
South Dakota State University
Open PRAIRIE: Open Public Research Access Institutional
Repository and Information Exchange

Natural Resource Management Faculty Publications Department of Natural Resource Management

1-28-2015

Spatial and Seasonal Responses of Precipitation in
the Ganges and Brahmaputra River Basins to
ENSO and Indian Ocean Dipole Modes:
Implications for Flooding and Drought
M. S. Pervez

G. M. Henebry
South Dakota State University

Follow this and additional works at: http://openprairie.sdstate.edu/nrm_pubs

Part of the Geographic Information Sciences Commons, Physical and Environmental Geography
Commons, and the Spatial Science Commons

This Article is brought to you for free and open access by the Department of Natural Resource Management at Open PRAIRIE: Open Public Research
Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Natural Resource Management Faculty Publications by
an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more
information, please contact michael.biondo@sdstate.edu.

Recommended Citation
Pervez, M. S. and Henebry, G. M., "Spatial and Seasonal Responses of Precipitation in the Ganges and Brahmaputra River Basins to
ENSO and Indian Ocean Dipole Modes: Implications for Flooding and Drought" (2015). Natural Resource Management Faculty
Publications. 5.
http://openprairie.sdstate.edu/nrm_pubs/5

http://openprairie.sdstate.edu?utm_source=openprairie.sdstate.edu%2Fnrm_pubs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openprairie.sdstate.edu?utm_source=openprairie.sdstate.edu%2Fnrm_pubs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openprairie.sdstate.edu/nrm_pubs?utm_source=openprairie.sdstate.edu%2Fnrm_pubs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openprairie.sdstate.edu/nrm?utm_source=openprairie.sdstate.edu%2Fnrm_pubs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openprairie.sdstate.edu/nrm_pubs?utm_source=openprairie.sdstate.edu%2Fnrm_pubs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=openprairie.sdstate.edu%2Fnrm_pubs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/355?utm_source=openprairie.sdstate.edu%2Fnrm_pubs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/355?utm_source=openprairie.sdstate.edu%2Fnrm_pubs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1334?utm_source=openprairie.sdstate.edu%2Fnrm_pubs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openprairie.sdstate.edu/nrm_pubs/5?utm_source=openprairie.sdstate.edu%2Fnrm_pubs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:michael.biondo@sdstate.edu


Nat. Hazards Earth Syst. Sci., 15, 147–162, 2015

www.nat-hazards-earth-syst-sci.net/15/147/2015/

doi:10.5194/nhess-15-147-2015

© Author(s) 2015. CC Attribution 3.0 License.

Spatial and seasonal responses of precipitation in the Ganges and

Brahmaputra river basins to ENSO and Indian Ocean dipole

modes: implications for flooding and drought

M. S. Pervez1,2 and G. M. Henebry2

1ASRC Federal InuTeq, contractor to U.S. Geological Survey (USGS), Earth Resources Observation and Science (EROS)

Center, 47914 252nd Street, Sioux Falls, SD 57198, USA
2Geospatial Sciences Center of Excellence (GSCE) South Dakota State University, 1021 Medary Ave., Wecota Hall 506B,

Brookings, SD 57007-3510, USA

Correspondence to: M. S. Pervez (spervez@usgs.gov)

Received: 25 November 2013 – Published in Nat. Hazards Earth Syst. Sci. Discuss.: 20 February 2014

Revised: 2 December 2014 – Accepted: 20 December 2014 – Published: 28 January 2015

Abstract. We evaluated the spatial and seasonal responses

of precipitation in the Ganges and Brahmaputra basins as

modulated by the El Niño Southern Oscillation (ENSO) and

Indian Ocean Dipole (IOD) modes using Global Precipi-

tation Climatology Centre (GPCC) full data reanalysis of

monthly global land-surface precipitation data from 1901

to 2010 with a spatial resolution of 0.5◦
× 0.5◦. The GPCC

monthly total precipitation climatology targeting the period

1951–2000 was used to compute gridded monthly anomalies

for the entire time period. The gridded monthly anomalies

were averaged for the years influenced by combinations of

climate modes. Occurrences of El Niño alone significantly

reduce (88 % of the long-term average (LTA)) precipitation

during the monsoon months in the western and southeast-

ern Ganges Basin. In contrast, occurrences of La Niña and

co-occurrences of La Niña and negative IOD events signif-

icantly enhance (110 and 109 % of LTA in the Ganges and

Brahmaputra Basin, respectively) precipitation across both

basins. When El Niño co-occurs with positive IOD events,

the impacts of El Niño on the basins’ precipitation dimin-

ishes. When there is no active ENSO or IOD events (oc-

curring in 41 out of 110 years), precipitation remains below

average (95 % of LTA) in the agriculturally intensive areas

of Haryana, Uttar Pradesh, Rajasthan, Madhya Pradesh, and

Western Nepal in the Ganges Basin, whereas precipitation

remains average to above average (104 % of LTA) across the

Brahmaputra Basin. This pattern implies that a regular water

deficit is likely, especially in the Ganges Basin, with impli-

cations for the agriculture sector due to its reliance on con-

sistent rainfall for successful production. Historically, major

droughts occurred during El Niño and co-occurrences of El

Niño and positive IOD events, while major flooding occurred

during La Niña and co-occurrences of La Niña and negative

IOD events in the basins. This observational analysis will fa-

cilitate well-informed decision making in minimizing natural

hazard risks and climate impacts on agriculture, and supports

development of strategies ensuring optimized use of water

resources in best management practice under a changing cli-

mate.

1 Introduction

In the Ganges and Brahmaputra basins, water is the single

most important natural resource, and its availability is mostly

driven by the Indian summer monsoon which significantly

varies spatially and temporally. Around 60–80 % of the total

annual precipitation accumulates during the summer mon-

soon months of June–September (Immerzeel, 2008), crucial

for the over half of a billion people who live in the basin

and rely on precipitation and snowmelt for their livelihoods

and ecosystem services. Therefore, information on the spa-

tial and temporal distribution and variations of precipita-

tion is important for water management and environmen-

tal hazard monitoring on a local to regional scale. The In-

dian monsoon is intertwined and interacts with global-scale
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circulations linked to conditions in both the Pacific and In-

dian oceans, in particular the El Niño Southern Oscillation

(ENSO) and the Indian Ocean Dipole (IOD) modes. Pre-

cipitation over the Indian continent is inversely correlated

with sea surface temperature (SST) in the central and eastern

equatorial Pacific, specifically measured by the standardized

NIÑO3 index (SST anomaly average over 150–90◦ W, 5◦ S–

5◦ N region) (Ashok and Saji, 2007; Kumar et al., 1999). El

Niño events generally weaken precipitation over the Indian

continent through anomalous subsidence associated with the

shifting of rising limb of the Walker circulation toward the

anomalously warm water in the central and eastern Pacific

(Chowdhury and Ward, 2004; Kumar et al., 1999; Schott et

al., 2009). Ummenhofer et al. (2011b) reported that, during

the past 130 years, over 85 % of the El Niño events have pro-

duced anomalously dry conditions, and historically severe

droughts in India have always been accompanied by El Niño

events; however, the presence of El Niño did not always pro-

duce droughts (Kumar et al., 2006). On the other hand, IOD,

another dominant mode of interannual variability of the trop-

ical Indian Ocean, characterized as anomalously zonal SST

gradients within the tropical Indian Ocean accompanied by

strengthening or weakening of equatorial winds (Saji et al.,

1999; Webster et al., 1999), influences the Indian monsoon

precipitation through associated spatial shifts in the position

of the atmospheric convection (Ashok et al., 2001). A posi-

tive IOD event features an anomalously warm western Indian

Ocean accompanied by strengthened easterly winds along

the equatorial Indian Ocean, whereas a negative IOD event

features the opposite. The positive IOD events impact the In-

dian monsoon precipitation positively but most importantly it

counteracts the monsoon reduction expected during El Niño

events when it co-occurs with El Niño events (Ashok et al.,

2004; Ummenhofer et al., 2011b). For example, no droughts

occurred over India in 1997 despite a strong El Niño as it co-

occurred with strong positive IOD event, whereas drought

had occurred during a moderate El Niño event in 2002 (Ku-

mar et al., 2006). Ashok et al. (2001) showed that IOD mod-

ulates Indian monsoon precipitation and simultaneously af-

fects ENSO influence on the Indian summer monsoon pre-

cipitation. They concluded that IOD and ENSO have comple-

mentary effects on the Indian monsoon precipitation. When-

ever the IOD influence on the Indian monsoon precipitation

is high, the ENSO influence on the same is low, and vice

versa. As the variabilities of the Pacific and Indian oceans

are intricately linked, IOD events may occur independently

or in conjunction with ENSO (Saji et al., 1999; Meyers et

al., 2007; Yamagata et al., 2004; Saji and Yamagata, 2003),

and may also influence the development of ENSO (Luo et

al., 2008b). It has been reported that there are apparent com-

plementary interdecadal changes between the influences of

these climate modes on the Indian summer monsoon precip-

itation. In recent years, the characteristics of IOD are chang-

ing (Du et al., 2013), and their influence on Indian monsoon

precipitation are strengthening, while the influence of ENSO

on the Indian monsoon precipitation is weakening mostly be-

cause of increased frequency of co-occurrences of positive

IOD with El Niño, and reduced frequency of El Niño events

(Ashok et al., 2001; Kumar et al., 1999; Ummenhofer et al.,

2011b; Abram et al., 2008). In the future, ENSO amplitude is

not expected to change much under a warmer climate (Guil-

yardi et al., 2009); however, the tropospheric static stabil-

ity is expected to increase under a warmer climate, which is

expected to reduce the atmospheric circulation response to

a SST dipole resulting in little change in the frequency of

IOD events (Zheng et al., 2010), but the difference in ampli-

tude between positive and negative IOD events could dimin-

ish (Cai et al., 2013). Therefore the interactive influences of

IOD and ENSO on the Indian monsoon precipitation could

change due to global warming.

While the teleconnections from the Indo-Pacific to the In-

dian subcontinent modulate the Indian summer monsoon pre-

cipitation, the modulations on the monsoon precipitation are

not spatially uniform. ENSO events negatively impact mon-

soon precipitation over most of India with west–east cor-

relation gradients between NIÑO3 SST and precipitation,

whereas the IOD events have maximum impact around the

monsoon trough areas and a few parts of the west coast of

India (Ashok and Saji, 2007). Geographically, the Ganges

and the Brahmaputra basins are oriented west to east on the

Indian subcontinent, and the latter basin does not encompass

monsoon trough regions. Despite a strong influence of ENSO

and IOD on the all India monsoon precipitation (Ashok et

al., 2001), their influence varies significantly at basin level,

even IOD events have shown neutral to negative correlations

with precipitation in the Brahmaputra Basin (Ashok and Saji,

2007). This apparent paradox is the focus of this study.

The present study assesses the monsoon precipitation vari-

ability within the Ganges and Brahmaputra basins, as well

as occurrences of major droughts and flooding in the basins,

during independent and combined occurrences of El Niño,

La Niña, and IOD events over the past 110 years (1901–

2010). In particular, first we classify the years of El Niño,

La Niña, and IOD events during the study period (Meyers et

al., 2007). Second, using a Monte Carlo approach, we assess

where in each river basin and what time of year precipitation

is significantly affected by independent or combined occur-

rences of El Niño, La Niña, and IOD events. Finally, we as-

sess how the spatiotemporal variations in precipitation link

to the flooding and drought occurrences in each basin as a

result of climate mode forcings. This information is critical

to establish seasonal predictions of flooding and drought, and

for the management of water resources both in the near term

and for projected climates.

2 Study basins

The vast system of the Ganges (longitude 73 to 88◦ E and

latitude 22 to 32◦ N) and Brahmaputra (longitude 82 to
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98◦ E, and latitude 23 to 32◦ N) river basins has a drainage

area of 1.65 million km2, spanning from the floodplains to

the mountainous areas of Nepal, India, China, Bhutan, and

Bangladesh. The basins are physiographically diverse and

ecologically rich in natural and crop-related biodiversity.

Together they support livelihoods of a rural population of

over half billion through subsistence agriculture. The aver-

age annual precipitation in the Ganges Basin is 1550 mm,

and 2025 mm in the Brahmaputra Basin (Mirza, 2011), re-

spectively, and is expected to increase under a warmer cli-

mate (Pervez and Henebry, 2014). As illustrated in Fig. 1,

the basins exhibit wide spatial variations in precipitation. The

distribution of the average June–October precipitation cli-

matology (mm month−1) shows a band of accumulated high

precipitation over 250 mm month−1 along the foothills of

the Himalayas extending from Himachal Pradesh to Eastern

Nepal in the Ganges Basin. The eastern part of the Ganges

Basin up to 80◦ E experiences moderate precipitation be-

tween 100 and 250 mm month−1, while west of 80◦ E it is

generally semiarid to arid with less than 100 mm month−1

of June–October precipitation. Another high band of pre-

cipitation in the Brahmaputra Basin extends from Sikkim

to Arunachal Pradesh, where over 600 mm month−1 of pre-

cipitation can be found. This area covers northern West

Bengal, northern Bangladesh, Meghalaya, and Arunachal

Pradesh. The northern (above 30◦ N) part of the Brahma-

putra Basin over the Tibet Plateau is mostly dry, with less

than 50 mm month−1 of June–October precipitation. Modu-

lated by ENSO and IOD, this unequal spatial and seasonal

distribution of monsoon precipitation creates recurrent nat-

ural hazards of flooding and drought in parts of the basins,

causing damage to life, property, and infrastructure. Docu-

menting where and when precipitation in the basins is mod-

ulated by the interactive influence of these climate modes is

an important step toward minimizing natural hazard risks and

climate impacts under a changing climate.

3 Methods and data used

We extracted Global Precipitation Climatology Centre

(GPCC) full data reanalysis version 6.0 monthly land-surface

precipitation data for the period 1901–2010 at 0.5◦
× 0.5◦

spatial resolution from Deutscher Wetterdienst in Germany.

This GPCC monthly total precipitation record is the gauge-

analysis product derived from quality controlled station data.

The data set is the most accurate in situ precipitation reanal-

ysis data set of GPCC (Schneider et al., 2011). The monthly

gridded data set was extracted for the Ganges and Brahma-

putra basins, and monthly gridded climatology was derived

targeting the period 1951–2000. The climatology was used to

derive gridded monthly total precipitation anomalies for the

entire time period of 1901–2010. The areal mean of the total

monthly anomalies were computed by basin to derive basin-

specific anomaly time series of the total monthly precipita-

tion. The analyses were performed at the input spatial reso-

lution of 0.5◦
× 0.5◦; however, the presented analysis results

were spatially interpolated to 0.1◦
× 0.1◦, employing the in-

verse distance weighting (IDW) method to enhance the vi-

sualization. The IDW method was preferred over more spa-

tially informed methods like kriging or co-kriging because

our initial tests yielded no significant improvements from

geo-interpolated results given the large area of the basins.

The occurrences of ENSO and IOD events are largely in-

dependent but may co-occur in the same year (Saji et al.,

1999; Meyers et al., 2007); therefore, the years need to be

classified when the ENSO and IOD events occur either at

the same time or independently. Meyers et al. (2007) argued

that the year classification method can be statistical but needs

to consider the upwelling patterns of the Indo-Pacific, while

others (Ashok and Saji, 2007) used ENSO indicators and the

IOD mode index to classify the years statistically. We rec-

onciled three sources of monthly SST anomalies over the

NIÑO3 region that were defined/used by earlier researchers

(Kaplan et al., 1998; Reynolds et al., 2002; Trenberth, 1997)

to derive a seamless NIÑO3 index as the indicator of ENSO

for the period 1901–2010. For the Indian Ocean, we derived

an SST anomaly difference index for the IOD modes using

the areal average SST anomalies of the eastern (90–110◦ E,

10◦ S–Equator) and western (50–70◦ E, 10◦ S–10◦ N) zones

in the Indian Ocean defined by Saji et al. (1999) for the same

period. The monthly IOD mode index time series was derived

from the HadISST 1.1 data set – a historical SST data set

compiled by the Hadley Centre for the period 1871 to present

(Rayner et al., 2003). Both the NIÑO3 index and IOD mode

index were normalized by their standard deviation. These

time series were subset for the months June–October because

the ENSO and IOD evolve during these months (Saji et al.,

1999). We used these two indices to classify the years when

El Niño, La Niña, and positive and negative IOD occurred,

co-occurred, or did not develop. The years were classified

when the 3-month moving average values of the indices were

outside ±1 standard deviation (Meyers et al., 2007). Respec-

tive indices of above 1 standard deviation were considered as

El Niño or positive IOD, indices of below 1 standard devi-

ation were considered as La Niña or negative IOD, and any

indices in between ±1 standard deviation were considered

as no active ENSO or IOD events (neutral). The classified

years for El Niño, La Niña, and IOD modes are provided in

Appendix A. The climate-mode-specific classification of the

years were in agreement with the years classified in other

studies (Ashok and Saji, 2007; Rao et al., 2002; Ashok et al.,

2004; Meyers et al., 2007; Ummenhofer et al., 2011a). To

analyze how precipitation was modulated by the interactive

influence of these climate modes, we averaged the gridded

monthly anomalies for the years classified for the respective

climate modes. The statistical significance of these averaged

anomalies was analyzed using the Monte Carlo approach and

a two-tailed t test.

www.nat-hazards-earth-syst-sci.net/15/147/2015/ Nat. Hazards Earth Syst. Sci., 15, 147–162, 2015



150 M. S. Pervez and G. M. Henebry: Implications for flooding and drought

Figure 1. The Ganges and the Brahmaputra river basins overlaid by administrative boundaries. The June–October mean precipitation clima-

tology (1950–2000) in mm month−1 is shown by the background colors.

4 Results and discussion

4.1 Basin precipitation anomalies

Table 1 presents the basin-wide areal average June–October

total precipitation in millimeters as a result of the interac-

tive influence of the ENSO and IOD. In the table, letter G

denotes precipitation for the Ganges Basin and letter B de-

notes precipitation for the Brahmaputra Basin. The observed

precipitation influenced by the respective climate mode com-

binations was compared with the basins’ long-term aver-

age (LTA) (1951–2000) for June–October total precipita-

tion. The Ganges and Brahmaputra basins’ LTA precipita-

tion was 1004.5 and 1090.3 mm, respectively. During inde-

pendent occurrences of El Niño, Ganges precipitation de-

creased to 882.4 mm or 88 % of the LTA, while Brahma-

putra precipitation fell slightly below its LTA (1080.4 mm

or 99 % of the LTA). The precipitation increased in both

basins when El Niño co-occurred with positive IOD. Ashok

et al. (2001) inferred that during El Niño years, subsidence

occurs over the Indian region with a strongest-to-weakest

gradient from west to east (Fig. 2b of Ashok et al., 2001),

resulting in reduced precipitation in the Ganges Basin but

only slightly reduced precipitation in the Brahmaputra Basin.

They also inferred that the IOD phenomenon modulates the

meridional circulation by inducing convergence/divergence

patterns over the Bay of Bengal during positive/negative IOD

events, and when El Niño co-occurs with positive IOD, the

ENSO-induced anomalous subsidence is neutralized or re-

duced by the anomalous IOD-induced convergence over the

Bay of Bengal. The above phenomenon helps improve pre-

cipitation in both basins during co-occurrence of El Niño and

positive IOD events compared to the precipitation during El

Niño events only. In contrast, occurrences of La Niña and

co-occurrences of La Niña and negative IOD produced ex-

cessive precipitation in both basins (1103.2 mm or 110 % of

LTA in the Ganges and 1185.8 mm or 109 % of LTA in the

Brahmaputra).

During occurrences of individual positive IOD events, the

IOD-induced convergence resulted in enhanced precipitation

in the Ganges Basin (1039.2 or 103 % of LTA). However, the

precipitation in the Brahmaputra Basin declined (1016.8 mm

or 93 % of LTA). The reason for this decline is that the

IOD-induced convergence in the Bay of Bengal impacts the

mean regions of the monsoon trough (Ashok and Saji, 2007),

which overlaps mostly with the Ganges Basin. The mean

monsoon trough region is shown in Fig. 1 of Rajkumar and

Narasimha (1996). However, during occurrences of negative

IOD events, precipitation was enhanced in the Brahmaputra

Basin (1116.2 mm or 102 % of LTA) but remained average in

the Ganges Basin (996.5 mm or 99 % of LTA) compared to

the precipitation during positive IOD events in the respective

basins.

In years with neutral climate modes when neither ENSO

nor IOD is active, precipitation in these two basins is

characterized differently. Precipitation was lower than LTA

(955.5 mm or 95 % of LTA) in the Ganges Basin but higher

than LTA in the Brahmaputra Basin (1132.5 mm or 104 %

of LTA). Neutral climate modes occurred in 41 years out of

110 (37 % of the time), which implies that frequent deficit

precipitation is likely in the Ganges Basin.

4.2 Spatial variation

There were apparent spatial differences for both the ENSO

and IOD influence on precipitation over the Indian conti-

nent (Ashok and Saji, 2007). It is therefore informative to

explore the spatial variability of the precipitation anoma-

lies when influenced by phases of ENSO and IOD at the

same time or independently. To understand the relative spa-

Nat. Hazards Earth Syst. Sci., 15, 147–162, 2015 www.nat-hazards-earth-syst-sci.net/15/147/2015/



M. S. Pervez and G. M. Henebry: Implications for flooding and drought 151

Table 1. Composite of the June–October total precipitation (mm) when El Niño, La Niña, and positive and negative IOD events occurred,

co-occurred, or did not develop along with the observed number of years (n) in each category indicated. The observed years for each category

are provided in Appendix A. The basin precipitation was not computed for the co-occurrences of El Niño and negative IOD events, and of

La Niña and positive IOD events because of the small number of observed years for these categories.

Negative IOD (nIOD) Average Positive IOD (pIOD) All El Niño/La Niña

years

El Niño [El Niño & nIOD]

Observed years (n): 2

[El Niño]

Observed years (n): 8

G: 882.4 mm (88 %)

B: 1080.4 mm (99 %)

[El Niño & pIOD]

Observed years (n): 12

G: 943.2 mm (94 %)

B: 1112.9 mm (102 %)

[All El Niño years]

Observed years (n): 22

G: 912.8 mm (91 %)

B: 1096.6 mm (101 %)

None [nIOD]

Observed years (n): 17

G: 996.5 mm (99 %)

B: 1116.2 mm (102 %)

[average]

Observed years (n): 41

G: 955.9 mm (95 %)

B: 1132.5 mm (104 %)

[pIOD]

Observed years (n): 9

G: 1039.2 mm (103 %)

B: 1016.8 mm (93 %)

La Niña [La Niña & nIOD]

Observed years (n): 10

G: 1094.3 mm (109 %)

B: 1185.7 mm (109 %)

[La Niña]

Observed years (n): 9

G: 1103.2 mm (110 %)

B: 1185.8 mm (109 %)

[La Niña & pIOD]

Observed years (n): 2

[All La Niña years]

Observed years (n): 21

G: 1098.7 mm (109 %)

B: 1116.2 mm (109 %)

All pIOD/

nIOD years

[All nIOD years]

Observed years (n): 29

G: 1045.4 mm (104 %)

B: 1150.9 mm (106 %)

[All pIOD years]

Observed years (n): 23

G: 991.2 mm (99 %)

B: 1064.8 mm (97 %)

Note: G denotes the Ganges precipitation and B denotes the Brahmaputra precipitation. Percent precipitation of the long-term average (LTA) (1950–2000) for

June–October is in parentheses. The Ganges LTA for June–October total was 1004.5 mm, and 1090.3 mm for the Brahmaputra. pIOD/nIOD denotes

positive/negative Indian Ocean Dipole.

tial influence of ENSO and IOD on the basin precipitation,

the average June–October precipitation anomalies are pre-

sented in Figs. 2 and 3. To determine if the precipitation

anomalies were significantly modified by the influence of the

ENSO–IOD combinations, we adopted the modified Monte

Carlo testing method of Ummenhofer et al. (2011a). For any

combination of ENSO–IOD, n represents the number of oc-

currences of that combination. For each pixel (there were

537 0.5◦
× 0.5◦ pixels) in the study basins, from all years

(110 years total), we randomly picked n years and took the

mean. The process was repeated 10 000 times to produce

a probability density function of expected average June–

October precipitation anomalies. The expected anomalies for

each pixel and for each ENSO–IOD combination were then

compared with the mean anomalies of the observed years

(n) for the respective combination. The comparisons of the

anomalies for all 537 pixels are presented in Fig. 2. The gray

shading in Fig. 2 denotes the 10 % lower bounds and 90 %

upper bounds of 80 % confidence intervals estimated from a

two-tailed t test for the randomly generated distribution. The

gray shaded area varies between ENSO–IOD combinations

because of the differences in randomly generated distribu-

tions depending on the number of members n. Figure 2 shows

that where the blue dots lie outside the gray shaded area the

anomalies are significantly different because of the influence

of ENSO–IOD combinations. It also implies that the pixels,

where their values lie outside the gray shaded area, are the

places where precipitation is significantly modified by the in-

teractive influence of the ENSO and IOD. We identified these

pixels and plotted them in Fig. 3.

In Fig. 3a, anomalously dry conditions dominate in the

western and southeastern parts of the Ganges Basin and the

southern parts of the Brahmaputra Basin during years with El

Niño. Haryana, Rajasthan, western Uttar Pradesh, and Mad-

hya Pradesh in the Ganges Basin experience reductions in

precipitation between 30 and 40 mm month−1 (reduction of

21 to 28 % from LTA with 72 to 79 % of the LTA precipita-

tion). Precipitation also declines in Uttarakhand, Far Western

Nepal, Mid-Western Nepal, and the eastern part of the basin

in Bihar and western West Bengal by around 35 mm month−1

(reduction of 14 % from LTA with 86 % of the LTA precipi-

tation). In Brahmaputra, Arunachal Pradesh, western Assam,

northern West Bengal, and northern Bangladesh, precipita-

tion declines by more than 45 mm month−1 (reduction of

10 % from LTA with 90 % of the LTA precipitation). Clima-

tologically, the western part of the Ganges Basin encompass-

ing Haryana, Rajasthan, and Madhya Pradesh can be consid-

ered arid to semiarid with average June–October precipita-

tion of around 143 mm month−1, while regions in Uttarak-

hand, Nepal, Bihar, and West Bengal in the Ganges receive

over 250 mm month−1 of precipitation. In the Brahmaputra

Basin, northern West Bengal, northern Bangladesh, western

Assam, and western Arunachal Pradesh are the wettest re-

gions and receive over 450 mm month−1 of precipitation dur-

www.nat-hazards-earth-syst-sci.net/15/147/2015/ Nat. Hazards Earth Syst. Sci., 15, 147–162, 2015
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Figure 2. Composite of the mean precipitation anomaly for June–October for each pixel in the basins when El Niño, La Niña, and positive

or negative IOD occurred, co-occurred, or did not develop. The number of observed years for each ENSO–IOD combination is indicated

with n. Combination-specific precipitation anomalies (mm month−1) are shown with blue dots, 10 and 90 % lower and upper bounds of the

pixel-specific long-term mean precipitation as determined by Monte Carlo testing and a two-tailed t test at 80 % confidence level is shown

with gray shading. Where the blue dots lie outside the gray shaded area, the precipitation anomaly values are significantly different from the

long-term variance.

ing June–October. Although the reduction in precipitation

in Haryana, Rajasthan, western Uttar Pradesh, and Madhya

Pradesh during El Niño years is relatively smaller than the

precipitation reduction in the other regions in the Ganges

Basin, the impacts of El Niño in these regions can be stronger

since these areas are comparatively drier and receive less pre-

cipitation than the rest of the basin area. These areas are also

the most agriculturally intensive areas in the Ganges Basin

and rely on precipitation for successful agricultural produc-

tion (Thenkabail et al., 2009). When El Niño co-occurs with

positive IOD, the deficit precipitation in Haryana, western

Uttar Pradesh, Madhya Pradesh, and Bihar disappears, but it

remains significantly below LTA in Uttarakhand, Rajasthan,

and Central Nepal in the Ganges Basin (Fig. 3b). During

El Niño the ascending motion of the tropical Walker circu-

lation shifts eastward from its usual position over Indone-

sia to the central Pacific (Goswami, 1998), which in turn

modifies the Hadley circulation and creates anomalous sub-

sidence over the Indian continent (Ashok et al., 2004). This

El Niño-induced subsidence reduces precipitation in both

basins. When El Niño co-occurs with positive IOD, a single

strong Walker cell is formed over the equatorial Indian Ocean

with descending motion in the east and ascending motion

in the west. It neutralizes or reduces El Niño-induced sub-

sidence precipitation and therefore minimizes the impacts of

El Niño on the precipitation in both basins, but more so in

the monsoon trough regions in the Ganges Basin (Ashok et

al., 2004). In contrast, consistently wet conditions occurred

in both basins during the occurrences of La Niña and co-

occurrence of La Niña and negative IOD, leading to signif-

icantly above-average precipitation along the high precipi-

tation band areas of the foothills of the Himalayas across

the basins (Fig. 3f and g). During La Niña events, Uttarak-

hand, Uttar Pradesh, Western Nepal, Bihar, and western West

Nat. Hazards Earth Syst. Sci., 15, 147–162, 2015 www.nat-hazards-earth-syst-sci.net/15/147/2015/
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Figure 3. Composite of the spatially distributed mean June–October precipitation anomalies (% of LTA) when El Niño, La Niña, and positive

or negative IOD occurred, co-occurred, or did not develop. The number of observed years for each ENSO–IOD combination is indicated

with n. The only anomalies shown are those significantly different from the long-term variance as determined by Monte Carlo testing and a

two-tailed t test at 80 % confidence level.
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Bengal in the Ganges Basin receive an increase of over

40 mm month−1 (increase of 16 % from LTA with 116 % of

the LTA precipitation) of precipitation. On the other hand,

precipitation in Arunachal Pradesh and Meghalaya in the

Brahmaputra Basin increases marginally, but it increases sig-

nificantly (> 60 mm month−1or 14 % from LTA equivalent

to 114 % of LTA) over western Assam, northern West Ben-

gal, Bhutan, and northern Bangladesh. The precipitation in

these regions is also positively impacted by co-occurrences

of La Niña and negative IOD. However, in parts of Mad-

hya Pradesh and Rajasthan, precipitation increases signifi-

cantly during co-occurrences of La Niña and negative IOD,

but it does not increase as much during individual occur-

rences of La Niña. During La Niña events, the equatorial

eastern Pacific Ocean is anomalously cold, but the equato-

rial western Pacific, including parts of the eastern Indian

Ocean, is anomalously warm. With such a distribution of

SST anomalies, the Walker circulation becomes well defined

with the ascending motion of its usual location over Indone-

sia (Goswami, 1998). The surface wind increases over the

Arabian Sea, which helps develop the Hadley cell; therefore,

convection activities increase and cause anomalous positive

precipitation in the basins (Ashok et al., 2004).

During years without active ENSO or IOD events (neu-

tral years), although precipitation was observed close to LTA

in most parts of the basins owing to a moderately devel-

oped Walker circulation, deficit precipitation may still pre-

vail in the intensive agricultural regions of Rajasthan, west-

ern Utter Pradesh, and northern Madhya Pradesh (Fig. 3d).

Precipitation is around 89 % of the LTA (or 11 % less than

LTA) in these areas during the neutral conditions. During the

study period, there were 41 years out of 110 (37 % of the

time) when there were no active ENSO or IOD events in the

Indo-Pacific Ocean. This situation is important from an agri-

cultural perspective, implying that water deficit is likely to

occur frequently with potentially damaging consequences to

the agricultural sector in these regions.

Negative IOD events significantly modify precipitation in

only very few places across the basins. For most places, pre-

cipitation was close to LTA or insignificantly enhanced from

the LTA (Fig. 3c). However, during individual occurrences

of positive IOD, precipitation in these two basins is modi-

fied differently (Fig. 3e). Precipitation increases in southern

Haryana, eastern Madhya Pradesh, Jharkhand, and Chhat-

tisgarh by around 27 mm month−1 or 14 % more than the

LTA (114 % of the LTA precipitation), while it decreases

by 25 mm month−1 or 8 % less than LTA (92 % of the LTA

precipitation) in Eastern Nepal in the Ganges Basin during

positive IOD years. On the other hand, precipitation is neg-

atively influenced by positive events of IOD in the Brahma-

putra Basin, decreasing significantly (52 mm month−1 which

is 85 % of the LTA or 15 % less than the LTA) across the

basin. During positive IOD events, the western Indian Ocean

is warmer, which creates an anomalous excess ascending mo-

tion over the western equatorial Indian Ocean, which induces

anomalous subsidence northward to 15◦ N, which in turn

triggers the ascending motion farther north, causing surplus

precipitation over the monsoon trough of the Ganges Basin

(Ashok et al., 2004).

4.3 Seasonal variation

The evolution of the ENSO and subsequent association with

the Indian Ocean SST varies seasonally depending on the

timing of the onset (Sooraj et al., 2009). IOD is phase locked

to the boreal summer and autumn months (Saji et al., 1999).

While IOD anomalies develop in JJA, they are most promi-

nent in SON. Therefore, we examined how precipitation in

these two basins responds seasonally when ENSO and IOD

occur at the same time or independently. We applied Monte

Carlo testing and a t test described in Sect. 4.2 to estimate the

statistical significance of the seasonal change in precipitation

caused by the interactive influence of the ENSO–IOD. Here,

the Monte Carlo test was performed by month with 25 000

iterations for each month for the Ganges and Brahmaputra

basins separately. The seasonal observed and expected pre-

cipitation for each ENSO–IOD combination is presented in

Figs. 4 and 5 for the Ganges and Brahmaputra basins, re-

spectively. In Figs. 4 and 5, within each category, n is the

number of observed years, the black line represents the long-

term seasonal cycle of the basin-wide precipitation, observed

values are shown with blue dots, and the mean of these ob-

served values is indicated with a red X. The gray shading

denotes the 10 % lower and 90 % upper bounds of the 80 %

confidence interval for the randomly generated distribution.

The gray shaded area varies depending on the random dis-

tributions based on number of observed years n for each

ENSO–IOD combination. In the month where the observed

mean point (red X) lies outside the gray shaded area, precipi-

tation is significantly modified by the interactive influence of

ENSO–IOD.

In the Ganges Basin, from Fig. 4, the high precipitation

during the monsoon months is apparent. During El Niño

events, precipitation significantly decreases in the early and

late monsoon months of June and September. Nearly 90 %

of the El Niño years in June and 75 % of the El Niño

years in September record precipitation below the long-term

mean expected for those months (Fig. 4a). When El Niño

occurs independently, the July–August mean precipitation

was 298 mm month−1, just under the long-term mean of

310 mm month−1. Although the July and August mean pre-

cipitation was not significantly different from the long-term

expected mean, more than half of the observed El Niño years

in these two months record precipitation below the long-

term mean. When El Niño and positive IOD occurred in the

same year, precipitation improved over the summer monsoon

months, but more so in the late monsoon months of Au-

gust and September compared to the seasonal precipitation

during independent El Niño years (Fig. 4b). During inde-

pendent positive IOD years, a significant increase in July–

Nat. Hazards Earth Syst. Sci., 15, 147–162, 2015 www.nat-hazards-earth-syst-sci.net/15/147/2015/
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Figure 4. Composite of the Ganges Basin precipitation (mm) by month when El Niño, La Niña, and positive or negative IOD occurred,

co-occurred, or did not develop. The number of observed years for each ENSO–IOD combination is indicated with n. The seasonal cycle

from January to December is shown for the period 1901–2010. The black line is the mean of all years (1901–2010). Within each combination,

observed years (n) are shown with blue dots, the red X shows the mean of the observed years, and its confidence levels are shown with gray

shading as determined by Monte Carlo testing and a two-tailed t test at 80 % confidence interval. Where the red X lies outside the gray

shaded area, the values are significantly different from the long-term variance of that month.

September precipitation is noticeable for the Ganges Basin

(Fig. 4e). The July–August positive IOD years’ mean pre-

cipitation increases to 340 mm month−1, around 10 % more

than the long-term expected mean for those same months.

More than 70 % of the positive IOD years in July and Au-

gust exceed the long-term expected mean precipitation for

those months. However, when negative IOD occurs inde-

pendently while above-average precipitation occurs during

June–August, a notable reduction in September precipitation

is apparent (Fig. 4c). Over 75 % of the negative IOD years

show precipitation below the composite mean for Septem-

ber. During years without active ENSO–IOD events, despite

many years with excessive July and August precipitation, the

composition observed mean is still significantly lower than

the expected long-term mean during these two peak mon-

soon months in the Ganges Basin (Fig. 4d). Consistently

above-average precipitation occurs during the summer mon-

soon months, including pre- and post-monsoon months when

La Niña and negative IOD occur in the same year or inde-

pendently (Fig. 4f, g). Significantly above-average precipi-

tation occurs in July and September during La Niña years.

Precipitation during La Niña years were not less than the

expected mean for July. The mean July La Niña year pre-

cipitation was 360 mm, which is a 17 % increase from the

expected July long-term mean; September precipitation in-

creases by around 20 % to 221 mm from the expected long-

term mean, with over 77 % of the La Niña year precipitation

in September, exceeding the expected mean (Fig. 4g). Pre-

cipitation outside the monsoon months (December to May

and November) is less than 50 mm month−1 and changes in-

significantly depending on the interactive influence of ENSO

and IOD.

www.nat-hazards-earth-syst-sci.net/15/147/2015/ Nat. Hazards Earth Syst. Sci., 15, 147–162, 2015



156 M. S. Pervez and G. M. Henebry: Implications for flooding and drought

0
10

0
20

0
30

0
40

0
50

0
60

0
Not enough years

P
re

ci
p.

 m
m

n=2ElNiño & nIOD

● ● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

● ●●

● ●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

● ●
●

●

● ●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●0

10
0

20
0

30
0

40
0

50
0

60
0

nIOD n=17

P
re

ci
p.

 m
m

(c)

●

●

●

● ●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

● ●
● ● ●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

● ● ●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●
●● ●

●

●
●

●

●

●
●

●

●
●

J F M A M J J A S O N D

0
10

0
20

0
30

0
40

0
50

0
60

0

LaNiña & nIOD n=10

P
re

ci
p.

 m
m

(f)

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

● ●
●

●

●

●
●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

● ●0
10

0
20

0
30

0
40

0
50

0
60

0

ElNiño n=8(a)

● ●

●
●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

● ● ●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

● ●●

●

●

●

●

●

●

● ●

●

● ●●
●

●

●

●

●

●

●
●

●

● ●
●

● ●

●

●

●

●

●

●

●

● ●●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●
● ● ●

●

●

●

●

●

●

●

● ●
● ● ●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

● ●

● ●

●
●

●● ●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

● ●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

● ●●

● ●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●
●

●

●

●

● ●0
10

0
20

0
30

0
40

0
50

0
60

0

Average n=41(d)

●
●

●

●

●

●

●
●

●

●

●
●● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

● ●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●
●

●

●

●

●
●

J F M A M J J A S O N D

0
10

0
20

0
30

0
40

0
50

0
60

0

La Niña n=9(g)

● ●

●

●

●

●

●

● ●

●

●
●● ●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
● ●

0
10

0
20

0
30

0
40

0
50

0
60

0

ElNiño & pIOD n=12(b)

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●
●

● ●

●

●

●
●●

●

●
●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●0

10
0

20
0

30
0

40
0

50
0

60
0

pIOD n=9(e)

0
10

0
20

0
30

0
40

0
50

0
60

0
Not enough years

J F M A M J J A S O N D

0
10

0
20

0
30

0
40

0
50

0
60

0

LaNiña & pIOD n=2

Figure 5. Composite of the Brahmaputra Basin precipitation (mm) by month when El Niño, La Niña, and positive or negative IOD occurred,

co-occurred, or did not develop. The number of observed years for each ENSO–IOD combination is indicated with n. The seasonal cycle

from January to December is shown for the period 1901–2010. The black line is the mean of all years (1901–2010). Within each combination,

observed years (n) are shown with blue dots, the red X shows the mean of the observed years, and its confidence levels are shown with gray

shading as determined by Monte Carlo testing and a two-tailed t test at 80 % confidence interval. Where the red X lies outside the gray

shaded area, the values are significantly different from the long-term variance of that month.

High precipitation during the summer monsoon months

in the Brahmaputra Basin makes the seasonal precipita-

tion cycle for the Ganges and Brahmaputra similar, but the

Brahmaputra Basin receives more pre-monsoon precipitation

in April, May, and June. In the Brahmaputra Basin, precip-

itation significantly declines in May, June, and September

during El Niño years and improves when El Niño co-occurs

with positive IOD (Fig. 5a, b). The August mean precipita-

tion during El Niño years may have been skewed because

of an outlier. The mean June–August precipitation increases

to 278 mm month−1 when El Niño co-occurs with positive

IOD compared to the mean for the El Niño years – a mod-

est 3 % increase – although it remains below the expected

long-term mean for these same months. Unlike the Ganges,

during positive IOD years, Brahmaputra precipitation signif-

icantly declines in the peak monsoon month of July, and the

June–August precipitation remains well below the long-term

expected mean for the respective months (Fig. 5e). Around

75 % of the positive IOD years’ precipitation in June, July,

and August remains below the long-term expected mean.

However, precipitation improved seasonally during negative

IOD years compared to positive IOD years. Nearly 50 % of

the June and July precipitation during negative IOD years ex-

ceeds the long-term expected mean (Fig. 5c). During years

without active ENSO–IOD, precipitation remains close to

the long-term expected mean throughout the seasonal cy-

cle (Fig. 5d). During La Niña, precipitation increases in

June and July, but precipitation increases more during co-

occurrences of La Niña and negative IOD (Fig. 5f, g). Pre-

cipitation increases by 15 % to 334 mm month−1 for June and

July. From our analysis, it is evident that ENSO–IOD com-

binations modify the July–September precipitation the most
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in the Ganges Basin, while the modifications are noticeable

in June–August in the Brahmaputra Basin. During La Niña

and co-occurrences of La Niña and negative IOD, precipita-

tion exceeds 400 mm in the Ganges Basin only 5 % of the

time, while it exceeds 26 % of the time in the Brahmaputra

Basin, suggesting that extreme modifications in precipitation

are more frequent in the Brahmaputra Basin than it is in the

Ganges Basin.

4.4 Implications for flooding and drought

Table 2 lists occurrences of major floods and droughts in

the Ganges and Brahmaputra basins from the ENSO–IOD

combination during the period 1901–2010. We define a flood

or drought as major when the affected area exceeds 25 %

of the basin area; however, the affected area is estimated

empirically from the maps and published literature. Mon-

soon precipitation is the primary cause for flooding in these

basins, especially downstream across Bangladesh; therefore,

frequent flooding is expected when precipitation is positively

modulated by La Niña or La Niña and negative IOD events

(Webster et al., 2010). There were seven major floods in the

Ganges Basin and six major floods in the Brahmaputra Basin

reported when La Niña or La Niña and negative IOD was

active. The occurrences of these two combinations produced

flooding 36 % of the time in the Ganges and 31 % of the time

in the Brahmaputra Basin between 1901 and 2010. These

combinations were also responsible for the majority of the

catastrophic floods in terms of flood severity. The floods of

1922, 1955, 1988, and 2007 were among the worst floods

in history in these two basins (Hofer and Messerli, 2006;

Mirza et al., 2001; Siddique et al., 1991). In agreement with

Ashok et al. (2004), our findings suggest that both phases of

IOD modulate precipitation positively in the Ganges Basin,

but the Brahmaputra precipitation is modulated negatively by

positive IOD and positively by negative IOD. Subsequently,

no major floods were observed in the Brahmaputra Basin

during positive IOD events. However, negative IOD events

produced floods 15 % of the time in the Brahmaputra Basin,

while both phases of IOD events produced floods 26 % of the

time. Although most of these floods during IOD events can

be considered non-catastrophic regarding severity, the 1998

flood was exceptional and catastrophic. In 1998, extensive

flooding occurred in the basins when both the Ganges and

Brahmaputra Rivers crested simultaneously (Webster et al.,

2010). El Niño has been observed influencing precipitation

negatively in both basins, and the lack of major floods in

all of these basins during El Niño events supports this ob-

servation. However, when El Niño and positive IOD occur

in the same year, precipitation can be influenced positively.

There were two major flood years in the Ganges Basin and

three in the Brahmaputra Basin during the El Niño and pos-

itive IOD events; the 1987 flood was extraordinary and oc-

curred in both basins, simultaneously affecting mostly Bihar,

West Bengal, Assam, and Bangladesh. (Hofer and Messerli,

2006). During years without active ENSO or IOD events,

even though precipitation can be anomalously negative, es-

pecially in the peak monsoon months, the neutral conditions

produced floods 4 % of the time in the Ganges Basin. Pre-

cipitation is expected to be equivalent to the long-term mean

in the Brahmaputra Basin during neutral conditions; subse-

quently, more floods (12 % of the time during neutral condi-

tions) were noticeable in the Brahmaputra Basin. However,

many of these floods (2004 and 2008) were local (Webster et

al., 2010).

Drought is another natural hazard common to parts of

both basins. There were 13 major droughts in the Ganges

Basin and four in the Brahmaputra Basin. The majority of the

droughts in the Ganges occurred when El Niño and IOD oc-

curred at the same time or individually. These El Niño–IOD

combinations produced droughts 18 % of the time. Droughts

were also commonly observed during neutral conditions in

the Ganges. The neutral conditions produced droughts 16 %

of the time in the Ganges Basin. On the other hand, there

were only four major droughts reported across the Brahma-

putra Basin. Among these droughts, the ones in 1982, 1989,

and 1994 were severe (Chowdhury and Ward, 2007). The

fractions of disaster years in Table 2 indicate that both basins

are vulnerable to natural disasters. The Ganges Basin is vul-

nerable to both flooding and drought; whereas, the Brahma-

putra Basin is more vulnerable to flooding than drought. With

changing characteristics of positive and negative IOD events

(Ummenhofer et al., 2009), ENSO and IOD events may be

predictable well in advance (Luo et al., 2008a, b). Results

of this study in conjunction with long-lead predictability of

the ENSO and IOD events could enable early warnings for

flooding and drought risks in the region.

In general, major flooding and drought occurred in the

basins in accordance with the expected excess or deficit pre-

cipitation due to the prevailing influence of ENSO and IOD

at the same time or individually. However, in both basins ma-

jor flooding was observed when deficit precipitation was ex-

pected due to the influence of the climate modes. During the

past few decades, increasing trends of extreme heavy pre-

cipitation events have been observed (Rajeevan et al., 2008;

Stocker et al., 2013). Monsoon precipitation has been in-

creasing especially in the Ganges Basin (Moors et al., 2011),

but precipitation amounts before and after the monsoon have

been declining (Ramesh and Goswami, 2007), with a declin-

ing number of rainy days (Das et al., 2013). As suggested

by these studies, when precipitation increases over a shorter

period of time with a reduced number of rainy days, flash

flooding is expected regardless of the influence by the cli-

mate modes.

5 Conclusions

We have documented where and when precipitation in the

Ganges and Brahmaputra basins has been modulated when

www.nat-hazards-earth-syst-sci.net/15/147/2015/ Nat. Hazards Earth Syst. Sci., 15, 147–162, 2015
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ENSO and IOD occur at the same time or individually. Im-

portantly, deficit precipitation prevails in Uttarakhand, Far

Western Nepal, Mid-Western Nepal, Haryana, western Ut-

tar Pradesh, Rajasthan, Madhya Pradesh, Bihar, and west-

ern West Bengal in the Ganges Basin, and in Arunachal

Pradesh, western Assam, northern West Bengal, and northern

Bangladesh in the Brahmaputra Basin during El Niño events.

The occurrences of La Niña and co-occurrences of La Niña

and negative IOD produce the most precipitation over both

basins. On the other hand, the occurrences of El Niño pro-

duce the most deficit precipitation regimes. However, their

frequency is limited.

Perhaps the most compelling observation is that during

neutral conditions when there are no active ENSO or IOD

events, which occurred most frequently (37 % of the time

during the study period), below-average precipitation may

prevail in Rajasthan, western Uttar Pradesh, and parts of

Madhya Pradesh. The occurrences of more frequent neu-

tral conditions shape the requirements for successful agricul-

tural production by supplemental irrigation from declining

groundwater sources (61 % of irrigation water comes from

groundwater) (UNEP, 2009; Rodell et al., 2009). This pattern

implies that agricultural production is challenging during fre-

quent neutral conditions because of the evident scarcity of

water resources.

At the seasonal scale, in excess precipitation years dur-

ing the occurrences of La Niña and co-occurrence of La

Niña and negative IOD, precipitation increases during the

summer monsoon months of June–September in the Ganges

Basin, but in the Brahmaputra Basin, increased precipita-

tion is noticeable in May–September. In deficit precipitation

years, El Niño tends to reduce precipitation in the monsoon

months of June–August, but when El Niño co-occurs with

positive IOD, much of the deficit precipitation of the summer

months disappears. Unlike the Ganges, during positive IOD

years, Brahmaputra precipitation significantly diminishes in

the peak monsoon month of July, with the mean monsoon

precipitation well below the long-term expected mean. How-

ever, precipitation improved seasonally during negative IOD

years more than during positive IOD years in the Brahmapu-

tra Basin. It is evident that ENSO–IOD combinations mod-

ify the July–September precipitation the most in the Ganges

Basin, while the modifications are noticeable in June–August

with more frequent extreme precipitation in the Brahmaputra

Basin.

We have noted occurrences of major flooding and drought

as consequences of the interactive influence of ENSO and

IOD. However, there are other years with similar influences

by the ENSO–IOD combinations that did not produce flood-

ing or drought. This finding implies that other factors, in

addition to the climate mode influences, affect the timing

and location of the precipitation that produces flooding or

drought in the basins. Here, our analyses identified where

and when the climate modes modulate precipitation in the

basins. This information is critical for the development of

early warnings for natural hazard risks and may provide in-

formation to support the development of local strategies to

minimize climate mode impacts on agricultural production

and rural livelihoods.
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Appendix A

Classification of observed years when El Niño, La Niña, and

positive and negative Indian Ocean Dipole events occurred,

co-occurred, or did not develop.

El Niño and negative IOD years: 1965, 1969.

El Niño years: 1904, 1905, 1915, 1930, 1940 1951, 1957,

2009.

El Niño and positive IOD years: 1902, 1918, 1923, 1925,

1963, 1972, 1976, 1982, 1983, 1987, 1991, 1997.

Negative IOD years: 1901, 1906, 1907, 1909, 1928, 1947,

1956, 1958, 1959, 1960, 1971, 1974, 1980, 1992, 1996,

1998, 2005.

Neutral ENSO and IOD years: 1903, 1908, 1911, 1912,

1913, 1917, 1919, 1920 1921, 1927, 1929, 1931, 1932, 1934,

1937, 1939, 1941, 1945, 1948, 1950, 1952, 1953, 1962, 1966

1968, 1977, 1978, 1979, 1981, 1986, 1989, 1990 1993, 1995,

2000, 2001, 2002, 2003, 2004, 2006, 2008.

Positive IOD years: 1914, 1926, 1935, 1936, 1943, 1944,

1961, 1967, 1994.

La Niña and negative IOD: 1910, 1916, 1933, 1942, 1954,

1964, 1970, 1973, 1984, 1985.

La Niña years: 1922, 1924, 1938, 1955, 1975, 1988, 1999,

2007, 2010.

La Niña and positive IOD years: 1946, 1949.
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