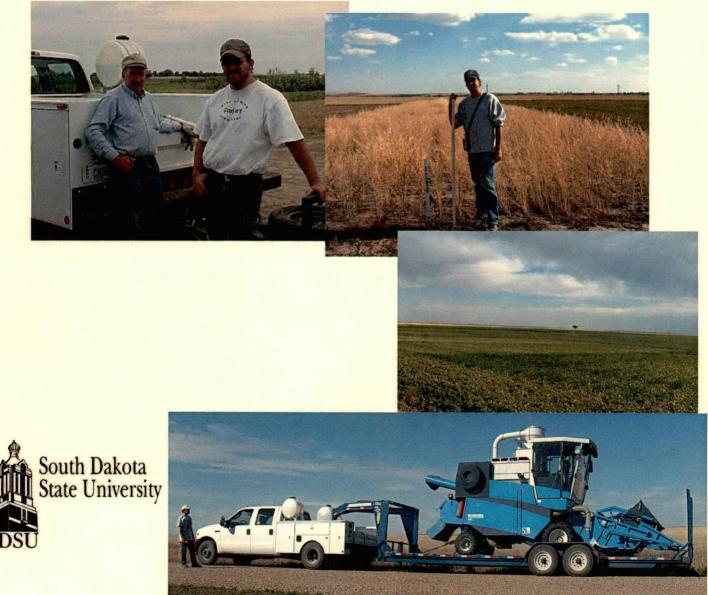
# ANNUAL PROGRESS REPORT 2004


# SOUTH DAKOTA STATE UNIVERSITY

# WEST RIVER AG CENTER

# **CROPS AND SOILS RESEARCH**

PLANT SCIENCE PAMPHLET #18

**FEBUARY 2005** 



#### INTRODUCTION

This is an annual progress report of the West River Crops and Soils Research Projects, South Dakota Agricultural Experiment Station. The equipment storage and processing facilities are located approximately one mile southwest of Box Elder, SD at 22735 Radar Hill Road. The office facilities are located at 1905 Plaza Boulevard; Rapid City, SD 57702. Telephone (605)394-2236, e-mail: Nleya.Thandiwe@ces.sdstate.edu, Rickertsen.John@ces.sdstate.edu or Swan.Bruce@ces.sdstate.edu

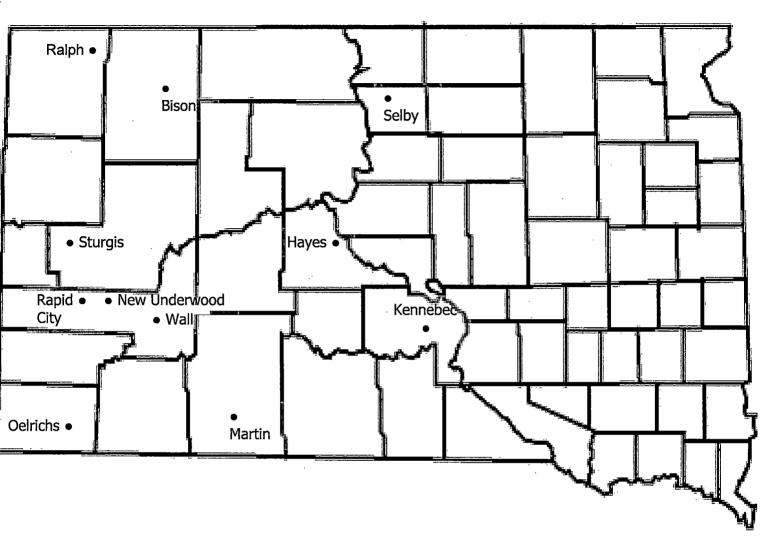
Internet web page: wrac.sdstate.edu

The Research Projects serve the western part of South Dakota. They are unique in that all experimental plots are cooperatively located with farmers. All the studies are located on farmer fields rather than at a particular experiment station. This allows for more mobility and localized data collection. This system is very dependent upon farmer cooperators and local extension agronomy educators.

This research tests the adaptability of new crops, varieties and farming methods. This report does not include results of work conducted by SDSU projects headquartered on campus at Brookings, South Dakota.

| Name                     | Address             | County     |
|--------------------------|---------------------|------------|
| Larry Novotny            | Martin 57551        | Bennett    |
| Jim & Rod Buckle         | Martin 57551        | Bennett    |
| William Miller           | Oelrichs 57763      | Fall River |
| Roger Rosenow            | Ralph 57650         | Harding    |
| Kip Matkins              | Sturgis 57785       | Meade      |
| Gregg Krebsbach          | New Underwood 57761 | Pennington |
| Don Hackens              | New Underwood 57761 | Pennington |
| Merritt Patterson & Sons | Wall 57790          | Pennington |
| Crown Partnership        | Wall 57790          | Pennington |
| James Talty              | Wall 57790          | Pennington |
| Ron Seidel               | Bison 57620         | Perkins    |
| David Neuharth           | Hayes 57537         | Stanley    |
| Rex Haskins              | Hayes 57537         | Stanley    |
| Mark Stiegelmeier        | Selby 57472         | Walworth   |
|                          |                     |            |

## FIELD PLOT COOPERATORS


This is an annual report, some trials are ongoing and will require additional testing before final conclusions can be made.

350 copies printed at an estimated cost of \$ 4.47 each. February 2005

South Dakota State University, South Dakota Counties, and U.S. Department of Agriculture Cooperating.

South Dakota State University is an Affirmative Action/Equal Opportunity Employer (Male/Female) and offers all benefits, services, education and employment opportunities without regard for ancestry, age, race, citizenship, color, religion, gender, disability, national origin, sexual preference, or Vietnam Era veteran status.

# **TESTING LOCATIONS**



. :

# **TABLE OF CONTENTS**

| Introduction                          |            |     | •   | •  | •          | •   | • | • | • | • | • | • | •  |   | • | •   | •  | •   | • | • | • | • | i                                 |
|---------------------------------------|------------|-----|-----|----|------------|-----|---|---|---|---|---|---|----|---|---|-----|----|-----|---|---|---|---|-----------------------------------|
| Acknowledgments .                     |            |     | •   | •  | •          | •   | • | • |   | • | • | • | •  | • |   |     |    | •   | • |   |   |   | 1                                 |
| Weather Summary                       |            |     | •   |    | •          | •   |   |   | • | • | • | • | •  | • |   | . • | •  | •   | • | • | • |   | 1-6                               |
| Variety Trials                        |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   |                                   |
| Winter Wheat Variety                  |            | als |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   | • |                                   |
| Fall River County .                   |            |     |     | •  | . <b>.</b> |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   | 7                                 |
| Bennett County                        |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   | 7                                 |
| Stanley County .                      |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   | 7                                 |
| Pennington County                     |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   | 8,9                               |
| Meade County                          |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   | 8,10                              |
| Perkins County .                      |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   | 7                                 |
| · · · · · · · · · · · · · · · · · · · | -          |     | -   | -  | -          | -   | - | - | - | - | - | - |    | - | - | -   | -  | -   | - | - | - | - | -                                 |
| Wheat Variety Recomme                 | ənd        | ati | ons | 5  | •          |     | • | • | • | • | • | • | •  | • | • | •   | •  | •   | • | • | • | • | 11                                |
| Spring Wheat Variety                  | Tri        | als |     |    |            |     |   |   |   |   |   |   |    | , |   |     |    |     |   |   |   |   |                                   |
| Pennington County                     |            |     |     |    |            |     |   |   |   |   |   |   | \$ |   |   |     |    |     |   |   |   |   | 12,13                             |
| Perkins County                        |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   | 12,14                             |
| Harding County .                      |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   | 12,15                             |
| Durum Wheat Variety                   |            |     |     | •  | •          | •   | • | • | • | • | • | • | •  | • | • | •   | •  | . • | • | • | • | • | 12,10                             |
|                                       |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   | 16 17                             |
| Perkins County                        |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   | 16,17                             |
| Harding County .                      | •          |     | •   | •  | •          | ·   | • | • | · | • | • | • | •  | • | • | •   | ·  | •   | • | • | • | • | 16,17                             |
| Oat and Barley Variety R              | leco       | om  | me  | en | dat        | ion | S |   |   |   |   |   |    | • | • | •   |    | •   |   | • | • | • | 18                                |
| Oat Variety Trials                    |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   |                                   |
| Pennington County                     | ν.         |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   | 19,20                             |
|                                       |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   | 19,21                             |
| Spring Barley Variety                 |            |     |     |    | -          | •   | • | - | • | - | - | - | -  | · | - | -   | •  | -   |   | - |   | - | ,                                 |
| Pennington County                     |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   | 22,23                             |
| Harding County                        |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   |                                   |
| Perkins County                        |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   |                                   |
| Safflower Variety Tria                |            |     |     |    |            |     |   |   |   | • | • | • | ·  | • | • | •   | •  | ·   | · | · | · | • | <i>LL</i> , <i>L</i> <del>,</del> |
| •                                     |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   | 25 26                             |
| Pennington County                     |            |     | •   | •  | •          | ·   | • | • | • | • | • | • | •  | • | • | •   | •. | ·   | • | · | • | • | 25,26                             |
| Fall River County                     |            |     | •   | •  | ·          | ·   | • | · | • | • | • | • | •  | • | • | ·   | •  | ·   | · | · | • | · | 25,27                             |
| Meade County .                        | •          |     | •   | •  | •          | ·   | • | • | • | • | • | • | ·  | • | · | ·   | •  | ·   | • | · | · | • | 25,28                             |
| Field Pea Variety Trails              |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   |   |   | 00.04                             |
| Pennington County                     | y.         |     |     |    |            |     |   |   |   |   |   |   |    |   |   | •   |    |     | · | • | · | • | 29-31                             |
| Perkins County                        | •          |     |     |    |            |     |   |   |   |   |   |   |    |   |   | •   |    |     |   |   | • | • | 29-31                             |
| Stanley County                        |            |     |     |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     |   |   | • | • | 29-31                             |
| Walworth County .                     | , <b>.</b> |     | -   |    |            |     |   |   |   |   |   |   |    |   |   |     |    |     | • |   |   |   | 29-31                             |

## TABLE OF CONTENTS

| Chickpea Variety Trials                                |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   |       |
|--------------------------------------------------------|------|-----|------|----|---|---|-----|---|---|---|---|---|---|---|---|---|-------|
| Pennington County                                      |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   | 32-34 |
| Stanley County                                         |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   |       |
| Fall River County                                      |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   |       |
| Winter Pea Variety Trial                               |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   |       |
| Pennington County                                      |      |     |      |    |   |   | • • |   |   |   |   |   |   |   |   |   | 35    |
| Hughes County                                          |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   |       |
| Winter Lentil Variety Trial                            |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   |       |
| Pennington County                                      |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   | 36    |
| Hughes County                                          |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   |       |
| Oat / Pea Mix Forage Trial                             |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   |       |
| Pennington County                                      | ·    | •   |      | •  | • | • | •   | • | • | • | • | • | • | • | • | • | 38    |
| <i>Management Practices</i><br>Field Pea Planting Date |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   |       |
| Stanley County                                         |      | •   |      |    |   |   |     |   |   |   |   |   | • |   |   |   | 40    |
| Field Pea Seeding Rate<br>Stanley County               |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   | 43    |
| Winter Wheat Starter Fertilizer Stu                    |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   |       |
| Meade County.                                          | -    |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   | 46    |
| Winter Wheat Fertilizer Demonstra                      |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   | • |       |
| Pennington County                                      |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   | 48    |
| Safflower Seeding Rate Study                           |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   |       |
| Pennington County                                      |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   | 50    |
| Safflower Planting Date Study                          |      |     |      |    |   |   |     |   |   |   |   | • |   |   |   |   |       |
| Pennington County                                      |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   | 52    |
| Soybean Planting Rate and Row V                        | Nidt | h S | Stuc | yr |   |   |     |   |   |   |   |   |   |   |   |   |       |
| Pennington County                                      |      |     |      |    |   |   |     |   |   |   |   |   |   |   |   |   |       |
| Bennett County                                         | •    |     |      | -  |   |   | -   |   |   |   |   |   |   |   |   |   | 56-60 |

# **Reduced Tillage Practices**

| Reduced Tillage and No-Till Rotation Study       |  |  |  |  |       |
|--------------------------------------------------|--|--|--|--|-------|
| Pennington County.                               |  |  |  |  | 61-85 |
| Nitrogen Needs for Wall Rotation 1998-2003       |  |  |  |  |       |
| Break Even Yields, Costs of Production 1998-2003 |  |  |  |  |       |
| Wall Rotation Weed Counts                        |  |  |  |  |       |
|                                                  |  |  |  |  | · · · |
|                                                  |  |  |  |  |       |

| 2004 - 2005 Preview |   | • |   |   |   |   |   |   |   |   |   |   |   |   |   | •. |   |   |   | . Back Cover |
|---------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|---|---|---|--------------|
| 2004 - 2003 FIEVIEW | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |    | • | • | • | . Back Cove  |

#### ACKNOWLEDGMENTS

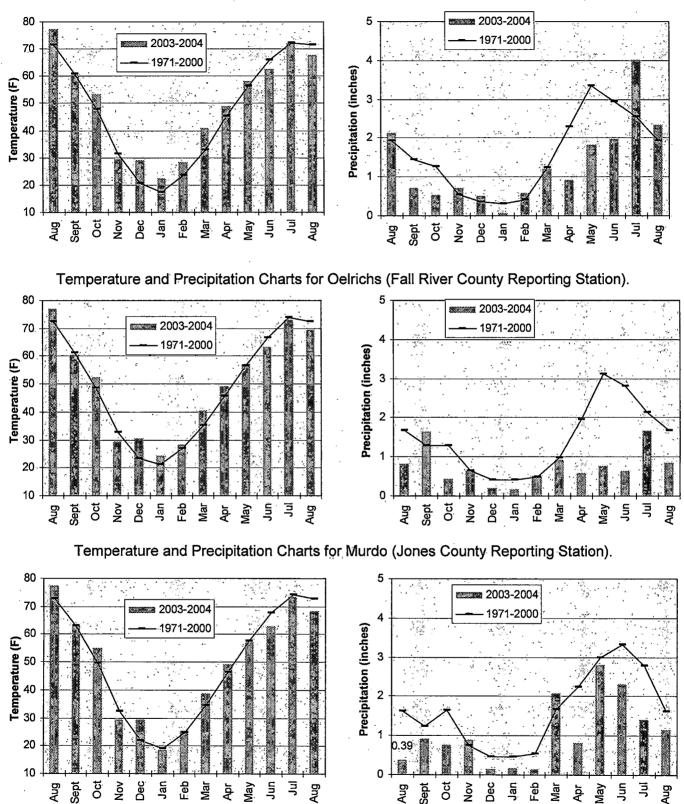
The following County Extension Educators assisted in locating cooperators and conducting the research: Sandy Huber-Martin, Mark Fanning-Hot Springs, Bart Krautschun-Belle Fourche, Mike Huber-Timber Lake, Robert Fanning-Kennebec, Julie Walker -Ft. Pierre, Valerie Mitchell-Murdo, Justin Keyser - Burke, and Robin Salverson - Buffalo.

The results reported in this pamphlet were funded under Plant Science Projects SD-00956 Research Substation, H-284 Diversified Cropping Systems in Western South Dakota, SDSU Research Support Fund and USDA-CSREES Consortium for Alternative Crops. Additional financial support was received from The South Dakota Crop Improvement Association, The South Dakota Wheat Commission, South Dakota Foundation Seed Stocks Division-SDSU, South Dakota Oilseed Council, Monsanto Agricultural Company, Pioneer Hi-Bred and Warne Chemical Co.

Research was conducted by Thandiwe Nleya - Assistant Professor, John R. Rickertsen-Research Associate, and Bruce A. Swan-Senior Ag Research Technician, in conjunction with Kevin D. Kephart -Director Ag Experiment Station, Dale J. Gallenberg - Dept. Head Plant Science, Bob Hall, Bob Pollmann, Jack Ingemansen, Amir Ibrahim, Martin Draper, Leon Wrage, and Karl Glover.

A special thank you is extended to Jerry Swane and John Fortune Sr. for their help during the summer of 2004.

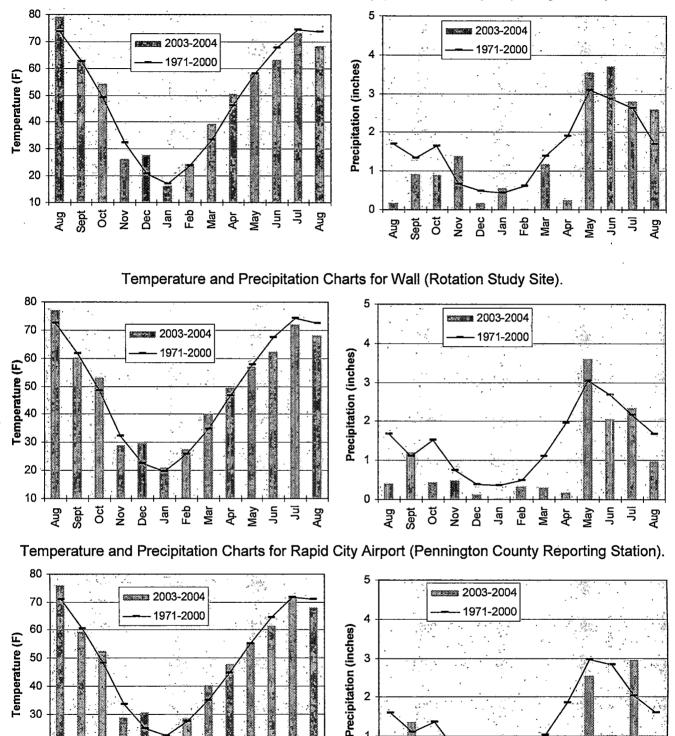
This publication was written and edited by Thandiwe Nleya, John R. Rickertsen and Bruce A. Swan.


#### WEATHER SUMMARY

The data in the weather summaries presented in the following charts and table were obtained from the National Oceanic and Atmospheric Administration (NOAA) publication, Climatological Data - South Dakota; from Dennis Todey, State Climatologist at South Dakota State University; and from the South Dakota Crop-Weather Summary published by the South Dakota Statistical Reporting Service-USDA. Weather data were also collected at our weather station located at the Wall Rotation Study at Wall, South Dakota.

The drought conditions persisted for the 2003-2004 growing season. In particular the southwestern part of the state was very dry, with Oelrichs and Martin having below normal precipitation for most of the months from August 2003 to August 2004. In the fall of 2003, the northwest locations had above normal precipitation, with the west central near normal and central locations below normal. November through March precipitation was below normal at most locations. April was very dry with all locations getting less than an inch of rain, many less than a ½ inch. May was better in the central and west central locations, but still dry in the southwest and northwest. June was below normal for rainfall at all locations but Ludlow and Kirley. The situation improved in July with above normal rain at most locations, with August having normal to somewhat below normal conditions.

Temperatures in western South Dakota were normal from August through October. November was cool with temperatures 2 to 6 degrees below normal. It warmed up in December with average temperatures 6 to 8 degrees above normal. The readings for the months January through May were normal at all locations. June was cool with temperatures ranging 3 to 5 degrees below normal. Conditions returned to normal in July and finished off in August 3 to 5 degrees below normal.


It was not a good year for winter wheat production with the dry fall conditions leading to poor stand establishment. The conditions worsened with the very dry April and early May stressing the wheat to the point where many acres were sprayed out or hayed. The cool June conditions helped the wheat and other cool season crops that were not hayed to produce better yields than expected earlier in the year. The wet and warm July helped produce decent corn and millet crops, but the lack of late summer moisture limited sunflower, safflower and soybean yields.



Temperature and Precipitation Charts for Martin (Bennett County Reporting Station).

Average temperatures and precipitation obtained from NOAA Climatological Data. Weather data is collected from the reporting station nearest the experimental sites.

2



Temperature and Precipitation Charts for Kirley (Haakon County Reporting Station).

Average temperatures and precipitation obtained from NOAA Climatological Data. Weather data is collected from the reporting station nearest the experimental sites.

May Jun

Apr

Jul Aug

40

30

20

10

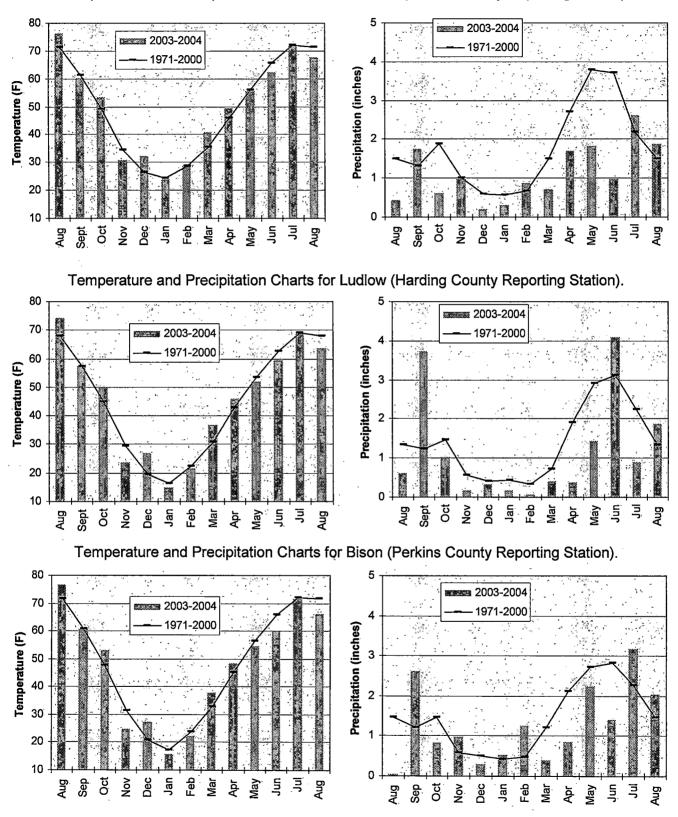
Jan

Feb Mar

N٥ Dec

Sept ö

Aug

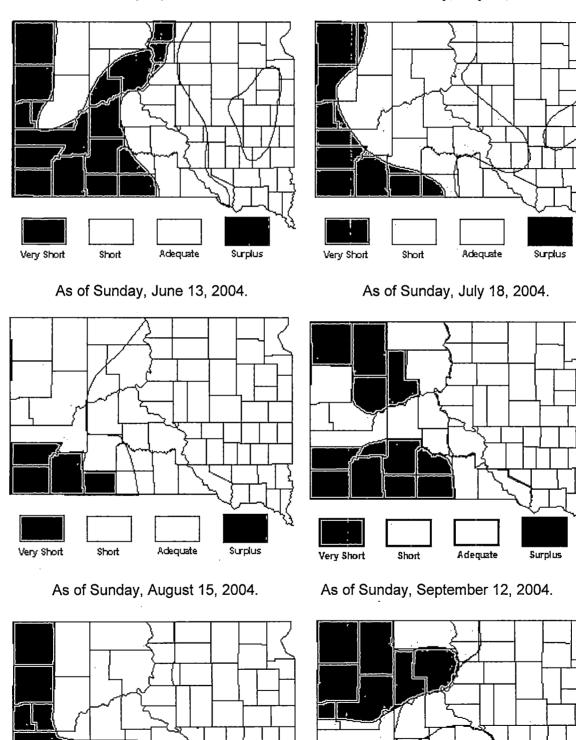

2

0

Aug Sept oct ş ő Jan Feb

₫ Vlay Jun Jul Aug

٩ar




Temperature and Precipitation Charts for Ft. Meade (Meade County Reporting Station).

Average temperatures and precipitation obtained from NOAA Climatological Data. Weather data is collected from the reporting station nearest the experimental sites

4

### Figure 1. Topsoil Moisture Conditions During The 2004 Growing Season. (Crop and Livestock Reporting Service - USDA)



As of Sunday, April 11, 2004.

As of Sunday, May 16, 2004.

Very Short

Short

Surplus

Adequate

Short

Very Short

Adequate

Surplus

| in Count                             | ies with Experime                   | ntal Plots (2003-                 | 2004).                |                 |                  |
|--------------------------------------|-------------------------------------|-----------------------------------|-----------------------|-----------------|------------------|
| Location                             | Date of Ter                         | nperature*                        | Total                 | Total Useab     | le Moisture**    |
|                                      | First                               | Last                              | Moisture <sup>#</sup> | Aug. 03-July 04 | April 04-July 04 |
| Bennett County<br>(Martin)           | Oct. 1, 2003<br>27 <sup>o</sup> F   | May 2, 2004<br>21 <sup>o</sup> F  | 15.27"                | 7.03"           | 4.77"            |
| Fall River County<br>(Oelrichs)      | Oct. 1, 2003<br>26 <sup>o</sup> F   | May 14, 2004<br>27 <sup>o</sup> F | 9.04"                 | 3.22"           | 0.87"            |
| Harding County<br>(Ludlow)           | Sept. 30, 2003<br>27 <sup>o</sup> F | May 14, 2004<br>20 <sup>0</sup> F | 13.38"                | 8.13"           | 4.62"            |
| Jones County<br>(Murdo)              | Oct. 26, 2003<br>23 <sup>o</sup> F  | May 2, 2004<br>27 <sup>o</sup> F  | 12.98"                | 6.75"           | 4.62"            |
| Meade County<br>(Ft. Meade)          | Oct. 26, 2003<br>23 <sup>o</sup> F  | May 2, 2004<br>27 <sup>o</sup> F  | 13.04"                | 7.11"           | 4.19"            |
| Pennington County<br>(Rapid City AP) | Oct. 25, 2003<br>21 <sup>o</sup> F  | May 2, 2004<br>24 <sup>o</sup> F  | 12.05"                | 6.43"           | 4.02"            |
| Pennington County<br>(Wall)          | Oct. 25, 2003<br>25 <sup>o</sup> F  | May 14, 2004<br>28 <sup>o</sup> F | 10.79"                | 6.07"           | 5.66"            |
| Perkins County<br>(Bison)            | Oct. 30, 2003<br>24 <sup>o</sup> F  | May 14, 2004<br>28 <sup>o</sup> F | 14.74"                | 8.61"           | 4.94"            |
| Haakon County<br>(Kirley)            | Oct. 1, 2003<br>26 <sup>o</sup> F   | May 14, 2004<br>27 <sup>o</sup> F | 15.65"                | 9.11"           | 7.27"            |
| Butte County<br>(Newell)             | Oct. 31, 2003<br>20 <sup>o</sup> F  | May 13, 2004<br>26 <sup>o</sup> F | 14.76"                | 8.23"           | 4.80"            |
| Lyman County<br>(Kennebec)           | Sept. 30, 2003<br>27 <sup>o</sup> F | May 14, 2004<br>25 <sup>o</sup> F | 16.67"                | 10.57"          | 6.24"            |

Table 1. Weather Data - Date of Critical Temperatures and Total Useable Precipitation in Counties with Experimental Plots (2003-2004).

\* = First 28° temperature in Fall or last 28° temperature in Spring, reported in degrees Fahrenheit.

\*\* = Sum of all precipitation where amounts are in excess of .25 inch or totaled over .25 inch in two contiguous days.

# = Total moisture from August 1, 2003 to July 31, 2004.

#### WINTER WHEAT VARIETY TRIALS

**Objective:** To evaluate standard and experimental hard red and hard white winter wheat varieties for yield, agronomic characteristics and adaptation to western South Dakota.

**Procedure:** Plots were seeded at seven locations in September 2004 with a John Deere 610 double disk (fallow) or John Deere 750 (no-till) plot drills with 10 inch spacing. The experimental design was a randomized complete block with four replications. The seeding rate was 950,000 seeds per acre (60 Lb/A). The plots received 7.4 lbs N and 25 lbs  $P_2O_5$  per acre as 10-34-0 with the seed. Herbicides were applied in either the fall or spring and varied according to weeds present. Visual stand ratings were taken in October 2003 and April 2004. The plots were trimmed to 5' x 25' after heading. The wheat was harvested in July with a small plot combine. Height, shatter, and lodging notes were taken at the time of harvest. Protein content was determined with a Near Infrared Spectrophotometer (Technicon InfraAlyzer 400).

#### **Location Summaries:**

#### Locations not harvested

| Location                | Reason               |
|-------------------------|----------------------|
| Perkins County - Bison  | Drought, May freeze  |
| Stanley County – Hayes  | Poor stands, drought |
| Bennett County – Martin | Drought              |

#### **Fall River County - Oelrichs**

Planted:September 24, 2003Herbicide:Glean (1/3 oz/A)Harvested:August 3, 2004Additional Nitrogen:NonePrevious crop:Conventional fallow

Yields at Oelrichs were very low in 2004 due to the extremely dry conditions. The wheat averaged only 9 Bu/A with the location having a great amount of variability. Because of this variability, yields are not reported for this location.

#### **Pennington County - Wall**

Planted:September 20, 2003Herbicide:Harvested:July 19, 2004AdditionalPrevious crop:Conventional fallow

Herbicide: None Additional Nitrogen: None

Growing conditions at Wall were still droughty in 2004, but the cool conditions along with good stored soil moisture allowed the plot to average 49 Bu/A. The rain that did come in June favored the later varieties in the trial. The best yielding varieties this year were Wahoo and Harding. There was little difference in the three-year average yields. The results are presented in Table 2.

#### Meade County - Sturgis

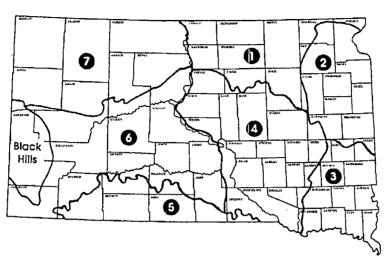
Planted:September 16, 2003Herbicide: Harmony Extra (<sup>3</sup>/<sub>10</sub> oz/A) + 2,4-D LV6 (5 oz/A)Harvested:July 26, 2004Additional Nitrogen: NonePrevious crop:Chemical fallow, no-till planted

Sturgis like most of western South Dakota suffered from the continuing drought in 2004. The yields averaged 25 Bu/A with a light average test weight of 57.0 Lb/Bu. There was a fair amount variation with a CV of 20.4. Therefore variety comparisons should not be made from this data. The results are presented in Table 3.

| Variety                       | Height | Lodging | Test Wt | Protein | Yield | Bu/A     |
|-------------------------------|--------|---------|---------|---------|-------|----------|
|                               | Inches | 1-9*    | Lb/Bu   | Percent | 2004  | 3-Year   |
| Hard Red                      |        |         |         |         |       |          |
| ALLIANCE                      | 22     | 1       | 63.0    | 13.6    | 46.1  | 41       |
| ARAPAHOE                      | 24     | 1       | 61.3    | 15.3    | 40.3  | 36       |
| JAGALENE                      | 19     | 1       | 63.2    | 14.6    | 52.2  | 39       |
| NEKOTA                        | 20     | 1       | 62.9    | 14.5    | 44.8  | 39       |
| JERRY                         | 27     | 1       | 62.4    | 14.4    | 52.8  |          |
| WESLEY                        | 19     |         | 62.3    | 15.0    | 47.6  | 41       |
|                               |        | 1       |         |         |       |          |
| MILLENNIUM                    | 23     | 1       | 62.9    | 14.1    | 47.2  | 40       |
| WAHOO                         | 25     | 1       | 62.0    | 14.1    | 56.5  | 44       |
| CRIMSON                       | 25     | 1       | 61.0    | 14.2    | 48.3  | 39       |
| EXPEDITION                    | 18     | 1       | 63.0    | 14.7    | 46.9  | 39       |
| HARDING                       | 23     | 1       | 61.8    | 14.0    | 55.7  | 41       |
| TANDEM                        | 20     | 1       | 62.8    | 15.2    | 51.0  | 42       |
|                               |        |         |         |         |       |          |
| SD92107-5                     | 25     | 1       | 63.0    | 13.7    | 60.7  | •        |
| SD97250                       | 23     | 1       | 61.7    | 15.2    | 46.3  | •        |
| SD98102                       | 24     | 1       | 61.8    | 14.1    | 49.1  | •        |
| SD97538                       | 23     | 1       | 62.6    | 13.8    | 53.5  | •        |
| SD97059-2                     | 28     | 1       | 61.8    | 15.0    | 52.3  | •        |
| SD97380-2                     | 25     | 1       | 62.3    | 15.0    | 45.3  | •        |
| SD97394-1                     | 26     | 1       | 62.7    | 15.1    | 47.2  | •        |
| SD99073                       | 20     | 1       | 61.4    | 14.3    | 49.2  | •        |
| SD00032                       | 24     | 1       | 61.5    | 15.3    | 46.4  | •        |
| SD00111                       | 25     | 1       | 62.7    | 14.9    | 46.4  | -        |
| SD00258                       | 24     | 1       | 61.9    | 14.2    | 49.6  | •        |
| NE99533-4                     | 22     | 1       | 63.6    | 15.1    | 49.8  | •        |
| Hard White                    |        |         |         |         |       |          |
| TREGO                         | 18     | 1       | 62.3    | 14.4    | 35.7  | 34       |
| WENDY                         | 20     | 1       | 61.7    | 15.1    | 38.8  | 39       |
| SD97W604                      | 19     | 1       | 62.2    | 14.3    | 45.3  |          |
| SD97W671-1                    | 23     | 1       | 62.9    | 15.4    | 46.9  |          |
| SD00W024                      | 20     | 1       | 60.9    | 12.5    | 59.5  | •        |
| SD00W041                      | 24     | 1       | 62.0    | 15.5    | 49.3  |          |
|                               |        |         | 62.2    |         | 48.7  | 40       |
| Average                       | 22.6   | 1.0     |         | 14.6    |       | 40<br>NS |
| LSD (P=.05)                   | •      | 0.0     | 1.0     | •       | 5.6   | 10       |
| $\frac{\text{CV}}{\text{CV}}$ | 00/ 1  | 0.0     | 1.2     | •       | 8.2   | 10       |

Table 2. Hard Winter Wheat Variety Trial - Pennington County (Wall), 2002-2004.

\* 1=No lodging, 9 = 100% lodged.


| Variety                                                     | Height                             | Lodging | Test Wt      | Protein      | Yield        |
|-------------------------------------------------------------|------------------------------------|---------|--------------|--------------|--------------|
|                                                             | Inches                             | 1-9*    | Lb/Bu        | Percent      | Bu/A         |
| Hard Red                                                    |                                    |         |              |              |              |
| ALLIANCE                                                    | 20                                 | 1       | 57.9         | 14.5         | 29.2         |
| ARAPAHOE                                                    | 21                                 | 1       | 55.8         | 16.9         | 19.5         |
| JAGALENE                                                    | 20                                 | 1       | 59.6         | 16.2         | 28.9         |
| NEKOTA                                                      | 20                                 | 1       | 57.6         | 16.3         | 26.3         |
| JERRY                                                       | 24                                 | 1       | 53.7         | 17.1         | 25.6         |
| WESLEY                                                      | 20                                 | 1       | 55.9         | 16.9         | 25.8         |
| MILLENNIUM                                                  | 24                                 | 1       | 58.1         | 15.4         | 31.8         |
| WAHOO                                                       | 22                                 | 1       | 56.3         | 15.8         | 26.3         |
| CRIMSON                                                     | 23                                 | 1       | 57.1         | 18.0         | 24.8         |
| EXPEDITION                                                  | 20                                 | 1       | 58.6         | 16.2         | 23.2         |
| HARDING                                                     | 22                                 | 1       | 54.2         | 16.7         | 26.1         |
| TANDEM                                                      | <b>22</b> .                        | 1       | 60.6         | 17.4         | 24.8         |
| SD92107-5                                                   | 21                                 | 1       | 54.7         | 16.9         | 25.3         |
| SD97250                                                     | 23                                 | 1       | 56.0         | 16.4         | 26.3         |
| SD98102                                                     | 24                                 | 1       | 58.2         | 16.0         | 29.8         |
| SD97538                                                     | 21                                 | 1       | 57.5         | 16.2         | 27.6         |
| SD97059-2                                                   | 21                                 | 1       | 55.0         | 16.1         | 24.2         |
| SD97380-2                                                   | 23                                 | 1       | 55.9         | 16.5         | 23.5         |
| SD97394-1                                                   | 24                                 | 1       | 57.6         | 15.8         | 28.3         |
| SD99073                                                     | 22                                 | 1<br>1  | 56.9         | 16.2         | 24.1         |
| SD00032<br>SD00111                                          | 23<br>22                           | 1       | 56.1         | 17.3         | 19.5         |
| SD00111<br>SD00258                                          | 22<br>22 <sup>:</sup>              | 1       | 57.4<br>54.3 | 16.2<br>16.6 | 24.7<br>21.3 |
| NE99533-4                                                   | 22 <sup>°</sup><br>21 <sup>°</sup> | 1       | 54.5<br>59.0 | 16.8         | 31.4         |
| NE99000-4                                                   | 21                                 | I       | 59.0         | 10.0         | 31.4         |
| Hard White                                                  |                                    |         |              |              |              |
| TREGO                                                       | 21                                 | 1       | 59.7         | 15.5         | 30.8         |
| WENDY                                                       | 20                                 | 1       | 56.7         | 16.3         | 21.8         |
| SD97W604                                                    | 20                                 | 1       | 59.4         | 16.6         | 21.2         |
| SD97W671-1                                                  | 22                                 | 1       | 56.8         | 16.6         | 21.6         |
| SD00W024<br>SD00W041                                        | 21<br>23                           | 1<br>1  | 57.3<br>57.5 | 17.0         | 28.2         |
| · · · · · · · · · · · · · · · · · · ·                       |                                    | -       | 57.5         | 17.1         | 22.8         |
| Average                                                     | 21.6                               | 1.0     | 57.0         | 16.5         | 25.5         |
| LSD (P=.05)                                                 | 2.1                                | 0.0     | 1.7          | •            | 7.3          |
| $\frac{\text{CV}}{1 + 1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - $ | 6.9                                | 0.0     | 2.1          | <u> </u>     | 20.4         |

| Table 3. Hard Winter | Wheat Variety Trial - Meade County (Sturgis), 2004. |
|----------------------|-----------------------------------------------------|
|                      |                                                     |

\*1=No lodging, 9 = 100% lodged.

~

#### WHEAT VARIETY RECOMMENDATIONS FOR 2005



# Crop Adaptation Areas for South Dakota (Revised 1992)

#### WINTER WHEAT

#### **Recommended:**

| Variety                   | Crop Adaptation Area                                       |
|---------------------------|------------------------------------------------------------|
| Alliance PVP              | 3,4 <sup>pc</sup> ,5,6                                     |
| Arapahoe                  | 1 <sup>°pc</sup> ,3,4 <sup>°pc</sup> ,5,6,7 <sup>°pc</sup> |
| Harding PVP               | 1 <sup>pc</sup> ,2 <sup>pc</sup> ,4,7                      |
| Jagalene PVP              | 1 <sup>pc</sup> ,3,4 <sup>pc</sup> ,5,6,7 <sup>pc</sup>    |
| Millennium <sup>PVP</sup> | 1 <sup>pc</sup> ,4 <sup>pc</sup> ,5,6,7 <sup>pc</sup>      |
| Wesley                    | 1 <sup>pc</sup> ,3,4 <sup>pc</sup> ,5,6,7 <sup>pc</sup>    |

#### Acceptable/Promising:

| Variety                      | Crop Adaptation Area                                    |
|------------------------------|---------------------------------------------------------|
| Expedition                   | 1 <sup>pc</sup> ,4 <sup>pc</sup> ,5,6,7 <sup>pc</sup>   |
| Tandem <sup>PVP</sup>        | 1 <sup>pc</sup> ,3,4 <sup>pc</sup> ,5,6,7 <sup>pc</sup> |
| Wahoo <sup>PVP</sup>         | 3,4 <sup>pc</sup> ,5,6                                  |
| Trego (white) <sup>PVP</sup> | 5,6,7 <sup>pc</sup>                                     |

### **SPRING WHEAT**

#### **Recommended:**

| Variety                                       | Crop Adaptation Area |
|-----------------------------------------------|----------------------|
| Briggs <sup>PVP</sup><br>Forge <sup>PVP</sup> | Statewide            |
| Forge                                         | Statewide            |
| Ingot <sup>PVP</sup>                          | Statewide            |
|                                               | Statewide            |
| Knudson PVP                                   | Statewide            |
| Norpro                                        | 1,2,7                |
| Oxen <sup>PVP</sup>                           | Statewide            |
| Reeder                                        | Statewide            |
| Russ PVP                                      | Statewide            |
|                                               |                      |

#### Acceptable/Promising:

| Variety      | Crop Adaptation Area |
|--------------|----------------------|
| Alsen PVP    | 1,2,7                |
| Parshall PVP | 1,7                  |
| Walworth PVP | Statewide            |

#### **DURUM WHEAT**

Durum wheat is not part of the statewide CPT program, so no recommendations are made. There were trials planted at Bison and Ralph with the results presented on page 16.

PVP U.S. Plant Variety Protection applied for and/or issued; seed sales of these varieties are restricted to classes of certified seed.

PC Plant into protective cover.

Source - Small Grains 2005 Variety Recommendations, EC774, South Dakota State University. (http://plantsci.sdstate.edu/varietytrials/vartrial.html)

#### SPRING WHEAT VARIETY TRIALS

**Objective:** To evaluate standard and experimental hard red spring wheat varieties for yield, agronomic characteristics and adaptation to western South Dakota.

**Procedure:** Plots were seeded at three locations in April 2004 with a John Deere 750 plot drill with 10 inch spacing. The experimental design was a randomized complete block with four replications. The seeding rate was 1,220,000 seeds per acre (90 Lb/A). The plots received 7.4 lbs N and 25 lbs  $P_2O_5$  per acre as 10-34-0 with the seed. Herbicides were applied in May and varied according to weeds present. Plots were trimmed to 5' x 25' after heading. The wheat was harvested in July and August with a small plot combine. Height, shatter, and lodging notes were taken at the time of harvest. Protein content was determined with a Near Infrared Spectrophotometer (Technicon InfraAlyzer 400).

#### **Location Summaries:**

### Pennington County – Wall

Planted:April 6, 2004Herbicide:Bronate (1 pint/A)Harvested:July 29, 2004Additional Nitrogen:NonePrevious crop:Conventional fallow

The growing conditions at Wall were dry early on but turned more favorable in late May and June with some timely rains and cool temperatures. The trial averaged 35 Bu/A with test weights averaging 62.1 Lb/Bu. The top yielding varieties in 2004 were Norpro, Russ, Polaris, Oxen, Granite, Walworth and Freyer. There was no significant difference in yield among varieties with three year averages. Results are shown in Table 4.

#### **Perkins County – Bison**

Planted: April 12, 2004Herbicide: Bronate (1 pint/A)Harvested: August 10, 2004Additional Nitrogen: 30 lb/APrevious crop: Durum Wheat, No-Till planted

Bison yields were somewhat below normal because of drought conditions. Yields averaged 29 Bu/A with test weights averaging 58.4 Lb/Bu. The top yield group in 2004 included Polaris, Reeder, Norpro and Forge. There are no three year average yields for Bison. Results are shown in Table 5.

#### Harding County - Ralph

Planted April 12, 2004Herbicide: Ally (1/10 oz/A) +2,4-D LV6 (6 oz/A)Harvested: August 9, 2004Additional Nitrogen: NonePrevious crop: Conventional fallow

The Ralph trial was excellent this year with good rainfall and cool temperatures producing yields averaging 55 Bu/A with test weights averaging 59.9 Lb/Bu. The varieties in the top yield group in 2004 were Norpro and Polaris, both late varieties. There are no three year average yields for Ralph. Results are shown in Table 6.

| Table 4. Hard Red Spi |        |         |       |         |        |        |
|-----------------------|--------|---------|-------|---------|--------|--------|
| Variety               | Height | Lodging |       | Protein | Yield  | Bu/A   |
|                       | Inches | 0-9*    | Lb/Bu | Percent | 2004   | 3 Year |
| ALSEN                 | 23     | 0       | 62.5  | 17.3    | 29.7   | 27     |
| BRIGGS                | 24     | 0       | 62.4  | 18.2    | 35.5   | 27     |
| CHRIS                 | 28     | 0       | 61.0  | 18.0    | 33.1 · | 26     |
| DANDY                 | 25     | 0       | 61.8  | 16.6    | 34.4   |        |
| DAPPS                 | 25     | 0       | 61.7  | 18.3    | 32.5   | 26     |
| FORGE                 | 24     | 0       | 62.9  | 16.9    | 36.3   | 30     |
| FREYR                 | 26     | 0       | 62.6  | 16.1    | 35.4   |        |
|                       |        |         |       |         |        |        |
| GRANGER               | 24     | 0       | 62.1  | 16.3    | 34.5   | 29     |
| GRANITE               | 24     | 0       | 64.7  | 16.9    | 37.3   | 28     |
| INGOT                 | 25     | 0       | 62.4  | 17.3    | 30.7   | 29     |
| KNUDSON               | 22     | 0       | 61.8  | 16.7    | 29.2   | 26     |
| MERCURY               | 19     | 0       | 61.1  | 17.2    | 28.8   |        |
| NORPRO                | 22     | 0       | 63.2  | 16.1    | 39.5   | 28     |
| OKLEE                 | 21     | 0       | 61.1  | 17.4    | 30.6   | 28     |
|                       |        |         |       |         |        |        |
| OXEN                  | 23     | 0       | 60.8  | 17.2    | 37.3   | 31     |
| POLARIS               | 24     | 0       | 62.5  | 16.2    | 37.4   | -      |
| REEDER                | 24     | . 0     | 63.3  | 17.4    | 34.5   | 30     |
| RUSS                  | 25     | 0       | 61.4  | 16.9    | 37.8   | 30     |
| STEELE-ND             | 25     | 0       | 62.6  | 17.7    | 34.7   | -      |
| TROOPER               | 20     | 0       | 63.7  | 16.5    | 32.2   |        |
| WALWORTH              | 23     | 0       | 60.8  | 16.6    | 36.5   | 31     |
|                       |        |         |       |         |        |        |
| BZ998-44              | 23     | 0       | 61.8  | 15.7    | 36.7   |        |
| MN 97803              | 24     | 0       | 62.3  | 17.2    | 33.9   |        |
| ND 751                | 27     | 0       | 63.5  | 17.1    | 37.7   |        |
| SD 3618               | 26     | 0       | 61.0  | 17.3    | 36.3   | . •    |
| SD 3623               | 26     | 0       | 62.4  | 16.9    | 34.7   | •      |
| SD 3635               | 25     | 0       | 61.7  | 16.7    | 39.2   |        |
| SD 3668               | 25     | 0       | 62.0  | 17.0    | 34.6   |        |
| SD 3687               | 23     | 0       | 59.9  | 16.5    | 33.8   |        |
| SD 3746               | 24     | 0       | 61.6  | 15.4    | 36.3   | •      |
| SD 3747               | 22     | 0       | 60.9  | 15.8    | 38.5   |        |
| SD 3827               | 26     | 0       | 62.9  | 16.4    | 38.7   |        |
| SD 3860               | 25     | 0       | 62.2  | 15.1    | 39.4   |        |
| SD 3868               | 25     | 0       | 61.9  | 14.2    | 36.7   | •      |
| Average               | 22.0   |         | 62.1  | 16.7    | 35.1   | 28     |
| Average               | 23.9   | 0.0     | 62.1  | 10.7    |        |        |
| LSD (P=.05)<br>CV     | 2.2    | 0.0     | 0.6   | •       | 3.7    | NS     |
|                       | 6.5    | 0.0     | 0.7   |         | 7.5    | 9      |

Table 4. Hard Red Spring Wheat Variety Trial - Pennington County (Wall), 2002-2004.

\* 0=No lodging, 9 = 100% lodged.

| Variety         Height<br>Inches         Lodging<br>0-9*         Test Wt.         Protein<br>Percent           ALSEN         27         0         61.2         17.5           BRIGGS         27         0         58.0         17.3           CHRIS         33         0         57.4         17.5           DANDY         27         0         58.3         16.0           DAPPS         29         0         56.7         18.5           FORGE         26         0         58.6         15.7           FREYR         29         0         59.2         17.8           GRANGER         27         0         59.8         17.0           GRANGER         27         0         59.8         17.0           GRANGER         27         0         59.8         17.0           GRANITE         24         0         59.6         17.2           INGOT         28         0         60.0         17.5           KNUDSON         25         0         58.7         17.4           MERCURY         23         0         59.0         16.9           NORPRO         27         0         59.9         18.0 | nty (Bison), 2004. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| ALSEN       27       0       61.2       17.5         BRIGGS       27       0       58.0       17.3         CHRIS       33       0       57.4       17.5         DANDY       27       0       58.3       16.0         DAPPS       29       0       56.7       18.5         FORGE       26       0       58.6       15.7         FREYR       29       0       59.2       17.8         GRANGER       27       0       59.8       17.0         GRANITE       24       0       59.6       17.2         INGOT       28       0       60.0       17.5         KNUDSON       25       0       58.7       17.4         MERCURY       23       0       59.0       16.9         NORPRO       27       0       59.9       18.0                                                                                                                                                                                                                                                                                                                                                                                  |                    |
| BRIGGS         27         0         58.0         17.3           CHRIS         33         0         57.4         17.5           DANDY         27         0         58.3         16.0           DAPPS         29         0         56.7         18.5           FORGE         26         0         58.6         15.7           FREYR         29         0         59.2         17.8           GRANGER         27         0         59.8         17.0           GRANITE         24         0         59.6         17.2           INGOT         28         0         60.0         17.5           KNUDSON         25         0         58.7         17.4           MERCURY         23         0         59.0         16.9           NORPRO         27         0         59.9         18.0                                                                                                                                                                                                                                                                                                                 | nt 2004            |
| CHRIS       33       0       57.4       17.5         DANDY       27       0       58.3       16.0         DAPPS       29       0       56.7       18.5         FORGE       26       0       58.6       15.7         FREYR       29       0       59.2       17.8         GRANGER       27       0       59.8       17.0         GRANITE       24       0       59.6       17.2         INGOT       28       0       60.0       17.5         KNUDSON       25       0       58.7       17.4         MERCURY       23       0       59.0       16.9         NORPRO       27       0       59.9       18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.9               |
| DANDY         27         0         58.3         16.0           DAPPS         29         0         56.7         18.5           FORGE         26         0         58.6         15.7           FREYR         29         0         59.2         17.8           GRANGER         27         0         59.8         17.0           GRANITE         24         0         59.6         17.2           INGOT         28         0         60.0         17.5           KNUDSON         25         0         58.7         17.4           MERCURY         23         0         59.0         16.9           NORPRO         27         0         59.9         18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.0               |
| DAPPS       29       0       56.7       18.5         FORGE       26       0       58.6       15.7         FREYR       29       0       59.2       17.8         GRANGER       27       0       59.8       17.0         GRANITE       24       0       59.6       17.2         INGOT       28       0       60.0       17.5         KNUDSON       25       0       58.7       17.4         MERCURY       23       0       59.0       16.9         NORPRO       27       0       59.9       18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25.8               |
| FORGE       26       0       58.6       15.7         FREYR       29       0       59.2       17.8         GRANGER       27       0       59.8       17.0         GRANITE       24       0       59.6       17.2         INGOT       28       0       60.0       17.5         KNUDSON       25       0       58.7       17.4         MERCURY       23       0       59.0       16.9         NORPRO       27       0       59.9       18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.7               |
| FREYR       29       0       59.2       17.8         GRANGER       27       0       59.8       17.0         GRANITE       24       0       59.6       17.2         INGOT       28       0       60.0       17.5         KNUDSON       25       0       58.7       17.4         MERCURY       23       0       59.0       16.9         NORPRO       27       0       59.9       18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| GRANGER27059.817.0GRANITE24059.617.2INGOT28060.017.5KNUDSON25058.717.4MERCURY23059.016.9NORPRO27059.918.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
| GRANITE24059.617.2INGOT28060.017.5KNUDSON25058.717.4MERCURY23059.016.9NORPRO27059.918.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.7               |
| INGOT28060.017.5KNUDSON25058.717.4MERCURY23059.016.9NORPRO27059.918.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.8               |
| KNUDSON25058.717.4MERCURY23059.016.9NORPRO27059.918.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.3               |
| MERCURY23059.016.9NORPRO27059.918.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25.0               |
| NORPRO 27 0 59.9 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.5               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.7               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31.4               |
| OKLEE 24 0 58.6 18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.6               |
| OXEN 25 0 56.8 17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26.7               |
| POLARIS 25 0 58.9 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33.5               |
| REEDER 26 0 58.0 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.8               |
| RUSS 28 0 56.4 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29.2               |
| STEELE 29 0 58.3 18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.9               |
| TROOPER 23 0 59.0 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.7               |
| WALWORTH 28 0 58.0 17.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.5               |
| BZ998-44 26 0 57.7 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30.0               |
| MN 97803 25 0 57.9 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.2               |
| ND 751 29 0 57.7 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.9               |
| SD 3618 27 0 57.7 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.0               |
| SD 3623 27 0 58.8 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.2               |
| SD 3635 26 0 58.6 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.2               |
| SD 3668 27 0 60.5 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.0               |
| SD 3687 26 0 57.5 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.4               |
| SD 3746 27 0 57.3 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.5               |
| SD 3747 25 0 55.7 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30.5               |
| SD 3827 30 0 58.3 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32.7               |
| SD 3860 30 0 58.3 15.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38.8               |
| SD 3868 29 0 58.0 17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.3               |
| Average 26.8 0.0 58.4 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| LSD (P=.05) 2.5 0.0 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.08               |
| CV 6.8 0.0 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.0               |

\* 0=No lodging, 9 = 100% lodged.

.

| Variety         Height<br>Inches         Lodging<br>0-9*         Test Wt.<br>Lb/Bu         Protein<br>Percent         Yield<br>2004           ALSEN         31         0         59.2         14.2         54.0           BRIGGS         31         0         59.4         14.2         54.0           CHRIS         36         0         58.0         16.9         42.3           DANDY         31         0         61.5         15.3         53.7           DAPPS         35         0         59.0         16.7         45.9           FORGE         31         0         62.0         12.0         56.8           FREYR         30         0         60.3         14.3         54.0           INGOT         35         0         61.5         14.7         50.2           KNUDSON         29         0         60.0         16.5         55.4           MERCURY         26         0         60.7         11.9         56.6           NORPRO         28         0         59.3         13.9         45.0           OXEN         29         0         59.5         13.3         57.2           POLARIS         31         0                                                              | Table 6. Hard Re |        |      |          |         |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|------|----------|---------|------------|
| ALSEN310 $59.2$ $14.2$ $54.0$ BRIGGS310 $59.4$ $14.2$ $51.8$ CHRIS360 $58.0$ $16.9$ $42.3$ DANDY310 $61.5$ $15.3$ $53.7$ DAPPS $35$ 0 $59.0$ $16.7$ $45.9$ FORGE310 $62.0$ $12.0$ $56.8$ FREYR300 $60.7$ $14.4$ $52.4$ GRANGER350 $60.7$ $14.4$ $52.4$ INGOT350 $61.5$ $14.7$ $50.2$ KNUDSON290 $60.3$ $14.3$ $54.0$ INGOT350 $61.5$ $14.7$ $50.2$ KNUDSON290 $60.7$ $11.9$ $56.6$ NORPRO280 $59.0$ $14.6$ $60.6$ OKLEE280 $59.3$ $13.9$ $45.0$ OXEN290 $59.5$ $13.3$ $57.2$ POLARIS310 $58.3$ $12.0$ $60.2$ REEDER310 $59.0$ $13.8$ $56.6$ RUSS $32$ 0 $59.5$ $13.4$ $51.6$ WALWORTH290 $59.4$ $12.2$ $56.9$ BZ98-44300 $59.3$ $13.2$ $60.4$ MN 97803310 $59.3$ $13.4.9$ $50.0$ ND 751340 $60.2$ $14.0$ $57.7$ SD 3668330 $60.7$ <td>Variety</td> <td>Height</td> <td></td> <td>Test Wt.</td> <td>Protein</td> <td>Yield Bu/A</td>                                                                                                                                                                                                                                                                                                                                                          | Variety          | Height |      | Test Wt. | Protein | Yield Bu/A |
| BRIGGS         31         0         59.4         14.2         51.8           CHRIS         36         0         58.0         16.9         42.3           DANDY         31         0         61.5         15.3         53.7           DAPPS         35         0         50.0         16.7         45.9           FORGE         31         0         62.0         12.0         56.8           FREYR         30         0         60.7         14.4         52.4           GRANGER         35         0         61.5         14.7         50.2           KNUDSON         29         0         60.3         14.3         54.0           INGOT         35         0         61.5         14.7         50.2           KNUDSON         29         0         60.0         16.5         55.4           MERCURY         26         0         60.7         11.9         56.6           NORPRO         28         0         59.3         13.3         57.2           POLARIS         31         0         59.6         13.8         56.6           RUSS         32         0         59.5         13.4                                                                                                  |                  | Inches | 0-9* | Lb/Bù    | Percent | 2004       |
| CHRIS         36         0         58.0         16.9         42.3           DANDY         31         0         61.5         15.3         53.7           DAPPS         35         0         59.0         16.7         45.9           FORGE         31         0         62.0         12.0         56.8           FREYR         30         0         60.7         14.4         52.4           GRANGER         35         0         61.5         14.7         50.2           KNUDSON         29         0         60.0         16.5         55.4           MERCURY         26         0         60.7         11.9         56.6           NORPRO         28         0         59.0         14.6         60.6           OKLEE         28         0         59.5         13.3         57.2           POLARIS         31         0         58.3         12.0         60.2           REEDER         31         0         59.5         13.8         56.6           RUSS         32         0         59.5         13.4         51.6           WALWORTH         29         0         59.5         13.4                                                                                                 | ALSEN            | 31     | 0    | 59.2     | 14.2    | 54.0       |
| DANDY         31         0         61.5         15.3         53.7           DAPPS         35         0         59.0         16.7         45.9           FORGE         31         0         62.0         12.0         56.8           FREYR         30         0         60.7         14.4         52.4           GRANGER         35         0         60.9         13.5         55.0           GRANITE         29         0         60.3         14.3         54.0           INGOT         35         0         61.5         14.7         50.2           KNUDSON         29         0         60.0         16.5         55.4           MERCURY         26         0         60.7         11.9         56.6           NORPRO         28         0         59.3         13.3         57.2           POLARIS         31         0         58.3         12.0 <b>60.2</b> REEDER         31         0         59.5         13.3         57.2           POLARIS         31         0         59.5         13.4         51.6           RUSS         32         0         59.5         13.4                                                                                                           | BRIGGS           | 31     | 0    | 59.4     | 14.2    | 51.8       |
| DAPPS         35         0         59.0         16.7         45.9           FORGE         31         0         62.0         12.0         56.8           FREYR         30         0         60.7         14.4         52.4           GRANGER         35         0         60.9         13.5         55.0           GRANITE         29         0         60.3         14.3         54.0           INGOT         35         0         61.5         14.7         50.2           KNUDSON         29         0         60.0         16.5         55.4           MERCURY         26         0         60.7         11.9         56.6           NORPRO         28         0         59.3         13.9         45.0           OXEN         29         0         59.5         13.3         57.2           POLARIS         31         0         59.2         15.7         56.8           STEELE         33         0         59.6         15.5         56.4           TROOPER         26         0         59.3         13.2         60.4           MN 97803         31         0         59.3         14.9                                                                                             | CHRIS            | 36     | 0    | 58.0     | 16.9    | 42.3       |
| FORGE         31         0         62.0         12.0         56.8           FREYR         30         0         60.7         14.4         52.4           GRANGER         35         0         60.9         13.5         55.0           GRANITE         29         0         60.3         14.3         54.0           INGOT         35         0         61.5         14.7         50.2           KNUDSON         29         0         60.0         16.5         55.4           MERCURY         26         0         60.7         11.9         56.6           NORPRO         28         0         59.0         14.6         60.6           OKLEE         28         0         59.3         13.3         57.2           POLARIS         31         0         58.3         12.0         60.2           REEDER         31         0         59.5         13.3         57.2           POLARIS         31         0         59.5         13.4         51.6           RUSS         32         0         59.2         15.7         56.8           STEELE         33         0         59.5         13.4                                                                                               | DANDY            | 31     | 0    | 61.5     | 15.3    | 53.7       |
| FREYR         30         0         60.7         14.4         52.4           GRANGER         35         0         60.9         13.5         55.0           GRANITE         29         0         60.3         14.3         54.0           INGOT         35         0         61.5         14.7         50.2           KNUDSON         29         0         60.0         16.5         55.4           MERCURY         26         0         60.7         11.9         56.6           NORPRO         28         0         59.0         14.6 <b>60.6</b> OKLEE         28         0         59.3         13.3         57.2           POLARIS         31         0         58.3         12.0 <b>60.2</b> REEDER         31         0         59.0         13.8         56.6           RUSS         32         0         59.5         13.4         51.6           REDER         31         0         59.5         13.4         51.6           WALWORTH         29         0         59.4         12.2         56.9           BZ998-44         30         0         59.3         13.2 <td>DAPPS</td> <td>35</td> <td>0</td> <td>59.0</td> <td>16.7</td> <td>45.9</td>                                  | DAPPS            | 35     | 0    | 59.0     | 16.7    | 45.9       |
| GRANGER         35         0         60.9         13.5         55.0           GRANITE         29         0         60.3         14.3         54.0           INGOT         35         0         61.5         14.7         50.2           KNUDSON         29         0         60.0         16.5         55.4           MERCURY         26         0         60.7         11.9         56.6           NORPRO         28         0         59.0         14.6         60.6           OKLEE         28         0         59.3         13.9         45.0           OXEN         29         0         59.5         13.3         57.2           POLARIS         31         0         58.3         12.0         60.2           REEDER         31         0         59.0         13.8         56.6           RUSS         32         0         59.2         15.7         56.8           STEELE         33         0         59.6         15.5         56.4           TROOPER         26         0         59.3         13.2         60.4           MN 97803         31         0         59.3         14.9                                                                                             | FORGE            | 31     | 0    | 62:0     | 12.0    | 56.8       |
| GRANITE290 $60.3$ $14.3$ $54.0$ INGOT350 $61.5$ $14.7$ $50.2$ KNUDSON290 $60.0$ $16.5$ $55.4$ MERCURY260 $60.7$ $11.9$ $56.6$ NORPRO280 $59.0$ $14.6$ $60.6$ OKLEE280 $59.3$ $13.9$ $45.0$ OXEN290 $59.5$ $13.3$ $57.2$ POLARIS310 $58.3$ $12.0$ $60.2$ REEDER310 $59.0$ $13.8$ $56.6$ RUSS320 $59.2$ $15.7$ $56.8$ STEELE330 $59.6$ $15.5$ $56.4$ TROOPER260 $59.5$ $13.4$ $51.6$ WALWORTH290 $59.3$ $13.2$ $60.4$ MN 97803310 $59.3$ $14.9$ $50.0$ ND 751340 $60.4$ $14.0$ $52.4$ SD 3618330 $60.7$ $13.7$ $48.7$ SD 3668330 $59.9$ $13.7$ $48.7$ SD 3668330 $59.9$ $12.3$ $60.9$ SD 3747270 $60.4$ $12.8$ $59.3$ SD 3860350 $60.0$ $10.7$ $53.5$ SD 3868340 $60.0$ $12.4$ $59.6$ Average $31.4$ $0.0$ $59.9$ $13.7$ $54.6$ LSD (P=.05)2.6 <td< td=""><td>FREYR</td><td>30</td><td>0</td><td>60.7</td><td>14.4</td><td>52.4</td></td<>                                                                                                                                                                                                                                                                                                                                                     | FREYR            | 30     | 0    | 60.7     | 14.4    | 52.4       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GRANGER          | 35     | 0    | 60.9     | 13.5    | 55.0       |
| KNUDSON       29       0       60.0       16.5       55.4         MERCURY       26       0       60.7       11.9       56.6         NORPRO       28       0       59.0       14.6       60.6         OKLEE       28       0       59.3       13.9       45.0         OXEN       29       0       59.5       13.3       57.2         POLARIS       31       0       58.3       12.0       60.2         REEDER       31       0       59.0       13.8       56.6         RUSS       32       0       59.2       15.7       56.8         STEELE       33       0       59.5       13.4       51.6         WALWORTH       29       0       59.3       13.2       60.4         MN 97803       31       0       59.3       14.9       50.0         ND 751       34       0       60.4       14.0       52.4         SD 3618       33       0       60.7       13.7       48.7         SD 3687       33       0       60.7       13.7       48.7         SD 36868       33       0       60.7       13.7       48.7 <td>GRANITE</td> <td>29</td> <td>0</td> <td>60.3</td> <td>14.3</td> <td>54.0</td>                                                                                               | GRANITE          | 29     | 0    | 60.3     | 14.3    | 54.0       |
| MERCURY         26         0         60.7         11.9         56.6           NORPRO         28         0         59.0         14.6         60.6           OKLEE         28         0         59.3         13.9         45.0           OXEN         29         0         59.5         13.3         57.2           POLARIS         31         0         58.3         12.0         60.2           REEDER         31         0         59.0         13.8         56.6           RUSS         32         0         59.2         15.7         56.8           STEELE         33         0         59.6         15.5         56.4           TROOPER         26         0         59.3         13.2         60.4           MN 97803         31         0         59.3         14.9         50.0           ND 751         34         0         60.4         14.0         52.4           SD 3618         33         0         60.0         11.9         55.0           SD 3623         38         0         61.0         12.0         52.8           SD 3668         33         0         58.9         13.9                                                                                            | INGOŤ            | 35     | 0    | 61.5     | 14.7    | 50.2       |
| NORPRO<br>OKLEE         28         0         59.0         14.6         60.6           OKLEE         28         0         59.3         13.9         45.0           OXEN         29         0         59.5         13.3         57.2           POLARIS         31         0         58.3         12.0         60.2           REEDER         31         0         59.0         13.8         56.6           RUSS         32         0         59.2         15.7         56.8           STEELE         33         0         59.6         15.5         56.4           TROOPER         26         0         59.3         13.2         60.4           MN 97803         31         0         59.3         14.9         50.0           ND 751         34         0         60.4         14.0         52.4           SD 3618         33         0         60.0         11.9         55.0           SD 3623         38         0         61.0         12.0         52.8           SD 3668         33         0         60.7         13.7         48.7           SD 36687         33         0         59.9         12.3                                                                                  | KNUDSON          | 29     | 0    | 60.0     | 16.5    | 55.4       |
| OKLEE         28         0         59.3         13.9         45.0           OXEN         29         0         59.5         13.3         57.2           POLARIS         31         0         58.3         12.0 <b>60.2</b> REEDER         31         0         59.0         13.8         56.6           RUSS         32         0         59.2         15.7         56.8           STEELE         33         0         59.6         15.5         56.4           TROOPER         26         0         59.3         13.2 <b>60.4</b> MALWORTH         29         0         59.4         12.2         56.9           BZ998-44         30         0         59.3         14.9         50.0           ND 751         34         0         60.4         14.0         52.4           SD 3618         33         0         60.0         11.9         55.0           SD 36623         38         0         61.0         12.0         52.8           SD 3668         33         0         60.7         13.7         48.7           SD 3668         33         0         59.9         12.3                                                                                                               | MERCURY          | 26     | 0    | 60.7     | 11.9    | 56.6       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NORPRO           | 28     | 0    | 59.0     | 14.6    | 60.6       |
| POLARIS         31         0         58.3         12.0         60.2           REEDER         31         0         59.0         13.8         56.6           RUSS         32         0         59.2         15.7         56.8           STEELE         33         0         59.6         15.5         56.4           TROOPER         26         0         59.5         13.4         51.6           WALWORTH         29         0         59.3         13.2         60.4           MN 97803         31         0         59.3         14.9         50.0           ND 751         34         0         60.4         14.0         52.4           SD 3618         33         0         60.0         11.9         55.0           SD 3623         38         0         61.0         12.0         52.8           SD 3635         34         0         60.2         14.0         57.7           SD 3668         33         0         58.9         13.9         52.7           SD 3687         33         0         58.9         13.9         52.7           SD 3867         33         0         59.9         12.3                                                                                     | OKLEE            | 28     | 0    | 59.3     | 13.9    | 45.0       |
| REEDER         31         0         59.0         13.8         56.6           RUSS         32         0         59.2         15.7         56.8           STEELE         33         0         59.6         15.5         56.4           TROOPER         26         0         59.5         13.4         51.6           WALWORTH         29         0         59.3         13.2 <b>60.4</b> MN 97803         31         0         59.3         14.9         50.0           ND 751         34         0         60.4         14.0         52.4           SD 3618         33         0         60.0         11.9         55.0           SD 3623         38         0         61.0         12.0         52.8           SD 3668         33         0         60.7         13.7         48.7           SD 3668         33         0         58.9         13.9         52.7           SD 3667         33         0         59.9         12.3         60.9           SD 3746         33         0         59.9         12.3         60.9           SD 3860         35         0         60.0         10                                                                                                  | OXEN             | 29     | 0    | 59.5     | 13.3    | 57.2       |
| RUSS         32         0         59.2         15.7         56.8           STEELE         33         0         59.6         15.5         56.4           TROOPER         26         0         59.5         13.4         51.6           WALWORTH         29         0         59.4         12.2         56.9           BZ998-44         30         0         59.3         13.2 <b>60.4</b> MN 97803         31         0         59.3         14.9         50.0           ND 751         34         0         60.4         14.0         52.4           SD 3618         33         0         60.0         11.9         55.0           SD 3623         38         0         61.0         12.0         52.8           SD 3668         33         0         60.7         13.7         48.7           SD 3668         33         0         58.9         13.9         52.7           SD 3746         33         0         59.9         12.3         60.9           SD 3827         35         0         60.0         10.7         53.5           SD 3860         35         0         60.0                                                                                                           | POLARIS          | 31     | 0    | 58.3     | 12.0    | 60.2       |
| STEELE33059.615.556.4TROOPER26059.513.451.6WALWORTH29059.412.256.9BZ998-4430059.313.2 <b>60.4</b> MN 9780331059.314.950.0ND 75134060.414.052.4SD 361833060.011.955.0SD 362338061.012.052.8SD 363534060.214.057.7SD 366833060.713.748.7SD 368733058.913.952.7SD 374633059.912.3 <b>60.9</b> SD 382735060.010.753.5SD 386035060.210.9 <b>62.9</b> SD 386834060.012.4 <b>59.6</b> Average31.40.059.913.754.6LSD (P=.05)2.60.00.34.0CV4.00.00.65.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | REEDER           | 31     | 0    | 59.0     | 13.8    | 56.6       |
| TROOPER         26         0         59.5         13.4         51.6           WALWORTH         29         0         59.4         12.2         56.9           BZ998-44         30         0         59.3         13.2         60.4           MN 97803         31         0         59.3         14.9         50.0           ND 751         34         0         60.4         14.0         52.4           SD 3618         33         0         60.0         11.9         55.0           SD 3623         38         0         61.0         12.0         52.8           SD 3635         34         0         60.2         14.0         57.7           SD 3668         33         0         60.7         13.7         48.7           SD 3667         33         0         59.9         12.3         60.9           SD 3747         27         0         60.4         12.8         59.3           SD 3860         35         0         60.0         10.7         53.5           SD 3860         35         0         60.0         12.4         59.6           Average         31.4         0.0         59.9                                                                                        | RUSS             | 32     | 0    | 59.2     | 15.7    | 56.8       |
| WALWORTH         29         0         59.4         12.2         56.9           BZ998-44         30         0         59.3         13.2         60.4           MN 97803         31         0         59.3         14.9         50.0           ND 751         34         0         60.4         14.0         52.4           SD 3618         33         0         60.0         11.9         55.0           SD 3623         38         0         61.0         12.0         52.8           SD 3635         34         0         60.2         14.0         57.7           SD 3668         33         0         60.7         13.7         48.7           SD 3667         33         0         58.9         13.9         52.7           SD 3746         33         0         59.9         12.3         60.9           SD 3747         27         0         60.4         12.8         59.3           SD 3827         35         0         60.0         10.7         53.5           SD 3860         35         0         60.2         10.9         62.9           SD 3868         34         0         60.0 <t< td=""><td>STEELE</td><td>33</td><td>0</td><td>59.6</td><td>15.5</td><td>56.4</td></t<> | STEELE           | 33     | 0    | 59.6     | 15.5    | 56.4       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TROOPER          | 26     | 0    | 59.5     | 13.4    | 51.6       |
| MN 9780331059.314.950.0ND 75134060.414.052.4SD 361833060.011.955.0SD 362338061.012.052.8SD 363534060.214.057.7SD 366833060.713.748.7SD 368733058.913.952.7SD 374633059.912.360.9SD 374727060.412.859.3SD 382735060.010.753.5SD 386834060.012.459.6Average31.40.059.913.754.6LSD (P=.05)2.60.00.34.0CV4.00.00.65.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WALWORTH         | 29     | 0    | 59.4     | 12.2    | 56.9       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BZ998-44         | 30     | 0    | 59.3     | 13.2    | 60.4       |
| SD 361833060.011.955.0SD 362338061.012.052.8SD 363534060.214.057.7SD 366833060.713.748.7SD 368733058.913.952.7SD 374633059.912.360.9SD 374727060.412.859.3SD 382735060.010.753.5SD 386035060.012.459.6Average31.40.059.913.754.6LSD (P=.05)2.60.00.34.0CV4.00.00.65.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MN 97803         | 31     | · 0  | 59.3     | 14.9    | 50.0       |
| SD 3623       38       0       61.0       12.0       52.8         SD 3635       34       0       60.2       14.0       57.7         SD 3668       33       0       60.7       13.7       48.7         SD 3687       33       0       58.9       13.9       52.7         SD 3746       33       0       59.9       12.3       60.9         SD 3747       27       0       60.4       12.8       59.3         SD 3827       35       0       60.0       10.7       53.5         SD 3860       35       0       60.2       10.9       62.9         SD 3868       34       0       60.0       12.4       59.6         Average       31.4       0.0       59.9       13.7       54.6         LSD (P=.05)       2.6       0.0       0.3        4.0         CV       4.0       0.0       0.6        5.4                                                                                                                                                                                                                                                                                                                                                                                             | ND 751           | 34     | 0    | 60.4     | 14.0    | 52.4       |
| SD 363534060.214.057.7SD 366833060.713.748.7SD 368733058.913.952.7SD 374633059.912.360.9SD 374727060.412.859.3SD 382735060.010.753.5SD 386035060.210.962.9SD 386834060.012.459.6Average31.40.059.913.754.6LSD (P=.05)2.60.00.34.0CV4.00.00.65.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SD 3618          | 33     | 0    | 60.0     | 11.9    | 55.0       |
| SD 3668       33       0       60.7       13.7       48.7         SD 3687       33       0       58.9       13.9       52.7         SD 3746       33       0       59.9       12.3       60.9         SD 3747       27       0       60.4       12.8       59.3         SD 3827       35       0       60.0       10.7       53.5         SD 3860       35       0       60.2       10.9       62.9         SD 3868       34       0       60.0       12.4       59.6         Average       31.4       0.0       59.9       13.7       54.6         LSD (P=.05)       2.6       0.0       0.3        4.0         CV       4.0       0.0       0.6        5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SD 3623          | 38     | 0    | 61.0     | 12.0    | 52.8       |
| SD 3687       33       0       58.9       13.9       52.7         SD 3746       33       0       59.9       12.3       60.9         SD 3747       27       0       60.4       12.8       59.3         SD 3827       35       0       60.0       10.7       53.5         SD 3860       35       0       60.2       10.9       62.9         SD 3868       34       0       60.0       12.4       59.6         Average       31.4       0.0       59.9       13.7       54.6         LSD (P=.05)       2.6       0.0       0.3        4.0         CV       4.0       0.0       0.6        5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD 3635          | 34     | 0    | 60.2     | 14.0    | 57.7       |
| SD 374633059.912.360.9SD 374727060.412.859.3SD 382735060.010.753.5SD 386035060.210.962.9SD 386834060.012.459.6Average31.40.059.913.754.6LSD (P=.05)2.60.00.34.0CV4.00.00.65.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SD 3668          | 33     | 0    | 60.7     | 13.7    | 48.7       |
| SD 3747       27       0       60.4       12.8 <b>59.3</b> SD 3827       35       0       60.0       10.7       53.5         SD 3860       35       0       60.2       10.9 <b>62.9</b> SD 3868       34       0       60.0       12.4 <b>59.6</b> Average       31.4       0.0       59.9       13.7       54.6         LSD (P=.05)       2.6       0.0       0.3        4.0         CV       4.0       0.0       0.6        5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SD 3687          | 33     | 0    | 58.9     | 13.9    | 52.7       |
| SD 3827       35       0       60.0       10.7       53.5         SD 3860       35       0       60.2       10.9       62.9         SD 3868       34       0       60.0       12.4       59.6         Average       31.4       0.0       59.9       13.7       54.6         LSD (P=.05)       2.6       0.0       0.3        4.0         CV       4.0       0.0       0.6        5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SD 3746          | 33     | 0    | 59.9     | 12.3    | 60.9       |
| SD 386035060.210.962.9SD 386834060.012.459.6Average31.40.059.913.754.6LSD (P=.05)2.60.00.34.0CV4.00.00.65.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SD 3747          | 27     | 0    | 60.4     | 12.8    | 59.3       |
| SD 386834060.012.4 <b>59.6</b> Average31.40.059.913.754.6LSD (P=.05)2.60.00.34.0CV4.00.00.65.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SD 3827          | 35     | 0    | 60.0     | 10.7    | 53.5       |
| Average31.40.059.913.754.6LSD (P=.05)2.60.00.34.0CV4.00.00.65.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SD 3860          | 35     | 0    | 60.2     | 10.9    | 62.9       |
| LSD (P=.05)         2.6         0.0         0.3          4.0           CV         4.0         0.0         0.6          5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD 3868          | 34     | 0    | 60.0     | 12.4    | 59.6       |
| CV 4.0 0.0 0.6 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |        |      |          | 13.7    |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • •              |        |      |          |         |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |        | 0.0  | 0.6      |         | 5.4        |

Table 6. Hard Red Spring Wheat Variety Trial – Harding County (Ralph), 2004.

\* 0=No lodging, 9 = 100% lodged.

#### DURUM WHEAT VARIETY TRIALS

**Objective:** To evaluate standard and experimental durum wheat varieties for yield, agronomic characteristics and adaptation to northwestern South Dakota.

**Procedure:** Plots were seeded at three locations in April 2004 with a John Deere 750 plot drill with 10 inch spacing. The experimental design was a randomized complete block with four replications. The seeding rate was 1,220,000 seeds per acre (90 Lb/A). The plots received 7.4 lbs N and 25 lbs  $P_2O_5$  per acre as 10-34-0 with the seed. Herbicides were applied in late May and varied according to weeds present. Plots were trimmed to 5' x 25' after heading. The wheat was harvested in August with a small plot combine. Height, shatter, and lodging notes were taken at the time of harvest. Protein content was determined with a Near Infrared Spectrophotometer (Technicon InfraAlyzer 400).

#### Location Summaries:

#### Perkins County – Bison

Planted: April 12, 2004Herbicide: Bronate (16 oz/A)Harvested: August 10, 2004Additional Nitrogen: 30 Lb/APrevious crop: Millet, No-till planted

Bison yields were low in 2004 averaging 23 Bu/A with light test weights averaging only 54.9 Lb/Bu. The trial had a high coefficient of variation (CV), so yield comparisons cannot be safely made. There are no three year yield averages for Bison. Results are shown in Table 7.

#### Harding County - Ralph

Planted:April 12, 2004Herbicide:Ally (1/10 oz/A) +2,4-D LV6 (6 oz/A)Harvested:August 9, 2004Additional Nitrogen:50 Lb/APrevious crop:Conventional fallow

Ralph yields averaged 41 Bu/A in 2004 with test weights averaging 63.1 Lb/Bu. There was little difference in yields with no statistically significant difference among varieties in 2004 or over the past three years. Results are shown in Table 8.

| Variety     | Height | Lodging | Test Wt | Protein | Yield Bu/A |
|-------------|--------|---------|---------|---------|------------|
|             | Inches | 0-9*    | Lb/Bu   | Percent | 2004       |
| AC Avonlea  | 27     | 0       | 52.1    | 16.7    | 21.6       |
| Ben         | 27     | 0       | 55.8    | 17.6    | 22.5       |
| Dilse       | 26     | 0       | 54.4    | 17.7    | 22.4       |
| Lebsock     | 25     | 0       | 56.7    | 17.0    | 20.5       |
| Maier       | 27     | 0       | 56.3    | 16.7    | 22.1       |
| Mountrail   | 27     | 0       | 54.4    | 16.3    | 27.0       |
| Pierce      | 29     | 0       | 56.2    | 16.4    | 24.4       |
| Plaza       | 26     | 0       | 55.8    | 17.0    | 26.6       |
| Renville    | 27     | 0       | 51.8    | 15.4    | 20.6       |
| Vic         | 28     | 0       | 55.5    | 16.7    | 22.8       |
| Average     | 26.8   | 0.0     | 54.9    | 16.8    | 23.0       |
| LSD (P=.05) | 2.4    | 0.0     | 3.8     |         | NS**       |
| CV          | 6.2    | 0.0     | 4.5     |         | 21.4       |

Table 7. Durum Wheat Variety Trial - Perkins County (Bison), 2004.

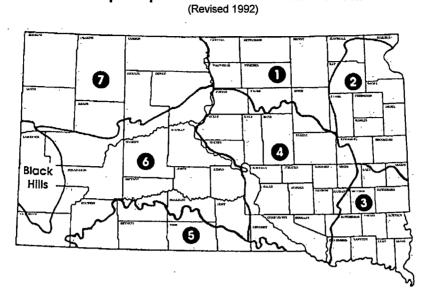

\* 0=No lodging, 9 = 100% lodged. \*\* NS= No significant differences among treatments.

Table 8. Durum Wheat Variety Trial – Harding County (Ralph), 2002-2004.

| Variety     | Height | Lodging | Test Wt | Protein | Yield | Bu/A   |
|-------------|--------|---------|---------|---------|-------|--------|
| ,           | Inches | 0-9*    | Lb/Bu   | Percent | 2004  | 3 Year |
| AC Avonlea  | 28     | 0       | 57.4    | 14.6    | 46.6  |        |
| Ben         | 31     | 0       | 58.8    | 14.7    | 39.9  | 29.9   |
| Dilse       | 30     | 0       | 57.7    | 14.0    | 42.0  | 31.3   |
| Lebsock     | 30     | 0       | 58.1    | 13.6    | 37.8  | 29.6   |
| Maier       | 29     | 0       | 59.8    | 13.3    | 46.6  | 33.3   |
| Mountrail   | 25     | 0       | 57.3    | .12.0   | 44.3  | 32.2   |
| Pierce      | 25     | 0       | 58.7    | 12.8    | 37.6  | 30.8   |
| Plaza       | 24     | 0       | 57.1    | 12.3    | 38.3  |        |
| Renville    | 28     | 0       | 56.7    | 12.4    | 42.3  | 29.4   |
| Vic         | 29     | 0       | 58.4    | 14.2    | 37.5  | 29.1   |
| Average     | 27.9   | 0.0     | 58.0    | 13.4    | 41.3  | 30.7   |
| LSD (P=.05) |        | 0.0     | 2.8     |         | NS**  | NS**   |
| CV          |        | 0.0     | 3.3     |         | 17.9  | 16.9   |

\* 0=No lodging, 9 = 100% lodged. \*\* NS= No significant differences among treatments.

#### **OAT AND BARLEY VARIETY RECOMMENDATIONS FOR 2005**



**Crop Adaptation Areas for South Dakota** 

#### OATS

#### **Recommended:**

| Variety                                   | Crop Adaptation Area |
|-------------------------------------------|----------------------|
| Don                                       | 1,4,5,6,7            |
| Loyal                                     | 1,2,4,6,7            |
| Jerry <sup>PVP (non-title V</sup> status) | Statewide            |
| Reeves                                    | Statewide            |

#### Acceptable/Promising:

| <u>Variety</u>   | Crop Adaptation Area |
|------------------|----------------------|
| HiFi             | 1,2,7                |
| Morton           | 1,2,7                |
| Buff (hull-less) | Statewide            |
|                  |                      |

#### **SPRING BARLEY**

#### **Recommended:**

| <u>Variety</u> | Crop Adaptation Area |
|----------------|----------------------|
| 6 Row          |                      |
| Excel          | 1,2,4,6,7            |
| Lacey PVP      | Statewide            |

#### Acceptable/Promising:

| Variety                                                   | Crop Adaptation Area   |
|-----------------------------------------------------------|------------------------|
| 6 Row<br>Drummond <sup>PVP</sup><br>Robust <sup>PVP</sup> | Statewide<br>1,2,4,6,7 |

 $\begin{array}{c} \underline{2 \ Row} \\ \text{Conlon}^{\text{PVP}} & 1,4,6,7 \\ \text{Haxby}^{\text{PVP}} (\text{feed}) & 6,7 \\ \text{Valier}^{\text{PVP}} (\text{feed}) & 6,7 \end{array}$ 

Conlon, Drummond, Excel, Foster, Lacey, Legacy, Morex, Robust and Tradition are approved American Malting Barley Association varieties for South Dakota -2004.

PVP U.S. Plant Variety Protection applied for and/or issued; seed sales of these varieties are restricted to classes of certified seed.

Source - Small Grains. 2005 Variety Recommendations, EC774, South Dakota State University. (http://plantsci.sdstate.edu/varietytrials/vartrial.html)

#### **OAT VARIETY TRIALS**

**Objective:** To evaluate standard and experimental oat varieties for yield, agronomic characteristics and adaptation to western South Dakota.

**Procedure:** Plots were seeded at two locations in April 2004 with a John Deere 750 plot drill with 10 inch spacing. The experimental design was a randomized complete block with four replications. The seeding rate was 1,220,000 seeds per acre (64 Lb/A). The plots received 7.4 lbs N and 25 lbs  $P_2O_5$  per acre as 10-34-0 with the seed. Herbicides were applied in May and varied according to weeds present. Plots were trimmed to 5' x 25' after heading. The oats were harvested in July and August with a small plot combine. Height, shatter, and lodging notes were taken at the time of harvest. Protein content was determined with a Near Infrared Spectrophotometer (Technicon InfraAlyzer 400).

#### **Location Summaries:**

#### **Pennington County - Wall**

| Planted: April 6, 2004             | Herbicide: Bronate (1 pint/A) |
|------------------------------------|-------------------------------|
| Harvested: July 29, 2004           | Additional Nitrogen: None     |
| Previous crop: Conventional fallow |                               |

Oat yields at Wall averaged 51 Bu/A with test weights averaging 40.9 Lb/Bu. The varieties HiFi, Jerry and Loyal did the best in 2004. There was no significant difference in yield among hulled varieties with three-year averages. Among the hull-less varieties Buff performed significantly better than Paul over the past three years. Results are presented in Table 9.

#### **Perkins County - Bison**

Planted: April 12, 2004Herbicide: Bronate (1 pint/A)Harvested: August 10, 2004Additional Nitrogen: 30 Lb/APrevious crop: Millet, No-till planted

Yields at Bison averaged 59 Bu/A with 36.8 Lb/Bu average test weights. The varieties Loyal, HiFi and Morton were the top yielding varieties in 2004. There are no three-year averages for Bison. Results are shown in Table 10.

| Table 9. Oat Varie | y Trial - P | ennington | County (VV | all), 2002  | -2004.   |
|--------------------|-------------|-----------|------------|-------------|----------|
| Variety            | Height      | Lodging   | Test Wt    | Yield       | Bu/A     |
|                    | Inches      | 1-9*      | Lb/Bu      | 2004        | 3 Year   |
| BUFF HULLESS       | 25          | 0         | 50.5       | 45.6        | 46       |
| PAUL HULLESS       | 29          | 0         | 46.5       | 26.5        | 29       |
| STARK HULLESS      | 30          | 0         | 44:9       | 36.9        |          |
| DON                | 25          | 0         | 39.8       | 50.7        | 58       |
| HIFI               | 28          | 0         | 39.5       | <b>63.1</b> | 50<br>55 |
| HYTEST             | 30          | 0         | 42.6       | 49.8        | 52       |
| JERRY              | 28          | 0         | 40.6       | 57.7        | 60       |
| LOYAL              | 30          | 0         | 38.1       | 55.9        | 51       |
| MORTON             | 30          | 0         | 38.9       | 54.6        | 51       |
| REEVES             | 28          | 0         | 40.0       | 51.5        | 55       |
|                    |             | Ũ         |            |             |          |
| SD 366             | 28          | 0         | 41.2       | 50.3        |          |
| SD 366-7           | 30          | 0         | 41.4       | 54.3        | •        |
| SD 366-15          | 28          | 0         | 41.8       | 55.4        | •.       |
| SD 366-23          | 27          | 0         | 42.0       | 42.7        |          |
| SD 366-36          | 28          | 0         | 42.3       | 53.9        | •        |
| SD 010062          | 31          | 0         | 42.6       | 52.2        |          |
| SD 011315          | 26          | 0         | 39.2       | 57.4        | · .      |
| SD 011226          | 28          | 0         | 39.6       | 60.7        |          |
| Everleaf 114       | 22          | 0         | 35.2       | 53.4        |          |
| Everleaf 126       | 23          | 0         | 31.1       | 55.8        | •        |
|                    |             | U         |            |             |          |
| Average            | 27.5        | 0.0       | 40.9       | 51.4        | 51       |
| LSD (P=.05)        | 2.4         | 0         | 1.2        | 7.9         | 10       |
| CV                 | 6.1         | 0         | 2.1        | 10.9        | 9        |

| Table 9. Oa | t Variety Trial | - Penninaton | County ( | (Wall). | 2002-2004. |
|-------------|-----------------|--------------|----------|---------|------------|
|-------------|-----------------|--------------|----------|---------|------------|

\* 0 = No Lodging, 9 = 100% lodged.

| Table 10.     | Oat Variety | <u> Trial - Perk</u> | ins County | / (Bison), 2 | 2004.      |
|---------------|-------------|----------------------|------------|--------------|------------|
| Variety       | Height      | Lodging              | Test Wt    | Protein      | Yield Bu/A |
|               | Inches      | 0-9*                 | Lb/Bu      | Percent      | 2004       |
| BUFF HULLESS  | 25          | 0                    | 39.8       | 18.4         | 49.2       |
| PAUL HULLESS  | 31          | 0                    | 39.6       | 20.5         | 44.7       |
| STARK HULLESS | 32          | 0                    | 36.7       | 19.2         | 55.0       |
| DON           | ~~~         | ~                    |            |              | 55.0       |
| DON           | 26          | 0                    | 34.8       | 15.7         | 55.8       |
| HIFI          | 30          | 0                    | 34.3       | 16.3         | 61.0       |
| HYTEST        | 32          | 0                    | 38.3       | 17.5         | 56.8       |
| JERRY         | 29          | 0                    | 36.4       | 17.0         | 63.3       |
| LOYAL         | 29          | 0                    | 36.6       | 15.7         | 68.0       |
| MORTON        | 30          | 0                    | 35.0       | 17.4         | 61.3       |
| REEVES        | 31          | 0                    | 34.6       | 14.7         | 51.3       |
| SD 366        | 29          | 0                    | 37.7       | 15.9         | 57.9       |
| SD 366-7      | 31          | 0                    | 38.2       | 15.4         | 54.0       |
| SD 366-15     | 30          | 0                    | 38.0       | 17.3         | 61.7       |
| SD 366-23     | 32          | 0                    | 37.0       | 15.6         | 57.9       |
| SD 366-36     | 31          | 0                    | 37.0       | 16.6         | 60.0       |
| SD 010062     | 35          | 0                    | 36.5       | 16.2         | 57.0       |
| SD 011315     | 32          | 0                    | 36.0       | 16.0         | 77.9       |
| SD 011226     | 30          | 0                    | 36.0       | 16.9         | 62.4       |
| Average       | 30.2        | 0.0                  | 36.8       | 16.8         | 58.7       |
| LSD (P=.05)   | 3.0         | 0.0                  | 0.3        |              | 10.8       |
| CV            | 7.0         | 0.0                  | 2.6        |              | 12.9       |

,

Table 10. Oat Variety Trial - Perkins County (Bison), 2004.

\* 0 = No Lodging, 9 = 100% lodged.

#### **SPRING BARLEY VARIETY TRIALS**

**Objective:** To evaluate standard and experimental spring barley varieties for yield, agronomic characteristics and adaptation to western South Dakota.

**Procedure:** Plots were seeded at three locations in April 2004 with a John Deere 750 plot drill with 10 inch spacing. The experimental design was a randomized complete block with four replications. The seeding rate was 1,220,000 seeds per acre (117 Lb/A for two row, 83 Lb/A for six-row). The plots received 7.4 lbs N and 25 lbs  $P_2O_5$  per acre as 10-34-0 with the seed. Herbicides were applied in May and varied according to weeds present. Plots were trimmed to 5' x 25' after heading. The barley was harvested in July and August with a small plot combine. Height, shatter, and lodging notes were taken at the time of harvest. Protein content was determined with a Near Infrared Spectrophotometer (Technicon InfraAlyzer 400).

#### **Location Summaries:**

#### **Pennington County - Wall**

| Planted: April 6, 2004           | Herbicide: Bronate (1 pint/A) |
|----------------------------------|-------------------------------|
| Harvested: July 19, 2004         | Additional Nitrogen: None     |
| Previous crop: Conventional fall | ow                            |

At Wall, yields averaged 56 Bu/A and test weights averaged 42.6 Lb/Bu. With our new combine weighing system, barley test weight numbers were low due to problems with awns in the sample. All the varieties but Legacy were in the top yield group in 2004. There were no significant differences in three-year yields. The varieties Haxby, Valier and Eslick are varieties from Montana State University that were bred and selected for their feeding qualities for beef production. In feeding studies at MSU, calves fed Valier barley showed a ten percent increase in gain over calves fed traditional varieties. This puts these varieties feed value on par with corn-based rations. Results are shown in Table 11.

#### **Perkins County - Bison**

Planted:April 12, 2004Herbicide:Bronate (1 pint/A)Harvested:August 10, 2004Additional Nitrogen:30 Lb/APrevious crop:Millet,No-till planted

Barley yields at Bison averaged 36 Bu/A with 40.7 Lb/Bu average test weights in 2004. The trial had a high coefficient of variation (CV), so yield comparisons should not be made. There are no three-year averages for Bison. Results are shown in Table 12.

#### Harding County - Ralph

Planted: April 12, 2004Herbicide: Ally (1/10 oz/A) +2,4-D LV6 (6 oz/A)Harvested: August 9, 2004Additional Nitrogen: 50 Lb/APrevious crop: Conventional fallow

The average yield was 59 Bu/A with test weights averaging 43.9 Lb/Bu at Ralph in 2004. Robust was the only variety to yield significantly less that all the other varieties in 2004 and over the past three years. Results are presented in Table 13.

| Table 11. Spring |        | 1 22    |         |         |       |           |
|------------------|--------|---------|---------|---------|-------|-----------|
|                  | Height | Lodging | Test Wt | Protein | Yield | Bu/A      |
|                  | Inches | 0-9*    | Lb/Bu** | Percent | 2004  | 3 Year    |
| TWO ROW          |        |         | -       |         |       |           |
| CONLON           | 19     | 0       | 42.8    | 12.8    | 55.2  | 48        |
| ESLICK           | 18     | 0       | 45.5    | 13.5    | 54.9  |           |
| HAXBY            | 20     | 0       | 48.6    | 13.7    | 63.0  |           |
| VALIER           | 20     | 0.      | 46.8    | 14.3    | 55.5  |           |
| ND 19-119        | 21     | 0       | 44.6    | 11.8    | 60.0  |           |
| SIX ROW          |        |         |         |         |       |           |
| DRUMMOND         | 20     | 0       | 42.2    | 13.3    | 55.4  | 42        |
| EXCEL            | 19     | 0       | 39.4    | 12.9    | 58.2  | 45        |
| LACEY            | 19     | 0       | 42.5    | 13.2    | 52.1  | 44        |
| LEGACY           | 21     | 0       | 39.6    | 13.5    | 53.5  | 44        |
| ROBUST           | 21     | 0       | 43.3    | 14.0    | 60.2  | 42        |
| TRADITION        | 19     | 0       | 38.8    | 13.5    | 55.9  | <b></b> . |
| ND 16301         | 19     | 0       | 37.6    | 12.1    | 47.6  | er = 2    |
| Average          | 19.7   | 0.0     | 42.6    | 13.2    | 56.0  | 43        |
| LSD (P=.05)      | 2.4    | 0.0     | 2.5     |         | 9.6   | 7         |
| CV               | 8.6    | 0.0     | 4.1     |         | 11.9  | 13        |

Table 11 Spring Barley Variety Trial - Pennington County (Wall) 2002-2004

\* 0 = no lodging, 9 = 100% lodged.

Table 12. Spring Barley Variety Trial - Perkins County (Bison), 2004.

| Variety     | Height | Lodging | Test Wt | Protein | Yield Bu/A |
|-------------|--------|---------|---------|---------|------------|
|             | Inches | 0-9*    | Lb/Bu** | Percent | 2004       |
| TWO ROW     |        |         |         |         |            |
| CONLON      | 22     | 0       | 41.0    | 13.3    | 41.6       |
| ESLICK      | 22     | 0       | 42.8    | 12.8    | 49.4       |
| HAXBY       | 23     | 0       | 38.3    | 14.7    | 29.2       |
| VALIER      | 22     | 0       | 39.6    | 13.4    | 41.3       |
| ND 19-119   | 24     | 0       | 40.5    | 12.9    | 28.8       |
| SIX ROW     |        |         |         |         |            |
| DRUMMOND    | 26     | 0       | 41.9    | 13.0    | 37.0       |
| EXCEL       | 23     | 0       | 39.9    | 12.8    | 32.9       |
| LACEY       | 25     | 0       | 39.9    |         | 39.7       |
| LEGACY      | 27     | 0       | 41.9    | 13.2    | 40.3       |
| ROBUST      | 26     | 0       | 41.8    | 13.9    | 24.7       |
| TRADITION   | 24     | 0       | 40.0    | 13.3    | 35.8       |
| ND 16301    | 24     | 0       | 41.4    | 13.2    | 37.8       |
| Average     | 23.8   | 0.0     | 40.7    | 13.3    | 36.5       |
| LSD (P=.05) | 3.2    | 0.0     | 3.0     |         | 9.7        |
| CV          | 9.2    | 0.0     | 5.0     |         | 18.5       |

\* 0 = no lodging, 9 = 100% lodged.
\*\* Light test weight due to awns in the sample.

| Variety     | Height |      | Test Wt |         | Yield         | Bu/A                   |
|-------------|--------|------|---------|---------|---------------|------------------------|
|             | Inches | 0-9* |         | Percent | 2004          | 3 Year                 |
| TWO ROW     |        |      |         |         |               | ·                      |
| CONLON      | 25     | 0    | 43.7    | 12.2    | 59.2          | 38                     |
| ESLICK      | 23     | 0    | 45.7    | 12.2    | 65.3          |                        |
| HAXBY       | 22     | 0    | 47.0    | 11.7    | 58.3          | ·,                     |
| VALIER      | 19     | 0    | 45.7    | 12.2    | 65.7          |                        |
| ND 19-119   | 22     | 0    | 44.9    | 11.8    | 59.9          |                        |
| SIX ROW     |        |      |         |         |               |                        |
| DRUMMOND    | 30     | 0    | 41.0    | 12.0    | 60.0          | 38                     |
| EXCEL       | 23     | 0    | 42.7    | 11.4    | 61.0          | <b>44</b> <sup>°</sup> |
| LACEY       | 25     | 0    | 44.2    | 11.8    | 61 <b>.</b> 9 | 41                     |
| LEGACY      | 27     | 0    | 42.2    | 11.9    | 64.6          | 45                     |
| ROBUST      | 23     | 0    | 43.7    | 12.2    | 46.5          | 32                     |
| TRADITION   | 26     | 0.   | 41.9    | 11.9    | <b>57.9</b>   |                        |
| ND-16301    | 24     | 0    | 43.4    | 11.6    | 52.6          |                        |
| Average     | 23.9   | 0.0  | 43.8    | 11.9    | 59.4          | 39                     |
| LSD (P=.05) | 4.2    | 0.0  | 0.8     |         | 9.9           | 7                      |
| CV          | 7.9    | 0.0  | 2.9     |         | 11.5          | 15                     |

Table 13 Spring Barley Variety Trial - Harding County (Ralph) 2002-2004

\* 0 = no lodging, 9 = 100% lodged. \*\* Light test weight due to awns in the sample.

#### SAFFLOWER VARIETY TRIALS

Objective: To evaluate safflower varieties for yield and adaptation to western South Dakota.

**Procedure:** Safflower varieties were planted at 18 Lb/A in a randomized complete block experiment with four replications near Wall, Sturgis and Oelrichs, South Dakota. The plots were planted in April with a John Deere 750 drill set to 10-inch row spacing. The plots received 7.4 lbs N and 25 lbs  $P_2O_5$  per acre as 10-34-0 with the seed. Plots were trimmed to 5' x 25' before harvest. Height, shatter, and lodging notes were taken at the time of harvest. The plots were harvested with a small plot combine.

#### **Pennington County - Wall**

Planted: April 14, 2004Herbicide: Treflan 4L (1 qt/A)Harvested: October 5, 2004Additional Nitrogen: NonePrevious crop: Conventional fallow

#### Meade County - Sturgis

Planted: April 19, 2004Herbicide:Harvested: October 4, 2004Additional Nitrogen: NonePrevious crop: Winter wheat, No-till planted

#### Fall River County - Oelrichs

Planted:April 22, 2004Herbicide:Treflan 4L (1 qt/A)Harvested:October 6, 2004Additional Nitrogen:NonePrevious crop:Conventional fallow

**Discussion:** In 2004, safflower yields were affected by the drought conditions, but the seed quality was good. The seed had good color and test weights were excellent averaging 43.9 Lb/Bu at Sturgis and Wall. The yields averaged 465 Lb/A at Oelrichs, 1380 Lb/A at Wall and 867 Lb/A at Sturgis. A total lack of useable precipitation at Oelrichs adversely affected yields there, with Sturgis being only slightly better. The varieties Finch, S-541, Montola 2000, S-518 and S-719 did well in 2004. Finch would be the best variety to plant for the birdseed market with its combination of white hull, good test weights and consistent top yields. For the oil markets, S-541 is the best linoleic type and S-518, Montola 2004 and Montola 2000 are the best oleic types. Results are shown in Tables 14 - 16.

|                 |        | anely ma  |         |         |                   |       |          |
|-----------------|--------|-----------|---------|---------|-------------------|-------|----------|
| Variety         | Hull   | Height    | Lodging | Oil     | Test Wt           | Yield | Lb/A     |
|                 | Туре   | Inches    | 0-9*    | Percent | Lb/Bu             | 2004  | 3-Year   |
| Linoleic types  |        |           |         |         |                   |       | -        |
| Centennial      | Stripe | 25        | 0       | 41.6    | 42.2              | 1281  | 631      |
| Finch           | White  | 23        | 0       | 37.1    | 47.2              | 1350  | 754      |
| Morlin          | Stripe | 24        | 0       | 36.8    | 44.3              | 950   |          |
| SeedTec S-541   | Stripe | 27        | 0       | 39.9    | 43.8              | 1725  | 682      |
| Oleic types     |        |           |         |         |                   |       |          |
| Montola 2000    | White  | 22        | 0       | 39.9    | 43.5              | 1446  | 711      |
| Montola 2001    | Stripe | 22        | 0       | 37.7    | 42.4              | 1220  | 708      |
| Montola 2003    | White  | 25        | 0       | 38.9    | 42.9              | 1220  | 666      |
| Montola 2004    | White  | 23        | 0       | 36.7    | 43.8              | 1255  |          |
| SeedTec S-518   | Stripe | 24        | 0       | 40.2    | 42.0              | 1681  | 784      |
| SeedTec S-719   | White  | 25        | 0       | 39.1    | 43.9              | 1612  |          |
| Experimentals   |        |           |         |         |                   |       |          |
| 9022 hybrid     |        | 25        | 0       | 33.6    | 44.2              | 1490  |          |
| 9030E hybrid    |        | 25        | 0       | 31.2    | 46.0              | 1255  |          |
| 9048 hybrid     |        | 25        | 0       | 35.1    | 45.7 <sup>°</sup> | 1891  |          |
| 9050HP hybrid   | *      | 24        | 0       | 33.2    | 43.9              | 1420  |          |
| SeedTec 2107exp | White  | <b>22</b> | 0       | 36.6    | 44.8              | 1420  |          |
| SeedTec 8150exp | White  | 24        | 0       | 40.2    | 45.2              | 1559  |          |
| SeedTec 9262exp | White  | 22        | 0       | 39.5    | 45.0              | 1080  |          |
| MT91B3842       |        | 23        | 0       | 45.7    | 39.0              | 984   | <u> </u> |
| Average         |        | 23.7      | 0.0     | 37.9    | 43.9              | 1380  | 694      |
| LSD (P=.05)     |        | 3.0       | 0.0     | 07.0    | 2.3               | 246   | 007      |
| CV              |        | 5.9       | 0       | •       | 3.7               | 12.6  | •        |
|                 |        |           |         |         |                   |       | •        |

|  | Table 14. | Safflower Variet | y Trial –Pennington | County (V | Vall) 2002-2004 |
|--|-----------|------------------|---------------------|-----------|-----------------|
|--|-----------|------------------|---------------------|-----------|-----------------|

\*0=No lodging, 9= 100% lodged.

| Variety         | Height | Lodging | Test Wt | Yield |
|-----------------|--------|---------|---------|-------|
|                 | Inches | 0-9*    | Lb/Bu   | Lb/A  |
| Linoleic types  |        |         |         |       |
| Centennial      | 19     | 0       | 39.9    | 478   |
| Finch           | 18     | 0       | 37.8    | 408   |
| Morlin          | 19     | 0       | 40.0    | 467   |
| SeedTec S-541   | 21     | 0       | 41.4    | 443   |
| Oleic types     |        |         |         |       |
| Montola 2000    | 18     | 0       |         | 540   |
| Montola 2001    | 18     | 0       |         | 348   |
| Montola 2003    | 16     | 0       |         | 436   |
| Montola 2004    | 16     | 0       |         | 392   |
| SeedTec S-518   | 17     | 0       |         | 497   |
| SeedTec S-719   | 17     | 0       |         | 462   |
| Experimentals   |        |         |         |       |
| 9022 hybrid     | 18     | 0       |         | 505   |
| 9030E hybrid    | 22     | 0       |         | 470   |
| 9048 hybrid     | 21     | 0       |         | 610   |
| 9050HP hybrid   | 20     | 0       |         | 558   |
| SeedTec 2107exp | 17     | 0       |         | 540   |
| SeedTec 8150exp | 21     | 0       | •       | 497   |
| SeedTec 9262exp | 17     | 0       |         | 375   |
| MT91B3842       | 18     | 0       | •       | 348   |
| Average         | 18.3   | 0.0     | 39.8    | 465   |
| LSD (P=.05)     | 3.4    | 0.0     |         | 113   |
| CV              | 8.9    | 0.0     | •       | 17.0  |

Table 15. Safflower Variety Trial - Fall River County (Oelrichs) 2004.

\*0=No lodging, 9= 100% lodged.

| Table 16. Safflowe | er Variety | Irial –Mea            | ade Count | y (Sturgis) | 2004.            |
|--------------------|------------|-----------------------|-----------|-------------|------------------|
| Variety            | Height     | Lodging               | Oil       | Test Wt     | Yield            |
|                    | Inches     | 0-9*                  | Percent   | Lb/Bu       | Lb/A             |
| Linoleic types     |            |                       |           |             | •                |
| Centennial         | 19         | 0.                    | 40.9      | 44.1        | 941              |
| Finch              | 18         | 0                     |           | 49.2        | 880              |
| Morlin             | 19         | 0                     | 36:9      | 39.7        | 836              |
| SeedTec S-541      | 21         | 0                     | 42.0      | 44.1        | 950              |
| Oleic types        |            |                       |           |             |                  |
| Montola 2000       | 18         | 0                     | 41.0      | 41.0        | 984              |
| Montola 2001       | 18         | 0                     | 35.7      |             | 592              |
| Montola 2003       | 16         | 0                     | 37.5      |             | 645 <sup>°</sup> |
| Montola 2004       | 16         | 0.                    | 38.1      | 42.5        | 810              |
| SeedTec S-518      | 17         | 0                     | 41.4      | 41.7        | 1028             |
| SeedTec S-719      | 17         | <b>0</b> <sup>.</sup> | 40.4      | 45.5        | 958              |
| Experimentals      |            |                       |           | •           |                  |
| 9022 hybrid        | 18         | 0                     | 34.5      | 43.2        | 802              |
| 9030E hybrid       | 22         | 0                     | 31.9      | 45.1        | 749              |
| 9048 hybrid        | 21         | 0                     | 35.5      | 47.7        | 1263             |
| 9050HP hybrid      | 20         | 0                     | 33.3      | •           | 714              |
| SeedTec 2107exp    | 17         | 0                     | 35.6      |             | 723              |
| SeedTec 8150exp    | 21         | 0.                    | 40.0      | 42.7        | 1028             |
| SeedTec 9262exp    | 17         | 0                     | 36.8      | 44.4        | 906 <sup>-</sup> |
| MT91B3842          | 18         | 0                     | 46.2      | ·           | 802              |
| Average            | 18.3       | 1.0                   | 38.1      | 43.9        | 867              |
| LSD (P=.05)        | 3.4        | 0.0                   |           | 1.9         | 255              |
| CV                 | 8.9        | 0.0                   | •         | 2.8         | 20.8             |

Table 16. Safflower Variety Trial -Meade County (Sturgis) 2004

\*0=No lodging, 9= 100% lodged.

#### FIELD PEA VARIETY TRIALS

Objective: To evaluate field pea varieties for yield and adaptation to western South Dakota.

**Procedure:** Field peas were planted in a randomized complete block experiment with four replications near Selby, Hayes, Wall and Bison, South Dakota. The seeding rate was 300,000 seeds/A (90 - 220 Lb/A) and the peas were inoculated with a granular pea inoculum (*Rhizobium leguminosarium* biovar *viceae*) just prior to planting. A John Deere 750 with 10-inch spacing was used to plant the trials in April 2004. The peas were harvested for grain in July and August with a small plot combine equipped with vine lifters and a pickup reel.

#### Location Information:

#### **Pennington County – Wall**

Planted: April 6, 2004 Harvested: July 23, 2004 Previous crop: Conventional fallow Herbicide: Treflan 4L (2 pints/A) Additional Nitrogen: Inoculated

#### Perkins County - Bison

Planted: April 12, 2004Herbicide: Pursuit (3 oz/A), Poast (1 pint/A)Harvested: August 10, 2004Additional Nitrogen: InoculatedPrevious crop: Millet, No-till plantedAdditional Nitrogen: Inoculated

#### **Stanley County - Hayes**

Planted: April 08, 2004 Harvested: July 30, 2004 Previous crop: Wheat, no-till planted Herbicide: Spartan Additional Nitrogen: Inoculated

#### Walworth County - Selby

Planted: April 08, 2004Herbicide: SpartanHarvested: July 28,2004Additional Nitrogen: InoculatedPrevious crop: Winter wheat, no-till planted

**Summary:** Even with the lack of moisture, good conditions for field peas prevailed in 2004. The cool weather in June favored pea growth during the critical time of flowering. The dry conditions in April and May were certainly the limiting factor for yields with the West River locations averaging 24 Bu/A. At Bison, the extreme dry conditions April through June with rain finally coming in July favored the later maturing normal leaf varieties. Past years at Bison with more normal weather conditions, the semi-leafless varieties have yielded better than the forage types. Yields at Wall would have been much higher, but a thunderstorm with hail and high winds a week before harvest caused a large amount of shatter. Some counts taken after harvest showed 10 to 15 Bu/A of seed on the ground with the semi-leafless varieties being hit the hardest. The semi-leafless varieties are earlier in maturity than the forage varieties so they were more susceptible to shatter when the storm hit. Otherwise the semi-leafless varieties would have out yielded the normal leaf types. The Selby location was highly variable due to root rot problems in that part of the field, therefore data is not shown here. The better plots at Selby yielded 65 Bu/A, which was typical of the yields we saw in East River South Dakota this vear. Good vielding vellow grain varieties in 2004 were Grande, CDC Mozart, Admiral, Eclipse and Salute and the best green types were Majoret and Crusier. The varieties Arvika, 40-10 Magda, Forager and Journey make excellent forage peas with their long vines, normal leaf type and vigorous growth. Variety characteristics are presented in Table 17 and yield results in Table 18.

| Table 17. Field Pea Characteristics. |               |        |                |             |           |  |  |
|--------------------------------------|---------------|--------|----------------|-------------|-----------|--|--|
| Variety                              | Leaf type     | Height | Lodging        | Test Wt     | Seed Size |  |  |
| ·                                    | .»            | Inches | 0-9*           | Lb/Bu       | Seeds/Lb  |  |  |
| Forage                               |               |        |                |             |           |  |  |
| 40-10 Magda                          | Normal        | 30     | 8              | 62.4        | 3055      |  |  |
| Arvika                               | Normal        | 31     | 8              | 61.0        | 2990      |  |  |
| Forager                              | Normal        | 31     | 8              | 61.4        | 2175      |  |  |
| Yellow Cotyledon                     |               |        |                |             |           |  |  |
| Lifter                               | Normal        | 20     | 8.             | 62.0        | 2300      |  |  |
| Victoria (forage)                    | Normal        | 33     | 8              | <b>62.1</b> | 2890      |  |  |
| Grande (dual purpose)                | Normal        | 22     | <b>4</b> ·     | 62.8        | 1915      |  |  |
| Admiral                              | Semi-leafless | 18     | 0              | <b>61.6</b> | 1990      |  |  |
| Carneval                             | Semi-leafless | 19     | 1              | 62.9        | 2245      |  |  |
| Circus                               | Semi-leafless | 17     | 1              | 62.6        | 2210      |  |  |
| Delta                                | Semi-leafless | 16     | 1              | 63.7        | 2155      |  |  |
| Eclipse                              | Semi-leafless | 16     | 0              | 62.5        | 2005      |  |  |
| CDC Mozart                           | Semi-leafless | 15     | 0              | 64.1        | 2140      |  |  |
| Salute                               | Semi-leafless | 18     | 1 <sup>.</sup> | 63.0        | 2175      |  |  |
| Green Cotyledon                      |               |        |                |             |           |  |  |
| Crusier                              | Semi-leafless | 18     | · 1            | 62.1        | 2280      |  |  |
| Journey (forage)                     | Normal        | 27     | 8              | 62.1        | 2825      |  |  |
| Majoret                              | Semi-leafless | 18     | 0              | 62.7        | 2020      |  |  |
| Millennium                           | Semi-leafless | 15     | 0              | 62.4        | 1930      |  |  |
| Stirling                             | Semi-leafless | 14     | 1              | 62.8        | 2340      |  |  |

\* 0=No lodging, 9 = 100% lodged.

i.

| Variety         Bison         Wall         Hayes         Average           Forage         40-10 Magda         25.3         26.3         25.2         25.6           Arvika         27.9         27.9         22.6         26.1           Forager         30.9         30.6         30.1         30.5           Yellow Cotyledon         20.5         18.7         24.5         21.2           Victoria (forage)         29.9         30.8         25.8         28.8           Grande (dual purpose)         29.6         25.4         31.2         28.7           Admiral         24.4         25.1         32.0         27.2           Carneval         22.5         14.2         26.7         21.1           Circus         21.5         21.1         25.6         22.7           Delta         23.2         26.6         27.6         25.8           Eclipse         24.1         24.8         28.6         25.8           CDC Mozart         21.1         23.8         28.1         24.3           Salute         23.8         21.6         32.5         26.0           Green Cotyledon         22.2         25.4         22.2         23.3 | Table 18. Field Pea Variety Trial Yields (Bu/A), 2004. |       |      |       |         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------|------|-------|---------|--|
| 40-10 Magda25.326.325.225.6Arvika27.927.922.626.1Forager30.930.630.130.5Yellow Cotyledon20.518.724.521.2Lifter20.518.724.521.2Victoria (forage)29.930.825.828.8Grande (dual purpose)29.625.431.228.7Admiral24.425.132.027.2Carneval22.514.226.721.1Circus21.521.125.622.7Delta23.226.627.625.8Eclipse24.124.828.625.8CDC Mozart21.123.828.124.3Salute23.821.632.526.0Green CotyledonCrusier23.221.626.623.8Journey (forage)22.225.422.223.3Majoret22.424.425.924.2Millennium17.020.315.017.4Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Variety                                                | Bison | Wall | Hayes | Average |  |
| Arvika27.927.922.626.1Forager30.930.630.130.5Yellow Cotyledon20.518.724.521.2Lifter20.518.724.521.2Victoria (forage)29.930.825.828.8Grande (dual purpose)29.625.431.228.7Admiral24.425.132.027.2Carneval22.514.226.721.1Circus21.521.125.622.7Delta23.226.627.625.8Eclipse24.124.828.625.8CDC Mozart21.123.828.124.3Salute23.821.632.526.0Green CotyledonCrusier23.221.626.623.8Journey (forage)22.225.422.223.3Majoret22.424.425.924.2Millennium17.020.315.017.4Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Forage                                                 |       |      |       |         |  |
| Forager<br>Yellow Cotyledon30.930.630.130.5Lifter20.518.724.521.2Victoria (forage)29.930.825.828.8Grande (dual purpose)29.625.431.228.7Admiral24.425.132.027.2Carneval22.514.226.721.1Circus21.521.125.622.7Delta23.226.627.625.8Eclipse24.124.828.625.8CDC Mozart21.123.828.124.3Salute23.821.632.526.0Green CotyledonCrusier23.221.626.623.8Journey (forage)22.225.422.223.3Majoret22.424.425.924.2Millennium17.020.315.017.4Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40-10 Magda                                            | 25.3  | 26.3 | 25.2  | 25.6    |  |
| Yellow CotyledonLifter20.518.724.521.2Victoria (forage)29.930.825.828.8Grande (dual purpose)29.625.431.228.7Admiral24.425.132.027.2Carneval22.514.226.721.1Circus21.521.125.622.7Delta23.226.627.625.8Eclipse24.124.828.625.8CDC Mozart21.123.828.124.3Salute23.821.632.526.0Green CotyledonCrusier23.225.422.2Crusier23.225.422.223.3Journey (forage)22.225.422.223.3Majoret22.424.425.924.2Millennium17.020.315.017.4Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arvika                                                 | 27.9  | 27.9 | 22.6  | 26.1    |  |
| Lifter20.518.724.521.2Victoria (forage) <b>29.930.8</b> 25.8 <b>28.8</b> Grande (dual purpose) <b>29.6</b> 25.4 <b>31.228.7</b> Admiral24.425.1 <b>32.0</b> 27.2Carneval22.514.226.721.1Circus21.521.125.622.7Delta23.2 <b>26.627.6</b> 25.8Eclipse24.124.8 <b>28.6</b> 25.8CDC Mozart21.123.8 <b>28.1</b> 24.3Salute23.821.6 <b>32.5</b> 26.0 <i>Green CotyledonCCC</i> Crusier23.225.422.223.3Journey (forage)22.225.422.223.3Majoret22.424.425.924.2Millennium17.020.315.017.4Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Forager                                                | 30.9  | 30.6 | 30.1  | 30.5    |  |
| Victoria (forage)29.930.825.828.8Grande (dual purpose)29.625.431.228.7Admiral24.425.132.027.2Carneval22.514.226.721.1Circus21.521.125.622.7Delta23.226.627.625.8Eclipse24.124.828.625.8CDC Mozart21.123.828.124.3Salute23.821.632.526.0Green Cotyledon7.225.422.223.3Crusier23.225.422.223.3Journey (forage)22.225.422.223.3Majoret22.424.425.924.2Millennium17.020.315.017.4Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yellow Cotyledon                                       |       |      |       |         |  |
| Grande (dual purpose) <b>29.6</b> 25.4 <b>31.228.7</b> Admiral24.425.1 <b>32.0</b> 27.2Carneval22.514.226.721.1Circus21.521.125.622.7Delta23.2 <b>26.627.6</b> 25.8Eclipse24.124.8 <b>28.6</b> 25.8CDC Mozart21.123.8 <b>28.1</b> 24.3Salute23.821.6 <b>32.5</b> 26.0 <i>Green Cotyledon</i> Crusier23.225.422.2Crusier23.225.422.223.3Journey (forage)22.225.422.223.3Majoret22.424.425.924.2Millennium17.020.315.017.4Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lifter                                                 | 20.5  | 18.7 | 24.5  | 21.2    |  |
| Admiral $24.4$ $25.1$ $32.0$ $27.2$ Carneval $22.5$ $14.2$ $26.7$ $21.1$ Circus $21.5$ $21.1$ $25.6$ $22.7$ Delta $23.2$ $26.6$ $27.6$ $25.8$ Eclipse $24.1$ $24.8$ $28.6$ $25.8$ CDC Mozart $21.1$ $23.8$ $28.1$ $24.3$ Salute $23.8$ $21.6$ $32.5$ $26.0$ Green Cotyledon $Crusier$ $23.2$ $21.6$ $26.6$ $23.8$ Journey (forage) $22.2$ $25.4$ $22.2$ $23.3$ Majoret $22.4$ $24.4$ $25.9$ $24.2$ Millennium $17.0$ $20.3$ $15.0$ $17.4$ Stirling $15.0$ $22.2$ $23.9$ $20.4$ Average $23.6$ $23.9$ $26.4$ $24.6$ LSD (P=.05) $4.4$ $4.5$ $4.9$ $2.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Victoria (forage)                                      | 29.9  | 30.8 | 25.8  | 28.8    |  |
| Carneval22.514.226.721.1Circus21.521.125.622.7Delta23.2 <b>26.627.6</b> 25.8Eclipse24.124.8 <b>28.6</b> 25.8CDC Mozart21.123.8 <b>28.1</b> 24.3Salute23.821.6 <b>32.5</b> 26.0Green CotyledonCrusier23.221.626.623.8Journey (forage)22.225.422.223.3Majoret22.424.425.924.2Millennium17.020.315.017.4Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Grande (dual purpose)                                  | 29.6  | 25.4 | 31.2  | 28.7    |  |
| Circus21.521.125.622.7Delta23.2 <b>26.627.6</b> 25.8Eclipse24.124.8 <b>28.6</b> 25.8CDC Mozart21.123.8 <b>28.1</b> 24.3Salute23.821.6 <b>32.5</b> 26.0 <i>Green Cotyledon</i> Crusier23.221.626.623.8Journey (forage)22.225.422.223.3Majoret22.424.425.924.2Millennium17.020.315.017.4Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Admiral                                                | 24.4  | 25.1 | 32.0  | 27.2    |  |
| Delta23.226.627.625.8Eclipse24.124.828.625.8CDC Mozart21.123.828.124.3Salute23.821.632.526.0Green Cotyledon </td <td>Carneval</td> <td>22.5</td> <td>14.2</td> <td>26.7</td> <td>21.1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Carneval                                               | 22.5  | 14.2 | 26.7  | 21.1    |  |
| Eclipse24.124.828.625.8CDC Mozart21.123.828.124.3Salute23.821.632.526.0Green Cotyledon23.221.626.623.8Journey (forage)22.225.422.223.3Majoret22.424.425.924.2Millennium17.020.315.017.4Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Circus                                                 | 21.5  | 21.1 | 25.6  | 22.7    |  |
| CDC Mozart21.123.828.124.3Salute23.821.632.526.0Green Cotyledon23.221.626.623.8Journey (forage)22.225.422.223.3Majoret22.424.425.924.2Millennium17.020.315.017.4Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Delta                                                  | 23.2  | 26.6 | 27.6  | 25.8    |  |
| Salute23.821.6 <b>32.5</b> 26.0Green Cotyledon23.221.626.623.8Crusier23.225.422.223.3Journey (forage)22.225.422.223.3Majoret22.424.425.924.2Millennium17.020.315.017.4Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Eclipse                                                | 24.1  | 24.8 | 28.6  | 25.8    |  |
| Green CotyledonCrusier23.221.626.623.8Journey (forage)22.225.422.223.3Majoret22.424.425.924.2Millennium17.020.315.017.4Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CDC Mozart                                             | 21.1  | 23.8 | 28.1  | 24.3    |  |
| Crusier23.221.626.623.8Journey (forage)22.225.422.223.3Majoret22.424.425.924.2Millennium17.020.315.017.4Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Salute                                                 | 23.8  | 21.6 | 32.5  | 26.0    |  |
| Journey (forage)22.225.422.223.3Majoret22.424.425.924.2Millennium17.020.315.017.4Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Green Cotyledon                                        |       |      |       |         |  |
| Majoret22.424.425.924.2Millennium17.020.315.017.4Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Crusier                                                | 23.2  | 21.6 | 26.6  | 23.8    |  |
| Millennium17.020.315.017.4Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Journey (forage)                                       | 22.2  | 25.4 | 22.2  | 23.3    |  |
| Stirling15.022.223.920.4Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Majoret                                                | 22.4  | 24.4 | 25.9  | 24.2    |  |
| Average23.623.926.424.6LSD (P=.05)4.44.54.92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Millennium                                             | 17.0  | 20.3 | 15.0  | 17.4    |  |
| LSD (P=.05) 4.4 4.5 4.9 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stirling                                               | 15.0  | 22.2 | 23.9  | 20.4    |  |
| LSD (P=.05) 4.4 4.5 4.9 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Average                                                | 23.6  | 23.9 | 26.4  | 24.6    |  |
| CV 13.2 13.2 13.1 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        | 4.4   | 4.5  | 4.9   | 2.9     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CV                                                     | 13.2  | 13.2 | 13.1  | 14.1    |  |

1

Table 18. Field Pea Variety Trial Yields (Bu/A), 2004.

.

## **CHICKPEA VARIETY TRIALS**

**Objective:** To evaluate chickpea varieties for yield and adaptation to western South Dakota:

**Procedure:** Chickpea varieties were planted in a randomized complete block experiment with four replications near Oelrichs, Hayes and Wall, South Dakota. Most of the varieties are large kabuli types, which are grown for the large seeded garbanzo bean market. Two of the varieties (Amit and Chico) are a smaller sized kabuli for export into the desi market. The other varieties are desi types, which accounts for 85-90% of the market outside the United States and is grown as a protein source for humans and livestock. Large kabuli types used a planting rate of 130,000 seeds/A (120-160 Lb/A), small kabuli and desi types 174,000 seeds/A (75-110 Lb/A). The plots were planted in April and May with a John Deere 750 drill set to 10-inch row spacing and inoculated with chickpea inoculum (*Mesorhizobium* sp. *ciceri*) just prior to planting. The plots were harvested in July-September with a small plot combine.

#### Pennington County - Wall

| Planted: April 14, 2004            | Herbicide: Treflan 4L (2 pint/A) |
|------------------------------------|----------------------------------|
| Harvested: August 18, 2004         | Additional Nitrogen: Inoculated  |
| Previous crop: Conventional fallow |                                  |

# Fall River County - Oelrichs

Planted:April 22, 2004Herbicide: Treflan 4L (2 pint/A)Harvested:Not HarvestedAdditional Nitrogen: InoculatedPrevious crop:Conventional fallow

## **Stanley County - Hayes**

Planted:April 15, 2004HHarvested:August 6, 2004APrevious crop:Wheat, No-till planted

Herbicide: Spartan Additional Nitrogen: Inoculated

**Discussion:** Chickpea yields were decent in 2004, though somewhat hampered by the dry conditions. Hayes and Wall averaged 1318 and 1163 Lb/A respectively. The Oelrichs trial suffered from severe drought and deer grazing and was not harvested. The best large kabuli varieties are Dwelly, Sierra and CDC Xena. These varieties combine good yield and large seed size. Other varieties yielded better but do not have large enough seed to grade well. Table 19 shows chickpea agronomic characteristics and Table 20 shows yields. The varieties Amit and Chico also did well in 2004 and would be another option as markets become available for the small kabuli. Desi chickpeas typically have good yields in South Dakota but currently have a very limited market in the United States. Chickpeas are well adapted to the dry, semi-arid climate of western South Dakota and can be a profitable crop if quality characteristics are met.

| Table 19.   | Спіскреа                                                                                                                                                                                          | variety Cha                                                                                                                                                                               | aracteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Seed        | Height                                                                                                                                                                                            | Lodging                                                                                                                                                                                   | Seed Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test Wt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Color       | Inches                                                                                                                                                                                            | 1-9*                                                                                                                                                                                      | Seeds/oz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lb/Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| i           |                                                                                                                                                                                                   |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cream       | 18                                                                                                                                                                                                | 1                                                                                                                                                                                         | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cream       | 18                                                                                                                                                                                                | 1                                                                                                                                                                                         | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cream       | 16                                                                                                                                                                                                | 1                                                                                                                                                                                         | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 58.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cream       | 17                                                                                                                                                                                                | 1                                                                                                                                                                                         | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cream       | 19                                                                                                                                                                                                | 1                                                                                                                                                                                         | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cream       | 17                                                                                                                                                                                                | 1                                                                                                                                                                                         | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cream       | 17                                                                                                                                                                                                | 1                                                                                                                                                                                         | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| i           |                                                                                                                                                                                                   |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cream       | 17                                                                                                                                                                                                | 1                                                                                                                                                                                         | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cream       | 17                                                                                                                                                                                                | 1                                                                                                                                                                                         | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             |                                                                                                                                                                                                   |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Brown       | 17                                                                                                                                                                                                | 1                                                                                                                                                                                         | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Brown       | 17                                                                                                                                                                                                | 1                                                                                                                                                                                         | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Brown       | 16                                                                                                                                                                                                | 1                                                                                                                                                                                         | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Brown       | 15                                                                                                                                                                                                | 1                                                                                                                                                                                         | 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Brown       | 16                                                                                                                                                                                                | 1                                                                                                                                                                                         | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| D Brown     | 19                                                                                                                                                                                                | 1                                                                                                                                                                                         | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| li experime | ntals                                                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cream       | 16                                                                                                                                                                                                | 1                                                                                                                                                                                         | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cream       | 16                                                                                                                                                                                                | 1                                                                                                                                                                                         | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cream       | 17                                                                                                                                                                                                | 1                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 57.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cream       | 18                                                                                                                                                                                                | 1                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| White       | 16                                                                                                                                                                                                | 1                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| / White     | 16                                                                                                                                                                                                | 1                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| V White     | 15                                                                                                                                                                                                | 1                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | 17                                                                                                                                                                                                | 1                                                                                                                                                                                         | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | Seed<br>Color<br>Cream<br>Cream<br>Cream<br>Cream<br>Cream<br>Cream<br>Cream<br>Cream<br>Brown<br>Brown<br>Brown<br>Brown<br>Brown<br>Brown<br>Cream<br>Cream<br>Cream<br>Cream<br>Cream<br>Cream | SeedHeight<br>ColorColorInchesICream18Cream18Cream16Cream17Cream17Cream17Cream17Cream17Cream17Brown17Brown17Brown16Brown15Brown16Brown19IexperimentalsCream16Cream16Cream16Vhite16Vhite16 | Seed         Height<br>Inches         Lodging<br>1-9*           Color         Inches         1-9*           Image: Color         Inches         1-9*           Image: Color         Inches         1-9*           Image: Color         Inches         1-9*           Image: Color         18         1           Cream         18         1           Cream         16         1           Cream         17         1           Cream         17         1           Cream         17         1           Cream         17         1           Brown         17         1           Brown         17         1           Brown         16         1           Brown         16         1           D         Brown         16         1           D         Brown         19         1           Image: Coream         16         1           Cream         16         1           Cream         17         1           Cream         16         1           Cream         16         1           Cream         16 | Seed         Height<br>Inches         Lodging<br>1-9*         Seed Size<br>Seeds/oz           i         Cream         18         1         64           Cream         18         1         69           Cream         16         1         71           Cream         16         1         71           Cream         16         1         71           Cream         17         1         97           Cream         17         1         97           Cream         17         1         97           Cream         17         1         69           Cream         17         1         95           i         Cream         17         1         132           Cream         17         1         126           Brown         17         1         126           Brown         17         1         110           Brown         16         1         162           Brown         15         1         109           it experimentals         Cream         16         1           Cream         16         1         77           Cream |

Table 19. Chickpea Variety Characteristics.

\*1=No lodging, 9= 100% lodged.

| Table 20. C                | hickpea | Variety Tria | al Yields (       | Lb/A), 200   | 3-2004. |
|----------------------------|---------|--------------|-------------------|--------------|---------|
|                            | N       | /ail         | Ha                | iyes         | Average |
| Variety                    | 2004    | 2-year       | 2004              | 2-year       | 2004    |
| Large Kabuli               |         |              |                   |              |         |
| Dwelly                     | 1372    | 1098         | 1037              | 1002         | 1204    |
| Sierra                     | 1176    | 1146         | 1133              | 1180         | 1154    |
| CDC Diva                   | 1318    | 1213         | 1437              | 1373         | 1378    |
| CDC Frontier               | 1363    |              | 1847              |              | 1605    |
| CDC Yuma                   | 1165    | 1139         | 1228              | 1150         | 1197    |
| CDC Xena                   | 1220    | 1163         | 1437              | 1400         | 1329    |
| CDC ChiChi                 | 1405    |              | 1559              |              | 1482    |
| Small Kabuli               |         |              | ,                 |              |         |
| CDC Chico                  | 991     | 1067         | 1481              | 1447         | 1236    |
| Amit (B-90)<br><b>Desi</b> | 1165    | 1087         | 1359              | 1392         | 1262    |
| CDC Anna                   | 1045    | 1058         | 1464              | 1473         | 1254    |
| CDC Cabri                  | 1067    |              | 1612              |              | 1340    |
| CDC Desiray                | 1089    | 1059         | 1437              | 1389         | 1263    |
| Myles                      | 1045    | 995          | 1403              | 1363         | 1224    |
| CDC Nika                   | 958     | 1067         | 1551              | 1481         | 1255    |
| CA0090B659D                | 1154    |              | 1150              | 965          | 1152    |
| Large Kabuli e             | xperime | ntals        |                   |              | • •     |
| CA9783163C                 | 1253    | 1068         | 880               | 965          | 1065    |
| CA99901604C                | 1296    | 1267         | 1333              | 1 <b>391</b> | 1314    |
| CA0090B347C                | 1361    |              | 1507              |              | 1434    |
| CA0090B383C                | 1252    |              | 1586              |              | 1419    |
| CA9890233W                 | 741     | 775          | 871               | 941          | 806     |
| CA99901875W                | 1056    | 933          | 784               | 902          | 920     |
| CA9990B015W                | 1089    |              | 906               |              | 998     |
| Average                    | 1163    | 1076         | 1318 <sup>.</sup> | 1257         | 1240    |
| LSD (P=.05)                | 277     | 169          | 257               | 184          | 185     |
| CV                         | 16.8    | 15.8         | 13.8              | 14.6         | 15.2    |

Table 20. Chickpea Variety Trial Yields (Lb/A), 2003-2004.

.

# WINTER PEA VARIETY TRIALS

**Objective:** To evaluate winter field pea varieties for yield and adaptation to western South Dakota.

**Procedure:** Winter field pea varieties from Washington State University were planted in a randomized complete block experiment with four replications near Wall and Pierre, South Dakota. The seeding rate was 520,000 seeds/A (115 - 150 Lb/A) and the peas were inoculated with a granular pea inoculum (*Rhizobium leguminosarium* biovar *viceae*) just prior to planting. A John Deere 750 with 10-inch spacing was used to plant the trials in September 2003. The peas were harvested for grain in August with a small plot combine equipped with vine lifters and a pickup reel.

# **Location Information:**

#### **Pennington County – Wall**

Planted:September 15, 2003Herbicide:Poast (1 pint/A)Harvested:Not harvestedAdditional Nitrogen:InoculatedPrevious crop:Spring wheat, No-till planted

# Hughes County – Dakota Lakes (limited irrigation)

| Planted: September 23, 2003           | Herbicide: Spartan (5.3 oz/A)   |
|---------------------------------------|---------------------------------|
| Harvested: August 6, 2004             | Additional Nitrogen: Inoculated |
| Previous crop: Wheat, No-till planted | -                               |

**Summary:** This is the second year winter peas have been grown in South Dakota. The concept of another crop we can plant in the fall, especially a broadleaf, is exciting. The trial at Wall did not survive the winter very well and was not harvested. At Dakota Lakes the trial had lots of variability so yield comparisons can not be made, but yields ranged from 17 to 50 Bu/A. These yields were less than spring peas planted elsewhere at the Dakota Lakes farm. This is also what we observed in 2003, so it looks like winter peas for grain are not a viable option yet. They do look interesting for a cover crop or forage though. The peas could be harvested for forage a couple weeks sooner than spring types, early June from what we have observed so far. Research continues as this trial was planted again at Wall, Bison and Dakota Lakes.

| Table 21.            | Winter Field | Pea Variety Tri | al - Hughe | es County ( | Dakota Lake | es), 2004. |       |
|----------------------|--------------|-----------------|------------|-------------|-------------|------------|-------|
| Variety              | Fall Stand   | Spring Stand    | Height     | Lodging     | Seeds/Lb    | Test Wt    | Yield |
|                      | Percent      | Percent         | Inches     | 0-9*        |             | Lb/Bu      | Bu/A  |
| PS9430706            | 90           | 81              | 54         | 9.0         | 3710        | 58.3       | 17.1  |
| PS7530726            | 90           | 76              | 39         | 9.0         | 4030        | 58.3       | 39.2  |
| PS9630448            | 90           | 89              | 51         | 9.0         | 3740        | 58.5       | 34.7  |
| Spector (PS9830F009) | 90           | 88              | 62         | 9.0         | 3560        | 59.6       | 34.8  |
| PS9830F010           | 90           | 84              | 52         | 9.0         | 3560        | 59.6       | 35.0  |
| PS9830F011           | 90           | 88              | 31         | 9.0         | 3280        | 60.0       | 49.5  |
| PS9830S358           | 90           | 89              | 29         | 8.5         | 3140        | 59.9       | 47.4  |
| PS9830S431           | 90           | 83              | 46         | 9.0         | 4030        | 56.7       | 22.3  |
| Mean                 | 90.0         | 85              | 45.3       | 8.9         | 3632        | 58.8       | 35.0  |
| LSD (P=.05)          | 0.0          | 6.7             | 10.0       | 0.6         |             | 3.1        | 13.8  |
| CV                   | 0.0          | 6.7             | 9.4        | 2.8         |             | 3.5        | 26.9  |

\* 0=No lodging, 9 = 100% lodged.

## WINTER LENTIL VARIETY TRIALS

**Objective:** To evaluate winter lentil varieties for yield and adaptation to western South Dakota.

**Procedure:** Winter lentil varieties from Washington State University were planted in a randomized complete block experiment with four replications near Wall and Pierre, South Dakota. The seeding rate was 520,000 seeds/A (25 - 35 Lb/A) and the lentils were inoculated with a granular lentil inoculum (*Rhizobium leguminosarium* biovar *viceae*) just prior to planting. A John Deere 750 with 10-inch spacing was used to plant the trials in September 2003. The lentils were harvested for grain in July and August with a small plot combine equipped with vine lifters and a pickup reel.

# **Location Information:**

#### **Pennington County – Wall**

Planted:September 15, 2003Herbicide:Poast (1 pint/A)Harvested:July 21, 2004Additional Nitrogen:InoculatedPrevious crop:Spring wheat, No-till planted

# Hughes County - Dakota Lakes (limited irrigation)

Planted:September 23, 2003Herbicide:Spartan (5.3 oz/A)Harvested:August 6, 2004Additional Nitrogen:InoculatedPrevious crop:Wheat, No-till plantedInoculatedInoculated

**Summary:** This is the second year winter lentils have been grown in South Dakota. The lentils once again had excellent winter survival and yields were on par with our past yields of spring types, especially considering the dry weather. Wall averaged 905 Lb/A with Dakota Lakes averaging 1474 Lb/A. The winter lentils mature earlier than spring types with the Wall location being harvested at the same time as winter wheat. As with the winter peas, winter lentils look interesting as a cover crop in wetter climates. Their excellent survivability and small seed size would make lentils fit well into no-till systems as a winter cover crop. Research continues as we planted this trial again at Wall and Dakota Lakes. Results are shown in Tables 22 and 23.

| Variety            | Fall Stand | Spring Stand | Height | Lodging | Seed Size | Test Wt | Yield |
|--------------------|------------|--------------|--------|---------|-----------|---------|-------|
|                    | Percent    | Percent      | Inches | 1-9*    | Seeds/Lb  | Lb/Bu   | Lb/A  |
| WA8649041          | 90         | 90           | 14     | 0       | 16210     | 64.8    | 1033  |
| LC9976079          | 90         | 90           | 12     | 0       | 12780     | 65.2    | 645   |
| LC9978057          | 90         | 90           | 11     | 0       | 13980     | 66.7    | 910   |
| LC9978094          | 90         | 90           | 12     | 0       | 13850     | 66.2    | 791   |
| Morton (LC9979010) | 90         | 90           | 12     | 0       | 15070     | 66.3    | 825   |
| LC9979062          | 90         | 90           | 11     | 0       | 15370     | 66.0    | 976   |
| LC9979065          | 90         | 90           | 11     | 0       | 18340     | 65.9    | 923   |
| LC9979120          | 90         | 90           | 11     | 0       | 18200     | 66.7    | 1136  |
| Mean               | 90         | 90           | 11.6   | 0       | 15475     | 66.0    | 905   |
| LSD (P=.05)        | 0.0        | 0.0          | 2.6    | 0       |           | 1.1     | 314.7 |
| CV                 | 0.0        | 0.0          | 15.1   | 0       |           | 1.1     | 23.6  |

Table 22. Winter Lentil Pea Variety Trial - Pennington County (Wall), 2004

\* 1=No lodging, 9 = 100% lodged.

| Table 23. Winter Lentil Pea Variet | y Trial - Hughes County (Dakota Lakes), 2004. |
|------------------------------------|-----------------------------------------------|
|------------------------------------|-----------------------------------------------|

| Variety            | Fall Stand | Spring Stand | Lloight | Lodaina | Teet \A/4  | Viald |
|--------------------|------------|--------------|---------|---------|------------|-------|
| vanety             |            | Spring Stand | Height  | Lodging | Test Wt    | Yield |
|                    | Percent    | Percent      | Inches  | 1-9*    | Lb/Bu      | Lb/A  |
| WA8649041          | 90         | 90           | 21      | 0       | 61.3       | 1535  |
| LC9976079          | 90         | 90           | 18      | 0       | 59.9       | 1546  |
| LC9978057          | 90         | 90           | 19      | 0       | 61.7       | 1100  |
| LC9978094          | 90         | 90           | 20      | 0       | 60.9       | 1677  |
| Morton (LC9979010) | 90         | 90           | 18      | 0       | 61.9       | 1307  |
| LC9979062          | 90         | 90           | 19      | 0       | 61.1       | 1634  |
| LC9979065          | 90         | 90           | 18      | 0       | 62.3       | 1655  |
| LC9979120          | 90         | 90           | 18      | 0       | 60.1       | 1339  |
| Mean               | 90         | 90           | 18.4    | 0       | 61.2       | 1474  |
| LSD (P=.05)        | 0.0        | 0.0          | 4.5     |         | 1.8        | 519   |
| CV                 | 0.0        | 0.0          | 10.2    |         | 2.0        | 23.9  |
|                    |            |              |         | 1 . 0 4 | 000/ 1 1 1 |       |

\* 1=No lodging, 9 = 100% lodged.

# **OAT / FIELD PEA FORAGE TRIAL**

#### **Objectives:** 1

- 1. To evaluate different seeding rates of oats and field peas planted in a mix.
- 2. Compare oat / field pea mix to peas and oats planted alone.
- 3. Compare long vine forage pea to short vine semi-leafless type.

**Procedure:** The study was planted in a randomized complete block experiment with four replications near Wall, South Dakota. The ground was black fallow the previous year. A John Deere 750 plot drill with 10-inch spacing was used to plant the trial on April 6, 2004. The peas were inoculated with a granular pea inoculum (*Rhizobium leguminosarium* biovar *viceae*) just prior to planting. Soil tests showed 166 lb/A of nitrogen in the top two feet of soil, so no additional fertilizer was added. The oat variety Jerry along with the pea varieties Arvika (long vine forage type) and Carneval (semi-leafless grain type) were used. The seeding rates are listed in the table below. The trial was harvested on June 28, 2004 when the peas were at midpod fill and the oats milk to early dough stage. Subsamples from each plot were analyzed for acid detergent fiber (ADF), neutral detergent fiber (NDF) and crude protein. The ADF and NDF numbers were then used to calculate relative feed value (RFV) with a higher RFV being better quality forage.

| Jsed for Forage Study | Seeding Ra         |
|-----------------------|--------------------|
| 1/2 Rate 1/4 Rat      | Full Rate*         |
| 32 lb/A 16 lb/        | y Oat 64 lb/A      |
| 75 lb/A               | neval Pea 150 lb/A |
| 45 lb/A               | ika Pea 90 lb/A    |
| ,                     |                    |

\* Full and ½ rate of peas are 300,000 and 150,000 seeds/acre respectively.

**Summary:** The trial averaged 1.3 ton/A, which was fairly good considering the dry conditions. Seeding rates in a mix of 32 lb/A for oats and 150,000 seeds/acre for field peas were adequate to maximize yield. The oats alone and the mixes yielded the same; peas alone were lower yielding than the mixes. There was no yield difference between the forage and grain type pea.

Arvika had higher protein content than Carneval and Jerry oat. Carneval and Jerry had the same protein levels. The only mix that showed an increase in protein over oats alone was the mix with the Full Arvika / ¼ Oat seeding rate. For the relative feed values (RFV), Arvika was the highest and Jerry oats the lowest with Carneval in between. When the peas and oats were planted together, only the two mixes with Arvika and the ¼ Oat seeding rate had a higher RFV. The higher protein levels and RFV in Arvika peas may be partly due to its later maturity than Carneval. Overall this study showed no yield or quality advantage to pea/oat mixes over oats alone. Since no LDP can be obtained from a field planted to a mix, a producer might want to consider planting one field to peas and one to oats and mix the hay when feeding.

| Treatment                  | Moisture | Yield     | % Crude | NDF  | ADF    | RFV  |
|----------------------------|----------|-----------|---------|------|--------|------|
|                            | Percent  | Ton/A 13% | Protein | %    | %      |      |
|                            |          |           |         |      |        |      |
| Full Arvika                | 75       | 1.16      | 17.4    | 26.5 | 18.2   | 263  |
| Full Carneval              | 73       | 1.15      | 13.2    | 36.0 | 23.7   | 187  |
| Full Oat                   | 67       | 1.30      | 13.3    | 44.2 | 25.4   | 150  |
| Full Arvika / Full Oat     | 67       | 1.27      | 14.1    | 43.8 | 24.9   | 148  |
| Full Arvika / ½ Oat        | 68       | 1.45      | 13.4    | 42.4 | 24.0   | 155  |
| Full Arvika /¼ Oat         | 71       | 1.23      | 15.2    | 36.6 | 22.1   | 184  |
| ½ Arvika / Full Oat        | 69       | 1.25      | 12.4    | 47.5 | 26.5   | 135  |
| ½ Arvika / ½ Oat           | 69       | 1.48      | 12.3    | 47.5 | 26.7   | 133  |
| 1⁄2 Arvika / 1⁄4 Oat       | 71       | 1.11      | 14.0    | 41.6 | 24.3   | 160  |
| Full Carneval / Full Oat   | 67       | 1.47      | 12.4    | 48.9 | 26.8   | 130  |
| Full Carneval / ½ Oat      | 69       | 1.28      | 13.6    | 45.7 | 25.8   | 141  |
| Full Carneval / ¼ Oat      | 71       | 1.37      | 12.5    | 44.4 | , 26.6 | 143  |
| 1⁄2 Carneval / Full Oat    | 64       | 1.42      | 11.6    | 47.2 | 25.9   | 136  |
| 1⁄2 Carneval / 1⁄2 Oat     | 69       | 1.27      | 13.0    | 46.8 | 26.3   | 136  |
| 1/2 Carneval / 1/4 Oat     | 71       | 1.03      | 13.7    | 43.6 | 25.6   | 149  |
| 1/2 Arvika / 1/2 Triticale | 67       | 1.00      | 13.4    | 40.3 | 23.7   | 163  |
| Average                    | 69       | 1.27      | 13.4    | 42.7 | 24.8   | 157  |
| LSD (P=.05)                | 3        | 0.22      | 1.6     | 5.7  | 2.1    | 27   |
| CV                         | 3.2      | 12.3      | 8.1     | 9.4  | 5.9    | 11.8 |

Table 23. Oat / Field Pea Forage Trial - Pennington County (Wall), 2004.

.

# FIELD PEA PLANTING DATE STUDY

#### Objective: To determine the effect of planting date on the yield of four field pea varieties

**Procedures:** Four varieties of field pea were planted at five planting dates at two locations in western South Dakota. The locations were Sturgis (Meade County) and Hayes (Stanley County). The four pea varieties were Carneval, CDC Mozart, Grande and Arvika. The first planting date was April 1, 2004 with other four planting dates following on two week intervals. The experimental design was a Randomized Complete Block with treatments arranged in a split-plot design. Planting date was the main plot and variety sub-plot. Treatments were replicated four times. The experiment was planted at 10-inch row spacing using the John Deere 750 drill. Spartan was applied prior to planting to control weeds. No N fertilizer was applied to the crop. Granular pea inoculant was placed with the seed in the furrow. Plots were harvested using a Wintersteiger small plot combine equipped with lifters and a pickup reel.

**Results and Discussion:** At Sturgis, the experimental plots suffered significant damage from wildlife and had to be abandoned. Results from Hayes are presented on Tables 24, 25 and 26. Extremely dry conditions in April resulted in poor and uneven seedlings emergence at Hayes. Thus, field pea planted on April 1 yielded lower than field pea planted on April 15, April 30 and May 15. The pea yields from the May 30 planting date were very low (average 255 Lb/Acre) and were excluded from the analysis. Field pea yields were similar when pea was planted on April 15, April 30 or May 15 (Table 24).

In general, pea yields were low at Hayes due to drought stress. Particularly, the first planting date was at a disadvantage due to extreme dry conditions early in April. Our earlier research has shown that planting as early as April 1 can result in higher field pea yields than was observed in 2004. Also important to note is that field pea is very sensitive to high temperatures during flowering and that when seeding is delayed beyond mid-May the crop will likely flower around mid-July increasing the risk of flower abortion due to heat stress.

| Planting Date | Test weight (Lb/Bu) | Yield (Lb/Acre) |
|---------------|---------------------|-----------------|
| April 1       | 61.7                | 587             |
| April 15      | 62.5                | 1104            |
| April 29      | 62.0                | 1236            |
| May 11        | 61.3                | 1173            |
| LSD (0.05)    | NS                  | 1025            |
| CV (%)        | 2.1                 | 14.5            |

 Table 24. Effect of planting date on test weight and seed yield of field pea at Hayes

 (Stanley County)

# Table 25. Test Weight and Yield of Four Pea Varieties at Hayes in 2004

| Variety    | Test Weight (Lb/Bu) | Yield (Lb/Acre) |
|------------|---------------------|-----------------|
| Carneval   | 61.8                | 1050            |
| Mozart     | 63.9                | 999             |
| Grande     | 62.1                | 1127            |
| Arvika     | 59.9                | 925             |
| LSD (0.05) | NS                  | NS              |
| CV (%)     | 2.1                 | 14.5            |
| CV (70)    | 2.1                 | 14.5            |

| Variety  | Test Weight (Lb/Bu) | Yield (Lb/Acre) |
|----------|---------------------|-----------------|
| April 1  |                     |                 |
| Carneval | 61.1                | 553             |
| Mozart   | 62.5                | 274             |
| Grande   | 61.7                | 647             |
| Arvika   | 61.6                | 706             |
| April 15 |                     |                 |
| Carneval | 62.1                | 1230            |
| Mozart   | 65.0                | 1101            |
| Grande   | 62.0                | 1159            |
| Arvika   | 60.9                | 927             |
| April 29 |                     |                 |
| Carneval | 62.3                | 1278            |
| Mozart   | 64.2                | 1254            |
| Grande   | 62.4                | 1341            |
| Arvika   | 59.3                | 1074            |
| May 11   |                     |                 |
| Carneval | 61.7                | 1171            |
| Mozart   | 63.8                | 1166            |
| Grande   | 62.1                | 1362            |
| Arvika   | 57.6                | 994             |
| Average  | 61.9                | 1025            |
| C.V.     | 2.1                 | 14.7            |

Table 26. Test Weight and Yield of Four Pea Varieties at Four Planting Dates at Hayes in 2004

# FIELD PEA PLANT POPULATION STUDY

**Objectives:** To evaluate the response of normal and semi-leafless field pea varieties to six plant populations

**Procedures:** Considering the high cost of field pea seed, proper plant populations are important for optimizing yield and economic returns. A variety and population density study was conducted at two locations (Wall and Hayes) in western South Dakota. Four field pea varieties, two semi-leafless and the other two normal-leaf were planted at six population densities on April 1 2004 at Hayes and on April 6, 2004 at Wall. The semi-leafless varieties were Carneval and CDC Mozart. Carneval is a popular variety in South Dakota whereas CDC Mozart is a new variety from Saskatchewan, Canada which has shown good potential under western South Dakota conditions. The normal leaf variety Grande was chosen because it is one of the well established varieties in the State. The other normal leaf variety Arvika, was chosen because it produces high biomass and has a potential as a forage variety.

| Pea variety | Leaf type     | Seed color/Use |
|-------------|---------------|----------------|
| Carneval    | semi-leafless | yellow         |
| CDC Mozart  | semi-leafless | yellow         |
| Grande      | normal leaf   | yellow         |
| Arvika      | normal leaf   | green/forage   |

Seeding rate for each variety was adjusted to give six target plant populations of 100 000, 150 000, 200 000, 250 000, 300 000 and 350 000 plants per acre were evaluated. The recommended plant population is 300 000 plants per acre.

The experimental design was a Randomized Complete Block with treatments arranged in a factorial design. Treatments were replicated four times. Measurements taken include stand count taken 21 days after emergence, biomass, pod and seed production, seed yield, and harvest index. Harvest index is a measure of the ratio of grain weight to total plant weight. At Wall, peas were planted on land that been fallowed the previous year. At Hayes we planted peas into winter wheat stubble thus, although both locations experienced drought in 2003, there was relatively more moisture at Wall than at Hayes. No nitrogen fertilizer was applied to the plots. Granular pea inoculant was placed with the seed into the furrow. Spartan was applied at both locations prior to planting to control weeds.

**Results and Discussion:** Plant count 21 days after emergence showed that plant stands at both locations were close to target populations. The effect of plant population on plant height, number of pods per plant, number of seeds per plant, harvest index and grain yield at Wall are presented on Tables 27 and 28. At Wall where soil moisture was least limiting, plant population had no significant effect on the yield of peas meaning that the lower plant populations yielded as good as the higher plant populations. Our results also showed that where plant populations were low, field pea plants produced more pods and more seeds per pod compensating for the lower plant populations.

| Table 27. Effect of plant population on   | plant height, number of pods per plant, number of |
|-------------------------------------------|---------------------------------------------------|
| seeds per pod, harvest index and grain yi | eld of field pea at Wall in 2004                  |

| Target Plant | Observed Plant | Plant    | # of Pods | # of      | Harvest | Yield  |
|--------------|----------------|----------|-----------|-----------|---------|--------|
| Population   | Population     | Height   | /Plant    | Seeds/Pod | Index   | (Lb/A) |
| (Plants/A)   | (Plants/A)     | (Inches) |           |           |         |        |
| 100 000      | 118 404        | 24.9     | 7         | 6         | 36.6    | 954    |
| 150 000      | 186 461        | 23.6     | 6         | 5         | 35.6    | 976    |
| 200 000      | 220 363        | 24.4     | 6         | 5         | 35.4    | 941    |
| 250 000      | 275 517        | 23.1     | 5         | 5         | 33.3    | 989    |
| 300 000      | 296 516        | 24.2     | 5         | 5         | 33.8    | 1087   |
| 350 000      | 333 454        | 23.2     | 5         | 4         | 33.3    | 1017   |
| LSD (0.05)   |                | NS       | 1.1       | 0.59      | 2.2     | NS     |
| CV (%)       |                | 9.4      | 27.7      | 16.7      | 8.8     | 15.0   |

In a drier environment at Hayes, field pea yield increased as plant population density increased with the 300 000 population yielding 285 pounds more than the 100 000 population. Although lower populations produced more pods per plant and more seeds per pod, soil moisture limited the extent of this plasticity and thus, did not help the yield as much as we observed at Wall.

The response to plant population density was the same for normal leaf and semi-leafless varieties. With adequate space, moisture, and nutrients, field pea will compensate for lower plant density through branching and heavier pod set and other studies seem to indicate that normal-leaf varieties are more 'plastic' than semi-leafless varieties. The very dry conditions experienced in 2004 may have limited the 'plasticity' of pea varieties. The study will be repeated in 2005. While lower plant densities may look promising, weed control may be a problem in an open canopy. We observed higher weed pressure where plant populations was lower than 200 000 plants/acre at Hayes and this should be taken into consideration when deciding on seeding rates.

# Table 28. Effect of seeding rate on yield, number of pods per plant and number of seeds per pod of field pea at Hayes

| Target Plant | Observed Plant | Plant    | # of   | # of      | Harvest | Yield  |
|--------------|----------------|----------|--------|-----------|---------|--------|
| Population   | Population     | Height   | Pods   | Seeds/Pod | Index   | (Lb/A) |
| (Plants/A)   | (Plants/A)     | (Inches) | /Plant |           |         |        |
| 100 000      | 109 549        | 21.3     | 6      | 6         | 50.3    | 694    |
| 150 000      | 142 692        | 20.7     | 6      | 5         | 47.5    | 771    |
| 200 000      | 171 028        | 21.3     | 5      | 5         | 46.9    | 822    |
| 250 000      | 229 471        | 20.3     | 5      | 5         | 44.8    | 831    |
| 300 000      | 303 600        | 20.6     | 4      | 5         | 47.2    | 978    |
| 350 000      | 322 069        | 19.9     | 4      | 5         | 45.6    | 953    |
| LSD (0.05)   |                | NS       | 0.90   | 0.42      | 3.91    | 128.6  |
| CV (%)       |                | 16.6     | 26.3   | 11.3      | 11.8    | 21.7   |

# WINTER WHEAT STARTER FERTILIZER DEMOSTRATION

**Objective:** To evaluate the response of winter wheat to different types of starter fertilizer.

**Procedure:** Plots were seeded at five locations in September 2004 with a John Deere 610 double disk (fallow) or John Deere 750 (no-till) plot drills with 10 inch spacing. The experimental design was a randomized complete block with four replications. The variety Wesley was planted at 950,000 seeds per acre (60 lb/A). The starter fertilizer treatments were 55 lb/A diammonium phosphate (18-46-0), 55 lb/A triple superphosphate (0-46-0), 30 lb/A ammonium nitrate (32-0-0) and an untreated check. The granular fertilizer treatments were applied directly with the seed. Herbicides were applied in either the fall or spring and varied according to weeds present. Visual stand ratings were taken in October 2003 and April 2004. The plots were trimmed to 5' x 25' after heading. The wheat was harvested in July and August with a small plot combine. Height, shatter, and lodging notes were taken at the time of harvest. Protein content was determined with a Near Infrared Spectrophotometer (Technicon InfraAlyzer 400).

## Location Summaries:

#### Locations not harvested

| Location                | Reason               |
|-------------------------|----------------------|
| Perkins County - Bison  | Drought, May freeze  |
| Stanley County – Hayes  | Poor stands, drought |
| Bennett County – Martin | Drought              |

# Fall River County - Oelrichs

| Planted: September 24, 2003        | Herbicide: Glean $(^{1}/_{3} \text{ oz/A})$ |
|------------------------------------|---------------------------------------------|
| Harvested: August 3, 2004          | Additional Nitrogen: None                   |
| Previous crop: Conventional fallow | -                                           |

# **Meade County - Sturgis**

Planted:September 16, 2003Herbicide:Harmony Extra (<sup>3</sup>/<sub>10</sub> oz/A) + 2,4-D LV6 (5 oz/A)Harvested:July 26, 2004Additional Nitrogen:NonePrevious crop:Chemical fallow, no-till planted

**Summary:** Most of the locations were not harvested due to the poor condition of the winter wheat. Oelrichs was harvested, but the data was too variable to be used. At Sturgis the 18-46-0 treatment yielded significantly more than the check. The other two starter treatments did not show any statistical yield difference from the untreated check. The results are presented in Table 29.

|                                        |        | al - Meaue | County (O | urgis), 20 | <u> </u> |
|----------------------------------------|--------|------------|-----------|------------|----------|
| Variety                                | Height | Lodging    | Test Wt   | Yield      | Protein  |
|                                        | Inches | 1-9*       | Lb/Bu     | Bu/A       | Percent  |
| Check                                  | 24     | 1          | 54.4      | 20.9       | 16.1     |
| 55 lb/A 18-46-0 (diammonium phosphate) | 24     | 1          | 55.9      | 28.7       | 15.5     |
| 55 lb/A 0-46-0 (triple superphosphate) | 23     | 1          | 54.3      | 25.7       | 15.8     |
| 30 lb/A 32-0-0 (ammonium nitrate)      | 24     | 1          | 53.3      | 23.4       | 15.6     |
| Average                                | 23.7   | 1.0        | 54.5      | 24.7       | 15.8     |
| LSD (P=.05)                            | 2.0    | 0.0        | 1.3       | 5.37       |          |
| CV                                     | 5.4    | 0.0        | 1.6       | 13.6       |          |
|                                        |        |            |           | (Lb/A)     |          |
| Soil Test Recommendations              | OM%    | pН         | N         | Р          | K        |
|                                        | 2.0    | 6.1        | 0         | 25         | 0        |
|                                        |        |            |           |            |          |

Table 29. Winter Wheat Starter Fertilizer Trial - Meade County (Sturgis), 2004.

\* 1=No lodging, 9 = 100% lodged.

# WINTER WHEAT FERTILIZER DEMONSTRATION - 2004 James Talty Farm Scenic, SD

## **Objective:**

#### 1.) To evaluate fertilizer response of Wesley Winter wheat.

**Procedures:** Wesley Winter wheat was planted on two fallow strips in the first week of October of 2003 by the cooperator. No starter fertilizer was applied at planting time. Soil tests were taken on March 17, 2004. Soil-test results are listed below. The NE strip was reported by the cooperator to be more productive over the past years than the SW strip. It held true again this year.

Fertilizer treatments of 25#N (8.4 gallons/acre of 28-0-0), 50#N (16.7 gallons/acre of 28-0-0), and 75#N (25.0 gallons/acre of 28-0-0) plus a control (no fertilizer) were topdressed with a 4-wheel ATV sprayer on March 17, 2004. Soil temperatures were at 45 degrees Fahrenheit on the day of Nitrogen application. The treatments were laid out in a randomized complete block design with four replications. The plots were 12 1/2 feet wide x 40 feet long. A 5 foot x 35 foot sample was harvested out of the middle of each plot to eliminate any border effect. The wheat was harvested on July 20, 2004 with a small plot combine. Protein content was determined with a Near Infrared Spectrophotometer (Technicon InfraAlyzer 400).

| Location | 2004<br>Crop and<br>estimated | Soil<br>Texture | Soil<br>pH | Solubie<br>Saits | NO3-N<br># / acre<br>0-6" 0-24" |       | P<br>ppm | K<br>ppm | Add N<br>#/A | Add P205<br>#/A | Add<br>K2O<br>#/A | 2003 Crop<br>History |
|----------|-------------------------------|-----------------|------------|------------------|---------------------------------|-------|----------|----------|--------------|-----------------|-------------------|----------------------|
|          | yield goal                    |                 |            |                  | top                             | total |          |          |              |                 |                   |                      |
| Talty NE | Winter<br>Wheat-<br>60bu      | Medium          | 6.6        | 0.3              | 18                              | 42    | 12       | 392      | 110          | 15              | 0                 | Fallow               |
| Talty SW | Winter<br>Wheat-<br>60bu      | Medium          | 6.4        | 0.2              | 10                              | 19    | 8        | 307      | 130          | . 30            | . 0               | Fallow               |

#### Talty Farm Soil Analysis for the 2004 Season

**Note:** to convert P & K values to #/A take ppm value x 2. Example: 50 ppm is equal to 100#/Acre.

**Discussion:** Both fields have been in Winter Wheat / Fallow for many years and have historically not been fertilized. Poor growing conditions this year were compounded not only by lack of moisture, but also by low nitrogen and low phosphorus levels in the soil. Yields, crop color and protein content of the wheat did improve as nitrogen levels were increased. Because of the very poor yields at the southwest (SW) site caused by drought conditions the application of nitrogen was not cost effective. At the northeast (NE) location the application of additional nitrogen was cost effective even with yields around only 20 bushels per acre. Normal yields on fallow would be 50-60 bushels per acre in this area and that is the yield goal that one would fertilize for. The soil test showed low phosphorus levels, so a positive crop response to phosphorus would be very likely. The phosphorus should be applied at planting time to maximize its benefits.

# **Results:**

|                            | Table 30. \       | <b>Ninter Wheat</b>             | t Fertilizer [     | Demonstra           | tion – Penr               | nington Cou                 | nty (Scenic) 2004.                              |                                   |
|----------------------------|-------------------|---------------------------------|--------------------|---------------------|---------------------------|-----------------------------|-------------------------------------------------|-----------------------------------|
| Wheat<br>Strip<br>Location | Nitrogen<br>Added | Grain<br>Value per<br>Bushel ** | Yield<br>(Bu/acre) | Test Wt<br>(lbs/bu) | Protein<br>Content<br>(%) | Gross<br>Income<br>per Acre | Fertilizer cost /<br>acre including<br>\$3.50/A | Net Gain<br>Due to<br>Fertilizing |
|                            |                   |                                 |                    |                     |                           |                             | application                                     | (\$ / Acre)                       |
| NE                         | None              | \$3.20                          | 14.7               | 57.5                | 12.0                      | \$47.04                     | \$ 0.00                                         | 0                                 |
| NE                         | 25# N             | \$3.23                          | 19.0               | 55.5                | 12.7                      | \$61.37                     | \$11.25                                         | \$3.08                            |
| NE                         | 50# N             | \$3.30                          | 19.1               | 54.6                | 14.0                      | \$63.03                     | \$19.00                                         | \$-3.01                           |
| NE                         | 75#N              | \$3.32                          | 24.1               | 52.0                | 14.5                      | \$80.01                     | \$26.75                                         | \$6.22                            |
|                            |                   | <i>,</i>                        |                    |                     |                           |                             |                                                 |                                   |
|                            | LSD (.05)         |                                 | 4.9                | 3.5                 |                           |                             |                                                 |                                   |
|                            | CV                |                                 | 16.0               | 4.0                 |                           |                             |                                                 |                                   |
| SW                         | None              | \$3.29                          | 4.7                | 59.7                | 13.8                      | \$15.46                     | \$ 0.00                                         | 0                                 |
| SW                         | 25# N             | \$3.30                          | 7.3                | 59.1                | 14.0                      | \$24.09                     | \$11.25                                         | \$-2.62                           |
| SW                         | 50# N             | \$3.34                          | 6.6                | 57.8                | 16.8                      | \$22.70                     | \$19.00                                         | \$-11.76                          |
| SW                         | 75#N              | \$3.46                          | 7.1                | 57.7                | 17.3                      | \$24.56                     | \$26.75                                         | \$-17.65                          |
|                            | LSD (.05)         |                                 | 0.7                | 1.9                 |                           |                             |                                                 |                                   |
|                            | CV ` ´            |                                 | 6.7                | 2.0                 |                           |                             |                                                 |                                   |

\*\* = Grain sale values are quoted from Dakota Mill and Grain as of December 21, 2004. See chart on page 83.

#### SAFFLOWER SEEDING RATE STUDY

**Objective:** To evaluate the response of conventional and hybrid safflower to different seeding rates.

**Procedure:** Safflower was planted in a factorial (variety x seeding rate) experiment with four replications near Wall, South Dakota. The varieties Finch (conventional) and 9022 (hybrid) were planted at 50 000, 100 000, 150 000, 200 000, 250 000 and 400 000 seeds/A, equivalent to 5, 10, 15, 20, 25 and 30 pounds/A. Treflan 4L (2 pints/A) was applied on April 6<sup>th</sup> and double pass incorporated to control weeds. The trial was planted on April 14<sup>th</sup> with a John Deere 750 research drill. Liquid starter fertilizer (10-34-0) was applied at 7.4 lbs N and 25 lbs P<sub>2</sub>O<sub>5</sub> per acre with the seed. The safflower was harvested for grain on October 5<sup>th</sup> with a Wintersteiger small plot combine. The results are given in Table 31.

**Summary:** This study was undertaken to see if hybrid safflower could be planted at lower seeding rates than conventional varieties. Lower seeding rates would offset some of the cost of the higher priced hybrid seed. Unfortunately the study had field bindweed problems which caused an unacceptable amount of variation (CV = 24.1 for yield). Because of this, no conclusions can be made about yield differences. This study will be planted again in 2005.

| Treatment              | Height | Lodging | Test Wt | Yield | Oil     |
|------------------------|--------|---------|---------|-------|---------|
|                        | Inches | 1-9*    | Lb/Bu   | Bu/A  | Percent |
| Variety                |        |         |         |       |         |
| Finch                  | 23     | 1       | 47.3    | 1469  | 35.8    |
| 9022 hybrid            | 26     | 1       | 44.8    | 1520  | 32.1    |
| LSD (P=.05)            | 0.8    | NS      | 0.81    | NS    |         |
| Seeding Rate           |        |         |         |       |         |
| 50,000 (5 Lb)          | 24     | 1       | 45.5    | 1063  | 33.2    |
| 100,000 (10 Lb)        | 25     | 1       | 45.9    | 1388  | 33.4    |
| 150,000 (15 Lb)        | 24     | 1       | 46.4    | 1655  | 34.2    |
| 200,000 (20 Lb)        | 25     | 1       | 45.6    | 1673  | 34.9    |
| 250,000 (25 Lb)        | 25     | 1       | 46.9    | 1644  | 34.0    |
| 300,000 (30 Lb)        | 25     | 1       | 46.0    | 1545  | 34.2    |
| LSD (P=.05)            | NS     | NS      | NS      | NS    |         |
| Variety x Seeding Rate |        |         |         |       |         |
| Finch 50,000           | 23     | 1       | 46.7    | 871   | 35.3    |
| Finch 100,000          | 23     | 1       | 46.9    | 1313  | 34.7    |
| Finch 150,000          | 24     | 1       | 47.5    | 1754  | 36.0    |
| Finch 200,000          | 24     | 1       | 46.6    | 1615  | 36.7    |
| Finch 250,000          | 24     | 1       | 48.7    | 1673  | 35.7    |
| Finch 300,000          | 24     | 1       | 47.5    | 1591  | 36.6    |
| 9022 hybrid 50,000     | 25     | 1       | 44.2    | 1255  | 31.1    |
| 9022 hybrid 100,000    | 27     | 1       | 44.9    | 1464  | 32.1    |
| 9022 hybrid 150,000    | 25     | 1       | 45.4    | 1557  | 32.4    |
| 9022 hybrid 200,000    | 27     | 1       | 44.6    | 1731  | 33.0    |
| 9022 hybrid 250,000    | 27     | 1       | 45.1    | 1615  | 32.2    |
| 9022 hybrid 300,000    | 27     | 1       | 44.6    | 1498  | 31.8    |
| LSD (P=.05)            | NS     | NS      | NS      | NS    |         |
| Average                | 24.8   | 1.0     | 46.1    | 1495  | 34.0    |
| CV                     | 4.5    | 0.0     | 2.8     | 24.1  |         |
| *1-No lodging 0-100%   |        |         |         |       |         |

| Table 31. | Safflower Seeding | Rate Study - | - Penninaton | County ( | (Wall) 2004. |
|-----------|-------------------|--------------|--------------|----------|--------------|
|           |                   |              |              |          |              |

\*1=No lodging, 9=100% lodged.

# SAFFLOWER PLANTING DATE STUDY

#### **Objectives:**

- 1) To evaluate the effect of delayed planting on the yield, test weight and oil content of safflower.
- 2) To determine if the leaf spotting disease Alternaria can be lessened by delaying planting.

**Procedures:** Safflower was planted in a factorial (varieties x planting date) experiment with four replications near Wall, South Dakota on April 14, May 6, May 14, and May 27, 2004. The herbicide Treflan 4L (2 pints/A) was double pass incorporated on April 6, 2004 to control weeds. Four varieties of Safflower (Finch, S-541, S-518, and Montola 2003) were seeded at 210,000 seeds per acre rate with a John Deere 750 no-till research drill. Starter fertilizer at 6 gallons per acre of liquid ammonium phosphate (10-34-0) was applied with the seed at planting time. All 4 planting dates were harvested on October 6, 2004. Results of the 2002 – 2004 trials are shown in Tables 32 – 34.

**Discussion:** Lack of precipitation has been the major factor limiting safflower yields the past three years. In 2004 there was virtually no rain in April and early May. This combined with dry topsoil conditions caused the first three dates to germinate and emerge at the same time. So effectively there was only two planting dates in 2004, May 14 and May 27. What we have seen over the past three years is that plant height and test weight decreased with later planting dates, but yield trends have varied over the years. Leaf infection from Alternaria has not been a factor the past three years due to the dry summers that have limited the amounts of dewy conditions that promote infection.

| Table 32. Safflo        | wer Planti | ng Date Tr | ial – Penni | ngton Coi | unty (Wall) 200 | 4.      |
|-------------------------|------------|------------|-------------|-----------|-----------------|---------|
| Treatment               | Height     | Lodging    | Test Wt     | Yield     | Maturity        | Oil     |
|                         | Inches     | 1-9*       | Lb/Bu       | Lb/A      | 50% Bloom       | Percent |
|                         |            |            |             |           |                 |         |
| Planting Date           |            |            |             |           |                 |         |
| April 14                | 23         | 1          | 44.3        | 1549      | July 24         | 39.1    |
| April 28                | 24         | 1          | 44.0        | 1629      | July 24         | 38.8    |
| May 11                  | 24         | 1          | 43.6        | 1699      | July 24         | 38.6    |
| May 25                  | 19         | 1          | 42.1        | 1531      | Aug 8           | 37.3    |
| LSD (P=.05)             | 0.8        | NS         | 0.8         | NS        |                 |         |
|                         |            |            |             |           |                 |         |
| Variety                 |            |            |             |           |                 |         |
| Finch                   | 23         | 1          | 46.2        | 1405      | July 27         | 35.9    |
| S-541                   | 22         | 1          | 43.4        | 1708      | July 27         | 38.8    |
| S-518                   | 22         | 1          | 40.6        | 1788      | July 28         | 38.5    |
| Montola 2003            | 22         | 1          | 43.8        | 1507      | July 28         | 37.8    |
| LSD (P=.05)             | 0.8        | NS         | 0.8         | 143       | <b>*</b>        |         |
|                         |            |            |             |           |                 |         |
| Variety x Planting Date |            |            |             |           |                 |         |
| Finch April 14          | 24         | 1          | 46.8        | 1472      | July 24         | 36.0    |
| Finch April 28          | 24         | 1          | 45.6        | 1376      | July 24         | 35.7    |
| Finch May 11            | 23         | 1          | 47.3        | 1411      | July 24         | 36.3    |
| Finch May 25            | 23         | 1          | 44.9        | 1359      | August 7        | 35.4    |
| T IIICH May 25          | 21         | I          | 44.5        | 1009      | August /        | 55.4    |
| S-541 April 14          | 22         | 1          | 43.7        | 1664      | July 24         | 41.4    |
|                         |            |            |             | 1716      | •               |         |
| S-541 April 28          | 24         | 1          | 44.9        |           | July 24         | 41.3    |
| S-541 May 11            | 25         | 1          | 43.4        | 1795      | July 24         | 40.8    |
| S-541 May 25            | 19         | 1          | 41.5        | 1655      | August 7        | 39.7    |
|                         | 00         | 4          | 44 5        | 4754      | h.h. 04         | 20.0    |
| S-518 April 14          | 23         | 1          | 41.5        | 1751      | July 24         | 39.8    |
| S-518 April 28          | 25         | 1          | 41.3        | 1786      | July 24         | 39.6    |
| S-518 May 11            | 24         | 1          | 40.6        | 1934      | July 24         | 39.0    |
| S-518 May 25            | 18         | 1          | 39.0        | 1681      | August 9        | 38.4    |
|                         |            |            |             |           |                 |         |
| Montola 2003 April 14   | 23         | 1          | 45.1        | 1307      | July 24         | 39.0    |
| Montola 2003 April 28   | 23         | 1          | 44.3        | 1638      | July 24         | 38.7    |
| Montola 2003 May 11     | 23         | 1          | 43.2        | 1655      | July 24         | 38.1    |
| Montola 2003 May 25     | 19         | 1          | 42.9        | 1429      | August 9        | 37.8    |
| LSD (P=.05)             | NS         | NS         | NS          | NS        |                 |         |
| · · ·                   |            |            |             |           |                 |         |
| Average                 | 22         | 1.0        | 43.5        | 1601      |                 | 38.6    |
| cv                      | 4.8        | 0.0        | 2.5         | 12.5      |                 |         |
|                         |            |            |             |           |                 |         |

| Treatment               | Height | Lodging | Test Wt                  | Yield               | Maturity           | Oil     |
|-------------------------|--------|---------|--------------------------|---------------------|--------------------|---------|
|                         | Inches | 1-9*    | Lb/Bu                    | Lb/A                | 50% Bloom          | Percent |
| Planting Date           |        | ·       |                          |                     |                    |         |
| April 14                | 22     | 1       | 40.4                     | 560                 | July 14            | 35.7    |
| April 28                | 20     | 1.      | 41.9                     | 444                 | July 20            | 38.2    |
| May 11                  | 19     | 1       | 41.9                     | 413                 | July 24            | 36.5    |
| May 25                  | 17     | 1       | 39.8                     | 372                 | Jul <u>y</u> 28    | 36.9    |
| LSD (P=.05)             | 1.2    | NS      | 1.1                      | 60                  |                    |         |
| Variety                 |        |         |                          |                     |                    |         |
| Finch                   | 20     | 1       | 41.7                     | 443                 | July 21            | 33.4    |
| S-541                   | 21     | 1       | 41.2                     | 456                 | July 21            | 39.1    |
| S-518                   | 19     | 1       | 39.8                     | 494                 | July 21            | 38.8    |
| Montola 2003            | 18     | 1       | 41.3                     | 396                 | July 22            | 36.3    |
| LSD (P=.05)             | 1.2    | NS      | 1.1                      | 60                  |                    | ·       |
|                         |        |         |                          |                     |                    |         |
| Variety x Planting Date |        |         |                          |                     |                    |         |
| Finch April 14          | 22     | 1       | 41.5                     | 530                 | July 15            | 33.1    |
| Finch April 28          | 21     | 1       | 42.3                     | 478                 | July 18            | 35.1    |
| Finch May 11            | 20     | 1       | 42.4                     | 388                 | July 23            | 31.0    |
| Finch May 25            | 18     | 1       | 40.5                     | 375                 | July 28            | 34.4    |
|                         |        |         |                          |                     |                    |         |
| S-541 April 14          | 23     | 1       | 39.7                     | 570                 | July 14            | 36.4    |
| S-541 April 28          | 22     | 1       | 43.0                     | 430                 | July 20            | 40.4    |
| S-541 May 11            | 20     | 1       | 42.2                     | 467                 | July 24            | 39.4    |
| S-541 May 25            | 18     | 1       | 39.8                     | 357                 | July 28            | 40.0    |
| S-518 April 14          | 22     | 1       | 39.7                     | 610                 | Luby 4.4           | 39.2    |
| S-518 April 28          | 20     | 1       | 40.2                     | 529                 | July 14<br>July 20 | 40.0    |
| S-518 May 11            | 17     | 1       | 40.2                     | 412                 | July 24            | 38.6    |
| S-518 May 25            | 16     | 1       | 39.1                     | 426                 | July 27            | 37.5    |
| 0 010 May 20            | 10     | •       | 00.1                     | 420                 |                    | 57.5    |
| Montola 2003 April 14   | 20     | 1       | 40.6                     | 530                 | July 14            | 34.4    |
| Montola 2003 April 28   | 18     | 1       | 42.3                     | 338                 | July 20            | 37.5    |
| Montola 2003 May 11     | 18     | 1       | 42.6                     | 385                 | July 24            | 37.3    |
| Montola 2003 May 25     | 16     | 1       | 39.6                     | 330                 | July 27            | 36.0    |
| LSD (P=.05)             | NS     | NS      | NS                       | NS                  |                    |         |
|                         |        |         |                          |                     |                    |         |
| Average                 | 19.2   | 1.0     | <b>41.0</b> <sup>:</sup> | 447                 |                    | 36.9    |
| CV                      | 8.5    | 0.0     | 3.8                      | <u>    19.1    </u> |                    |         |

| Table 33. Sa | afflower Planting Date | Trial - Pennington | County (Wall | ) 2003. |
|--------------|------------------------|--------------------|--------------|---------|
|--------------|------------------------|--------------------|--------------|---------|

| Treatment                     | Height | Lodging | Test Wt | Yield | Maturity  | Oil      |
|-------------------------------|--------|---------|---------|-------|-----------|----------|
|                               | Inches | 1-9*    | Lb/Bu   | Lb/A  | 50% Bloom | Percent  |
| Planting Date                 |        |         |         |       |           |          |
| April 23                      | 17     | 1       | 42.3    | 496   | July 10   | 35.7     |
| May 6                         | 15     | 1       | 43.0    | 640   | July 15   | 38.2     |
| May 21                        | 13     | 1       | 42.6    | 643   | July 18   | 36.5     |
| June 4                        | 11     | 1       | 43.3    | 570   | July 31   | 36.9     |
| LSD (P=.05)                   | 0.7    | NS      | 0.6     | 70    |           |          |
| Variety                       |        |         |         |       |           |          |
| Finch                         | 14     | 1       | 43.4    | 658   | July 18   | 36.7     |
| S-541                         | 14     | 1       | 42.8    | 655   | July 17   | 37.0     |
| Montola 2003                  | 14     | 1       | 42.2    | 448   | July 20   | 39.3     |
| LSD (P=.05)                   | NS     | NS      | 0.5     | 61    |           |          |
| Variety x Planting Date       |        |         |         |       |           |          |
| Finch April 23                | 18     | 1       | 42.8    | 552   | July 11   | 37.5     |
| Finch May 6                   | 15     | 1       | 43.5    | 756   | July 14   | 37.3     |
| Finch May 21                  | 13     | 1       | 43.5    | 690   | July 17   | 35.4     |
| Finch June 4                  | 12     | 1       | 43.8    | 635   | July 30   | 36.6     |
| S-541 April 23                | 18     | 1       | 42.3    | 598   | July 10   | 37.6     |
| S-541 April 25<br>S-541 May 6 | 15     | 1       | 42.3    | 739   | July 14   | 37.8     |
| S-541 May 21                  | 13     | 1       | 43.0    | 702   | July 17   | 36.3     |
| S-541 June 4                  | 13     | 1       | 43.0    | 582   | July 30   | 36.3     |
| 5-541 Julie 4                 | 12     | l       | 42.9    | 502   | July SU   | 30.3     |
| Montola 2003 April 23         | 17     | 1       | 41.8    | 338   | July 10   | 38.5     |
| Montola 2003 May 6            | 15     | 1       | 42.5    | 424   | July 18   | 39.4     |
| Montola 2003 May 21           | 13     | 1       | 41.3    | 536   | July 20   | 38.8     |
| Montola 2003 June 4           | 11     | 1       | 43.1    | 492   | August 3  | 40.7     |
| LSD (P=.05)                   | NS     | NS      | NS      | NS    |           |          |
| Average                       | 14.1   | 1.0     | 42.8    | 587   |           | 37.7     |
| CV                            | 5.9    | 0.0     | 1.6     | 14.3  |           |          |
|                               |        |         |         |       |           | ··· ·· · |

Table 34. Safflower Date of Planting Trial –Pennington County (Wall) 2002.

## SOYBEAN ROW SPACING and POPULATION STUDY

**Objective:** To evaluate the response of soybeans to wide rows and low populations in both dryland and irrigated environments.

**Procedure:** Soybeans were planted in a factorial (row spacing x population) experiment with two replications near New Underwood and Martin, South Dakota. New Underwood was dryland and Martin was under center pivot irrigation. The treatments were 20", 40" and 60" rows planted at 20 000, 40 000, 80 000 and 160 000 seeds pre acre. A check entry planted in 10" rows at 160 000 seeds per acre was included as a solid seeded comparison. Producers Hybrids150RR was used for the study, a 1.5 maturity Roundup Ready® bush type variety. Both locations were planted on May 26<sup>th</sup> with a John Deere 7100 planter with 20" row spacing and residue managers. New Underwood was planted into wheat stubble and Martin into soybean stubble. Both locations had Roundup herbicide applied three times; just prior to planting, in late June and in mid August to control weeds. The plots were 20' x 250' with the middle ten feet harvested for yield. New Underwood was harvested on September 30<sup>th</sup> and October 7<sup>th</sup>. The Martin trial was harvested on October 19<sup>th</sup>. The plots were harvested with a Wintersteiger Delta small plot combine. Prior to harvest, five random plants were taken from each plot and used for pod counts, seed counts and seed size data. The results are given in Tables 35 and 36.

**Summary:** It was a dry year for growing soybeans at New Underwood. At the nearest weather reporting station at the Rapid City airport, April through August precipitation was 7.8", 3.5" below normal. Because of the lack of rainfall, soybean yields were limited to an average of 8.9 bu/A. Under these dry conditions, yields increased as row width widened with the 60" rows yielding 11 bu/A, which produced twice as much as the 10" rows. For the other agronomic traits; height increased, test weight decreased and seed size increased with wider rows. Row spacing had no effect on the number of pods or seeds per plant. Population had no significant effect on yields, with all the populations having similar yields. Test weight and seed size decreased with higher populations along with a slight decrease in the number of seeds per pod. As would be expected, the number of pods and seeds per plant increased as plant population was reduced. For New Underwood results see Table 35.

The Martin location averaged a respectable 44 bu/A under irrigation with the top treatments producing 51 bu/A. Yield decreased with the 40" and 60" rows, otherwise row spacing did not have a significant effect on the other traits measured. The 160,000 and 80,000 treatments did not yield significantly different, but the 40,000 and 20,000 treatments yielded 6 and 12 bu/A less. Higher populations increased plant height and decreased the number of seeds and pods per plant. Test weight, seeds per pod and seed size were not greatly affected by plant population. Martin results are presented in Table 36.

On dryland, yields increased with row width, because the space between the rows stored moisture for use later in the season. On irrigated ground 10" and 20' rows were the best with the 60" rows yielding 7 bu/A less. At low populations wider rows were easier to harvest because the plants grew taller and more upright. The 40" and 60" rows would normally require late season weed control since the plants do not canopy the row (Figure 5). Overall, planting dryland soybeans at very low populations in wide rows does offer increased yields in a semi-arid climate. But these yields still may not be high enough for soybeans to be a viable crop in western South Dakota.

Studies for next year include planting the same experiment at two to three dryland locations and getting yields from winter wheat planted over the plots at New Underwood.

| Table 35. Soybean<br>Treatment | Height | Lodging | Test Wt | Yield | Pods / | Seeds / | Seeds / | Seed Size |
|--------------------------------|--------|---------|---------|-------|--------|---------|---------|-----------|
|                                | Inches | 0-9*    | Lb/Bu   | Bu/A  | Plant  | Plant   | Pod     | Seeds/Lb  |
| Row Spacing                    |        |         |         |       |        |         |         |           |
| 20" Rows                       | 15     | 0       | 58.7    | 7.7   | 42     | 102     | 2.4     | 4654      |
| 40" Rows                       | 17     | 0       | 57.4    | 8.9   | 37     | 87      | 2.3     | 4588      |
| 60" Rows                       | 20     | 0       | 55.4    | 11.1  | 48     | 112     | 2.3     | 4355      |
| LSD (P=.05)                    | · 1    | 0.0     | 1.0     | 0.6   | NS     | NS      | NS      | 114       |
| Population                     |        |         |         |       |        |         |         |           |
| 20,000 seeds/A                 | 19     | 0       | 58.1    | 8.9   | 77     | 188     | 2.5     | 4283      |
| 40,000 seeds/A                 | 18     | · 0     | 57.0    | 9.3   | 49     | 115     | 2.4     | 4448      |
| 80,000 seeds/A                 | 17     | 0       | 57.5 ·  | 8.9   | 29     | 63      | 2.2     | 4700      |
| 160,000 seeds/A                | 17     | · 0     | 56.0    | 9.8   | 15     | 35      | 2.3     | 4697      |
| LSD (P=.05)                    | 1      | 0.0     | 1.1     | 0.7   | 13     | 29      | 0.1     | 131       |
| Row Spacing x                  |        |         |         |       |        |         |         |           |
| Population                     |        |         |         |       |        |         |         |           |
| 20" Rows 20K                   | 17     | 0       | 58.3    | , 7.8 | 70     | 176     | 2.6     | 4410      |
| 20" Rows 40K                   | 16     | 0       | 59.3    | 8.0   | 57     | 133     | 2.4     | 4535      |
| 20" Rows 80K                   | 13     | 0       | 58.7    | 7.2   | 29     | 65      | 2.3     | 4875      |
| 20" Rows 160K                  | 13     | 0       | 58.5    | 7.7   | 14     | 34      | 2.4     | 4795      |
| 40" Rows 20 K                  | 19     | 0       | 58.2    | 8.3   | 70     | 166     | 2.4     | 4285      |
| 40" Rows 40K                   | 18     | 0       | 58.6    | 8.7   | 38     | 90      | 2.4     | 4530      |
| 40" Rows 80K                   | 17     | 0       | 58.9    | 8.4   | 26     | 60      | 2.3     | 4735      |
| 40" Rows 160K                  | 17     | 0       | 54.0    | 10.1  | 14     | 32      | 2.3     | 4800      |
| 60" Rows 20K                   | 21     | 0       | 57.8    | 10.5  | 91     | 222     | 2.5     | 4155      |
| 60", Rows 40 K                 | 20     | Ο.      | 53.3    | 11.3  | 51     | 122     | 2.4     | 4280      |
| 60" Rows 80K                   | 20     | 0       | 55.0    | 11.0  | 32     | 66      | 2.1     | 4490      |
| 60" Rows 160K                  | 20     | 0       | 55.4    | 11.6  | 17     | 39      | 2.3     | 4495      |
| 10" Rows 160K                  | 11     | 0       | 56.2    | 5.1   | 13     | 31      | 2.4     | 4905      |
| LSD (P=.05)                    | 1.5    | 0.0     | 1.9     | 1.2   | 21.2   | 47.4    | 0.2     | 217       |
| Average                        | 17     | 0       | 57.1    | 8.9   | 40     | 95      | 2.3     | 4561      |
| CV                             | 4.2    | 0.0     | 1.5     | 6.1   | 24.2   | 22.9    | 4.0     | 2.2       |

# Table 35. Soybean Row Spacing x Population Study – Pennington County (New Underwood) 2004.

| Table 36. Soyl              |        |         |         |              |        |            |            |              |
|-----------------------------|--------|---------|---------|--------------|--------|------------|------------|--------------|
| Treatment                   | Height | Lodging | Test Wt | Yield        | Pods / | Seeds /    | Seeds /    | Seed Size    |
|                             | Inches | 0-9*    | Lb/Bu   | Bu/A         | Plant  | Plant      | Pod        | Seeds/Lb     |
| Row Spacing                 |        |         |         |              |        |            |            |              |
| 20" Rows                    | 35     | 0       | 56.3    | 46.1         | 107    | 261        | 2.5        | 3389         |
| 40" Rows                    | 34     | 0.      | 56.0    | 44.3         | 107    | 266        | 2.5        | <u>33</u> 34 |
| 60" Rows                    | 35     | 0       | 56.4    | 40.3         | 99     | 238        | 2.4        | 3226         |
| LSD (P=.05)                 | NS     | 0       | NS      | 1.6          | NS     | NS         | NS         | 86           |
| Population                  |        |         |         |              |        |            |            |              |
| 20,000 seeds/A              | 32     | 0       | 55.7    | 36.3         | 182    | 442        | 2.4        | 3218         |
| 40,000 seeds/A              | 34     | 0       | 56.2    | 42.5         | 112    | 275        | 2.5        | 3338         |
| 80,000 seeds/A              | 36     | 0       | 56.4    | 47.3         | 76     | 185        | 2.4        | 3393         |
| 160,000 seeds/A             | 37     | 0       | 56.5    | 48.1         | . 47   | 117        | 2.5        | 3315         |
| LSD (P=.05)                 | 1.8    | 0       | 0.6     | 1.9          | 21     | 46         | NS         | 100          |
| Row Spacing x<br>Population |        |         |         | • .          |        |            |            |              |
| 20" Rows 20K                | 30     | 0       | 55.5    | 36.8         | 201    | 480        | 2.4        | 3330         |
| 20" Rows 20K                | 35     | 0       | 56.3    | 30.8<br>45.2 | 113    | 480<br>279 | 2.4<br>2.5 | 3330<br>3425 |
| 20" Rows 80K                | 37     | 0       | 56.6    | 43.2<br>51.1 | 73     | 179        | 2.5        | 3425<br>3490 |
| 20" Rows 160K               | 38     | 0       | 56.7    | 51.4         | 42     | 106        | 2.5<br>2.6 | 3490         |
| 20 110003 10011             | 00     | U       | 50.7    | <b>U</b> 1.7 | 72     | 100        | 2.0        | 5510         |
| 40" Rows 20 K               | 32     | 0       | 55.7    | 37.4         | 172    | 424        | 2.5        | 3135         |
| 40" Rows 40K                | 34     | Ō       | 55.9    | 43.8         | 114    | 284        | 2.5        | 3390         |
| 40" Rows 80K                | 35     | 0       | 56.2    | 47.1         | 86     | 221        | 2.6        | 3435         |
| 40" Rows 160K               | 36     | 0       | 56.1    | 48.8         | 55     | 136        | 2.5        | 3375         |
| 60" Rows 20K                | 34     | 0       | 55.9    | 34.7         | 174    | 424        | 2.5        | 3190         |
| 60" Rows 40 K               | 35     | Ō       | 56.5    | 38.5         | 109    | 262        | 2.4        | 3200         |
| 60" Rows 80K                | 35     | Ō       | 56.5    | 43.7         | 70     | 156        | 2.3        | 3255         |
| 60" Rows 160K               | 36     | 0       | 56.7    | 44.2         | 44.1   | 109.5      | 2.5        | 3260         |
| 10" Rows 160K               | 40     | 0       | 56.9    | 51           | 34     | 85         | 2.6        | 3380         |
| LSD (P=.05)                 | 3      | 0.0     | 1.0     | 3.4          | 34     | 76         | 0.3        | 169          |
| Average                     | 35     | 0.0     | 56.3    | 44.1         | 99     | 242        | 2.5        | 3321         |
| CV                          | 3.8    | 0.0     | 0.9     | 3.5          | 15.9   | 14.5       | 6.2        | 2.3          |

# Table 36. Soybean Row Spacing x Population Study - Bennett County (Martin) 2004.



Figure 2. Comparison of Plants from 60", 40", 20" and 10" Rows at 160,000 Seeds/Acre, New Underwood, SD - September 2, 2004.



Figure 3. Comparison of Plants from 60", 40" and 20" Rows at 20,000 Seeds/Acre, New Underwood, SD - September 2, 2004.



Figure 4. 10" Rows at New Underwood, SD - September 2, 2004.



Figure 5. 60" Rows at New Underwood, SD - September 2, 2004.

# SDSU REDUCED TILLAGE AND NO-TILL CROP ROTATION STUDY WALL, SOUTH DAKOTA 2004

**Funding:** The South Dakota Wheat Commission, South Dakota Oil Seeds Council, USDA-CSREES Consortium for Alternative Crops and SDSU.

**Cooperator:** Crown Partnership of Wall, South Dakota.

#### **OBJECTIVES**

- 1. To determine crop productivity in varied rotations with different crop intensities.
- 2. To determine economic returns from various rotation systems with varied levels of crop intensification and diversity.

# **PROCEDURES**

The study with eleven different rotations was established in the spring of 1994. The rotations are two to six years in duration and we have completed at least one full cycle in all of the rotation sequences. All phases in each rotation are grown each year. Reduced and no-till production practices are used to grow the crops except for the winter wheat conventional fallow treatment. Millet, peas, spring wheat and winter wheat were planted with a JD 750 no-till drill at 10 inch row spacing. The fallow winter wheat is planted with a JD 610 drill at 12 inch row spacing. The safflower, corn and sunflower are planted with a JD 7100 corn planter in 20 inch rows. Nitrogen and phosphorus fertilizer are injected in the fall using strip tillage preparing the zone for planting by the JD 7100 corn planter the following summer.

The experimental design is a randomized complete block with four replications. Plots are 25'x80' in size, the small size allows all the plots to be located on the same soil type and reduces variability due to soil characteristics. The crop yields were measured from each plot and analyzed to compute the average yields for each rotation. Detailed records of all the cultural practices including spraying for insect pests, diseases and weeds are kept and the cost of each practice is recorded. These records are given in Appendix 1. This allows for yield and economic comparisons to be made each year.

# **RESULTS AND DISCUSSION**

#### Long term trends

Long term results have shown that the inclusion of broadleaf crops such as sunflower, safflower and peas; along with warm season grass crops like corn and millet, helps to break weed and disease cycles and improves wheat yields and profitability.

The ten-year (1995-2004) average yield of winter wheat following millet in a rotation where a broadleaf crop or corn was grown prior to the millet was 38 bu/A. The winter wheat grown in a continuous winter wheat-millet rotation had an average yield of 32 bu/A. This indicates a 6 bushels per acre difference due to introducing a broadleaf or warm season crop into the rotation as the same management practices were applied in both rotations over ten years. These results indicate the importance of crop diversity in a rotation system. For comparison, the winter wheat-fallow rotation had an average yield of 44 bu/A while recrop wheat in diversified rotations yielded 75% of the fallow wheat over the past ten years.

Introducing safflower, sunflower and pea crops in the winter wheat-millet rotation would be expected to increase demand for soil moisture and thus decrease winter wheat compared to the winter wheatmillet rotation. The rotations with safflower, sunflower and pea, however, yielded more than the wheat-millet rotation, indicating the increasing problem with root diseases in the undiversified winter wheat-millet rotation (Table 37). The increased income from the higher yields of winter wheat along with the opportunity to produce a profitable broadleaf crop like sunflower or safflower increased the net profit of these rotations. The favorable effect on yields can be seen in the attached charts containing five year averages for net income and yields (Table 39). It should be noted that the drought of 2002 had a large impact on profitability and that if 2002 data are left out of the averages the more diverse rotations would have more consistent profitability.

We continue to refine the strip tillage system that we use for corn, sunflowers and safflower. The fertilizer is injected in the fall using a narrow point opener which leaves about a four inch area strip tilled. Last year we added some reverse mounted closing disks to fill the trench formed by the injector, but still having minimal soil disturbance. In the spring; corn, safflower and sunflowers are planted over the same strips. Since going to this system, plant stands of corn and sunflowers have improved. The residue managers on our planter work better in the strip tilled wheat stubble and it also has the added bonus of putting the fertilizer right were the plants will utilize it. We have lowered plant populations for corn and sunflowers, since the last few dry years have shown us that our plant populations were probably unrealistically high. We are doing row spacing and populations studies on corn and we may be going back to wider rows that allow moisture to be saved for later in the growing season.

Future changes in this study include looking at other green fallow options besides field peas, changing the spring wheat to feed barley, and possibly combining or reconfiguring some of the less diverse rotations to give us more five to six year diverse rotations. Our one six-year rotation has shown us that longer diverse rotations are better than the mostly three -year rotations we started with. We plan to introduce some flex cropping options with moisture conditions helping us to decide which crop to plant or whether to fallow.

#### 2004 Results

#### **Rotation 1: Winter Wheat / Fallow**

This is the base rotation that all other rotations in the study are compared to. Jagalene winter wheat was planted on September 22, 2003 with a JD 610 drill. Liquid starter fertilizer was applied at planting time at six gallons of 10-34-0 per acre. Winter wheat stands were poor in the fall of 2003 due to dry soil conditions. The dry conditions persisted until spring with only 0.19 inches of precipitation in the month of April. These are ideal conditions for crown rot infection. This probably contributed to this rotations poor yields compared to the wheat planted into fallow in the more diverse Rotation 2. The crop was not sprayed for weeds during the growing season due to moisture stress conditions. Fallow wheat yielded 17.7 bu/A in 2004, much lower than the six year average of 48.5 bu/A. If the drought year of 2002 is excluded from the analysis, fallow wheat yields are at a 5 year average of 52.5 bu/A (Table 37).

#### Rotation 2: Winter Wheat-a / Sunflower / Millet / Winter Wheat-b / Corn / Fallow

This is a very diverse rotation that provides many opportunities for weed control and disease suppression. On the long term, yields from this rotation have been respectable even in the dry years. The best winter wheat yields from this rotation have been from winter wheat following fallow (Winter wheat –a) that has consistently outyielded the fallow wheat in Rotation 1 by 5 bu/Acre each year over the last six years. On the other hand, winter wheat following millet on average yielded about 74% the yield of the fallow wheat. Sunflower yields have averaged 1454 Lb/Acre (Table 40) with extremely low yields in 2002 and 2003 due to drought stress. Millet yields in this rotation have averaged 929 Lb/Acre (Table 40) with yield lower in the last three years due to drought. Sunflower is deep rooted and tends to dry out the soil profile considerable, thus millet grown after the sunflower crop is very dependant upon spring rains to recharge the top two feet of soil. This rotation requires nitrogen applications on every crop so there are no fertilizer savings as is observed in rotations with legumes. The diversity of warm

and cool season crops in this six-year rotation spreads the work-load out for the producer. This rotation requires more equipment than other rotations without row crops.

# Rotation 3: Winter Wheat / Safflower / Millet

Winter wheat in this rotation yielded 24 bu/A in 2004 and has averaged 37 bu/A long term. The safflower yields were 957 lb/A in 2004 and averaged 1,100 pounds/Acre in a 5 year period (Table 40). Millet yields were 867 lb/A in 2004 with a 5-year average of 1069 lb/A. The safflower crop is deep-rooted and dries out the ground for the upcoming millet crop. During dry seasons, a summer fallow treatment could be used to replace the millet crop. Yields of millet have been variable in this rotation depending upon amount of snow catch in the safflower stubble and the amounts of rainfall before and during the millet crop.

This rotation provides the diversity of a broadleaf crop along with cool season and warm season grass crops. The rotation can be planted with small grain equipment and therefore does not require an additional investment in equipment. The two warm season crops are relatively drought tolerant and the winter wheat makes most of its growth during the cool portion of the summer. This rotation will make full use of all precipitation received.

# Rotation 4: Winter Wheat / Millet

This is a no-till rotation alternating between winter wheat and Proso (grain) millet. The millet crop is a good replacement for summer fallow. Winter Wheat yields in this rotation have averaged 39 bu/A over

| Rotation | Crop Sequence                          | Protein | Test Wt | Yield | Protein  | Ave Yield |
|----------|----------------------------------------|---------|---------|-------|----------|-----------|
|          |                                        | 2004    | 2004    | 2004  | w/o 2002 | w/o 2002  |
|          |                                        |         |         |       | 1999-04  | 1999-04   |
|          |                                        | %       | Lb/Bu   | Bu/A  | %        | Bu/A      |
| 1        | WW/F                                   | 15.0    | 59.9    | 17.7  | 13.3     | 52.5      |
| 2a       | WW/C/F/WW/Su/M                         | 14.9    | 62.0    | 34.3  | 13.1     | 58.4      |
| 2a       | WW/C/F/WW/Su/M                         | 13.4    | 60.0    | 27.1  | 11.9     | 44.4      |
| 3        | <b>WW</b> / Sa / M                     | 14.7    | 57.5    | 24.2  | 11.7     | 42.5      |
| 4        | <b>WW</b> / M                          | 12.6    | 60.3    | 28.9  | 12.3     | 39.9      |
| 5a       | <b>WW</b> / C / Su / SW                | 13.3    | 60.9    | 34.1  | 12.2     | 37.2      |
| 6a       | <b>WW</b> / WW / Su / PF               | 14.1    | 57.2    | 34.5  | 13.4     | 48.6      |
| 6a       | WW / WW / Su / PF                      | 14.1    | 59.0    | 24.7  | 12.6     | 35.2      |
| 9a*      | <b>WW</b> * / WW / Sa / PF             | N/A*    | N/A*    | N/A*  | 13.3*    | 54.8*     |
| 9a       | WW / <b>WW</b> / Sa / PF               | 13.7    | 60.2    | 27.5  | 13.0     | 34.0      |
| 10       | WW/CP/M                                | 13.5    | 59.7    | 22.5  | 11.7     | 47.2      |
| 11       | WW/C/M                                 | 14.2    | 58.6    | 28.2  | 11.7     | 44.3      |
|          | ······································ |         |         |       |          |           |
| LSD =    |                                        |         |         | 6.2   |          |           |
| CV =     |                                        |         |         | 17.0  |          |           |

**Table 37.** Hard Red Winter Wheat Yields from Different Rotations at Wall in 2004 and Long Term (1999-2004)

\*The first year of wheat after pea/fallow in 9a failed in 2004. The long term value does not include 2002 wheat yield. WW = winter wheat, F=fallow, C=corn, Su=sunflower, M=millet, Sa=safflower, PF=pea fallow, CP=chickpea, SW=spring wheat

Table 38. Net Returns from 2004 Crop at The Wall Rotation

| Rota       | ations and Crop Yields:                                                         | Dollars                             | s Return / A. |
|------------|---------------------------------------------------------------------------------|-------------------------------------|---------------|
| 1          | Winter Wheat / Fallow<br>17.7 bu                                                |                                     | \$-43.26      |
| 2a         | Winter Wheat-A / Sunflower / Millet / Winter W<br>34.3 bu 1093 lbs 449 lbs 27.1 |                                     | \$ -21.33     |
| 3          | Winter Wheat/Safflower/24.2 bu957 lbs                                           | Millet<br>867 lbs                   | \$ -18.75     |
| <b>4</b> . | Winter Wheat / Millet<br>28.9 bu 1888 lbs                                       | •<br>•                              | \$ -7.53      |
| 5a.        | Winter Wheat / Corn / Sunflower<br>34.1 bu 54.9 bu 455 lbs                      | / Spring Wheat to Millet<br>426 lbs | \$-53.00      |
| 6a         | Winter Wheat-B / Sunflower / Pea-Fallov<br>24.7 bu 818 lbs                      | w / Winter Wheat-A<br>34.5 bu       | \$ -30.06     |
| 9a         | Winter Wheat-B / Safflower / Pea-Fallow / Winter<br>27.5 bu 617 lbs             | Wheat–A to Millet<br>1028 lbs       | \$ -48.99     |
| 10         | Winter Wheat / Chickpeas /<br>22.5 bu 976 lbs 1                                 | Millet<br>197 lbs                   | \$ 10.11      |
| 11         | Winter Wheat / Corn /<br>28.2. bu 76.6 bu                                       | Millet<br>1017 lbs                  | \$ -17.96     |
|            |                                                                                 |                                     | -             |

the last five years (Table 37). Millet yields, on the other hand, have averaged 1540 lb/A over the last five years (Table 40). In 2004, the winter wheat yields (29 bu/A) were below the six-year average while the millet yields (1888 lb/A) were slightly above average. In some years large amounts of residue on the soil surface after the winter wheat crop has caused some difficulty in establishing a good stand of millet. On average, winter wheat in this rotation has yielded 75 percent of the fallow winter wheat yields from Rotation 1.

This is a rather narrow rotation that does not provide adequate diversity of crops for good weed control. Use of Olympus for downy brome / Japanese brome in the fall may improve weed control in this rotation. Root rot diseases tend to hamper the wheat yields of this rotation.

#### Rotation 5a: Winter Wheat / Corn / Sunflower / Spring Wheat:

This is a very intensive rotation with high moisture demand. That coupled with drought in the past few years has spelled economic disaster. Winter wheat yields have averaged about 37 bu/A over a five-year period(Table 37). Corn yields are at 64 bu/A over five years. However, corn totally failed in 2002 and 2003 due to drought stress. Sunflower yields from this rotation have been the lowest of the sunflower yields in the study in the last few years. Spring wheat has not performed well after sunflower more so in drier years. Sunflower is harvested late in the fall, and leaves limited stubble to catch snow. Spring wheat needs to be planted early in order for it to perform well and consequently, there is very limited moisture recharge prior to planting the spring wheat crop. We are looking at replacing the spring wheat with spring barley in 2005.

# Rotation 6a: Winter Wheat-a / Winter Wheat-b/ Sunflower / Pea Fallow:

The pea/fallow in this rotation is designed to lower the demand for fertilizer nitrogen in the rotation. The peas were grown only until early bloom and then killed by a herbicide spray. By bloom, peas have accumulated a good amount of biomass to benefit the following crop and at the same time killing the crop at this stage allows for potential soil moisture recharge before the winter wheat crop. The winter wheat grown after the pea-fallow seem to have benefited averaging 48 bu/A over a five-year period compared to the 35 bu/A five-year average for the second winter wheat in the rotation. Sunflower yields from this rotation have been high with a five-year average of 1727 lb/A. Yields have been poor in dry years.

The cost of growing the peas and killing them is very high averaging about \$18/A over the cost of maintaining fallow plots in Rotation 1. The benefits from the pea fallow are not enough to justify the cost. In 2005, the peas in this rotation will be grown to grain stage.

# Rotation # 9: Winter Wheat-a / Winter Wheat-b / Safflower / Pea Fallow

This rotation is similar to rotation 6a except the sunflower has been replaced by safflower. The winter wheat grown after the pea-fallow has averaged 54 bu/A over a five-year period. The second winter wheat crop has averaged 34 bu/A in the last five-year period (1999-2003). The safflower in this rotation has the highest yield of safflower treatments in the study with a five-year average of 1234 lb/A. Thus, results from this rotation are very similar to those from rotation 6a indicating that sunflower and safflowers have a similar water use pattern.

Like in rotation 6a, the pea fallow segment of the rotation has not been cost effective. High cost of pea seed and the tendency of the pea stubble to be blown away late in the summer before winter wheat planting time are obvious drawbacks for this rotation. In 2005, we will replace peas in this rotation with hairy vetch. Hairy vetch has a more prostrate growth habit and should provide a better cover crop than the peas and has lower seed costs per acre.

# Rotation 10: Winter Wheat / Chickpea / Millet:

This is a well diversified rotation and historically, this rotation has produced some of the best recrop winter wheat in the entire study. In 2004, winter wheat yielded poorly (23 bu/A) due to drought stress. On the long term, winter wheat in this rotation has averaged 47 bu/A over the last five years (1999, 00, 01, 03, 04). With the year 2002 drought year included, winter wheat has averaged 41bu/A. The four-year average (2001, 02, 03, 04) yield for the chickpea crop is 830 lb/A. This includes 2002 drought year that yielded 95 lb/A. In 2004, chickpea yield was 976 lb/A. Millet yields after the pea crop have been consistently high with a five-year average of 1429 lb/A.

This is a high risk and high potential rate of return rotation depending on how the chickpea crop performs. Chickpea is an expensive crop to grow due to the high cost of seed. However, if the crop yields well the returns are extremely good.

# Rotation 11: Winter Wheat / Corn / Millet

This is an intensive continuous crop rotation. The winter wheat has averaged 44 bu/A over the last five years (1999,00,01,03,04) and yielded 28 bu/A in 2004. Corn planting populations were reduced to 14,200 plants/Acre in 2004 to reduce seed costs and plant competition. The five-year average corn yields are 76 bu/A. In 2003 the corn yielded 39.7 bu/A while corn rotations 2a and 5a totally failed. Corn in Rotation 11 has the highest long-term corn yields in the study. Millet yields have averaged over 1100 lb/A over the last six years (1999-04).

Inclusion of corn in the rotation allows us to do a much better job of cleaning up weed problems. The injection of fertilizer in the fall allows us to plant the corn into a tilled strip that is 2 to 4 degrees warmer than the non-tilled area between the rows.

| Rotation                     | 1996-2003 | 1996-2001 |
|------------------------------|-----------|-----------|
| WW-Fallow                    | -\$4.46   | -\$ 6.13  |
| WW-Millet                    | -\$7.90   | -\$10.57  |
| WW-Corn-Millet               | -\$9.08   | \$ 4.00   |
| WW-Safflower-Millet          | -\$7.10   | \$ 4.28   |
| WW-Pea-Millet                | -\$1.29   | \$12.21   |
| WW-Sun-Millet-WW-Corn-Millet | -\$1.03   | \$15.67   |

#### Table 39. Economic Returns Wall Rotation

| т                 | able40 | ). Lo | ng-Te | erm Yi | eld Ti          | rends   | of Th                    | e Wall           | Rota     | tion S | study (         | (1994-2004)            |                               |
|-------------------|--------|-------|-------|--------|-----------------|---------|--------------------------|------------------|----------|--------|-----------------|------------------------|-------------------------------|
| 0                 | 4004   | 4005  | 4000  | 4007   | 4000            |         | l per a                  |                  | 0000     | 0000   | 0004            | Asso Violal            |                               |
| Сгор              |        |       | 1996  | 1997   | 1998            | 1999    | 2000                     | 2001             |          | 2003   | 2004            | Ave Yield<br>(1999-04) | Ave Yld 99-04<br>(minus 2002) |
| Winter Wheat      | 19.6@  | 67.7  | 30.0  | 32.9^  | 67.4            | 70.9    | 58.3                     | 38.6             | 28.6     | 77.1   | 17.7            | 48.5 bu                | 52.5                          |
| Fallow            | 0      | 0     | 0     | 0      | 0               | 0       | 0                        | 0                | •0       | 0      | 0               | 0                      | 0                             |
| Winter Wheat-a    |        |       |       |        |                 | 67.1    | 66.9                     | 51.1             | 30.9     | 72.8   | 34.3            | 53.8 bu                | 58.4                          |
| Sunflower         |        |       |       |        |                 | 2091    | 2602                     | 2082             | 400      | 584    | 1093            | 1475 Lb                | 1690                          |
| Millet            |        |       |       |        |                 | 1500    | 1300                     | 2002             | 326      | 0      | 449             | 929 Lb                 | 1050                          |
| Winter Wheat-b    |        |       |       |        |                 | 62.8    | 46.0                     | 40.2             | 10.7     | 46.3   | 27.1            | 38.8 bu                | 44.4                          |
| Corn              |        |       |       |        |                 | 107.6   | <del>4</del> 0.0<br>65.8 | <del>9</del> 7.5 | 0        | 0      | 70.3            | 56.8 bu                | 68.2                          |
| Fallow            |        |       |       |        |                 | 0       | 00.0                     | 97.5<br>0        | 0        | Ö      | 0               | 0<br>0                 | 0                             |
|                   |        |       |       |        |                 |         |                          |                  | <b>v</b> |        |                 | <b>v</b>               | <b>U</b>                      |
| Winter Wheat      | 19.8@  | 32.5  | 32.0  | 33.5   | 41.9            | 57.2    | 45.4                     | 38.1             | 9.8      | 47.8   | 24.2            | 37.0 bu                | 42.5                          |
| Safflower         | 1061   | 905   | 1366  | 1010   | 1025            | 976     | 1391                     | 1575             | 360      | 614    | <del>9</del> 57 | 978 Lb                 | 1102                          |
| Millet            | 1360   | 1500  | 1998  | 2752   | 1361            | 1500    | 1266                     | 2000             | 783      | 0      | 867             | 1069 Lb                | 1126                          |
|                   | 40.70  | 05.0  | ~~~~  |        | 00 <del>7</del> | 47.0    |                          |                  |          |        |                 | 05 7 1                 |                               |
| Winter Wheat      | 19.7@  |       | 26.9  | 24.4   | 29.7            | 47.2    | 32.6                     | 33.7             | 14.7     | 57.4   | 28.9            | 35.7 bu                | 39.9                          |
| Millet            | 1275   | 1500  | 2063  | 2781   | 1150            | 1500    | 1370                     | 1800             | 1182     | 1500   | 1888            | 1540 Lb                | 1611                          |
| Winter Wheat      |        |       |       | 31.7   | 33.0            | 36.5    | 47.6                     | 33.1             | 3.4      | 34.9   | 34.1            | 31.6 bu                | 37.2                          |
| Corn              |        |       |       | 86.8   | 91.5            | 100.9   | 50.2                     | 101.6            | 0        | 0      | 54.9            | 51.2 bu                | 61.5                          |
| Sunflower         |        |       |       | 1822   | 1690            | 2010    | 1958                     | 1443             | 250      | 722    | 455             | 1139 Lb                | 1317                          |
| Spring Wheat      |        |       |       | 41.7   | 33.6            | 36.3    | 31.8                     | 28.4             | 1.6      | 26.2   | #0              | 20.7 bu                | 24.5                          |
|                   |        |       |       |        |                 |         |                          |                  |          |        |                 |                        |                               |
| Winter Wheat-a    |        |       |       |        |                 | 63.9    | 60.8                     | 48.0             | 10.8     | 35.9   | 34.5            | 42.3 Lb                | 48.6                          |
| Winter Wheat-b    |        |       |       |        |                 | 34.1    | 48.9                     | 33.0             | 5.2      | 35.4   | 24.7            | 30.2 bu                | 35.2                          |
| Sunflower         |        |       |       |        |                 | 2210    | 2468                     | 2011             | 200      | 1132   | 818             | 1473 Lb                | 1727                          |
| Pea / Fallow      |        |       |       |        |                 | 0       | 0                        | 0                | 0        | 0      | 0               | 0                      | 0                             |
| Winter Wheat-a    |        |       |       | 42.7^  | 67.1            | 68.3    | 57.1                     | 50.0             | 9.2      | 44.0   | #0              | 38.1 bu                | 43.8                          |
| Winter Wheat-b    |        |       |       | 30.1   | 49.0            | 29.8    | 43.0                     | 38.2             | 4.9      | 31.7   | 27.5            | 29.1 bu                | 34.0                          |
| Safflower         |        |       |       | 1167   | 1121            | 1277    | 1546                     | 1624             | 230      | 1106   | 617             | 1066 Lb                | 1234                          |
| Pea / Fallow      |        |       |       | 0      | 0               | 0       | 0                        | 0                | 0        | 0      | 0               | 0                      | 0                             |
|                   |        |       |       |        |                 |         |                          |                  |          |        |                 |                        |                               |
| Winter Wheat      |        |       | 30.1  | 35.4   | 36.6            | 65.1    | 48.9                     | 40.8             | 13.1     | 58.7   | 22.5            | 41.5 bu                | 47.2                          |
| Pea               |        |       | 1290* |        |                 | 2334*   |                          |                  |          | 667**  | 976**           | 830Lb**(4yr)           |                               |
| Millet            |        |       | 2266  | 3642   | 1520            | 1500    | 1524                     | 2000             | 622      | 925    | 1197            | 1294 Lb                | 1429                          |
| Winter Wheat      | 19.8@  | 31.1  | 35.8  | 27.6   | 39.4            | 54.2    | 37.8                     | 42.2             | 13.5     | 59.4   | 28.2            | 39.2 bu                | 44.3                          |
| Corn              | 51.6   | 72.7  |       | 85.2   | 81.6            | 99.2    | 60.2                     | 106.4            | 0        | 39.7   | 76.6            | 63.6 bu                | 76.4                          |
| Millet            | 1260   | 250   | 1920  | 2309   | 755             | 1500    | 1300                     | 2000             | 829      | 0      | 1017            | 1107 Lb                | 1163                          |
| Rainfall(Apr-Aug) | .200   | 200   |       | 19.34" |                 | 13.44 " |                          | 12.29 "          | 5.59 "   |        | 9.20 "          |                        |                               |
|                   |        |       |       |        |                 |         |                          |                  |          |        |                 |                        |                               |

@ = planted to spring wheat to start the trial.
\* = planted to field peas,
\*\* = planted to chickpeas,
^ = spring wheat replanted into failed winter wheat,
# = failed crop replanted to Proso Millet.

| Rot  | Crop           | 1995      | 1996    | 1997               | 1998                | 1999              | 2000 per Ac | 2001               | 2002                 | 2003     | 2004                | Ave Net Return (99-04 |
|------|----------------|-----------|---------|--------------------|---------------------|-------------------|-------------|--------------------|----------------------|----------|---------------------|-----------------------|
| 1    | W. Wht         | \$209.11  | \$45.13 | \$-23.91           | \$90.58             | \$90.54           | \$70.94     | \$10.04            | \$25.01              | \$116.40 | \$-30.23            | \$47.11               |
|      | Failow         | -52.98    | -63.26  | -58.24             | -57.32              | -59.62            | -61.35      | - <b>57.03</b>     | -72.57               | -66.64   | -56.29              | -62.25                |
|      | Ave Inc.       | 78.06     | -9.07   | -41.08             | 16.63               | 15.46             | \$4.79      | -23.49             | -23.78               | 24.88    | -43.26              | -7.56                 |
| 2a   | W. Wht-a       | 220.29    | 74.19   | 13.46              | 88.12               | 82.9 <del>9</del> | 95.54       | 40.94              | 42.76                | 107.49   | 21.04               | 65.12                 |
|      | Sunf.          | -1.59     | 7.52    |                    | 66.80               | 40.45             | 84.65       | 39.43              | -109.29              | -92.02   | 3.19                | -5.59                 |
|      | Millet.        | -93.12    | 22.39   | 22.39 <sup>.</sup> | -23.20              | -27.28            | 4.37        | -19.28             | -57.29               | -77.58   | -73.57              | -41.77                |
|      | W Wht-b        | 60.44     | 51.60   | 1.71               | 4.98                | 24.74             | 19.17       | 9.61               | -69.50               | 39.15    | -19.59              | 0.59                  |
|      | Corn           | 79.70     | 10.83   | 2.23               | 40.80               | 36.30             | -25.08      | 56.84              | -160.22              | -125.56  | -14.84              | -38.76                |
|      | Fallow         | -43.22    | -46.22  | -60.79             | -46.25              | -47.40            | -52.47      | -62.28             | -58.69               | -52.82   | 44.25               | -52.98                |
|      | Ave Inc.       | 37.08     | 20.05   | 1.91               | 21.87               | 18.30             | 21.03       | 10.87              | -68.70               | -33.55   | -21.33              | -12.23                |
| 3    | W. Wht         | 59.16     | 40.60   | -2.96              | 6.75                | 20.18             | 14.85       | 4.42               | -72.08               | 34.93    | -34.58              | -5.38                 |
|      | Saff           | -16.04    | 71.99   | -100.09            | -11.68              | -23.86            | 17.92       | 51.48              | -84.25               | -46.52   | 23.70               | -10.25                |
|      | Millet         | 7.25      | 31.91   | 20.58              | -29.53              | -27.28            | 11.01       | -19.28             | -1.81                | -77.58   | -45.38              | -26.72                |
|      | Ave Inc.       | 16.79     | 48.17   | -27.49             | -11.49              | -10.32            | 14.59       | 12.20              | -52.71               | -29.72   | -18.75              | -14.11                |
| 4    | W Wht          | 27.21     | 19.03   | -30.72             | -23.25 <sup>-</sup> | 4.41              | - 9.30      | -11.92             | -58.02               | 57.89    | -15.32              | -5.37                 |
| •    | Millet         | 1.64      | 24.56   | 21.78              | -66.08              | -28.73            | 9.27        | -35.90             | 49.06                | -48.44   | 0.25                | -9.08                 |
|      | Ave Inc.       | 14.43     | 21.80   | -4.47              | -44.67              | -12.16            | 01          | -23.91             | -4.48                | 4.72     | -7.53               | -7.22                 |
|      |                |           |         |                    |                     |                   |             |                    |                      |          |                     |                       |
| 5a   | W. Wht         |           |         | -11.71             | -24.96              | -32.84            | 3.34        | -13.59             | -103.59              | 15.17    | 1.12                | -21.73                |
|      | Corn           |           |         | 12.77              | 12.83               | 27.19             | -50.34      | 64.63              | -160.22              | -140.82  | -42.72              | -50.38                |
|      | Sunf           |           |         | 27.07              | 51.67               | 44.59             | 48.17       | -4.34              | -102.05              | - 64.26  | -75.40              | -25.54                |
|      | S. Wht         |           |         | 14.94              | 4.47`               | -10.77            | -18.70      | -27.00             | -77:45               | - 35.88  | -95.02*             | -44.13                |
|      | Ave Inc.       |           |         | 10.77              | 11.00               | 7.04              | -4.40       | 4.92               | -110.82              | -56.44   | -53.00              | -35.44                |
| 6a   | W. Wht-a       |           |         |                    |                     | 51.82             | 74.21       | 36.47              | -67.85               | 11.19    | 11.43               | 19.54                 |
|      | W. Wht-b       |           |         |                    |                     | -30.42            | 6.57        | -12.52             | -103.59              | 18.43    | -26.09              | -24.60                |
|      | Sunfl          |           | •       |                    |                     | 51.61             | 73.12       | 33.46              | -132.12              | -42.33   | -30.69              | -7.82                 |
|      | Pea/Fallo<br>w |           |         |                    |                     | -65.17            | -76.53      | -89.83             | -95.48               | -77.86   | 74.92               | -79.96                |
|      | Ave Inc.       |           |         |                    |                     | 1.96              | 19.34       | -8.10              | -99.76               | -22.64   | -30.06              | -23.21                |
| 9a . | W. Wht-a       |           |         | -12.17             | 77.94               | 79.59             | 64.60       | 38.81              | -72.45               | 32:84    | -70.44*             | 12.15                 |
|      | W. Wht-b       |           |         | · 3.56             | 18.63               | -37:55            | 6.43        | -1.55 <sup>:</sup> | -106.51              | 6.48     | -18.12 <sup>,</sup> | -25.13                |
|      | Saff           |           |         | -94.60             | -3.24               | -5.09             | 35.58       | 57.55              | -107.23              | 24.70    | -32.50              | -4.49                 |
|      | Pea/Fallo      |           |         | -54.77             | -46.25              | -65.17            | -76.53      | <b>-89.83</b>      | -107.36 <sup>·</sup> | -77.86   | 74.92               | -81.94                |
|      | W<br>Ave Inc.  |           |         | -39.50             | 11.77               | <b>-7.06</b> °    | 7.52        | 1.24               | -98.38               | - 3.46   | -48.99              | -24.85                |
| 10   | W. Wht         |           | 32.58   | 43                 | -9.53               | 37.47             | 20.19       | <b>9.91</b>        | -62.61               | 69.60    | -33.43              | 6.85                  |
| -    | Pea            |           | 71      | .43                | 33.07               |                   | -62.54      | 72.63              | -155.62              | -14.54   | 87.41               | -8,23                 |
|      | Millet         |           | 38.06   | 57.07              | -22.75              | -27.28            | 37.73       | -19.28             | -25.53               | -62.01   | -23.64              | -20.00                |
|      | Ave Inc.       |           | 23.30   | 19.02              | .26                 | 11.16             | -1.54       | 21.08              | -81.25               | - 2.31   | 10.11               | -7.12                 |
| 11   | W. Whit        | 53,20     | 56.67   | -24.22             | -2.65               | 23.06             | -1.29       | <b>16.24</b>       | -61.47               | 65.64    | -15.14              | 4.50                  |
|      | Corn           | 72.66     | 1.49    | 7.43               | 8.89                | 15.42             | -34.38      | 73.76              | -160.22              | -62.72   | -3.44               | -28.59                |
|      | Millet         | -77.89    |         | 13.                |                     | -27.85            | 13.60       | -19.28             | 16.85                | -87.98   | -35.30              | -23.32                |
|      | Ave Inc.       | 15.99     | -       | -5.64              | -19.44              | 3.54              | -7.35       | 23.57              | -68.28               | -28.35   | -17.96              | -15.80                |
|      | Total          | (Apr-Aug) | 10.40"  | 19.34"             | 15:00"              | 13.44"            | 8.20"       | 12.29"             | 5.59"                | 5.24"    | 9.20"               |                       |

Table 41. Long-Term Economic Trends of the Wall Rotation Study (1995-2004)

Note: \* = in 2004 Spring wheat in-5a and Winter wheat-a in 9a failed so the crop was replanted to Proso millet.

.

## Appendix 1 Detailed Cultural Practices For Each Rotation in 2004

### Rotation 1 <u>WINTER WHEAT</u> / SUMMER FALLOW

| Cost / A.    | 2004 Winter Wheat                                                                                                                          |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| \$26.29      | -Plant to Jagalene @ 62 lbs or 950,000 seeds/acre. Planted w / JD 610 drill at 12" rows + 6 gal / A liquid 10-34-0. on September 22, 2003. |
| 19.03        | -Top dress 28-0-0 liquid Nitrogen fertilizer on dormant winter wheat at 50#N / Acre rate.<br>- March 16, 2004.                             |
| 15.30<br>.40 | -Harvest 17.7 bu/A winter wheat - July 21, 2004 Test weight - 59.9# / bu (Protein content - 15.0%)                                         |
| 28.50        | -Land Charges 2004                                                                                                                         |
| \$89.52      | Total Cost of Winter Wheat Production                                                                                                      |

## Rotation 1 WINTER WHEAT / <u>SUMMER FALLOW</u>

| Cost / A. | 2004 Summer Fallow                                                                                                                |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|
| \$12.04   | -Spray w / 16 oz Roundup Ultra Max + 5 oz Banvel 4L + liquid Ammonium Sulfate at 50 ml/gal. 8 gpA<br>spray rate. – April 19, 2004 |
| 5.25      | -Work w / 24" under cutter sweeps. – June 15, 2004                                                                                |
| 5.25      | -Work w / 12" sweeps. – July 14, 2004                                                                                             |
| 5.25      | -Work w / 12" sweeps and harrow. – August 19, 2004                                                                                |
| 28.50     | -Land Charges 2004                                                                                                                |

\$56.29 Cost of Summer Fallow

## Rotation 1 SUMMARY 2004

| Crop                   | Income              | Expenses                 | Net Income Per Acre      |
|------------------------|---------------------|--------------------------|--------------------------|
| Winter Wheat<br>Fallow | \$ 59.29<br>\$ 0.00 | - \$ 89.52<br>- \$ 56.29 | = \$-30.23<br>= \$-56.29 |
| 1 41044                | \$ 59.29            | 1                        | = \$-86.52/2 = \$-43.26  |

**<u>\$ - 43.26</u>** Average Income / acre for Rotation 1 - 2004

## \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### Rotation 2a

WINTER WHEAT-A / SUNFLOWER / MILLET / WINTER WHEAT-B / CORN / FALLOW

| Cost / A. | 2004 Winter Wheat-A                                                                                 |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------|--|--|--|
| \$26.29   | -Plant to Jagalene @ 62 lbs or 950,000 seeds/acre. Planted w / JD 610 drill at 12" rows + 6 gal / A |  |  |  |
|           | liquid 10-34-0. on September 22, 2003.                                                              |  |  |  |
| 19.03     | -Top dress 28-0-0 liquid Nitrogen fertilizer on dormant winter wheat at 50#N / Acre rate.           |  |  |  |
|           | - March 16, 2004.                                                                                   |  |  |  |
| 19.30     | -Harvest 34.3 bu/A winter wheat – July 21, 2004 Test weight – 62.0# / bu (Protein content -14.9%)   |  |  |  |
| .40       | -Soil Sampling / acre                                                                               |  |  |  |
| 28.50     | -Land Charges 2004                                                                                  |  |  |  |
|           |                                                                                                     |  |  |  |

\$93.52 Total Cost of Winter Wheat Production

#### **Rotation 2a**

WINTER WHEAT-A / <u>SUNFLOWER</u> / MILLET / WINTER WHEAT -B / CORN / FALLOW

| - | Cost / A. | 2004 Sunflo                                                                                                                                                          | wers                                      |  |  |  |
|---|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|
|   | \$36.26   | -Inject 28-0-0 + 10-34-0 (80#N / 30# P2O5) with injector implement set @ 20" row spacing. –October 21, 2003                                                          |                                           |  |  |  |
|   | 19.30     | -Spray w / Roundup Ultra Max @ 16 oz / acre + 50 ml / ounces per acre. 10 gpA spray rate. – April 19, 2004.                                                          | gal liquid Ammonium Sulfate + Spartan @ 4 |  |  |  |
|   | 26.02     | -Planted to Mycogen 8N421 Nusun oil-type sunflowers @ 18,200 seeds / acre w / JD 7100 planter.<br>Seed box treated w / Lindane for wire worm control. – May 29, 2004 |                                           |  |  |  |
|   | 10.60     | -Spray w / Lorsban 4EC to control Army Cutworms @ 24 oz or 1 ½ pints / 10 gallons of water. – June 3, 2004.                                                          |                                           |  |  |  |
|   | 23.28     | -Harvest 1093# / Acre Sunflowers – October 28, 2004.                                                                                                                 | Test weight – 29.6 # / bushel             |  |  |  |
| • | .40       | -Soil Sampling / acre                                                                                                                                                |                                           |  |  |  |
|   | 28.50     | -Land Charges 2004                                                                                                                                                   |                                           |  |  |  |
| _ | \$144.36  | Total Cost of Sunflower Production                                                                                                                                   |                                           |  |  |  |

#### **Rotation 2a**

WINTER WHEAT-A / SUNFLOWER / MILLET / WINTER WHEAT-B / CORN / FALLOW

| Cost / A.         | 2004 Millet                                                                                                                                                        |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| \$19.21           | -Spray w / 8.3 gallons per acre 28-0-0 plus 16 oz Roundup Ultra Max + 5 oz Banvel 4L / Acre. – May 13, 2004.                                                       |
| 24.88°            | -Planted to Sunup Proso millet w / JD750 drill. w/ starter fertilizer(10-34-0) at 6 gal / Acre. Row spacing was at 10". Seeding rate was at 20#/A. – June 2, 2004. |
| 11.78             | -Spray w / 16 oz Roundup Ultra Max plus ½ ounce per acre of Aim + 1 gallon per acre 28-0-0 to aid in uptake of the chemical. 10 gpA spray rate. – June 3, 2004.    |
| 6.06 <sup>.</sup> | -Spray w / 4 oz Banvel 4L (Kochia and Russian Thistle control) 8 gpA spray rate July 1, 2004                                                                       |
| 14.17             | -Harvest 449 # / acre Millet - September 9, 2004                                                                                                                   |
| .40               | -Soil Sampling / acre                                                                                                                                              |
| 28.50             | -Land Charges 2004                                                                                                                                                 |

\$105.00 Total Cost of Millet Production

#### **Rotation 2a**

WINTER WHEAT-A / SUNFLOWER / MILLET / WINTER WHEAT-B / CORN / FALLOW

2004 Winter Wheat --B

| \$16.54 | -Spray w / 16 oz Roundup + Liquid ammonium sulfate + Penetrate II + 1 ½ pints Lorsban to dessicate millet and to kill aphids that may transfer BYD to the following wheat crop. – September 18, 2003. |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26.29   | -Plant to Jagalene @ 62 pounds / acre plus 10-34-0 @ 6 gpA rate. Planted w / JD 750 drill, 10" row                                                                                                    |
|         | spacing: – September 25, 2003:                                                                                                                                                                        |
| 19.03   | -Top dressed with 28-0-0 @ 50# N / acre March 16, 2004.                                                                                                                                               |
| 17 //   | -Harvest 27.1 bu/A winter wheat $= 1002.2004$ Test weight $= 60.0\%$ / bu (Protein content $= 13.4\%$ )                                                                                               |

17.44 -Harvest 27.1 bu/A winter wheat – July 21, 2004 Test weight – 60.0# / bu (Protein content - 13.4%)
.40 -Soil Sampling / acre

28.50 -Land Charges 2004

Cost / A.

\$108.20 Total Cost of Winter Wheat Production

## **Rotation 2a**

WINTER WHEAT-A / SUNFLOWER / MILLET / WINTER WHEAT-B / CORN / FALLOW

| Cost / A. | 2004 Corn                                                                                                                                         |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| \$36.26   | -Injected 28-0-0 + 10-34-0 (80#N/acre plus 30# P2O5 per acre). 20 inch row spacingOctober 21, 2003                                                |
| 12.04     |                                                                                                                                                   |
| 33.62     |                                                                                                                                                   |
| 12.04     | -Spray  w /  16 oz Roundup Ultra Max + liquid ammonium sulfate @ 50 ml / gal +  5 oz Banvel 4L / Acre.<br>8 gpA spray rate. –June 7, 2004.        |
| 8.84      | - Spray w / 16 oz Roundup Ultra Max + liquid ammonium sulfate @ 50 ml / gal for Pigeon grass, Kochia and Russian Thistle control. – July 1, 2004. |
| 28.66     | -Harvest 70.3 bushels / acre corn – October 28, 2004 Test weight – 56.6 # / bushel                                                                |
| .40       | -Soil Sampling / acre                                                                                                                             |
| 28.50     | -Land Charges 2004                                                                                                                                |

\$160.36 -Total Cost of Corn Production

### **Rotation 2a**

WINTER WHEAT-A / SUNFLOWER / MILLET / WINTER WHEAT-B / CORN / FALLOW

| Cost / A. | 2004 Summer Fallow                                 |  |  |  |  |  |
|-----------|----------------------------------------------------|--|--|--|--|--|
| \$5.25    | -Work w / 24" under cutter sweeps. – June 15, 2004 |  |  |  |  |  |
| 5.25      | -Work w / 12" sweeps and harrow July 14, 2004      |  |  |  |  |  |
| 5.25      | -Work w / 12" sweeps. – August 19, 2004            |  |  |  |  |  |

- 28.50 -Land Charges 2004
- \$44.25 Total Cost of Summer Fallow

#### Rotation 2a SUMMARY 2004

| Crop           | Income     | Expenses            | Net Income Per Acre     |
|----------------|------------|---------------------|-------------------------|
| Winter Wheat-A | \$114.56 - | \$128.92 (93.52+35. | 40) = \$ - 14.36        |
| Sunflower      | \$147.55 - | \$153.21(144.36+8.8 | 35) = \$ - 5.66         |
| Millet         | \$ 31.43 - | \$105.00            | = \$ - 73.57            |
| Winter Wheat-B | \$ 88.61 - | \$108.20            | =\$ - 19.59             |
| Corn           | \$145.52 - | \$160.36            | =\$ - 14.84             |
| Fallow         | \$ 0.00 -  | \$ 0. <u>0</u> 0*   | =\$ *                   |
|                | \$527.67 - | \$655.69            | =\$-128.02/6 = \$-21.33 |

\*The expense of the fallow (\$44.25 ) was split 80% to the Winter Wheat-A (\$35.40 ) and 20% to the Sunflowers (\$8.85).

**<u>\$ - 21.33</u>** Average Income / acre for Rotation 2a – 2004

\*\*\*\*\*

### WINTER WHEAT / SAFFLOWER / MILLET

| Cost / A. | 2004 Winter Wheat                                                                                                                                                                                                |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| \$16.54   | -Spray w / 16 oz Roundup + Liquid ammonium sulfate + Penetrate II + Lorsban @ 1 ½ pints per acre to dessicate millet and to kill aphids that may transfer BYD to the following wheat crop. – September 18, 2003. |
| 26.29     | -Plant to Jagalene @ 62 pounds / acre plus 10-34-0 @ 6 gpA rate. Planted w / JD 750 drill, 10" row spacing. – September 25, 2003.                                                                                |
| 26.75     | -Top dressed with 28-0-0 @ 75# N / acre March 16, 2004.                                                                                                                                                          |
| 16.68     | -Harvest 24.2 bu/A winter wheat - July 21, 2004 Test weight - 57.5# / bu (Protein content - 14.7%)                                                                                                               |
| .40       | -Soil Sampling / acre                                                                                                                                                                                            |
| 28.50     | -Land Charges 2004                                                                                                                                                                                               |

\$115.16 Total Cost of Winter Wheat Production

#### **Rotation 3**

#### WINTER WHEAT / SAFFLOWER / MILLET

| Cos | st / | A. |
|-----|------|----|
|     |      |    |

- 2004 Safflower
- \$8.84 -Spray w / 16 oz Roundup Ultra Max + 50 ml / gal ammonium sulfate. 8 gpA spray rate. October 15, 2003.
- 30.03 -Injected 28-0-0 plus +10-34-0 (60#N/acre + 30# P2O5 / acre) October 21, 2003.
- 13.27 -Apply Treflan granules @ 1.3# ai / acre. Granules not incorporated. October 21, 2003.
- 19.30 -Spray w / Roundup Ultra Max @ 16 oz / acre + liquid ammonium sulfate @ 50 ml / gallon + Spartan @ 4 oz / acre. 10 gpA spray rate. April 19, 2004.
- 22.05 -Plant to Finch w / JD 7100 planter at 210,000 seeds/acre (25 lbs/acre) Seed box treated w / Lindane for wire worm control. May 29, 2004.
- 16.60 -Harvest 957 # / Acre Safflowers October 5, 2004, Test weight 46.4 # / bushel
- .40 -Soil Sampling / acre
- 28.50 -Land Charges 2004
- \$138.99 Total Cost of Safflower Production

#### **Rotation 3**<sup>°</sup>

WINTER WHEAT / SAFFLOWER / MILLET

| Cost / A. | 2004 Millet                                                                                          |
|-----------|------------------------------------------------------------------------------------------------------|
| \$19.21   | -Spray w / 8.3 gallons per acre 28-0-0 plus 16 oz Roundup Ultra Max + 5 oz Banvel 4L / Acre + liquid |
|           | ammonium sulfate @ 50 ml/gal. – May 13, 2004                                                         |
| 24.88     |                                                                                                      |
|           | was at 10". Seeding rate was at 20#/A. – June 2, 2004                                                |
| 11.78     |                                                                                                      |
|           | uptake of the chemical. 10 gpA spray rate. – June 3, 2004                                            |
| 6.06      | -Spray w / 4 oz Banvel 4L (Kochia and Russian Thistle control) 8 gpA spray rate. – July 1, 2004      |
| 15.24     | -Harvest 867# or 17.3 bushels / acre Millet – September 9, 2004                                      |
| .40       | -Soil Sampling / acre                                                                                |
| 28.50     | -Land Charges 2004                                                                                   |
|           |                                                                                                      |

\$106.07 Total Cost of Millet Production

### Rotation 3 SUMMARY 2004

| Crop         | Income      | Expenses     | Net Income Per Acre     |
|--------------|-------------|--------------|-------------------------|
| Winter Wheat | \$ 80.58 -  | \$115.16     | = \$-34.58              |
| Safflower    | \$162.69 -  | · \$138.99 ÷ | = \$23.70               |
| Millet       | _\$ 60.69 - | \$106.07 =   | = \$-45.38              |
|              | \$303.96 -  | \$360.22 =   | = \$-56.26/3 = \$-18.75 |

**<u>\$-18.75</u>** Average Income / acre for Rotation 3 - 2004

\*\*\*\*\*\*

#### **Rotation 4**

### WINTER WHEAT / MILLET

| Cost / A. | 2004 Winter Wheat                                                                                  |
|-----------|----------------------------------------------------------------------------------------------------|
| \$16.54   | -Spray w / 16 oz Roundup + Liquid ammonium sulfate + Penetrate II + 1 ½ pints Lorsban to dessicate |
|           | millet and to kill aphids that may transfer BYD to the following wheat crop. – September 18, 2003. |
| 26.29     | -Plant to Jagalene @ 62 pounds / acre plus 10-34-0 @ 6 gpA rate. Planted w / JD 750 drill, 10" row |
|           | spacing. – September 25, 2003.                                                                     |
| 19.03     | -Top dressed with 28-0-0 @ 50# N / acre March 16, 2004.                                            |
| 17.90     | -Harvest 28.9 bu/A winter wheat – July 21, 2004 Test weight – 60.3# / bu (Protein content – 12.6%) |
| .40       | -Soil Sampling / acre                                                                              |
| 28.50     | -Land Charges 2004                                                                                 |
|           |                                                                                                    |

\$108.66 Total Cost of Winter Wheat Production

#### Rotation 4 WINTER WHEAT / <u>MILLET</u>

# Cost / A.

2004 Millet

- \$8.84 -Spray w / 16 oz per acre Roundup Ultra Max + 50 ml / gal liquid Ammonium Sulfate. 8 gpA spray rate. October 15, 2003.
- 12.04 -Spray w / Roundup Ultra Max @ 16 oz / acre + liquid Ammonium Sulfate @ 50 ml / gal + 5 oz Banvel 4L / acre. 8 gpA spray rate. – April 19, 2004.
- 19.21 -Spray w / 8.3 gallons per acre 28-0-0 plus 16 oz Roundup Ultra Max + 5 oz Banvel 4L / Acre + liquid ammonium sulfate @ 50 ml/gal. May 13, 2004
- 24.88 -Planted to Sunup Proso millet w / JD750 drill. w/ starter fertilizer(10-34-0) at 6 gal / Acre. Row spacing was at 10". Seeding rate was at 20#/A. June 2, 2004
- 11.78 -Spray w / 16 oz Roundup Ultra Max plus ½ ounce per acre of Aim + 1 gallon per acre 28-0-0 to aid in uptake of the chemical. 10 gpA spray rate. June 3, 2004
- 6.06 -Spray w / 4 oz Banvel 4L (Kochia and Russian Thistle control) 8 gpA spray rate. July 1, 2004
- 20.20 -Harvest 1888# or 37.7 bushels / acre Millet September 9, 2004
- .40 -Soil Sampling / acre
- 28.50 -Land Charges 2004

\$131.91 Total Cost of Millet Production

## **Rotation 4 SUMMARY 2004**

| Crop         | Income               |   | Expenses             | 1   | Net Income Per Acre     |
|--------------|----------------------|---|----------------------|-----|-------------------------|
| Winter Wheat | \$ 93.34<br>\$122.46 | - | \$108.66<br>\$121.01 | . = | \$-15.32<br>\$-0.25     |
| Millet       | <u>\$132.16</u>      | - | <u>\$131.91</u>      | =.  | <u>\$ 0.25</u>          |
|              | \$225.50             | - | \$240.57             | =   | \$-15.07/ 2 = \$ - 7.53 |

**<u>\$-7.53</u>** Average Income / acre for Rotation 4 - 2004

#### \*\*\*\*\*\*

#### Rotation 5a

WINTER WHEAT / CORN / SUNFLOWER / SPRING WHEAT to Millet

| Cost / A.          | 2004 Winter Wheat                                                                                                                 |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| \$26.29            | -Plant to Jagalene @ 62 pounds / acre plus 10-34-0 @ 6 gpA rate. Planted w / JD 750 drill, 10" row spacing. – September 25, 2003. |
| 8.84               | -Sprayed w / Roundup Ultra Max @ 16 oz / acre + liquid ammonium sulfate @ 50 ml / gal. 8 gpA spray<br>rate. – September 29, 2004  |
| 26.75 <sup>.</sup> | -Top dressed with 28-0-0 @ 75# N / acre March 16, 2004.                                                                           |
|                    | -Harvest 34.1 bu/A winter wheat - July 21, 2004 Test weight - 60.9# / bu (Protein content - 13.3%)                                |
| .40                | -Soil Sampling / acre                                                                                                             |
| 28.50              | -Land Charges 2004                                                                                                                |

\$110.04 Total Cost of Winter Wheat Production

### Rotation 5a

WINTER WHEAT / CORN / SUNFLOWER / SPRING WHEAT to Millet

| Cost/A.  | 2004: Corn                                                                                                                                                                                                   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| \$36.26  | -Injected 28-0-0 + 10-34-0 (80#N/acre plus 30# P2O5 per acre). 20 inch row spacingOctober 21, 2003                                                                                                           |
| 12.04    | -Spray w / 16 oz Roundup Ultra Max + liquid ammonium sulfate @ 50 ml / gal + 5 oz Banvel 4L / Acre.<br>8 gpA spray rate. – April 19, 2004.                                                                   |
| 33.62    | -Plant to Dekalb DKC 44-46 RR/YG @ 14,200 seeds / acre. Planted w / JD 7100 Corn planter. 20 inch row spacing. 16 inch spacing between seed. Seed box treated with lindane for wireworm control May 6, 2004. |
| 12.04    | -Śpray w / 16 oz Roundup Ultra Max + liquid ammonium sulfate @ 50 ml / gal + 5 oz Banvel 4L /<br>Acre. 8 gpA spray rate. –June 7, 2004.                                                                      |
| 8.84     |                                                                                                                                                                                                              |
| 24.66    | -Harvest 54.9 bushels / acre corn – October 28, 2004 Test weight – 56.5 # / bushel                                                                                                                           |
| .40      | -Soil Sampling / acre                                                                                                                                                                                        |
| 28.50    | -Land Charges 2004                                                                                                                                                                                           |
| \$156.36 | Total Cost of Corn Production                                                                                                                                                                                |

#### **Rotation 5a**

## WINTER WHEAT / CORN / SUNFLOWER / SPRING WHEAT to millet

| Cost / A. | 2004 Sunflower                                                                                                                                                       |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| \$36.26   | -Inject 28-0-0 + 10-34-0 (80#N / 30# P2O5) with injector implement set @ 20" row spacing. –October 21, 2003.                                                         |
| 19.30     | -Spray w / Roundup Ultra Max @ 16 oz / acre + 50 ml / gal liquid Ammonium Sulfate + Spartan @ 4<br>ounces per acre. 10 gpA spray rate. – April 19, 2004              |
| 26.02     | -Planted to Mycogen 8N421 Nusun oil-type sunflowers @ 18,200 seeds / acre w / JD 7100 planter.<br>Seed box treated w / Lindane for wire worm control. – May 29, 2004 |
| 10.60     | -Spray w / Lorsban 4EC to control Army Cutworms. 24 oz or 1 ½ pints / 10 gallons of water. – June 3, 2004                                                            |
| 15.74     | -Harvest 455# / Acre Sunflowers – October 28, 2004. Test weight – 31.1# / bushel                                                                                     |
| .40       | -Soil Sampling / acre                                                                                                                                                |
| 28.50     | -Land Charges 2004                                                                                                                                                   |
|           |                                                                                                                                                                      |

\$136.82 Total Cost of Sunflower Production

## **Rotation 5a**

WINTER WHEAT / CORN / SUNFLOWER / SPRING WHEAT to Millet

| Cost / A. | 2004 Spring Wheat to Millet                                                                                                                                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| \$8.84    | -Spray w / 16 oz per acre Roundup Ultra Max + 50 mi / gal liquid Ammonium Sulfate. 8 gpA spray rate. –<br>October 15, 2003.                                                                                   |
| 29.38     | - Plant to Russ spring wheat @ 108 pounds / acre plus 10-34-0 @ 6 gpA rate. Seed treated w / Vitavax / Thiram / RTU @ 14 ml / 10 pounds of seed. Planted w / JD 750 drill, 10" row spacing. – March 23, 2004. |
| 12.68     | -Spray w / Roundup Ultra Max @ 16 oz / acre + liquid Ammonium Sulfate @ 50 ml / gal + 6 oz Banvel 4L / acre. 8 gpA spray rate. – May 28, 2004.                                                                |
| 24.88     | -Planted to Sunup proso millet w / JD750 drill. w/ starter fertilizer(10-34-0) at 6 gal / Acre. Row spacing was at 10". Seeding rate was at 20#/A. – June 2, 2004                                             |
| 6.06      | -Spray w / 4 oz Banvel 4L (Kochia and Russian Thistle control) 8 gpA spray rate. – July 1, 2004                                                                                                               |
| 14.10     | -Harvest 426 # / acre Millet – September 9, 2004                                                                                                                                                              |
| .40       | -Soil Sampling / acre                                                                                                                                                                                         |
| 28.50     | -Land Charges 2004                                                                                                                                                                                            |

\$124.84 Total Cost of Spring Wheat to Millet Production

#### Rotation 5a SUMMARY 2004

| Crop                                                        | Income                                        | Expenses Net Income Per Acre                                                               |  |
|-------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------|--|
| Winter Wheat<br>Corn<br>Sunflower<br>Spring Wheat to Millet | \$113.64 -<br>\$ 61.42 -<br><u>\$ 29.82 -</u> | \$110.04 = \$ 1.12<br>\$156.36 = \$ -42.72<br>\$136.82 = \$ -75.40<br>\$124.84 = \$ -95.02 |  |
|                                                             | \$316.04 -                                    | \$528.06 = \$-212.02 / 4 = \$ - 53.00                                                      |  |

**<u>\$-53.00</u>** Average Income / acre for Rotation 5a - 2004

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

## **Rotation 6a**

## WINTER WHEAT-B / SUNFLOWER / PEA-FALLOW / WINTER WHEAT-A

| Cost / A.          | 2004 Winter Wheat -B                                                                                                              |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| \$26.29            | -Plant to Jagalene @ 62 pounds / acre plus 10-34-0 @ 6 gpA rate. Planted w / JD 750 drill, 10" row spacing. – September 25, 2003. |
| 8.84               | -Sprayed w / Roundup Ultra Max @ 16 oz / acre + liquid ammonium sulfate @ 50 ml / gal. 8 gpA spray rate September 29, 2003.       |
| 26.75              | -Top dressed with 28-0-0 @ 75# N / acre March 16, 2004.                                                                           |
| 16.82 <sup>;</sup> | -Harvest 24.7 bu/A winter wheat - July 21, 2004 Test weight - 59.0# / bu (Protein content - 14.1%)                                |
| .40                | -Soil Sampling / acre                                                                                                             |
| 28.50              | -Land Charges 2004                                                                                                                |
| \$107.60           | Total Cost of Winter Wheat –B Production                                                                                          |

## **Rotation 6a**

## WINTER WHEAT-B / SUNFLOWER / PEA-FALLOW / WINTER WHEAT-A

| LOST / A.    | 2004 Sumower                                                                                                                                                         |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| \$36.26      | -Inject 28-0-0 + 10-34-0 (80#N / 30# P2O5) with injector implement set @ 20" row spacingOctober 21, 2003                                                             |
| 19.30        | -Spray w / Roundup Ultra Max @ 16 oz / acre + 50 ml / gal liquid Ammonium Sulfate + Spartan @ 4<br>ounces per acre. 10 gpA spray rate. – April 19, 2004              |
| 26.02        | -Planted to Mycogen 8N421 Nusun oil-type sunflowers @ 18,200 seeds / acre w / JD 7100 planter.<br>Seed box treated w / Lindane for wire worm control. – May 29, 2004 |
| 10.60        | -Spray w / Lorsban 4EC to control Army Cutworms. 24 oz or 1 ½ pints / 10 gallons of water. – June 3, 2004                                                            |
| 20.04<br>.40 | -Harvest 818# / Acre Sunflowers – October 28, 2004. Test weight – 30.5 # / bushel<br>-Soil Sampling / acre                                                           |
| 28.50        | -Land Charges 2004                                                                                                                                                   |
| \$141.12     | Total Cost of Sunflower Production                                                                                                                                   |

#### Rotation 6a

WINTER WHEAT-B / SUNFLOWER / PEA-FALLOW / WINTER WHEAT-A

| Cost / A. | 2004 Pea-Fallow                                                                                                                            |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|
| \$8.84    | -Spray w / 16 oz Roundup Ultra Max + 50 ml / gal liquid Ammonium Sulfate. 8 gpA spray rate. –<br>October 15, 2003.                         |
| 24.90     | -Plant to Arvika peas @ 300,000 seeds per acre (90#/A) + 5 # / acre granular innoculum w / JD 750 drill. – March 23, 2004.                 |
| 12.68     | -Spray to terminate peas w / 16 oz Roundup Ultra + 50 ml / gal liquid ammonium sulfate + 6 oz Banvel 4L. 8 gpA spray rate. –June 18, 2004. |
| 28.50     | -Land Charges 2004                                                                                                                         |
| \$74.92   | Total Cost of Pea-Fallow                                                                                                                   |

#### **Rotation 6a**

WINTER WHEAT-B / SUNFLOWER / PEA-FALLOW / WINTER WHEAT-A

| Cost / A. | 2004 Winter Wheat –A                                                                                                              |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|
| 26.29     | -Plant to Jagalene @ 62 pounds / acre plus 10-34-0 @ 6 gpA rate. Planted w / JD 750 drill, 10" row spacing. – September 25, 2003. |
| 8.84      | -Sprayed w / Roundup Ultra Max @ 16 oz / acre + liquid ammonium sulfate @ 50 ml / gal. 8 gpA spray rate. – September 29, 2003.    |
| 19.03     | -Top dressed with 28-0-0 @ 50# N / acre March 16, 2004.                                                                           |
| 19.36     | -Harvest 34.5 bu/A winter wheat - July 21, 2004 Test weight - 57.2# / bu (Protein content - 14.1%)                                |
| .40       | -Soil Sampling / acre                                                                                                             |
| 28.50     | -Land Charges 2004                                                                                                                |

\$102.42 Total Cost of Winter Wheat-A Production

#### Rotation 6a SUMMARY 2004

| Сгор                                                          | Income                  | Expenses                                                                                | Net Income Per Acre                   |
|---------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|
| Winter Wheat -B<br>Sunflower<br>Pea-Fallow<br>Winter Wheat -A | \$110.43 -<br>\$ 0.00 - | \$122.58 (\$107.60+ \$14.98 )<br>\$141.12<br>\$ 0:00*<br>\$162.36 (\$102.42 + \$59.94 ) | =\$-41.07<br>= \$-30.69<br>= \$ 0.00* |

\*The expense of the pea-fallow (\$74.92) was split 80% (\$59.94) to the Winter Wheat-A and 20% (\$14.98) to the Winter Wheat-B.

\$ -30.06 Average Income / acre for Rotation 6a - 2004

\*\*\*\*\*\*

#### Rotation #8

The plots from rotation #8 were added to Rotations 5, 6 and 9 to make longer 4 year rotations in 1998.

\*\*\*\*\*\*

#### **Rotation 9a**

WINTER WHEAT -B / SAFFLOWER / PEA-FALLOW / WINTER WHEAT-A to Millet

| Cost / A. | 2004 Winter Wheat –B                                                                                                              |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|
| \$26.29   | -Plant to Jagalene @ 62 pounds / acre plus 10-34-0 @ 6 gpA rate. Planted w / JD 750 drill, 10" row spacing. – September 25, 2003. |
| 8.84      | -Spray w / 16 oz Roundup Ultra Max + 50 ml / gal ammonium sulfate. 8 gpA spray rate. – September 29, 2003.                        |
| 26.75     | -Top dressed with 28-0-0 @ 75# N / acre March 16, 2004.                                                                           |
| 17.54     | -Harvest 27.5 bu/A winter wheat - July 21, 2004 Test weight - 60.2# / bu (Protein content -13.7%)                                 |
| .40       | -Soil Sampling / acre                                                                                                             |
| 28.50     | -Land Charges 2004                                                                                                                |
|           |                                                                                                                                   |
| \$108.32  | Total Cost of Winter Wheat–B to Millet Production                                                                                 |

Rotation 9a

WINTER WHEAT-B / SAFFLOWER / PEA-FALLOW / WINTER WHEAT-A to Millet

| Cost / A. | 2004 Safflower                                                                                                                                                      |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| \$8.84    | -Spray w / 16 oz Roundup Ultra Max + 50 ml / gal ammonium sulfate. 8 gpA spray rate: – October 15, 2003.                                                            |
| 30.03     | -Injected 28-0-0 plus +10-34-0 (60#N/acre + 30# P2O5 / acre) - October 21, 2003.                                                                                    |
| 13.27     | -Apply Treflan granules @ 1.3# ai / acre. Granules not incorporated. – October 21, 2003.                                                                            |
| 19.30     | -Spray w / Roundup Ultra Max @ 16 oz / acre + liquid ammonium sulfate @ 50 ml / gallon + Spartan @ 4 oz / acre. 10 gpA spray rate.                                  |
| 22.05     | -Plant to Finch w / JD 7100 planter at 210,000 seeds/acre (25 lbs/acre) Seed box treated w / Lindane for wire worm control. – May 29, 2004.                         |
| 15.00     | -Harvest 617 # / Acre Safflowers – October 5, 2004 Test weight – 45.7 # / bushel                                                                                    |
| .40       | -Soil Sampling / acre                                                                                                                                               |
| 28.50     |                                                                                                                                                                     |
|           |                                                                                                                                                                     |
| \$137.39  | Total Cost of Safflower Production                                                                                                                                  |
|           | Detetion 0a                                                                                                                                                         |
|           |                                                                                                                                                                     |
|           | WINTER WHEAT-B / SAFFLOWER / <u>PEA-FALLOW</u> / WINTER WHEAT-A to Millet                                                                                           |
| Cost / A. | 2004 Pea-Fallow                                                                                                                                                     |
| ,         |                                                                                                                                                                     |
| \$8.84    | -Spray w / 16 oz Roundup Ultra Max + 50 ml / gal liquid Ammonium Sulfate. 8 gpA spray rate. –<br>October 15, 2003.                                                  |
| 24.90     | -Plant to Arvika peas @ 300,000 seeds per acre (90#/A) + 5 # / acre granular inoculums w / JD 750                                                                   |
| 21.00     | drill. – March 23, 2004.                                                                                                                                            |
| 12.68     | -Spray to terminate peas w / 16 oz Roundup Ultra + 50 ml / gal liquid ammonium sulfate + 6 oz Banvel                                                                |
|           | 4L. 8 gpA spray rate. –June 18, 2004.                                                                                                                               |
| 28.50     | -Land Charges 2004                                                                                                                                                  |
| \$74.92   | Total Cost of Pea-Fallow                                                                                                                                            |
| φ14.32    |                                                                                                                                                                     |
|           |                                                                                                                                                                     |
|           | Rotation 9a                                                                                                                                                         |
|           | WINTER WHEAT-B / SAFFLOWER / PEA-FALLOW / <u>WINTER WHEAT-A to Millet</u>                                                                                           |
| Cost / A. | 2004 Winter Wheat-A to Millet                                                                                                                                       |
| CUSITA.   |                                                                                                                                                                     |
| \$26.29   | -Plant to Jagalene @ 62 lbs or 950,000 seeds / acre. Planted w/JD750 drill at 10" rows + 6 gal/A liquid 10-34-0. on September 25, 2003.                             |
| 8.84      | •                                                                                                                                                                   |
| 0.01      | September 29, 2003.                                                                                                                                                 |
| 19.03     |                                                                                                                                                                     |
|           | - March 16, 2004.                                                                                                                                                   |
| 12.68     | -Spray w / 16 oz Roundup Ultra Max + 50 ml / gal ammonium sulfate + 6 oz Banvel 4L. 8 gpA spray                                                                     |
|           | rate. – May 28, 2004.                                                                                                                                               |
| 24.88     | -Planted to Sunup Proso millet w / JD750 drill. w/ starter fertilizer(10-34-0) at 6 gal / Acre. Row spacing                                                         |
|           | was at 10". Seeding rate was at 20#/A. – June 2, 2004                                                                                                               |
| 6.06      | -Spray w / 4 oz Banvel 4L (Kochia and Russian Thistle control) 8 gpA spray rate. – July 1, 2004<br>-Harvest 1028# or 20.5 husbels / acre Millet – September 9, 2004 |
| 15/2      | -Harvest III / A# OF /U 5 DUSDEIS / ACTE MILLET - SEDTEMDEF M 2004                                                                                                  |

- acre millet September
- 40 -Soil Sampling / acre 28.50 -Land Charges 2004
- \$142.40 Total Cost of Winter Wheat-A to Millet Production

#### **Rotation 9a SUMMARY 2004**

| Crop                                                                  | Income     | Expenses                                             | Net Income Per Acre                      |
|-----------------------------------------------------------------------|------------|------------------------------------------------------|------------------------------------------|
| Winter Wheat-B<br>Safflower<br>Pea-Fallow<br>Winter Wheat-A to Millet |            | \$123.30 (\$108.32 + \$14.98)<br>\$137.39<br>\$ 0.00 | = \$ -33.10<br>= \$ -32.50<br>= \$ 0.00* |
|                                                                       | \$267.05 - | \$463.03                                             | = \$ -195.98 / 4 = \$-48.99              |

\*The expense of the pea-fallow (\$74.92) was split 80% (\$59.94) to the Winter Wheat-A and 20% (\$14.98) to the Winter Wheat-B.

\$ -48.99 Average Income / acre for Rotation 9a - 2004

#### \*\*\*\*\*\*\*\*\*\*\*\*\*

**Rotation 10** 

WINTER WHEAT / CHICKPEAS / MILLET

| Cost / A. |
|-----------|
|-----------|

2004 Winter Wheat

- \$16.54 -Spray w / 16 oz Roundup + Liquid ammonium sulfate + Penetrate II + 1 ½ pints Lorsban to desiccate millet and to kill aphids that may transfer BYD to the following wheat crop. September 18, 2003.
  26.29 -Plant to Jagalene @ 62 pounds / acre plus 10-34-0 @ 6 gpA rate. Planted w / JD 750 drill, 10" row
- spacing. September 25, 2003.
  - 19.03 -Top dressed with 28-0-0 @ 50# N / acre. March 16, 2004.
- 16.24 -Harvest 22.5 bu/A winter wheat July 21, 2004 Test weight 59.7# / bu (Protein content –13.5%)

.40 -Soil Sampling / acre

- 28.50 -Land Charges 2004
- \$107.00 Total Cost of Winter Wheat Production

#### Rotation 10

WINTER WHEAT / CHICKPEAS / MILLET

| Cost / A. | 2004 Chick Peas                                                                                                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| \$8.84    | -Spray w / 16 oz Roundup Ultra Max + 50 ml / gal liquid ammonium sulfate / acre. 8 gpA spray rate. –<br>October 15, 2003.                                                                     |
| 95.62     | -Plant to Sierra Chickpeas @ 130,600 seeds per acre (152 # / acre) + chickpea peat-based inoculums @ 5# / acre. Seed treated w / LSP / Apron / Maxim. Planted w/ JD 750 drill April 14, 2004. |
| 19.30     | -Spray w / 16 oz Roundup Ultra Max + 50 ml / gal liquid ammonium sulfate / acre + Spartan @ 4 oz/acre. 10 gpA spray rate. – April 19, 2004.                                                   |
| 15.10     | -Harvest 976# or 16.2 bushels / Acre Sierra chickpeas - August 25, 2004. Test weight - 59.3 # / bushel                                                                                        |
| 28.50     | -Land Charges 2004                                                                                                                                                                            |

\$167.36 Total Cost of Chickpea Production

#### Rotation 10 WINTER WHEAT / CHICKPEAS / <u>MILLET</u>

| Cost / A. |                                                                                                                                                                     | 2004                                                                                                                                                           | Millet         |        |                          |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|--------------------------|--|
| \$19:21   | -Spray w / 8.3 gallons per acre 28-0-0 plus 16 oz Roundup Ultra Max + 5 oz Banvel 4L – May 13, 2004                                                                 |                                                                                                                                                                |                |        |                          |  |
| 24.88     | -Planted to Sunup Proso millet w / JD750 drill. W / starter fertilizer (10-34-0) at 6 gal / Acre. Row spacing was at 10". Seeding rate was at 20#/A. – June 2, 2004 |                                                                                                                                                                |                |        |                          |  |
| 11.78     | -Spray w / 16 oz Round                                                                                                                                              | -Spray w / 16 oz Roundup Ultra Max plus ½ ounce per acre of Aim + 1 gallon per acre 28-0-0 to aid in uptake of the chemical. 10 gpA spray rate. – June 3, 2004 |                |        |                          |  |
| 6.06      |                                                                                                                                                                     | 4L (Kochia and Russian This                                                                                                                                    |                | na spi | rav rate. – Julv 1. 2004 |  |
| 16.60     |                                                                                                                                                                     | 9 bushels / acre Millet - Ser                                                                                                                                  |                |        |                          |  |
| .40       |                                                                                                                                                                     | •                                                                                                                                                              |                |        |                          |  |
| 28.50     |                                                                                                                                                                     |                                                                                                                                                                |                |        |                          |  |
| \$107.43  | Total Cost of Millet Proc                                                                                                                                           | luction                                                                                                                                                        |                |        |                          |  |
|           |                                                                                                                                                                     | Rotation 10 SUMM                                                                                                                                               | ARY 2004       |        |                          |  |
|           | Crop                                                                                                                                                                | Income                                                                                                                                                         | Expenses       | Net    | Income Per Acre          |  |
|           | Winter Wheat                                                                                                                                                        | \$ 73.57 -                                                                                                                                                     | \$107.00       | II .   | \$-33.43                 |  |
|           | Chickpeas                                                                                                                                                           | \$254.77 -                                                                                                                                                     | \$167.36       | =      | \$ 87.41                 |  |
|           | Millet                                                                                                                                                              | \$ 83.79 -                                                                                                                                                     | \$107.43       | · =    | \$-23.64                 |  |
|           |                                                                                                                                                                     | \$412.13 -                                                                                                                                                     | \$381.79       | =      | \$ 30.34 / 3 = \$10.11   |  |
|           | <u>\$10.11</u>                                                                                                                                                      | Average Income / acr                                                                                                                                           | e for Rotation | า 10 - | 2004                     |  |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### **Rotation 11**

WINTER WHEAT / CORN / MILLET

| Cost / | Ά. |
|--------|----|
|        |    |

2004 Winter Wheat

- \$16.54 -Spray w / 16 oz Roundup + Liquid ammonium sulfate + Penetrate II + 1 ½ pints Lorsban to desiccate millet and to kill aphids that may transfer BYD to the following wheat crop. September 18, 2003.
  26.29 -Plant to Jagalene @ 62 pounds / acre plus 10-34-0 @ 6 gpA rate. Planted w / JD 750 drill, 10" row
  - 20.29 -Plant to Jagalene @ 62 pounds / acre plus 10-34-0 @ 6 gpA rate. Planted w / JD / 50 drill, 10" row spacing. September 25, 2003.
  - 19.03 -Top dressed with 28-0-0 @ 50# N / acre. March 16, 2004.
  - 17.72 -Harvest 28.2 bu/A winter wheat July 21, 2004 Test weight 58.6# / bu (Protein content –14.2%) .40 -Soil Sampling / acre

28.50. -Land Charges 2004

\$108.48 Total Cost of Winter Wheat Production

## Rotation 11 WINTER WHEAT / <u>CORN</u> / MILLET

| Cost / A. | 2004 Corn                                                                                                                                         |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| \$36.26   | -Injected 28-0-0 + 10-34-0 (80#N/acre plus 30# P2O5 per acre). 20 inch row spacingOctober 21, 2003                                                |
| 12.04     | -Spray w / 16 oz Roundup Ultra Max + liquid ammonium sulfate @ 50 ml / gal + 5 oz Banvel 4L / Acre.<br>8 gpA spray rate. – April 19, 2004.        |
| 33.62     |                                                                                                                                                   |
| 12.04     | -Spray w / 16 oz Roundup Ultra Max + liquid ammonium sulfate @ 50 ml / gal + 5 oz Banvel 4L / Acre.<br>8 gpA spray rate. –June 7, 2004.           |
| 8.84      | - Spray w / 16 oz Roundup Ultra Max + liquid ammonium sulfate @ 50 ml / gal for Pigeon grass, Kochia and Russian Thistle control. – July 1, 2004. |
| 30.30     | -Harvest 76.6 bushels / acre corn – October 28, 2004 Test weight – 55.8 # / bushel                                                                |
| .40       | -Soil Sampling / acre                                                                                                                             |
| 28.50     | -Land Charges 2004                                                                                                                                |

\$162.00 Total Cost of Corn Production

## Rotation 11

WINTER WHEAT / CORN / MILLET

| Cost / A. | 2004 Millet                                                                                                                                       |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                                   |
| \$19.21   | -Spray w / 8.3 gallons per acre 28-0-0 plus 16 oz Roundup Ultra Max + 5 oz Banvel 4L / Acre + liquid ammonium sulfate @ 50 ml/gal. – May 13, 2004 |
| 04.00     |                                                                                                                                                   |
| 24.88     |                                                                                                                                                   |
|           | was at 10". Seeding rate was at 20#/A. – June 2, 2004                                                                                             |
| 11.78     | -Spray w / 16 oz Roundup Ultra Max plus ½ ounce per acre of Aim + 1 gallon per acre 28-0-0 to aid in                                              |
|           | uptake of the chemical. 10 gpA spray rate. – June 3, 2004                                                                                         |
| 6.06      |                                                                                                                                                   |
| 15.66     | -Harvest 1017# or 20.3 bushels / acre Millet – September 9, 2004                                                                                  |
| .40       | -Soil Sampling / acre                                                                                                                             |
| 28 50     | -Land Charges 2004                                                                                                                                |
| 20.00     |                                                                                                                                                   |

\$106.49 Total Cost of Millet Production

### Rotation 11 SUMMARY 2004

| Crop         | Income   |   | Expenses | ; | Net Income Per Acre               |
|--------------|----------|---|----------|---|-----------------------------------|
|              |          |   |          |   |                                   |
| Winter Wheat | \$ 93.34 | - | \$108.48 | Ξ | \$ -15.14                         |
| Corn         | \$158.56 | - | \$162.00 | = | \$ - 3.44                         |
| Millet       | \$ 71.19 | - | \$106.49 | = | <u>\$ -35.30</u>                  |
|              | \$323.09 | - | \$376.97 | = | <b>\$ -53.88 / 3 = \$ - 17.96</b> |

**<u>\$-17.96</u>** Average Income / acre for Rotation 11 - 2004

\*\*\*\*\*

## **COST OF INPUTS – 2004**

#### SEED

| Jagalene Winter Wheat\$ 7.00 / Bu                      |
|--------------------------------------------------------|
| Russ Spring Wheat \$ 5.00 / Bu                         |
| Arvika Forage Peas\$ 9.00/Bu                           |
| (\$.15 per pound) (60 lbs)                             |
| Sierra Kabuli Chick Peas\$55.00 / 100 lbs              |
| (Note: the seed is treated w/ LSP / Apron / Maxim)     |
| Finch\$23.00 / 50 lbs                                  |
| Dekalb DKC 44-46 RR/YG Corn\$130 / 80,000 kernel bag   |
| Mycogen 8N421 – Size 3. \$170. 00 / 200,000 kernel bag |
| Sunup Millet\$ .29 / lb                                |
| I · · · · ·                                            |

### **HERBICIDES**

| TIER DIVIDEO              |                                  |  |  |
|---------------------------|----------------------------------|--|--|
| (From Warne Chemical-Nove | ember 19, 2003)                  |  |  |
| Bronate (Brox M)          | \$47.40/gal                      |  |  |
| Roundup Ultra Max         | . \$38.50/gal                    |  |  |
| Atrazine 90df             | . \$ 2.25/lb                     |  |  |
| Harmony GT                | .\$11.49/oz                      |  |  |
| Harmony Extra             | . \$12.65/oz                     |  |  |
| Ally                      | . \$23.02/oz                     |  |  |
| Treflan 10% granules      | .\$.79/lb                        |  |  |
| LV6 (2,4D Ester)          | \$19.50/gal                      |  |  |
| Clarity (dicamba)         | .\$82.37/gal                     |  |  |
| Poast                     | .\$66.40/gal                     |  |  |
| Spartan 75df              | . \$41.32/ lb (\$2.58/oz)        |  |  |
| Tilt                      |                                  |  |  |
| Starane                   | .\$89.50/gallon                  |  |  |
| Spartan 75df              | . \$42.06/lb                     |  |  |
| Maverick                  | . \$14.25 / oz                   |  |  |
| Olympus                   | . \$10.56 / oz                   |  |  |
| Aim                       | . \$163.80 / quart (\$5.11 / oz) |  |  |
|                           |                                  |  |  |

| Penetrate II     | \$16.49/gal |
|------------------|-------------|
| Ammonium Sulfate | \$5.75/gal  |
| Crop Oil         | \$6.20/gal  |

#### **INSECTICIDES**

Enhance Plus (indane):......\$15.06 / lb Lorsban 4E.....\$37.88 / gallon

#### **LIQUID FERTILIZERS**

10-34-0......\$245.10 / Ton or \$1.43/gallon on March 23, 2004 at Johnson Ranchers Supply.

28-0-0.....\$ 172.60 / Ton or \$ .93 / gallon or \$ .31 / lb of N. on March 16; 2004 At Johnson's Ranchers Supply.

#### SEED TREATMENTS

| Granular inoculum for peas   | .\$55.95 / 40# bag (\$1.39/ lb) |
|------------------------------|---------------------------------|
| Peat base inoculum for peas. | .\$ 0.60/bu                     |
| Vitavax/Thiram/RTU           | \$33.41/gal (5oz/100#seed)      |
| Seed treatment fee           | .\$ 0.25/Acre                   |

#### **EQUIPMENT CHARGES**

| Planting           | \$10.50 / Acre |
|--------------------|----------------|
| Mechanical Tillage | \$ 5.25 / Acre |

#### Spray Application

| Herbicide        | \$ 3.50 / Acre |
|------------------|----------------|
| Fertilizer       | \$ 3.50 / Acre |
| Treflan Granules | \$ 3.00 / Acre |

#### Harvest

| Base              | \$13.00 / Acre   |
|-------------------|------------------|
| Over 20 Bu / Acre | \$ 0.13 / Bushel |
| Trucking          | \$ 0.13 / Bushel |

Soil Sampling & Analysis ......\$ 0.40 / Acre

#### LAND CHARGES

\$350 / A x .07=\$24.50 + \$4 land tax=\$28.50/Acre

#### **GRAIN SALE VALUES**

(Grain Prices for 2004 crop)

| Winter Wheat          | See chart on next page.          |
|-----------------------|----------------------------------|
| Spring Wheat          | See chart on next page.          |
| Sierra Chickpeas      | See chart on next page.          |
| Sunflowers (oil-type) |                                  |
|                       | (\$1.90 + \$.17 LDP) \$2.07 / bu |
| Safflowers (oil-type) |                                  |
| Proso Millet          |                                  |

### Winter and Spring Wheat Sale Price Per Bushel with Protein Adjustment. (Prices from Dakota Mill and Grain, Rapid City as of December 21, 2004) (Average sale value for fall of 2004)

| Protein | Winter Wheat | Spring Wheat |
|---------|--------------|--------------|
| Content | winter wheat | Spring wheat |
| 10.0%   | \$3.00       | <u> </u>     |
| 10.2    | \$3.02       |              |
| 10.4    | \$3.04       |              |
| 10.6    | \$3.06       |              |
| 10.8    | \$3.08       |              |
| 11.0    | \$3.10       |              |
| 11.2    | \$3.12       |              |
| 11.4    | \$3.14       |              |
| 11.6    | \$3.16       |              |
| 11.8    | \$3.18       |              |
| 12.0    | \$3.20       | \$3.20       |
| 12.2    | \$3.21       | \$3.22       |
| 12.4    | \$3.22       | \$3.24       |
| 12.6    | \$3.23       | \$3.26       |
| 12.8    | \$3.24       | \$3.28       |
| 13.0    | \$3.25       | \$3.30       |
| 13.2    | \$3.26       | \$3.38       |
| 13.4    | \$3.27       | \$3.46       |
| 13.6    | \$3.28       | \$3.54       |
| 13.8    | \$3.29       | \$3.62       |
| 14.0    | \$3.30       | \$3.70       |
| 14.2    | \$3.31       | \$3.86       |
| 14.4    | \$3.32       | \$4.02       |
| 14.6    | \$3.33       | \$4.18       |
| 14.8    | \$3.34       | \$4.34       |
| 15.0    | \$3.35       | \$4.50       |
| 15.2    | \$3.36       | \$4.52       |
| 15.4    | \$3.37       | \$4.54       |
| 15.6    | \$3.38       | \$4.56       |
| 15.8    | \$3.39       | \$4.58       |
| 16.0    | \$3.40       | \$4.60       |
| 16.2    | \$3.41       | \$4.62       |

### Sierra Chickpea Values from Hinrichs Trading, Pullman, Washington (December 21, 2004)

| Seed Size    | Percentage and Seed Value /          |  |  |
|--------------|--------------------------------------|--|--|
|              | Pound                                |  |  |
| 22/64" round | 95% of 976# @ \$0.27 = \$250.29      |  |  |
| 20/64" round | 3% of 976# @ \$0.12 = \$3.48         |  |  |
| 18/64" round | 2% of 976# @ \$0.05 =                |  |  |
|              | Total crop value per acre = \$254.77 |  |  |

## Precipitation for September 1999 through August 2004

| Month         | <u>Total Precip.</u><br>(inches) | Month      | <u>Total Precip.</u><br>(inches) | Month  | <u>Total Precip.</u><br>(inches) |
|---------------|----------------------------------|------------|----------------------------------|--------|----------------------------------|
| September 99. | 1.33"                            | January 00 | 0.04"                            | May    | 1.19"                            |
| October       | 0.13"                            | February   | 0.09"                            | June   | 1.96"                            |
| November      | 0.85"                            | March      | 2.42"                            | July   | 1.65"                            |
| December      | 0.15"                            | April      | 3.27"                            | August | 0.13"                            |

### Wall Rotation Rain-Fall Data (1999-00)

(Accumulative total precipitation from Sept.1, 1999 to Aug. 31, 2000 is <u>13.21</u> ") (Accumulative total precipitation from Apr.1 to Aug. 31, 2000 is 8.20")

## Wall Rotation Rain-Fall Data (2000-01)

| Month        | <u>Total Precip.</u><br>(inches) | <u>Month</u> | <u>Total Precip.</u><br>(inches) | Month  | <u>Total Precip.</u><br>(inches) |
|--------------|----------------------------------|--------------|----------------------------------|--------|----------------------------------|
| September 00 | 0.25"                            | January 01   | 0.10"                            | Мау    | 1.45"                            |
| October      | 1.22"                            | February     | 0.24"                            | June   | 4.13"                            |
| November     | 0.80"                            | March        | 0.42"                            | July   | 3.68"                            |
| December     | 0.15"                            | April        | 2.10"                            | August | 0.93"                            |

(Accumulative total precipitation from Sept.1, 2000 to Aug. 31, 2001 is <u>15.47</u> ") (Accumulative total precipitation from Apr.1 to Aug. 31, 2001 is 12.29")

### Wall Rotation Rain-Fall Data (2001-02)

| <u>Month</u> | Total Precip.<br>(inches) | <u>Month</u> | Total Precip.<br>(inches) | Month  | <u>Total Precip.</u><br>(inches) |
|--------------|---------------------------|--------------|---------------------------|--------|----------------------------------|
| September 01 | 0.82"                     | January 02   | 0.11"                     | May    | 1.41"                            |
| October      | 0.42"                     | February     | 0.05"                     | June   | 0.58"                            |
| November     | 0.02"                     | March        | 0.23"                     | July   | 0.79"                            |
| December     | 0.00"                     | April        | 0.92"                     | August | 1.89"                            |

(Accumulative total precipitation from Sept.1, 2001 to Aug. 31, 2002 is 7.24 ")

(Accumulative total precipitation from Apr.1 to Aug. 31, 2002 is 5.59")

#### Wall Rotation Rain-Fall Data (2002-03)

| Month        | <u>Total Precip.</u><br>(inches) | Month      | Total Precip.<br>(inches) | Month  | <u>Total Precip.</u><br>(inches) |
|--------------|----------------------------------|------------|---------------------------|--------|----------------------------------|
| September 02 | 2.61"                            | January 03 | 0.14"                     | May    | 1.55"                            |
| October      | 0.73"                            | February   | 0.32"                     | June   | 0.66"                            |
| November     | 0.01"                            | March      | 1.35"                     | July   | 0.74"                            |
| December     | 0.03"                            | April      | 1.88"                     | August | 0.41"                            |

(Accumulative total precipitation from Sept.1, 2002 to Aug. 31, 2003 is <u>10.43</u> ") (Accumulative total precipitation from Apr.1 to Aug. 31, 2003 is <u>5.24</u>")

Wall Rotation Rain-Fall Data (2003-04)

| <u>Month</u>  | <u>Total Precip.</u><br>(inches) | <u>Month</u> | <u>Total Precip.</u><br>(inches) | Month  | <u>Total Precip.</u><br>(inches) |
|---------------|----------------------------------|--------------|----------------------------------|--------|----------------------------------|
| September 03. | 1.22"                            | January 04   | 0.08"                            | May    | 3.62"                            |
| October       | 0.43"                            | February     | 0.02"                            | June   | 2.05"                            |
| November      | 0.09"                            | March        | 0.30"                            | July   | 2.35"                            |
| December      | 0.03"                            | April        | 0.19"                            | August | 0.99"                            |

(Accumulative total precipitation from Sept.1, 2003 to Aug. 31, 2004 is <u>10.79</u>") (Accumulative total precipitation from Apr.1 to Aug. 31, 2004 is 9.20")

## 1971-2000 Average Total Precipitation from September 1 – August 31 is <u>17.24"</u> 1971-2000 Average Total Precipitation from April 1 – August 31 is <u>11.53"</u>

## Wall Rotation Study Soil Analysis - As of December 21, 2004 for the 2005 Season

| Plot<br>No. | 2005 Crop<br>and<br>estimated | Soil<br>Texture  | Soil<br>pH | Solubl<br>e Salts | Organic<br>Matter<br>% | #/<br>0-6 | )3-N<br>acre<br>"0- | P<br>ppm | K<br>ppm   | Add<br>N<br>#/A | Add<br>P205<br>#/A | Add<br>K2O<br>#/A | 2004 Yield<br>(Bushels/A or<br>Lbs / acre) |
|-------------|-------------------------------|------------------|------------|-------------------|------------------------|-----------|---------------------|----------|------------|-----------------|--------------------|-------------------|--------------------------------------------|
|             | yield goal                    |                  |            |                   |                        | h         | 24"                 |          |            |                 | ]                  |                   |                                            |
|             |                               |                  |            |                   |                        | top       | total               | - 10     |            |                 |                    |                   |                                            |
| 101-1       | Fallow                        | Medium           | 6.5        | 0.4               | 1.6                    | 47        | 85                  | 10       | 395        |                 |                    |                   | HRW-17.7 bu                                |
| 102-1       | HRW-60bu                      | Medium           | 6.3        | 0.3               | 1.6                    | 16        | 56                  | 12       | 427        | 95              | 15                 |                   | Fallow                                     |
| 117-2a      | Fallow                        | Medium           | 6.5        | 0.3               | 1.9                    | 14        | 37                  | 13       | 519        |                 |                    |                   | 70.3 bu Corn                               |
| 118-2a      | HRW-60bu                      | Medium           | 6.5        | 0.3               | 1.8                    | 28        | 75                  | 11       | 511        | 75              | 20                 |                   | Fallow                                     |
| 119-2a      | Sunf 2000#                    | Medium           | 6.8        | 0.5               | 1.7                    | 17        | 50                  | 19       | 409        | 50              | 0                  | 0                 | 34.3 bu HRW-a                              |
| 103-2a      | Mil-1500#                     | Medium           | 6.7        | 0.3               | 1.6                    | 7         | 19                  | 8        | 406        | 35              | 15                 | 0                 | 1093#<br>Sunflower                         |
| 104-2a      | HRW-45bu                      | Medium           | 6.2        | 0.3               | 1.8                    | 21        | 55                  | 11       | 405        | 60              | 15                 | 0                 | 449# Millet                                |
| 105-2a      | Corn-80bu                     | Medium           | 6.5        | 0.3               | 1.7                    | 6         | 26                  | 15       | _333_      | _70             | 5                  | 0                 | 27.1 bu HRW-b                              |
| 106-3       | Mil-1500#                     | Medium           | 6.5        | 0.3               | 1.9                    | 13        | 58                  | 13       | 388        | 0               | 5                  | 0                 | 957# Safflower                             |
| 108-3       | HRW-45bu                      | Medium           | 6.5        | 0.3               | 1.9                    | 11        | 25                  | 11       | 389        | 90              | 15                 | 0                 | 867# Millet                                |
| 107-3       | Saff-1200#                    | Medium           | 6.7        | 0.3               | 1.0                    | 5         | 25                  | 11       | 461        | 40              | 10                 | 0                 | 24.2 bu HRW                                |
| 100-3       | Sall-1200#                    | Mealum           | 0.7        | 0.5               | 1.0                    | 5         | 20                  |          | 401        | 40              | 10                 | 0                 | 24.2 DU TIRVV                              |
| 109-4       | Mil-2000#                     | Medium           | 6.6        | 0.3               | 1.8                    | 8         | 23                  | 10       | 380        | 45              | 10                 | 0                 | 28.9 bu HRW                                |
| 110-4       | HRW-40bu                      | Medium           | 6.7        | 0.3               | 1.9                    | 8         | 15                  | 16       | 442        | 85              | 0                  | 0                 | 1888# Millet                               |
|             |                               |                  |            |                   | Ì                      |           |                     |          |            |                 |                    |                   |                                            |
| 111-5a      | HRW-40bu                      | Medium           | 6.7        | 0.4               | 1.7                    | 18        | 53                  | 17       | 487        | 45              | 0                  | 0                 | 426# Millet                                |
| 122-5a      | Corn-70bu                     | Medium           | 6.5        | 0.3               | 1.9                    | 8         | 26                  | 16       | 452        | 60              | 0                  | 0                 | 34.1 bu HRW                                |
| 112-5a      | Sunf 1500#                    | Medium           | 6.6        | 0.4               | 1.6                    | 25        | 82                  | 22       | 398        | 0               | 0                  | 0                 | 54.9 bu Corn                               |
| 113-5a      | Barley-50bu                   | Medium           | 6.8        | 0.4               | 1.7                    | 30        | 127                 | 9        | 395        | Ö               | 15                 | 0                 | 455# Sunflower                             |
|             |                               |                  |            |                   |                        |           |                     |          |            |                 |                    |                   |                                            |
| 114-6a      | HRW-45bu                      | Medium           | 6.7        | 0.3               | 1.8                    | 19        | 87                  | 13       | 445        | 25              | 10                 | 0                 | 34.5 bu HRW-a                              |
| 115-6a      | Saff 1500#                    | Medium           | 6.8        | 0.3               | 1.9                    | 6         | 32                  | 8        | 458        | 45              | 25                 | 0                 | 24.7 bu HRW-b                              |
| 121-6a      | F. Pea-<br>1800#              | Medium           | 7.0        | 0.5               | 1.8                    | 50        | 80                  | 11       | 503        | 0               | 15                 | 0                 | 818# Sunflower                             |
| 116-6a      | HRW-60bu                      | Medium           | 6.4        | 0.3               | 1.7                    | 22        | 73                  | 19       | 348        | 75              | 0                  | 0                 | Pea/Fallow                                 |
| 123-9a      | HRW-45bu                      | Medium           | 6.8        | 0.3               | 1.7                    | 23        | 84                  | 11       | 437        | 30              | 15                 | 0                 | 1028# Millet                               |
| 124-9a      | Saff-1500#                    | Medium           | 6.3        | 0.3               | 1.7                    | 5         | 17                  | 9        | 393        | 60              | 20                 | 0                 | 27.5 bu HRW-b                              |
| 125-9a      | Hairy Vetch                   | Medium           | 6.4        | 0.3               | 1.8                    | 20        | 58                  | 12       | 387        | 0               | 20                 | 0                 | 617# Safflower                             |
| 120-9a      | HRW-60bu                      | Medium           | 6.8        | 0.4               | 1.8                    | 22        | 61                  | 9        | 452        | 90              | 30                 | Ö                 | Pea/Fallow                                 |
|             |                               |                  |            |                   |                        |           |                     |          |            |                 |                    |                   |                                            |
| 126-10      | Mil-2000#                     | Medium           | 6.6        | 0.3               | 1.8                    | 14        | 64                  | 9        | 404        | 5               | 15                 | 0                 | 976# Chick peas                            |
| 127-10      | HRW-45bu                      | Medium           | 6.7        | 0.3               | 1.8                    | 11        | 28                  | 10       | 333        | 85              | 20                 | 0                 | 1197# Millet                               |
| 128-10      | C Pea-<br>1500#               | Medium           | 6.5        | 0.3               | 1.8                    | 4         | 13                  | 15       | 459        | 0               | 5                  | 0                 | 22.5 bu HRW                                |
| 100.11      | N#1 4 500 #                   | B.A. alter       |            |                   |                        |           |                     |          | 400        | 05              |                    |                   | 70.010                                     |
| 129-11      | Mil-1500#                     | Medium           | 6.3        | 0.3               | 1.9                    | 8<br>12   | 20<br>26            | 11       | 402        | 35              | 10                 | 0                 | 76.6 bu Corn                               |
| 130-11      | HRW-45bu<br>Corn-80bu         | Medium<br>Medium | 6.3<br>6.4 | 0.3               | 1.9<br>1.9             | 12<br>19  | 26                  | 16<br>37 | 419<br>442 | 85<br>70        | 0                  | 0                 | 1017# Millet                               |
| 131-11      | 0001-6000                     | wealum           | 0.4        | 0.3               | 1.9                    | 19        | 28                  | 31       | 442        | 10              | L U                | U                 | 28.2 bu HRW                                |

Note: To convert P & K values to #/A take ppm value x 2. Example: 500 ppm is equal to 1000#/Acre

## Nitrogen Needs for Wall Rotation Study (1994-2005) Nitrogen Needs (Lbs / Acre)

|          |                                   |      |      |         |      |                        | eed <u>i</u> s ( |      |                 |           |          |         |      |                        |
|----------|-----------------------------------|------|------|---------|------|------------------------|------------------|------|-----------------|-----------|----------|---------|------|------------------------|
| Rotation | Crop                              | 1994 | 1995 | 1996    | 1997 | 1998                   | 1999             | 2000 | 2001            | 2002      | 2003     | 2004    | 2005 | Ave N req (1999-05)    |
| 1        | Winter Wheat                      |      |      | 80      | 115  | 85                     | 115              | 130  | 65              | 105       | 75       | 40      | 95   | 90                     |
|          | Fallow                            |      |      | <b></b> |      |                        |                  |      |                 |           |          |         |      |                        |
| 2a       | Winter Wheat-a                    |      |      |         |      | 100*                   | 120              | 115  | 85              | 60        | 85       | 55      | 75   | 85                     |
|          | Sunflower                         |      |      |         |      | 60*                    | 65               | 70   | 65              | 65        | 0        | 55      | 50   | 55                     |
|          | Millet                            |      |      |         |      | 55*                    | 60               | 55   | 40              | 55        | 0        | 15      | 35   | 40                     |
|          | Winter Wheat-b                    |      |      |         |      | 90*                    | 100              | 100  | 85              | 100       | 75       | 35      | 60   | 80                     |
|          | Corn                              |      |      |         |      | 65*                    | 75               | 85   | 60              | 60        | 25       | 50      | 70   | 60                     |
|          | Fallow                            |      |      |         |      |                        |                  |      |                 |           |          |         | ve   |                        |
| 3        | Winter Wheat                      |      |      | 100     | 85   | 100                    | 100              | 105  | 90.             | 100       | 70       | 60      | 90   | 90                     |
| <b>.</b> | Safflower                         |      |      | 55      | 60   | 55                     | 55               | 65   | 70              | 85        | 30       | 25      | 40   | 55                     |
|          | Millet                            |      |      | 45      | 50   | 50                     | 55               | 60   | 60              | 60        | 5        | 35      | 0    | 40                     |
|          |                                   |      |      | -0      | 50   | 50                     |                  |      |                 | 00        | <u> </u> |         | U    |                        |
| 4        | Winter Wheat                      |      |      | 100     | 80   | 100                    | 95               | 85   | 80              | 100       | 80       | 55      | 85   | 85                     |
|          | Millet                            |      |      | 50      | 55   | 45                     | 50               | 50   | 30              | 35        | 30       | 40      | 45   | 40                     |
|          |                                   |      |      |         |      |                        |                  |      |                 | 1         |          |         |      |                        |
| 5a       | Winter Wheat                      |      |      |         |      | 90                     | 100              | 90   | 70              | 65        | 0        | 75      | 45   | 65 <sup>-</sup>        |
|          | Corn                              |      |      |         |      | <b>80</b> <sup>.</sup> | 70               | 80   | 70              | 70        | 40       | 50      | 60   | 65                     |
|          | Sunflower                         |      |      |         |      | 65                     | 65               | 90   | 80              | 85        | 25       | 35      | 0    | 55                     |
|          | Spring Wheat to                   |      |      |         |      | 90                     | 90               | 95   | 80              | 80        | 80       | 20      | 0    | 65                     |
|          | S.Barley in 2005                  |      |      |         |      |                        |                  |      |                 |           |          | •       | 0    | 0                      |
|          | Winter Wheat-a                    |      |      |         |      |                        | 140              | 100  | 100             | 90        | 85       | 45      | 75   | 90                     |
|          | Winter Wheat-b                    |      |      |         | ·    |                        | 100              | 100  | 70              | 50        | 0.       | 60      | 25   | 60:                    |
|          | Sunflower(99-04)                  |      |      |         |      |                        | 70               | 90   | 65              | 85        | 50       | 35      |      | 65                     |
|          | Safflower-(2005)                  |      |      |         |      |                        |                  | •••  |                 |           | •••      | •••     | 45   | 45                     |
|          | Pea/Fallow to                     |      |      |         |      |                        |                  |      |                 |           |          |         |      |                        |
|          | Field Pea in 2005                 |      |      |         |      |                        |                  |      |                 |           |          |         |      |                        |
| 9a       | Winter Wheat-a                    |      |      |         |      |                        | 115              | 120  | 95              | 105       | 85       | 50      | 90   | 95                     |
|          | Winter Wheat-b                    |      |      |         |      |                        | 95               | 80   | 70              | 70        | 0        | 75      | 30   | 60                     |
|          | Safflower                         |      |      |         |      |                        | 50               | 60   | 65              | 80        | 5        | 0       | 60   | <b>45</b> <sup>°</sup> |
|          | Pea/Fal to Hairy<br>Vetch in 2005 |      |      |         |      |                        |                  |      |                 |           |          |         |      |                        |
| 10       | Minton W/h+                       |      |      | 0.5     | 75   | 100                    | 100              | 100  | 95              | 100       | 80       | EO      | 85   | 85                     |
| 10       | Winter Wheat                      |      |      | 95      | 75   | 100                    | 100              | 100  | 95<br>0         |           | 80<br>0  | 50<br>0 |      | 0<br>0                 |
|          | Pea                               |      |      | 0       | 0    | 0                      | 0                |      |                 | 0         |          |         | 0    | 0<br>30                |
|          | Millet                            |      |      | 55      | 45   | 45                     | 50               | 25   | 45              | 50        | 20       | 25      | 5    | 30                     |
| 11       | Winter Wheat                      |      |      | 90.     | 75   | 100                    | 100 <sup>.</sup> | 105  | 90              | 105       | 80       | 45      | 85   | 85                     |
|          | Corn                              |      |      | 75      | 80   | 80                     | 70               | 65   | 65 <sup>,</sup> | <b>60</b> | 25       | 60      | 70   | 60                     |
|          | Millet                            |      |      | 50      | 55   | 55                     | 60               | 55   | 35              | 55        | 25       | 25      | 35   | 40                     |

\* = Not combined into a 6 year rotation yet. Yield goals are: Fallow Winter wheat-60 bu., Recrop Winter wheat-40 or 45 bu., Spring Wheat – 40 bu., Spring Barley – 50 bu, Sunflower-1500# or 2000#., Safflower-1200# or 1500#., Millet- 1500# or 2000#., Corn- 70 or 80 bu., Chickpea-1500#

fy

| <b>1999 Wa</b><br>Rotation & | <b>I Rotation Yi</b><br>(A)   | elds, Expense/Acre, E<br>(B) | Break-Even Costs & C<br>(C) | Break-Even Yields<br>(D) |
|------------------------------|-------------------------------|------------------------------|-----------------------------|--------------------------|
| Net return/A C               | Crop Yield                    | Expense of Crop/Acre         | Cost of Production          | Yield to Break-Even      |
|                              |                               |                              |                             |                          |
| 1 W V                        | /heat 70.9 b                  | u \$164.76                   | \$2.32/bu                   | 58.8 bu                  |
| (\$15.46) Fallo              | ow at \$59.62/a               | cre.                         |                             |                          |
|                              |                               |                              | <b>#0</b> 40/               | 50.01                    |
|                              | /heat-A 67.1 b                | •                            | \$2.12/bu                   | 50.8 bu                  |
| (\$18.30) Sun                |                               | \$165.17                     | \$.079/#<br>\$.020/#        | 1761#                    |
| Mille                        |                               | \$ 98.53                     | \$.066/#<br>\$2.04/bu       | 2074#<br>45.7 bu         |
| Cori                         | Vheat-B 62.8 b<br>107.6 b     | -                            | \$2.04/bu<br>\$1.46/bu      | 45.7 bu<br>87.4 bu       |
|                              | ow at \$47.40/a               | •                            |                             | 07.4 DU                  |
| Fall                         | Jw al 947.40/a                | $(\phi 07.92 + \phi 9.40)$   | <i>)</i>                    |                          |
| 3 W V                        | Vheat 57.2 bu                 | ı \$118.82                   | \$2.08/bu                   | 42.4 bu                  |
| (\$-10.32)Saff               | ower 976#                     | \$126.34                     | \$.129/#                    | 1203#                    |
| íMille                       |                               | \$ 98.53                     | \$.066/#                    | 2074#                    |
|                              |                               |                              |                             |                          |
|                              | Vheat 47.2 bu                 | •                            | \$2.47/bu                   | 41.6 bu                  |
| (\$-12.16) Mille             | et 1500#                      | \$ 99.98                     | \$.066/#                    | 2105#                    |
| 5a WV                        | Vheat 36.5 bu                 | J \$121.54                   | \$3.33/bu                   | 43.4 bu                  |
| (\$7.04) Cori                |                               |                              | \$1.55/bu                   | 93.0 bu                  |
|                              | flower 2010#                  | \$143.95                     | \$.072/#                    | 1535#                    |
|                              | /heat 36.3 bi                 | -                            | \$3.01/bu                   | 39.0 bu                  |
| 011                          |                               | <b>4</b> 100.11              | 4010 <i></i> bu             |                          |
| 6a W V                       | Vheat-B 34.1 b                | ou \$122.76                  | \$3.60/bu                   | 43.8 bu                  |
| (\$1.96) Sun                 | flower 2210#                  | \$155.69                     | \$.070/#                    | 1660#                    |
| Fall                         | ow at \$47.40/a               | ncre. (\$37.92 + \$9.48      | 3)*                         |                          |
| WV                           | Vheat-A 63.9 b                | ou \$141.38                  | \$2.21/bu                   | 50.5 bu                  |
|                              | Ubact D 20.9 h                | ¢106.20                      | \$4.24/bu                   | 45.1 bu                  |
| 9a WV<br>(\$-7.06) Saff      | Vheat-B 29.8 b<br>lower 1277# | -                            | \$4.24/Du<br>\$.109/#       | 1326#                    |
| ••••••                       | ow at \$47.40/a               | •                            | -                           | 1520#                    |
|                              | Vheat-A 68.3 b                | •                            | \$2.21/bu                   | 53.9 bu                  |
| VV V                         |                               | μ φ150.94                    | φ2.2 ΠDU                    | 55.9 Du                  |
| 10 W V                       | Vheat 65.1 bu                 | x \$120.72                   | \$1.85/bu                   | 43.1 bu                  |
| (\$11.16) Pea                |                               |                              | \$2.90/bu                   | 32.2 bu                  |
| Mille                        | et 1500#                      | \$ 98.53                     | \$.066/#                    | 2074#                    |
| 44 1471                      |                               | <b>4</b> 47 00               | <b>AA AAAAAAAAAAAAA</b>     | 10 4 L                   |
|                              | Vheat 54.2 bu                 | •                            | \$2.17/bu                   | 42.1 bu                  |
| (\$.47) Cor                  |                               |                              | \$1.64/bu                   | 90.6 bu                  |
| Mille                        | et 1500#                      | \$ 99.10                     | \$.066/#                    | 2086#                    |
|                              | Grain Va                      | lues for determining Yie     | eld to Break-Even Poi       | nt (E)                   |
|                              | Winter Whea                   | t\$2.80                      | Corn                        | \$1.80/bu                |
| •                            |                               | \$3.50/bu                    | Millet                      | \$.0475/lb               |
|                              | Sunnower                      | \$.0938/lb<br>C = B / A      | Safflower<br>D = B / E      |                          |
| *The fallow                  | expense was se                | eparated at 80% for the fi   |                             | o the second crop year.  |

"The fallow expense was separated at 80% for the first crop year and 20% to the second crop year. (1999 Total Precipitation) April-2.65" May-3.22" June-3.33" July-2.21" August-2.03"

| Not roturn | /A Cron      | <b>(A)</b><br>Yield | (B)<br>Expense of Crop/Acre      | (C)<br>Cost of Production | (D)<br>Yield to Break-Even | <b>(E)</b><br>Sale:Value \$/ |
|------------|--------------|---------------------|----------------------------------|---------------------------|----------------------------|------------------------------|
| Net return |              | TIEIU               |                                  |                           |                            | Jaie value 3/                |
| 1          | W Wheat      | 58:3 bu             | \$166.47                         | \$2.86/bu                 | 55.1 bu                    | \$3.02                       |
|            | Fallow at \$ |                     | •                                | ,                         | -                          |                              |
| 2a         | W Wheat-/    | A 66.9 bu           | \$149.14                         | \$2.23/bu                 | 49.2 bu                    | 3.03                         |
| (\$28.19)  | Sunflower    |                     | \$169.90                         | \$.065/#                  | 1811#                      |                              |
|            | Millet       | 1300#               | \$112.63                         | \$.087/#                  | 1251#                      |                              |
|            | W Wheat-I    |                     | -                                | \$2.50/bu                 | 39.4 bu                    | 2.92                         |
|            |              | 65.8 bu             | \$150.10                         | \$2.28/bu                 | 79.0 bu                    |                              |
|            | Fallow at \$ | 52.47/ac            | re. (\$41.98 + \$10.49           | ))*                       | • •                        |                              |
| · 3·       | W. Wheat     |                     | \$114.99                         | \$2,53/bu                 | 40.2 bu                    | 2.86                         |
| \$14.59)   | Safflower    |                     | \$149.00                         | \$.107/#                  | 1242#                      |                              |
|            | Millet       | 1266#               | \$102.93                         | \$.081/#                  | 1144#                      |                              |
| 4          | W Wheat      | 32.6 bu             | \$107.75                         | \$3.31/bu                 | 35.7 bu                    | 3.02                         |
|            | Millet       | 1370#               | \$114.03                         | \$.083/#                  | 1267#                      |                              |
| 5a         | W Wheat      | 47.6 bu             | \$126.13                         | \$2.65/bu                 | 46.4bu                     | 2.72                         |
| \$-4.40)   | Corn         | 50.2 bu             | \$145.81                         | \$2.90/bu                 | 76.7 bu                    |                              |
| ·          | Sunflower    | 1958#               | \$135.49                         | \$.069/#                  | 1444#                      |                              |
|            | S Wheat      | 31.8 bu             | \$116.31                         | \$3.66/bu                 | 37.9 bu                    | 3.07 <sup>°</sup>            |
| 6a         | W Wheat-I    |                     | -                                | \$2.90/bu                 | 52.1 bu                    | 2.72                         |
| (\$19.34)  | Sunflower    |                     | \$158.37                         | \$.064/#                  | 1688#                      |                              |
|            | Fallow at \$ |                     | •                                |                           |                            |                              |
|            | W Wheat-     | A 60.8 bi           | ı \$168.80                       | \$2.78/bu                 | 56.5 bu                    | 2.99                         |
| 9a         | W Wheat-     |                     |                                  | \$3.17/bu                 | 46.0 bu                    | 2.96                         |
| \$7.52)    | Safflower    | 1546#               | \$149.94                         | \$.097/#                  | 1250#                      |                              |
|            | Fallow at \$ |                     | •                                | -                         |                            |                              |
|            | W Wheat-     | A 57.1 bi           | ı \$167.92                       | \$2.94/bu                 | 56.0 bu                    | 3.00                         |
| 10         | W Wheat.     | 48.9 bu             | \$118.19                         | \$2.42/bu                 | 41.8 bu                    | 2.83                         |
| \$-1.54)   |              | 17.9 bu             | -                                | \$6.97/bu                 | 35.7 bu                    |                              |
| J.         | Millet       | 1524#               | \$ 99.43                         | \$.065/#                  | 1105#                      |                              |
| 11         | W Wheat      | 37.8 bu             | \$113.17                         | \$2.99/bu                 | 38.2 bu                    | 2.96                         |
| \$-7.35)   | Corn         | 60.2 bu             | \$148.76                         | \$2.47/bu                 | 78.3 bu                    |                              |
|            | Millet       | 1300#               | \$103.40                         | \$.080/#                  | 1149#                      |                              |
|            |              |                     | ues for determining Yiel         |                           |                            |                              |
|            |              |                     | See Chart Above (E)<br>\$3.50/bu | Corn<br>Millet            |                            |                              |
| -          |              |                     | \$.0938/lb                       | Safflower                 |                            |                              |
|            |              |                     | C = B / A                        | D = B / E                 |                            |                              |

(2000 Total Precipitation) April-3:27" May-1.19" June-1.96" July-1.65" August-0:13"

| Rotation &   | 2001 Wal               | Rotation `<br>(A) | Yields, Expense/Acre<br>(B)      | e, Break-Even Cost<br>(C) | t & Break-Even Yiel<br>(D) | ds<br>(E)          |
|--------------|------------------------|-------------------|----------------------------------|---------------------------|----------------------------|--------------------|
| Net return/A | Crop                   | Yield             | Expense of Crop/Acre             | Cost of Production        | Yield to Break-Even        | Sale Value (\$/Bu) |
| 1            | W Wheat                | 38.6 bu           | \$158.93                         | \$4.11/bu                 | 54.8 bu                    | \$2.90             |
| (\$-23.49)   | Fallow at \$57         | 7.03/acre         |                                  |                           |                            |                    |
| 2a           | W Wheat-A              | 51.1 bu           | \$152.47                         | \$2.98/bu                 | 54.2 bu                    | 2.81               |
| (\$10.87)    | Sunflower<br>Millet    | 2082#<br>2000#    | \$170.82<br>\$ 95.28             | \$.082/#<br>\$.047/#      | 1798#<br>2507#             |                    |
|              | W Wheat-B              | 40.2              | \$ .99.33                        | \$2.47/bu                 | 36.6 bu                    | 2.71               |
|              | Corn<br>Fallow at \$62 | 97.5 bu           | \$151.81<br>(\$49.82 + \$12.46)* | \$1.55/bu                 | 70.9 bu                    |                    |
|              | raiiuw al 902          | 2.20/2010         | (\$49.02 + \$12.40)              |                           | • · · · · · ·              |                    |
| 3            | W Wheat                | 38.1 bu           | \$ 98.83                         | \$2.59/bu                 | 36.4                       | 2.71               |
| (\$12.20)    | Safflower<br>Millet    | 1575#<br>2000#    | \$153.27<br>\$ 95.28             | \$.097/#<br>\$.047/#      | 1179#<br>2507#             |                    |
|              | MINEL.                 | 2000#             | ψ 50.20                          | ψ.0477#                   | 2507#                      |                    |
| 4            | W Wheat                | 33.7 bu           | \$106.95                         | \$3.17/bu                 | 37.9 bu                    | 2.82               |
| (\$-23.91)   | Millet                 | 1800#             | \$104.30                         | \$.057/#                  | 2744#                      |                    |
| 5a           | W Wheat                | 33.1 bu           | \$104.61                         | \$3.16/bu                 | 38.0 bu                    | 2.75               |
| (\$4.92)     | Corn                   | 101.6 bu          | \$152.79                         | \$1.50/bu                 | 71.3 bu                    |                    |
|              | Sunflower              | 1443#             | \$141.42                         | \$.098/#                  | 1488#                      | 0.04               |
|              | S Wheat                | 28.4 bu           | \$109.64                         | \$3.86/bu                 | 37.6 bu                    | 2.91               |
| 6a           | W Wheat-B              | 33.0 bu           | \$122.56                         | \$3.71/bu                 | 43.9 bu                    | 2.79               |
|              | Sunflower              | 2011#             | \$157.58                         | \$.078/#                  | 1658#                      |                    |
|              | Fallow at \$89         |                   | (\$71.86 + \$17.97)*             | #0.64/bu                  | 60.4 hu                    | 0.04               |
|              | W Wheat-A              | 48.0              | \$175.07                         | \$3.64/bu                 | 60.1 bu                    | 2.91               |
| 9a           | W Wheat-B              | 38.2 bu           | \$123.80                         | \$3.24/bu                 | 45.3 bu                    | 2.73               |
|              | Safflower              | 1624\$            | \$153.57                         | \$.094/#                  | 1181/#                     |                    |
|              | Fallow at \$89         |                   | (\$71.86 + \$17.97)*             | <b>60 54</b> /h           | 04.0 h                     | . 0 70             |
|              | W Wheat-<br>A          | 50.0 bu           | \$175.55                         | \$3.51/bu                 | 64.3 bu                    | 2.73               |
| 10           | W Wheat                | 40.8 bu           | \$101.47                         | \$2.48/bu                 | 36.8 bu                    | 2.75               |
| (\$21.08)    | Peas                   | 26.4 bu           | \$109.64                         | \$4.15/bu                 | 15.8 bu                    | 2.10               |
| · ,          | Millet                 | 2000#             | \$ 95.28                         | \$.047/#                  | 2507#                      |                    |
| 11           | W Wheat                | 42.2 bu           | \$ 99.81                         | \$2.36/bu                 | 33.7 bu                    | 2.96               |
| (\$23.57)    | Corn                   | 106.4 bu          | \$153.93                         | \$1.44/bu                 | 71.9 bu                    |                    |
|              | Millet                 | 2000#             | \$ 95.28                         | \$.047/#                  | 2507#                      |                    |
|              | ,                      |                   | Values for determining `         | Yield to Break-Even P     | Point (E)                  |                    |
|              |                        |                   | See Chart Above (E)              | Corn                      |                            |                    |
|              | Peas.                  |                   | \$6.90/bu                        | Millet                    | \$.038/lb                  |                    |

| Peas      | · · ·     | Millet    | •        |
|-----------|-----------|-----------|----------|
| Sunflower | \$.095/lb | Safflower | \$.13/lb |

#### C = B / A

D = B / E

\*The fallow expense was separated at 80% for the first crop year and 20% to the second crop year. **Note:** Winter Wheat values have been adjusted for protein content in column (E) **(2001 Total Precipitation) April-2**.10" **May-1**.45" **June-4**.13" **July-3**.68" **August-**0.93"

| 20<br>Rotation &                     | 02 Wall Rotati<br>(A)                           | on Yields, Expense//<br>(B)                                | Acre, Break-Even Co<br>(C)                | osts & Break-Eve<br>(D)     | n Yields<br>(E)    |
|--------------------------------------|-------------------------------------------------|------------------------------------------------------------|-------------------------------------------|-----------------------------|--------------------|
| Net return/A C                       | rop Yield                                       | Expense of Crop/Acre                                       | Cost of Production Yi                     | eld to Break-Even           | Sale Value (\$/Bu) |
| 1 WW<br>(\$-23.78) Fallo             | heat 28.6 bu<br>w at \$72.57 /ac                | \$176.26<br>cre.                                           | \$6.16/bu                                 | 39.1bu                      | \$4.50             |
| (\$-68.70) Sunf                      |                                                 | \$143.24<br>\$169.03                                       | \$4.63/bu<br>\$42 / #                     | 31.8 bu<br>1408#            | 4.50               |
| Corn                                 | heat-B 10.7 bu<br>0 bu                          | \$160.22                                                   | \$.32/#<br>\$9.49/bu<br>\$ N/A            | 707#<br>33.8 bu<br>65.3 bu  | 3.00               |
| Fallu                                | w al \$50.09/aci                                | re. (\$46.95 + \$11.74)*                                   |                                           |                             |                    |
| 3 W Wr<br>(\$-52.71) Saffl<br>Millet | ower 360#                                       | \$101.48<br>\$149.05<br>\$119.26                           | \$10.35/bu<br>\$.41/#<br>\$.15/#          | 33.8 bu<br>828#<br>795#     | 3.00               |
| 4 WW<br>(\$-4.48) Millet             | heat   14.7 bu*<br>1182#                        | \$102.12<br>\$128.24                                       | \$6.94/bu<br>\$.108/#                     | 34.0 bu<br>854#             | 3.00               |
| (\$-110.83) Co                       | heat 3.4 bu<br>orn 0 bu<br>ower 250#            | \$103.59<br>\$160.22<br>\$132.05                           | \$30.46/bu<br>\$_N/A<br>\$_52/#           | 23.0 bu<br>65.3 bu<br>1100# | 4.50               |
|                                      | heat 1.6 bu*                                    | \$ 77.47                                                   | φ .32/#<br>\$48.41/bu                     | 25.8 bu                     | 3.00               |
| (\$-99.76) Sun                       |                                                 | \$156.12                                                   | \$23.59/bu<br>\$.78/#                     | 40.8 bu<br>1301#            | 3.00               |
|                                      | heat-A 10.8 bu                                  | e. (\$76.38 + \$19.10)*<br>1 \$176.63                      | \$16.35/bu                                | 39.2 bu                     | 4.50               |
| (\$-98.38) Saffl                     | heat-B 4.9 bu*<br>ower  230#<br>w at \$107.36/a | \$142.68<br>\$148.63<br>cre. (\$85.89+ \$21.4              | \$29.11/bu<br>\$.64/#                     | 47.5 bu<br>825#             | 3.00               |
|                                      | heat-A 9.2 bu*                                  |                                                            | \$20.21 / bu                              | 61.9 bu                     | 3.00               |
| 10 W W<br>(\$-81.25) Chic<br>Millet  | kpea 95#                                        | \$101.91<br>\$170.82<br>\$118.83                           | \$7.77/bu<br>\$1.79/#<br>\$19/#           | 33.9 bu<br>1067#<br>792#    | 3.00               |
| 11 W W<br>(\$-68.28) Corr<br>Millet  | n Obu                                           | \$101.97<br>\$160.22<br>\$107.50                           | \$7.55/bu<br>\$ N/A<br>\$.129 / #         | 33.9 bu<br>65.3 bu<br>716#  | 3.00               |
|                                      | Winter Wheat<br>Chickpea                        | or determining Yield to<br>\$4.50bu<br>\$16.00/cwt         | Corn<br>Millet                            | \$2.45/bu<br>\$.15/lb       |                    |
|                                      | Winter Wheat *                                  | \$ .12/lb<br>(under 55# test wt.)\$3.0<br>C = <b>B / A</b> | Safflower<br>0/bushel<br><b>D = B / E</b> | \$.18/lb                    |                    |
|                                      | expense was sep                                 | arated at 80% for the fir                                  | st crop year and 20% to                   |                             | ear.               |

Note: Winter Wheat values have been adjusted for protein content in column (E) (2002 Total Precipitation) April-0.92" May-1.41" June-0.58" July-0.79" August-1.89"

| 2003 W<br>Rotation &        | /all Rotat<br>(A)  | ion Yields, Expense//<br>(B) | Acre, Break-Even Cos<br>(C) | its & Break-Eve<br>(D) | en Yields<br>(E)   |
|-----------------------------|--------------------|------------------------------|-----------------------------|------------------------|--------------------|
| Net return/A Crop           | Yield              | Expense of Crop/Acre         | Cost of Production Yiel     | d to Break-Even        | Sale Value (\$/Bu) |
|                             |                    | · ·                          |                             |                        | <u></u>            |
| 1 W Wheat                   | 77.1 bu            | \$182.31                     | \$2.36/bu                   | 60.5 bu                | \$3.01             |
| (\$24.88) Fallow at \$      |                    | •                            | <i>42.00,54</i>             | 00.0 54                | <b>40.01</b>       |
| (+=)                        |                    |                              |                             |                        |                    |
| 2a W Wheat-                 | -A 72.8 bu         | ı \$156.81                   | <b>\$2.15/bu</b>            | 51.4 bu                | 3.05               |
| (\$-33.55) Sunflower        | r 584#             | \$162.44                     | \$.278/#                    | 1584#                  |                    |
| Millet                      | 0#                 | \$ <sup>.</sup> 77.58        | \$ N/A                      | 1410#                  |                    |
| W Wheat-                    | -B 46.3 b          | u \$108.54                   | \$2.34/bu                   | 34.0 bu                | 3.19               |
| Corn                        | 0 bu               | \$125.56                     | \$ N/A                      | 55.8 bu                | -                  |
| Fallow at 3                 | \$52.82/ac         | re. (\$42.26 + \$10.56)*     | -                           |                        |                    |
| 1                           |                    |                              |                             |                        |                    |
| 3 W Wheat                   | 47.8 bu            | \$108.94                     | \$2.27/bu                   | 36.1 bu                | 3.01               |
| (\$-29.72) Safflower        | 614#               | \$138.62                     | \$.225/#                    | 1352#                  |                    |
| Millet                      | 0#                 | \$ 77.58                     | \$ N/A                      | 1410#                  |                    |
|                             |                    | ·                            |                             | •                      |                    |
| 4 W Wheat                   | 57.4 bu            | \$111.44                     | \$1.94/bu                   | 37.7 bu                | 2.95               |
| (\$4.72) Millet             | 1500#              | \$130.94                     | \$.087/#                    | 2380#                  |                    |
| (*****)                     |                    | ••••••                       | <i></i>                     |                        |                    |
| 5a W Wheat                  | 34.9 bu            | \$ 98.95                     | \$2.83/bu                   | 30.2 bu                | 3.27               |
| (\$-56.44) Corn             | 0 bu               | \$140.82                     | \$ N/A                      | 62.5 bu                | •-=-               |
| Sunflower                   |                    | \$138.26                     | \$ .19/#                    | 1348#                  |                    |
| S Wheat                     |                    | \$124.96                     | \$4.76/bu                   | 36.7 bu                | 3.40               |
|                             | <b></b> <i>b</i> u | <b>+</b> · <b>-</b> ···•     | 4 Orbu                      | 00.7 54                | 0.10               |
| 6a W Wheat-                 | -B 35.4 bi         | u \$114.66                   | \$3.23/bu                   | 34.5 bu                | 3.32               |
| (\$-22.64) Sunflowe         |                    | \$158.36                     | \$.139/#                    | 1544#                  | 0.02               |
|                             |                    | re. (\$62.29 + \$15.57)*     |                             | 10111                  |                    |
| W Wheat-                    |                    |                              | \$4.68/bu                   | 51.5 bu                | 3.26               |
| TT TTTOAL                   |                    | u                            | ψ00/5α                      | 01.0 Du                | 5.20               |
| 9a W Wheat-                 | B 31 7 bu          | ı \$113.70                   | \$3.58/bu                   | 34.4 bu                | 3.30               |
| (\$-3.46) Safflower         | 1106#              | \$141.20                     | \$.127/#                    | 941 <b>#</b>           | 5.50               |
|                             |                    | cre. (\$62.29+ \$15.57)*     | $\psi$ . 1277#              | 341#                   |                    |
| W Wheat-                    |                    |                              | \$3.86 / bu                 | 53.2 bu                | 3.20               |
| vv vvnoat-                  | 7 77.0 0           | α φπο.20                     | ψυ.υυ / υυ                  | 55.2 Du                | 5.20               |
| 10 W Wheat                  | 58 7 hu            | \$111.78                     | \$1.90/bu                   | 36.1 bu                | 3.09               |
| (\$-2.31) Chickpea          | 667 <b>#</b>       | \$162.20                     | \$.243/#                    | 772#                   | 5.08               |
| (ψ-2.31) Onickpea<br>Millet | 925#               | \$112.88                     | \$.243/#<br>\$.122/#        | 2052#                  |                    |
| MIIIQ                       | 520 <del>1</del>   | ψ112.00                      | Ψ.Ιζζί#                     | 2002#                  |                    |
| 11 W Wheat                  | 59.4 hu            | \$111.96                     | \$1.88/bu                   | 37.4 bu                | 2.99               |
| (\$-28.35) Corn             | 39.7 bu            | \$152.04                     | \$ 1.88/bu<br>\$ 3.82/bu    | 67.5 bu                | 2.99               |
| Millet                      | 0#                 | \$ 87.98                     | \$ 3.82/bu<br>\$ N/A        |                        |                    |
| IVIIIICL                    | 0#                 | ψ 01.30                      | φ IN/A                      | 1600#                  |                    |
| (                           | Grain Valu         | les for determining Vic      | ld to Break-Even Point      | <b>(E</b> )            |                    |
| w w                         | inter Wheat        |                              |                             |                        |                    |
| Ch                          | nickpea            | \$21.00/cwt                  | Millet                      | \$.055/lb              |                    |
| Si                          |                    | \$.1025/lb                   | Safflower                   | \$.15/lb               |                    |
| *The fallow eveen           |                    | C = B / A                    | D = B/E                     | ha access-1            |                    |
| The fallow expension        | oc was set         | Jaialeu al 00% IUI lIIE III  | st crop year and 20% to t   | ne secona crob v       | ear.               |

The fallow expense was separated at 80% for the first crop year and 20% to the second crop year.
 Note: Winter Wheat values have been adjusted for protein content in column (E)
 (2003 Total Precipitation) April-1.88" May-1.55" June-0.66" July-0.74" August-0.41"

| 2004 V<br>Rotation &              | Vall Rotati<br>(A) | ion Yields, Expense//<br>(B) | Acre, Break-Even Cost<br>(C) | ts & Break-Ever<br>(D) | n Yields<br>(E)    |
|-----------------------------------|--------------------|------------------------------|------------------------------|------------------------|--------------------|
| Net return/A Crop                 | Yield              | Expense of Crop/Acre         | Cost of Production Yield     | to Break-Even          | Sale Value (\$/Bu) |
|                                   | -                  |                              |                              |                        |                    |
| 1 W Wheat<br>(\$-43.26) Fallow at |                    |                              | \$8.23/bu                    | 43.5 bu                | \$3.35             |
|                                   |                    |                              |                              |                        | 2                  |
| 2a W Wheat                        | -A 34.3 bu         | \$128.92                     | \$3.75/bu                    | 38.5 bu                | 3.34               |
| (\$-21.33) Sunflowe               | er 1093#           | \$153.21                     | \$.14 / #                    | 1134#                  |                    |
| Millet                            | 449#               | \$105.00                     | \$.233/#                     | 1500#                  |                    |
| W Wheat                           | -B 27.1 bu         |                              | \$3.99/bu                    | 33.0 bu                | 3.27               |
| Corn                              | 70.3 bu            | \$160.36                     | \$2.28/bu                    | 77.4 bu                |                    |
| Fallow at                         | \$44.25/ac         | re. (\$35.40 + \$8.85)*      |                              |                        |                    |
| 3 W Wheat                         | 24.2 bu            | \$115.16                     | \$4.75/bu                    | 34.5 bu                | 3.33               |
| (\$-18.75) Safflowe               |                    | \$138.99                     | \$.145/#                     | 817#                   |                    |
| Millet                            | 867#               | \$106.07                     | \$.122/#                     | 1515#                  | d.                 |
| 4 W Wheat                         | 28.9 bu            | \$108.66                     | \$3.75/bu                    | 33.6 bu                | 3.23               |
| (\$-7.53) Millet                  | 1888#              | \$131.91                     | \$.069/#                     | 1884#                  |                    |
| 5a W Wheat                        | 34.1 bu            | \$110.04                     | \$3.22/bu                    | 33.7 bu                | 3.26               |
| (\$-53.00) Corn                   | 54.9 b             |                              | \$2.84/bu                    | 75.5 bu                |                    |
| Sunflowe                          | r 455#             | \$136.82                     | \$.30/#                      | 1013#                  |                    |
| S Wheat                           | to millet 42       | 26# \$124.84                 | \$.293/#                     | 1783#                  |                    |
| 6a W Wheat                        | -B 24.7 b          | u \$122.58                   | \$4.96/bu                    | 37.1 bu                | 3.30               |
| (\$-30.06) Sunflow                | er 818#            | \$141.12                     | \$.172/#                     | 1045#                  |                    |
| Fallow at                         | \$74.92/ac         | re. (\$59.94+ \$14.98)*      |                              |                        |                    |
| W Wheat                           | -A 34.5 b          | u \$162.36                   | \$4.70/bu                    | 49.2 bu                | 3.30               |
| 9a W Wheat                        | -B 27.5 bu         | \$123.30                     | \$4.48 /bu                   | 37.5 bu                | 3.28               |
| (\$-48.99) Safflowe               |                    | \$137.39                     | \$.222/#                     | 808#                   |                    |
|                                   |                    | cre. (\$59.94+ \$14.98)*     |                              |                        | 15 A               |
|                                   |                    | t 1028# \$202.34             | \$.196 / #                   | 2890#                  |                    |
| 10 W Wheat                        | 22.5 bu            | \$107.00                     | \$4.75/bu                    | 32.7 bu                | 3.27               |
| (\$10.11) Chickpea                | a 976#             | \$167.36                     | \$.171/#                     | 636#                   |                    |
| Millet                            | 1197#              | \$107.43                     | \$.089/#                     | 1534#                  |                    |
| 11 W Wheat                        | t 28.2 bu          | \$108.48                     | \$3.84/bu                    | 32.7 bu                | 3.31               |
| (\$-17.96) Corn                   | 76.6 bu            | \$162.00                     | \$2.11/bu                    | 78.2 bu                | 6                  |
| Millet                            | 1017#              | \$106.49                     | \$.104/#                     | 1521#                  |                    |
|                                   |                    |                              | eld to Break-Even Point      |                        |                    |
|                                   |                    | See Chart<br>\$15.66bu       | Corn<br>Millet               |                        |                    |
|                                   |                    | \$15.000u                    | Safflower                    |                        |                    |
|                                   |                    | C = B / A                    | D = B / E                    |                        |                    |
| *The fallow expe                  | nse was se         | parated at 80% for the fin   | st crop year and 20% to the  | he second crop ye      | ar.                |

The fallow expense was separated at 80% for the first crop year and 20% to the second crop year.
 Note: Winter Wheat values have been adjusted for protein content in column (E).
 (2004 Total Precipitation) April-0.19" May-3.62" June-2.05" July-2.35" August-0.99"

#### Wall Rotation Study Weed Counts - 2004

**Objectives:** 1) To determine what weeds and intensity are present in each rotation. 2) To determine what effects crop rotations have on weed control.

**Procedures:** All 124 plots of the Wall Rotation Study were evaluated (visually rated) on April 15, July 15, and October 15, 2004 for weed type and density in each plot. A rating of (**0**) means that the plot was <u>completely</u> weed free. A rating of (**5**) indicates that the plot was totally covered with weeds. The **Weed Rating** is derived from adding up the weed scores in all 4 plots and dividing by 4. The **Rotation weed mean** is derived from adding up the plot rating and dividing by the number of cropping treatments in each rotation. With the **Weed Rating** and **Rotation weed mean**, the lower the number, the lower the incidence of weeds.

**Discussion:** There are approximately 35 weed species that are identified at this rotation study (Table 43). Approximately half of these weeds are of major economic importance and are directly competing with the crops at some point for valuable moisture, nutrients and sunlight. The overall highest incidence of weeds in 2004 was observed during the July 15 rating. The second highest was seen on the April 15 rating and the fewest weeds present were at the October date (Table 42). If we look at the net return over the last 5 years 1999-2004 (not counting the drought disaster of 2002), 5 rotations stand out. Rotations 1, 2, 3, 10, and 11. These rotations all have weed pressure but they also have the means of removing weeds from the system.

None of the winter wheat in the entire study was sprayed until after harvest. It is interesting to note that Rotation 1 (Wheat/Fallow) was the <u>weediest</u> rotation in the study during the July observation date and the <u>cleanest</u> in the study at the October date. Mechanical tillage of the fallow during the heat of the summer and spraying during the cool seasons worked very well to keep weeds under control.

Rotation 2 (Wheat/Sunflower/Millet/Wheat/Corn/Fallow) has many opportunities during the growing season and fallow periods to effectively clean up the weed problems in the various crops. Rotation 3 (Wheat/Safflower/Millet) has excellent diversity for a short term rotation.

Rotation 10 (Wheat/Chickpea/Millet) has many similarities to rotation 3. Chickpeas are a high value crop but herbicide options are limited. Chickpeas are not as moisture use intensive as the Safflower is. Rotation 11 (Wheat/Corn/Millet) is unique in that there is no broad leaf in this rotation. The corn segment is very weed free and the millet is a short term and shallow rooted crop.

The weediest rotation this year over the 3 rating dates was Rotation 4. This rotation has about 11 months of fallow period after harvest of the wheat crop to planting of the millet crop. This non-crop period is too long. Rotation 4 was sprayed 5 times this year verses 3 sprayings in the other millet plots at this study.

Weed pressure in the rotations will vary from year to year depending upon soil and air temperatures, rainfall, canopy effect, mechanical tillage, types of herbicides used and timing of planting and so on. Ultimately, it is important to get a thorough weed cleansing at least one time during the crop season and/or during the fallow periods. Every crop in this rotation has a fallow period of at least a few months where there is no crop growing. It is critical to get good weed control during these opportunity windows of the fallow periods. Spraying pre-plant of the crops and also in the late fall are excellent times to keep weed populations in check. It is important to be versatile on herbicide options. We have inadvertently selected for ALS resistant Kochia at this study in the past by continued use of sulfonylurea herbicides. We have since moved on to alternative types of herbicides that will control the new strains of Kochia that we now have.

| Rotation           |        | April 15, 2004                        |              | tion Weed Ratings.<br>July 15, 2004 | 0        | ctober 15, 2004    |  |
|--------------------|--------|---------------------------------------|--------------|-------------------------------------|----------|--------------------|--|
| Notation           | Weed   | Weeds Present                         | Weed         |                                     |          | Weed Weeds Present |  |
|                    | Rating | **Ceus i lesent                       | Rating       |                                     | Rating   |                    |  |
| Rotation 1         |        |                                       | - i totting  |                                     | - roung  | -                  |  |
| W. Wheat           | 0.25   | db                                    | 4.00         | ko, rt, sg, lq, byg                 | 0.00     |                    |  |
| Fallow             | 3.25   | v w, ko, db                           | 2.00         | ko, rt, fxt                         | 0.25     | pc                 |  |
| Rot Mean           | 1.75   | · · · · · · · · · · · · · · · · · · · | 3.00         |                                     | 0.12     |                    |  |
| Rotation 2a        |        | · · ·                                 |              |                                     |          |                    |  |
| Corn               | 3.25   | ko, v w, db                           | 0.00         |                                     | 1.50     | sg,pl,pc,tg,bl     |  |
| Fallow             | 1.25   | bl, v w, db                           | 2.75         | ko, fxt, rt, pig, pw                | 0.00     |                    |  |
| W. Wheat-a         | 0.25   | db                                    | 3.00         | ko, sg, fxt                         | 0.00     |                    |  |
| Sunflower          | 4.00   | v w, ko, pl                           | 2.00         | fxt, ko, d, byg                     | 2.00     | sg,db,wbw          |  |
| Millet             | 1.75   | v.w, d, pl                            | 0.75         | ko, rt, byg                         | 1.00     | pc,bl,db           |  |
| W. Wheat-b         | 0.75   | ko                                    | 1.50         | ko, fxt, rt, pl                     | 0.00     |                    |  |
| Rot Mean           | 1.87   |                                       | 1.66         |                                     | 0.75     |                    |  |
| Rotation 3         |        |                                       |              |                                     |          |                    |  |
| Safflower          | 1.00   | db, ko                                | 1.25         | ko, fxt, rt, pl                     | 0.00     | <u> </u>           |  |
| Millet             | 2.50   | db, v w, pl, ko                       | 0.75         | ko, rt, p sp                        | 0.87     | db,pc              |  |
| W. Wheat           | 1.00   | db, ko                                | 2.75         | rt, ko, f mar, jbr                  | 0.00     |                    |  |
| Rot Mean           | 1.50   |                                       | 1.58         |                                     | 0.29     |                    |  |
| Rotation 4         |        |                                       |              |                                     | <b>-</b> | 1                  |  |
| W. Wheat           | 1.00   | db, bl,                               | 3.00         | rt, ko, f mar, jbr, fxt             | 0.00     |                    |  |
| Millet             | 4.25   | db, ko                                | 1.00         | sg, rt, ko                          | 1.75     | db, v w            |  |
| Rot Mean           | 2.62   |                                       | 2.00         |                                     | 0.87     |                    |  |
| Rotation 5a        |        | +                                     |              |                                     |          |                    |  |
| S. Wheat           | 0.25   | ko                                    | 1.00         | ko, rt, sg                          | 1.00     | pc, d              |  |
| W. Wheat           | 0.50   | db, ko                                | 1.00         | jbr, ko, rt, f mar, fxt             | 0.00     |                    |  |
| Corn               | 4.75   | v w, ko, db                           | 0.00         |                                     | 1.75     | d, bl, sg, pc,v w  |  |
| Sunflower          | 1.25   | db; v w                               | 1.75         | sg, p sp, byg                       | 1.75     | sg, vw, bl, db     |  |
| Rot Mean           | 1.68   |                                       | 0.93         |                                     | 1.12     |                    |  |
| Rotation 6a        | 1.00   |                                       | 0.00         |                                     |          |                    |  |
| W. Wheat-a         | 0.25   | db                                    | 2.75         | db, jbr, rt, ko, f mar, pl, lq      | 1.75     | db                 |  |
| W. Wheat-b         | 1.00   | db                                    | 1.50         | jbr, ko                             | 0.00     |                    |  |
| Sunflower          | 4.25   | v w, ko, pl                           | 1.50         | ko, p sp, pw, fxt                   | 1.75     | v w, sg, d, LLs    |  |
| Pea/Fallow         | 0.00   |                                       | 0.25         | tg                                  | 0.00     | V W, 39, 0, LL3    |  |
| Rot Mean           | 1.37   |                                       | 1.50         |                                     | 0.87     | +                  |  |
| Rotation 9a        |        |                                       |              | ·····                               | 0.07     |                    |  |
| W. Wheat-a         | 0.25   | db                                    | 0.75         | sg, fxt                             | 0.62     | db, pc             |  |
| W. Wheat-b         | 1.00   | v w, db                               | 1.75         | ko, jbr, db                         | 0.02     |                    |  |
| Safflower          | 2:00   | ko, db                                | 1.12         | v w, ko                             | 0.00     |                    |  |
| Pea/Fallow         |        | db, ko                                | 0.00         | • ••, 10                            | 0.50     | db                 |  |
| Rot Mean           | 1:00   |                                       | 0.90         |                                     | 0.30     |                    |  |
| Rotation 10        | 1.50   |                                       | 0.00         |                                     |          |                    |  |
| Chickpeas          | 1.25   | db                                    | 1.75         | ko, fxt, p sp, sg, lls              | 0.00     |                    |  |
| Millet             | 2.00   | db, ko, v w                           | 0.75         | ko, rt, d, f.mar                    | 1.00     | pc, db             |  |
| W. Wheat           | 2.00   | db, ko                                | 2.75         | ko, f mar, jbr, rt                  | 0.00     | - po, un           |  |
| Rot Mean           | 1.75   |                                       | 1.75         | NO, FILIAL, JOL, IL                 | 0.00     |                    |  |
| Rotation 11        | 1.75   |                                       | 1.75         |                                     | 0.00     |                    |  |
| Corn               | 2.75   | www.ko.db                             | 0.00         | ·····                               | 2.00     |                    |  |
| Millet             | 0.75   | v w, ko, db<br>v w, bl, d, db         | 2.75         | ko sa hya wa                        | 1.00     | pc, sg             |  |
| Willet<br>W. Wheat | 0.75   | bl                                    |              | ko, sg, byg, wg                     | 0.00     | pc                 |  |
| Rot Mean           | 1.41   |                                       | 3.00<br>1.91 | ko, lq, rt, jbr                     | 1.00     | 1                  |  |
|                    |        | are listed from most to lea           |              | <u> </u>                            | 1.00     | <u> </u>           |  |

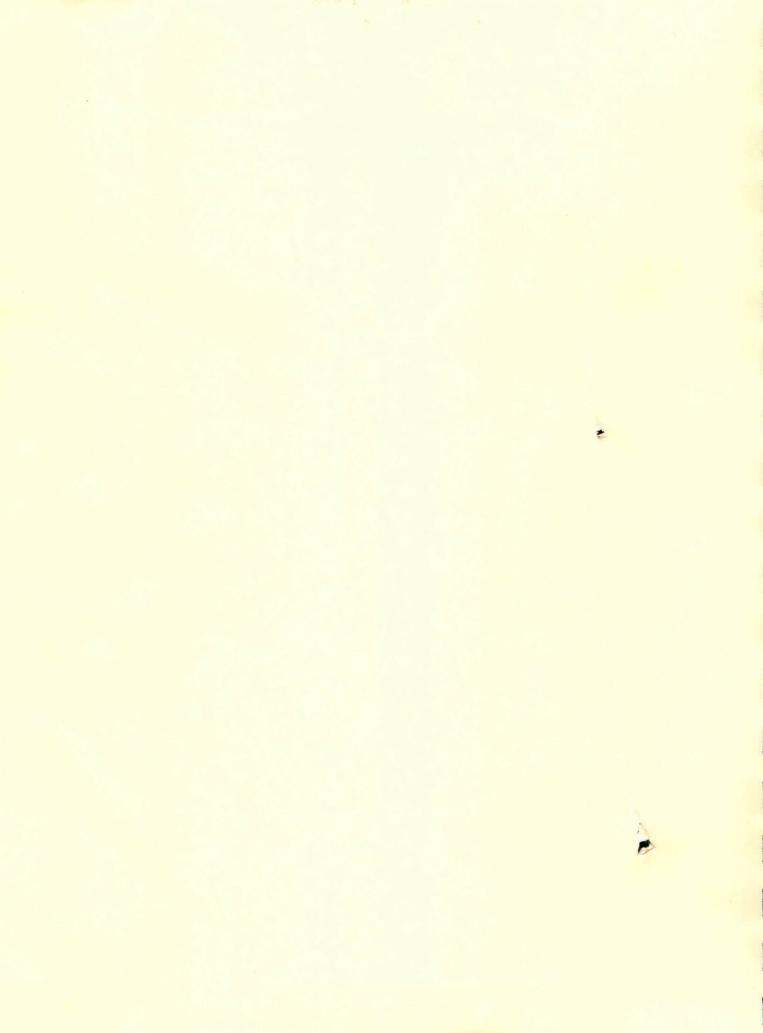
#### Table 42. Wall Rotation Weed Ratings.

Note: Weeds listed above are listed from most to least.

Note: On the July 15 evaluation date, downy brome and Japanese brome are listed separately because they were easy to differentiate.

Legend: db-downy brome, jbr - Japanese brome, vo-volunteer wheat, ko-kochia (ALS & non - ALS strains), pl-prickly lettuce, d - dandelion, bl-blue lettuce, fxt – green or yellow foxtail, rt – Russian thistle, sg – stinkgrass, Iq – lambs quarters, byg – barnyard grass, pig - red root pigweed, pw – poverty weed, f mar – fetid marigold, p sp – prostrate spurge, tg – tumble grass, IIs – lance-leaf sage, pc – pennycress, wg – witchgrass, pl – prickly lettuce.

## Table 43. Weeds at the Wall Rotation Study and their characteristics.


|                  | ··       |                 | Station Study and t |              |                     |
|------------------|----------|-----------------|---------------------|--------------|---------------------|
| Common Name      | Growth   | Life Span       | Origin              | Season or    | Reproduction        |
|                  | Form     |                 |                     | flowering    |                     |
|                  | <u> </u> |                 |                     | dates        |                     |
| ALS Kochia       | Forb     | Annual          | Eurasia             | July-October | Seeds               |
| Non-ALS Kochia   | Forb     | Annual          | Eurasia             | July-October | Seeds               |
| Russian Thistle  | Forb     | Annual          | Europe              | Aug-October  | Seeds               |
| Dandelion        | Forb     | Perennial       | Eurasia             | Apr-October  | Seeds               |
| Prickly Lettuce  | Forb     | Annual          | Europe              | July-Sept    | Seeds               |
| Pennycress       | Forb     | Ann / W. Ann    | Europe              | April-June   | Seeds               |
| Green Foxtail    | Grass    | Annual          | Eurasia             | Warm         | Seeds               |
| Yellow Foxtail   | Grass    | Annual          | Europe              | Warm         | Seeds               |
| Downy Brome      | Grass    | Winter Annual   | Europe              | Cool         | Seeds               |
| Japanese Brome   | Grass    | Winter Annual   | Europe              | Cool         | Seeds               |
| Volunteer Wheat  | Grass    | Winter Annual   |                     | Cool         | Seeds               |
| Stink grass      | Grass    | Annual          | Europe              | Warm         | Seeds               |
| Green Foxtail    | Grass    | Annual          | Eurasia             | Warm         | Seeds               |
|                  |          |                 |                     |              |                     |
| Mare's Tail      | Forb     | Annual          | Native              | June-Sept    | Seeds               |
| Curlycup gumweed | Forb     | Biennial/sl Per | Native              | July-October | Seeds               |
| Black Nightshade | Forb     | Annual          | Native              | May-October  | Seeds               |
| Blue Lettuce     | Forb     | Perennial       | Native              | June-Sept    | Rhizomes / seed     |
| Lambsquarters    | Forb     | Annual          | Europe              | June-Sept    | Seeds               |
| Barnyard Grass   | Grass    | Annual          | Europe              | Warm         | Seeds               |
| Redroot Pigweed  | Forb     | Annual          | Native              | July-October | Seeds               |
| Tansy Mustard    | Forb     | Annual          | Native              | March-Aug    | Seeds               |
| Common Sunflower | Forb     | Annual          | Native              | July-Sept    | Seeds               |
| Fetid Marigold   | Forb     | Annual          | Native              | July-Sept    | Seeds               |
| Prostrate Spurge | Forb     | Annual          | Native              | June-October | Seeds               |
| Tumblegrass      | Grass    | Perennial       | Native              | Warm         | Seeds               |
| Lance leaf Sage  | Forb     | Annual          | Native              | June-October | Seeds               |
| Witchgrass       | Grass    | Annual          | Native              | Warm         | Seeds               |
| Sand bur         | Grass    | Ann / sl per.   | Native              | Warm         | Seeds               |
| Common Purslane  | Forb     | Annual          | Eurasia             | May-Nov      | seed/stem fragments |
| Buffalo bur      | Forb     | Annual          | Native              | May-October  | Seeds               |
| Wild Buckwheat   | Forb     | Annual          | Europe              | June-Sept    | Seeds               |
| Western Salsify  | Forb     | Biennial/sl Per | Eurasia             | May-July     | Seeds               |
|                  |          |                 |                     |              |                     |
| Field Bindweed   | Forb     | Perennial       | Eurasia             | June-Sept    | Rhizomes / seed     |
| Canada Thistle   | Forb     | Perennial       | Eurasia/N. Africa   | June-August  | Rhizomes / seed     |

ALS Kochia = Acetolactate Synthase (ALS) resistant Kochia has the ability to produce enzymes to counter the effects of sulfonylurea herbicides.

Note: The bolded weeds above are listed from the most to least prevalent in the Wall Rotation Study.

Legend: sl per. = short lived perennial.

Data in the above table is from "Weeds of Nebraska and the Great Plains" Published by Nebraska Department of Agriculture.



# 2004-2005 PREVIEW

The following is a partial listing of experiments that are either ongoing or soon will be initiated this coming spring. Data will be collected through the following year and presented in next years Annual Report.

#### 1) SDSU Wheat and Oilseed Crop Rotation Study at Wall, SD

This 14-acre trial was initiated in the spring of 1994. There are nine cropping sequences that are currently being evaluated. This rotation study looks at the economics, sustainability, and conservation compliance of wheat when grown in combination with minor oil seed crops (safflower, sunflower). This very important part of crop research in western South Dakota is funded by the South Dakota Wheat Commission and the South Dakota Oil Seeds Council.

#### 2) Variety Testing of Winter Wheat and Spring Grains (8 locations)

There are currently eight Crop Performance Test (CPT) sites in western South Dakota for evaluation of winter wheat and three sites for evaluating spring grains (SG). The Crop Performance Testing Site (CPT's) are located at Bison (SG), Ralph (SG), Hayes, Kennebec, Sturgis, Wall (SG), Oelrichs, and Martin. Spring grains to be tested include oats, barley, spring wheat and durum wheat.

#### 3) Winter Pulse Trials

In this trial, winter field pea and winter lentil varieties are being evaluated for winter survival and yield at Wall and Dakota Lakes, South Dakota.

#### 4) Field pea, Chickpea and Lentil Spring Planting Date Study and Variety Testing

Field pea, chickpea and lentil varieties will be grown again at five planting dates starting in the spring of 2005 at two sites in western. South Dakota and evaluated for performance. In addition, field pea and chickpea varieties will be planted at Selby, Hayes, Wall, and Bison and evaluated for grain yield. Field pea will be further investigated as a cover crop. Chickpeas (garbanzo beans) are a high risk but potentially high return crop. We are seeing more interest in the production of pulse crops in the West River area.

#### 5) Field Pea Plant Population Study

In this study, four field pea varieties will be planted at six plant populations at two locations in western South Dakota starting in the spring of 2004. The objective of this study is to determine the optimum plant population density for different pea varieties under western South Dakota conditions.

### 6) Chickpea Planting Date x Seeding Rate Study

In this study a single chickpea variety will be planted at four planting dates and four seeding rates. The objective of this study is to determine whether the effect of seeding rate on chickpea performance will vary depending on planting date. We will also evaluate the effect of seeding rate and planting date on disease pressure, insect pressure and on seed size.

#### 7) Safflower Planting Date Study

This multi-year study was started in the spring of 2002. This trial compares popular safflower varieties planted at several planting dates. The objective of this study is to determine the effect of planting date on disease development (e.g. alternaria), weed competition, insect pressure, seed color, oil content and yield of the safflower varieties.

#### 8) Mustard Evaluation

This is a multi-state study conducted in conjunction with the University of Nebraska, Kansas State University, University of Wyoming and University of Colorado. This project will look at the adaptability of canola (*Brassica napus*) and oilseed mustard (*Brassica juncea*) and their potential for biodiesel production.

### 9) Soybean Row Spacing x Population Study

This trial was initiated in the summer of 2004. We will again look at various row spacing and plant populations of soybeans in 2005 to determine if there is an advantage to ultra low seeding rates and wider rows in semi-arid environments.

### 10) Winter Wheat Planting Date Trials

Eight popular winter wheat varieties were planted in the fall of 2004 at Wall (black fallow) and Sturgis (notill). They are five planting dates in the study (Sept. 16, Sept. 30, Oct 13, Nov. 2, and Dec. 15). We will evaluate for winter hardiness, disease occurrence, protein content, test weight, and yield of the wheat varieties.

#### 11) Pulse Crops - Winter Wheat Sequence Study

This trial looks at planting winter wheat back on spring wheat, field pea, and chickpea stubbles. We are looking at the effect of different crop stubbles on soil moisture recharge, nitrogen fertilizer requirements, grain quality, and yield. Various rates of fertilizer will be applied in the spring to the winter wheat.