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ABSTRACT 

IMPACTS OF URBAN AREAS ON VEGETATION DEVELOPMENT ALONG 

RURAL-URBAN GRADIENTS IN THE UPPER MIDWEST: 2003-2012 

COLE KREHBIEL 

2015 

Between one-third and one-half of Earth’s land surface has been directly altered by 

humans, with the remainder comprised of “human-dominated ecosystems” (Vitousek et 

al. 2008). Earth’s population has surpassed seven billion, projected to increase by 2.5 

billion by 2050 in urban areas alone (United Nations 2014). The rapid urbanization of our 

planet drives global environmental changes in hydrosystems, biodiversity, 

biogeochemical cycles, land use and land cover, and climate (Grimm et al. 2008). Urban 

areas alter local atmospheric conditions by modifying surface albedo and consequently 

evapotranspiration, releasing energy through anthropogenic heat sources, and increasing 

atmospheric aerosols, leading to increased temperatures in cities compared with 

surrounding rural areas, known as the “urban heat island” effect (Arnfield 2003).  Recent 

urbanization of our planet has generated calls for remote sensing research related to the 

impacts of urban areas and urbanization on the natural environment (Herold 2009; Seto, 

Güneralp, and Hutyra 2012). Spatially extensive, high spatial resolution data products are 

needed to capture phenological patterns in regions with heterogeneous land cover and 

external drivers such as cities, which are comprised of a mixture of land cover/land uses 

and experience microclimatic influences, namely the UHI effect (Fisher, Mustard, and 

Vadeboncoeur 2006; Melaas, Friedl, and Zhu 2013).  Here I use the normalized 

difference vegetation index (NDVI) product provided by the Web-Enabled Landsat Data 

(WELD) project to analyze the impacts of urban areas and urban heat islands on the 
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seasonal development of the vegetated land surface on an urban-rural gradient for six 

regions located in the Upper Midwest of the United States. I fit NDVI observations from 

2003-2012 as a convex quadratic function of thermal time as accumulated growing 

degree-days (AGDD) calculated from the Moderate-resolution Imaging 

Spectroradiometer (MODIS) land surface temperature product to model decadal land 

surface phenology metrics. In general, duration of growing season measured in AGDD in 

green core areas is equivalent to duration of growing season in urban extent areas, but 

significantly longer than duration of growing season in regions outside of the urban 

extent. I found an exponential relationship in the difference of duration of growing season 

between urban and surrounding rural regions as a function of distance from urban core 

areas in perennial vegetation land cover types, with an average magnitude of 669 AGDD 

and the influence of urban areas extending over 11 km from urban core areas. A linear 

relationship exists between the modeled rate of vegetation green up and maximum NDVI 

for perennial forests, but not for annual croplands. At the regional scale, relative change 

in duration of growing season does not appear to be significantly related to total area of 

urban extent, population, or latitude, with the distance and magnitude that urban areas 

influence vegetation in and near cities being relatively uniform, although larger urban 

areas have a greater impact on duration of growing season in terms of total area. 

Keywords: land surface phenology, land surface temperature, MODIS, NDVI,  remote 

sensing, Upper Midwest, urbanization, urban environmental change, urban heat island, 

Web-Enabled Landsat Data 
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INTRODUCTION 

 Humans have altered and modified Earth’s surface for thousands of years, 

beginning with the use of fire, speech, and tools, which led to the development of 

agriculture and consequently large concentrations of people living together (Sauer 1956; 

Childe 1950). Beginning around 300 years ago, humans entered a new era, characterized 

by large increases in population and the harnessing of fossil fuels for energy, leading to 

unprecedented rates of earth surface transformation and subsequent environmental 

change (Kates, Turner II, and Clark 1990).  Recent increases in population have largely 

been concentrated in urban areas, with global urban areas increasing from only 13% of 

total global population in 1900 to 54% by 2014 (United Nations 2006; United Nations 

2014). Urban areas alter local climatic conditions by modifying surface albedo and 

consequently evapotranspiration, releasing energy through anthropogenic heat sources 

including building materials, and increasing atmospheric aerosols, leading to increased 

temperatures in cities compared with surrounding rural areas, a phenomenon known as 

the “urban heat island” (UHI) effect (Arnfield 2003). Future climate change and 

urbanization is projected to increase UHI temperatures by around 1 °C per decade (Voogt 

2002). The combination of urban population growth, urbanization, and climate change 

warrants the need for enhanced remote sensing research on the environmental impacts of 

urban areas and urbanization on the natural environment (Herold 2009; Seto, Güneralp, 

and Hutyra 2012). Specifically, there have been calls for urban remote sensing research 

of small to medium sized cities and their associated impacts on vegetation (Seto and 

Christensen 2013). 
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In this study, I analyze the impacts of urban areas and UHIs on the seasonal 

development of vegetation on an urban-rural gradient at the local to regional scale for six 

regions encompassing 19 small to medium sized cities located in the Upper Midwest 

region of the United States. I use satellite remote sensing time series data to investigate 

the impacts of urban areas on the seasonal development of vegetation using model-

derived land surface phenology (LSP) metrics. I explore the spatial arrangement of urban 

areas in order to understand the influence of regions of highly concentrated impervious 

surfaces and large areas of urban vegetation on microclimatic conditions within cities. I 

analyze the distance and magnitude of urban alteration of local atmospheric conditions in 

and around cities. I compare the results from all 19 cities in order to analyze the 

influences of city size, land cover, spatial arrangement, and latitude on the seasonal 

development of vegetation. 

Problem Identification and Description  

There is no doubt that humans modify Earth’s terrestrial surface. But what are the 

consequences of man-made alteration of our planet? In the 19th century, scientists were 

hypothesizing that human modification of the Earth altered temperature and atmospheric 

humidity based on direct observation (Marsh 1864). In 1833, Luke Howard provided 

evidence that cities experienced higher temperatures than the surrounding rural areas 

(Howard 1833). By the 20th century, questions related to the understanding of human 

disturbance, displacement, and domination of organic ecosystems—including how urban 

areas alter Earth’s atmosphere—were being developed (Sauer 1956). Around the mid-20th 

century, humanity entered the “Great Acceleration”, characterized by rapid increases in 

global population, consumption, scientific knowledge, and technological advances 
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(Costanza et al. 2007). It is estimated that between one-third to one-half of Earth’s land 

surface has been directly altered by humans during the “Great Acceleration”, with the 

remaining regions of our planet being classified as “human-dominated ecosystems” 

(Vitousek et al. 2008).  

One major driver of Earth’s “Great Acceleration” is global urban population growth. 

In 1950, global urban population was 746 million, accounting for 30% of Earth’s total 

population. By 2014, global urban population increased to 3.9 billion, with over half of 

global population residing in urban areas. Future projections estimate that Earth will add 

an additional 2.5 billion urban inhabitants by 2050, 66% of total global population 

(United Nations 2014). From 1970 to 2000, global urban land area increased by 58,000 

km2, projected to increase by 1,527,000 km2 by 2030 (Seto et al. 2011). Although global 

urban land cover extent is estimated to cover 0.24–2.74% of total global land area 

(Schneider, Friedl, and Potere 2009), the impacts of urban areas likely encompass a larger 

area, with one study finding the ecological footprint of urban areas to extend 10 km from 

urban land cover, impacting an area 2.4 times greater than urban land cover extent alone 

(Zhang et al. 2004a). 

Consequences and Implications of the Problem 

A recent study found four major urban land teleconnections that linked various land 

cover conversions to changes in urban consumption (Seto et al. 2012). Most relevant to 

my research is the teleconnection between increases in urban population leading to land 

cover conversion for residential development (Seto et al. 2012). Gross Domestic Product 

and other economic factors also drive urban land expansion (Bettencourt et al. 2007; 

Bettencourt 2013; Seto et al. 2011).  Global increases in urban population and economic 
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output will inevitably lead to future urban land expansion. The rapid urbanization of our 

planet drives global environmental changes in hydrosystems, biodiversity, 

biogeochemical cycles, land cover/land use, and climate (Grimm et al. 2008). Urban land 

expansion has irreversible impacts on the natural environment, including the loss of 

agricultural lands, fragmentation of ecosystems, reduction of biodiversity, and alteration 

of local climate (Seto et al. 2011). Urban land cover/land use and change can potentially 

alter local to regional climate on daily, seasonal, and even annual scales (Seto 2009). 

Possibly the clearest example of urban climate modification is the phenomenon where 

urban temperatures are generally higher than the surrounding countryside, or the UHI 

effect (Oke 1987). UHI intensity is related to patterns of land use/land cover changes, 

including the composition of water, vegetation, and built-up areas (Chen et al. 2006). The 

effects of the UHI and land use/land cover change are linked to modified surfaces that 

affect the transfer and storage of airflow, water, and heat (Hartmann et al. 2013). 

UHI-related impacts on vegetation ultimately have consequences for humans. Global 

climate models project that future climate change and urbanization will increase the UHI 

effects by as much as 30% with a doubling of atmospheric CO2 (McCarthy, Best, and 

Betts 2010). Released in 2013, the Intergovernmental Panel on Climate Change report 

(AR-5) concluded with medium confidence that the duration and frequency of heat waves 

has increased since 1950 (Hartmann et al. 2013).  The IPCC report from Working Group 

II concluded with “very high confidence” that projected climate change will exacerbate 

health problems, including a greater chance of disease, injury, or death related to more 

intense heat waves (IPCC 2014). UHIs are linked to grave health-related consequences 

for humans, including decreased quality of living conditions and increased heat-related 
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injuries and mortality (Changnon, Kunkel, and Reinke 1996; Patz et al. 2005). It is 

estimated that anthropogenic atmospheric carbon dioxide concentrations have doubled 

the risk of heat waves occurring in Europe (Stott et al. 2004). The internationally 

recognized European Heat Wave of 2003 was linked to over 70,000 deaths (Robine et al. 

2008). In the U.S., heat waves are the highest cause of human mortality related to 

weather (Changnon, Kunkel, and Reinke 1996). The human-environment interaction of 

UHI-related impacts on vegetation comes full circle when we consider UHI mitigation 

strategies, including the widely researched idea of increasing vegetation cover, or “urban 

greening”, within cities in order to ameliorate the UHI effect (Bowler et al. 2010).  

The Knowledge Gap 

Despite (1) the recent and ongoing urbanization of our planet, (2) the likelihood that 

UHI-related heat waves are increasing, (3) the known negative health impacts on humans, 

and (4) studies linking urbanization and climate change to increased UHI intensity, 

current climatological and meteorological models do an inadequate job of predicting the 

influence of urban areas on atmospheric conditions (Best 2006). The majority of global 

climate models that are used for climate change assessment do not include urban 

surfaces, and there have been calls for more accurate information of urban areas for 

weather forecasting (Best 2006). More recently, the first international urban land surface 

model comparison project aimed to identify the processes, complexity, and parameters 

necessary to improve urban land surface models (Best and Grimmond 2014). In the 

comparison, models that included a representation of urban vegetation performed better 

than models that did not include vegetation (Best and Grimmond 2014). Moreover, the 

project found that representation of vegetation was the most critical process in the 
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accuracy of urban land surface model behavior related to seasonality (Best and 

Grimmond 2013). The project concluded that in order to understand the impacts of urban 

vegetation, research on the seasonality of vegetation is needed (Best and Grimmond 

2013). One reason why urban vegetation is excluded from urban land surface models is 

related to the spatially heterogeneous nature of the urban land surface, comprised of a 

mixture of impervious and vegetated land covers.  

Urban land surface phenology observes the seasonal development of vegetation in 

and nearby cities. The majority of urban land surface phenology studies have used 

surface observation networks (Schwartz, Betancourt, and Weltzin 2012) or coarse spatial 

but high temporal resolution satellite data from sensors including the Advanced Very 

High Resolution Radiometer (AVHRR) (White et al. 2002) and more recently, the 

Moderate Resolution Imaging Spectroradiometer (MODIS) (Zhang et al. 2004a; Zhang et 

al. 2004b; Walker, de Beurs, and Henebry 2015).  Surface observation networks and high 

temporal/coarse spatial resolution remote sensing studies are useful. However, spatially 

extensive, higher spatial resolution data products are needed to capture phenological 

patterns in areas with heterogeneous land cover and external drivers such as urban areas, 

which are a mixture of land cover/land uses that result in distinct microclimates, via the 

UHI effect (Fisher, Mustard, and Vadeboncoeur 2006; Melaas, Friedl, and Zhu 2013). 

Using Landsat data for phenology studies allows for local to regional scale analyses, 

offering a spatial resolution that is useful for exploring factors that influence phenology 

including land use and urban heat islands (Melaas, Friedl, and Zhu 2013). 

My research project addresses this knowledge gap by analyzing the impacts of urban 

areas and subsequent UHIs on the seasonal development of vegetation in and around 
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cities on a local to regional scale using spatially extensive, high spatial resolution data, 

leveraged over a decade of observations to alleviate problems associated with coarse 

temporal resolution. This project provides much needed and currently lacking 

information on (1) the differences in the seasonal development of vegetation between 

urban and rural areas of the Upper Midwest, (2) the magnitude and extent of UHI effects 

on the seasonal development of vegetation in small to medium sized cities, and (3) the 

differences in land surface phenology between annual croplands and perennial urban 

vegetation. More importantly, this project provides a procedural framework to deal with 

the difficult issue of spatial heterogeneity of the urban land surface as well as differences 

in local land surface phenology arising from microclimatic factors. This information can 

be used to inform a variety of interests, including scientists interested in performing 

urban land surface phenology analyses in other regions as well as urban land surface 

modelers, urban ecologists, urban policy-makers, city planners and developers, 

meteorologists, and climatologists. 
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LITERATURE REVIEW 

Human Environment Interactions 

During the Paleolithic period, fire, speech, and tools led to human modification and 

alteration of Earth’s land surface at local to regional scales (Sauer 1956). Humans began 

developing agriculture during the Neolithic period approximately 10,000 years ago, 

leading to large increases of people living in permanent settlements, known as the urban 

revolution (Childe 1950). By the 19th century, scientists hypothesized that human 

alteration of the planet was changing local temperature and atmospheric humidity based 

on empirical observation (Marsh 1864). In the 20th century, scientists knew that humans 

were disturbing, displacing, and dominating Earth’s various ecosystems, and began to 

question how urban areas altered Earth’s atmosphere (Sauer 1956). Today, we know that 

the rapid urbanization of our planet is driving global environmental changes in 

hydrosystems, biodiversity, biogeochemical cycles, land use and land cover, and climate 

(Grimm et al. 2008). Urban land cover/land use and change can potentially alter local to 

regional climate on daily, seasonal, and even annual scales (Seto 2009). Urbanization has 

been linked to increased intensity of the urban heat island effect (Lo and Quattrochi 2003; 

Chen et al. 2006).  

Urban Heat Islands 

In early 19th century England, Luke Howard observed that London experienced 

higher temperatures than the surrounding countryside (Howard 1833). The “urban effect” 

was described as a “heat island” in the 1940’s, leading to the term “urban heat island” 

(Balchin and Pye 1947). The urban heat island (UHI) effect is the phenomenon where 

urban areas exhibit generally higher temperatures than in neighboring rural areas (Oke 

1987). The UHI effect results from urban/rural differences in the surface energy budget 
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(Oke 1982; Arnfield 2003). During the daytime, impervious surfaces in densely built 

up areas of cities absorb more incoming solar radiation than areas of dense green 

vegetation in rural areas. Building materials have higher heat storage capacity than 

vegetation and re-radiate part of that stored energy at night in the form of longwave 

thermal infrared radiation. Impervious surfaces are drier than vegetation resulting in more 

net radiation being converted to sensible heat flux (heating of the air) than to latent heat 

flux (evapotranspiration) (Avissar 1996; Arnfield 2003; Patz et al. 2005). The geometry 

of the urban canopy (street canyons with limited skyview) decreases outgoing longwave 

radiation and increases its re-absorption in nearby buildings (Oke 1982; Oke et al. 1991). 

The radiative, thermal, moisture, and aerodynamic characteristics of various urban 

surfaces also influence the spatial, temporal, and intensity patterns of the UHI (Oke 1982; 

Jackson et al. 2010). Anthropogenic heat sources in cities (HVAC, vehicles, industry, 

lighting) also contribute to the UHI effect (Oke 1982). 

Calculations of UHI intensity consider the difference between urban maximum 

temperature and the corresponding background rural temperature (Oke 1987).  Under 

stable conditions, the UHI is more pronounced during the overnight hours due to reduced 

cooling rates from late afternoon into the evening, and may even be negative around 

midday, resulting in the urban center being cooler than the surrounding landscape (Oke 

1987). The increased heat stored during the day from urban surfaces is released into the 

urban environment at night, leading to warmer overnight minimum temperatures in cities 

(Oke 1987). Consequently, the diel (24 hour) temperature range is smaller in urban areas 

than surrounding rural areas (Oke 1982). Seasonally, the UHI is weakest in summer and 

strongest in autumn and winter (Kim and Baik 2002). UHI studies have also found that 



10 

cities can act as both heat and moisture islands during the overnight hours (Deosthali 

2000). 

Studies of Urban Heat Islands 

Early studies of the UHI used stationary in-situ temperature measurements from 

weather instruments at meteorological stations (Howard 1833; Balchin and Pye 1947). In 

the 1960’s and 1970’s, UHI studies began combining weather station network 

measurements with mobile temperature measurement readings using automobiles and 

aircraft (Bornstein 1968, Kopec 1970, Chandler 1976, Landsberg 1981, Oke 1982). The 

advent of satellite data in the 1970’s gave rise to the use of satellite-derived surface 

temperature data for UHI research beginning with a study that used thermal infrared data 

to identify urban areas (Rao 1972). Roth, Oke, and Emery (1989) described the difference 

between air temperature studies of UHIs and satellite remote sensing-based studies of 

surface urban heat islands (SUHIs), finding that SUHI intensity is related to land 

cover/land use and intensity is greater during the daytime compared to at night (Roth, 

Oke, and Emery 1989).  A study in 1993 evaluated the relationships between (1) NDVI 

and (2) surface temperature to the UHI effect using data from the National Oceanic and 

Atmospheric Administration’s (NOAA) AVHRR satellite (Gallo et al. 1993). A 1995 

review of the use of satellite data for UHI assessment found that remotely sensed data 

provides an objective method for analyzing UHIs (Gallo et al. 1995). More recently, 

studies have used land surface temperature (LST) data provided by MODIS to monitor 

the UHI (Streutker 2003; Imhoff et al. 2010; Tomlinson et al. 2012; Hu and Brunsell 2013).  

In summary, studies of the UHI generally use air temperature data from in situ 

weather station measurements or LST derived from satellite remote sensing instruments. 
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Streutker (2003) explains that in situ air temperature observations have higher temporal 

resolution spanning a longer record, but suffer from poor spatial coverage. In contrast, 

satellite data have better spatial distribution however lower temporal resolution and a 

much shorter period of observation (Streutker 2003).  

Impacts of UHIs on Vegetation Phenology  

Early studies analyzing the impacts of urban areas on vegetation focused on 

observations of phenology, or the biological cycle of living organisms. Notably, urban 

areas impact plant phenology via the UHI effect.  The UHI effect has been attributed to 

earlier budding and blooming of flowers and trees in the city and generally longer 

growing seasons (Oke 1987).  There are two main approaches to collecting phenological 

observations, including observation networks (Schwartz, Betancourt, and Weltzin 2012) 

and coarse spatial but high temporal resolution satellite data from sensors such as 

AVHRR (White et al. 2002) and MODIS (Zhang et al. 2004a; Zhang et al. 2004b; 

Walker, de Beurs, and Henebry 2015).  Jochner et al. (2012) provide an overview of 

observational studies from European, North American, and Asian cities that all found 

earlier vegetation development in urban areas (Jochner et al. 2012), beginning with a 

study in Hamburg, Germany in 1955 (Franken 1955). Additional studies have used 

species composition (Gödde and Wittig 1983) and plant specific phenology (Bechtel and 

Schmidt 2011) in order to characterize the influence of UHIs on vegetation development 

in cities. 

Land Surface Phenology and the Normalized Difference Vegetation Index  

Studies have also used satellite data to study the UHI effects on land surface 

phenology in urban and surrounding rural areas. Land surface phenology (LSP) is defined 



12 

as the spatio-temporal development of the vegetated land surface as revealed by satellite 

sensors (de Beurs and Henebry 2004). LSP metrics are often calculated from time series 

data of vegetation indices (de Beurs and Henebry 2010). There are four main methods 

used to calculate LSP metrics, including (1) thresholds, (2) derivatives, (3) smoothing 

functions, and (4) fitting models (de Beurs and Henebry 2010). I use a convex quadratic 

regression model that describes the normalized difference vegetation index (NDVI) as a 

function of accumulated growing degree-days (AGDD), which has been used 

successfully in the past to analyze LSP dynamics in temperate regions (de Beurs and 

Henebry 2004; Walker, de Beurs, and Henebry 2015). This linear model requires 

estimation of only three model parameter coefficients that admit relevant ecological 

interpretation (de Beurs and Henebry 2005). The significance of the model is dictated by 

its ability to explain the temporal variation of NDVI, summarized as the coefficient of 

determination, or R2 (de Beurs and Henebry 2005).  

The normalized difference vegetation index uses a band ratio of the difference 

between red and near-infrared reflectance divided by their sum (Tucker 1979). NDVI is 

used to capture vegetation “greenness” and is the most extensively used vegetation index 

in satellite remote sensing (Myneni et al. 1995). One limitation of NDVI is that loss of 

sensitivity occurs in densely vegetated areas (Wang, Liu, and Huete 2002, 979): moderate 

to high levels of leaf area index (LAI) lead to decreased NDVI sensitivity (Viña, 

Henebry, and Gitelson 2004). However, I use the NDVI as a relative measure of green 

vegetation during the growing season rather than an absolute measure of the biophysical 

properties of vegetation such as biomass or leaf area index. 

 



13 

UHI influence on Urban LSP Studies  

 One study found that, on average, urban areas expanded the growing season of 

vegetation by 7.6 days in the eastern United States using time series of the NDVI derived 

from AVHRR data (White et al. 2002). More recently, studies have used a combination 

of LST and Enhanced Vegetation Index (EVI) data time series derived from MODIS to 

analyze the effects of the UHI on vegetation phenology (Zhang et al. 2004a; Zhang et al. 

2004b). Important findings from these studies include the following: the length of 

growing season for forests is strongly related to mean annual LST (Zhang et al. 2004a), 

earlier green-up and later dormancy occurs in urban areas (Zhang et al. 2004a; Zhang et 

al. 2004b), and urban climate influences on vegetation phenology extend up to 10 km 

beyond the urban land cover extent of cities in eastern North America (Zhang et al. 

2004a). The UHI effects were found to be stronger in North America than in Asia or 

Europe (Zhang et al. 2004b). The ecological footprint of urban climates in 70 cities in 

eastern North America was found to be 2.4 times greater than the extent of urban land 

use, which was determined as the distance where 95% of asymptotic values were reached 

in the exponential model of differences in green-up onset and dormancy onset vs. 

distance from the urban perimeter (Zhang et al. 2004a). Here I use a similar method to 

calculate the difference in duration of growing season between urban and surrounding 

rural areas and determine the magnitude and extent of urban influence on the seasonal 

development of vegetation.  

UHI influence on Urban LSP Studies using Landsat  

While surface observation networks and high temporal/coarse spatial resolution 

remote sensing studies are useful, there exists a need for more spatially extensive, higher 
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spatial resolution data products to capture phenological patterns in areas with 

heterogeneous land cover and external drivers such as urban areas that are a mixture of 

land cover/land uses and experience microclimatic influences, namely the UHI effect 

(Fisher, Mustard, and Vadeboncoeur 2006; Melaas, Friedl, and Zhu 2013). Using Landsat 

data for phenology studies allows for local to regional scale analyses, offering a spatial 

resolution that is useful for exploring factors that influence phenology including land use 

and urban heat islands (Melaas, Friedl, and Zhu 2013). One study used Landsat 5 

Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM +) time 

series to model phenology in eastern United States deciduous forests and found a 

significant relationship between distance from urban core and green-up onset, suggesting 

that UHI impacts are reflected in the phenological characteristics of surrounding 

vegetation (Fisher, Mustard, and Vadeboncoeur 2006).  

Knowledge Gap, Introduction to Study Area, and Data  

To date, no Landsat-resolution studies have investigated UHI impacts on LSP in the 

Upper Midwest region of the United States. There are multiple reasons why the Upper 

Midwest is an ideal location for studying the impacts of urban areas on LSP within and 

surrounding cities. The region is a relatively flat, continental, temperate plain that is 

distant from confounding meteorological influences such as major mountain ranges or 

large water bodies. Cities in the region are relatively isolated and embedded in a 

vegetated landscape (Figure 1). The cities span size (area, population) and latitudinal 

gradients but precipitation is relatively uniform over the region.  

The Web-Enabled Landsat Data (WELD) project generated 30 meter composited 

mosaics of Landsat 7 ETM+ SLC-off data over the Conterminous United States 
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(CONUS) from 2003-2012 (Roy et al. 2010). WELD was designed to provide consistent 

Landsat data to develop land cover, bio-physical, and geo-physical products in order to 

study Earth system science and regional land-cover dynamics (Roy et al. 2010). MODIS, 

or Moderate Resolution Imaging Spectroradiometer, is a scientific instrument aboard the 

Aqua and Terra satellites. Aqua and Terra are National Aeronautics and Space 

Administration (NASA) Earth Science satellites that operate as a part of the Earth 

Observing System. The MODIS-Aqua/Terra products used in this study (MYD11A2, 

MOD11A2) included level-3 global Land Surface Temperature and Emissivity 8-day data 

with 1 km spatial resolution, and are provided in Sinusoidal grid format as the mean 

clear-sky LST values during the 8-day time frame (NASA LP DAAC 2001). The 

National Land Cover Database (NLCD) provides 30 meter resolution land surface 

characteristics over the United States that can be used for applications including 

assessment of ecosystem health and ecosystem status (Homer, Fry, and Barnes 2012). 

The NLCD includes Percent Developed Imperviousness (ISA) (Xian et al. 2011) and 

Land Cover Type (LCT) (Jin et al. 2013) products from 2001, 2006, and 2011. 

Literature Review Conclusion 

Human alteration and modification of Earth’s land surface is not a new phenomenon. 

Knowledge and observation of the impacts of human settlements on Earth’s land surface 

and surrounding environment is not a recent discovery either. Scientists have observed 

urban microclimatic influences such as the UHI effect for nearly 200 years. The advent of 

remote sensing data from satellite instruments in the 1970’s provided enhanced 

opportunities to study human-environment interactions such as the impacts of urban areas 

and UHIs on the seasonal development of vegetation. A multitude of research in the past 
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has been dedicated to this important topic. The combination of WELD-derived NDVI, 

MODIS LST-derived AGDD, and NLCD LCT and ISA data, all freely available, 

spanning at least a decade, at a spatial resolution that is appropriate for urban areas, 

provides an opportunity to investigate the UHI-related impacts on land surface phenology 

at the local to regional scale, over a region where no previous studies of UHI effects on 

LSP have been conducted at 30 meter spatial resolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

FRAMING THE TOPIC WITHIN THE GEOGRAPHIC METHOD 

Location of the problem and the study area 

Urban areas are widespread across the planet. The top five countries with the greatest 

areal extent of urban land cover are the United States, China, The Russian Federation, 

Brazil, and India—with the U.S. accounting for 18.5% of total global urban land cover at 

the start of the 21st century (Angel et al. 2011). From 1970-2000, the highest rates of 

urban land expansion occurred in India, China, and Africa, however the greatest change 

in total urban extent was in North America (Seto et al. 2011). A global study of the 

Northern Hemisphere (35°N to 70°N) found the urban heat island-related influence on 

vegetation phenology to be stronger in North America than in Europe and Asia (Zhang et 

al. 2004b).  

I have chosen to analyze remotely sensed vegetation dynamics at multiple scales: 

regionally for six selected regions in the Upper Midwest of the United States, and locally 

for 19 cities located within the six greater urban regions. My region of interest is between 

47.5°N, 99°W and 40.5°N, 92°W (Figure 1). An early study of urban climate 

characterized the nature of UHIs under “ideal” conditions, described as a city situated on 

flat terrain with population greater than 100,000 and a temperate climate (Oke 1982). I 

chose the Upper Midwest and six greater urban regions for multiple reasons, including 

that (1) there are a number of useful, relatively high resolution (spatial & temporal) 

remote sensing datasets freely available for the CONUS (Roy et al. 2010; Xian et al. 

2011; Jin et al. 2013), (2) the region is characterized as a temperate plain with relatively 

isolated urban areas situated within a largely vegetated landscape that experiences 

distinct annual seasonality, (3) five of the six regions contain at least one city with 

population > 100,000 and (4) the regions represent population, urban area, land cover 
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type, thermal regime and latitudinal gradients. Figure 2 demonstrates the southwest to 

northeast gradient in annual accumulated growing degree-days, a measure of thermal 

time that dictates perennial vegetation growing season length.  

 

Figure 1. 2011 NLCD LCT product over the Upper Midwest region showing the 19 

selected study cities in purple and corresponding urban regions in cyan. 
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Figure 2.  MODIS LST-derived decadal (2003-2012) mean annual AGDD over the Upper 

Midwest showing the southwest (shades of red; higher AGDD) to northeast (shades of 

blue; lower AGDD) gradient of thermal time in the Upper Midwest region. 
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I selected 19 cities as defined by the United States Census Bureau “Urban Areas” 

(U.S. Census Bureau 2010a) located within the bounds of the study region that represent 

a small to medium sized city gradient in terms of population and urban extent. I chose the 

six greater urban regions on the basis that each included an urban area that experienced a 

relative increase in urban extent > 12% from 2001-2011, as calculated using the 2001 and 

2011 NLCD ISA datasets. The six greater urban regions are: (1) Minneapolis-St. Paul-

Bloomington, MN-WI; (2) Omaha, NE-Council Bluffs, IA; (3) Des Moines-West Des 

Moines, IA; (4) Sioux Falls-Brookings, SD; (5) Fargo, ND-Moorhead, MN; and (6) 

Aberdeen, SD. All 19 individual urban regions analyzed can be found in Table 1. My 

study time period spans 2001-2012, which covers the 2001-2006-2011 NLCD LCT and 

ISA archive (Xian et al. 2011; Jin et al. 2013), as well as the ten-year (2003-2012) time 

series available from the CONUS WELD project (Roy et al. 2010). 

How much is there 

The 19 cities that I selected span three orders of magnitude in population, from 

~15,000 in the Cambridge, MN region to 3.4 million in the Minneapolis-St. Paul 

metropolitan statistical area (Bureau of Economic Analysis 2011). The urban areas also 

cover three orders of magnitude in terms of urban extent, ranging from ~25 km2 in 

Brookings, SD to 2,773 km2 in Minneapolis-St. Paul, MN in 2010 (U.S. Census Bureau 

2010b). Total urban extent for the six greater urban regions increased by almost 40,000 

hectares (18.2 %) from 2001-2011 (Xian et al. 2011). Table 1 contains information on the 

size, location and thermal regime for each of the 19 urban regions included in the 

analysis. 
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Table 1. Characteristics of the 19 study cities: 2011 population (Bureau of Economic 

Analysis 2011), area of the urban extent (U.S. Census Bureau 2010b), latitude, longitude, 

decadal mean annual AGDD calculated from the MODIS LST-derived AGDD product,  

and percentage of pixels with LSP model fit (R2) > 0.5 in each of the 19 urban regions. 

City 2011 Pop. 2010 UE 

(km2) 

Lat Lon 2003-2012 

AGDD 

LSP Model 

(%) 

 

MSP, MN 

        

3,388,716  2773.3 44.98 -93.28 

 

4318 66.2 

Omaha, NE 

           

876,836  702.4 41.23 -96.03 5129 72.2 

Des Moines, IA 

    

580,779  519.5 41.62 -93.66 4889 88.4 

Lincoln, NE 

           

306,443  229.1 40.81 -96.68 5161 62.9 

Sioux Falls, SD 

           

232,553  166.2 43.53 -96.74 4428 56.5 

Fargo, ND 

           

212,695  182.1 46.86 -96.82 3819 28.6 

Rochester, MN 

           

208,446  131.0 44.02 -92.48 4157 75.9 

St. Cloud, MN 

           

189,980  130.1 45.57 -94.19 3918 63.8 

Mankato, MN 

             

97,280  68.3 44.17 -93.99 3867 73.6 

Ames, IA 

             

90,834  59.8 42.03 -93.63 4435 80.4 

Faribault, MN 

             

64,908  29.5 44.29 -93.28 3996 82.7 

Marshalltown, IA 

             

40,967  29.7 42.04 -92.91 4576 77.6 

Aberdeen, SD 

             

40,902  33.1 45.46 -98.47 3780 37.8 

Austin, MN 

             

39,320  31.7 43.67 -92.98 3920 83.2 

Fremont, NE 

             

36,943  28.2 41.44 -96.49 4804 73.1 

Owatonna, MN 

             

36,551  33.0 44.09 -93.22 4035 81.2 

Brookings, SD 

             

32,109  24.6 44.30 -96.78 4008 58.3 

Albert Lea, MN 

             

31,111  25.5 43.65 -93.37 3898 67.1 

Cambridge, MN 

             

15,155  25.7 45.54 -93.23 3833 76.3 
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RESEARCH QUESTIONS AND OBJECTIVES 

Here I investigate the impacts of urban areas and UHIs on the seasonal development 

of the vegetated land surface along an urban-rural gradient. I use satellite remote sensing 

data and products from 2001-2012 to explore spatio-temporal variation in the seasonal 

development of vegetation in the urban and peri-urban environment for 19 cities along 

size, land cover, thermal regime, and latitudinal gradients located within the Upper 

Midwest region of the United States. In order to conduct this research, I define different 

spatial urban regions (Figure 3), including urban extent (UE), urban core areas (UCAs), 

which I define as a spatially contiguous area of pixels (> 10 hectares) located within the 

UE classified as “Developed, High Intensity” based on the 2011 LCT dataset, green core 

areas (GCAs), defined as a spatially contiguous area of pixels (> 60 hectares)  located 

within the UE classified as “Developed, Open Space”, “Forest”, “Shrub/Scrub”, 

“Grassland/Herbaceous”, “Pasture/Hay”, or “Wetlands”  based on the 2011 LCT dataset, 

and areas outside of the UE but within the 40 km region of interest, classified as “Outside 

of the Urban Extent”. Additionally, the parameters used to define each urban spatial 

region are defined in Appendix I. This project aims to answer the overarching question: 

What are the impacts of urban areas and UHIs on the seasonal development of the 

vegetated land surface as seen via satellite remote sensing? The project includes three 

hypotheses: 
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Urban Spatial Arrangement Hypothesis (A1):  

I hypothesize that Duration of Growing Season in Green Core Areas is shorter 

than in Urban Extent areas, but longer than regions outside of the Urban Extent.  

Urban-Rural Gradient Hypothesis (A2):  

I hypothesize that Duration of Growing Season decreases with distance from 

nearest Urban Core Area for perennial vegetation LCTs.  

Land Cover Type Hypothesis (A3):  

I hypothesize that a positive linear relationship exists between the model-derived 

rate of vegetation green-up and maximum NDVI for perennial vegetation LCTs 

but not for annual croplands. 

 

Figure 3. Example of the four urban spatial regions used in the analysis including: urban 

extent (UE), urban core areas (UCAs), green core areas (GCAs), and areas outside of the 

UE over Sioux Falls, SD. 
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METHODOLOGY 

Data Collection: Web-Enabled Landsat Data 

Web-Enabled Landsat Data (WELD) is a NASA funded project that generates 30 

meter composited mosaics of Landsat 7 ETM+ over the United States from 2003-2012 

(Roy et al. 2010). WELD was designed to make consistent Landsat data readily available 

to develop land cover, biophysical, and geophysical products in order to study Earth 

system science and regional land-cover dynamics (Roy et al. 2010). One advantage of 

WELD is that the weekly composites include a pre-calculated NDVI band as well as 

additional quality control flags (saturation, clouds) (Roy et al. 2010). I developed a Perl 

script using the Linux Operating System that bulk downloads the ten-year archive of 

WELD files via http. I selected all WELD tiles within 40 km of the UE for each of the 19 

urban regions. I used the Perl script to call the “WELDtiletogeotif” tool that converts 

WELD tile products from HDF to GeoTIFF format (Roy et al. 2010). From there, the Perl 

script invokes multiple Interactive Data Language (IDL) procedures that (1) georeference 

each composited mosaic and (2) filter out saturated and cloudy observations using the 

“Saturation_Flag”, “DT_Cloud_State”, and “ACCA_State” bands (Roy et al. 2010). I 

used an additional filter based on a threshold value of NDVI > 0.2 to exclude non-

vegetated observations. Ultimately I compiled ten-year time series of the georeferenced 

and filtered NDVI weekly composites covering each urban region. Figure 8 provides an 

outline of the aforementioned processing steps.  

Data Collection: MODIS Land Surface Temperature Data  

MODIS, or Moderate-resolution Imaging Spectroradiometer, is a scientific 

instrument aboard the Aqua and Terra satellites (Maccherone and Frazier 2015). Aqua 

and Terra are NASA Earth Science satellites that operate as a part of the Earth Observing 
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System (Graham and Parkinson 2015). Here I use the MODIS-Aqua (MYD11A2) and 

MODIS-Terra (MOD11A2) products, which are the level-3 global Land Surface 

Temperature and Emissivity 8-day composites with 1 km resolution, and are provided in 

Sinusoidal grid format as the mean clear-sky LST values during an 8-day time frame 

(NASA LP DAAC 2001). The specific Scientific Datasets (SD) that I extracted from the 

product include “LST_Day_1km” and “LST_Night_1km”, with units in Kelvin (NASA 

LP DAAC 2001). I developed a Perl script using the Linux Operating System that bulk 

downloads all observations from 2003-2012 (46 annually; 460 total). I used the MODIS 

Conversion Toolkit to select and georeference the desired SDs for MODIS tiles H10V04 

and H11V04 (NASA LP DAAC 2001).  

I also downloaded the MODIS Aqua (MYD10A2) and Terra (MOD10A2) Snow 

Cover products, which contain level-3 global “Maximum Snow Extent” 8-day 

composites at 500 meter resolution (Hall et al. 2006). I resampled the 500 meter 

resolution data to 1 km using the nearest neighbor method provided by the Environment 

for Visualizing Images (ENVI) software in order to align each pixel with the 

corresponding MODIS LST 1 km pixel. I used the maximum snow extent product to 

exclude MODIS LST observations when snow cover was present. The MODIS LST 

observations were additionally filtered to exclude observations that were below freezing 

(273.15 K), or unreasonably high (330 K).  

Next, I developed an algorithm that converts the two daytime and two nighttime LST 

observations from Kelvin to degrees Celsius. The algorithm also calculates the mean 

daytime and nighttime LST for each day of year (DOY) (using the 10 years available for 

each date), which is later used to fill data gaps from missing values. However, the mean 
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LST by DOY is only calculated when 8 or more years have available data. From there, 

the script calculates growing degree-days (GDD).The traditional calculation of GDD is to 

take the mean of the daily maximum and minimum temperature and subtract from a set 

base temperature. My GDD calculation used the mean of the mean daily (maximum 

temperature) and mean nightly (minimum temperature) LST values and a base of 0 °C: 

GDD =  
mean(mean(LSTday)+ mean(LSTnight))

2
− 0 °C.  (1) 

Next, the script filters the data to exclude observations where GDD < 0, which signifies 

that no GDDs were accumulated for that particular compositing period. The next step 

creates annual time series of GDD multiplied by 8 to account for the 8-day compositing 

period of the MODIS products and accumulates each observation (GDD in °C) by year. 

The final product is a ten-year time series of accumulated growing degree-days (AGDD 

in °C). Figure 4 shows the workflow for the MODIS LST to AGDD conversion process. 

 
Figure 4. Processing outline for MODIS LST to AGDD algorithm that converts MODIS 

LST 8-day composites into annual time series of AGDD.  
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Data Collection: National Land Cover Database Datasets  

The National Land Cover Database (NLCD) provides 30 meter resolution land 

surface characteristics over the United States that can be used for applications including 

assessment of ecosystem health and ecosystem status (Homer, Fry, and Barnes 2012). I 

use the Percent Developed Imperviousness (Xian et al. 2011) and Land Cover Type (Jin 

et al. 2013) products from 2001, 2006, and 2011 for my research. The Impervious 

Surface Area product is determined using IKONOS and Landsat 7 ETM+ data and 

describes the percentage of each 30 m pixel covered by anthropogenic (concrete, asphalt, 

etc.) surfaces (Yang et al. 2003). The Land Cover Type product is derived from 

unsupervised classification of Landsat 5 TM and Landsat 7 ETM+ at a spatial resolution 

of 30 m (Jin et al. 2013). The datasets are freely available for download from the Multi-

Resolution Land Characteristics Consortium website: (http://www.mrlc.gov) (Jin et al. 

2013; Xian et al. 2011). 

Data Analysis: Identifying Urban Land Cover Types and Change  

I began by characterizing each of the six greater urban regions based on the 2001, 

2006, and 2011 LCT and ISA datasets. I identified the LCT and ISA for each 

corresponding 30 m WELD pixel located in each region. I used a decision tree 

classification scheme to aggregate the 16-class LCT data into nine classes for my 

research. Table 2 shows the class groupings used for my study. I also performed change 

detection from 2001-2006-2011 to identify pixels that experienced a change in LCT, ISA, 

or both. I classified pixels with ISA change into two classifications based on time period: 

(1) “2001-2006” and (2) “2006-2011” change (Table 2). Pixels classified as “Water”, 

http://www.mrlc.gov/
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“Barren”, “2001-2006 Change” and “2006-2011 Change” were excluded from the 

analysis. Figure 5 shows an example of the LCT classification over Sioux Falls, SD. 

Table 2. Summary of LCT groupings used for classification of pixels in the study. 

NLCD Class ID My Class 

Open Water, Perennial Ice/Snow 1 Water 

Developed: Open Space, Low/Medium Intensity 2 Developed 

Developed: High Intensity 3 Urban Core Area 

Barren Land (Rock/Sand/Clay) 

 

4 Barren Land 

Deciduous, Evergreen, Mixed Forest, Woody 

Wetlands 

5 Forest 

Shrub/Scrub, Grassland/Herbaceous, Pasture/Hay, 

Emergent Herbaceous Wetlands 

6 Herbaceous 

Cultivated Crops 7 Cropland 

Change in Impervious Surface Area: 2001-2006 8 2001-2006 Change 

Change in Impervious Surface Area: 2006-2011 9 2006-2011 Change 

 

 

Figure 5. Example of LCT classification (derived from the 2011 NLCD LCT product) 

over Sioux Falls, SD. “Water”, “Barren”, and “Change” pixels (white) were excluded 

from the analyses.   
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Data Analysis: Spatial Arrangement of Urban Areas  

In order to characterize the spatial arrangement of heterogeneous urban landscapes, I 

defined four specific urban spatial regions of interest. I used the 2010 U. S. Census 

Bureau delineated “urban areas” cartographic boundary shape files to define Urban 

Extent (UE) for each urban area in my analysis (U. S. Census Bureau 2010b). Next, I 

identified urban core areas (UCA), which I define as a spatially contiguous area of pixels 

(> 10 hectares) located within the UE of each city classified as “Developed, High 

Intensity” based on the 2011 LCT dataset. I identified green core areas (GCA), defined as 

a spatially contiguous area of pixels (> 60 hectares)  located within the UE of each city 

classified as “Developed, Open Space”, “Forest”, “Shrub/Scrub”, 

“Grassland/Herbaceous”, “Pasture/Hay”, or “Wetlands”  based on the 2011 LCT dataset. 

The UCA and GCA size thresholds were determined so that each city contained at least 

one of each urban spatial region.  Pixels located outside of the UE but within the 40 km 

region of interest are simply classified as “Outside of the Urban Extent”.   

In order to draw conclusions on the spatiality of the influences of the six greater 

urban regions’ influence on the surrounding environment, it is necessary to control for the 

compounding factors of nearby towns and cities. Thus, I chose to expand my study region 

to include all urban areas with area > 24.6 km, the area of my smallest originally selected 

city, Brookings, SD. There were 22 cities identified by this threshold. However, 3 of the 

22 urban areas (Forest Lake, MN, Monticello-Big Lake, MN, and Hudson, WI) were 

located < 10 km from the Minneapolis-St. Paul UE, and consequently were added to the 

Minneapolis-St. Paul urban region. Thus, 19 total urban areas are used for analysis (Table 

1). After identifying the boundaries for (1) UE, (2) UCAs, (3) GCAs, and (4) areas 
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outside of the UE, I calculated Euclidean distance from each pixel to the nearest UCA. 

Distance is rounded to the nearest kilometer. Figure 6 shows the distance gradient used 

for the analysis. Each individual urban areas’ region of interest was reconfigured after 

Euclidean distance calculation to group pixels by distance to nearest UCA by city. Figure 

6 shows an example of the final boundaries used to define the 9 individual urban regions 

within the greater Minneapolis-St. Paul, MN urban region. 

 

Figure 6. Distance from nearest UCA (red) for nine study cities in the greater 

Minneapolis-St. Paul urban region. In cyan are the boundaries used for grouping analysis 

results by city. 
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Data Analysis: Modeling Land Surface Phenology Metrics 

I used a convex quadratic regression model that describes NDVI as a function of 

AGDD, which has been used successfully in the past to analyze LSP dynamics in 

temperate regions (de Beurs and Henebry 2004; Walker, de Beurs, and Henebry 2015). 

The convex quadratic model of LSP (CxQ LSP) is defined as: 

NDVI = α + βAGDD – γAGDD2   (2) 

where NDVI contains all NDVI values (unitless; -1 to 1) for a specific period and AGDD 

(°C) contains all AGDD values for the corresponding period (de Beurs and Henebry 

2005). The CxQ LSP model requires only three model parameter coefficient estimates 

with relevant ecological interpretations (de Beurs and Henebry 2005). The significance of 

the model is dictated by its ability to explain the variance in NDVI, expressed as the 

coefficient of determination, or R2 (de Beurs and Henebry 2005). I applied the CxQ LSP 

model to the decadal time series of NDVI and AGDD observations for each pixel and 

derived the following LSP metrics: 

Peak Height in NDVI (PHNDVI) =    (3) 

Thermal Time to Peak NDVI (TTP) = -    (4). 

I derived NDVI at half-thermal time to peak (half-TTPNDVI) from PHNDVI and TTP. I used 

a threshold of NDVI = 0.3 to determine Start of Season (SOS) and End of Season (EOS) 

for a given pixel. This threshold was chosen because all NDVI values are filtered to 

select observations where NDVI > 0.2, and thus once NDVI = 0.3, vegetation has 

increased in NDVI. NDVIsos is then input and solved for in eq. 2 for both sides of the 

convex quadratic parabola (i.e., SOS and EOS). This provides AGDD at SOS and EOS, 

from which I take the difference of (EOS-SOS) to calculate Duration of Growing Season 
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(DGSAGDD). I used a coefficient of determination threshold of R2 < 0.5 to exclude ill-

fitting models. Figure 7 demonstrates the fitting of the CxQ LSP model to a decade of 

NDVI vs. AGDD observations and the associated LSP metrics derived from the model. 

Figure 8 shows the data, methods, and parameters involved in executing the model. 

Figure 9 depicts the model fit (R2) over the greater Minneapolis-St. Paul, MN region. 

 

Figure 7. CxQ LSP model fit to the 2003-2012 time series of WELD NDVI vs. MODIS 

LST-derived AGDD for (a) forest, (b) developed, and (c) cropland pixels selected from 

Omaha, NE. (a) Shows the LSP metrics derived from the model. 
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Figure 8. Processing outline of data, methods and parameters used to execute the CxQ 

LSP model. In grey are the steps performed on the WELD NDVI dataset, in orange is the 

output from the MODIS LST to AGDD conversion process (Figure 4), and in green are 

the steps demonstrating the urban LCT scheme. 
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Figure 9. Coefficient of determination (R2) values from the CxQ LSP Model fit for nine 

study cities within the greater Minneapolis-St. Paul urban region. 

Data Analysis: Equivalence Testing of Urban Spatial Regions 

In order to address hypothesis A1 and determine if significant differences exist in 

DGSAGDD between GCAs, UE areas, and areas outside of the UE, I performed a statistical 

analysis known as equivalence testing. I use the two one-sided tests (TOST) approach to 

test for equivalence between group means (Schuirmann 1987). Tests of equivalence 

evaluate the similarity between two groups rather than the more commonly used tests of 
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difference or inequality (Foody 2009). There are multiple reasons why equivalence tests 

are more appropriate for my study than more traditional tests of significant differences 

between two groups. First, when sample size n is extremely large (~10M pixels in the 

Minneapolis-St. Paul urban region), difference tests may prove statistically significant for 

any non-zero difference in group means (Goodman 1999; Foody 2009). Moreover, 

remote sensing data suffer from high positive spatial autocorrelation and it is difficult to 

correct for positive spatial autocorrelation in difference testing (de Beurs et al. 2015). 

Another benefit of equivalence testing is that it allows for interpretation of the magnitude 

of differences between two groups (Carlin and Doyle 2002; Foody 2009). Contrary to 

tests of difference, the null hypothesis in an equivalence test is that two groups are 

significantly different (Foody 2009). In order to test for equivalency, a zone of 

indifference is specified which identifies the upper and lower bounds to test for a 

difference in means between two groups. This leads to the hypothesis: 

H0a: μ1 - μ2 > δ  and H0b: μ1 - μ2 < -δ.    (5) 

If we reject both of these hypotheses, we conclude that the difference in means between 

two groups falls within the zone of indifference. Figure 10 graphically illustrates a test of 

equivalence between group means showing the zone of indifference in blue. If the 

difference in group means falls within the blue region in Figure 10, we can conclude that 

the groups are statistically equivalent.  
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Figure 10. Example of the conceptual approach to equivalence testing (University of 

North Texas 2015). In order to conclude that two groups are equivalent, the difference in 

group means must fall within the zone of indifference in blue, which is bounded by the 

specified ±δ. 

I performed equivalence tests on the difference between group means of LSP metrics 

for GCAs, UE areas, and areas outside of the UE. I adjusted for multiple comparisons 

using the Bonferroni correction method (Bland and Altman 1995).  The LSP metrics 



37 

tested include: PHNDVI, half-TTPNDVI, TTP, and DGSAGDD. To objectively determine the 

zone of indifference, or δ, I took 10% of the mean for each LSP metric for each of the 19 

study cities. For example, the mean DGSAGDD in the St. Cloud, MN region for perennial 

LCTs is 3234.9 AGDD * 0.1 = 323.5 AGDDs. If we then test for equivalence between 

DGSAGDD within the UE and all pixels outside of the UE, we can either (a) reject the null 

hypothesis, concluding that means between these groups are statistically equivalent, or 

(b) fail to reject the null hypothesis, concluding that mean DGSAGDD between these 

groups is different, and by at least 10%.  

Figure 11 shows the multiple comparisons tested and the four possible outcomes of 

the equivalence tests. That is, when testing for equivalence between group means of LSP 

metrics between GCAs, UE areas, and areas outside of the UE, it is possible for (1) all 

three groups to be statistically equivalent, (2) all groups to be different (hypothesis A1 for 

DGSAGDD), (3) one pair of group means to be equivalent, while two pairs are different, or 

(4) two pairs of group means equivalent, with one pair different. In the analysis, the 

letters are ranked descending. Thus, the letter “A” symbolizes the highest value, and the 

letter “C” the lowest. If the letters are the same, the groups are equivalent. 
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Figure 11. Examples of the four possible outcomes of equivalence tests between GCAs 

(green), UE areas (tan) and areas outside of the UE (brown). Outcome (1) symbolizes 

statistical equivalence between all group means and (2) shows statistical difference 

between all group means. In case (3) group means between GCAs and UE areas are 

equivalent but both are different and higher than areas outside of the UE. In example (4) 

group means are equivalent between GCAs and UE areas, and between GCAs and areas 

outside of the UE, but not equivalent between UE areas and areas outside of the UE. 

Letter symbols rank group means from highest (A) to lowest (C). This graphical 

representation will be used in the analysis section to demonstrate the most common 

results obtained from equivalence testing between group means of LSP metrics.  
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Data Analysis: Exponential Trend Model: DGSAGDD vs. Distance from UCAs 

In order to address Hypothesis A2 (DGSAGDD decreases with distance from UCAs), I 

based my methods off of a study by Zhang et al. 2004a, which investigated differences in 

LST and phenological transition dates for urban areas in eastern North America (Zhang et 

al. 2004a). I began by calculating the mean DGSAGDD for all pixels with R2 > 0.6 within 

each cities’ UE. Next, I calculated the mean DGSAGDD grouped by distance from nearest 

UCA at 1 km intervals. Then I took the difference between mean UE DGSAGDD and the 

mean DGSAGDD for each 1 km distance grouping. I then plotted the mean difference in 

DGSAGDD (ΔDGSAGDD) as a function of distance from UCA for each urban region (Figure 

12). From there, I fit an exponential function 

ΔDGSAGDD = a(1−ue-b*distance)   (6) 

where a is the horizontal asymptote, u is the relative amount the curve increases from the 

origin to the horizontal asymptote, and b is a scaling parameter for distance. I assume that 

the distance from UCAs where impacts on DGSAGDD become insignificant is the distance 

where each exponential model reaches 95 % of its asymptotic values (Zhang et al. 

2004a). This approach provides two very useful values that I use to address hypothesis 

A2: (1) the extent (distance) of urban influence on LSP, and (2) the magnitude of 

differences in DGSAGDD between urban and surrounding rural environments.  

I chose to limit this part of the analysis to all pixels within 20 km of UCAs, the same 

distance used in Zhang et al. 2004a. I split this analysis into two parts. The first is limited 

to perennial vegetation LCTs, whose DGSAGDD is driven largely by local atmospheric 

conditions and thus allows for conclusions to be made on the impacts of UHIs on 

DGSAGDD. Second, I performed the same analysis but included annual croplands. It 
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would be inappropriate to draw conclusions on the influence of urban areas (via the UHI 

effect) on the DGSAGDD of croplands, because cropland LSP is driven largely by 

management practices, including the timing of tillage and harvest (Krehbiel, Jackson, and 

Henebry 2015). However, including croplands allows us to draw conclusions on the 

difference in the duration of the “green-on” season. That is, the annual time period when 

the land surface is covered in green vegetation. At the regional level, I compared my 

results from each urban region to draw conclusions on the influence of city size and 

latitude in regards to the impacts on the surrounding environment. 

 
Figure 12. Example of exponential trend model fit to ΔDGSAGDD as a function of distance 

from nearest UCA for Omaha, NE urban region, with model equation (above) showing a, 

u, and b parameters. The grey diamonds show where the exponential model reaches 95% 

of asymptotic values, used to calculate the magnitude of ΔDGSAGDD and the distance at 

which urban effects become insignificant. In blue is the model fit to strictly perennial 

vegetation LCTs and in green annual croplands are included. 
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Data Analysis: Linear Regression of PH NDVI vs. Half-TTPNDVI 

I performed linear regression analyses on the relationship between PHNDVI and half-

TTPNDVI by land cover type in order to draw conclusions on my third hypothesis (A3). 

Due to the high volume of observations, I limited this portion of the analysis to pixels 

with R2 ≥ 0.8. In order to determine if the linear model is significant, I used an R2 

threshold of 0.8 in addition to the more traditionally used p-values, again due to 

extremely large n values. I then compared the observed differences between various 

LCTs. In particular, I am interested in whether or not a significant linear relationship 

exists for perennial vegetation LCTs but not for annual croplands. Figure 13 shows an 

example of the linear regression fit by LCT for the Ames, IA urban region. 

 
Figure 13. Example of linear regression model fit to PHNDVI vs. Half-TTPNDVI by LCT for 

Ames, IA urban region. In this example, only the forest LCT (green) exhibits a positive 

linear relationship that is statistically significant (R2 = 0.92, p-value < 0.0001). 
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RESULTS 

Equivalence Testing: PHNDVI 

PHNDVI is statistically equivalent between GCAs and areas outside of the UE and 

significantly lower in UE areas for 14 of the 19 urban regions (Figure 14; left).  

Additionally, 3 of the 19 urban regions exhibit statistical equivalency in PHNDVI between 

two pairs of groups: (1) GCAs and UE areas, and (2) GCAs and areas outside of the UE 

(Figure 14; right). However, PHNDVI is significantly lower in UE areas than in areas 

outside of the UE. In summary, 17 of the 19 urban regions have significantly higher 

PHNDVI in perennial vegetation outside of the UE compared to UE areas. This aligns with 

results from a similar study that found PHNDVI to decrease with proximity to the center of 

cities (Krehbiel, Jackson, and Henebry 2015).  

 

Figure 14. Results from equivalence tests between group means of PHNDVI. PHNDVI is 

equivalent between GCAs (green) and areas outside of the UE (brown), but significantly 

lower in UE areas (tan) for 14/19 cities (left). PHNDVI is equivalent between GCAs and 

UE areas and equivalent between GCAs and areas outside of the UE, but significantly 

lower in UE areas compared to areas outside of the UE for 3/19 cities (right).   
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Figure 15. PHNDVI for nine study cities in the greater Minneapolis-St. Paul, MN-WI urban 

region. Water is masked (blue) and pixels with model fit < 0.5 are in black. Lines are UE 

(white) and urban regions (cyan) for each of the nine study cities.  
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Figure 16. PHNDVI for three study cities in the greater Omaha-Council Bluffs, NE-IA 

urban region. Water is masked (blue) and pixels with model fit < 0.5 are in black. Lines 

are UE (white) and urban regions (cyan) for each of the three study cities.  

Figures 15-16 show the model results for PHNDVI displayed geographically over the 

greater Minneapolis-St. Paul (Figure 15) and Omaha-Council Bluffs (Figure 16) study 

regions. UE is outlined in white. Water has been masked in blue, and pixels with R2
 < 0.5 

are in black. Both figures show generally decreased PHNDVI within the UE in shades of 

brown, with darker shades of green indicating higher PHNDVI in the regions outside of the 

UE. Notice localized regions of higher PHNDVI evident within portions of the UE of 

Minneapolis-St. Paul (Figure 15; center). This suggests that large urban green spaces 

contain dense, green vegetation and possibly enhance the health and productivity of 
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urban vegetation.  The two regions that did not exhibit the aforementioned equivalence 

test results for PHNDVI are Fremont, NE, (Figure 16; Northwest) and Lincoln, NE (Figure 

16; Southwest). In Fremont, NE, PHNDVI was different between all areas and highest in 

regions outside of the UE, followed by GCAs and lastly UE areas. Lincoln, NE, is the 

only urban region where PHNDVI is equivalent between areas inside the UE and areas 

outside of the UE. This relationship is evident in Figure 16, with the Lincoln, NE region 

showing shades of brown (indicating lower PHNDVI) both within and outside of the UE. 

Lincoln, NE, is the furthest south and warmest city in my study (Figure 2, Table 1), and 

the absence of higher PHNDVI in the regions surrounding the UE indicates that water 

availability may be a confounding factor of LSP dynamics in this region in addition to 

thermal time. 

Equivalence Testing: Half-TTPNDVI 

Half-TTPNDVI measures the rate of green vegetation development during the start of 

the growing season. Lower Half-TTPNDVI values indicate a faster rate of green up, which 

is common in cropland LSP dynamics (Figure 7c). There is no dominant pattern in the 

spatiality of Half-TTPNDVI for the selected 19 study regions. Half-TTPNDVI is statistically 

equivalent between UE areas and areas outside of the UE and significantly higher in 

GCAs for six of the 19 urban regions (Figure 17; left).  On the other hand, six of the 19 

urban regions are equivalent in Half-TTPNDVI between GCAs and areas outside of the 

UE, and significantly lower in UE areas. Based on the lack of a dominant spatial pattern 

between mean half-TTPNDVI by urban region, it appears that urban areas do not 

significantly alter the rate of vegetation green-up, which is more likely driven by the 

inherent physiological characteristics of individual vegetation species. This can be 
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visualized geographically in Figure 18, where it appears that half-TTPNDVI is higher 

(green) inside the UE (white) of Sioux Falls, SD (south) compared to the surrounding 

agricultural landscape (brown). This contrast in half-TTPNDVI is caused by differences in 

LCT, with croplands exhibiting very low half-TTPNDVI compared to the perennial 

vegetation LCTs within the UE. Lower half-TTPNDVI is associated with a higher rate of 

green-up, which is characteristic of the soy and maize crops grown in the rural areas 

surrounding Sioux Falls, SD. However, this relationship is not captured in the 

equivalence test—which only tested half-TTPNDVI for perennial LCTs within each 

respective region.   

 

Figure 17. Results from equivalence tests between group means of Half-TTPNDVI. Half-

TTPNDVI is equivalent between UE areas (tan) and areas outside of the UE (brown), but 

significantly higher in GCAs (green) for 6/19 cities (left). Half-TTPNDVI is equivalent 

between GCAs and areas outside of the UE but significantly lower in UE areas for 6/19 

cities (right). 
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Figure 18. Half-TTPNDVI for the greater Sioux Falls-Brookings, SD urban region. Water 

is masked (blue) and pixels with model fit < 0.5 are in black. Lines are UE (white) and 

urban regions (cyan) for the two study cities.  
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Equivalence Testing: TTP 

Thermal time to peak NDVI is statistically equivalent between GCAs, UE areas, and 

areas outside of the UE for 11 of the 19 study cities (Figure 19; left). This result suggests 

that urban areas and UHIs do not drastically alter the timing of PHNDVI. However, in five 

of the 19 cities, TTP is significantly later (higher TTP) in UE areas compared to areas 

outside of the UE, with TTP equivalent between GCAs and both UE areas and areas 

outside of the UE (Figure 19; right). Des Moines, IA is an example of one of the five 

cities with this pattern, evident in Figure 20 (south), where it is clear that TTP occurs 

later (dark brown) inside of the UE than the surrounding regions, particularly in the less 

intensely cultivated regions to the south of the city.  Both Ames (Figure 20; north) and 

Marshalltown, IA (Figure 20; Northeast) exhibit the dominant pattern of equivalency in 

TTP between all three urban spatial regions.  

 

Figure 19. Results from equivalence tests between group means of TTP. TTP is 

equivalent between GCAs (green), UE areas (tan) and areas outside of the UE (brown) 

for 11/19 cities (left). TTP is equivalent between GCAs and UE areas and equivalent 

between GCAs and areas outside of the UE, but significantly higher in UE areas 

compared to areas outside of the UE for 5/19 cities (right). 
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Figure 20. TTP for three study cities in the greater Des Moines, IA urban region. Water is 

masked (blue) and pixels with model fit < 0.5 are in black. Lines are UE (white) and 

urban regions (cyan) for each of the three study cities.  

Equivalence Testing: DGSAGDD 

Hypothesis A1 states that DGSAGDD in GCAs is shorter than in UE areas, but longer 

than in regions outside of the UE. This hypothesis is based on the premise that vast 

expanses of urban vegetation could potentially experience shorter growing seasons due to 

the cooling effects of vegetation. However, only one out of the 19 urban regions exhibits 

this pattern based on the equivalence testing analysis (Lincoln, NE).  DGSAGDD is 

equivalent between GCAs and UE areas and higher than areas outside of the UE for 17 

out of the 19 urban regions (Figure 21). Thus, I reject hypothesis A1 and conclude that in 
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general, DGSAGDD is longer in both GCAs and UE areas than in areas outside of the UE, 

but there is not a significant difference between DGSAGDD in GCAs compared to UE 

areas.  This dominant spatial pattern demonstrates the influence of urban areas and UHIs 

on the seasonal development of perennial vegetation, where vegetation within cities 

experiences growing seasons that are at least 10% longer than vegetation in the 

surrounding rural areas. Tables containing all of the results from the equivalence tests for 

each LSP metric and individual urban regions are found in Appendix II. 

 

Figure 21. Results from equivalence tests between group means of DGSAGDD. DGSAGDD 

is equivalent between GCAs (green) and UE areas (tan), but significantly lower in areas 

outside of the UE (brown) for 17/19 urban regions. 

Figures 22-23 show DGSAGDD over the greater Des Moines, IA (Figure 22), and 

Minneapolis-St. Paul, MN (Figure 23) regions. Darker shades of red relate to longer 

DGSAGDD, clustered near the densely impervious UCAs of each region. Figure 24 shows 
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the corresponding LCT over the greater Minneapolis-St. Paul urban region. Notice that 

significant spatial patterns exist between DGSAGDD and LCT, with higher DGSAGDD in the 

perennial LCTs (developed, forest, herbaceous) compared to annual croplands. This 

spatial pattern demonstrates why croplands were omitted from the DGSAGDD analysis: (1) 

there are little to no cropland areas inside of cities from which to compare, and (2) the 

seasonal development of annual croplands is dictated by management factors (i.e. field 

accessibility, timing of tillage, irrigation) rather than by local environmental and 

atmospheric conditions (i.e. thermal time, the UHI effect). 

 

Figure 22. DGSAGDD for three study cities within the greater Des Moines, IA urban 

region. Water is masked (blue) and pixels with CxQ LSP model fit < 0.5 are in black. 

Yellow outlines show the distance (extent) of significant urban influence on the 

surrounding environment, measured from UCAs.    
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Figure 23. DGSAGDD for nine study cities within the greater Minneapolis-St. Paul, MN-

WI urban region. Water is masked (blue) and pixels with CxQ LSP model fit < 0.5 are in 

black. Yellow outlines show the distance (extent) of significant urban influence on the 

surrounding environment, measured from UCAs.    
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Figure 24. LCT classification scheme for nine study cities within the greater 

Minneapolis-St. Paul, MN-WI urban region demonstrating regional differences in 

dominant LCT between the intensely cultivated regions in the southwest (brown) and 

increasingly forest/herbaceous LCTs (green/yellow) to the north and east, with the large 

metropolitan area of Minneapolis-St. Paul (grey) lying between the two regions.  
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Exponential Trend Model: ΔDGSAGDD vs. Distance from UCA 

In order to test hypothesis A2, that DGSAGDD decreases with distance from UCAs, I 

analyzed the difference in DGSAGDD (ΔDGSAGDD) between UE areas and areas grouped 

by increasing distance from UCAs. ΔDGSAGDD follows an increasing negative 

exponential trend function of distance from UCAs for all of the 19 study cities. However, 

the Fargo, ND, region exhibited unreasonable results, likely due to the low R2 in the study 

region (28.6% CxQ LSP model fit). Thus, I excluded the Fargo, ND, region from the 

exponential trend model analysis. I fit the exponential model twice: once for ΔDGSAGDD 

calculated only from perennial LCTs (developed, forest, herbaceous) (Figure 25; blue) 

and once incorporating croplands (Figure 25; green). In general, ΔDGSAGDD increases 

exponentially with distance from nearest UCA (Figure 25). The magnitude of ΔDGSAGDD 

ranges from 393 AGDD in Mankato, MN, to 855 in Lincoln, NE. The distance at which 

urban effects are detectable and significant extends from 5.6 km in St. Cloud, MN, to 

15.4 km in Des Moines, IA. The results for each individual urban region are found in 

Table 3.  On average, the 18 urban areas experience growing seasons that are 669 AGDD 

longer than the surrounding rural areas, and the effects of urban areas on the growing 

season extend 11.4 km into the urban periphery. It is evident that urban areas impact the 

duration of growing season in perennial LCTs, and that urban effects (namely UHIs) 

extend beyond the boundaries of cities themselves. Figures 22-23 illustrate the zone of 

urban influence extending into the urban periphery in yellow. 

Analysis of DGSAGDD restricted to perennial vegetation LCTs allows for conclusions 

on the impacts of UHIs on the seasonal development of vegetation. However, including 

croplands offers a comparison of the difference between urban and rural duration of 
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green-on season, or the annual period where the land surface is covered in green 

vegetation. Figure 25 demonstrates the dramatic difference in ΔDGSAGDD calculated with 

(green) and without (blue) annual croplands. Notice that the difference in ΔDGSAGDD is 

greater in regions that are surrounded predominantly by intensive agriculture (Figure 25; 

Omaha, NE, and Des Moines, IA, regions) compared to areas where there is a greater 

portion of forest and herbaceous land cover surrounding the urban area (Figure 25; 

Rochester and Minneapolis-St. Paul, MN). Including croplands into the calculation of 

ΔDGSAGDD leads to a mean difference between urban and rural DGSAGDD of 1125 AGDD. 

To reiterate, this result is not demonstrating the influence of urban areas on local 

atmospheric conditions, but rather highlights the large difference in the duration of green-

on season between perennial vegetation LCTs and annual croplands. This difference has 

major implications for the representation of urban vs. rural vegetation in land surface 

modeling. All of the exponential trend plots for each of the 19 urban regions can be found 

in Appendix III. 
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Table 3. Scaling parameters of exponential trend model for ΔDGSAGDD fit with croplands 

included (“C”) and with croplands excluded (“NC”) as well as the magnitude of 

ΔDGSAGDD (“a”, in AGDD) and distance where urban influence on the surrounding 

environment becomes insignificant, measured from nearest UCA.  

City NC b C b C u NC u C R2 NC 

R2 

NC 

a  

C a  ∆a  NC 

Dist 

(km) 

C 

Dist 

(km) 

Aberdeen, SD 0.233 0.204 0.887 0.848 0.904 0.857 528 836 309 12.9 14.7 

Albert Lea, MN 0.243 0.251 1.151 1.174 0.934 0.879 652 1135 482 12.3 12.0 

Ames, IA 0.217 0.264 1.097 1.154 0.963 0.899 662 1400 738 13.8 11.4 

Austin, MN 0.258 0.374 0.974 0.991 0.953 0.878 689 1203 514 11.6 8.0 

Brookings, SD 0.399 0.369 1.069 1.050 0.952 0.964 605 1084 480 7.5 8.1 

Cambridge, MN 0.275 0.396 1.003 0.984 0.910 0.951 422 482 60 10.9 7.6 

Des Moines, IA 0.195 0.310 1.065 1.109 0.961 0.975 721 1195 474 15.4 9.7 

Faribault, MN 0.388 0.419 1.004 1.145 0.966 0.920 545 970 426 7.7 7.2 

Fremont, NE 0.253 0.373 0.777 0.970 0.970 0.933 735 1467 732 11.8 8.0 

Lincoln, NE 0.276 0.317 0.792 0.900 0.944 0.968 855 1303 448 10.9 9.5 

Mankato, MN 0.238 0.312 1.032 1.068 0.946 0.963 393 931 538 12.6 9.6 

Marshalltown, IA 0.221 0.178 0.896 1.007 0.987 0.970 804 1428 623 13.6 16.8 

MSP, MN 0.289 0.270 1.058 1.094 0.975 0.975 743 929 186 10.4 11.1 

Omaha, NE 0.254 0.296 1.042 1.089 0.972 0.963 800 1449 649 11.8 10.2 

Owatonna, MN 0.357 0.451 1.101 1.089 0.937 0.937 754 1276 522 8.4 6.6 

Rochester, MN 0.201 0.193 1.090 1.124 0.966 0.966 799 1172 374 15.0 15.6 

Sioux Falls, SD 0.238 0.340 1.097 1.109 0.960 0.956 832 1375 543 12.6 8.8 

St. Cloud, MN 0.532 0.527 1.065 1.085 0.924 0.940 497 611 115 5.6 5.7 

Minimum 0.195 0.178 0.777 0.848 0.904 0.857 393 482 60 5.6 5.7 

Maximum 0.532 0.527 1.151 1.174 0.987 0.975 855 1467 738 15.4 16.8 

Mean 0.281 0.325 1.011 1.055 0.951 0.939 669 1125 456 11.4 10.0 
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Figure 25. Exponential trend model fit to ΔDGSAGDD as a function of distance from 

nearest UCA for four selected cities. Differences in ΔDGSAGDD calculated with croplands 

(green) and without croplands (blue) are evident, particularly in the predominantly 

agricultural Omaha-Council Bluffs, NE-IA, and Des Moines, IA, regions compared to the 

Rochester, MN, and Minneapolis-St. Paul, MN-WI, regions where forests and herbaceous 

land covers are more widely distributed. The grey diamonds show where the exponential 

model reaches 95% of asymptotic values, used to calculate the magnitude of ΔDGSAGDD 

and the distance at which urban effects become insignificant. 

ΔDGSAGDD: Regional Comparison  

It appears that the impacts of urban areas and UHIs on the seasonal development of 

vegetation are independent of population size, which is congruent with the previous study 
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from which I used as the methodological basis of the exponential trend model analysis 

(Zhang et. al 2004a). However, the total area influenced by urban areas is larger in cities 

with greater area (Figures 22-23, yellow lines). Figure 26 shows the relationship between 

latitude and ΔDGSAGDD. In orange are ΔDGSAGDD for each city calculated with croplands, 

and in blue are ΔDGSAGDD calculated without croplands. It appears that ΔDGSAGDD 

decreases with increasing latitude in Figure 26a, however if we convert ΔDGSAGDD into 

ΔDGSdays (by dividing ΔDGSAGDD by the average daily GDD for each region) the 

relationship becomes less significant (Figure 26b). If we normalize ΔDGSAGDD as a 

percentage of the total mean DGSAGDD by urban region, the relationship becomes even 

less significant (Figure 26c), and the slope is not significantly different from zero for 

ΔDGSAGDD with croplands excluded (Figure 26c, blue). The trend in the relationship 

between ΔDGSAGDD as a function of latitude for the analysis including croplands is likely 

demonstrating the greater presence of agriculture in the urban regions located farther 

south than in the more heavily forested and herbaceous regions surrounding the northern 

urban cities (Figure 24). This suggests that urban influence on local atmospheric 

conditions is relatively uniform and proportionally not influenced by latitude. That is, the 

exponential trend in ΔDGSAGDD found in this study is not caused by differences in 

latitude, but rather by urban areas and their subsequent UHIs.  

Based on the results from the equivalence tests between DGSAGDD in urban areas and 

surrounding rural regions, and the aforementioned differences in DGSAGDD found with 

increasing distance from urban core areas, I fail to reject hypothesis A2. I conclude that 

duration of growing season for perennial vegetation LCTs decreases with distance from 

urban core areas. I found growing season length to differ by approximately 1 month 
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between urban areas and their surrounding rural regions. I also found the effects of urban 

alteration of local atmospheric conditions to extend around 11 km from UCAs. 

 

Figure 26. ΔDGSAGDD in terms of (a) AGDD, (b) calendar days, and (c) percentage of 

mean DGSAGDD for results from model fit with (orange) and without (blue) croplands. 

Notice that ΔDGS is significantly related to latitude in terms of total AGDD (a), but not 

relative (%) ΔDGS (c).  
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Linear Regression: Half-TTPNDVI vs. PHNDVI  

A previous study (Krehbiel, Jackson, and Henebry 2015) found a linear relationship 

between half-TTPNDVI and PHNDVI for a sample of forest and developed WELD pixels in 

Omaha, NE and Minneapolis-St. Paul, MN. The relationship was not found in cropland 

pixels due to high variation in half-TTPNDVI (Krehbiel, Jackson, and Henebry 2015).  I 

found mixed results in fitting a positive linear model to developed, forest, herbaceous, 

and cropland pixels in my study (Figure 27). In general, I also found high variation in 

half-TTPNDVI for cropland pixels. Forest pixels exhibit higher values in both PHNDVI as 

well as half-TTPNDVI than herbaceous and developed perennial LCTs.  

 

Figure 27. Examples of linear regression model fit to PHNDVI vs. Half-TTPNDVI for four 

selected urban regions. Note the large variation in Half-TTPNDVI for croplands (yellow) 

and positive linear relationships seen in the three perennial vegetation LCTs. 
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Due to the high number of observations, I use a coefficient of determination 

threshold of 0.8 for each linear regression fit in addition to a significant p-value (< 0.05) 

to indicate whether or not a significant linear relationship exists between half-TTPNDVI 

and PHNDVI by land cover type. Table 4 summarizes the results obtained for each 

individual urban region. All of the plots of half-TTPNDVI vs. PHNDVI by LCT are found in 

Appendix IV. The model fit crossed the 0.8 threshold for 13 out of the 19 urban regions 

for forest pixels, followed by 5/19 for herbaceous, and 3/19 for developed LCTs. The 

positive linear regression model fit was insignificant for cropland pixels in all cases. 

Three out of the 19 study cities have a significant relationship in all three perennial 

LCTs: Cambridge, MN, Minneapolis-St. Paul, MN, and St. Cloud, MN (Figure 27, Table 

4). Geographically, these three cities are surrounded by a much larger portion of forest 

and herbaceous LCTs than most of the other urban regions (Figure 24). Based on the 

inconclusive results, I reject hypothesis A3. A positive linear relationship exists between 

model-derived half-TTPNDVI and PHNDVI for the majority of cases for forest pixels. A 

positive linear relationship does not exist for annual croplands in any cases. However, a 

positive linear relationship was not found in the majority of urban regions for herbaceous 

and developed LCTs. 
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Table 4. Linear regression model coefficient of determination (R2) by LCT for all 19 

study cities. R2 ≥ 0.8 indicates a significant relationship.  

City Cropland R2 Forest R2 Herbaceous R2 Developed R2 

Aberdeen, SD 0.48 0.90 0.35 0.12 

Albert Lea, MN 0.20 0.66 0.38 0.07 

Ames, IA 0.27 0.92 0.59 0.02 

Austin, MN 0.25 0.68 0.10 0.08 

Brookings, SD 0.45 0.76 0.02 0.04 

Cambridge, MN 0.58 0.93 0.91 0.90 

Des Moines, IA 0.02 0.92 0.81 0.21 

Fargo, ND 0.03 0.88 0.70 0.47 

Faribault, MN 0.09 0.87 0.71 0.17 

Fremont, NE 0.24 0.67 0.45 0.03 

Lincoln, NE 0.01 0.90 0.93 0.59 

Mankato, MN 0.08 0.81 0.72 0.20 

Marshalltown, IA 0.10 0.93 0.77 0.15 

MSP, MN 0.02 0.89 0.85 0.86 

Omaha, NE 0.24 0.89 0.66 0.16 

Owatonna, MN 0.25 0.81 0.45 0.01 

Rochester, MN 0.12 0.77 0.08 0.03 

Sioux Falls, SD 0.23 0.68 0.18 0.13 

St. Cloud, MN 0.07 0.93 0.88 0.85 

 



63 

DISCUSSION 

Urban Spatial Arrangement 

I expected to find that the duration of growing season in green core areas would be 

shorter than in urban extent areas, but longer than regions outside of the urban extent. 

Duration of growing season is significantly longer in urban extent areas compared to 

regions outside of the urban extent for all of the 19 cities analyzed. However, duration of 

growing season is not significantly longer in urban extent areas compared to green core 

areas as expected. I thought that duration of growing season would be lower in green core 

areas due to the cooling effects of green vegetation. For example, one study reported that 

urban parks help control urban temperatures due to 300% higher evaporation rates than 

the surrounding urbanized area (Spronken-Smith, Oke, and Lowry 2000). Another study 

found that green areas and parks reduce cooling load by 10% (Yu and Hien 2006). An 

experiment stated that a 600 m2 park was able to decrease temperatures by 1.5°C (Ca et 

al. 1998). However, one limitation of my study is the relatively coarse spatial resolution 

(1,000,000 m2) of the MODIS-LST product that was used to derive accumulated growing 

degree-days. However, although this study did not find significant differences between 

duration of growing season in green core areas vs. urban extent areas, Figure 28 

demonstrates that duration of growing season is not spatially uniform throughout cities. It 

is evident that duration of growing season is longer near urban core areas (Figure 28; 

purple) than in other regions of the city. Future studies should explore other strategies for 

dividing cities into spatial regions, perhaps using Local Climate Zones (LCZs) as 

outlined by the recently launched World Urban Database and Portal Tool project (Mills et 

al. 2015). 
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The finding that both green core areas and urban extent areas have significantly 

higher duration of growing season than areas outside of the urban extent can be attributed 

to urban areas modulating local atmospheric conditions, namely via increased 

temperatures and consequently longer growing seasons as a result of the UHI effect. 

However, there are other factors that may also contribute to the difference in duration of 

growing season between urban and rural areas, including decreased wind speed, 

increased water availability as a result of urban irrigation, and differences in urban-rural 

species composition. However, the finding that maximum NDVI is significantly lower in 

urban areas than surrounding rural areas suggests that water availability is likely not the 

main limiting factor in the Upper Midwest, a region that experiences relatively stable 

precipitation patterns and quantities. If urban irrigation were the main factor contributing 

to increased duration of growing season, I would expect maximum NDVI to be lower in 

areas outside of the urban extent, which was not found in this study. As a caveat, it is 

difficult to draw conclusions on maximum NDVI in cities due to the heterogeneous 

nature of the urban land surface; pixels that are a mixture of an urban lawn and a rooftop, 

for example, will exhibit lower maximum NDVI values due to the impervious surface 

being sensed.  
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Figure 28. DGSAGDD zoomed into the region of significant urban effects over the 

Minneapolis-St. Paul, MN-WI, urban region. Notice the spatial variation in DGSAGDD, 

with local areas of higher DGSAGDD (shades of dark red) concentrated in proximity to 

UCAs (purple).  

Urban Impacts on DGSAGDD:  Perennial Vegetation vs. Annual Croplands  

The analysis of ΔDGSAGDD demonstrated that urban areas and UHIs influence the 

local thermal conditions inside of cities and extend into the urban periphery. On average, 

this study found that UHIs affect growing season length by over 600 AGDD and the 
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effects extend around 11 km from highly impervious, densely urbanized urban core areas. 

This finding has major implications on land surface phenology in urban to peri-urban 

environments. To illustrate, if we say that an average growing season day accumulates 20 

growing-degree days, and then divide 600 AGDD by 20, this equates to a difference in 

the duration of growing season by approximately 1 month between urban areas and 

surrounding rural areas that are not significantly influenced by local urban atmospheric 

modification (mainly UHI effects). Note that these results are from the analysis of only 

perennial vegetation land covers (developed, forest, herbaceous). Perennial vegetation 

land cover types in this study exhibit a linear trend between peak height in NDVI and 

NDVI at half-thermal time to peak, suggesting that the seasonal development of perennial 

vegetation is driven by local atmospheric conditions, namely thermal time. This 

observation aligns with plant development theory, or the idea that higher temperatures 

prompt earlier growth in heat-sensitive species (Menzel 2000). Controlling the analysis to 

strictly perennial vegetation land cover types provides a higher level of confidence that 

the results are indeed due to the influence of UHI effects rather than differences in land 

cover type, specifically between annual croplands and perennial vegetation.  

Incorporating croplands is, however, useful because it demonstrates the differences 

in green-on season between urban and rural areas, or the time period of the year where 

the land surface is covered in green vegetation. The addition of annual croplands into the 

calculation of change in duration of growing season increased the mean difference 

between urban and rural duration of growing season to around 1100 AGDD. To put it 

into perspective, that is ~ 2 months difference in the annual time period where the land 

surface is covered in green vegetation. At first, this may sound like an erroneous result; 
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however, the major crops grown in the Upper Midwest, namely maize and soybeans, do 

not begin to develop as soon as the growing season has commenced for perennial 

vegetation. Rather, the seasonal development of crops such as maize and soybeans is 

driven largely by external (non-atmospheric) anthropogenic factors including crop 

management, such as field accessibility, the timing of planting and harvest, and the use of 

irrigation. This phenomenon is confirmed by the high variation in the rate of vegetation 

green-up illustrated in cropland pixels in Figure 27. It is not unusual for maize and 

soybean fields in the Upper Midwest to be mostly bare soil in April-May and either 

dried-out crops or crop harvest residue in September-October. Meanwhile, perennial 

vegetation generally begins developing with the commencement of the growing season 

and ends after the first hard freeze, which are undoubtedly much earlier, and later, 

respectively, than the duration of green-on season for maize and soybeans. This finding 

has major implications for urban-rural differences in heat storage and release during 

different periods of the year. During the summer months when the crop canopy is fully 

developed, green vegetation redistributes energy absorbed during the day through 

evapotranspiration, leading to cooler temperatures in the rural regions surrounding cities 

(Gallo et al. 1993). At the regional scale, relative change in duration of growing season 

does not appear to be significantly related to urban extent, population, or latitude. This 

finding suggests that the distance and magnitude that urban areas influence vegetation in 

and near cities is relatively uniform independent of city size. However, larger urban areas 

have a greater impact on local atmospheric conditions in terms of area. 

The positive linear relationship found in the rate of vegetation green-up vs. 

maximum NDVI in perennial vegetation land cover types and the high variation in the 
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rate of green up for annual croplands suggests that studies of urban heat island impacts on 

urban land surface phenology need to account for differences in urban/rural land cover 

types. Because annual cropland phenology is driven largely by agricultural planting 

schedules, it is not appropriate to use annual cropland land surface phenology metrics in 

order to draw conclusions on the magnitude and extent of urban heat island effects on 

land surface phenology in and around cities. Vegetation cover/types that exhibit a natural 

vegetative response, i.e.  a positive linear relationship between the rate of vegetation 

green-up and maximum NDVI, are more appropriate for research aimed at measuring and 

monitoring the urban heat island effects on land surface phenology. 

CONCLUSIONS 

There are multiple remote sensing issues that must be accounted for in order to draw 

conclusions related to the study of UHI impacts on LSP in and around cities. Past studies 

of UHI effects on urban LSP have centered on surface observation networks and high 

temporal/coarse spatial resolution remote sensing datasets. Studies of UHIs using air 

temperature readings from local meteorological stations have higher spatial resolution but 

are hampered by poor spatial coverage. Studies of UHIs using coarse resolution data for 

analyzing urban LSP suffer from mixed pixels that make it extremely difficult to account 

for differences in LSP by LCT. There exists a need for more spatially extensive, higher 

spatial resolution data products to capture phenological patterns in areas with 

heterogeneous land cover and external drivers such as urban areas that are a mixture of 

land cover/land uses and experience microclimatic influences, namely the UHI effect 

(Fisher, Mustard, and Vadeboncoeur 2006; Melaas, Friedl, and Zhu 2013). Using Landsat 

data for phenological studies allows for local to regional scale analyses, offering a spatial 
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resolution that is useful for exploring factors that influence phenology including land use 

and urban heat islands (Melaas, Friedl, and Zhu 2013).  

This regional study leverages multiple datasets from multiple sensors at relatively 

high spatial resolutions in order to solve the tradeoff between high spatial and temporal 

resolution, enabling research to be carried out while controlling for LCT, and with full 

spatial coverage in and around cities. Fitting the CxQ LSP model to the decade of 

available observations provides a strategy for dealing with the low number of 

observations that often restrict Landsat studies. This research provides a framework for 

studying the impacts of urban areas and UHIs on the seasonal development of vegetation 

at a spatial resolution that is useful and necessary in highly complex, heterogeneous 

urban areas. The results found in this study highlight the need for future research of UHI-

related impacts on urban LSP in order to account for differences in LSP between annual 

croplands and perennial vegetation covers. Also, DGSAGDD was found to increase with 

proximity to densely impervious, urban core areas, demonstrating the need to identify 

local “hotspots” within urban areas that may disproportionately produce warmer 

atmospheric conditions. The results found in this study demonstrating the drastic 

difference in the DGSAGDD and the extent of urban influence on DGSAGDD highlights the 

necessity for urban land surface models to accurately represent the seasonal development 

of vegetation in and nearby cities. Future urbanization will only increase the amount of 

Earth’s land surface that is significantly impacted by urban areas and subsequent UHI 

effects. Future studies will model LSP metrics before and after land cover changes as 

urbanization occurs along the urban periphery. This step should reduce the number of 
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pixels within cities that were excluded from the analysis due to poor CxQ LSP model fit, 

and increase our understanding of the impacts of urbanization on LSP. 

This study provides much needed and currently lacking information on (1) the 

differences in the seasonal development of vegetation between urban and rural areas of 

the Upper Midwest, (2) the magnitude and extent of UHI effects on the seasonal 

development of vegetation in small to medium sized cities and (3) the differences in land 

surface phenology between annual croplands and perennial urban vegetation in the Upper 

Midwest. More importantly, this study provides a framework for alleviating the 

resolution problems that have restricted studies of UHI effects on urban LSP in the past. 

This information can be used to inform a variety of interests, including researchers 

interested in assessing UHI effects on urban LSP in other regions, urban land surface 

modelers, urban ecologists, urban policy-makers, city planners and developers, 

meteorologists, and climatologists. 
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APPENDICES 

Appendix I: Definitions 

Green Core Area— A spatially contiguous area of pixels (> 60 hectares) within the 

urban extent classified as “Developed, Open Space, Forest, Shrub/Scrub, 

Grassland/Herbaceous, Pasture/Hay or Wetlands” using the 2011 NLCD LCT product. 

Urban Core Area— A spatially contiguous area of pixels (> 10 hectares) within the 

urban extent classified as “Developed, High Intensity” using the 2011 NLCD LCT 

product. 

Urban Extent—Defined using the cartographic boundary files for urban areas as 

delineated by the 2010 U. S. Census, provided by the U.S. Census Bureau (U. S. Census 

Bureau 2010b).  

Urban Region—A nominal term for each individual study city and the surrounding rural 

areas located within the region of interest that are used in the analyses. 
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Appendix II: Equivalency Test Results  

PH
NDVI

 Outside UE UE GCA0 

 MSP, MN 0.721
a
 0.601

b
 0.704

a0
  

 Omaha, NE 0.685
a
 0.608

b
 0.698

a0
 

 Des Moines, IA 0.690
a
 0.602

b
 0.703

a0
 

 Lincoln, NE 0.627
ab
 0.579

b
 0.657

a0
 

 Sioux Falls, SD 0.642
a
 0.540

b
 0.642

a0
 

 Fargo, ND 0.651
a
 0.556

b
 0.684

a0
 

 Rochester, MN 0.729
a
 0.622

b
 0.717

a0
 

 St. Cloud, MN 0.722
a
 0.629

b
 0.695

ab0
 

 Mankato, MN 0.710
a
 0.582

b
 0.704

a0
 

 Ames, IA 0.695
a
 0.589

b
 0.701

a0
 

 Faribault, MN 0.719
a
 0.605

b
 0.731

a0
 

 Marshalltown, IA 0.680
a
 0.584

b
 0.702

a0
 

 Aberdeen, SD 0.614
a
 0.512

b
 0.597

a0
 

 Austin, MN 0.694
a
 0.595

b
 0.707

a0
 

 Fremont, NE 0.657
a
 0.550

c
 0.585

b0
 

 Owatonna, MN 0.697
a
 0.585

b
 0.705

a0
 

 Brookings, SD 0.636
a
 0.553

b
 0.613

ab0
 

 Albert Lea, MN 0.680
a
 0.609

b
 0.677

ab0
 

 Cambridge, MN 0.725
a
 0.583

b
 0.677

a0
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Half-TTP
NDVI

 Outside UE UE GCA0 

 MSP, MN 0.584
a
 0.511

b
 0.582

aa
 

 Omaha, NE 0.544
ab
 0.519

b
 0.586

aa
 

 Des Moines, IA 0.569
a
 0.514

b
 0.591

aa
 

 Lincoln, NE 0.507
b
 0.498

b
 0.551

aa
 

 Sioux Falls, SD 0.499
b
 0.464

b
 0.540

aa
 

 Fargo, ND 0.523
a
 0.474

b
 0.570

aa
 

 Rochester, MN 0.571
ab
 0.526

b
 0.600

aa
 

 St. Cloud, MN 0.584
a
 0.528

b
 0.572

aba
 

 Mankato, MN 0.545
a
 0.483

b
 0.577

aa
 

 Ames, IA 0.548
b
 0.501

c
 0.591

aa
 

 Faribault, MN 0.562
a
 0.511

b
 0.603

aa
 

 Marshalltown, IA 0.541
b
 0.505

b
 0.593

aa
 

 Aberdeen, SD 0.482
a
 0.441

b
 0.465

aba
 

 Austin, MN 0.509
b
 0.503

b
 0.591

aa
 

 Fremont, NE 0.510
a
 0.471

b
 0.450

ca
 

 Owatonna, MN 0.518
b
 0.493

b
 0.581

aa
 

 Brookings, SD 0.503
ab
 0.476

b
 0.519

aa
 

 Albert Lea, MN 0.502
b
 0.512

b
 0.560

aa
 

 Cambridge, MN 0.591
a
 0.497

b
 0.560

aa
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TTP Outside UE UE GCA0 

 MSP, MN 2014
b
 2358

a
 2204

aba
 

 Omaha, NE 2475
a
 2719

a
 2585

aa
 

 Des Moines, IA 2331
b
 2626

a
 2523

aba
 

 Lincoln, NE 2535
a
 2778

a
 2579

aa
 

 Sioux Falls, SD 2215
b
 2485

a
 2389

aba
 

 Fargo, ND 1954
b
 2178

a
 2109

aba
 

 Rochester, MN 2011
b
 2245

a
 2140

aba
 

 St. Cloud, MN 1912
a
 2167

b
 2098

aba
 

 Mankato, MN 2153
a
 2286

a
 2237

aa
 

 Ames, IA 2285
a
 2402

a
 2340

aa
 

 Faribault, MN 2070
a
 2210

a
 2137

aa
 

 Marshalltown, IA 2280
a
 2410

a
 2283

aa
 

 Aberdeen, SD 2059
a
 2205

a
 2255

aa
 

 Austin, MN 2102
a
 2165

a
 2053

aa
 

 Fremont, NE 2482
b
 2669

ab
 2681

aa
 

 Owatonna, MN 2121
a
 2256

a
 2160

aa
 

 Brookings, SD 2060
a
  2225

a
 2099

aa
  

 Albert Lea, MN 2192
a
 2163

a
 2087

aa
 

 Cambridge, MN 1878
b
 2133

a
 2107

aa
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DGS
AGDD

 Outside UE UE GCA0 

 MSP, MN 3574
b
 4317

a
 4040

aa
 

 Omaha, NE 4267
b
 5128

a
 4903

aa
 

 Des Moines, IA 4251
b
 4889

a
 4800

aa
 

 Lincoln, NE 4315
c
 5160

a
 4742

ba
 

 Sioux Falls, SD 3611
b
 4428

a
 4429

aa
 

 Fargo, ND 3266
b
 3818

a
 3894

aa
 

 Rochester, MN 3428
b
 4157

a
 4070

aa
 

 St. Cloud, MN 3368
b
 3917

a
 3774

aa
 

 Mankato, MN 3498
b
 3866

a
 4019

aa
 

 Ames, IA 3898
b
 4435

a
 4490

aa
 

 Faribault, MN 3464
b
 3995

a
 3940

aa
 

 Marshalltown, IA 3927
b
 4576

a
 4419

aa
 

 Aberdeen, SD 3293
b
 3780

a
 3598

aa
 

 Austin, MN 3251
b
 3920

a
 3872

aa
 

 Fremont, NE 4103
b
 4803

a
 4124

ba
 

 Owatonna, MN 3320
b
 4035

a
 3942

aa
 

 Brookings, SD 3385
b
 4007

a
 3866

aa
  

 Albert Lea, MN 3348
b
 3898

a
 3770

aa
 

 Cambridge, MN 3356
b
 3832

a
 3778

aa
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Appendix III: Exponential Model Plots  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



91 

Appendix IV: PHNDVI vs. Half-TTPNDVI Plots 
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