Agronomy Pamphlet #73

ANNUAL PROGRESS REPORT

NORTHEAST RESEARCH FARM

T6.2

December, 1962

EXTENSION

Plant Science

Watertown, South Dakota

INTRODUCTION

The Northeast Research Farm is utilized for testing variaties of several crops grown in the Northeast part of the state. Becare for the state of the

Recorded rainfall covering the period of April 1 through October 31 was the highest in the history of this station. A total of 25.6 inches fell during this period, which is 8.35 inches above normal. This above normal rainfall caused some soil erosion, and also necessitated replanting of some of the crops. The small grain crops suffered much damage, and in some cases had to be replanted. The replanted material did not produce as well as the early plantings.

A 5% increase in subsoil moisture has raised the content above the 1961 level, and prospects look favorable for a good crop season in 1963.

The temperatures averaged below normal for every month except October, which averaged 2.3 degrees above. Having low temperatures and high precipitation did not increase grain yields over 1961 but did help in the production of high hay tonnages.

A summer field day, July 12th, was attended by approximately 150 people and the interesting areas of the farm were discussed. There is no field day scheduled for 1963, but the farm is always open for observations and visitors.

NORTHEAST EXPERIMENTAL FARM COMMITTEE

Member		
F. Morris (Secretary)Cod:Harold HurlbutClassW. PetersonDayAlfred SkovlyDeugLyle KrieselGramOliver HeitsmeyerHam	Lily L Astoria t Summit in Estelline hall Britton	4

This report was prepared by the staff members of South Dakota State College as indicated in each section, and assembled by Q. S. Kingsley, Agronomy Department.

TABLE OF CONTENTS

	Page
Fertility and Cultural Practice Experiments	3
Legume Testing	4
Grass Testing	12
Small Grain Varieties	13 (
Sorghum	16
Corn	17
Soybeans	18
Crop Disease Control	19
Potatoes	21

2

FERTILITY AND CULTURAL PRACTICE EXPERIMENTS

Q. S. Kingsley and F.E. Shubeck

Table 1. Comparison of Legumes, Commercial Nitrogen and Fallow for Increasing Yields of Spring Wheat.

Preceding Crop	Pounds of Fertilizer Applied per acre to Wheat			Spring Wheat
or Treatment	N	P205	K20	Bu/A.
Oats	0	40	0	24.0
2 Oats	30	40	0	23.0
B Alfalfa for hay	0	40	0	29.1
A Red Clover for hay	0	40	0	29.3
Sweet Clover for seed	0	40	0	29.5
5 Sweet Clover fallow	0	40	0	27.6

L.S.D. at 5%

2.8

For experiment objectives, cropping sequence and other details, see Agronomy Pamphlet #53.

The data in Table 1 are the results of 6 separate rotations, all of which have wheat in the cropping sequence. The table was set up in such a way that attention would be focused on how the yield of the cash crop wheat was influenced by the preceding treatments and legumes.

Treatment number 1 is considered the check plot to measure nitrogen responses, therefore no commercial nitrogen or legumes were used in this rotation. Forty lbs. of P_2O_5 were applied to all plots so that possible soil deficiencies of phosphorus would not be a limiting factor.

In this year of above average rainfall, the sweet clover fallow treatment increased the yield of wheat about the same as the legume rotations without the fallow. In this wet year, all of the different legumes were effective for increasing the yield of the following wheat crop and there were no significant differences in favor of any one legume.

1961 Crop and Fertilizer Treatment	1962 Crop and Fertilizer Treatment	Inches of Available water to a depth of 5 feet * 4/19/62	Inches of available water to a depth of 5 feet * 8/15/62
•ats 30-40-0	Wheat 30-40-0	3.6	8.7
Alf hay 0-40-0	Wheat 0-40-0	1.9	6.0
Sweet Clover fallow			
0-40-0	Wheat 0-40-0	4.4	7.9
Flax Alf 0-40-0	Alf. hav 0-40-0	3.1	3.9

Table 2. Inches of Available Moisture Under Spring Wheat and Alfalfa

*In calculating inches of available water, the bulk density and wilting points were taken from a Kranzburg loam similar to that occurring at Watertom. The data in table 2 show again how a legume in the rotation will deplete the subsoil of moisture. Notice the low available moisture content on April 19, 1962 under wheat that followed alfalfa. The above average seasonal rainfall in 1962 conpensated for this initial handicap and the wheat yields in this plot were 29.1 bu/acre (see table 1).

The available soil moisture under alfalfa hay on Aug. 15, 1962 was considerably less than under wheat. Therefore, even in a relatively wet year it appears that if wheat follows alfalfa it will have a handicap of low subsoil moistureunless the seasonal rainfall is again sufficient to restore this deficiency. Here again we are trading soil moisture for legume nitrogen. When we have plenty of soil moisture to trade with, this can be quite profitable. But when soil moisture is scarce, this can be a costly trade. (see progress report for 1959, Agronomy Pamphlet #53).

Table 3. Residual Effect of Legumes and Annual Applications of Commercial Nitrogen on Yield of Corm

1960 Crop	1961 Crop			Lbs. of Fertilizer Applied per acre each year		Yield of Corn in 1962 Bu/acre	
			ĸ	P205	K20		
l Oats (check plot)	Wheat	Corn	0	40	0	45.4	
2 Qats	Wheat	Corn	30	40	0	46.5	
Alfalfa for hay	Wheat	Corn	0	40	0	47.6	
Red Clover for hay	Wheat	Corn	0	40	0	48.2	
S. Clover for seed	Wheat	Corn	0	40	0	49.3	
S. Clover fallow	Wheat	Corn	0	40	0	48.7	

This table was presented to show the residual value of including a legume in a rotation. Although the corn yield increases in the legume rotations were not statistically significant at the 5% point, the trend was apparent.

Table 4. Effect of Methods of Fertilizer Application and Weed Control on Yield of Flax

Lbs. N	per a P2 ⁰ 5	cre K ₂ 0	Method of Fert. application	Weed Control*	Yield of flax in Bu/acre
0	0	0	None applied	none	10.0
0	0	0	None applied	Weed Control	7.5
40	30	0	Drilled with seed	none	8.1
40	30	0	Drilled with seed	Weed Control	9.0
40	30	0	Disked in	noee	8.3
40	30	0	Disked in	Weed Control	9.2
40	30	Ō	Plowed under	none	9.3
40	30	0	Plowed under	Weed Control	9.5
20	15	0	Drilled with seed	none	9.2
20	15	Õ	Drilled with seed	Weed Control	6.1

* Weed control consisted of 1 lb/acre of Dalapon to control grassy weeds and 1/4 lb/acre of MCP for broadleaved weeds.

For this year, there were not flax yields above that of the check plot which

received no fertilizer and no weed control spray. The 1 pound rate of dalapon is to be reduced to 3/4 pound in 1963.

	1959 Crop 40 1b. P ₂ O ₅ /A	1960 Crop 60 1b. P205/A		ime of Plowing	1962 Crop in bu/acre
1.	Flax + Alfalfa	Alfalfa hay	Alfalfa hay	June 1961-after first hay crop	12.1 flax
2.	Flax + Alfalfa	Alfalfa h <mark>ay</mark>	Alfalfa hay	July 1961-after second hay crop	
3.	Flax + Alfalfa	Alfalfa hay	Alfalfa hay	Early the following spring-1962	
4.	Flax + Alfalfa	Alfalfa hay	Alfalfa hay	Spray to kill after 1st hay c plow in spring,	12.6 144
5.	Flax + Alfalfa	Alfalfa hay	Alfalfa hay	July 1961, afte: Ind. hay crop	

Table 5. Effect of Time of Plowing Legumes on Yields of Flax and Corn

This experiment was designed to solve the problem of how to get the fand back into production after alfalfa without taking a serious yield reduction in the first cash crop. When there is above average not sure this i not a seriou problem and the moisture conserving practices in the experiment had only minor effects on yield. However, with the climate of 1 61 and 1962, treatment 3 appeared to give a little more flax but this as not statistically significant at the 5% level.

An interes ing comparison can be made regarding the best crop to follow alfalit-a short seasch crop like flax or a long season crop like corn. At the presen prices Dec. 18, 1962) 12 bush 1s of fl x is about equal in value to 33 bu. of corn.

		Fertilizer Applied in 1961 and 1962	1961 Сгор	1962 Сгор	Wheat bu/acre
1.	Alfalfa for 5 years	0-40-0	flax	wheat	27.6
2.	Alfalfa for 4 years	0-40-0	flax	wheat	27.4
3.	Alfaffa for 3 years	0-40-0	flax	wheat	27.8
۱.	Alfalfa for 2 years	0-40-0	flax	wheat	29.2
	Flax + Alfalfa for 1 year		flax	wheat	21.2
5.	Corn	0-40-0	flax	wheat	28.5
7.	Corn	40-40-0	flax	wheat	30.5
G	D at 5% level.	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	3.2

Table 5. Residual Effect of Legume on Grain Yield

L.S.D. at 5% level.

* For alfalfa, the year planted was counted as one year, Example: plots with Alfaffa for 5 years would have Flax and alfalfa the first year and alfalfa hay for the next 4 years.

In this experiment, it appears that neither the legumes nor the commercial fertilizer increased the yield over the check plots where no legume or Commercial nitrogen was used. The yield of flax in 1961 was rather low so evidently, not much fertility was removed from the check plots that year.

Notice the low yield for treatment 5. This is condiderably less than the check plot. The reason for this is rather surprising and it nulifies, to a certain

5

estent, the measurement of the legume nitrogen recovery by the 1962 wheat crop. Treatment 5 had flax + alfalfa in 1960, flax in 1961 and wheat in 1962. This is the only treatment that had flax for 2 consecutive years. As a result the wild oats became a severe problem and reduced the yields. These were the only plots in this experiment that had wild oats and it occurred in all 4 replications. This was very noticeable at the field day tour and everyone there could easily pick out those particular plots from a considerable distance.

ALFALFA VARIETY TRIALS

M.D. Rumbaugh

Two alfalfa forage yield trials are currently being conducted at the Watertown station. Both tests were seeded in 1960 and differential stand losses have not yet occurred in either trial.

Table 7 reports the results obtained with varieties developed by a number of agricultural experiment stations. The recommended hay varieties, Ladak, Ranger, and Vernal have exceeded the average yield level of the test but are not significantly different from several other varieties. On the basis of previous tests, it is anticipated that the superiority of the recommended varieties will be demonstrated in future years as winter kill and disease reduce the stand and forage potential of many of the test entries.

Table 8. includes the yields of eight commercially developed strains and the check variety Vernal. Vernal has produced significantly more hay than five of the other entries.

Table 7

	Percent		Yiel	d (Dry To	ns/Acre)	_	
	Stand	1961		1962			Average
Varietv	5/4/62	2 cuts	lst Cut	2nd Cut	3rd Cut	Total	Total
Atlantic	99	2.18	1.83	1.83	1.07	4.72	3.45
Buffalo	100	1.91	1.58	1.79	1.07	4.43	3.17
CK	92	1.64	2.12	1.90	•40	4.42	3.03
Cody	99	1.68	1.64	1.68	1.01	4.33	3.00
Cossack	99	2.19	1.84	2.01	1.06	4.92	3.55
Culver	100	2.04	2.14	2.13	1.02	5.28	3.66
DuPuits	100	2.15	1.64	1.90	•95	4.49	3.32
Grimm	100	2.01	1.89	1.95	.98	4.82	3.42
Ladak	100	2.20	2.14	2.23	1.07	5.44	3.82
Lahontan	94	1.17	1.13	1.60	.86	3.59	2.38
Narragansett	100	2.28	1.88	2.23	.99	5.10	3.69
Nomad	99	1.72	1.88	1.86	.88	4.62	3.17
Ranger	100	2.02	1.79	1.96	1.16	4.90	3.46
Rambler	100	2.40	2.13	2.14	.69	4.95	3.67
Rhizoma	100	2.14	2.18	2.33	.97	5.48	3.81
Semipalatinsk	99	2.42	2.36	2.10	•66	5.12	3.77
Teton	98	2.00	2.11	2.26	.76	5.14	3.57
Vernal	99	2.24	2.10	2.14	1.05	5.30	3.77
Average	99	2.02	1.91	2.00	.92	4.84	3.43
L.S.D. (0.05)	N.S.	.29	.25	.17	.57	.36
	0.01)	N.S.	.38	.33	.23	.76	.48

Table 8

	Percent		Yield (Dry Tons/Acre)				
Variety	Stand 5/4/62	1961 2 Cuts	lst Cut	1962 2nd.Cut	3rd Qit	Total	Average Total
W.L. 200 W.L. 300 W.L. 400 W.L. HLK	100 99 94 100	1.76 1.88 1.52 2. 14	1.95 1.91 1.51 2.27	2.05 1.87 1.82 2.15	.96 .94 .88 1.00	4.96 4.72 4.22 5.42	3.36 3.30 2.87 3.78
N9=504 N9=503 N9=502	98 99 100	2.10 1.92 1.87	2.18 2.28 1.94	2.10 2.30 2.10	1.03 1.08 1.00	5.30 5.67 5.04	3.70 3.80 3.46
F.D. 100	100	1.89	1.88	2.07	1.05	5.00	3.44
Vernal	98	2.03	2.35	2.23	1.07	5.65	3.84
Average	99	1.90	2.03	2.08	1.00	5.11	3.50
L.S.D. (0.05) (0.01)		.25 N.S.	•26 •35	•20 •28	N.S. N.S.	•45 •60	.32 .44

SWEETCLOVER VARIETY TRIALS

M.D. Rumbaugh

Meather conditions at Watertown during the growing season of 1962 are exceptionally favorable for the development of forages. Table 9 reports the yields of sweetclover plots planted May 1, 1962, and harvested August 16, 1962. Only rarely can an average yield level of 3.59 oven-dry tons per acre be attained for first year growth. The performance of Goldtop and Madrid was quite satisfactory. These two varieties are recommended for South Dakota use on the basis of agronomic performance at a number of test locations. Comparative 5 data for forage yields in the second year of growth at Watertown are included in table 10.

An evaluation of the seed producing potential of sweetclover varieties at Watertown was initiated in 1961. Four-row plots were established with a row spacing of 1 foot. The center two rows of each plot were harvested and threshed by hand to minimize losses due to shattering. Pounds of seed per acre for each of the ten varieties harvested in 1962 are shown in table 11. Any two varieties not joined by a compon line are significantly different in yield capacity.

Goldtop and Madrid produced satisfactory, but not outstanding, seed yields. Denta was clearly superior to both of the yellow-flowered varieties. However, Denta was 38 days later in maturity than Madrid. The frost free period at Watertown in 1962 was unusually long. In a normal season Denta would likely be killed prior to full development of the seed crop. It is believed that Madrid and Goldtop are better adapted for seed production in the vicinity of Watertown than is Denta.

Variety		Yield Dry Tons Acre
Artic		2.94
Common White		3.86
Common Yellow		3.94
Cumino		2.08
Denta		3.66
Evergreen		3.69
Goldtop		4.22
Madrid		3.76
M. officinalis		3.08
Spanish		4.65
	Average	3.59
	d' (0,05)	.68
	(0.01)	.84
	C.V.	9.0%

Table 9.	First year for	age yields of sweetcl	over varieties at Watertown,	
	South Dakota.	Seeded May 1, 1962.	Harvested August 16, 1962.	

t. 1.5	Yield (Dry	tons/acre)	a survey and
Variety	1960	1961	Ver age
Common White	1.62	1.52	1.57
Common Yellow	1.88	1.72	1.80
Denta	1.28	.91 1	1.10
Evergreen	1.77	1.48	1.62
Goldtop	2.04	1.44	1.74
Madrid	1.60	1.69	1.74
M. officinalis	1.84	1.34	1.59
Spanish	1.77	1.43	1.60
TEST AVERAGE 2/	1.75	1.34	1.54
L.S.D.(0.05)	N.S.	.21	.43
(0.01)	N.S.	•29	.57

Table 10. Second year forage yields of sweetclover varieties at Watertown, Sputh Dakota.

1/ Almost completely defoliated by blister beetles/ 2/ Not all varieties known.

South Dakota Agricultural Experiment Station

Sweetclover Seed Yield Trial

Location: Watertown, South Dakota	Plot Size : 4' x 20'
Design: Randomized Block	Planting Date: May, 1961
Method of Seeding: V-belt drill	Replications: 4
Soil Type: Kranzburg	Years: 1962

Variety	Pounds Seed per	and the second se	Date of Hervest	Days earlier (-) or later (/) than Matrid
Evergreen	718	1	Sept. 26	/ 41
Denta	455	ł	Sept. 23	/ 38
Common Yellow	303		Aug. 16	0
M. Officinalis	295		July 26	-21
Span.l.sh	245	4	Aug. 28	/ 12
Common White	236	El .	Aug. 28	/ 12
Madrid	209	1	Aug. 16	0
Goldtop	185		Sept. 1	/16
Cumino	111	1	Sept. 5	/ 20
Artic	74		Aug. 19	73
Average	283			

GRASS TESTING

J. G. Ross

Tests of varieties of smooth bromegrass, intermediate wheatgrass and crested wheatgrass were established in 1957. These have been harvested for 5 years but since smooth bromegrass has recently encroashed on many of the crested wheatgrass plots, crested wheatgrass yields are not reported for 1962. New tests of these grasses were established in the fall of 1962. Yields of the different varieties are shown in Table <u>12</u>.

Yields of the 3 species have not differed a great deal, but crested wheatgrass hay is not as desirable since it tends to be somewhat coarser than bromegrass and intermediate wheatgrass. The early spring growth of crested wheatgrass makes it desirable as an early pasture.

Among the bromegrass varieties, Canadian Common yieldsd the least. No variety showed a decided superiority.

Greenar, A 12496 and Idaho #3 yielded less than other intermediate wheatgrasses. Mandan 759, Ree, Nebraska 50 and Idaho #4 were the better yielding varieties, in that order.

Of the crested wheatgrass varieties, Nordan, Fairway, Nebraska 3576 and Summit appear to be the best adapted.

	Ave	rage Yield Tons/acre
Variety	1962	1958-1962
BROMEGRASS		
Saratoga	2.86	1.77
Southland	2.96	1.78
Lancaster	3.40	1.86
Wisc. 55	2.94	1.80
Canada Common	2.75	1.42
Achenback	3.19	1.74
Lincoln	3.09	1.74
Manchar	2.93	1.70
Wisc. 63	3.26	1.78
Homesteader	3.13	1.73
LSD	N.S.	

Table 12. Forage Yields, Bromegrass, Intermediate Wheatgrass and Crested Wheatgrass. 1962.

Table 12 cont.	Ave	arage Yield Tons/acre
Variety	1962	1958-1962
INTERMEDIATE WHEATGRA	SS	
Idaho #4	2.80	1.74
Ree	3.24	1.78
/unABur	3.23	1.72
Greenar	2.42	1.60
A 12496	2.79	1.61
Neb. 50	2.79	1.77
Idaho #3	2.71	1.57
Mandan 759	3.38	1.90
L.S.D.	N.S.	
CRESTED WHEATGRASS		1958-1961
Commercial		1.21
Neb. 3576		1.55
Nordan		1.44
Summit		1.42
Mandan 2359		1.18
Comm. Fairway		1.45
Utah 42-1		1.28
Neb. 10 L.S.D.		1.25

SMALL GRAIN TESTING

Standard Variety Trials of Small Grain, NE Farm, 1962

J.J. Bonnemann

Cool, moist weather conditions and adequate fertility levels at the Northeast Farm prompted production of some good small grain yields. Yields could have been much higher but rains and winds caused lodging of the rank growth, reducing yield and test weight, especially of the oats and barley.

The flam trials were severly lodged early: in the growing season and became impossible to keep the crop free of weeds. At harvest time, the seed set was low and very thin. No data were taken from this test in 1962.

The later maturing, recommended oat varieties, generally of greater height, suffered from lodging and some diseases in 1962. The yields were thus reduced and test weights were light.

Newer varieties showing promise for the area in 1962 were Garland, Portage, Dodge and CI 7473. Minhafer, Rodney, Burnett and Garry all have good yield records over the five-year average.

These oat yields were achieved under good management practices at adequate fertility levels. Poor soil management can not be overcome with improved varieties.

The two new malting barley releases, Larker and Trophy produced satisfactory yields in 1962. Both of these varieties are slightly superior to Traill when all standard agronomic characters are considered. On the basis of their performance and recent complete approval by the malting barley industry, it is suggested that growers discontinue production of malting types previously used.

Selkirk and Pembina produced satisfactory yields of spring wheat in 1962. Yields were comparable and Pembina possesses some more desireable quality features than Selkirk. Some of the other entries, though higher in yield, are not acceptable to the milling industry.

Wells, Langdon and Lakota dorume produced satisfactory yields in 1962 as well as over the past 5-year period. Langdon may be a high risk crop to race 15B of stem rust in 1963. ເລ Table 13. Small Grain Variety Festing, NE Farm, 1962

			e1d				Yiel	d	
Variety	Maturity		A	Test	Variety	Maturity	Bu/		Test
		1962	1958-62	wt.			1962	1958-62	wt.
DATS									
Minhafer	· E	93.6	78.7	30	Custer	E	36.4		33
Garland	L	91.0		. 29	Kindred	M	31.1	32.1	35
Nehawka	E	90.0		29	L.S.D		7.7	0211	55
Portage	L	88.8		30					
Dodge	L	88.2		33	WHEAT				
Clintland 60	ME	88.1		30	Spring				
CI 7473	L	76.9		28	Lathrop	M	36.6		55
Dupree	E	76.5		26	CI13162	E	35.7		57
.Mo. 0-205	M	73.1	66.8	26	Spinkcota	M	23.4	26.6	59
Nodaway	M	72.0	0010	29	CI13242	ME	23.1		53
Tonka	E	70.4		32	Selkirk	M	22.4	23.9	52
Rodney	L	70.0	77.6	29	Pembina	M	21.4		51
Burnett	ML	65.9	73.3	27	Rushmore	E	20.7	20.1	54
CI7399	ML	65.9	15.5	24	Lee	E	18.8	25.3	55
Ransom	E	64.2	67.6	26	Justin	M	18.8		55
Branch	L	61.1	07.0	24	Mida	L	18.7	22.4	54
Andrew	E	61.0		24	CI13465	M	18.0		55
Garry	L	60.0	72.8	24	Carthatch	M	16.4	18.4	56
Marion	M		12.0		Ceres	L	15.8	14.7	50
		57.7		26	Thatcher	E	14.1	13.4	54
Waubay	M	56.3		26	Conley	M	10.7	13.9	44
L.S.D.	05	17.2			Durum	101	10.1	10.7	-+-+
BARLEY					Lakota	E	41.2	28.8	53
Larker	M	51.8		41	CI13340	M	40.5	20.00	55
Traill	M	48.8	41.9	37	Wells	E	38.3	33.3	55 57
Trophy	M	47.2		38	Langdon	M	36.6		
Parkland	E	44.0	38.3	37	Ramsey	M		31.4	50
Betzes	L	43.7	00.0	41		2	23.9	24.1	56
Freebar	E	41.9		38	L.J.L	005	4.9		
Otis	E	41.3		43					
Spartan	M	38.9		43	Flax trial	lodged and	overrun w	ith weeds, a	bandoned.
Liberty	E	38.9	39.3						
Plains	E		37.3	35					
	E	38.1		36					
Custer	E								

SORGHUM TESTING

Grain Sorghum Performance Trials, Area D2, 1962

Performance trials measuring the potential of commercial grain sorghum hybrids and selected Experiment Station entries were conducted by Statewide Services in 1962. The entries included were the choice of cooperating producers and checks developed by Experiment Stations. Previous results are not included in this report as this is the first year trials were conducted on a fee basis.

Fourteen entries were grown in the 1962 performance trial. Adverse weather conditions delayed planting of the trial until June 2. The late planting and cool, wet growing season delayed progress of the plants toward maturity. A killing frost, 24°F., occurred on September 20. None of the entries had reached full maturity as evidenced by the low test weights. The trial was harvested on October 4, 1962.

Yields were low, ranging from 17.8 to 4.3 cwt. per acre calculated on a drymatter basis. Moisture in the grain averaged 19.9 percent at harvest.

The results should be examined with the thought in mind that results from only one vear should not be considered conclusive.

Variety	Yield @ Ort./A.	Percent moisture	Te st wt. lbs	Height Inches	Statistical Significance
Steckley's Ex 349	0 17.8	16.8	47.0	45	
SD441	17.4	13.8	45.5	48	
SD502	15.7	19.2	39.0	51	
SD503	14.1	23.9	37.5	54	
RS501	13.5	22.4	42.5	57	
SD451	13.2	21.1	44.0	48	1 1
Northrup King 125	12.2	20.7	38.0	48	
Reliance	11.4	13.0	46.5	40	R R R
SD102	9.5	14.5	44.0	40	
Northrup King 120	8.8	22.1	28.5	49	
Frontier 388	7.0	17.8	31.5	43	1.1.1
Norghum	6.7	20.8	42.0	44	
Steckley's R-103	5.6	26.1	22.0	47	
Frontier 4008	4.3	27.1	22.5	49	1
Mean	11.2	19.9			

Table 14. Grain Sorghum Performance Trial, Area D₂, NE Farm

Yield differences of less than 5.5 cwt. per acre are not considered significant. a- Dry-matter basis.

b- Using Duncan's Multiple Range Test at the 5 percent level.

CORN TESTING

1962 Corn Performance Trials, Area D2

J.J. Bonneman

Corn Performance Irials at the NE Farm were under the supervision of Statewide Services again in 1962. Entries were chosen by producers who desired to enter hybrids for testing. The trials are conducted on a fee basis, and there were 20 entries, including checks, in 1962.

The corn was planted on May 26, and harvested October 5. Woisture contents were very high at narvest. Late planting and cool, very wet conditions early in the season delayed progress of the corn. The first frost, September 20, occurred when some entries were in the late milk stage.

Vields ranged from 54.1 to 41.4 bushels per acre with moisture in the car corn from 38.4 to 51.9 p rcent. The average yield for 11 minies was 47.2 bushel per acre. The corn averaged 45.2 purcent moisture in the ear corn for all entries and lodging was very slight.

Table 15. Corn Performance Trial, Area D2, NE Farm 1962.

Variety	Yield EU. A.	Performa rating	Percent nce moisture	Stalk	1961-196 Average <u>vield</u>	2 1961-1962 Ave. % moisture
SDExpt1.39	54.1	1	40.0	0		
Cargill 590	53.3	2	42.9	2		
Pioneer 385	52.9	4	48.2	0		
SD 250	48.3	8	44.7	0	54.9	43.5
SDExptl. 26	48.2	7	44.5	1	58.6	43.2
Pioneer 388	48.2	5	42.0	1	53.4	40.7
Dekalb 56	48.2	10	45.3	0		
Pioneer 3862	47.8	9	45.8	1		
Pioneer 384	47.4	14	46.3	1	56.7	43.9
SD 220	47.0	3	36.9	1	54.8	37.1
Pioneer 377A	46.9	18	51.9	1	50.5	48.7
SD 240	46.4	13	44.2	3	52.3	42.7
Disco 101-A	45.6	19	49.8	2		
DeKalb 46	45.3	12	41.8	0		
Sokota 255	45.1	17	47.4	1		
SD 210	45.0	6	38.4	1	54.2	37.6
Pioneer 391	44.8	11	39.7	2	54.3	37.9
DeKalb 62	44.7	16	45.6	0		
DeKalb 50	44.1	15	44.0	0		
DeKalb 58	41.4	20	45.0	1		
Average	47.2		45.2			
L.S.D05	5 4.1					

SOYBEANS

C.J Franzke

Grant is the maturity check for group O and Chippewasis the maturity check for group I. These two groups have to be tested because the Northeast Research Farm is in the transitional area between groups O & I. All of the beans produced from all varieties were small due to the drier growing season. All varieties of group I were immature when frozen by the September 20th killing frost. They produced a poorer quality of beans than group O as the beans contained an immature green color. These immatured beans produce a greenish colored oil which requires an extra distillation of the processed oil to make it clear.

	0.1			-	
Variety	Group	Height In.	Maturity <u>+</u> Days	Lodg- ing	Bu/acre
Grant	0	23	0	2	12.2
Merit	0	24	-3	2	13.2
Norchief	0	23	-3	2	13.9
Flambeau	0	24	-4	1	13.1
Grant m	atured Sept 29	- Maturity	check for Gr	oup Ø	
Blackhawk	I	28	+ 1	2	13.9
Chippewa	I	25	0	2	13.7
Ottawa	I	28	-1	I	13.0

Table 16. 1962 Summary of the Soybeans at NE Farm

Chippewa matured Oct 3 - Maturity check for Group I

CROP DISEASES AND THEIR CONTROL

Corn Diseases

C. M. Nagel Plant Pathology Department

Root rot and lodging due to stalk rot are seriousdisease problems of hybrid corn in the eastern area of the state. Both of these diseases are caused by fungi (molds) which are capable of infecting corn plants in the field in midseason and result in important yield losses and lodging.

The disease performance experiments with hybrid corn were continued in 1962. About one hundred ninety experimental hybrids were produced in 1961 and grown the past season to incorporate these newly developed disease resistant inbred lines of corn in hybrid combinations so they could be tested as hybrida for their disease resistance and yield performances under the climate and soil conditions prevalent in the area of the Northeast Research Farm.

In 1962, experimental hybrids which contained the new disease resistant parents again performed well in the four experiments conducted at the Northeast Research Farm as the data will indicate in Table

Certain of these experimental disease resistant hybrids have rated at the top during each of the four years in which they have been under test.

These experiments were conducted on the basis of three replications, grown in randomized blocks and all results analyzed statistically according to accepted procedures.

The experimental plots were planted on May 31 and harvested on October 25, 1962.

The first half of the 1962 growing season was abnormally wet due to the heavy amounts of precipitation, which created a saturated soil moisture condition where these experiments were grown. Because of the unfavorable growing conditions due to the excessive acil moisture plus the late date of planting because of unfavorable planting conditions appeared to limit the higher yields which might have been expected in a season such as 1962, of ample rainfall.

One of the parents of S. D. 240 (released about 2 years ago) resulted from the disease resistance program conducted under this particular project.

Rank of Bybrida	Yield* Bu/A.	Ear Moisture et Harvåst I	Performance Rating	Rank of Bybrids	Yield* Bu/A.	Ear Moisture at Harvost 1	Rating
EXP. I:				EXP. 11:			
1	47.96	31.4	1	1	51.34	27.4	1
2 P 388	46.69	29.2	2	2	50.63	30.3	2
3	44.92	27.2	4	3	47.51	30.0	3
4	44.43	27.9	6	4	47.44	30.3	5
5	44.30	30.7	7	5	47.17	29.4	4
5	44.29	31.5	8	6	47.02	30.0	6
7 SD 210	44.26	24.0	3	7	46.83	30.2	7
8 Dek 46	44.24	26.9	5	8 SD 210	46.12	28.9	8
9	43.61	31.3	10	9	45.99	30.8	10
10	42.87	30.7	12	10	45.06	31.2	13
11 SD 220		26.2	9	11 Dek 46		29.6	11
12	41.46	25.6	11	12 P 388	44.75	33.8	17
13	40.76	33.4	13	13	44.69	25.8	9
		31.1	15	14 SD 220		29.6	12
14	38.32	71+1			44 1 7 2	6710	
15	38.20	30.6 then 6.55 Bu/A.	14	15 50 240	43,63	31.4 aan 6.14 Bu/A, not	19
14 15 * Differen RXP.III:	38.20	30.6	14	15 50 240	43,63	31.4	19
15	38.20	30.6	14	<u>15 SD 240</u> Olfference	43,63	31.4	19
15 * Differen XP.III:	38.20 ces less	30.6 then 6.55 Bu/A.	14	15 SD 240 Olfference EXP. IV:	43,63 14 Lean th	31.4 man 6.14 Bu/A, not	19
15 Different RXP.III: L SD 240 2	38.20 ces less 48.86	30.6 than 6.55 Bu/A. 	14	15 SD 240 Olfference EXP. IV:	43,63 14 Leans th 51.56	31.4 man 6.14 Bu/A, not 29.2	19
15 * Differen RXP.III: 1 SD 240	38.20 ces less 48.86 48.40	30.6 than 6.55 Bu/A. 30.9 34.8	14 not significant 1 4	15 SD 240 Olfference EXP. IV:	43,63 14 Lean th 51.56 51.04	31.4 nan 6.14 Bu/A, not 29.2 27.9	19
15 Different RXP.III: L SD 240 2	38.20 ces less 	30.6 then 6.55 Bu/A. 30.9 34.8 33.1	14 not significant 1 4 3	15 SD 240 Olfference EXP. IV:	43,63 43,63 43,63 51.56 51.56 51.04 50.66	31.4 nan 6.14 Bu/A, not 29.2 27.9 32.9	19
15 Difference EXP.III: SD 240 2 3 4	38.20 ces less 48.86 48.40 48.25 48.13	30.6 then 6.55 Bu/A. 30.9 34.8 33.1 32.5	14 not significant 1 4 3 2	15 SD 240 Olfference EXP. IV:	43,63 43,63 51.56 51.04 50.66 50.42	31.4 nan 6.14 Bu/A, not 29.2 27.9 32.9 32.3	<u>19</u> significant 2 1 7 6
15 Difference EXP.III: SD 240 2 3 4	38.20 ces less 48.86 48.40 48.25 48.13 46.40	30.6 then 6.55 Bu/A. 30.9 34.8 33.1 32.5 34.1	14 not significant 1 4 3 2 12	15 SD 240 Olfference EXP. IV:	43,63 43,63 51.56 51.04 50.66 50.42 49.95	31.4 an 6.14 Bu/A, not 29.2 27.9 32.9 32.3 30.8	19 significant 2 1 7 6 5
Differen TXP.III: SD 240 2 3 4 5 5	38.20 ces less 48.86 48.40 48.25 48.13 46.40 46.18	30.6 then 6.55 Bu/A. 30.9 34.8 33.1 32.5 34.1 29.1	14 not significant 1 4 3 2 12 5	15 SD 240 Olfference EXP. IV:	43,63 43,63 51.56 51.04 50.66 50.42 49.95 49.61	31.4 14 Bu/A, not 29.2 27.9 32.9 32.3 30.8 33.4	19 eignificant 2 1 7 6 5 15
Differen T.I. XP.III: SD 240 P 388	38.20 ces less 48.86 48.40 48.25 48.13 46.40 46.18 45.67	30.6 then 6.55 Bu/A. 30.9 34.8 33.1 32.5 34.1 29.1 31.7	14 not significant 1 4 3 2 12 5 11	15 50 240 •Difference EXP. IV: 1 2 3 4 5 6 7	43,63 43,63 51.56 51.04 50.66 50.42 49.95 49.61 49.55	31.4 inn 6.14 Bu/A, not 29.2 27.9 32.9 32.3 30.8 33.4 28.1	19 eignificant 2 1 7 6 5 15 3
Differend XXP.III: SD 240 P 388	38.20 ces less 48.86 48.40 48.25 48.13 46.40 46.18 45.67 45.51	30.6 then 6.55 Bu/A. 30.9 34.8 33.1 32.5 34.1 29.1 31.7 28.3	14 not significant 1 4 3 2 12 5 11 6	15 50 240 Difference EXP. IV: 1 2 3 4 5 6 7 8 101A	43,63 43,63 43,63 51.56 51.04 50.66 50.42 49.95 49.61 49.55 49.32	31.4 an 6.14 Bu/A, not 29.2 27.9 32.9 32.3 30.8 33.4 28.1 34.9	19 significant 2 1 7 6 5 15 3 18
Difference XXP.III: SD 240 P 388	38.20 ces less 48.86 48.40 48.25 48.13 46.40 46.18 45.67 45.51 45.00	30.6 then 6.55 Bu/A. 30.9 34.8 33.1 32.5 34.1 29.1 31.7 28.3 28.5	14 not significant 1 4 3 2 12 5 11 6 8	15 50 240 Difference EXP. IV: 1 2 3 4 5 6 7 8 101A 9	43,63 43,63 43,63 51.56 51.04 50.66 50.42 49.95 49.61 49.55 49.32 49.00	31.4 an 6.14 Bu/A, not 29.2 27.9 32.9 32.3 30.8 33.4 28.1 34.9 29.5	19 significant 2 1 7 6 5 15 3 18 8 8
5 Difference XP.III: SD 240 2 7 P 388 3 10 11	38.20 ces less 48.86 48.40 48.25 48.13 46.40 46.18 45.67 45.51 45.00 44.96	30.6 then 6.55 Bu/A. 30.9 34.8 33.1 32.5 34.1 29.1 31.7 28.3 28.5 34.1	14 not significant 1 4 3 2 12 5 11 6 8 16	15 50 240 Difference EXP. IV: 1 2 3 4 5 6 7 8 101A 9 10	43,63 43,63 51.56 51.04 50.66 50.42 49.95 49.61 49.55 49.32 49.00 48.96 48.58	31.4 an 6.14 Bu/A, not 29.2 27.9 32.9 32.3 30.8 33.4 28.1 34.9 29.5 29.7	19 eignificant 2 1 7 6 5 15 3 18 8 9 14 10
5 Differen XP.III: SD 240 P 388	38.20 ces less 48.86 48.40 48.25 48.13 46.40 46.18 45.67 45.51 45.00 44.96 44.83 44.32	30.6 then 6.55 Bu/A. 30.9 34.8 33.1 32.5 34.1 29.1 31.7 28.3 28.5 34.1 28.5	14 not significant 1 4 3 2 12 5 11 6 8 16 9	15 50 240 •Difference EXP. IV: 1 2 3 4 5 6 7 8 101A 9 10 13 P 388	43,63 43,63 43,63 51.56 51.04 50.66 50.42 49.95 49.95 49.61 49.55 49.32 49.00 48.96 48.58 47.87	31.4 an 6.14 Bu/A, not 29.2 27.9 32.9 32.3 30.8 33.4 28.1 34.9 29.5 29.7 30.7 27.5 28.9	19 eignificant 2 1 7 6 5 15 3 18 8 9 14
Differen XP.III: SD 240 2 3 4 5 7 P 388	38.20 ces less 48.86 48.40 48.25 48.13 46.40 46.18 45.67 45.51 45.00 44.96 44.83 44.32 44.29	30.6 then 6.55 Bu/A. 30.9 34.8 33.1 32.5 34.1 29.1 31.7 28.3 28.5 34.1 28.5 34.1 28.5 30.1	14 not significant 1 4 3 2 12 5 11 6 8 16 9 13	15 50 240 Olfference EXP. IV: 1 2 3 4 5 6 7 8 101A 9 10 13 P 388 14 SD 210	43,63 43,63 51.56 51.04 50.66 50.42 49.95 49.61 49.55 49.32 49.00 48.96 48.58 47.87 47.02	31.4 an 6.14 Bu/A, not 29.2 27.9 32.9 32.3 30.8 33.4 28.1 34.9 29.5 29.7 30.7 27.5	19 eignificant 2 1 7 6 5 15 3 18 8 9 14 10

Table 17. Performance of 45 out of 190 experimental hybrids having varying degrees of resistance to root and stalk rot, aroun in 4 different experiments at the Northeast Research Farm and compared with adveral commercial hybrids in 1962.

* Differences less than 4.75 Bu/A. not significant

* Differences less than 5,25 Bu/A not #ignificant

20

¥.

POTATOES

K.D. Fisher

Plant Pathology Department

Potato production is one of the important farm operations in Northeastern South Dakota. In recent years a large number of varieties have been developed throughout the United States. A number of these varieties were evaluated for yield, disease reaction and chipping quality at the Northeast Research Farm in 1962. Results of these trials are presented in the following table. It would appear that several varieties not currently produced here may be adapted to South Dakota growing conditions. Several of the new varieties have potential both for certified seed and potato chip production.

	Total	US#1		Se	ab17	Specific	Chip 2/
Variety	Yield	Yeld	US=1	Area	Type	Grav <u>1</u> ty	Color
	(Cwt/A)	(Owt/A)	(%)				
Red Pontiac	91	83	91	1	2	1.065	10
Red LaSoda	91	85	93	Т	1	1.067	9
Norland	117	101	86	2	1	1.073	4 5
LaRouge ,	89	80	90	1	1	1.081	
Redskin ³	164	156	95	1	3	1.080	8
Bounty 3/	144	137	95	Ru	sset	1.089	6
Early Ohio	82	63	77	Т	1	1.086	4
Dazoc	115	93	81	Т	1	1.088	4
Red Warba	118	98	83	2	1	1.084	6
Russet Rural	109	90	83	Ru	sset	1.096	5
Haig	81	65	80	Ru	sset	1.084	3
Kennebec	139	129	93	Т	1	1.088	4
Sebago	86	80	93	Т	1	1/080	5
Katadhin	93	90	97	1	1	1.088	5
Pungo3/	133	125	94	Т	1	1.092	6
Ontario	96	85	89	1	1	1.085	6
Vordal	78	71	91	Т	1	1.084	5
lorgleam	103	91	88	Rus	sset	1.088	3
LaChipper	104	94	90	2	1	1.092	4
Merrimack	80	74	92	1	1	1.090	6
Teton	100	91	91	Т	1	1.090	5
Fundy	83	76	92	Т	1	1.090	7

Table 18 com	Total	US#1		Sc	ab	Specific	22 Chip 2
<u>Variety</u>	Yield	Yield	usr 1	Area	SdAL	Gravity	Color
:	(Owt/A)	(Cwt/A)	(%)				
White Claud	112	92	82	т	1	1.087	4
Saranac	78	55	71	Rus	set	1.084	9
Blanca	79	65	82	Rus	set	1.096	6
Navajo	75	66	88	Rus	set	1.093	4
Snowflake 3/	119	105	88	1	2	1.093	6

12 Ju

2

1 Scab rated as follows:

т-	lees than 1%	Are of		surface	scabby	Type of lesions
1 -	1-20%	11	11	n	PT	1 -small, superficial
2 -	21-40%	89	PT		97	2 -large, superficial
	41-60%	11	41	44		3 -large, raised, rough
4 -	61-100%	۰	**	4	H	4 -pit type scab

Based on a scale of 1-10; 1-5 acceptible, 6-10 too dark to be acceptable. Chipped 22 days after harvest, no cold storage.

3 Matured very late.