

The goal of this research is to investigate the relationships between climate
change, land cover land use change (LCLUC) and soil organic carbon (SOC) in the
North-west part of Senegal, within the West African Sahel (Figure 1). This will be
undertaken using a combination of remote sensing analysis, qualitative social survey
techniques, and biogeochemical modeling. The research will address the following four

hypotheses:

#1:  LCLU in the Semi-Arid rural zone of Senegal can be mapped reliably using

recent classification algorithms applied to multi-seasonal Landsat satellite data.

#2:  The temporal change in modeled SOC under future climate scenarios, assuming
present day and unchanging LCLU, will be greater than the variability in modeled SOC

due to remotely sensed data classification errors.

#3:  Focus groups held with rural LCLU stakeholders provide insights into the
climatic drivers of LCLU change; and these insights may be simplified in terms of

particularly wet and dry years.

#4: Future LCLU under future climate change scenarios can be modeled in a spatially

explicit manner using the simplified wet/dry year focus group insights.

Research hypothesis #1 Satellite data have been widely used to classify LCLU

and to assess trends in vegetation cover (Hiernaux and Justice, 1986; Brandt et al., 2015;
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Kaptué et al., 2015; Mbow et al., 2015). However, semi-arid vegetation often exhibits a
marked seasonality in photosynthetic activity and leaf area in response primarily to
seasonal precipitation (Hiernaux and Justice, 1986). Thus, multi-temporal satellite data is
expected to provide improved land cover classification accuracies over single-date
classifications assuming that the acquisitions capture seasonal and agricultural differences
(Lo et al., 1986; Hansen and Loveland, 2012; Yan and Roy, 2015). Consequently, in this
research, two Landsat scenes acquired over the study area in the early wet season (June -
July) and one in the dry season (December - February) of the same year were used and
bagged decision tree classification approaches were used to map LCLU. The ensemble
classification accuracy of the tree classifications was quantified using a confusion matrix

based statistical method.

Research hypothesis #2 follows on from hypothesis #1 and will be considered by
comparing temporal change in modeled SOC with variability in modeled SOC due to the
remotely sensed data classification errors. This hypothesis is worthy of interest as it
unclear how variability in modeled SOC due to remotely sensed data classification errors
compares to temporal change in modeled SOC. The general ensemble biogeochemical
modeling system (GEMS) a well-established biogeochemical model developed for
spatially and temporally explicit simulation of biogeochemical cycles (Liu et al., 2004;
Tan et al., 2009) was used. In addition to LCLU maps, spatially explicit datasets of
climate (monthly precipitation, monthly maximum and minimum air temperature), soils
(including texture (fractions of sand, silt, and clay) and drainage) and management data
(including crop and land management and additions of organic materials in quantities and

over time) were used. Temporal change in modeled SOC will be assessed by running the
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model, under different climate change scenarios, repetitively each year during the time
period 2000-2050. Variability in modeled SOC due to remotely sensed data classification
errors will be assessed by using, for each model run during the same time period,

different remotely sensed data classification approaches.

Research hypothesis #3 postulates the relevance of the perceptions that local
population have of their changing environment and the resulting changes on LCLU,
depending on the variability and change of climate parameters. In other words,
hypothesis #3 postulates that in the study area change in rural LCLU is essentially
influenced by human behavior with respect to precipitation. Social surveys, specifically
focus group discussions, will be employed to capture local population attitudes and
perceptions of their behavior to changes in the climate and their land use and livelihood
strategies. Group discussions will be stratified by gender, ethnicity and dominant

production systems in different representative villages of the study areas.

Research hypothesis #4 will be addressed in an attempt to conceptualize the
implications of future regional climate predictions on LCLU (Ben Mouhamed et al.,
2002; Sultan et al., 2010). Future LCLU scenarios will be developed (up to 2050) under
current (average 1960-2010) and future (year 2050) climate scenarios (RCPs). Each pixel
of the 2010 LCLU classified data will be modified using plausible future scenarios based
on analysis of the attitudes and behaviors of stakeholders towards the socio-economic and

climate drivers of how the land is used derived from the focus group discussions.
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1.7  Significance of the Research

The capacity to model and project LCLU change is of considerable interest for
mitigation and adaptation measures in response to climate change (Hansen, 2002; Blanc,
2012; Smith, 2014). This research aims to contribute to an understanding of future land
cover land use change in the West African Sahel with respect to climate variability and
human activities. It focuses on soil organic carbon with the assumption that a better
understanding of climate LCLU interactions may provide insights to enable policy
makers at local to national levels to formulate environmentally and economically adapted

policy decisions.

Overall, the significance of this research could be attested with the following statements:

1 Africa is highly vulnerable to climate change and variability, a situation
aggravated by the interaction of ‘multiple stresses’, occurring at various levels,
and low adaptive capacity (Tschakert et al., 2004) while recent climate
predictions suggest Africa could be 2-6 °C warmer in 100 years time (Hulme et
al., 2001; IPCC, 2001; IPCC, 2007; IPCC 2014). However, regional climate
models for West Africa are still inadequate to predict with confidence the impacts
of climate change (Brooks, 2004; Boxel, 2004; Gaye et al., 2014).

2 While it is unclear how Africa's ecosystems will respond to future climate change,
it is thought that “environmental instabilities may be compounded by the
strategies that inhabitants use to adapt to environmental and socioeconomic
changes” (IPCC, 2007). Therefore, the role of land cover land use change need to

be further explored in order to enhance the understanding of the interaction
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between multiple stresses and adaptation to such stresses in Africa (Tschakert et
al., 2004).

3 Although, LCLU change has been generally considered as a local environmental
issue, it is now recognized as an issue of global importance (Foley et al., 2005).
Therefore, knowledge of the geographical extent and spatial patterns of LCLUC is
crucial in this process. The need for more detailed local-level analyses of the role
of multiple interacting factors, including development activities and climate risk-
reduction in the African context, is evident.

4 There are still few detailed and rich compendia of studies on human dimensions
of climate change (of both a historical, current, and future-scenarios nature)

(IPCC, 2007).

1.8  Summary of Chapters

Chapter 2 addresses research hypotheses #1 and #2. It describes the processing
methodology used to derive LCLU based on current state of the art classification
approaches applied to multi-seasonal remotely sensed data. It describes also how
variability of SOC due to satellite LCLU classification errors can be assessed and
compared to temporal change in modeled SOC under future climate scenarios. This

chapter was published in Biogeosciences in 2012 and to date has been cited twelve times.

Chapter 3 addresses research hypothesis #3. It describes how focus group
discussions are undertaken to capture rural attitudes and perceptions of inhabitants
behavior to changes in the climate and their land use and livelihood strategies. It

discusses also possible implications for the development of scenarios of future land cover
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land use. This chapter was published in Environmental Management in 2012 and to date

has been cited six times.

Chapter 4 addresses research hypothesis #4. It describes how future LCLU was
modelled to provide insights into the likely implications of future climate predictions.

This chapter will be submitted for publication to a peer reviewed journal.

Chapter 5 summarizes findings from the four research hypotheses and provides a
general discussion, recommendations for future research, and is the conclusion of this

dissertation.
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2.0 Abstract

Spatially explicit land cover land use (LCLU) change information is needed to
drive biogeochemical models that simulate soil organic carbon (SOC) dynamics. Such
information is increasingly being mapped using remotely sensed satellite data with
classification schemes and uncertainties constrained by the sensing system, classification
algorithms and land cover schemes. In this study, automated LCLU classification of
multi-temporal Landsat satellite data were used to assess the sensitivity of SOC modeled
by the Global Ensemble Biogeochemical Modeling System (GEMS). The GEMS was run
for an area of 1560 km? in Senegal under three climate change scenarios with LCLU
maps generated using different Landsat classification approaches. This research provides
a method to estimate the variability of SOC, specifically the SOC uncertainty due to
satellite classification errors, which we show is dependent not only on the LCLU
classification errors but also on where the LCLU classes occur relative to the other

GEMS model inputs.
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2.1 Introduction

Africa is experiencing rapid and substantial social, economic, climatic and
environmental change (Brooks, 2004; Challinor et al., 2007; IPCC, 2007; Nkonya et al.,
2011). Soil carbon is important in West African drylands for soil fertility and agricultural
sustainability and the influence of land management under changing climate on soil
carbon is of particular interest (Batjes, 2001; Lal, 2004; Tieszen et al., 2004).
Biogeochemical model simulations of carbon dynamics in vegetation and soil in response
to changes in land cover and land use (LCLU), land management and climate
increasingly use spatially explicit LCLU data derived from satellite remote sensing
(Turner et al., 2000; Liu et al., 2004; Kennedy et al., 2006; Liu et al., 2008, Tan et al.,
2009). There is a recognition however that errors in satellite derived LCLU data, both in
terms of classification errors and the degree of generalization of the landscape into the
different LCLU classes, and differences between LCLU data sources and land cover
classification approaches, may propagate into model outputs (DeFries et al., 1999; Reich

etal., 1999; Turner et al., 2000; Quaife et al., 2008).

Remotely sensed satellite data have been used extensively to map land cover (Tucker et
al., 1985; Pickup et al., 1993; Lambin and Strahler, 1994) although human influences are
difficult to discern reliably except when using high spatial resolution data (Townshend
and Justice, 1988). Consequently, high spatial resolution data, in particular from the
Landsat satellite series, have been used for mapping land cover change over decadal
periods (Skole and Tucker, 1993; Gutman et al., 2008). Satellite classification by visual

photo interpretation is not suited to mapping large areas on the consistent and repeated
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basis required for long term monitoring. Automated techniques that use digital computer
processing and statistical classification approaches largely overcome this issue, but also
do not provide error free classifications. Furthermore, it is not usually possible to reliably
map land use, i.e. the land’s social, economical, and cultural utility, using automated
techniques (Turner et al., 1997). In semi-arid areas, such as the West African Sahel,
satellite land cover classification is particularly challenging because the vegetation types
may be sparsely distributed across variable soil backgrounds and because they frequently
transition and mix across the landscape at scales finer than the satellite pixel dimension
(Frederiksen and Lawesson, 1992; Prince et al., 1990; Lambin and Ehrlich, 1997).
Further, semi-arid vegetation often exhibits a marked seasonality in photosynthetic
activity and leaf area in response primarily to seasonal precipitation, making the selection

of appropriate satellite acquisitions important (Hiernaux and Justice, 1986).

The General Ensemble biogeochemical Modeling System (GEMS) is a well-established
biogeochemical model developed for spatially and temporally explicit simulation of
biogeochemical cycles (Liu et al., 2004; Tan et al., 2009). In this paper the sensitivity of
GEMS modelled soil organic carbon to satellite LCLU mapping uncertainties is
quantified for a semi-arid Sahelian region of Senegal. Supervised decision tree
classification approaches are used to map LCLU from multi-temporal Landsat satellite
data which are used to drive spatially explicit maps of GEMS soil organic carbon under
different climate change scenarios. A description of the study area (Section 2), the
Landsat data and pre-processing (Section 3) and the GEMS input data and

parameterization (Section 4) are described. This is followed by description of the LCLU



45

classification (Section 5) and carbon modeling and sensitivity analysis methodologies
(Section 6). The results are presented and discussed (Section 7), preceding the concluding

remarks (Section 8).

2.2  Study area

The study area is located in the north of Senegal, bordered by the Senegal River to
the North and the Atlantic Ocean to the west, with the southern edge 100 km north of
Dakar (Figure 1). It covers 1560 km? lying between 15°24” to 17°00° W and 15°00” to
16°42° N. The area has a semi-arid climate with a single rainy season from June-July
through September-October; average rainfall decreased from 400-600 mm in the 1960s to
200-400mm in the 1990s, mean monthly temperature varies from 24.5°C in January to
31.9°C in May (Fall et al., 2006).

The study area includes a wide range of land covers and land uses, and
consequently soil organic carbon, making it appropriate for the sensitivity analysis
described in this paper. Most agricultural activities in the study area are undertaken
during the rainy season, planting occurs in June followed by harvesting in late October
through November. Flood recession farming is practiced in the Senegal River valley and
irrigated crop production, largely dominated by vegetable production, is practiced where
groundwater is available elsewhere. The dominant natural vegetation species are, trees:
Acacia raddiana, Balanites aegyptica, Sclerocarya birrea, Combretum glutinosum,
Adansonia digitata (boabab tree); shrubs: Guiera senegalensis, Boscia senegalensis,
Calotropis procera; and grasses include primarily Cenchrus biflorus, Schoenefeldia

gracilis and Dactyloctenium aegyptium. In order to summarize the region succinctly we
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refer to the Senegalese agro-ecological zones (also known as ecoregion) defined by
Tappan et al. (2004). The study area encompasses four zones, and these are illustrated in
Fig. 1 and are described below.

The smallest ecoregion (2% of the study area), is a narrow strip of land (10 to 30
km wide) along the Atlantic coast (120 km) from Saint-Louis to Dakar. The predominant
soils are ferruginous tropical sandy soils, deep and well drained, low in organic matter
and mineral content (Tappan et al., 2004). The ecoregion is characterized by
geomorphological features composed of active littoral and stabilized continental sand
dunes that alternate with longitudinal depressions. The sand dunes support shrub savanna
used by pastoralists as gazing land. The longitudinal depressions, locally called niayes,
have given their name to the region as a whole, and are used for irrigated agriculture
owing to the shallow water table accessed by artisanal wells. The main irrigated
agricultural land use is market gardening, primarily carrots, onions, and cabbages, for
sale in Dakar. Beginning in the early 1980’s, coastal sand dune stabilization projects
planted drought-tolerant Whispering Pine (Casuarina equisetifolia) which cover much of
the coastal zone from Dakar to Saint-Louis (Tappan et al., 2004; CSE, 2005). A second
ecoregion, lying east of the smallest ecoregion, and covering 45% of the study area,
includes much of the peanut basin, an area dedicated since the 1880s to groundnut
cultivation. The predominant soils are slightly leached ferruginous tropical sandy soils
lying in the plateau of the continental sedimentary basin. The main crops are millet,
groundnuts, and sorghum in acacia tree parkland, which have replaced all vestiges of the
pre-colonial woodland savanna landscape (Tappan et al., 2004). A third ecoregion, lying

in the north east (east of Lake Guiers, Fig. 1) and covering 43% of the study area, is the
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sandy ferlo. It constitutes Senegal’s main sylvo-pastoral zone, an area that is generally
too dry for crop production, with mean annual precipitation less than 200 mm. The
vegetation is composed of open grasslands with scattered shrubs and predominantly
acacia trees on red-brown sandy and ferruginous tropical sandy soils. The last ecoregion
(11% of the study area) is the Senegal River Valley, a floodplain previously covered by
riverine woodland, today used for irrigated-agricultural projects that pump water from the
Senegal River onto extensive rice and sugarcane fields. The predominant soils are
hydromorphic and vertic with a sandy, clay loam, and clay. The natural vegetation is
open steppe, shrub steppe, and riparian acacia woodland. <Insert Figure 1 near here>
Landsat Enhanced Thematic Mapper Plus (ETM+) satellite data were used in this
study. All six 28.5m reflective, the two 57m thermal (low and high gain), and the single
15m panchromatic bands were used. Each ETM+ scene is approximately 180x180 km
and is defined in the UTM coordinate system and referenced by a unique Landsat
Worldwide Reference System (WRS-2) path and row coordinate (Arvidson et al., 2001).
Multi-temporal satellite data provide improved land cover classification
accuracies over single-date classifications if the acquisitions capture seasonal and
agricultural differences (Lo et al., 1986; Schriever and Congalton, 1993). Consequently,
in this study two Landsat ETM+ scenes, acquired in 2002 in the early wet season (June
21) and the dry season (December 30) over the study area, WRS-2 scene path 205 row
49, were used. These acquisitions were selected because they were the only available
scenes with very low (<1%) cloud cover. They are considered to be representative of the

year 2000 in the subsequent GEMS modeling.
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Figure 1 Landsat 28.5m hard decision tree classification of the study area in north-
western Senegal, covering 1560 km? lying 15°24” - 17°00° W and 15°00” - 16°42° N. Dry
and wet season 2002 Landsat data were classified using a bagged decision tree
classification procedure into 9 land cover land use classes (plantation forest, water, bare
soil, rainfed agriculture, wetlands, mangrove, mud flats, irrigated agriculture, and
savanna grassland). The study area is shown bounded by a black vector. White shows
unclassified (clouds, cloud shadows, settlement areas, or no Landsat data). The
boundaries of the four main agro-ecological zones (I: Niayes; Il: Peanut Basin; I1l: Sandy
Ferlo; and IV: Senegal River Valley) are shown as red vectors
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2.3 Satellite data

2.3.1 Landsat data

Landsat Enhanced Thematic Mapper Plus (ETM+) satellite data were used in this
study. All six 28.5m reflective, the two 57m thermal (low and high gain), and the single
15m panchromatic bands were used. Each ETM+ scene is approximately 180x180 km
and is defined in the UTM coordinate system and referenced by a unique Landsat
Worldwide Reference System (WRS-2) path and row coordinate (Arvidson et al., 2001).

Multi-temporal satellite data provide improved land cover classification
accuracies over single-date classifications if the acquisitions capture seasonal and
agricultural differences (Lo et al., 1986; Schriever and Congalton, 1993). Consequently,
in this study two Landsat ETM+ scenes, acquired in 2002 in the early wet season (June
21) and the dry season (December 30) over the study area, WRS-2 scene path 205 row
49, were used. These acquisitions were selected because they were the only available
scenes with very low (<1%) cloud cover. They are considered to be representative of the

year 2000 in the subsequent GEMS modeling.

2.3.2. Landsat data pre-processing

Landsat data are affected by several factors that need to be corrected before multi-
date data can be compared reliably (Coppin et al., 2004). In this study, corrections for
radiometric, atmospheric and geometric effects were undertaken. The ETM+ reflective
bands were converted from digital numbers to at satellite reflectance using the best
available ETM+ calibration coefficients and standard correction formulae taking into

account the solar constant (Markham and Baker, 1986). The thermal bands were
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similarly converted from digital numbers to effective at satellite temperature using
standard coefficients and Planck function formulae (USGS, 2001). The impact of the
atmosphere is variable in space and time and is usually considered as requiring correction
for quantitative and change detection applications (Ouaidrari and Vermote, 1999; Coppin
et al., 2004). Several Landsat atmospheric correction methods have been proposed, with
the dark-object subtraction (DOS) method widely used due to its methodological
simplicity (Chavez, 1996). In the DOS approach, atmospheric path radiance is assumed
to be equal to the radiance sensed over dark objects, such as dense vegetation or water,
and is subtracted from each band. In this study, each Landsat acquisition was normalized
using a dark object subtraction method to reduce scene-to-scene and within scene
radiometric variations associated with atmospheric, phenological, and sun-sensor-target
geometric variations. Surface reflectances were computed independently using inland
water bodies and a small number of cloud shadows as dark objects. Clouds and cloud
shadows were screen digitized manually and not considered in the subsequent analysis as
they preclude optical wavelength remote sensing of the surface and deleteriously
contaminate surface reflectance (Roy et al., 2010).

The two ETM+ acquisitions had already been ortho-rectified following
established procedures (Tucker et al., 2004). However, to ensure precise sub-pixel co-
registration, an image-to-image registration was performed using 25 ground control
points identified in both scenes, and the December image was nearest neighbor resampled
into reference with the June acquisition using a first-order polynomial warping

transformation. The two 57 m at satellite temperature bands and the six 28.5 m at satellite
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reflectance bands were resampled in this way to 28.5 m to provide the same image spatial

dimensions needed for the subsequent image classification.

2.4 GEMS model, input data and parameterization

2.4.1 GEMS model overview

The General Ensemble biogeochemical Modeling System (GEMS) was developed
from the CENTURY model (Metherell et al., 1993) to enable integration of spatially
explicit GIS data, including land cover, soils, climate, and land management practice
information (Liu et al., 2008). CENTURY is an established plant-soil ecosystem model
that simulates the dynamics of carbon, nitrogen, and phosphorus in various ecosystems
including grassland, forest, savanna, and crop systems (Metherell et al., 1993; Parton et
al., 2004). The input parameters comprise site specific biophysical data, plant
characteristics, and management data, including monthly precipitation, monthly
maximum and minimum air temperature, soil texture, bulk density, drainage, water
holding capacity, cropping systems, fertilization, cultivation, harvesting, grazing, tree
removal, and natural disturbances such as fire (Parton et al., 2004; Liu et al., 2004).
GEMS couples CENTURY with various spatial databases to simulate biogeochemical
cycles over large areas (Liu et al., 2004, Liu et al., 2008).

GEMS consists of three major components: an encapsulated ecosystem
biogeochemical model (i.e., CENTURY), a data assimilation system (DAS), and an
input/output processor (I0P). GEMS uses a Monte-Carlo based ensemble approach to
incorporate the variability of state and the driving variables of the underlying

biogeochemical models into simulations. Geographic information system software (ESRI,
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2007) are used to group pixels that have the same combination of spatially explicit input
data values. Each combination is described by a joint frequency distribution (JFD) that is
used by the DAS to relate the spatially explicit data and model input parameters using
look-up-tables (Liu et al., 2004). The IOP incorporates the assimilated data to the
modeling processes and in return writes the selected output variables to a set of output
files after each model run. The main output variable of interest for this study is the total
soil organic carbon (SOC) (gCm™) in the top 0—20 cm soil layer. Soil organic matter is a
key indicator of soil quality and is most usually determined by application of conversion
factors to estimates of the soil organic carbon to some prescribed depth (Lal, 2004). The
GEMS model includes three soil organic matter pools (active, slow and passive) with
different potential decomposition rates of turnover: fast turnover (active SOM),
intermediate turnover (slow SOM) and slow turnover (passive SOM) (Metherell et al.,

1993).

In this study, 20 repeat GEMS model runs for each of 1081 JFDs were computed to
incorporate the uncertainty of the input data and to provide stable spatially explicit soil
organic carbon (SOC) estimates (Liu et al., 2004; Liu et al., 2008). Similarly, above
ground net primary production (NPP) (gCm™ year™) estimates were derived to check that
the SOC and NPP values were plausible and spatially coherent. The GEMS model inputs
are described below for the spatially explicit input data and the GEMS look up table
parameterizations. In this study only the sensitivity of GEMS modeled SOC to land cover
land use (LCLU) classification uncertainties are examined. Errors in the other input data

and model parameterizations are not explicitly examined. Although, errors in the
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vegetation biomass and land management parameterizations are likely to be correlated to
LCLU errors, other errors may change in space and time in ways that are only weakly

correlated to LCLU.

2.4.2 GEMS spatially explicit input data

2.4.2.1 Land Cover Land Use (LCLU) data
Spatially explicit 28.5m LCLU maps representing the year 2000 were derived by
multiple classifications of the Landsat ETM+ satellite data using a number of approaches

described in detail in Section 5.

2.4.2.2 Climate data

Spatially and temporally explicit climate data were defined using 37 years of
monthly average precipitation and minimum and maximum air temperature data defined
in 0.05 degree grid cells (Hutchinson et al., 1996) nearest neighbor resampled to the
28.5m Landsat pixel dimensions. These monthly data were available for the period 1960-
1996 and were used to “spin-up” the GEMS model to 1900 equilibrium, and then to run
the GEMS model from 1990 to 2000 and to run the GEMS model for three future climate
scenarios from 2000 to 2052. The future climate scenarios (no change, low and high
change) were developed following the approach developed by Hulme et al. (2001) who
assessed possible future (2000-2100) changes in temperature and rainfall for Africa using
seven global climate models. The Hulme et al. (2001) approach and results are

considered (Tan et al., 2009) to be compliant and comparable with those from the IPCC
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Fourth Assessment Report (Christensen et al., 2007). Monthly climatologies of the 1960-
1996 precipitation and minimum and maximum air temperature data were derived (i.e. 12
monthly values per 28.5m Landsat pixel). The no climate change scenario (NCCS)
simply used the same monthly values of these data for each month of 2000 to 2052. The
low climate change (LCCS) and high climate change (HCCS) scenarios were defined by
weighting the monthly climatology values using the following equations derived from

Hulme et al. (2001) for the study area:

Low Climate Change Scenario (LCCS):

Temperature: change (°C) = 0.0133*year — 26.6 @
Precipitation: change (%) = -0.25*year + 500 2

High Climate Change Scenario (HCCS):
Temperature: change (°C) = 0.06*year — 120 3)
Precipitation: change (%) =-0.55*year + 1100 4

where year is set from 2000 to 2052. The additive constants in the above equations
ensure that the LCCS and HCCS values are equal to the NCCS values in year 2000. In
this way under the low climate change scenario by 2052 the temperature is 0.69°C
warmer with 13% less precipitation, and under the high climate change scenario by 2052
the temperature is 3.12°C warmer with 28.6% less precipitation. We note that these
scenarios do not model inter-annual variability in precipitation and minimum and
maximum air temperature data, which is a limitation but not a concern for the purposes of
this sensitivity study, and is the same approach used by Liu et al. (2004) and Tan et al.

(2009) to prescribe climate scenarios in studies in Ghana and Senegal.
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2.4.2.3 Soil, drainage and water holding capacity data

A map of static soil information was extracted from a Senegalese 1:500,000
vector soil atlas defined with 168 soil units (Stancioff et al., 1986). Soil characteristics
were defined for the 45 soil units falling in the study area using a look up table with
respect to texture (i.e., factions of sand, silt, and clay), drainage state, and water holding
capacity. Sand fractions varied from 51% and 87%, silt fractions from 11% to 38%, clay
fractions from 5% to 15%. The drainage state varied from poorly drained (=0) to overly
well drained (=5), and the water holding capacity varied from high (clay=5) to low

(sand=1).

2.4.2.4 Potential Natural Vegetation data

A static potential natural vegetation (PNV) map for 1900 was needed to run the
GEMS model to equilibrium. In the absence of a PNV for Senegal, the earliest available
vegetation map (Stancioff et al., 1986) developed by visual interpretation of 1985
Landsat data supplemented by intensive field survey was used. The map was nearest
neighbor resampled to the 28.5m Landsat pixel dimensions, assigning to each output
28.5m pixel the value in the input data set nearest its centre. This map is considered as

the most authoritative in its domain for Senegal for the 1980’s (Tappan et al., 2004).

2.4.3 GEMS look-up-table parameterization
Vegetation biomass and land management practices were parameterized using

look-up-tables related to the derived Landsat land cover land use (LCLU) classification
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data. Joint frequency distributions of the look-up-table variables values for each of the
Landsat LCLU classes were developed following established GEMS conventions (Liu et

al., 2004).

2.4.3.1 Vegetation biomass parameterization

Vegetation attributes required for the model parameterization were synthesized
from an inventory of soil and biomass samplings conducted in Senegal during the last 20
years (CSE, 2004; Woomer et al., 2004b; Tschakert et al., 2004). Above-ground biomass
(trees, herbs, and litter) and their carbon stocks were calculated using allometric formulae
(Woomer et al., 2004a; Brown, 1997). The root biomass of trees and herbs were
estimated as 0.35 and 0.15 of the above-ground biomass, respectively, based on field
observations (Woomer et al., 2004a). The proportion of carbon in all biomass pools was

set as 0.47 (Woomer et al., 2004a).

2.4.3.2 Management practices

Management practices that affect carbon dynamics were used: crop composition,
crop rotation probability, temporal changes of harvest practices, cropping practices
(including plowing and selective cutting), fertilizer use, fallow probability and fallow
length, fire frequency, and frequency and intensity of grazing. These practices were
compiled from annual agricultural acreage and yield statistics, and livestock census data
defined by Senegalese administrative units (départements) (CSE, 2002) and from
information collated in previous studies (Touré et al., 2003; Manlay et al., 2002; Tchakert

et al., 2004a). The management practices are summarized in Table 1 and were considered
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in terms of non-arable (including pastoralism) and arable land uses defined by the
Landsat classified LCLU class. The main crops grown are millet, sorghum, and
groundnuts. Fallow lengths were set as 1-5 years with successive 5-10 years of cropping.
Non-subsistence agriculture was assumed to have started in 1920 with current mineral
fertilizer use varying from 0 to 300 kg/ha (Tschakert et al., 2004). Before this date, the
study area was assumed to be savanna with low to moderate grazing (little influence on
plant production) that rose to current high grazing rates of 12 to 30 tropical livestock
units per km? (CSE, 2002), with an assumed linear effect on plant production (Woomer et

al., 2004a).

Table 1 Summary of management practices used for the GEMS model parameterization.
The crop rotation probabilities should be read horizontally from time 1 to time 2; each
row sums to 1

Savanna

Grazing Moderate to high grazing intensity all year

Fire Once every year in February

Agriculture

Growing season June to September

Crop composition Millet, sorghum, groundnuts

Crop / fallow ratio (year) | (5—10)/(1-5)

Tree removal Clear cut

Fertilizer Low to moderate use of NPK fertilizer

Cultivation Cultivation with cultivator tool (hoe) in July-September

Harvest Harvest with 90% straw removal in October

Grazing Winter grazing November — December

Crop rotation e 2

probabilities time 1 Fallow Millet Sorghum | Groundnuts
Fallow 0.50 0.10 0.15 0.25
Millet 0.02 0.45 0.00 0.53
Sorghum 0.00 0.00 0.55 0.45
Groundnuts | 0.06 0.34 0.00 0.60
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2.5 Landsat Satellite Data Classification

The six 28.5m reflective, and the two 57m thermal (low and high gain) bands
nearest neighbor resampled to 28.5m were classified together as described below. Clouds
and cloud shadows were visually identified (< 1% of the image) and masked from both
Landsat acquisitions and were not classified. The dry and wet season Landsat data were

classified together, rather than independently.

2.5.1 Landsat LCLU Classification Scheme and Training Data

The state of the practice for automated satellite classification is to adopt a
supervised classification approach where samples of locations of known land cover
classes (training data) are collected. The optical and thermal wavelength values sensed at
the locations of the training pixels are used to develop statistical classification rules,
which are then used to map the land cover class of every pixel (Brieman et al., 1984;
Foody et al., 2006). Supervised classification results depend on the appropriateness of the
LCLU class nomenclature and on the quality of the training data used.

Table 2 summarizes the nine LCLU classes and the number of Landsat training
pixels for each class. These nine classes were selected by examination of pre-existing
land cover maps including a land cover map of the north of Senegal generated by the
Centre de Suivi Ecologique (CSE, 2002) and were selected to ensure that the classes were
mutually exclusive and that every part of the study area could be classified into one and
only one class (Anderson et al., 1976). The CSE land cover map used the Yangambi
vegetation classification scheme that contains 25 vegetation classes defined according to
their physiognomy (i.e. structure and form of vegetation groups) (Monod, 1956;

Trochain, 1957). The Yangambi scheme predates by two decades the availability of



59

satellite data, and the different Yangambi vegetation classes were not always spectrally
unambiguous from one another in the multi-date Landsat data. For these reasons several
of the Yangambi classes were combined and three vegetation classes, savanna grassland,
mangrove and wetlands, were considered. In addition, the study area includes non-
vegetated surfaces not considered in the Yangambi scheme, and the classes water, bare
soil, rainfed agriculture, mud flats, and irrigated agriculture) were identified based on our
expert knowledge of the study area and multi-annual field visits.

Training pixels for each class were selected by visual analysis of the co-registered
dry and wet season 2002 ETM+ imagery, augmented by our expert knowledge of the
study area including information gathered during multi-annual field visits. Only training
pixels that could be unambiguously identified were collected. A total of 11,717 Landsat
28.5m training pixels were selected (Table 2). Ideally, the training data should be
representative of the area classified and of the classes in the classification scheme,
although there is no statistical procedure to define a suitable number and spatial
distribution without a priori information concerning the area (Stehman, 1997; Foody et
al., 2006). Great care was taken in the training data collection. The land use-related
classes (irrigated agriculture, rainfed agriculture, plantation forest) were the most difficult
to reliably collect training data for. Irrigated agriculture is a unique characteristic of the
Senegal River Valley and was interpretable on the Landsat data owing to the patterns of
irrigation channels within and adjacent to agricultural fields. The peanut basin is the
foremost rainfed agriculture area of Senegal, and polygonal rainfed agricultural fields

were distinguishable by differences between the wet and dry season Landsat acquisitions.
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Plantation forest in the Niayes ecoregion forms a distinctive strip observable on the

Landsat data.

Table 2 Description of the 9 land cover land use (LCLU) classes and the number of
training pixels used for the classification.

Code

LCLU class

Definition

Training pixels

1

Plantation
Forest

Pine Casuarina equisetifolia plantation
forest known only to occur in the Niayes
coastal ecoregion.

113

Water

Permanent inland water (rivers, lakes);
defined by visual interpretation of dry and
wet season Landsat ETM+ data.

627

Bare Soil

Natural areas devoid of vegetation; defined
by visual interpretation of dry and wet
season Landsat ETM+ data.

280

Rainfed
agriculture

Agricultural fields which crop development
relies primarily on natural rainfall; defined
by visual interpretation of dry and wet
season Landsat ETM+ data and using
contextual knowledge.

2,150

Wetlands

Areas inundated or saturated by surface or
ground water in a permanent or temporary
basis to support a prevalence of vegetation
adapted for life in saturated conditions;
defined after Yangambi classification.

922

Mangrove

Trees and shrubs that grow in saline coastal
habitats; defined after Yangambi
classification.

72

Mud flats

A mud area devoid of vegetation; seasonally
inundated; defined by visual interpretation of
dry and wet season Landsat ETM+ data.

149

Irrigated
agriculture

Agricultural fields in proximity to the
Senegal River and to artesian wells; defined
by visual interpretation of dry and wet
season Landsat ETM+ data and using
contextual knowledge.

151

Savanna
Grassland

Open savanna with annual grasses and
scattered trees or shrubs (<10 % of cover);
defined after Yangambi classification.

7,253

Total

11,717
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Settlements contain different LCLU classes and consequently are difficult to
classify reliably (Barnsely and Barr, 1997; Sun et al., 2003). This was particularly true for
the rural villages occurring across the study area, which tended to be small and
heterogeneous relative to the Landsat 28.5m pixel size. Consequently, all of the
settlements were screen digitized manually and were not considered subsequently in the

carbon modeling.

2.5.2 Classification Approaches

The Landsat ETM+ data were classified using bagged decision tree approaches.
Decision trees are hierarchical classifiers that predict class membership by recursively
partitioning data into more homogeneous subsets (Breiman et al., 1984). Trees can accept
either categorical data in performing classifications (classification trees) or continuous
data (regression trees). They accommodate abrupt and non-monotonic relationships
between the independent and dependent variables and make no assumptions concerning
the statistical distribution of the data. Currently, bagged decision tree classifiers are the
state of the practice approach for supervised satellite data classification (Doan and Foddy,
2007; Hansen et al., 2008). Bagging tree approaches use a statistical bootstrapping
methodology to improve the predictive ability of the tree model and reduce over-fitting
whereby a large number of trees are grown, each time using a different random subset of
the training data, and keeping a certain percentage of data aside (Breiman, 1996).

In this study, both hard and soft supervised classification approaches were

undertaken. Classifications are described as “hard” when each pixel is classified into a
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single class category, i.e., full membership of a single class is assumed, and as “soft”
when each pixel may have multiple partial class memberships (Foody, 2000).

Thirty bagged classification trees were generated, each time, 25% of the training
data were used to generate a tree, and the remaining 75% were used to assess the
classification accuracy. The 25% proportions were sampled at random with replacement.
To limit overfitting, each tree was terminated using a deviance threshold: additional splits
in the tree had to exceed 1% of the root node deviance or the tree growth was terminated.
For each of the 30 trees, a soft classification result was generated defining for each 28.5m
Landsat pixel the probability of it belonging to each of the nine LCLU classes.

A hard decision tree classification was generated from the 30 soft classifications.
Each soft classification was converted to a hard classification by assigning to each pixel
the class with the highest probability, and then assigning the single most frequently
occurring class category over the 30 classifications (Breiman, 1996; Bauer and Kohavi,
1999). When the maximum probability corresponded to more than one class, one of the
classes was selected randomly. The number of unique classes that a pixel was

independently classified in this way over the 30 trees was also recorded.

2.5.3 Classification Accuracy Assessment

The ensemble classification accuracy of the 30 soft decision tree classifications
was quantified using a confusion matrix based statistical method. The confusion matrix
is a two dimensional matrix composed of n columns and rows, where n is the number of
classes, and each column represents the number of instances of a predicted (i.e.
classified) class and each row represents the number of instances of an actual true class

(Congalton et al., 1983). The diagonal of the confusion matrix records the agreement
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between the “classified” and the corresponding “truth”. The off-diagonal records the
disagreement. Conventional confusion matrix accuracy assessment approaches are
inappropriate for application to soft classification results (Foody, 2000). Consequently a
“soft-to-hard” confusion matrix generation methodology was developed following the

method of Doan and Foody (2007).

Recall that each of the 30 classification trees was generated from 25% of the
training data sampled at random with replacement. In the accuracy assessment, first each
classification tree was used to classify the remaining (“out-0f-bag”) 75% of the training
data, deriving a vector of class probabilities for each out-of-bag pixel (Breiman, 1996).
Then a single confusion matrix was generated from the 30 vectors of class probabilities.
Throughout the 30 vectors of probabilities, each pixel was assigned to the LCLU class
with the maximum probability. If several classes had the same probabilities then one
class was selected at random.

Conventional accuracy statistics were then derived from the “soft-to-hard”
confusion matrix. The percent correct, was calculated by dividing the total number of
pixels correctly classified by the total number of pixels in the training data. The Kappa
coefficient was also calculated as it provides another measure of overall classification
accuracy, but that uses all the elements of the confusion matrix to compensate for chance
agreement, although kappa values may be biased in areas with uneven proportions of the
different classes (Stehman, 1997, 2004; Foody, 2004). The producer’s and the user’s
accuracies were computed to assess the accuracies of each class (Foody, 2002). The

user’s accuracy Was calculated by dividing the number of all correctly classified pixels of
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a class by the sum of all pixels which had been assigned to that class; it indicates the
probability that a pixel classified to a given class actually represents the reality on the
ground (Congalton, 1991). The producer’s accuracy was calculated by dividing the
number of all correctly classified training pixels of a class by the sum of training data
pixels for that class; it indicates the probability of a training pixel being correctly

classified (Congalton, 1991).

2.6 Carbon Modelling and Sensitivity Analysis Methodology

2.6.1 Carbon Modelling

The GEMS model was used to estimate soil organic carbon SOC (gCm™) in the
top 0-20 cm soil layer and also above ground net primary productivity (NPP) (gCm™
year™). In this study we assumed that human disturbances in the study area were
negligible before 1900 and that consequently carbon stocks and fluxes were at near
equilibrium conditions in 1900. This is primarily justified since colonial impacts on
Senegalese land use practices in the early colonial period were limited to small urban
settlements and non-subsistence arable practices had largely not been developed (Gellar,
1976; Tschakert et al., 2004). Estimates of carbon stocks and fluxes in the study area in
1900 were obtained by running the model for 1500 years to a 1900 equilibrium (Liu et
al., 2004; Tan et al., 2009) using the potential vegetation map, the 1960-1996 climate
data, and the contemporary soil and drainage data described in Section 4.

The model was run from 1900 to 2000 using the 1900 carbon estimates to
initialise the post-1900 model runs. The land cover of the study area was characterized in
1900 by the potential natural vegetation map and in 2000 was characterized by the

Landsat classifications. The historical trajectory of land cover and land management
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between 1900 and 2000 is unknown, and so we assumed a linear change as a best
estimate and following the approach used by other researchers (Liu et al., 2004, Liu et al.,
2008 and Tan et al., 2009).

The GEMS model was run from 2000 to 2052 for the three climate change
scenarios described in Section 4.2.2. The GEMS model was run independently
parameterizing the 2000 land cover land use and associated land management
parameterization (Table 1) from the 30 Landsat soft classifications and the single hard
Landsat classification derived from the 30 soft classifications. These 31 runs were each
repeated for the no, low, and high climate change scenarios.

We assumed there was no LCLU change after 2000 in order to assess only the
sensitivity of the GEMS model outputs to the LCLU classification uncertainties under the
different climate scenarios. Moreover, prediction of future LCLU is difficult, not least
because even if appropriate statistical LCLU change trend data existed, it may not capture
future changes in LCLU driving forces, such as economic and policy modifications,
acting at varying scales (Moss et al., 2010). Further, as LCLU in the study region is
extensively soil moisture limited, future LCLU scenarios can only be meaningfully
developed when coupled with future climate scenarios. This will be examined in future

research that is not described here.

2.6.2 Soil Organic Carbon Assessment & Sensitivity Analysis
Soil organic carbon (SOC) assessment and sensitivity analyses were performed to
explore the variability imposed by the different land cover classification approaches for

the three different climate scenarios. For the hard Landsat classification, where each
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28.5m Landsat pixel is assigned to only one LCLU class, the SOC for each pixel and

simulation year and climate scenario was defined as:

SOCyear,scenario(il J) = Cyear,scenario,class(i’ J) (5)

where SOCyear scenario(i,]) 1S the SOC estimated at pixel column and row (i,j) and
Cyear,scenario,class(1,]) 1S the GEMS modeled SOC at that pixel assuming that the pixel is
entirely LCLU class class. The net primary productivity (NPP) was similarly derived for
each hard classification pixel so that the GEMS NPP could be compared to the SOC data
to ensure the estimates were plausible and spatially coherent.

For each soft classification, where the probability of class membership is stored at

each pixel, the SOC for each pixel was defined as:

SOCyear,sceanrio(il J) = Z Cyear,scenario,class(i’ J) PZOOO,cIass
class=1 (6)

n
Z I32000, class — 1

class=1

where SOCyear scenario(l,]) 1S the SOC estimated at pixel column and row (i,j), Cyear, class(i.])
is the GEMS modeled SOC for that pixel assuming all the pixel is entirely class class,

and P20, class 1S the soft classification probability of the pixel belonging to class class.

2.7 Results

2.7.1 LCLU classification scheme and Classification Accuracy Assessment
Table 3 shows the ‘soft-to-hard’ confusion matrix results for the 9 LCLU classes.

The classification accuracies tabulated in Table 3 provide an assessment of the ensemble
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classification accuracy of the 30 soft decision tree classifications and so also indicate the

hard classification accuracy as it is derived from the 30 soft classifications. The percent

correct and Kappa were 97.79% and 0.98 respectively. The producer’s and user’s

classification accuracies were greater than 90% for all the classes except for the wetlands,

irrigated agriculture and mangrove classes. No class was misclassified as another by a

significant amount - the greatest misclassification was 0.19% between the rainfed

agriculture and savanna grassland classes. These classification accuracies are high and

reflect what we expect is the best classification typically achievable for the study area.

Table 3 Soft-to-hard confusion matrix results for the 9 land cover land use classes. The
cell values report percentages of the total area; a total of 305 428 pixels were considered.
The percent correct is 97.79% and Kappa-coefficient is 0.98. Grey fields, along the
diagonal, represent for each class, the percentage correctly classified. The classes are: 1.
Plantation; 2. Water; 3. Bare soil; 4. Rainfed agriculture; 5. Wetlands; 6. Mangrove; 7.

Mud flats; 8. Irrigated agriculture; 9. Savanna grassland (Table 2).

Classification

Row Producer's
1 2 3 4 5 6 7 8 9 Accuracy
Total
(%)
1 3.30 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.02 | 0.00 3.4 98.4
2 0.00 | 13.94 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 14.0 99.8
3 0.00 | 0.00 | 1.43 | 0.01 | 0.00 | 0.00 | 0.02 | 0.00 | 0.02 1.5 96.1
True 4 0.00 | 0.00 | 0.02 | 6.54 | 0.00 | 0.00 | 0.01 | 0.00 | 0.214 6.7 97.4
Class 5 0.02 | 0.00 | 0.00 | 0.00 | 1.04 | 0.04 | 0.04 | 0.05 | 0.07 1.3 82.0
6 0.01 | 0.00 | 0.00 | 0.00 | 0.05 | 0.03 | 0.00 | 0.01 | 0.00 0.1 35.1
7 0.00 | 0.00 | 0.05| 0.03 |0.01|0.00|4.06|0.01| 012 4.3 94.8
8 0.02 | 0.00 | 0.00 | 0.00 | 0.06 | 0.01 | 0.02 | 1.00 | 0.04 1.2 86.7
9 0.00 | 0.00 | 0.01|0.19|0.06 |0.00|0.13|0.08|67.21| 67.7 99.3
Column
Total 3.4 13.9 1.5 6.8 1.3 0.1 4.3 1.2 67.6 100
User's
Accuracy | 98.4 | 100.0 | 94.1 | 96.5 | 81.9 | 36.5 | 94.7 | 85.7 | 99.4

(%)




68

Figure 1 shows the hard decision tree classification where each pixel is classified as one
of the 9 LCLU classes. The classification indicates that in the study area, the dominant
land cover is savanna grassland (61.5% of the area), followed by rainfed agriculture
(20.58%), and then mud flats (5.67%), wetlands (4.92%), irrigated agriculture (3.25%),

water (2.93%), plantation forest (0.70%), bare soil (0.44%), and mangrove (0.01%).

The hard classification was defined from the 30 soft classifications, assigning at each
pixel the single most frequently occurring class category over the 30 classifications using
a voting procedure. Pixels where all 30 soft classifications agreed are more likely to be
reliable than those where there was disagreement. Figure 2 shows the number of unique
classes (maximum 9) that a pixel was independently classified as over the 30 decision
tree classifications. Approximately 82% of the pixels were classified into no more than 2
classes with 55% classified as one class and 27% as two classes. The least reliable areas,
classified into 3 classes or more, occurred predominantly in areas classified as wetlands,
mud flats, bare soil, irrigated agriculture, and mangroves; these classes also had the
lowest producer’s and user’s accuracies (Table 3). Varying water levels present in all of
these cover types may confound their discrimination, which is not unexpected when
passive optical wavelength satellite data are classified (Ozesmi and Bauer, 2002). In
addition, the peanut basin agricultural expansion zone in the South West of the study
area, composed of a mix of savanna and rainfed agriculture, was less reliably classified.
This is most likely because of the presence of abandoned rainfed agricultural fields in this
region that are used for intermittent grazing and can physically resemble grassland

(Tappan et al., 2004; Tschakert et al., 2004).
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Figure 2 The “reliability” of the hard decision tree classification results shown in Figure
1. For each pixel the number of unique classes (maximum 9) that it could be
independently classified as over the 30 decision tree classification runs is shown. Pixels
reporting a value of 1 were always classified as one particular LCLU type, whereas pixels
reporting values of 5-7 were variously classified into between 5-7 LCLU types. White
shows unclassified (water bodies, clouds, cloud shadows, settlement areas, or no Landsat
data)

2.7.2 Year 2000 Carbon Assessment and Land Cover Classification Sensitivity

Analysis

2.7.2.1. Hard decision tree classification SOC and NPP model results
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Figure 3 GEMS soil organic carbon (SOC) model output for 2000 using the 9 class
28.5m Landsat hard decision tree classification illustrated in Figure 1 and the
corresponding spatially explicit model inputs for the 9 LCLU classes. White shows areas
where no SOC was modeled (water bodies, clouds, cloud shadows, settlement areas, or
no Landsat data).

Figures 3 and 4 illustrate year 2000 GEMS SOC in the top 0-20 cm soil layer and
the above ground NPP respectively. The data were estimated as equation (5) using the 9
LCLU class hard Landsat classification illustrated in Figure 1 and using the
corresponding spatially explicit GEMS model inputs for the 9 classes under the no
climate change scenario. Some spatial discontinuities are evident and are due to changes
in certain GEMS input data, including the soil and climate data that are defined at coarser

spatial resolutions than the 28.5m Landsat pixel dimensions.
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Figure 4 GEMS net primary productivity (NPP) model output for 2000 using the 9 class
28.5m Landsat hard decision tree classification illustrated in Figure 1 and the
corresponding spatially explicit model inputs for the 9 LCLU classes. White shows

areas where no NPP was modeled (water bodies, clouds, cloud shadows, settlement areas,
or no Landsat data).

Table 4 summarizes the mean SOC and NPP for the 9 LCLU classes defined by
the hard decision tree classification. The mean class SOC values range from 480.2 gCm’
2 (Bare soil) to 1487.5gCm™ (Irrigated agriculture) with a mean study area SOC of
1219.3gCm™ or 12.193 MgCha™ which is in general agreement with other worker’s
Senegalese estimates (Touré, 2002; Manlay et al., 2002; Touré et al., 2003; CSE, 2004).
Owing to the spatial differences in GEMS input data, within a given LCLU class, SOC

values vary considerably. Thus, for Bare soil, SOC values range from a minimum of 358
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to a maximum of 1491 gCm?; while for Irrigated agriculture they range from 417 to 4138
gCm™. In general, higher SOC values (Figure 3) occur where NPP is higher (Figure 4).
The mean study area NPP is 185.1 gCm™ year™, which is in agreement with the results of
Parton et al. (2004) who estimated NPP values up to 200 gCm year™ in this region using
the CENTURY model and coarser 10km resolution input data. Similar differences of

NPP values are also noted within LCLU classes.

Table 4 Comparison of the minimum, mean and maximum SOC (Figure 3) and NPP
(Figure 4) simulated for the 9 LCLU classes using the year 2000 hard classification
(Figure 1). Only pixels where SOC and NPP was modeled are considered (i.e., not water
bodies, clouds, cloud shadows, settlement areas, or where there was no Landsat data).

SOC NPP
LCLU class (gC/m?) (gC/m?/year)

Min Mean Max Min Mean Max
Plantation forest 452 1190.32 1525 0 162.55 756
Bare soil 358 480.22 1491 0 11.28 118
Rainfed agriculture 518 1441.5 2655 14 295.39 596
Wetlands 262 1094.6 2088 8 113.93 258
Mangrove 455 1010.11 1573 8 170.09 412
Mud flats 353 537.63 1537 0 45.36 149
Irrigated agriculture 417 1487.47 4138 0 200.99 720
Savanna 411 1212.44 1543 0 159.98 243
Over the study area | 262 1219.3 4138 0 185.1 756
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Table 5 summarizes the LCLU class minimum, mean and maximum SOC defined by the
hard classification, and LCLU class percentage area, for each agro-ecological zone (Fig.
1). Comparison with the corresponding Table 4 study area LCLU class SOC statistics
reinforces that geographic differences in the GEMS input data introduce SOC variability
for any given LCLU class. For example, the savanna grassland class is highly prevalent
in all four zones (varying from 41% to 87%), and although the mean savanna SOC for the
entire study area is 1212 gCm (Table 4) the zonal mean savanna SOC varies from 1127
gCm (Senegal River Valley) to 1259 gCm™ (Peanut Basin) (Table 5). The agro-
ecological zone with the highest mean SOC is the Peanut basin (1344 gCm), followed
by the Sandy Ferlo (1214 gCm), Niayes (1124 g C/m?) and the lowest is the Senegal
River Valley (1046 gCm™). This pattern reflects the SOC of the predominant LCLU
classes. For example, the Peanut basin is predominantly rainfed agriculture (57%) and
savanna (41%) which have high mean study area SOC (Table 4) and the Senegal River
Valley zone includes the greatest proportion of mud flats (22%) which has nearly the

lowest mean study area SOC (Table 4).

2.7.2.2. Soft decision tree classification SOC results

There is insufficient space to illustrate the GEMS SOC derived as equation (6) for
each of the 30 soft decision tree classifications for the year 2000. The mean of the 30 soft
decision tree SOC estimates has a similar spatial pattern as the hard decision tree SOC
illustrated in Figure 3. Table 6 tabulates summary statistics of the 30 soft decision tree
SOC estimates. Over the study area the mean SOC is 1217.4 gCm-2 and is very similar to

the 1219.3 gCm-2 value estimated using the hard classification SOC (Table 4).
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Table 5 Comparison by agro-ecological zone of the minimum, mean and maximum SOC
(9gC/m?) (Fig. 3) for the 9 LCLU classes using the year 2000 hard classification (Fig. 1).
The LCUC percentage area in each zone is shown in parentheses. Only pixels where SOC
was modeled are considered (i.e., not water bodies, clouds, cloud shadows, settlement
areas, or where there was no Landsat data).

Agro-ecological zones

Senegal River

Niayes Peanut basin Sandy Ferlo Valley

LCLU classes Min | Mean | Max [ Min | Mean | Max | Min | Mean | Max | Min | Mean | Max

Plantation forest | 452 | 948.6 | 1522 | 1108 | 1373.0 | 1471 | 454 | 1296.1 | 1525 | 452 | 1164.3 | 1525
3.4% 0.01% 0.4% 1.2%

Bare soil 358 | 534.9 | 1491|358 |991.3 | 1487|370 | 688.0 | 1411|370 | 654.1 | 1478
6.1% 0.1% 0.01% 0.2%

Rainfed

agriculture 519 | 1385.8 | 1858 | 518 | 1422.3 | 1890 | 519 | 1390.2 | 2183 | 534 | 1407.2 | 2655
5.7% 56.7% 5.8% 0.1%

Wetlands 371 | 9486 | 1512|379 |1075.1 | 1471 | 353 | 1040.0 | 2064 | 262 | 1106.7 | 2088
0.9% 0.02% 2.4% 22.8%

Mangrove 455 | 969.3 | 1474 | _ _ _ o _ 483 | 1084.7 | 1573
0.01% 0.0% 0.0% 0.01%

Mud flats 353 | 6825 | 1535|358 | 9445 | 1522|353 | 669.7 | 1537 | 370 | 639.8 | 1537
7.4% 2.2% 2.0% 21.7%

Irrigated

agriculture 417 | 11746 | 1830 | 576 | 1328.2 | 1590 | 417 | 1507.7 | 4138 | 417 | 1356.8 | 2390
3.0% 0.03% 2.7% 12.7%

Savanna 411 | 12053 | 1538 | 416 | 1258.6 | 1541 | 411 | 1210.6 | 1543 | 411 | 1127.2 | 1543
73.6% 41.0% 86.7% 41.4%

Over the study

area 353 | 1124.5 | 1858 | 358 | 1344.3 | 1890 | 353 | 1214.3 | 4138 | 262 | 1046.1 | 2655

For each class there is considerable variation between the minimum and

maximum mean SOC statistics. For example, the irrigated agriculture class has mean

SOC varying the most of all the classes from a minimum mean SOC of 457.9 gCm™ to a

maximum mean SOC of 4138.0 gCm™. This is explained in Section 7.2.3. The class

mean SOC values in Table 6 are similar to the hard SOC classification equivalents
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tabulated in Table 4. For all classes the difference in the mean SOC between the 30 soft
and the hard classification SOC results is less than 4%, except for mud flats (31%), bare
soil (22%) and irrigated agriculture (8%), which were the most inconsistently classified

over the 30 soft classification trees (Figure 2).

Table 6 Summary statistics of the mean of the 30 soft decision tree SOC estimates for
year 2000. The statistics are summarized with respect to the 9 LCLU classes defined by
the hard decision tree classification (Figure 1). The mean study area mean SOC is 1217.4
gC/m®. Only pixels where SOC was modeled are considered (i.e., not water bodies,
clouds, cloud shadows, settlement areas, or where there was no Landsat data).

LCLU class Minimum Mean Maximum
Mean SOC Mean SOC Mean SOC
(gC/m?) (gC/m?) (gC/m?)
Plantation forest 445.0 1203.26 1785.57
Bare soil 374.0 588.83 1491.0
Rainfed agriculture 474.6 1411.63 2655.0
Wetlands 150.0 1099.39 2278.73
Mangrove 439.0 979.5 1588.97
Mud flats 365.0 706.47 2207.17
Irrigated agriculture 457.93 1366.51 4138.0
Savanna 412.0 1211.9 2714.0
Over the study area |150.0 1217.4 4138.0
2.7.2.3 SOC Sensitivity to Land Cover Classification

The SOC derived from the hard classification (Figure 3) for a given LCLU class
varies spatially due to spatial variation in the GEMS model inputs (soil, climate, land
management, etc.). The SOC also varies between the 30 SOC soft decision tree

classification estimates due to differences both in the LCLU classifications and to spatial
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differences in the GEMS model inputs. The 30 soft LCLU classifications are different
because of differences in the training data sampling which causes differences in the
LCLU class membership probabilities for each soft decision tree classification. For these
reasons the sensitivity of the GEMS SOC model is dependent not only on the LCLU
classification errors and the degree of generalization of the landscape into the LCLU
classes, but also on where the classes occur relative to the other GEMS model inputs.

To examine this sensitivity in more detail, Figure 5 shows a map of the coefficient
of variation (the standard deviation divided by the mean) of the 30 SOC soft decision tree
classification estimates. The coefficient of variation, instead of the standard deviation, is
used as it enables meaningful comparison between pixels that have markedly different
mean SOC values. The SOC coefficient of variation varies from less than 0.15, for the
majority of the study area, to more than 0.60. The highest SOC coefficient of variation
values occur for the less accurately classified classes described in Section 7.1 and
summarized in Table 3, i.e., for the bare soil, mud flats, wetland and rainfed agriculture
classes situated along the coast and in the northwest. In addition, higher SOC coefficient
of variation values occur in the peanut basin agricultural expansion zone in the south west
where the hard classification “reliability” results illustrated in Figure 2 shows several
classes per pixel. This is most likely because abandoned rainfed agricultural fields in this
region are used for intermittent grazing and can physically resemble other LCLU classes

such as savanna grassland (Tappan et al., 2004).
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Figure 5 The soil organic carbon (SOC) coefficient derived from the 30 soft decision tree
classification model runs. The coefficient of variation (standard deviation divided by
mean) is dimensionless. The 2000 Landsat data were classified 30 times into one of more
the 9 LCLU classes and the SOC modeled for the corresponding spatially explicit model
inputs for those classes. White shows areas where no SOC was modeled (water bodies,
clouds, cloud shadows, settlement areas, or no Landsat data).

Figure 6 shows histograms of the SOC coefficient of variation values for each
land cover land use class defined by the hard decision tree classification (Figure 1). The
less accurately classified classes, i.e., bare soil, mud flats, wetland and rainfed
agriculture, have more widely distributed SOC coefficient of variation values with more
than 20% of their pixels with SOC coefficient of variation values greater than 0.1. The

results shown in Figures 5 and 6 illustrate that satellite classification uncertainties impact
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the GEMS model results not insignificantly. Similar SOC coefficient of variation

histograms were observed for the SOC modeled under the low and high climate change

scenarios.
Plantation forest Bare soil Rainfed Ag. Wetlands
g _ _ - -
—
% - - - -
8 - - - -
8
<Or - - - -
8 - - - -
o i _ _
T T T 17711 T T T 1771 T T T T 71 T T T T 71

00 02 04 06

Mangrove Mud flats Irrigated Ag. Savanna

%

| N I BN B B B | | N I BN B B B | | N N BN B N B | | N N BN B N B |
00 02 04 06

Coefficient of variation

Figure 6 Histograms of the year 2000 SOC coefficient of variation (Figure 5) for each
land cover land use class defined by the hard classification (Figure 1).

2.7.3 1900 to 2052 Carbon Assessment and Land Cover Sensitivity Analysis under

Different Climate Change Scenarios

Figure 7 shows the mean SOC averaged over all the classified pixels in the study
area for the no climate change scenario plotted every 4 years from 1900 to 2052. The

open circles show the mean SOC from simulation using the 30 independent decision tree
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soft classifications; the orange filled circles show the mean of the 30 simulations. The
green filled circles show the mean SOC derived from the hard decision tree classification
carbon assignment approach. It is evident that from 1900 to 2000 the SOC is generally
decreasing, by about 32% from approximately 1800 gCm™ to approximately 1220 gCm?,
this is due to human land cover land use, with some perturbations in this trend due to the

growth and decay of the modelled vegetation.
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Figure 7 Mean GEMS modeled soil organic carbon (SOC) computed for the entire study
area under the no climate change scenario, from 1900 to 2052 at 4 yearly intervals, using
the 9 land cover land uses classes and different Landsat classification approaches. The
open circles show the mean SOC for each of the 30 independent bagged decision trees
computed using the soft classification-carbon assignment approach; the orange filled
circles show the mean across 30 soft classification simulations; the green filled circles
show the mean SOC derived simulations using the hard decision tree classification.
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Figures 8 a-c show the mean SOC computed over all the classified pixels in the
study area fo r the no, low, and high climate change scenarios plotted from 2000 to
2052. The SOC is estimated to decline from 2000 to 2052 under all climate change
scenarios by approximately 11%, 14%, and 24%, for the no (Figure 8a), low (Figure 8b),
and high (Figure 8c) climate change scenarios respectively. This trend has been observed
elsewhere in West African drylands when temperature increases and precipitation
decreases (Tan et al., 2009; Liu et al., 2004; Touré, 2002; Batjes, 2001). Summary
statistics of the mean study area SOC results illustrated in these figures are tabulated in
Table 7. These results reflect the spatial variability and uncertainty imposed by the
different 2000 Landsat classifications and the spatio-temporal sensitivity of the GEMS
model to that variability.

For all three climate scenarios, and for each simulation year, the mean study area
SOC obtained running GEMS with the hard decision tree classification (green filled
circles), is similar (within 4 gCm™) to the means of the 30 soft decision tree classification
model results (orange filled circles) (Figures 7 and 8). This is not unexpected as the hard
decision tree classification is generated by applying a voting procedure to the 30 soft
classification trees and demonstrates that the hard decision tree classification approach

does provide a representative single mean study area SOC estimate.
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Table 7 Summary statistics of the mean study area hard and soft decision tree (DT) soil
organic carbon (SOC) (gC/m?) model estimates illustrated in Figures 7 and 8, for the no,

low and high climate change scenarios, for selected years

i No climate Low climate | High climate
Carbon dynamics change change change
1900-2000 9 ge o
scenario scenario scenario
1900 1940 2000 2020 2052 2020 2052 2020 | 2052
SHSE? DT 1803.3 | 1470.6 | 1219.3 1138 | 1080.7 | 1129.3 | 1052.6 | 1104.8 | 931.5
Mean of 30
soft DT
SOC 1803.3 | 1471.1 | 1217.4 | 1135.4 | 1077.7 1128 | 1051.3 | 1103.2 | 929.7
estimates
Minimum
of 30 soft
DT SOC 1803.2 | 1465.3 | 1196.6 | 1117.5 | 1061.2 | 1108.8 | 1032.8 | 1083.4 | 911.3
estimates
Maximum
of 30 soft
DT SOC 1803.3 | 1474.2 | 1228.8 | 1145.1 | 1087.8 | 1139.8 | 1064.2 | 1114.6 | 941.2
estimates
Range of
30soft DT
Ssoti(r:nates 0.1 8.9 32.2 27.6 26.6 31.0 314 31.2 29.9
and (0.00) | (0.60) | (2.64) | (2.42) | (2.48) | (2.76) | (2.99) | (2.83) | (3.22)
percent of
mean (%)

The mean study area SOC for individual soft classifications varies for each

simulation due to their different training data sampling which causes differences in the

LCLU class membership probabilities and due to spatial differences in the GEMS model

inputs as discussed in Section 7.2.3. In 2000, for the no climate change scenario, the

mean study area SOC values vary over the 30 soft decision tree classifications from

1196.6 to 1228.8 gCm (Figure 8a, Table 7). This 32.2 gCm™ SOC range corresponds to

a variation of 2.6% of the mean study area hard decision tree classification SOC. This
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variation decreases in time to 26.7 gCm™ in 2052, equivalent to 2.5% of the mean study
area hard classification SOC, and similarly it decreases to 31.4 gCm™ (3%) and 29.9
gCm (3.2%) for the low (Figure 8b, Table 7) and high (Figure 8c, Table 7) climate
change scenarios. These results imply that using a state of the practice hard decision tree
classification approach with a 9 class LCLU classification scheme imposes a variability

of a maximum of 3.2% of the mean study area SOC.

2.8 Conclusion

Research has attested to the significance of land cover and land use (LCLU)
change on carbon dynamics (Scholes and Hall, 1996; Houghton et al., 1999; Lal, 2004;
Tieszen, 2004) and on the utility of biogeochemical models to simulate soil and carbon
biomass under different land management (Metherell et al., 1993; Batjes, 2001; Liu et al.,
2004; Tschakert et al., 2004). However, differences between LCLU data sources and
classification approaches, and errors in the LCLU data both in terms of classification
errors and the degree of generalization of the landscape into the LCLU classes, may
influence model outputs. Despite this, relatively few studies have examined this issue. In
this study, state of the practice bagged decision tree approaches for LCLU classification
of dry and wet season Landsat satellite data were used to assess the sensitivity of SOC
estimated using the spatially explicit Global Ensemble Biogeochemical Modeling System
(GEMS) under different climate scenarios. The approach could be utilized by other
biogeochemical models that use spatially explicit LCLU parameterizations. This study

was undertaken in northern Senegal, where satellite LCLU classification is particularly
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challenging because of the semi-arid landscape, and where the coupling between future
LCLU and climate change is poorly understood.

This research provides a new method to estimate the variability of SOC due to
satellite LCLU classification errors. The single hard decision tree Landsat classification
results, generated by applying a voting procedure to the 30 soft decision tree results,
typically provided mean study area SOC values within about 4 gCm™ of the mean of the
30 soft decision tree classification results. This is not unexpected, and demonstrates that
hard decision tree classification provides an appropriate approach to define a single
classification appropriate for GEMS modeling. The 30 SOC maps estimated
independently using the 30 different soft classifications provide data that were used to
quantify the variability of SOC imposed by satellite classification errors.

At the study area scale, considering the mean study area SOC, the variability of
SOC imposed by satellite classification errors was not high. In 2000 the mean study area
SOC values varied over the 30 soft decision tree classifications by 32.2 gCm™and
corresponded to 2.6% of the mean study area hard decision tree classification SOC. In
2052 this relative SOC variation was 2.5%, 3% and 3.2% for the no, low and high climate
change scenarios respectively. These variations are much less than the corresponding
11%, 14% and 24% declines from 2000 to 2053 in mean study area SOC modeled for the
no, low and high climate change scenarios respectively.

At local, pixel, scale the impacts of satellite classification errors can be very
apparent. The per-pixel coefficient of variation (the standard deviation divided by the
mean) of the 30 SOC soft decision tree estimates was used to quantify the pixel-level

spatial variability of SOC imposed by satellite classification errors. The highest
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coefficient of variations occurred for the least accurately classified classes and were not
negligible. In this study, more than 20% of the bare soil, mud flat, wetland and rainfed
agriculture pixels had SOC coefficient of variation values greater than 0.1 with some as
great as nearly 0.6. These high local-scale SOC variations are due to differences in the
satellite classification training data sampling, which causes differences in the mapped
LCLU class membership probabilities, and due to the interaction of these differences
with spatial differences in the other GEMS model inputs.

The findings of this study indicate that the high local variability of SOC due to
satellite classification errors should be taken into consideration, for example, using the
method described here. This is particularly important as local-scale SOC variations
imposed by satellite classification errors may obscure modeled temporal changes in SOC
due to climate influences that may be highly land cover specific. There are a number of
recent and planned spaceborne sensors with very high (<10m) spatial resolution (Norris,
2011) and in conjunction with next generation freely available Landsat and similar high
spatial resolution systems designed for land cover monitoring (Wulder et al., 2008, 2011)
they provide opportunities for high resolution LCLU biogeochemical model
parameterization and LCLU mapping uncertainty assessment.

This research has demonstrated a method to estimate the variability of GEMS
modeled SOC due to satellite classification errors. The method can be applied to other
biogeochemical models that use spatially explicit land cover land use (LCLU)
parameterizations by running the model with a single hard and multiple soft LCLU
classification inputs to infer model sensitivity. The Senegalese findings described in this

paper can only be generalized to other process based models by repeating the described
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method with the new model. This is because of the non-linear dependency of the GEMS
SOC estimates on LCLU and because, as we have demonstrated for specific LCLU
classes at the study area scale and for four agro-ecological zones, the SOC uncertainty
due to satellite classification errors is dependent not only on the LCLU classification
errors but also on where the LCLU classes occur relative to the other biogeochemical
model inputs.

As the goal of this study was to examine the sensitivity of GEMS modeled SOC
to land cover land use (LCLU) classification uncertainties, the impacts of errors
associated with the other GEMS spatially explicit input data and model parameterizations
were not considered explicitly. The best available data sets and parameterizations were
used. However, the degree to which all input data and model parameterization errors are
captured by the GEMS simulations and by the LCLU bagged decision tree classification

approach requires further research.
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