South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange

Extension Extra SDSU Extension

6-1-2002

Estimating Alfalfa Quality in the Field

Vance N. Owens South Dakota State University

Follow this and additional works at: http://openprairie.sdstate.edu/extension extra

Recommended Citation

Owens, Vance N., "Estimating Alfalfa Quality in the Field" (2002). Extension Extra. Paper 331. $http://openprairie.sdstate.edu/extension_extra/331$

This Other is brought to you for free and open access by the SDSU Extension at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Extension Extra by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

COLLEGE OF AGRICULTURE & BIOLOGICAL SCIENCES / SOUTH DAKOTA STATE UNIVERSITY / USDA

Estimating Alfalfa Quality in the Field

by Vance N. Owens, Extension forage specialist, SDSU Plant Science Department

Knowledge of alfalfa nutritive value is essential for making informed forage management decisions in alfalfa-based livestock production systems. However, most harvest management and storage decisions are made with no chemical composition information because obtaining analytical data is time consuming and expensive. The quality of forage needed for a particular operation is influenced by the intended use of the forage and by the dietary requirements of a given class of livestock.

The detergent fiber system of forage analysis (neutral detergent fiber, NDF; and acid detergent fiber, ADF) coupled with a measure of crude protein (CP) provide vital information for balancing rations of lactating dairy cows (Van Soest, 1994; Mertens, 1983). Therefore, knowledge of the preharvest concentration of NDF, ADF, and CP in alfalfa would allow producers to harvest, store, and inventory this feed resource based on its potential value in a ration.

Standard laboratory analyses for NDF, ADF, and CP are available from various commercial laboratories throughout the region. Forage testing labs provide quality analyses using either near infrared reflectance spectroscopy (NIRS) or standard wet-chemistry techniques. Wet-chemistry methods do not provide results quickly enough to be of practical use in predicting preharvest alfalfa quality. While NIRS is faster than wet chemistry, both methods would likely be too costly to be used routinely for numerous preharvest measurements.

Predictive Equations for Alfalfa Quality (PEAQ)

Predictive equations for alfalfa quality were developed and tested in Wisconsin in the late 1980's and early 1990's (Hintz and Albrecht, 1991; Owens et al., 1995). Researchers in Wisconsin determined that NDF and ADF could be accurately determined in the field by measuring height of the tallest stem and maturity of the most mature stem in a sample area. The PEAQ method was accurate over a range of environments and locations in Wisconsin. In addition, PEAQ has been successfully evaluated in Ohio, New York, Pennsylvania, Kansas, and California.

PEAQ validation began in South Dakota in 1997. Three samples from each of five environmentally diverse locations were gathered approximately weekly from first-, second-, and third-growth alfalfa. Environmental conditions were extremely variable during the growing season ranging from very dry to quite wet depending on location. PEAQ accurately estimated fiber composition at all locations. PEAQ was most accurate on alfalfa ranging in height from 14 to 40 inches, heights typical of harvested alfalfa. Results from 1997 indicate that PEAQ could be used to estimate preharvest alfalfa fiber composition in South Dakota.

Practical application of PEAQ might include:

- Determining, in conjunction with weather forecasts, whether to harvest on a given day.
- Deciding the order in which particular fields will be harvested.
- Selecting storage locations for given alfalfa lots.
- Establishing an initial inventory of the amounts and quality of feed, thus helping a producer estimate the requirements for purchased feedstuffs.

Using PEAQ

A detailed outline of how to use PEAQ in the field is shown in Table 1. Tables 2 to 4 can be used to estimate NDF, ADF, and relative feed value (RFV) without a calculator. Otherwise, values for height of the tallest stem and maturity stage of most mature stem can be used to estimate NUF and ADF using the equations shown in Step 4 of Table 1.

Example Calculation

Step 1: Choose a representative 2-square-foot area in a field.

Step 2: The most mature stem in the same area is in the early flower stage of development. Therefore, the maturity rating is 5.

Step 3: The tallest stem is 34 inches.

Step 4: Solve the equations or use Tables 2 to 4 to determine NDF, ADF, and RFV. From Tables 2 and 3 we determine that

this area of the field contains approximately 43.4% NDF and 32.8% ADF. An RFV of approximately 137 can be determined from Table 4 using the estimated values for NDF and ADF.

Step 5: Repeat the PEAQ procedure once for each 5 to 10 acres.

If this alfalfa field were harvested the day it was tested, prime quality hay (RFV of 151 or greater) would not be produced. Furthermore, since PEAQ does not account for quality or dry matter losses that occur during harvest and storage, alfalfa should be harvested when the estimated RFV is 20 to 30% higher than that desired in the final product. Therefore, to produce prime quality hay, alfalfa should be harvested when the estimated RFV of the standing alfalfa crop is 175 to 190.

Considerations with PEAQ

The PEAQ method can be used to estimate preharvest alfalfa fiber composition for all growth cycles. Fields to be tested should be pure alfalfa stands without severe weed, disease, or insect infestations.

It is also important to remember that PEAQ estimates the quality of the standing crop and does not take into account quality losses that may occur during harvest and storage. PEAQ estimates should not be used to balance rations. Stored alfalfa should be tested commercially to determine actual quality concentrations before feeding to livestock.

Further Resources Regarding PEAQ

- Hintz, R.W. and K.A. Albrecht. 1991. Prediction of alfalfa chemical composition from maturity and plant morphology. Crop Sci. 31:1561-1565.
- Mertens, D. 1983. Using neutral detergent fiber to formulate dairy rations and estimate the net energy content of forages. Proc. Cornell Nutr. Conf. for Feed Manuf. p. 60-69.
- Owens, V.N., K.A. Albrecht, and R.W. Hintz. 1995. A rapid method for predicting alfalfa quality in the field. J. Prod. Ag. 8:491-495.
- Van Soest, P.J. 1994. Nutritional ecology of the ruminant. 2nd ed. Cornell University Press, Ithaca, NY.

This publication and others can be accessed electronically from the SDSU College of Agriculture & Biological Sciences publications page, which is at http://agbiopubs.sdstate.edu/articles/ExEx8135.pdf

Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the USDA. Larry Tidemann, Director of Extension, Associate Dean, College of Agriculture & Biological Sciences, South Dakota State University, Brookings. SDSU is an Affirmative Action/Equal Opportunity Employer (Male/Female) and offers all benefits, services, and educational and employment opportunities without regard for ancestry, age, race, citizenship, color, creed, religion, gender, disability, national origin, sexual preference, or Vietnam Era veteran status.

- **Step 1:** Choose a representative 2-square-foot area in the field.
- **Step 2:** Determine the maturity index number or stage of the most mature stem in that area using the following criteria:

Maturity

index	Stage name	Stage description								
2	Late vegetative	Stem is more than 12 inches tall, no visible buds or flowers.								
3	Early bud	1 to 2 nodes with visible buds, no open flowers.								
4	Late bud	More than 2 nodes with visible buds, no open flowers.								
5	Early flower	1 node with at least one open flower.								
6	Late flower	2 or more nodes with open flowers.								

- Step 3: Measure the height (in inches) of the tallest stem in the 2-square-foot area.

 Measure from the soil surface (at the base of the crown) to the tip of the stem
 (NOT the tip of the highest leaf). Note that the tallest stem may not be the
 most mature stem.
- **Step 4:** Solve the PEAQ equations to estimate NDF and ADF:

$$NDF = 15.86 + (0.69 \text{ x HEIGHT}) + (0.81 \text{ x MATURITY INDEX})$$

$$ADF = 10.78 + (0.53 \text{ x HEIGHT}) + (0.79 \text{ x MATURITY INDEX})$$

OR

Use tables 2 to 4 to determine estimated NDF, ADF, and RFV values.

- Step 5: Repeat steps 1 through 4 in five representative areas of the field. Sample more times if the field is larger than 30 acres. Calculate value for NDF, ADF, and RFV for each sample, then average all values to get one value for the field.
- Note: This procedures estimates the quality of the standing alfalfa crop and does not account for changes that occur during, harvesting, wilting, and storage. These factors will raise NDF and ADF and lower RFV. PEAQ is most accurate on pure alfalfa stands that are relatively weed free and under little insect pressure.

Table 2. Estimating the NDF concentration of standing alfalfa using PEAQ.

	Stage of most mature stem											
Height of	2	3	4	5	6							
tallest stem	Late veg.	Early bud	Late bud	Early flower	Late flower							
(inches)	(Stem > 12 inches no buds visible)	(1 to 2 nodes with buds)	(more than 2 nodes with buds)	(1 node with 1 open flower)	(2 or more nodes with open flower)							
16	28.5	29.3	30.1	31.0	31.8							
17	29.2	30.0	30.8	31.6	32.5							
18	29.9	30.7	31.5	32.3	33.1							
19	30.6	31.4	32.2	33.0	33.8							
20	31.3	32.1	32.9	33.7	34.5							
21	32.0	32.8	33.6	34.4	35.2							
22	32.7	33.5	34.3	35.1	35.9							
23	33.4	34.2	35.0	35.8	36.6							
24	34.0	34.9	35.7	36.5	37.3							
25	34.7	35.5	36.4	37.2	38.0							
26	35.4	36.2	37.0	37.9	38.7							
27	36.1	36.9	37.7	38.5	39.4							
28	36.8	37.6	38.4	39.2	40.0							
29	37.5	38.3	39.1	39.9	40.7							
30	38.2	39.0	39.8	40.6	41.4							
31	38.9	39.7	40.5	41.3	42.1							
32	39.6	40.4	41.2	42.0	42.8							
33	40.3	41.1	41.9	42.7	43.5							
34	40.9	41.8	42.6	43.4	44.2							
35	41.6	42.4	43.3	44.1	44.9							
36	42.3	43.1	43.9	44.8	45.6							
37	43.0	43.8	44.6	45.4	46.3							
38	43.7	44.5	45.3	46.1	46.9							
39	44.4	45.2	46.0	46.8	47.6							
40	45.1	45.9	46.7	47.5	48.3							

Table 3. Estimating the ADF concentration of standing alfalfa using PEAQ.

	Stage of most mature stem												
Height of	2	3	4	5	6								
tallest stem	Late veg.	Early bud	Late bud	Early flower	Late flower								
(inches)	(Stem > 12 inches no buds visible)	(1 to 2 nodes with buds)	(more than 2 nodes with buds)	(1 node with 1 open flower)	(2 or more nodes with open flower)								
16	20.8	21.6	22.4	23.2	24.0								
17	21.4	22.2	23.0	23.7	24.5								
18	21.9	22.7	23.5	24.3	25.1								
19	22.4	23.2	24.0	24.8	25.6								
20	23.0	23.8	24.5	25.3	26.1								
21	23.5	24.3	25.1	25.9	26.7								
22	24.0	24.8	25.6	26.4	27.2								
23	24.6	25.3	26.1	26.9	27.7								
24	25.1	25.9	26.7	27.5	28.2								
25	25.6	26.4	27.2	28.0	28.8								
26	26.1	26.9	27.7	28.5	29.3								
27	26.7	27.5	28.3	29.0	29.8								
28	27.2	28.0	28.8	29.6	30.4								
29	27.7	28.5	29.3	30.1	30.9								
30	28.3	29.1	29.8	30.6	31.4								
31	28.8	29.6	30.4	31.2	32.0								
32	29.3	30.1	30.9	31.7	32.5								
33	29.9	30.6	31.4	32.2	33.0								
34	30.4	31.2	32.0	32.8	33.5								
35	30.9	31.7	32.5	33.3	34.1								
36	31.4	32.2	33.0	33.8	34.6								
37	32.0	32.8	33.6	34.3	35.1								
38	32.5	33.3	34.1	34.9	35.7								
39	33.0	33.8	34.6	35.4	36.2								
40	33.6	34.4	35.1	35.9	36.7								

Table 4. Relative feed value of standing alfalfa based on PEAQ estimates of NDF and ADF.

	50	136	135	134	132	131	129	128	126	125	123	122	120	611	811	911	115	113	112	110	601	107
	49	139	138	136	135	133	132	130	129	127	126	124	123	121	120	8	111	911	114	113	Ξ	110
	48	142	141	139	138	136	135	133	132	130	129	127	125	124	122	121	611	118	911	115	113	112
	47	145	144	142	140	139	137	136	134	133	131	130	128	127	125	124	122	120	611	117	911	114
	46	148	147	145	144	142	140	139	137	136	134	133	131	129	128	126	125	123	121	120	118	117
	45	152	150	148	147	145	144	142	140	139	137	135	134	132	131	129	127	126	124	123	121	119
	44	155	153	152	150	148	147	145	143	142	140	139	137	135	134	132	130	129	127	125	124	122
	43	159	157	155	154	152	150	149	147	145	143	142	140	138	137	135	133	132	130	128	127	125
	42	162	191	159	157	155	154	152	150	149	147	145	143	142	140	138	137	135	133	131	130	128
	41	991	165	163	191	159	158	156	154	152	150	149	147	145	143	142	140	138	136	135	133	131
NDF (%)	40	171	691	167	165	163	191	160	158	156	154	152	151	149	147	145	143	142	140	138	136	134
Z	39	175	173	171	169	167	991	164	162	160	158	156	154	153	151	149	147	145	143	141	140	138
	38	179	178	176	174	172	170	168	166	164	162	160	159	157	155	153	151	149	147	145	143	141
	37	184	182	180	178	177	175	173	171	691	167	165	163	191	159	157	155	153	151	149	147	145
	36	189	187	185	183	181	179	177	175	173	171	691	167	165	163	191	159	157	155	153	151	149
	35	195	193	161	189	187	185	182	180	178	176	174	172	170	168	991	164	162	160	158	156	153
	34	201	861	961	194	192	190	188	186	184	181	179	177	175	173	171	169	167	164	162	160	158
	33	207	204	202	200	861	961	194	161	189	187	185	183	180	178	176	174	172	691	167	165	163
	32	213	211	209	206	204	202	200	197	195	193	190	188	186	184	181	179	177	175	172	170	168
	31	220	218	215	213	211	208	206	204	201	199	197	194	192	190	187	185	183	180	178	176	173
	30	227	225	223	220	218	215	213	210	208	206	203	201	198	961	194	161	189	186	184	181	179
	ADF (%)	20	21	22	23	24	2.5	26	2.7	28	29	3.0	3.1	32	33	34	35	36	37	38	39	40