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Abstract
The Eurasian wheat belt (EWB) spans a region across Eastern Ukraine, Southern Russia, and
Northern Kazakhstan; accounting for nearly 15% of global wheat production. We assessed land
surface conditions across the EWB during the early growing season (April–May–June; AMJ)
leading up to the 2010 Russian heat wave, and over a longer-term period from 2000 to 2010. A
substantial reduction in early season values of the normalized difference vegetation index
occurred prior to the Russian heat wave, continuing a decadal decline in early season primary
production in the region. In 2010, an anomalously cold winter followed by an abrupt shift to a
warmer-than-normal early growing season was consistent with a persistently negative phase of
the North Atlantic oscillation (NAO). Regression analyses showed that early season vegetation
productivity in the EWB is a function of both the winter (December–January–February; DJF)
and AMJ phases of the NAO. Land surface anomalies preceding the heat wave were thus
consistent with highly negative values of both the DJF NAO and AMJ NAO in 2010.

Keywords: Russian heat wave, North Atlantic oscillation, land surface, food security, climate
change, Arctic amplification, MODIS

1. Introduction

The 2010 Russian heat wave was caused by an unprecedented
atmospheric blocking event that persisted from early July to
mid-August. Although various aspects of this blocking event
have been studied (Dole et al 2011, Matsueda 2011, Sedláček
et al 2011, Lau and Kim 2012, Trenberth and Fasullo 2012),
comparatively little attention has been focused on conditions
prior to the heat wave; with the exception of Miralles et al
(2014) who found soil-moisture deficits across most of
Southwestern Russia at the heat wave’s onset.

In fact, Russia experienced atypical weather for more
than six months leading up to the heat wave. First, the winter

of 2009/2010 was unusually cold (figure 1); attributable to an
anomalously negative phase of the North Atlantic oscillation
(NAO, Osborn 2011)—the lowest recorded value in a 60 year
NOAA record (figure 2(a)). The severe winter of 2009/2010
was then followed by a warmer-than-normal early growing
season. In May of 2010, positive land surface temperature
anomalies began to emerge in Russia (figure 1). This tem-
perature reversal coincided with persistence of the anom-
alously negative NAO through the early season, April–May–
June (figure 2(b)). By June, the extent of land surface tem-
perature anomalies South of Moscow was comparable to the
height of the heat wave in August (figure 1).

In this study, we examined the unusually warm early
season leading up to the Russian heat wave, but not the heat
wave itself. Using satellite imagery from the moderate reso-
lution imaging spectroradiometer (MODIS), aboard the
AQUA and TERRA satellites, we assessed land surface
conditions immediately prior to the heat wave, and over a
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longer term period from 2000 to 2010. To explain land sur-
face anomalies preceding the Russian heat wave, and longer-
term regional trends, we focused on statistical teleconnections
involving both winter and early season phases of the NAO.

Our study area encompassed a region we term the Eur-
asian wheat belt (EWB; see outline in figure 1). The EWB
accounts for nearly 15% of global wheat production (US
Department of Agriculture (USDA) Foreign Agricultural
Service 2010) and is projected to make an increasing con-
tribution to global food security (Fischer et al 2005, World
Bank 2009, Lioubimtseva and Henebry 2012). However,
climate change has contributed to an estimated 3–5-fold
increase in the probability of heat waves as severe as the 2010
event (Rahmstorf and Coumou 2011, Otto et al 2012).
Compared globally; Lobell et al (2011) found that reductions
in agricultural productivity attributable to global warming
were most severe in Russia. It is thus critically important to
identify those broad-scale atmospheric processes that influ-
ence the EWB’s climatic vulnerability.

2. Materials and methods

2.1. Study area

The EWB spans an arc of fertile soils across Southern Rus-
sian, Northern Kazakhstan, and nearly all of Ukraine. We
delineated boundaries of the EWB using the United Nations
Food and Agricultural Organization World Soil Map (United
Nations Food and Agriculture Organization (FAO) 2003).
The Western and central portions of the EWB coincide with
the ‘Black-Earth Region’ North of the Black Sea, where dark-
colored mollisols (Chernozems) are well-suited to small-grain
cultivation. The Eastern EWB is characterized by related
mollisols—Kastanozems and Phaeozems. We defined the
Northern boundary of the EWB based on transitional soils
(Greyzems and Luvisols) occupying the ecotone between
steppe to the South and temperate forest to the North (United
Nations Food and Agriculture Organization (FAO) 2003).

Figure 1.Monthly land surface temperature anomalies during the winter (January) and early season (May, June) preceding the 2010 Russian
heat wave and at the height of the heat wave (August). Anomalies are relative to a 2000–2008 baseline (NASA 2010a). Red and blue outlines
indicate extent of the Eurasian wheat belt (EWB).

Figure 2. Seasonally-averaged values of the North Atlantic oscillation (NAO) for the period 1951–2010. (a) The winter NAO (December–
February; DJF). (b) The early season NAO (April–June; AMJ). Seasonal averages calculated from monthly NAO values (NOAA CPC 2011).
Black lines are smoothed values using a 10 year Gaussian-weighted filter.
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2.2. Data

We assessed vegetation productivity using a remotely-sensed
index sensitive to vegetated landscapes, the normalized dif-
ference vegetation index (NDVI). The NDVI exploits differ-
ences in spectral reflectance characteristic of green vegetation,
i.e., low reflectance in the visible red wavelength (RED) and
high reflectance in the near-infrared (NIR), and is calculated
as: NDVI = (NIR−RED)/(NIR +RED). We calculated NDVI
from MODIS imagery at 500 m spatial resolution using the
nadir bi-directional reflectance distribution function adjusted
reflectance (NBAR) product (NASA 2010b). MODIS-NBAR
data is standardized to a nadir (vertical) viewing angle which
for purposes of temporal analysis reduces noise associated
with non-constant instrument view angle and atmospheric
effects. It is distributed as 16 day rolling composites updated
every eight days. To span the early growing season in the
EWB, we used ten NDVI composites from mid-April to the
last week in June.

Monthly values of the NAO index were obtained from
the NOAA Climate Prediction Center (NOAA Climate Pre-
diction Center 2011). This version of the NAO index is
generated by rotated principal components analysis (Barnston
and Livezey 1987). Empirical relationships between the NAO
and surface air temperature were analyzed over the period
1951–2010 using seasonally-averaged surface (2 m) air tem-
perature data from the NCEP/NCAR Reanalysis v1 (Kalnay
et al 1996). A similar analysis with respect to precipitation
was conducted using monthly precipitation data from the
Global Precipitation Climatology Centre (GPCC) Reanalysis
v5 (Rudolf et al 2010). In this case, GPCC data were not
available for 2010. Plant water availability in the EWB was
assessed using monthly values of the self-calibrated Palmer
drought severity index (scPDSI) obtained from the NOAA
Earth System Research Laboratory (NOAA Earth System
Research Laboratory 2011, Dai 2011).

2.3. Mann–Kendall (MK) trend analysis

Geospatially referenced NDVI time series were analyzed
using the MK trend test on values averaged over the early
growing season. The MK trend test is a nonparametric
method well-suited for identifying monotonic trends in time
series that contain missing values and/or do not meet nor-
mality assumptions (Hirsch and Slack 1984). In this case, the
MK test was used to assess the presence of monotonic trends
over the period 2000–2010. Note that we did not estimate
rates of change and make no inferences outside that period.
Rather, our objective was to identify locations (500 m pixels)
exhibiting directional change from 2000 to 2010 that was
statistically distinguishable from random variation.

3. Results

The NDVI is positively correlated with the amount of pho-
tosynthetic biomass per unit area (green leaf area) and thus is
an effective proxy for plant primary production (Tucker and

Sellers 1986), especially in semi-arid settings like the EWB
where leaf area and NDVI are strongly correlated (Fan
et al 2009, Li and Guo 2012). As such, we use the terms
‘NDVI’ and ‘primary production’ synonymously. Where the
unit of analysis is the NDVI, an interpretation of results is
often best expressed in terms of plant primary production
underlying the NDVI.

With respect to broad vegetation provinces, the EWB
occupies a semi-arid transitional zone between forest and
taiga to the North and the Caspian and Kazakh deserts to the
South (Olson et al 2001). This transitional zone, consisting
mainly of steppe and forest steppe, is reflected in a North–
South declining gradient in mean early season NDVI (primary
production) for our baseline period, 2000–2009 (figure 3(a)).
A similar declining gradient is found from West to East across
the region.

Comparison of mean early season NDVI in 2010 with the
2000–2009 baseline shows that substantial reductions in early
season primary production occurred prior to the Russian heat
wave (figure 3(b)). Negative land surface anomalies spanned
nearly the entire EWB from central Ukraine Eastward, with
highly negative anomalies concentrated in Northern
Kazakhstan. Positive NDVI anomalies were concentrated in
the far Western and Southwestern EWB (figure 3(b)).

Land surface anomalies in 2010 marked the continuation
of a longer-term decline in early season primary production in
the EWB. From 2000 to 2010, regionally-averaged NDVI
dropped more than 12% (figure 4(a)). This decline coincided
with a comparable drop in regionally-averaged values of the
self-calibrated Palmer drought severity index (scPDSI).
However, note that mean scPDSI increased slightly in 2010.
In this case, regional averaging included higher scPDSI
values in the Western EWB in 2010. Similarly, the modest
drop in regionally-averaged NDVI from 2009 to 2010 reflects
positive NDVI anomalies in the Western EWB (figure 3(b)).
In contrast with regional drying during the 2000 s, the longer-
term scPDSI time series from 1951 to 2010 has no overall
trend (figure 4(b)); suggesting that recent drought and its
effects on regional primary productiopm may simply repre-
sent normal multi-decadal variability.

We also assessed NDVI trends from 2000 to 2010 on a
spatially-explicit basis. Statistically significant (p< 0.05)
declines in early season primary production occurred across
most of the region (figure 3(c)) with a spatial pattern closely
resembling 2010 anomalies (figure 3(b)). Only in the far
Western EWB were trends significantly positive (figure 3(c)).

Next, we considered whether the NAO could have played
a role in the cold winter/warm early season pattern observed
in 2010 (figure 1). The winter NAO has a well-documented
effect on surface air temperatures across Western Eurasia
through its influence on the Atlantic storm track and warm air
advection from the North Atlantic into Northern Europe
(Hurrell 1995). Figure 5(a) shows that in the EWB, positive
NAOs are associated with warmer winters, negative NAOs
with colder winters. This teleconnection is reversed during the
early season (figure 5(b)). Thus, negative (positive) NAOs are
associated with warmer (cooler) AMJ temperatures in the
EWB—consistent with a flip in temperature regime when the
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NAO is persistently negative from winter through the early
season.

During the winter NAO’s negative phase, the Atlantic
storm track shifts Southward (Hurrell 1995). This influence

extends into the Western EWB, where negative NAOs are
associated with increased DJF precipitation, positive NAOs
with drier winters (figure 6(a)). This teleconnection is thus
consistent with the positive precipitation anomalies observed

Figure 3. (a) Mean early season NDVI for the period 2000–2009. Early season NDVI is averaged over ten MODIS composites from mid-
April to the end of June in each year. (b) Early season NDVI anomalies in 2010 relative to the 2000–2009 baseline. (c) Mann–Kendall
analysis of trends in mean early season NDVI for the period 2000–2010. The Eurasian wheat belt is indicated by black outline. Spatial
resolution is 500 m.
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in DJF 2010 (figure 6(b)). During the early season, figure 6(c)
shows that in central portions of the EWB, negative (positive)
NAOs are associated with decreased (increased) AMJ pre-
cipitation. While this teleconnection is mostly consistent with
negative precipitation anomalies in AMJ 2010, it does not
explain negative anomalies West of approximately 50°E
longitude (figure 6(d)).

Lastly, we focused on the NAO as a driver of early
season primary production in the EWB. Here we used mul-
tivariate linear regression with the DJF and AMJ phases of the
NAO as independent variables and mean early season NDVI
as the response (figure 7). This model structure was justified
by an absence of correlation between the DJF and AMJ NAO
over the 60 year NOAA record (r= 0.08, p = 0.57; figure 2).

Slope coefficients for the DJF NAO were predominately
positive across the region (figure 7(a)). In the EWB, negative
DJF NAOs are associated with reduced primary production
during the early season, positive DJF NAOs with increased
productivity. This pattern likely reflects a lagged, negative
effect of colder winters when the DJF NAO is negative versus
a positive effect of warmer winters during positive NAOs
(e.g., figure 5(a)).

Slopes coefficients for the AMJ NAO were less uniform
across the region. In the Western and Northern EWB, slope
values were primarily negative (figure 7(b)). These are the
more mesic portions of the EWB, as illustrated by regional

productivity gradients (figure 3(a)), where primary production
is likely more limited by early season air temperatures than
moisture availability. Thus, given the AMJ temperature tele-
connection (figure 5(b)), a positive (negative) effect of war-
mer (cooler) air temperatures is expected when the AMJ NAO
is negative (positive). By contrast, across much of the
Southern and Eastern two-thirds of the EWB, slope coeffi-
cients were generally positive (figure 7(b)); indicating an
opposite effect of the AMJ NAO. Here, in the more arid
portions of the EWB (figure 3(a)), negative NAOs are asso-
ciated with reduced AMJ primary production, positive NAOs
with increased productivity. This relationship likely reflects
the influence of AMJ precipitation and temperature tele-
connections (figures 5(b) and 6(c)) with respect to drought,
e.g., dry, warmer-than-normal early seasons during negative
NAOs. This is not to say that warmer air temperatures are not
expected to positively affect primary production during the
initial phase of plant growth when spring soil-moisture is
likely adequate. However, note that peak NDVI (leaf area) in
the EWB typically occurs in mid-June (result not shown);
indicating that the AMJ period encompasses a substantial
proportion (if not the majority) of primary production over the
entire growing season. Integrated over these three months, we
expect vegetation in the Southern EWB to be more water-
limited than temperature-limited; with warmer-than-normal

Figure 4. (a) Regionally-averaged time series of early season NDVI and early season self-calibrated Palmer drought severity index (scPDSI).
In each year, early season NDVI was averaged across the EWB over the 10 MODIS composites from mid-April to the end of June. Early
season scPDSI was averaged regionally from monthly scPDSI values for the months of April–May–June. (b) Regionally-averaged scPDSI
times series from 1951 to 2010. By Mann–Kendall trend test, this time series has no overall trend (p= 0.342).

Figure 5. (a) Slope (β) of linear regressions between the DJF NAO and mean DJF surface air temperature (2 m) for the period 1951–2010
using monthly average surface air temperature data from the NCEP/NCAR Reanalysis v1 (Kalnay et al 1996). Larger circles indicate highly
significant regressions at the p < 0.01 level; smaller circles indicate significance at the p < 0.05 level. Results at 2.5° spatial resolution
smoothed for display by bilinear interpolation. (b) As in (a), but for the AMJ NAO and mean AMJ surface air temperature.
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air temperatures during negative NAOs likely exacerbating
plant moisture-stress.

To summarize, within those parts of the EWB exhibiting
both declining primary production from 2000 to 2010
(figure 3(c)) and highly negative land surface anomalies in
2010 (figure 3(b)), the combined influence of the DJF and
AMJ phases of the NAO is reflected in coefficients of
determination generally exceeding 50% (figure 7(c)).

4. Discussion

We found land surface anomalies preceding the Russian heat
wave that were empirically consistent with a persistently
negative NAO in 2010. Given that the NDVI is an effective
proxy for leaf area in semi-arid ecosystems (Fan et al 2009, Li
and Guo 2012), these anomalies point to the importance of an
accurate representation of leaf area dynamics (vegetation
phenology) before and during the Russian heat wave, as has
been recently shown in simulations of the 2003 European heat
wave (Stéfanon et al 2012a). Notably, reductions in early
season NDVI prior to the European heat wave were also
concentrated in agricultural landscapes (Zaitchik et al 2006).

Miralles et al (2014) recently demonstrated the impor-
tance of soil drying and resulting increases in sensible heat
flux as drivers of air temperature extremes during the Russian

heat wave. Interestingly, they found soil moisture anomalies
at the heat wave’s onset closely resembling the pattern of land
surface anomalies that we document. Areas with initial soil
moisture deficits later exhibited the highest absolute tem-
peratures recorded during the heat wave. However, Miralles
et al (2014) also found that such deficits were not a necessary
pre-condition for an event as spatially extensive as the Rus-
sian heat wave. In areas where soil moisture deficits were not
initially present, atmospheric blocking effects including warm
air advection and high insolation under clear skies were suf-
ficiently strong enough to force land-atmosphere feedbacks
that rapidly dried soils, tipped the surface energy balance
toward high sensible heat fluxes, and entrained hot air within
the atmospheric boundary layer (Miralles et al 2014). In light
of these results, land surface anomalies linked to the NAO
might be best treated as playing a contributing role in the
Russian heat wave, in that they affected the partitioning of
latent and sensible heat at the heat wave’s onset, but not a
causal one, such that an anomalously negative NAO was not a
necessary pre-condition. Similarly, Stéfanon et al (2012b)
found that a characteristically Russian-type of heat wave is
dominated by synoptic circulation, not spring drought. On the
other hand, land surface pre-conditioning has been shown to
increase the sensitivity of summer temperatures in Europe
(daily maximum air temperature) to atmospheric blocking
(Fischer et al 2007, Hirschi et al 2011, Quesada et al 2012).

Figure 6. (a) Slope (β) of linear regressions between the DJF NAO and DJF precipitation for the period 1951–2009 using monthly
precipitation data from GPCC Reanalysis v5 (Rudolf et al 2010). Results at 0.5° spatial resolution smoothed for display by bilinear
interpolation. Larger (more dense) circles indicate regressions statistically significant at the p< 0.01 level. Smaller (less dense) circles indicate
significance at the p< 0.05 level. (b) 2010 DJF precipitation anomalies from the NCEP-CAMS (Ropelewski et al 1984). Results at 2.5°
spatial resolution smoothed by bilinear interpolation. (c) As in (a), but for the AMJ NAO and AMJ precipitation. (d) As in (b), but for 2010
AMJ precipitation anomalies.
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We expect that coupled atmosphere-land surface models
taking into account both leaf area and soil-moisture anomalies
prior to the Russian heat wave will better resolve the relative
importance of synoptic circulation versus land surface pre-
conditioning in 2010.

The linkage between a negative AMJ NAO and reduced
primary production in the EWB (figure 7(b)) is consistent
with teleconnections related to drought, i.e., with AMJ sur-
face air temperature (figure 5(b)) and precipitation
(figure 6(c)). However, the nearly uniform influence of the

Figure 7. Linear regression of mean early season NDVI against the DJF and AMJ phases of the NAO for the period 2000–2010. (a) Slope
coefficients corresponding to the DJF NAO. (b) Slope coefficients corresponding to the AMJ NAO. (c) Coefficients of determination for
regressions. Spatial resolution is 500 m.

7

Environ. Res. Lett. 9 (2014) 124015 C K Wright et al



winter NAO on the EWB (figure 7(a)) is not as intuitive.
Previous studies have shown a similarly-lagged statistical
relationship between the winter NAO and early season NDVI
in central Eurasia (Wang and You 2004, de Beurs and
Henebry 2008); with evidence that negative winter NAOs are
associated with a delayed start of season (SOS), positive
winter NAOs with an early SOS. However, we found no
evidence of a delayed SOS in 2010, or a trend in SOS during
the 2000 s (result not shown). In fact, there was an early
snowmelt prior to the Russian heat wave (Barriopedro
et al 2011). An alternate explanation could be the winter
NAO’s effect on overwintering survival of winter wheat. In
2010, winterkill totaling nearly two-million hectares of wheat
was reported in Western Russia (Vocke et al 2010). However,
we suspect that negative winter NAOs impact early season
plant growth via deep soil freezing during anomalously cold
winters; with subsequent effects on moisture availability in
spring. In Southern Russia, Cherenkova (2012) reported
reduced infiltration of snowmelt in spring 2010 due to an
unusually deep layer of frozen soil. In addition, so-called
‘physiological drought’ can occur when plant roots restricted
to the upper soil profile by frozen sub-soils quickly exhaust
available soil moisture (Repo et al 2008). In sum, there is a
clear need for further study to explain the winter NAO’s
lagged influence in the EWB.

Empirical relationships found here point to the need for
mechanistic studies of atmospheric circulation into the EWB
during the months of April–May–June (AMJ); a ‘shoulder
season’ not typically considered. For example, the AMJ
temperature pattern in figure 5(b) is indicative of Northward
advection of warm air from North Africa and the Middle East
during a negative NAO; suggesting the likely importance of
regional blocking patterns during the early season. To the best
of our knowledge, this teleconnection has not been previously
described. Such an absence is notable given the AMJ pat-
tern’s pronounced contrast with effects of the winter NAO
(figure 5(a)), where advection from the North Atlantic plays a
primary role (Hurrell 1995). Studies of the NAO’s influence
on the East Asian summer monsoon have shown that an
anomalously negative spring NAO can induce persistent sea
surface temperature anomalies in the North Atlantic; exciting
a Rossby wave train across Eurasia during summer and
enhancing atmospheric blocking centered on the Ural
Mountains (Wu et al 2009, 2012). Whether Rossby wave
propagation during the early season might also explain the
AMJ temperature teleconnection is an important question.

Declining primary production in the EWB (figure 3(c))
was consistent with a decadal decline in both the DJF and
AMJ phases of the NAO (figure 2). Such trends during the
2000 s may simply reflect normal multi-decadal variability
(e.g., figure 4(b)). However, a number of studies have now
shown that reduced sea ice extent in the Arctic can induce
wintertime circulation anomalies resembling a negative NAO
(Francis et al 2009, 2012, Honda et al 2009, Seierstad and
Bader 2009, Overland et al 2011, Jaiser et al 2012, Liu
et al 2012, Screen et al 2013, Tang et al 2014). This raises the
possibility that a negative shift in mean Arctic ice extent due
to anthropogenic forcing (Comiso 2006, Serreze et al 2007,

Wang and Overland 2009) could shift the probability dis-
tribution of the winter NAO toward its negative phase (Strong
and Magnusdottir 2009, Jaiser et al 2012). Given our results,
such a shift could pose a previously unrecognized climate-
change risk to wheat production in the EWB. We note,
however, that comprehensive GCM studies do not produce an
unequivocal, negative forcing of the winter NAO in response
to projected sea ice losses (Deser et al 2010, Gillett and
Fyfe 2013).

Potential negative forcing of the NAO during the AMJ
shoulder season has not been investigated. However, others
have proposed a link between rapid Arctic climate change
(Arctic amplification) and an increase in Rossby wave
amplitudes (Francis and Vavrus 2012, Petoukhov et al 2014,
Tang et al 2014), i.e., a more meandering atmospheric cir-
culation roughly analogous to a negative NAO. This theory is
controversial (Barnes 2013, Screen and Simmonds 2013a,
2013b), but we draw attention to it here because of the EWB’s
apparent sensitivity to the NAO’s negative phase. If Arctic
amplification does indeed effect a more meandering circula-
tion at mid-latitudes, the EWB may prove to be an early
responder to such a shift.

In sum, our results and those of others (Lobell et al 2011,
Rahmstorf and Coumou 2011, Otto et al 2012) clearly show
that the wheat growing regions of Russia, Ukraine, and
Kazakhstan form a nexus of unusual environmental change.
Given projections of an increasing contribution to global food
security by the EWB (Fischer et al 2005, World Bank 2009,
Lioubimtseva and Henebry 2012), we recommend the region
as an important focal area for future climate change studies—
emphasizing the EWB’s potential vulnerability to Arctic
amplification.
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