brought to you by 🐰 CORE

South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange

Extension Extra SDSU Extension

12-1-2004

South Dakota Flax Variety Evaluations 2004

Kathleen Grady South Dakota State University

Lee Gilbertson South Dakota State University

Follow this and additional works at: http://openprairie.sdstate.edu/extension extra

Recommended Citation

Grady, Kathleen and Gilbertson, Lee, "South Dakota Flax Variety Evaluations 2004" (2004). *Extension Extra*. Paper 267. http://openprairie.sdstate.edu/extension_extra/267

This Other is brought to you for free and open access by the SDSU Extension at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Extension Extra by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

SOUTH DAKOTA STATE UNIVERSITY / COLLEGE OF AGRICULTURE & BIOLOGICAL SCIENCES / USDA

2005 South Dakota Flax Variety Evaluations

Kathleen Grady, oilseed breeder and extension specialist and Lee Gilbertson, senior ag research technician

The success of flax production is affected by choice of variety. Carefully examine variety characteristics such as seed yield, oil content, disease resistance, and maturity. In some cases oil content or other traits may offset a yield advantage.

South Dakota

Cooperative Extension Service

Yield

Evaluate as much yield data as possible when selecting a variety, looking at relative performance over many locations and years. For example, in this publication, variety comparisons from 3 years and 4 locations are better than those from a single year or location. Consistently good performance over many environments is called "yield stability."

Good yield stability means that a variety may or may not be the best yielder at all locations, but it does rank high in yield potential at many locations. A variety that ranks in the upper 20% over all locations exhibits better yield stability than one that is the top yielder at two locations but ranks in the lower 40% at two other locations.

Table 1 presents flax yield data from 2005 for several sites in South Dakota. Three-year and statewide yield averages also are provided. Table 2 summarizes the characteristics of the varieties included in the performance trials.

To determine if one variety is better than another for a given trait, use the least significant difference (LSD.10) value at the bottom of each data column. The LSD value is a statistical way to indicate if a trait like yield differs when comparing two varieties. If two varieties differ by more than the indicated LSD value for a given trait, they will likely differ when grown again under highly similar conditions.

For example, if the trial at Webster could be repeated

exactly as it was in 2005 (see Table 1), the yield ranking of Selby (27.3 bu/A) and Webster (24.8 bu/A) might change places since their yield difference (2.5 bu/A) is less than the indicated LSD value of 3.5 bu/A.

ExEx8055

Plant Science

However, we would expect Selby (27.3 bu/A) to yield more than CDC Valour (23.1 bu/A) if the test was repeated since their yield difference (4.2 bu/A) is greater than the indicated yield LSD value of 3.5 bu/A.

In Table 1, the minimum yield of varieties that were in the top-yielding group at a particular location is printed at the bottom of each data column (when significant differences in yield were measured). Any variety meeting or exceeding this minimum yield value differed by less than the LSD.10 value from the highest-yielding variety in the test and is therefore considered to be in the top-yielding group. For example, in the 2005 trial at Webster there were six varieties in the top-yield group. Numerically, Selby had the highest yield (27.3 bu/A). However, York, CDC Bethume, Webster, CDC Arras, and FP2119 were also in the top-yield group, because their yields were within one LSD value (3.5 bu/A) of Selby.

If the LSD.10 value is indicated as 'ns', it means that there were no statistically significant differences in yield among the varieties. In other words, the variety yields were all close enough to each other to be essentially the same, considering the amount of error inherent in the test.

When evaluating yield, look at as many trials as possible. It is unlikely that the environmental conditions of a test will repeat in any future year.

The coefficient of variability (C.V.) listed at the bottom of the data table is a relative measure of the precision or reliability of a test. Generally, trials with low C.V. rates are more reliable for making variety choices than trials with higher C.V. rates. Trials with C.V. rates not exceeding 15-20% may be considered reliable.

Oil Content

Among varieties with similar yield potential, select the one with the highest oil content.

Maturity

Later-maturing varieties generally will produce higher yields than early varieties when seeded at normal planting dates. Maturity is particularly important if planting is delayed. In many cases of late seeding only an early variety will mature properly and exhibit its best yield potential and oil content.

Seed Availability and Quality

Seed sources for Canadian and some older flax varieties may be limited. Be sure to plant only high quality seed with good germination. Certified seed is recommended to assure varietal purity, seed viability, and freedom from pathogens and weed seed.

Table 1. 2005 and three-year average flax yields(bu/A) at several locations in South Dakota.

			kings		kings	Watertown Webster						State-	Yield*
	Origin		seeded	Late-seeded		_Wate	Watertown V			Statewide		wide	Sta-
Variety	-Year	2005	2-yr	2005	3-yr	2005	2-yr	2005	3-yr	2005	3-yr	Rank	bility
			-2-		-3-		-2-		-3-	-4-	-10-		
AC Carnduff	CAN-99	25.4	29.8	21.7	21.1	30.8	32.2	23.0	33.7	25.1	28.9	2	3/9
AC Hanley	CAN-02	23.6	25.9	18.1	20.3	31.6	30.7	21.0	32.5	23.5	27.1	18	1/9
AC Watson	CAN-97	25.9	25.4	18.9	19.6	22.8	28.8	22.7	34.7	22.5	27.3	16	2/9
Carter	ND-05	26.0	29.3	22.6	19.9	33.8	32.6	22.5	32.6	26.1	28.1	10	3/9
Cathay	ND-97	27.6	25.9	20.6	21.3	26.2	26.9	21.5	30.2	23.9	26.1	25	2/9
CDC Arras	CAN-00	23.6	25.4	22.7	23.1	29.5	35.2	25.2	35.1	25.2	29.4	1	6/9
CDC Bethume	CAN-00	23.7	26.5	21.7	21.4	21.4	29.7	26.3	34.9	23.2	28.2	8	5/9
CDC Mons	CAN-03	25.4	28.6	20.3	19.0	29.0	29.7	21.6	32.6	24.0	27.5	14	3/9
CDC Normandy	CAN-96	28.7	27.7	21.5	24.2	28.0	27.2	22.4	31.3	25.1	27.5	15	3/9
CDC Valour	CAN-97	25.5	24.8	19.9	20.1	26.7	28.9	23.1	32.7	23.7	26.6	22	1/9
Linora	CAN-92	21.2	27.0	20.9	23.2	18.8	26.9	20.0	31.3	20.1	27.3	17	3/9
Linott	CAN-66	25.4	26.5	22.0	21.0	27.0	29.5	22.5	31.4	24.2	26.8	19	1/9
McGregor	CAN-82	27.2	23.3	19.2	19.6	29.5	31.1	21.7	32.5	24.3	26.7	20	2/9
Nekoma	ND-02	24.8	28.5	20.2	21.7	33.3	32.5	22.0	29.9	25.0	27.9	11	2/9
Omega	ND-90	26.4	25.4	19.8	17.7	25.1	24.6	22.1	31.9	23.3	25.5	26	1/9
Pembina	ND-97	26.1	27.6	20.2	22.6	28.2	31.0	22.2	30.4	24.1	27.7	12	0/9
Prairie Blue	CAN-03	23.9	29.0	20.7	23.5	26.7	29.8	22.5	30.1	23.4	27.6	13	2/9
Rahab 94	SD-94	26.6	26.3	20.0	21.9	32.9	34.6	21.2	33.6	25.1	28.7	4	2/9
Selby	SD-00	26.8	27.2	22.7	22.6	26.5	30.0	27.3	31.9	25.7	28.3	7	4/9
Verne 93	SD-93	25.9	27.7	19.7	22.1	25.5	26.3	19.8	31.1	22.7	26.7	21	1/9
Webster	SD-98	27.8	28.1	20.3	23.6	29.5	31.8	24.8	32.4	25.5	28.5	6	3/9
York	ND-02	25.4	27.3	21.4	21.6	33.0	33.4	24.0	33.1	25.9	28.9	3	3/9
Experimentals													
FP2112	CAN-exp.	24.4	28.7	22.3	23.4	29.3	30.6	22.5	32.0	24.6	28.5	5	4/9
FP2114	CAN-exp.	21.3	23.1	18.9	20.8	29.3	30.4	20.3	31.3	22.4	26.5	23	1/9
FP2118	CAN-exp.	22.1	24.9	20.6	21.5	21.9	28.3	19.5	30.4	21.0	26.2	24	3/9
FP2119	CAN-exp.	29.3	29.2	17.1	18.6	28.4	30.7	25.1	34.9	24.9	28.2	9	3/9
FP2137	CAN-exp.	28.0		20.9		39.0							3/3
N2010B	ND-exp.	25.8		19.4		33.3		22.7		25.2			1/6
N2014	ND-exp.	28.1		19.6		27.4		21.7		24.2			1/6
N320	ND-exp.	29.5		18.6		28.2		23.1		24.8			1/6
N325	ND-exp.	24.1		22.1		31.1		22.5		24.9			2/6
Grand Mean		25.6	26.9	20.4	21.4	28.3	30.1	22.5	32.3	24.0	27.6		
LSD.10		3.2	ns^	2.4	ns	4.8	ns	3.5	ns	2.7	ns		
Minimum yield of top group		26.3		20.3		34.2		23.8		23.4			
C.V.		9.3	11.4	8.7	13.5	12.3	11.2	11.3	10.1	11.2	10.0		

^{*} Yield stability = number of times in top yield group/total number of tests having significant differences.

[^] ns = differences among the varieties were not statistically significant.

Table 2. Characteristics of flax varieties.

						St	atewide	Average	es	Disease		ease
	Origin	Days to	Seed	Color			Height Yield (bu/A)			Lodgng		
Variety	-Year	Flower	Size	Flower	Seed	Oil %	(cm)	2005	3-yr	(1-9)*	Wilt	Rust
		-2-				-11-	-11-	-4-	-10-	-2-		
AC Carnduff	CAN-99	53	Small	Blue	Brown	40.4	56	25.1	28.9	1.3	MR	R
AC Hanley	CAN-02	51	Small	Blue	Brown	39.0	52	23.5	27.1	2.2	MR	R
AC Watson	CAN-97	50	Med-Lg	Blue	Brown	40.5	55	22.5	27.3	1.0	MS	R
Carter	ND-05	51	Small	Blue	Yellow	40.1	54	26.1	28.1	1.5	MS	R
Cathay	ND-97	52	Medium	Blue	Brown	40.6	57	23.9	26.1	1.0	R	R
CDC Arras	CAN-00	54	Medium	Blue	Brown	40.5	57	25.2	29.4	1.0	R	R
CDC Bethume	CAN-00	52	Medium	Blue	Brown	40.3	55	23.2	28.2	1.8	MR	R
CDC Mons	CAN-03	53	Small	Blue	Brown	40.2	53	24.0	27.5	1.0	MR	R
CDC Normandy	CAN-96	51	Med-Sm	Blue	Brown	40.2	56	25.1	27.5	1.2	MR	R
CDC Valour	CAN-97	49	Medium	Blue	Brown	39.5	55	23.7	26.6	2.3	S	R
Linora	CAN-92	50	Med-Sm	Blue	Brown	40.5	55	20.1	27.3	2.2	MR	R
Linott	CAN-66	51	Med-Sm	Blue	Brown	40.2	58	24.2	26.8	1.7	MS	R
McGregor	CAN-82	54	Medium	Blue	Brown	39.3	56	24.3	26.7	1.0	MR	R
Nekoma	ND-02	51	Med-Sm	Blue	Brown	40.4	54	25.0	27.9	1.0	S	R
Omega	ND-90	51	Medium	Blue	Yellow	40.6	54	23.3	25.5	1.5	MS	R
Pembina	ND-97	51	Med-Sm	Blue	Brown	40.3	56	24.1	27.7	1.0	R	R
Prairie Blue	CAN-03	51	Small	Blue	Brown	41.2	54	23.4	27.6	1.0	MR	R
Rahab 94	SD-94	51	Medium	Blue	Brown	40.8	54	25.1	28.7	1.0	MR	R
Selby	SD-00	52	Medium	Blue	Brown	40.6	58	25.7	28.3	1.3	MR	R
Verne 93	SD-93	49	Med-Sm	Blue	Brown	40.3	55	22.7	26.7	1.8	R	R
Webster	SD-98	54	Med-Sm	Blue	Brown	40.9	58	25.5	28.5	1.0	MR	R
York	ND-02	53	Medium	Blue	Brown	39.2	54	25.9	28.9	1.0	MR	R
Experimentals												
FP2112	CAN-exp.		Medium	Blue	Brown	41.1	56	24.6	28.5	2.0	S	R
FP2114	CAN-exp.		Large	Blue	Brown	40.4	52	22.4	26.5	2.2	MR	R
FP2118	CAN-exp.		Med-Lg	Blue	Brown	41.0	56	21.0	26.2	3.0	R	R
FP2119	CAN-exp.		Medium	Blue	Brown	39.6	51	24.9	28.2	1.3	S	R
FP2137	CAN-exp.			Blue	Brown							
N2010B	ND-exp.		Medium	Blue	Brown			25.2			MR	R
N2014	ND-exp.		Large	Blue	Brown			24.2			MR	R
N320	ND-exp.		Med-Sm	Blue	Brown			24.8				R
N325	ND-exp.		Medium	Blue	Brown			24.9				R
Grand Mean		51				40.3	55	24.0	27.6	1.5		
LSD.10		ns^				0.4	2	2.7	ns	1.5		
C.V.		2.3				1.7	5.3	11.2	10.0	85.3		

^{*} Lodging rated on a scale of 1 to 9, where 1=no lodging and 9=flat.

Access at http://agbiopubs.sdstate.edu/articles/ExEx8055-05.pdf

Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the USDA. Gerald Warmann, Director of Extension, Associate Dean, College of Agriculture & Biological Sciences, South Dakota State University, Brookings. SDSU is an Affirmative Action/Equal Opportunity Employer (Male/Female) and offers all benefits, services, and educational and employment opportunities without regard for ancestry, age, race, citizenship, color, creed, religion, gender, disability, national origin, sexual preference, or Vietnam Era veteran status.

ExEx8055:PDF. October 2005.

[^] ns = differences among the varieties were not statistically significant.