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ABSTRACT 

INCREASING THE NUTRITIONAL VALUE OF CANOLA MEAL VIA FUNGAL 

BIOPROCESSING 

JASON R. CROAT 

2015 

The main limitation of meals from canola and other Brassica spp. is the presence 

of glucosinolates (GLS), which are anti-nutritional and can even be toxic at high 

ingestion levels. Furthermore, large amounts of GLS can reduce palatability for livestock 

and thus reduce intake and growth rates. For this reason canola was bred to contain lower 

levels of GLS (< 30 μmol/g) and erucic acid (< 2%). However, feed inclusion rates are 

still limited to ~30%, and this reduces the value of canola meal. The goal of this thesis 

was to optimize a pretreatment and fungal conversion process to enhance the nutritional 

value of canola meal. Various combinations of physical/chemical pretreatments, fungal 

cultures, and incubation methods were investigated to metabolize GLS into cell mass, 

CO2, or other non-toxic components. These treatments also served to hydrolyze canola 

meal fiber into carbohydrates which were then metabolized by the fungi into single cell 

protein.  

Solid-state incubation conditions were initially tested, since filamentous fungi are 

well adapted to grow at lower moisture levels, and this would potentially reduce 

contamination issues with bacteria. Flask trials were performed using 50% moisture, 

hexane extracted (HE) or cold pressed (CP) canola meal, with incubation for 168 h at 

30ºC. On HE canola meal Trichoderma reesei (NRRL-3653) achieved the greatest 

increase in protein content (23%), while having the lowest residual levels of sugar (8% 



 xiii 

w/w) and GLS (0.4 μM/g). On CP canola meal T. reesei (NRRL-3653), Aureobasidium 

pullulans (NRRL-58522), and A. pullulans (NRRL-Y-2311-1) resulted in the greatest 

improvement in protein content (22.9, 16.9 and 15.4%, respectively), while reducing total 

GLS content from 60.6 μM/g to 1.0, 3.2 and 10.7 μM/g, respectively. GLS levels were 

reduced to 65.5 and 50.7% by thermal treatments while solid-state microbial conversion 

further reduced GLS up to 99 and 98% in HE and CP canola, respectively. Fiber levels 

increased due to the concentration effect of removing oligosaccharides and GLS. 

Submerged incubation conditions were also tested, as this approach is more 

commonly used in industry due to easier material handling and process control. Flask 

trials were performed using 10% moisture content HE or CP canola meal, with incubation 

for 168 h at 30ºC while being agitated at 150 rpm. Canola meals were either subjected 

directly to submerged incubation with the fungal strains, or were first saccharified with a 

cellulase enzyme cocktail and then incubated with the fungi. Aureobasidium pullulans 

(Y-2311-1), Fusarium venenatum and Trichoderma reesei resulted in the greatest 

improvements in protein levels in HE canola meal, at 21.0, 23.8, and 34.8%, respectively. 

These fungi reduced total GLS content to 2.7, 7.4, and 4.9 μM/g, respectively, while 

residual sugar levels ranged from 0.8-1.6% w/w. In trials with CP canola meal, the same 

three fungi increased protein levels by 24.6, 35.2, and 37.3%, and final GLS levels to 6.5, 

4.0, and 4.7 μM/g, respectively, while residual sugar levels ranged from 0.3-1.0 % w/w. 

P. kudriavzevii was the only fungi able to significantly reduce ADF in both saccharified 

HE and CP canola meal, representing a reduction of 6.5 and 9.6%, respectively. Similar 

to solid-state incubation, most cases resulted in an increase of fiber levels due to the 

concentration effect of removing oligosaccharides and GLS. 



 xiv 

Due to the lack of fiber hydrolysis in the trials described above, HE and CP 

canola meal were subjected to various pretreatments (extrusion, hot water cook, dilute 

acid, and dilute alkali) to determine if fibers could be made more susceptible to 

enzymatic hydrolysis. Following pretreatment, canola samples were subjected directly to 

submerged incubation with the fungal strains (A. pullulans Y-2311-1, F. venenatum 

NRRL-26139, and T. reesei NRRL-3653). The combination of extrusion pretreatment 

followed by incubation with T. reesei resulted in the greatest overall improvement to HE 

canola meal, increasing protein to 51.5%, while reducing NDF, GLS, and residual sugars 

to 18.6%, 17.2 μM/g, and 5% w/w, respectively. Extrusion pretreatment and incubation 

with F. venenatum performed the best with CP canola meal, resulting in 54.4% protein 

while reducing NDF, GLS, and residual sugars to 11.6%, 6.7 μM/g, and 3.8% w/w, 

respectively.  
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Chapter I - Literature Review 

 

1.1 Oilseed Production 

1.1.1 Types of Oilseeds 

 On a global basis, the major oilseed crops are soybean, sunflower, rapeseed, 

cotton, and peanuts (Ash 2012; Sarwar et al. 2013). Oilseeds are primarily grown for 

their oil content for either edible or industrial applications (Ash 2012), although the 

remaining meals are valuable livestock feeds. The type of oilseed planted depends on the 

purpose of production (oil, meal, or as cover crops) (Haramoto and Gallandt 2007), and 

the climatic conditions in the region.  

1.1.1.1 Leguminous  

Legumes are broadly defined by their unusual flower structure, podded fruit, and 

the ability of 88% of the species to form nodules with Rhizobia spp. bacteria (Graham 

and Vance 2003). The primary dietary legumes include soybean, pea, chickpea, broad 

bean, pigeon pea, cowpea, and lentil (Graham and Vance 2003). Soybeans and peanuts 

provide more than 35% of the world’s processed vegetable oil (Graham and Vance 2003). 

The soybean is a legume crop native to Eastern Asia (Medic et al. 2014). Its production 

has expanded worldwide due to its high levels of protein and oil that help accommodate 

food and fuel needs of the growing world population. Soybeans are the most dominant 

oilseed in the U.S. Most soybeans are planted as a row crop in May and early June then 

harvested in late September and October (Ash 2012).  

As mentioned above, legumes such as soybeans, develop root organs (nodules) 

after micro-symbiont induction to conduct biological nitrogen fixation (Gresshoff et al. 

2015). Rhizobia are gram-negative soil bacteria that infect root tissues of the legume and 



 

 

2 

induce the formation of the nitrogen fixing nodules (Ardourel et al. 1994). Rhizobia 

penetrates the host via root hairs and stimulates cell wall growth to entrap the Rhizobia in 

the nodule that is formed (Ardourel et al. 1994). To establish symbiosis, the plant 

supplies the carbon source for the energy-dependent reduction of dinitrogen and protects 

the oxygen-sensitive nitrogenase enzyme (Stougaard 2000). In exchange, the Rhizobia 

provides fixed nitrogen to the legume (Vance 2001). 

It is well known that soil organic carbon and nitrogen are important to sustain soil 

quality and promote soil production (Al-Kaisi et al. 2005). Implementing crop rotations 

can be used to effectively manage soil carbon and nitrogen levels. Soil nitrogen levels 

increase when nitrogen-fixing legumes are included in rotation crops (Riedell et al. 

2009). About 200 million ton of nitrogen are added to the biosphere annually by 

symbiotic nitrogen fixation of legumes (Graham and Vance 2003). Thus, the symbiosis 

between the legume and soil Rhizobium-type bacteria can reduce the need for nitrogen 

fertilizer (Gresshoff et al. 2015). Other benefits of rotation crops include improved soil 

structure, increased soil organic matter levels, increased water use efficiency, enhanced 

mycorrhizal associations, and increased crop yields (Riedell et al. 2009). 

1.1.1.2 Brassicaceae Family: 

The Brassica genus of oilseed plants is part of the Brassicaceae family, which is 

an economically important family containing many food and oilseed crops, as well as 

ornamental plants and noxious weeds. The Brassicaceae family, also known as the 

crucifer family, is characterized by the presence of a group of secondary compounds 

called glucosinolates (Vaughn and Berhow 2005). The term ‘rapeseed’ may refer to both 

high and low glucosinolate/erucic acid varieties used for edible and industrial 
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applications (Brown et al. 2008). Some areas of the world where canola varieties are less 

widely used continue to use the term ‘rapeseed’ for all related varieties (Ash 2012). 

Brassica genus oilseed plants provide several benefits when grown as cover 

crops. These benefits include maintaining and improving soil quality, preventing erosion, 

and allelopathic weed control via glucosinolate hydrolysis products (Haramoto and 

Gallandt 2007). These reasons have increased the interest in growing Brassicas, both as 

cover crops and seed crops harvested for oil production (Haramoto and Gallandt 2007). 

Rapeseed can be cultivated in cooler agricultural regions and as a winter crop in 

temperate locations (Pospiši et al. 2007).  

Brassica napus (canola) is a bright yellow flowering member of the Brassica 

genus (Bonnardeaux 2007) and is the most commercially important oilseed crop in this 

genus. Winter canola varieties are generally planted in Europe, Ukraine, Russia, and parts 

of China (Ash 2012). Winter canola is planted in the fall and harvested the following 

summer (Brown et al. 2008). Winter canola varieties have a strong cold tolerance, but can 

still freeze out with the combination of dry soils and rapid temperature fluctuations 

(Brown et al. 2008). Winter canola varieties typically yield 20-30% more than spring 

varieties (Ash 2012). Winter crops also tend to have larger seeds with higher oil content 

than spring crops (Brown et al. 2008). Spring canola varieties are generally planted in 

parts of China, India, Canada, and the United States (Ash 2012). Spring canola varieties 

are primarily planted early spring and harvested in late summer (Brown et al. 2008). 

Spring crops mature as early at 85 days after planting, depending on the variety and 

weather conditions (Ash 2012). There is a small timeframe when harvesting canola to 
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avoid immature seeds or seed shatter loss. Generally, producers will swath the plant then 

combine to collect the seed when the moisture content is safe to store (Ash 2012).  

Non-food oilseeds such as carinata and camelina are being developed to serve as 

sources on non-edible oil for fuel/chemical production, as well as rotational crops. They 

will provide another cash crop to farmers, and enhance agricultural sustainability by 

diversifying crop rotations to break weed and pest cycles (Cardone et al. 2003). These 

crops produce high yields of long-chain oils that can be converted into jet fuel and diesel 

by existing technologies (Cardone et al. 2003).  

Brassica carianta (carinata) is a native plant of the Ethiopian highlands and also 

belongs to the Brassica genus (Bouaid et al. 2009). Research has shown that carinata can 

adapt and have higher production in adverse conditions (clay- and sandy-type soils and in 

semi-arid temperate climates) when compared with canola (Cardone et al. 2003). Optimal 

regions for carinata production include the southern prairies of Canada and the northern 

plains of the United States, as well as countries including Spain and Italy (Bouaid et al. 

2009). Carinata contains significantly higher levels of undesirable glucosinolates and 

erucic acid when compared to the closely related canola (Alemayehu and Becker 2002), 

making it more ideal for non-food applications. Carinata’s oil profile has been optimized 

for use in the biofuel industry, specifically bio-jet fuel. Because carianta is being 

optimized for industrial use and is not a food crop, more genetic work has been focused 

to improve the oil content in carinata rather than reducing glucosinolate content 

(Alemayehu and Becker 2002). The high level of glucosinolates in carinata meal limits 

inclusion levels in animal feeds (Cardone et al. 2003). 
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Camelina sativa (camelina) is a member of the Brassicaceae family and is 

commonly known as gold-of-pleasure of false flax (Moser 2010). Camelina has lower 

water, pesticide, and fertilizer requirements than other traditional oilseed crops, such as 

rapeseed/canola and soybeans (Moser 2010). Camelina is a short-season crop (85-100 

days) that is well adapted in temperate climate zones (Grady and Nleya 2010). Camelina 

is traditionally grown in Europe and Asia (Moser 2010), but has also been introduced into 

the lower 48 states of continental United States as well as Alaska and Canada (Grady and 

Nleya 2010). Camelina oil can be used in both edible and industrial products (Fleenor 

2011). Camelina is particularly attractive as an alternative feedstock for biodiesel 

production as a result of its low cost versus commodity oils (Moser 2010). The resulting 

camelina meal contains ~40% protein and a moderately low glucosinolate content (Grady 

and Nleya 2010). Similar to soybean and canola meal, camelina meal can be fed in 

livestock diets at limited inclusion rates up to 10% (Grady and Nleya 2010). 

1.1.2 Global Production 

1.1.2.1 Global Production Trends of Major Oilseeds 

The USDA projected 2014/15 global oilseed production at 535.6 million tons 

(USDA 2015a). The global production of soybeans reached 318.25 million metric tons in 

2014/2015 (Table 1.1), up from 117 million metric tons in 1992/1993, representing a 

63% increase in production (Medic et al. 2014). Again, the term ‘rapeseed’ refers to both 

high and low glucosinolate/erucic acid varieties, which includes edible variety canola 

(Brown et al. 2008). Canola has rapidly expanded over the past 40 years, rising from the 

sixth largest oilseed crop to the second largest (Ash 2012). The United States and Brazil 
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have remained the top oilseed producers from 2011-2015, representing 22% and 18% of 

global production, respectively (Table 1.2).  

Table 1.1: Global production of major oilseeds (million metric tons) (USDA 2015a) 

 2011/12 2012/13 2013/14 2014/15 

Copra 5.59 5.79 5.43 5.43 

Cottonseed 48.26 46.26 45.93 44.47 

Palm Kernel 13.86 14.91 15.79 16.35 

Peanut 38.47 40.48 41.16 39.32 

Rapeseed 61.57 63.69 71.38 71.71 

Soybean 240.43 268.82 283.25 318.25 

Sunflower 39.69 36.02 42.87 40.03 

Total 447.87 475.96 505.82 535.57 

 

Table 1.2: Global production of major oilseeds
1
 by country (million metric tons) 

(USDA 2015a) 

 2011/12 2012/13 2013/14 2014/15 

United States 92.44 93.32 99.02 117.17 

Brazil 70.24 84.76 90.24 97.62 

Argentina 44.82 53.68 57.02 63.78 

China 59.60 59.79 58.89 57.56 

India 37.11 37.52 36.80 35.43 

Other 143.67 146.89 163.86 164.02 

Total 447.87 475.96 505.82 535.57 
1
Major oilseeds include copra, cottonseed, palm kernel, peanut, rapeseed, soybean, and 

sunflower 

Global production of soybeans has greatly increased due to bioengineering 

technologies (Ash 2012). The U.S. is the largest producer of soybeans, representing a 

34% of global production in 2014/15 (Table 1.3). Brazil and Argentina follow the U.S. in 

production, representing 30 and 19%, respectively (Table 1.3).  
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Table 1.3: Soybean production by country (thousand metric tons) (USDA 2015a) 

 2011/12 2012/13 2013/14 2014/15 

United States  84,291   82,791   91,389   108,014  

Brazil  66,500   82,000   86,700   94,500  

Argentina  40,100   49,300   53,500   59,500  

China  14,485   13,050   12,200   12,350  

India  11,700   12,200   9,500   9,800  

Paraguay  4,043   8,202   8,200   8,500  

Canada  4,467   5,086   5,359   6,050  

Other  14,841   16,195   16,405   19,539  

Total  240,427   268,824   283,253   318,253  

 

Global production of rapeseed has remained steady from 2012/13-2014/15 (Table 

1.4). However, interest in using non-edible varieties as an alternative feedstock for 

advanced biofuels may spark rapid growth (Cardone et al. 2003). The European Union, 

China, and Canada are the top three global producers of rapeseed, representing 37, 23, 

and 12%, respectively. 

Table 1.4: Rapeseed production by country (thousand metric tons) (USDA 2015a) 

 2012/13 2013/14 2014/15 

China  6,579   6,500   6,223  

India  2,500   2,450   2,500  

Canada   3,050   3,060   3,080  

Japan  1,054   1,075   1,075  

European Union  9,946   10,251   9,975  

Other  3,464   3,863   3,872  

Total  26,593   27,199   26,725  

 

Global production of canola is concentrated in areas with dry weather (18-20 

inches precipitation per year) and shorter growing seasons (85-125 days) (Brown et al. 

2008; Ash 2012). Winter canola is generally planted in Europe, Ukraine, Russia, and 

parts of China while spring canola varieties are primarily planted in parts of China, India, 
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Canada, and the United States (Ash 2012). Spring varieties of canola may mature as 

quickly as 85 days after planting. Production trends in Canada are much larger and have a 

significant impact on production and processing of canola in the U.S. (Ash 2012). Canada 

produces more than half of the world’s canola seed, meal, and oil while continuing to 

expand (Ash 2012).  

1.1.2.2 Production Trends of Soybeans and Canola in the United States 

Table 1.5 provides the United States’ production of soybeans and canola from 

1991-2014. The acres of soybeans and canola have increased by 30 and 90%, 

respectively, showing no displacement of acreage for either oilseed. Yield trends have 

shown general improvements over time due to bioengineering of desired traits and 

improved seeding practices (Ash 2012). 
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Table 1.5: U.S. production of soybeans and canola from 1991-2014 (USDA 2015b) 

 Acres Harvested Production in bushels 

Year Soybeans Canola Soybeans Canola
1
 

1991 58,011,000 147,000 1,986,539,000  3,822,000  

1992 58,233,000 112,000 2,190,354,000  2,880,740  

1993 57,307,000 187,000 1,869,718,000  5,049,000  

1994 60,809,000 340,000 2,514,869,000  8,948,800  

1995 61,544,000 429,000 2,174,254,000  10,968,940  

1996 63,349,000 347,000 2,380,274,000  9,610,420  

1997 69,110,000 631,000 2,688,750,000  15,614,200  

1998 70,441,000 1,076,000 2,741,014,000  31,156,000  

1999 72,446,000 1,044,000 2,653,758,000  27,273,600  

2000 72,408,000 1,498,000 2,757,810,000  39,966,200  

2001 72,975,000 1,455,000 2,890,682,000  39,970,300  

2002 72,497,000 1,281,000 2,756,147,000  30,668,400  

2003 72,476,000 1,068,000 2,453,845,000  30,245,000  

2004 73,958,000 828,000 3,123,790,000  26,790,600  

2005 71,251,000 1,114,000 3,068,342,000  31,619,700  

2006 74,602,000 1,021,000 3,196,726,000  27,886,240  

2007 64,146,000 1,155,500 2,677,117,000  28,614,680  

2008 74,681,000 989,000 2,967,007,000  28,901,280  

2009 76,372,000 808,000 3,360,931,000  29,295,600  

2010 76,610,000 1,430,700 3,331,306,000  48,952,560  

2011 73,776,000 1,033,000 3,097,179,000  30,560,200  

2012 76,144,000 1,717,900 3,042,044,000  47,832,200  

2013 76,253,000 1,264,500 3,357,984,000  44,210,100  

2014 83,061,000 1,555,700 3,968,823,000  50,219,900  
1
Assuming 50 pounds of canola per bushel 

1.1.2.2.1 Soybean Trend Data 

Large-scale soybean production did not take place until the 20
th

 century in the 

U.S. but has expanded rapidly (Ash 2012). Currently, soybeans are the second most 

planted field crop in the U.S. and account for 90% of domestic oilseed production (Ash 

2012). More than 80% of U.S. soybean production is concentrated in the upper Midwest 

(Ash 2012). 
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1.1.2.2.2 Canola Trend Data 

The U.S. portion of total global canola production remains small, but is growing in 

the Northern Plains (Ash 2012). Approximately 90% of U.S. canola production takes 

place in North Dakota, with smaller amounts in Colorado, Idaho, Minnesota, Montana, 

and South Dakota (Ash 2012). The U.S. Department of Agriculture’s National 

Agricultural Statistics Service estimated 2014 U.S. canola crop at 2.52 billion pounds 

harvested from over 1.55 million acres (US Canola 2014). 

1.2 Oilseed Crushing & Extraction 

Oilseeds are typically not sold directly to consumers but are initially transported to a 

processing facility to separate the oil from the meal (Ash 2012). This process is 

commonly referred to as “crushing,” and it can be accomplished by three main methods: 

solvent extraction, expeller, and cold pressing (Spragg and Mailer 2007). The extracted 

oil is the most valuable crush component and provides the majority of the processing 

facilities’ revenue (Ash 2012). Thus oil extraction yield and efficiency are important 

aspects to this process. The top five countries in crushing capacity included China, 

United States, the European Union, Argentina, and Brazil, representing 68% of total 

global production (Table 1.6). China is the global leader in oilseed crushing, representing 

26% of the market in 2014/15 (USDA 2015a).  
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Table 1.6: Global crushing production of major oilseeds by country (million metric 

tons) (USDA 2015a) 

 2011/12 2012/13 2013/14 2014/15 

China 96.29 102.64 107.63 111.68 

United States 50.32 50.23 51.47 53.61 

Argentina 39.95 36.25 38.77 42.63 

European Union 41.06 42.07 45.33 46.11 

Brazil 41.17 37.71 39.73 41.97 

India 28.59 29.30 28.70 27.48 

Russia 11.96 11.05 13.85 13.75 

Ukraine 10.28 9.20 12.28 11.48 

Indonesia 8.35 8.99 9.66 10.29 

Canada 8.41 8.27 8.52 8.68 

Mexico 5.86 5.70 6.08 6.50 

Pakistan 5.60 5.30 5.58 6.27 

Malaysia 4.99 5.34 5.53 5.54 

Japan 4.35 4.38 4.40 4.45 

Paraguay 1.07 3.17 3.49 3.81 

Other 36.93 37.67 38.50 40.63 

Total 395.16 397.24 419.49 434.85 

 

1.2.1 Solvent Extraction 

Hexane extraction is the most common and capital-intensive oil extraction method 

used commercially. This extraction process utilizes two steps to extract high percentages 

of oil (Fig. 1). Before oil extraction, the seeds typically go through a pre-conditioning 

process, which usually includes seed cleaning, de-hulling, seed pre-conditioning, and 

flaking (Newkirk 2009). Pre-conditioned flakes are then mechanically pressed at 100-

120°C to produce a seed cake containing approximately 20% oil (Spragg and Mailer 

2007). The pressed seed cake is then subjected to solvent extraction using hexane, and 

then undergoes desolventizing and toasting of the meal at 100-115°C for 30 minutes 

(Spragg and Mailer 2007; Newkirk 2009). 
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Figure 1.1: Pre-conditioning and process diagram used for solvent oil extraction 

(Baquero et al. 2011) 

 

1.2.1.1 Advantages and Disadvantages 

Hexane extraction recovers over 96% of the oil, and thereby also results in meals 

containing the highest percentage of protein (Spragg and Mailer 2007). The high 

temperatures used for desolventizing and toasting the meal to remove the solvent 

(Newkirk 2009) can eliminate volatile anti-nutritional factors, such as glucosinolates 

(Jensen et al. 1995). Studies have shown that the desolventizing and toasting steps of 

hexane extraction reduced glucosinolate levels by ~40% (Newkirk et al. 2003). However, 

this additional heat treatment can reduce the digestibility of some amino acids, 

particularly lysine (Anderson-Hafermann et al. 1993, Newkirk 2009). Non-toasted canola 



 

 

13 

meal contains higher levels of digestible amino acids than conventional toasted canola 

meal, therefore affecting palatability (Newkirk et al. 2003). Processing at a maximum of 

100°C during the desolventizing and toasting process can significantly increase lysine 

digestibility (Newkirk 2009). Jensen et al. evaluated multiple toasting times to compare 

glucosinolate reduction, protein solubility, and true digestibilities of rapeseed meal in rats 

(Table 1.7.) (Jensen et al. 1995). This study had also shown a reduction of volatile anti-

nutritional factors (glucosinolates) up to 95% however, protein solubility also decreased 

from 85 to 40% over 120 minutes (Table 1.7). 

Table 1.7: Effect of 100°C toasting time on glucosinolates and nutritional value of 

rapeseed meal (Jensen et al. 1995) 

Time 

(min) 

GLS 

Reduction 

Protein 

Solubility 

True 

Digestibility 

0  85% 77% 

15 24% 81% 74% 

30 46% 61% 72% 

60 70% 52% 73% 

120 95% 40% 71% 

 

The higher processing heat may oxidize the oil and damage antioxidants, 

decreasing the stability and value of the oil (Wanasundara and Shahidi 1994). Chemical 

solvents can be hazardous to workers while chemical residues left in the oil (up to 25 

ppm) can be toxic to the end consumer. The United States Environmental Protection 

Agency has listed n-hexane among 187 hazardous air pollutants due to its toxic nature 

(Uquiche et al. 2012). 

1.2.2 Expeller 

Up to the point of solvent extraction, the expeller process is similar to the 

traditional solvent extraction process (Newkirk 2009). Expeller pressing uses a similar 
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pre-conditioning step while excluding the use of solvents, desolventization, toasting and 

drying/cooling stages (Newkirk 2009). Figure 1.2 represents the mechanical screw press 

typically used for both expeller and cold pressed oil extraction. In expeller extraction, 

seeds are heat conditioned than passed directly through a series of screw presses 

consisting of a rotating screw shaft inside a cylindrical barrel (Newkirk 2009). A cage or 

mesh at the bottom of the barrel allows oil to seep out for collection. The expeller press is 

used to extract ~75% of the canola seed oil (Spragg and Mailer 2007; Seneviratne et al. 

2010), resulting with a residual oil content of 10 to 15% in the meal (Leming and Lember 

2005). Seeds can also be crushed using a double expeller process, thus expelling the seed 

twice to extract oil. The resulting meal has an oil content ranging from 8-11% (Newkirk 

2009). 

Figure 1.2: Mechanical screw press diagram used for expeller and cold pressed oil 

extraction (Leming and Lember 2005) 

 

1.2.2.1 Advantages and Disadvantages 

Similar to solvent extraction, expeller extraction applies significant levels of heat 

to the seed during the process. Expeller extraction can generate meal temperatures up to 

Chemical composition of expeller-extracted and cold-pressed rapeseed cake 

 

105

The cooker in Oru Taimeõlitööstus consists from 3 vertically stacked kettles where rapeseed is heated at 

95–105 ºC. During the cooking process the moisture content is reduced from 7–9% to 4–5%. Output of the press 

EPM (SKET, Magdeburg, Germany) is 80–85 kg of oil (160–170 kg of cake) per hour and the capacity of engine 

is 40 kW. After pressing the cake is cooled during the transport to storage. 

Cold-press (Melrosten OÜ, Kose-Uuemõisa Harjumaa, Estonia) was used in Kaarli talu to produce 

rapeseed cake (Figure 2). The cleaned seeds were directed strait to the mechanical screwpress where the 

temperature shortly rises to 50–60 degrees. Rapeseed cake is granulated in nozzle exit (diameter 6,5 mm). 

Rotation speed of the screw was 40–45 rpm, output of the press was three kg of oil (8–9 kg cake) per hour and 

the capacity of engine was 1.5 kW 

 

Figure 2. Production of cold-pressed rapeseed cake in Kaarli talu 

Results 

Chemical composition of expeller extracted rapeseed cake produced in Werol Tehased and Oru 

Taimeõlitööstus is showed in Table 2.  

Despite the small number of samples it was found that there was a great variation in the composition of 

most nutrients. Average dry matter content of all samples was 95.3% and varied between 89.6% and 98.2%. 

Compared to other nutrients in rapeseed cake the variation in dry matter content was the largest. The content of 

crude protein averaged at 36.1% and varied from 30.2% to 37.8% in dry matter. The content of crude fat varied 

in dry matter of expeller extracted rapeseed cake from 10.3% to 15.1% being 12.2% as an average. Minimum 

value of crude fibre content was 11.6% and maximum 16.8% in dry matter. 

It was determined contrarily to the great variation in most of the nutrients that the content of 

metabolizable energy was relatively stable. The difference between minimum and maximum value was only 

0.4 MJ/kg. 
 

Table 2. Nutrient content and boundary values in dry matter of expeller extracted rapeseed cake (n=13) 

Expeller extracted rapeseed cake Traits 

mean min max 
s 

Dry matter, % 95.3 89.6 98.2 2.6 

Crude protein, % 36.1 30.2 37.8 2.2 

Crude fat, % 12.2 10.3 15.1 1.5 

Crude fibre, % 13.1 11.6 16.8 1.6 

Crude ash, % 7.1 6.5 7.4 0.3 

N-free extractives, % 32.2 30.6 34.2 1.2 

Phosphorus, % 1.0 0.7 1.2 0.2 

Calcium, % 0.7 0.7 0.9 0.1 

Gross energy, MJ/kg 21.5 21.2 22.0 0.3 

Metabolizable energy, MJ/kg 14.8 14.6 15.0 0.1 

 

Seeds 

Rapeseed cake 

Screwpress
Rapeseed oil

Nozzle 

Body heating 
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135°C for a brief period while passing through the press (Spragg and Mailer 2007). The 

residual oil in the meal has a higher metabolizable, digestible, and net energy content 

than traditional solvent extracted meal (Newkirk 2009).  

Double pressing of the canola seed increases the oil extraction yield compared to 

traditional expelling. However, the meal is subjected to potential heat effects due to the 

friction generated during the extraction process. Meal temperatures may reach up to 

160°C, but the protein quality is generally preserved due to low moisture content and 

short heat duration (Newkirk 2009). As mentioned above, high processing temperatures 

can eliminate volatile anti-nutritional factors, such as glucosinolates. The reduction of 

total glucosinolates using the expeller process would be less than solvent extraction but 

more than cold pressing. The temperatures reached in this process may lead to some loss 

of antioxidant potency. 

1.2.3 Cold Pressing 

The cold pressing process does not have a pre-conditioning step prior to oil 

extraction. Again, Figure 1.2 represents the mechanical screw press typically used for 

expeller and cold pressed extraction. Seeds pass directly through a series of screw presses 

consisting of a rotating screw shaft inside a cylindrical barrel (Newkirk 2009). This 

process produces pressure and frictional forces to pulverize the seeds (Spragg and Mailer 

2007). While the mechanical process is similar, expeller extraction temperatures reach up 

to 135°C, cold pressing is significantly lower at 65°C (Spragg and Mailer 2007). A cage 

or mesh at the bottom of the barrel allows oil to seep out for collection. Cold pressing of 

the oilseeds usually remove 50-70% of the seed oil content (Newkirk 2009; Seneviratne 
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et al. 2011) while the resulting meal contains 11-20% residual oil (Leming and Lember 

2005; Spragg and Mailer 2007). 

1.2.3.1 Advantages and Disadvantages  

Cold pressing produces higher quality oil with better color and flavor. For these 

reasons, interest in improving oil recovery by cold pressing has increased (Tuberoso et al. 

2007). The oil produced from this process is also known as virgin oil and is in demand by 

consumers of organic and natural foods, and usually sells for a higher price than solvent 

extracted oil (Maison 2013). Cold pressing involves low initial and operating costs when 

compared to solvent extraction (Szydłowska-Czerniak et al. 2010). However, this method 

is relatively low in efficiency, thus requiring improvements (Szydłowska-Czerniak et al. 

2010).  

1.2.4 Alternative Oil Recovery Methods (Supercritical CO2) 

The first commercially successful use of supercritical fluid extraction was 

performed in 1978 for the decaffeination of green coffee beans, soon followed by the 

extraction of hop flavors (Raventos et al. 2002). Both applications have given rise to 

numerous variations, which have also developed on an industrial scale. Supercritical fluid 

technologies may be an alternative to current oil extraction methods.  Supercritical fluids 

are often called dense gases where the gas used is above its critical temperature and 

pressure (Friedrich et al. 1982). A gas, at or above its critical temperature, increases in 

density when compressed. Therefore, the supercritical gas has the density of a liquid 

while maintaining the diffusivity of a gas (Friedrich et al. 1982). CO2 is the solvent most 

commonly used in supercritical fluid extraction processes because it has a relatively low 
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critical temperature (31.1°C) and moderate critical pressure (7.39 MPa) (Uquiche et al. 

2012).  

Figure 1.3 outlines a batch supercritical extraction process. The supercritical fluid 

extraction process consists of two essential steps: extraction and separation (Raventos et 

al. 2002). The material to be extracted is first placed in an extractor with supercritical 

fluid at specific pressure and temperature conditions (Raventos et al. 2002). Solid 

materials must be extracted in a batchwise process. After extraction, the fluid and 

extracted material are passed through a separator, and by reducing temperature and/or 

changing temperature the dissolving power of the supercritical fluid is reduced and the 

separation of the compound occurs (Raventos et al. 2002). 

Figure 1.3: Batchwise supercritical extraction process diagram (Raventos et al. 2002) 

 

1.2.4.2 Advantages and Disadvantages 

Supercritical fluid technologies have been recognized for over 100 years but 

commercial applications have been slow developing, likely due to sophisticated and 

expensive high pressure equipment needed for the process (Friedrich et al. 1982). The 

liquid-like density of a supercritical fluid solvent provides high solvent power, whereas 

the gas-like diffusivity creates excellent transport properties, which enhances the mass 

transfer rate as compared to liquid organic solvents (Patel et al. 2011). Therefore this 
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method will have oil recovery efficiencies similar to solvent extraction. Additional 

benefits from supercritical fluid processing include improved color, odor, functionality, 

and elimination of residual enzymatic activity (King et al. 2001). Supercritical CO2 is an 

ideal solvent because it is a non-toxic, non-explosive, cheap, and recyclable resource that 

can be easily removed from extracted products (Friedrich et al. 1982; Uquiche et al. 

2012). Supercritical CO2 can be processed at lower temperatures; therefore the nutrients 

in the oil will not be oxidized to produce a more superior product for the consumer.  

1.3 Oilseed Utilization 

Figure 1.4 outlines the products produced from oilseed processing and the potential 

markets of these products. Oilseeds are generally grown as a source of edible oil or for 

biodiesel/jet fuel production (Singh and Singh 2010).  Following oil extraction, the 

remaining meal is used as a protein source for livestock or as a fertilizer/soil amendment. 

The uses of oilseed products depend on composition and economics. 

Figure 1.4: General utilization flowchart of oilseed processing and markets 
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1.3.1 Oilseed Oil 

Oilseed oils are predominately used in the food or biofuel markets. Food markets 

consume 80% of vegetable oils on a global basis, with the industrial and biodiesel 

markets far behind (Rosillo-Calle et al. 2009). Currently palm, soybean, and canola oil 

represent the top three oil commodities worldwide (Pospiši et al. 2007). The range of oil 

contained in soybeans is about 20% while rapeseeds like canola can contain over 40% oil 

(Aider and Barbana 2011; Sarwar et al. 2013). Rapeseeds, in general, have undergone 

intensive breeding over the last fifteen years to modify the fatty acid composition of the 

oil (Pospiši et al. 2007). Rapeseed cultivars have high concentrations of erucic acid while 

canola cultivars are low in erucic acid (Brown et al. 2008). High concentrations of erucic 

acid can have toxic effects on the heart at high enough doses.  

1.3.1.1 Food Uses 

In the U.S., canola and soybean oils are used in frying and baking applications, 

and as ingredients in salad dressings, margarine, and a variety of other products (Ash 

2012). Canola oil is one of the most important vegetable oils due to its high content of 

both omega-3 (α-linolenic acid) and omega-6 (linoleic acid) fatty acids (Tuberoso et al. 

2007). Canola oil has much higher amounts of linoleic acid (8-12%) when compared to 

other vegetable oils, such as soybean, sunflower, olive, and corn, which contain 8.0, 0.2, 

0.8, and 0.7%, respectively (Wanasundara and Shahidi 1994). The high level of oleic 

acid, the low content of saturated fatty acids, and the presence of linoleic and linolenic 

acids provide rapeseed oils unique nutritive value and efficiency in preventing 

cardiovascular diseases (Pospiši et al. 2007; Ash 2012).  
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Both low-linolenic and high-linolenic canola oil have the additional benefit of 

longer shelf life than other oils used in the frying industry (Brown et al. 2008). Table 1.8 

compares the fatty acid composition of soybean and canola oil. Canola oil contains 

approximately half the saturated fatty acids (SAT) when compared to soybean oil.  

Canola oil also contains approximately three times the amount of monounsaturated fatty 

acids (MUFA) and half the amount of polyunsaturated fatty acids (PUFA). The American 

Heart Association dietary guidelines recommend a diet that provides up to 15% MUFA 

and 10% PUFA, so the higher concentrations of MUFA in canola oil can be beneficial 

(Kris-Etherton 1999). 

Table 1.8: Fatty acid composition of soybean and canola oil (Przybylski et al. 2013) 

Fatty Acids Soybean Canola 

SAT (%w/w) 15.5 7.3 

MUFA (%w/w) 22.7 62.4 

PUFA (%w/w) 60.3 28.3 

Total Tocopherols (μg/g) 1,877 837 

 

The seeds of oil crops, particularly those containing high percentages of 

polyunsaturated fatty acids are thought to be rich in antioxidants (Peschel et al. 2007). 

Canola oil contains high amounts of bioactive compounds, such as polyphenols, 

phytosterols, tocopherols, and other antioxidants (Szydłowska-Czerniak et al. 2010). 

Soybean oil contains over twice the amount of tocopherols than canola oil (Table 1.8). 

Antioxidants can play an important role in the prevention and treatment of chronic 

diseases, such as heart disease, neurodegenerative disease, aging, cancer, and rheumatoid 

arthritis (Richards et al. 2008; Laoretani et al. 2014) 

The global increase in vegetable oil production (Table 1.9) has helped to 

gradually replace animal fats in foods. Vegetable oil production has increased by 10% 
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from 2011/12 to 2014/15. Vegetable oils are preferred over animal fats because of their 

higher content of unsaturated fatty acids, while solid animal fats contain more saturated 

fatty acids (Arif et al. 2012). Dietary unsaturated fatty acids are very effective in lowering 

blood cholesterol and may be important in preventing coronary heart disease (Rowghani 

et al. 2007). The increased availability of vegetables oils allows consumers to take 

advantage of their proven beneficial components and promote healthier diets (Kris-

Etherton 2003).  Canola oil is the second most abundant source of edible oil (Aider and 

Barbana 2011). This variety of rapeseed was developed in Canada during the early 1970s 

to create a variety more suitable for consumption (Bell 1993). Plant breeders were able to 

do this by creating a low erucic acid and low glucosinolate variety, which was registered 

under the name “canola” (Ash 2012). The FDA granted canola oil Generally Recognized 

as Safe (GRAS) status in January 1, 1985 (Ash 2012). Between 1999-2009, canola oil 

represented 13-16 percent of world vegetable oil production (Ash 2012). 

Table 1.9: Global vegetable oil production from major oilseeds (million metric tons) 

(USDA 2015a) 

 2011/12 2012/13 2013/14 2014/15 

Coconut 3.43 3.65 3.38 3.35 

Cottonseed 5.27 5.25 5.18 5.17 

Olive 3.45 2.45 3.14 2.33 

Palm 52.58 56.59 59.54 61.65 

Palm Kernel 6.17 6.58 6.98 7.27 

Peanut 5.30 5.51 5.64 5.59 

Rapeseed 24.10 24.90 26.59 27.20 

Soybean 42.74 43.09 45.00 47.84 

Sunflowerseed 14.74 13.26 15.96 15.10 

Total 157.78 161.27 171.41 175.51 
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1.3.1.2 Fuel Uses  

Demand for alternative fuels has sparked interest in the production of biofuels 

from oil-rich seeds (Hollister et al. 2013). Canola, rapeseed, palm, soybean, and 

sunflower are of high interest for bio-diesel production due to their high oil content 

(Moser 2010; Sarwar et al. 2013). Biodiesel made from oils with low saturated fats have 

improved cold flow properties, while low polyunsaturated fats have lower nitrous oxide 

emissions (Brown et al. 2008). Regional availability would certainly dictate which 

feedstock oil to be utilized for liquid fuel production. Oils extracted from food sources, 

such as canola and soybeans, would only be economical for biofuels if there were an 

over-abundance of supply. Production of soybean oil is still increasing, primarily due to 

biodiesel production in the U.S. and South America (Rosillo-Calle et al. 2009). 

According to the National Biodiesel Board, soybean oil represented 53% of the feedstock 

utilized for biodiesel production in 2013, followed by recycled oils (13%), animal fats 

(11%), distillers corn oil (10%), canola oil (7%), and palm oil (6%) (National Biodiesel 

Board 2015).  

Carinata’s oil profile has been optimized for use in the biofuel industry, 

specifically bio-jet fuel. Carinata contains longer chained oils that result in higher yields 

of jet fuel. Rapeseed oils high in erucic oil, such as carinata, have significantly higher 

lubricity when compared to other vegetable oils (Brown et al. 2008). Carinata may be 

considered as an alternative feedstock for biodiesel by considering its low input crop 

conditions and similar performance versus conventional biodiesel production from 

soybeans (Cardone et al. 2003).  
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1.3.2 Oilseed Meal 

The use of plant proteins in livestock diets has long been a major industrial sector 

(Booth et al. 2001). Oilseed meals that have served as cost-effective feed ingredients 

include soybean, cotton seed, sunflower, canola, and flax meals, and have been used in 

ruminant, swine, poultry, aquaculture, and companion animal diets (Sarwar et al. 2013). 

The protein content of defatted oilseed meal depends on the seed but generally ranges 

between 35 to 60%. Many of the oilseed meals contain anti-nutritional factors such as 

oligosaccharides, trypsin inhibitors, phytic acid, and tannins, and may have low protein 

solubility, which can limit feed and food applications (Moure et al. 2006).  

Soybean and canola meals are the most abundantly available and dominate the 

livestock market over the other oilseed meal types (Table 1.10). In the marketing year 

2008/2009, global canola meal production was 30.8 million metric tons, versus 151.6 

million for soybean meal (Ash 2012). In 2014/15, soybean and rapeseed meal represented 

69 and 14% of the major protein meals produced on a global basis. On a worldwide basis, 

canola meal is second only to soybean meal for use as a feed (Newkirk 2009).  

Table 1.10: Global production of major protein meals (million metric tons) (USDA 

2015a) 

 2011/12 2012/13 2013/14 2014/15 

Copra 1.83 1.94 1.81 1.79 

Cottonseed 15.84 15.77 15.68 15.58 

Fish 4.18 4.37 4.14 4.29 

Palm Kernel 7.27 7.83 8.35 8.65 

Peanut 6.47 6.75 6.90 6.86 

Rapeseed 35.69 36.90 39.41 40.24 

Soybean 180.49 181.27 189.47 202.63 

Sunflowerseed 15.66 14.02 16.79 15.96 

Total 267.43 268.86 282.54 296.00 
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1.3.2.1 Soybean Meal (digestibility and performance) 

Soybean meal is the main protein source for ruminants and monogastic livestock 

because of its high palatability, high protein content, and amino acid profile (Booth et al. 

2001; Chen 2013).  Generally, soybean meal contains 44-49% protein (Cromwell 2008; 

Ash 2012). Soybean meal contains approximately 20% more protein and 75% less crude 

fiber than canola meal while gross energy is relatively the same (Table 1.11). Soybean 

meal protein is high in lysine (6.5%) but low in sulfur-containing amino acids, with 

methionine being the most limiting (Cromwell 2008; Chen 2013). 
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Table 1.11: Chemical composition and gross energy values of soybean meal and 

canola meal (Bell 1993) 

Component Soybean Meal  Canola Meal 

Moisture (%) 10.00 8.50 

Crude protein (%) 48.10 38.29 

Ether extract (%) 0.70 3.59 

Acid detergent fiber (%) 5.00 17.47 

Neutral detergent fiber (%) 7.10 21.54 

Crude fiber (%) 3.40 12.01 

Gross energy (MJ kg-1) 20.07 18.64 

   

Minerals   

Phosphorous (%) 0.65 1.03 

Calcium (%) 0.30 0.64 

Postassium (%) 2.11 1.24 

Magnesium (%) 0.29 0.52 

Sulfur (%) 0.42 0.86 

Sodium (%) - 0.70 

Boron (%) - 2.10 

Copper (ug g
-1

) 23.00 5.80 

Iron  (ug g-1) 140.00 144.00 

Manganese (ug g
-1

) 31.00 50.10 

Molybdenum (ug g
-1

) - 1.40 

Selenium (ug
-1

) 0.10 1.12 

Zinc (ug
-1

) 52.00 69.40 

   
Vitamins (mg kg

-1
)   

Vitamin E (alpha-tocopherol) 2.40 14.50 

Pantothenic acid 16.30 9.50 

Niacin 28.00 160.00 

Choline 2609.00 6700.00 

Ribflaven 2.90 5.80 

Biotin 0.32 1.07 

Folic acid 0.60 2.30 

Pyridoxine 6.00 7.20 

Thiamin 6.00 5.20 

 

1.3.2.1.1 Limitations Caused by Anti-nutritional Factors 

Anti-nutritional factors contained in soybean meal can limit inclusion rates in 

young monogastic livestock (Chen 2013). Protease inhibitors, such as trypsin and 
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chymotrypsin, account for approximately 6% of soybean protein (L'Hocine and Boye 

2007). The presence of trypsin inhibitors in soybean meal are responsible for growth 

depression by reducing proteolysis and excessive fecal loss of pancreatic enzymes rich in 

sulfur-containing amino acids (Chen 2013). Trypsin inhibitors account for 30-50% of the 

growth inhibition effect (Denter et al. 1998). Soybean meal can be heat treated to 

inactivate trypsin inhibitors. However, soybean varieties that contain less trypsin 

inhibitors may provide a reduced feed cost due to the energy saved from the heat 

treatment (Goebel 2010). 

The oligosaccharide composition in soybean meal is also a common anti-

nutritional factor. Stachyose and raffinose represent of 4 to 6% dry matter in soybean 

meal (Goebel 2010). These oligosaccharides can cause gas production, diarrhea, and 

animal discomfort in non-ruminants (Rackis 1975). This is due to the inability of the 

small intestine to digest these oligosaccharides from the lack of the enzyme alpha-

galactosidase (Goebel 2010). 

1.3.2.1.2 Levels of Usage In Various Livestock Types 

Globally, soybean meal accounts for nearly 69% of all protein sources while 

representing 92% of the total oilseeds used for animal feeds (Cromwell 2008). The low 

concentration of sulfur-containing amino acids (methionine and cysteine) and threonine 

limit the nutritional value of soybean meal in poultry and swine feeds (Medic et al. 2014). 

Approximately 48% of soybean meal is used in poultry feeds, 26% in swine feeds, 12% 

in beef cattle feeds, 9% in dairy feeds, 3% in fish feeds, and 2% in pet feeds (Cromwell 

2008). Growing pigs may be fed inclusion rates up to 30% soybean meal, however 

weanling pigs should be restricted to less than 20% due to lower tolerance to 
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oligosaccharides and antigens in the meal (Stein 2012). The average soybean meal 

inclusion rates range from 20-35% in starter and 15-28% in grower poultry feeds 

(Mitchell). 

1.3.2.2 Canola Meal 

Canola meal accounts for 60% of the canola seed (Newkirk et al. 2003). Oil 

extracted canola meal generally contains 35-36% protein, 12% crude fiber, and a high 

content of minerals and vitamins (Khattab and Arntfield 2009). As mentioned above, 

canola meal contains approximately 20% less protein and 75% more crude fiber than 

soybean meal, while gross energy is relatively the same (Table 1.11). The lysine content 

of canola meal protein is approximately 5.8%, which is also less than soybean meal 

(Cromwell 2008). Canola meal represented 12.4% of the world protein meal production 

in 2004/2005, at 207 million metric tons (Khattab and Arntfield 2009). Canola meal 

contains less digestible energy and protein than soybean meal, but over three times as 

much fiber (Bell 1993). Canola meal also contains glucosinolates, which were previously 

described as limiting inclusion levels in livestock feeds (Bell 1993). However, canola 

meal can be an economical protein source for animals that do not have high energy or 

lysine requirements (Ash 2012). 

1.3.2.2.1 Limitations Caused by Anti-nutritional Factors 

The main limitation of meals from Brassica spp. is the presence of glucosinolates 

(GLS), which are anti-nutritional and can even be toxic at high ingestion levels (Tripathi 

and Mishra 2007). When consumed, the breakdown products of GLS can cause 

deleterious effects on the thyroid, and ultimately cause goiters from iodine deficiency 

(Burel et al. 2001). Furthermore, large amounts of glucosinolates can reduce palatability 
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for livestock and thus reduce intake and growth rates (Bonnardeaux 2007). For this 

reason canola was bred to contain lower levels of GLS and erucic acid (Newkirk 2009). 

Canola is characterized as containing less than 2% erucic acid in the oil and < 30 umol/g 

glucosinolates (Bonnardeaux 2007; Newkirk 2009). However, feed inclusion rates are 

still limited to ~30%, and this reduces the value of canola meal (Newkirk 2009). The 

relatively low digestible and metabolizable energy of canola meal are associated with the 

high level of fiber (Bell 1993). 

1.3.2.2.2 Levels of Usage In Various Livestock Types 

Globally, canola meal accounts for nearly 13% of all protein sources used in 

animal feeds (Cromwell 2008). Industrial rapeseed is high in erucic acid (>45%), which 

can be mildly toxic to animals, especially poultry (Bonnardeaux 2007). Erucic acid levels 

beyond 0.605% in diets can cause growth depression, reduce feed intake, and efficiency 

of growing chicks (Bonnardeaux 2007). Canola meal has the benefit over traditional 

rapeseed meal of being low in erucic acid (<2%) (Newkirk 2009). 

There has been much interest in utilizing rapeseed meal to replace soybean meal 

in ruminant and monogastric feeds (Lomascolo et al. 2012). Canola meal is primarily fed 

in cattle and pig rations. The majority of canola meal in the U.S. is fed to dairy cattle 

because the high fat content enhances milk production (Ash 2012). There is currently no 

recommended maximum inclusion level for calves, beef, or dairy cattle due to the ability 

of the rumen breaking down the carbohydrate and fiber fractions in canola meal 

(Newkirk 2009). Supplementing canola meal from 7.5-22.5% in growing pig rations did 

decrease digestible and net energy because of higher fiber concentrations, but had no 

negative effects on growth performance (Montoya and Leterme 2010; Seneviratne et al. 
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2010). Increased dietary inclusions of canola meal with higher concentrations of residual 

oil could reduce pork quality (Seneviratne et al. 2010). Canola oil is rich in unsaturated 

fatty acids, which may soften the carcass fat (Rowghani et al. 2007). Thus expeller and 

cold pressed canola meal inclusion rates should be targeted to achieve targeted growth 

rates and market demands (Seneviratne et al. 2010).  

Poultry and aquaculture feeds can also use canola meal as a protein source, but this is 

limited due to the high fiber content and low palatability of canola meal, and the distance 

between canola growing regions and feeding operations for these species (Ash 2012). De-

hulling and extrusion processes improve both digestibility and nutritional value of canola 

meal fed to silver perch by removing anti-nutrients, such as glucosinolates, fiber, and 

phytic acid (Booth et al. 2001; Allan and Booth 2004). Breeding advances have reduced 

the glucosinolate content of canola meal. Therefore, the rations for broilers and laying 

hens can now contain 20% of canola meal without producing any adverse effects (Khajali 

and Slominski 2012). Ongoing breeding advances have been focused on crop disease and 

pest resistance.  

1.3.3 Soil Amendment and Fertilizer  

Biologically based treatments using organic-residue amendments can be used as 

an alternative to broad-spectrum biocides to manage soilborne plant pathogens (Mazzola 

et al. 2007). Members of the Brassicaceae family contain glucosionlates that are 

hydrolyzed to form compounds toxic to a variety of soil-borne organisms, including 

weeds (Haramoto and Gallandt 2007). Depending on glucosinolate levels, rapeseed meal 

has the potential for use as a bio-fumigant to replace chemical fumigants, such as methyl 

bromide, which are being banned due to environmental concerns (Bonnardeaux 2007).  
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Isothiocyanates, a glucosinolate hydrolysis product, has been identified as the 

bioactive compound responsible for suppressing weeds and plant pathogens (Mazzola et 

al. 2007; Hollister et al. 2013). It has been shown that isothiocyantes degrade rapidly 

(99% within 24-72 h); however, the amended soil retains the ability to suppress weeds 

and pathogens for longer periods of time, up to several weeks post-amendment (Mazzola 

et al. 2007). This may be due to altering the microbial community in the treated soil.  

 Soilborne disease pathogens and nematodes may be suppressed, however 

beneficial organisms, such as nitrifying bacteria, may also be eliminated during treatment 

with glucosinolates (Bonnardeaux 2007; Mazzola et al. 2007). Glucosinolate breakdown 

products may alter seed germination and plant growth, but these products have a 

generally short lifetime. Further field trials need to be completed to determine the long-

term effects on the soil ecosystem when oilseed meals are applied as a bio-fumigant.  

Canola and other rapeseed meals can also be used to provide soil with nitrogen 

and other nutrients needed for plant growth (Wang et al. 2012). Additionally, applying 

oilseed meals would increase the levels of easily decomposable carbon in the soil. 

However, this value only equates to $100 per ton (Bonnardeaux 2007), which is far 

below the value of the meals in feed applications (Bell 1993). Scale-up of non-food 

rapeseed varieties for biofuel applications may serve as an ideal source of meals for soil 

amendments (Wang et al. 2012). 

1.4 Industrial Oilseed Meal Processing 

The composition of oilseed meal can be manipulated by various industrial methods to 

produce higher value products. Traditional processing of oilseed protein has involved 

physico-chemical and thermal treatments to remove undesirable components and produce 
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protein concentrates or isolates. These processes alter the nutritional value, anti-

nutritional factors, and functional aspects of the final product (Moure et al. 2006). More 

recently, biological and enzymatic approaches have been used to process oilseed meals 

(Sindelar 2014). 

1.4.1 Current Physical and Chemical Methods 

Protein concentrates and isolates are “purified” by separating the carbohydrates 

from the proteins (Stein 2012). Consequently, both of these processes are able to 

dramatically increase the protein content of the treated meal. Protein concentrates and 

isolates are generally used in diets fed to weanling pigs because they do not elicit 

antigenic responses, as do non-processed protein sources (Stein 2012).  

1.4.1.1 Protein Concentrate 

Protein concentrates are becoming increasingly popular in specialty feeds such as 

pet food, milk replacers, creep feed, and aquaculture feed mainly as a replacement for 

fish meal, which is becoming increasingly expensive (Swick 2007). Protein concentrates 

are manufactured by removing non-proteic components, mainly soluble minerals, 

carbohydrates, low molecular weight nitrogen compounds, and anti-nutritional factors 

from full fat or defatted meals (Moure et al. 2006). The removal of carbohydrate 

components had shown improvements in both digestibility and nutritional value of 

oilseed meals (Booth et al. 2001; Allan and Booth 2004). In the traditional protein 

concentrate process, the meal is passed through an ethanol extractor, which removes 

some carbohydrates and anti-nutritional factors while concentrating protein and fiber 

(Swick 2007). The material is then neutralized (pH 6.5-7), dried, and milled to produce a 

product containing at least 65% on a dry basis (Lusas and Riaz 1995; Stein et al. 2008).  
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In 2006, MCN Bioproducts Inc. patented a mechanical process to concentrate and 

purify canola proteins (Newkirk et al. 2006). This process is similar to methods currently 

used to produce soy protein concentrate and isolate, and achieves a product with up to 

80% protein by weight dry matter (Newkirk et al. 2009). Unfortunately, the multiple 

separation steps of this process are expensive and result in a low protein yield, since 

proteins also fractionate into lower value co-products. The result is an expensive product 

similar to soy protein isolate that is more suitable for use in human foods. In 2012 Bunge 

acquired MCN BioProducts to commercialize this technology for high value protein 

applications. 

1.4.1.2 Protein Isolate 

Protein isolates were initially created for use in extrusion, meal processing, 

baking, and baby food applications (Lusas and Riaz 1995). Protein isolate contains 

approximately 80% protein on a dry basis and is the most purified product in the 

processing industry (Sindelar 2014). Initially, the meal is finely milled. The protein is 

then solubilized at pH 6.8-10 at 27-66°C using sodium hydroxide and other alkaline 

agents approved for food use (Lusas and Riaz 1995). The protein solution is separated by 

centrifugation while the solids are sold as a byproduct (Lusas and Riaz 1995). The 

protein solution is then acidified to pH 4.5, using hydrochloric or phosphoric acid, and 

the protein is precipitated as a curd (Lusas and Riaz 1995). The curd is then concentrated 

by centrifugation and either neutralized (pH 6.5-7) or spray dried in its acidic form 

(Lusas and Riaz 1995). 
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1.4.2 Current Biological and Enzymatic Methods 

Biological and enzymatic methods can alternatively concentrate protein by 

hydrolzing carbohydrates, phytic acid, and allergenic proteins, and making the protein 

fraction more digestible (Swick 2007). Additionally, hydrolysis can reduce peptide length 

of the protein fraction to increase digestibility (Swick 2007). Biological and enzymatic 

may also serve as a method to break down fiber fractions in animal feeds by utilizing 

naturally produced and industrial enzymes, respectively. 

1.4.2.1 Biological Methods 

There has been increasing emphasis on creating novel microbial approaches to 

convert cheap agro-residues into value-added animal feeds. Biological processing can be 

used to enhance oilseed meals by utilizing metabolic diversity of microorganisms to 

reduce carbohydrates, fiber, and anti-nutritional factors, while increasing protein levels. 

Fungal single-cell protein could also improve the amino acid profile of the resulting 

feeds. The protein content of bioprocessed products typically range from 55-65% and are 

lower than protein concentrate and isolate products (Swick 2007). However, 

bioprocessing eliminates the need for alcohol washing solvents, thus significantly 

reducing processing costs (Sindelar 2014). 

Nutraferma (Dakota Dunes, SD) is a biotechnology company that utilizes a 

proprietary solid-state fermentation process to produce high-value proteins from soybean 

meal. Nutraferma’s NF8
TM

 product is produced using Pediococcus pentosaceus and 

Bacillus subtilis. Another product, PepSoyGen
TM

, is produced using Aspergillus oryzae 

and Bacillus subtilis. PepSoyGen
TM

 increases the protein content of soybean meal to 

~59% on a dry basis and is low in dietary fiber (<3%) (Barnes et al. 2014). In addition, 
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the microbial species in PepSoyGen
TM

 remain viable in the final product, which can 

provide probiotic effects (Barnes et al. 2014). Preliminary studies have indicated that 

PepSoyGen
TM

 could replace at least 60% of fish meal in Rainbow Trout diets with no 

decrease in rearing performance (Barnes et al. 2014). 

Prairie AquaTech (Brookings, SD) was founded in 2012 as an animal health and 

nutrition company focused on the use of agricultural commodity products and by-

products to produce higher value products via fungal bioprocessing. Prairie AquaTech 

has successfully developed high protein fish meal replacement products from other plant-

based materials, including soybean meal and dried distillers grain. The product 

originating from soybean meal has been branded ME-PRO
TM

 and is currently being 

scaled-up for commercialization. Prairie AquaTech’s patent pending process has been 

able to increase the protein content of soybean meal to ~65% on a dry basis while 

depleting all anti-nutritional factors.  

1.4.2.2 Enzymatic Methods 

Enzymes occur in all living organisms and are used to catalyze bio-chemical 

reactions that are needed to support life. Many enzymes currently used in bioprocessing 

are derived from recombinant microorganisms to develop and manufacture enzymes with 

improved properties. This allows efficient production of enzymes that are free of other 

undesired enzymes or microbial metabolites.  

Hamlet Protein A/S (Horsens, Denmark) has developed a patented process using 

enzymatic treatment of soybean meal using a proprietary blend of enzymes (Goebel 

2010). In Hamlet’s process, soybean meal is blended with water and enzymes to 

hydrolyze carbohydrate polymers into simple sugars. Enzymes are then inactivated, 
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solids are recovered, dried, and milled (Goebel 2010). This novel bioconversion process 

reduces all natural anti-nutritional factors in soybean meal (antigens, trypsin inhibitors, 

oligosaccharides, and phytic acid) to a safe level for animal consumption. Hamlet’s HP 

300 product (56% crude protein) is ideal for use in swine, aquaculture, and pet feed. 

Swine feeding trials have reported higher crude protein and amino acid digestibility as 

well as improved average daily gain (Goebel 2010). 

1.5 Characteristics of Brassica Oilseed Meals 

A major factor that affects the composition of canola meal is the growing 

environment of the plant (Newkirk 2009; Barthet and Daun 2011). Variables such as soil 

moisture, temperature, and harvest time can affect the composition of the seed, and 

ultimately the meal (Barthet and Daun 2011). Canola produced in cool, wet weather 

results in seeds having a greater concentration of oil than when the crop is grown in hot 

and dry weather (Barthet and Daun 2011). The method of crushing (solvent extraction, 

hot expeller, or cold pressing) and the specific conditions used in the crushing process 

obviously affect the composition of the meal.  

1.5.1 Hexane Extraction vs Expeller vs Cold Pressing 

The goal of oilseed crushing is to maximize the oil recovery because the oil is the 

most profitable product. Table 1 .12 shows meal composition resulting from the three 

most common crushing methods. Hexane extraction is the most effective method of 

removing oil from oilseeds and produces a more consistent end product (Spragg and 

Mailer 2007).  Hexane and expeller extraction processes apply significantly higher levels 

of heat compared to cold pressing, and therefore the level of heat damage to or thermal 

denaturation of proteins in these meals is higher (Spragg and Mailer 2007). However, the 
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higher processing temperatures can help degrade or volatilize anti-nutritional factors 

(Newkirk et al. 2003; Allan and Booth 2004). A study by Newkirk et al. (2003) found 

that cold pressed canola meal contained higher levels of digestible amino acids than 

hexane extracted meal, but that the cold pressed meal also contained higher levels of anti-

nutritional factors and residual oil.  

Table 1.12: Nutrient content comparison of canola meal via common oil extraction 

methods (Beltranena 2014) 

Component (%) Solvent Extracted Expeller Cold Pressed 

Moisture 10.5 9.6 12.7 

Protein 38.1 31.4 25.8 

Available Lysine 2.0 1.6 1.4 

SID Lysine (g/kg) 15.0 13.2 12.0 

Fat 2.7 10.5 20.2 

Crude Fiber 7.4 8.3 5.8 

NDF  27.4 18.8 15.3 

ADF  19.8 15.0 11.5 

Phosphorus  1.1 1.0 0.9 

 

1.5.2 Oil Content 

Hexane extracted canola meal generally contains less than 5% residual oil while 

expeller and cold pressed meals contain 10-15 and 11-20% residual oil, respectively 

(Leming and Lember 2005; Spragg and Mailer 2007). Higher residual oil content in 

canola meal provides a higher bulk density. Residual oil also has an effect upon the 

digestible energy content when fed to livestock. Assuming the nutritional content of the 

meal is adequate for the livestock species, a greater residual oil content can provide an 

economic benefit to producers (Beltranena 2014). The greater residual oil content in 

expeller and cold pressed canola meal co-products provide more dietary energy and less 

amino acids than those in solvent-extracted canola meal (Seneviratne et al. 2010). Higher 
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concentrations of oil can provide the extra calories needed to increase weight gain and 

reduce days to market for nursery and grower pigs while increasing milk production and 

reduce body tissue loss for nursing sows (Beltranena 2014). The linoleic acid content 

within canola meal is a function of the residual oil content, with solvent extracted meals 

containing less linoleic acid relative to expeller and cold pressed meals (Spragg and 

Mailer 2007). High heat from solvent extraction and expeller processing can have a 

negative effect on the natural antioxidants in the oil (Nicoli et al. 1997), unlike cold 

pressing. 

1.5.3 Protein Content 

Canola seeds contain ~17-26% protein before oil extraction (Aider and Barbana 

2011). The crude protein content of canola meal is positively correlated with the canola 

seed protein content and negatively correlated with the canola seed oil content (Spragg 

and Mailer 2007). The protein content of canola meal is also affected by the method of 

oilseed crushing, with meal from the hexane extraction process generally at ~38% 

protein, compared to ~31% from expeller processes and ~26% from cold pressing (Table 

1.12). Overheating will cause the binding of amino acids with carbohydrates causing 

reduced digestibility of the amino acids, especially lysine (Cromwell 2008). Thus heating 

should be carefully monitored during crushing. 

1.5.4 Fiber Content  

 The concentration of crude fiber, ADF, and NDF in canola meal ranges from 5.8-

7.4%, 11.5-19.8%, and 15.3-27.4% in solvent extracted, expeller, and cold pressed canola 

meals, respectively (Table 1.12). While these values differ between various sources, the 

trends stay the same. The fiber content is generally similar for both solvent and expeller 
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meals (Spragg and Mailer 2007) while cold pressed meals contain a lower fiber content 

due to the higher concentration of residual oil. Fiber including cellulose, pentosans, and 

lignin from cell walls is mainly present in the hulls of canola that remain in the meal after 

processing (Mailer et al. 2008; Newkirk 2009). Canola meal has relatively poor 

digestibility when compared to other food sources, such as soybean meal, due to its 

higher fiber content (Mailer et al. 2008). This reduces the feed value of canola meal, 

especially monogastrics (Bell 1993). Excessive fiber in monogastric diets may also lead 

to a decrease in feed utilization by obstructing digestive enzymes and diluting nutrient 

density (Booth et al. 2001). Thus lower fiber levels may provide an increase in digestible 

energy for monogastrics (Spragg and Mailer 2007). Breeding programs are underway to 

create higher protein varieties that contain less fiber. 

1.5.5 Oligosaccharide Content 

The concentration of soluble carbohydrates in mature canola seeds is 

approximately 10% on an oil-free dry weight, consisting of 3.9-9.8% sucrose, 0.3-2.6% 

raffinose, 0.8-1.6% stachyose, 0.1-0.5% fructose, and 0.1-0.4% glucose (Barthet and 

Daun 2011). The concentration of hemicellulose is approximately 3%, cellulose ranges 

from 4-5%, and starch is 1% (Maison 2013). Table 1.13 lists the major carbohydrates in 

canola meal (oil-free, dry matter). Differences in oil crushing and extraction procedures 

influence the concentration of carbohydrates in canola meal (Bell 1993; Newkirk et al. 

2003). Extraction efficiency and moisture content during processing may influence the 

carbohydrate levels due to a concentration effect (Spragg and Mailer 2007). In extraction 

methods using high processing heat (solvent extraction and expeller), amino acids may 

form complexes with carbohydrates, rendering them unavailable for metabolism (Spragg 
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and Mailer 2007). Spragg and Mailer (2007) had found similar carbohyrate levels for 

both solvent and expeller meals. 

Table 1.13: Major carbohydrate components and component sugars of the non-

starch polysaccharides in canola meal (Bell 1993) 

Component % (db)  Component  % (db) 

Cellulose 4.9 Sugars from NSP  

Oligosaccharides 2.5 Rhamnose 0.2 

Sucrose 7.7 Fucose 0.2 

Starch 2.5 Arabinose 4.5 

Non-starch polysaccharides (NSP) 17.9 Xylose 1.6 

Soluble NSP 1.5 Mannose 0.4 

Insoluble NSP 16.4 Galactose 1.7 

  Glucose 5.0 

  Uronic acid 4.3 

 

1.5.5.1 Problems Caused  

Oligosaccharides are a common anti-nutritional factor in canola meal. The 

raffinose family of oligosaccharides, including stachyose and verbascose, cause gas 

production, diarrhea, and discomfort in monogastrics, which can negatively affect 

livestock performance (Rackis 1975). Monogastrics lack the enzyme alpha-galactosidase 

(Goebel 2010), and therefore these oligosaccharides pass into the lower intestinal tract 

where they are fermented by anaerobic bacteria into hydrogen, carbon dioxide, and small 

amounts of methane (Rackis 1975). Supplementing dietary alpha-galactosidase can help 

alleviate these adverse effects and improve nutrient digestion. Ruminants are able to 

utilize these oligosaccharides due to rumen microbes.  

1.5.6 Phytic Acid Content 

 Phytic acid is the main storage form of phosphorus in many cereal grains, 

legumes, and oilseeds (Pandey et al. 2001). Phytic acid chelates various metals and 
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proteins, decreasing the bioavailability of proteins and nutritionally important minerals 

such as calcium, magnesium, phosphorus, zinc, and iron (Nair and Duvnjak 1991; Spier 

et al. 2008; Shivanna and Venkateswaran 2014). Utilization of bound phosphorus, 

therefore, requires hydrolysis of phytic acid by the enzyme phytase (Vig and Walia 2001, 

Spier et al. 2008). Several strains of bacteria, yeasts, and fungi have been used for 

phytase production, but Aspergillus niger and Aspergillus ficuum have most commonly 

been used for commercial production (Pandey et al. 2001). Some physical methods of 

reducing phytic acid levels include extrusion and dehulling (Booth et al. 2001; Allan and 

Booth 2004). 

 Approximately 85% of total phosphorus in canola and rapeseed products is 

present as phytic acid; therefore, the digestibility of phosphorus in these products is ~25-

30% (Maison 2013). Although high in phytate, canola meal is also one of the richest 

sources of non-phytate phosphorus. Canola meal contains 0.38% non-phytate 

phosphorus, compared to 0.28, 0.23, 0.09, 0.26, 0.07, and 0.13% for soybean meal, 

cottonseed meal, wheat, wheat bran, corn, and barley, respectively (Khajali and 

Slominski 2012). Canola meal has an estimated bioavailability of 30-50% of the total 

phosphorus level (Newkirk 2009). The concentration of phosphorus is minimally affected 

by the process used for oil recovery, as solvent extraction had only showed an increase of 

0.2% compared to cold pressing (Table 1.12).  

1.5.6.1 Problems Caused 

 Monogastics lack the digestive enzyme phytase making them unable to 

metabolize phosphorus bound by phytic acid (Pandey et al. 2001; Spier et al. 2008). 

Furthermore, phytic acid influences protein and important mineral digestion of 
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monogastric animals (Chen et al. 2013). The unabsorbed phytate passes through the 

gastrointestinal tract of monogastric animals, elevating phosphorus levels in manure 

(Chen et al. 2013). Environmental pollution due to high-phosphorus manure has 

intensified phytase research (Pandey et al. 2001). 

 Addition of microbial phytase into monogastric diets can increase phosphorus 

availability and enhance amino acid digestibility (Newkirk 2009). In contrast, the rumen 

microflora of ruminants produce phytase. Microbial bioprocessing of other feeds is 

another alternative reduce phytic acid levels (Nair and Duvnjak 1991; Spier et al. 2008). 

One study showed that Aspergillus niger and Aspergillus ficuum were capable of 

producing maximum levels of phytase of 60.6 units per gram of dry substrate (U/gds) and 

38 U/gds, respectively, via submerged and solid-state fermentation (Shivanna and 

Venkateswaran 2014). Another study had showed a 95% reduction in phytic acid by 

Rhizopus oligosporus via solid-state fermentation (Nair and Duvnjak 1991). 

1.5.7 Glucosinolate Content 

Glucosinolates are a class of organic anions that can be hydrolyzed (non-

enzymatically or enzymatically by the enzyme myrosinase) to produce multiple toxic 

compounds (Vaughn and Berhow 2005). GLS and the enzyme myrosinase are 

compartmentally stored separately in Brassica spp. (Rask et al. 2000). Upon disruption of 

plant tissues, myrosinase cleaves glucose from GLS, which in turn is converted into toxic 

compounds such as nitriles, thiocyanates, and isothiocyanates depending on pH (Fig. 

1.5). This self-defense mechanism evolved to reduce animal and insect browsing of the 

plant (Halkier and Gershenzon 2006). 
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Figure 1.5: General structure of glucosinlates and enzymatic degradation products 

(Rask, et al., 2000) 

 

Canola was bred to contain low levels of erucic acid (<2%) in oil and 

glucosinolates (<30 μmol/g) in defatted meal (Newkirk 2009). There are approximately 

120 different types of glucosinolates that share a similar chemical structure, but have 

varying R groups derived from one of eight amino acids (Halkier and Gershenzon 2006, 

Sonderby et al. 2010, Berhow et al. 2013). Glucosinolates can be divided into three 

groups according to the amino acid precursor: 1) aliphatic glucosinolates, derived from 

Ala, Leu, Ile, Val, and Met; 2) benzenic glucosinolates, derived from Phe or Tyr; and 3) 

indolic glucosinolates, derived from Trp (Sonderby et al. 2010). 

 Glucosinolates are heat labile, therefore the total glucosinolate content declines 

with increasing levels of processing heat (Spragg and Mailer 2007).  Thus hexane 

extracted meals would have less glucosinolates than that of expeller and cold pressed 

meals (Fig. 1.6). 
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Figure 1. The general structure of glucosinolates, their intermediate and final degradation products. Stars denote positions in the glucose moiety

known to be acylated in certain glucosinolates. Conditions favoring the formation of certain degradation products are indicated. ESP, epithio

specifier protein.

then, myrosinase activity has been detected in all the

glucosinolate-containing plants and tissues that have

been investigated. It seems most likely that all plants

and plant organs that contain glucosinolates also con-

tain the glucosinolate-degrading enzyme. Myrosinase

activity is also present in some fungi, bacteria and

insects (see below).

The myrosinase activity in plants is dependent on

the species, cultivar and plant organ examined. The

highest myrosinase activity is normally found in the

seeds and seedlings [9], although it should be kept

in mind that part of the myrosinase activity is insol-

uble in leaves, particularly after induction with methyl

jasmonate, and has been overlooked in most studies,

where only soluble protein extracts have been ex-

amined [124]. Different myrosinase isoenzymes have

been detected in different organs by activity staining

of native electrophoresis and isoelectric focusing gels

[89, 90], but also by western blot analysis of ex-

tracts from different B. napus organs [68]. No direct

correlation between myrosinase activity and glucosi-

nolate content has been found [9]. Several reports have

described the isolation and physico-chemical charac-

terization of myrosinase. The most extensive studies

have been made in different Brassicaceae species,

mainly Lepidium sativum (garden cress) seedlings

[29], S. alba seeds [3, 4], and B. napus seeds [4, 8,

58, 66, 67, 70].

In B. napus and S. alba seeds, myrosinases are

dimeric proteins with apparent molecular masses of

135–150 kDa [3, 8, 70]. More recent analysis has

shown that certain myrosinases also exist in com-

plexes with other proteins where the oligomerization

state of myrosinase is not clear (see below). Analysis

of cDNA clones encoding myrosinases from S. alba

[142], B. napus [34, 35] and A. thaliana [15] showed

that the molecular mass of the protein chain in a my-

rosinase subunit is ca. 59 kDa. All plant myrosinases

characterized are glycosylated, although to different

extents for different isoforms. The carbohydrate side-

chains usually amount to 10–20% of the total subunit

molecular mass. The carbohydrates consist mainly of

fucose, mannose and N-acetylglucosamine.

Distribution of myrosinase isoenzymes

The isolation of cDNA and genomic clones encod-

ing myrosinases has enabled more accurate studies

of the existence of myrosinase isoforms and their tis-

sue distribution [15, 34, 35, 69, 73, 129, 142, 143,

145]. Studies of cDNA sequences and genomic hy-

bridization patterns in S. alba and B. napus showed

that myrosinase in Brassicaceae is encoded by a gene

family comprising at least three subfamilies, denoted

MA (or Myr1), MB (or Myr2) and MC. Estimations

of the number of myrosinase genes from the Southern

blot data suggested the presence of ca. 5 MA, 10–

15 MB and ca. 5 MC genes in B. napus [35, 69, 129].

Only MA and MB myrosinase transcripts have been

identified in S. alba so far, and these two subfamilies
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Figure 1.6: Glucosinolate content of seed, in-process, and finished canola meal 

(μmoles/g) (Spragg and Mailer 2007) 

 

1.5.7.1 Problems Caused 

 Glucosinolates are anti-nutritional and can even be toxic at high ingestion levels 

(Tripathi and Mishra 2007). Table 1.14 presents the biological effects of glucosinolate 

consumed at various ranges by several livestock species. When consumed, the 

breakdown products of GLS can cause deleterious effects on the thyroid, and ultimately 

cause goiters from iodine deficiency (Burel et al. 2001). Furthermore, large amounts of 

glucosinolates can affect growth rates by making meal less palatable to livestock 

(Bonnardeaux 2007).  
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Table 1.14: Biological effects of glucosinolates on livestock (Tripathi and Mishra 2007) 

Animal Total 

Glucosinolate 

Effect on animals 

 (μmol/g/diet)  

Pig 0.16-0.78 No adverse effect during growth, pregnacy and lactation 

 1.3 Reduced gain during finishing period 

 1.3-2.79 Reduced feed intake and growth 

 2.2 No adverse effect during growth period 

 7.0 Severe growth depression 

 9.0-10.0 Induced iodine deficiency, hypothyroidism, reduced 

  bone and serum zinc content and alkaline phosphatase 

activity 

Poultry 0.9 No adverse effect on intake and growth 

 2.3-8.18 No adverse effect on weight gain 

 4.6 Reduced feed intake by 0.09% 

 5.4-11.6 No adverse effect on intake and gain 

 7.6-15.3 Severe growth depression 

 34.0 Severe growth depression 

Calves 1.2-2.4 No adverse effect on thyroid and liver function 

Steers 10.0-15.0 No detrimental effect on growth and feed conversion 

Cow 11.0 Induced iodine deficiency 

 11.7-24.3 Depressed feed intake and milk production 

 ≥23.0 Reduced intake and milk production 

 31.0 Thyroid disturbance and depressed fertility 

Sheep 1.2-1.6 Reduced plasma levels of estradiol provoked  

  reproductive disturbance 

 1.2-2.2 Weight loss during lactation 

 <4.22 No adverse effect on lamb performance 

 ≥4.22 Induced iodine deficiency and influenced thyroid 

  weight and histology in lambs 

 15.0 Reduced growth in lambs 

 17.5 No effect on intake but increaed thyroid weight in lamb 

 33.0 Growth depression in lamb 

Fish 2.18 Reduced growth by 0.15 level 

 19.3 Severe growth depression and thyroid disturbances 

 

1.6 Proposed Bioprocessing of Oilseed Meals  

Attempts to upgrade the nutritional value of canola meal have involved the 

reduction of glucosinolates and fiber by plant breeding, steam stripping, and solvent 
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extraction/leaching. Unfortunately, all of these processes have major drawbacks such as 

loss of proteins, incomplete reduction in glucosinolate/fiber levels, high cost, and lack of 

commercial feasibility (Vig and Walia 2001). As an alternative to physical methods, 

researchers have shown that various microbes are able to degrade GLS and metabolize 

the resulting glucose and sulfur moieties. For example, Vig and Walia (2001) observed 

that Rhizopus oligosporus reduced GLS and their byproducts during fungal incubation. 

Similarly, Rakariyatham and Sakorn (2002) reported the complete degradation of GLS 

after 60-96 h using solid-state fermentation with Aspergillus sp.  

Microbial bioprocessing has the potential to metabolize GSL and toxic breakdown 

products while converting oilseed meal fiber and carbohydrates into cell mass to improve 

the protein quality and availability. Fungi are widely used in the fermentation industry 

and are a principal source of extracellular enzymes (Wang et al. 2005) that may enhance 

the hydrolysis of the fiber fraction in oilseed meals. Higher protein levels and 

digestibility, along with reduced levels of GSL and fiber may enable higher inclusion 

levels in livestock rations. 

1.6.1 Submerged Incubation 

Submerged incubation has been defined as processing in the presence of excess 

water, and has been a proven large-scale process due to easier material handling and 

process control (Singhania et al. 2010). In contrast to solid-state incubation, submerged 

incubation has the advantage of being a more homogenous mixture while allowing 

improved streamlining and standardization of processing (Chicatto et al. 2014). Some 

microorganisms require high moisture content and flowability to increase aeration during 

bioprocessing. Gunashree and Venkateswaran (2008) It has also been shown that addition 
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of surfactants may enhance fungal pelletization to increase extra cellular enzyme 

synthesis in submerged incubation processes (Gunashree and Venkateswaran 2008). 

Submerged incubation also has the potential to eliminate water-soluble anti-nutritional 

factors during the separation of process mash and water (Sindelar 2014). 

1.6.2 Solid-state Incubation 

Solid-state incubation has been defined as the processing of solid substrates that 

contain minimal water (Pandey et al. 2000). In these processes, microbial activity occurs 

in the thin water film on the surface of substrate particles. For many types of fungi, solid-

state incubation more closely replicates the natural environment to which fungi are 

adapted (Couto and Sanromán 2006). Filamentous fungi can grow to significant extent in 

the absence of free water (Singhania, Sukumaran et al. 2010). Research has shown that 

fungal mycelia can effectively penetrate solid substrate agro-industrial residues 

(Ramachandran et al. 2004). The low water content of the solid-state environment 

enhances fungal cell adhesion, which is fundamentally related to growth on and within 

solid substrates (Singhania et al. 2010). In this process, the solid substrate not only 

supplies the fungi nutrients but also serves as an anchorage for microbial cells (Sathya et 

al. 2010). Solid-state conditions also limit bacterial contamination due to the reduced 

water activity (Pandey et al. 2000; Singhania et al. 2009). Lower drying costs and the 

ability to use smaller incubation vessels, compared to submerged incubation processing, 

can help minimize industrial processing costs (Smits et al. 1993). The main disadvantages 

of solid-state incubation are mass transfer and control of temperature, pH and moisture 

(Holker et al. 2004). 
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1.7 Fungal Strains 

Several fungal strains were chosen based on their ability to produce single-cell 

protein and hydrolytic enzymes (Wang et al. 2005). Fungi are ideal organisms to use for 

production of single-cell protein, as the biomass contains all of the essential amino acids 

(Moore and Chiu 2001). The protein content of fungal single-cell protein typically ranges 

from 20-30% (Moore and Chiu 2001), but some species may reach up to 50% dry matter 

crude protein (Steen 2014). Many fungal species also have GRAS status in the food and 

food processing industry (Wang et al. 2005).  

Fungi are able to produce a large variety of enzymes, most of which are only 

produced in small amounts and are involved in cellular processes (Andrade et al. 2002). 

Extracellular enzymes are usually capable of digesting insoluble nutrients such as 

cellulose, protein, and starch, and the digested parts are transported into the cell to be 

used as growth nutrients (Andrade et al. 2002). Extracellular enzymes produced by some 

of these fungal strains would benefit the incubation process by breaking down fiber into 

carbohydrates that can be easily metabolized by the fungus. A disadvantage to this 

process would be using the optimum pH or temperature of the fungal strain, rather than 

the optimum parameters of the enzymes. Thus the enzymes may or may not perform 

optimally at the parameters used for optimum cell growth. 

1.7.1 Yeast-like Fungi  

1.7.1.1 Aureobasidium pullulans 

Aureobasidium pullulans is a yeast-like fungus also known as black yeast. Strains 

of A. pullulans can grow in three distinctive forms (Fig. 1.7), which includes elongated 

branched septate filaments, large chlamydospores, and smaller elliptical yeast-like cells 
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(Chi et al. 2009). While traditional yeast cells can only produce one budding cell at a 

time, A. pullulans has the ability to produce multiple budding cells and filament chains 

(Zalar et al. 2008). Colonies begin to grow as yellow, cream, light pink, or light brown, 

but they become black at later stages of growth due to chlamydospore formation, as well 

as melanin production (Chi et al. 2009).  

Figure 1.7: Cellular morphologies of Aureobasidium pullulans (Zalar et al. 2008) 

 

A. Unicellular; B. Multiple buds; C. Filamentous; D. Multiple buds from filamentous 

A. pullulans is utilized for the production of the biopolymer pullulan. Pullulan, an 

exopolysaccharide, is a linear homopolymer composed of maltotriose subunits 

interconnected with α-1,6 glucosidic linkages (Prasongsuk et al. 2007). The Hayashibara 

Company, Japan, first began commercial production of pullulan in 1976 (Leathers 2003). 

Pullulan can be used in various applications in the food manufacturing and 

pharmaceutical industry as a biodegradable coating, adhesive additive, flocculating agent, 

and environmental remediation agent (Chen et al. 2014). 

 Han et al. (1976) achieved a cell mass titer of 1.5 g/L with a crude protein content 

of 42.6% with ryegrass straw hydrolysate. West and Strohfus (2001) reached a maximum 

cell mass titer of ~20 g/L with a 5% sucrose solution under sterile conditions. Similarly, 

Singh et al. (2012) achieved a maximum cell mass titer of 21 g/L with basal media 

containing additional carbon and nitrogen sources under sterile conditions. Several strains 
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of A. pullulans are also known to produce amylase, cellulase, xylanase, and single-cell 

protein (Leathers 2003; Kudanga and Mwenje 2005; Chi et al. 2009). Cellulases 

produced by A. pullulans have the potential to convert fiber fractions of agro-residues 

into single-cell protein, thus enhancing the nutritional value (Kudanga and Mwenje 

2005). Enzymes and pullulan from A. pullulans are listed as GRAS products, ensuring 

this strain is safe for the food processing industry (Olempska-Beer et al. 2006; Prajapati 

et al. 2013)  

1.7.1.2 Pichia kudriavzevii 

Pichia kudriavzevii is a unicellular yeast that is ubiquitous in nature, being found 

in the soil, fruits, and various fermented beverages (Eureka Brewing 2014). P. 

kudriavzevii is mainly associated with food spoilage, and causes surface biofilms in low 

pH products (Eureka Brewing 2014). P. kudriavzevii reproduction occurs like traditional 

yeast, asexually by multilateral budding. Pichia is telemorphic and can form hat shaped, 

hemispherical, round ascrospores, and cluster of two cells during reproduction. 

Unicellular yeasts, such as P. kudriavzevii, do not produce as much cell mass as 

filamentous fungi, which may affect the protein production. Revah-Moiseev and Carroad 

(1981) produced a cell mass with 45% crude protein with an enzymatic hydrolysate of 

shellfish chitin waste. Toivari et al. (2013) produced a cell mass titer of 15.3 g/L in sterile 

media containing yeast extract, peptone, glucose, and xylose to produce xylonate. 

P. kudriavzevii has potential probiotic effects that may be beneficial to livestock 

meal bioprocessing (Ogunremi 2015). P. kudriavzevii also has the potential to produce 

phytase, an enzyme that hydrolyzes insoluble phytic acid to release soluble phosphorus. 

The soluble phosphorus would then be available for uptake in human and animal diets 
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(Chan et al. 2012). P. kudriavzevii has also shown excellent antibacterial activity against 

several pathogens, and can be utilized as a food preservative and biocontrol for 

fermentation industries (Bajaj et al. 2013).  

1.7.2 Filamentous Fungi  

1.7.2.1 Fusarium venenatum 

F. venenatum is a filamentous fungus that was first isolated from a soil sample in 

the United Kingdom and was given the designation F. graminearum A3/5 (Olempska-

Beer et al. 2006). This strain was subsequently reclassifed as F. venenatum based on its 

morphological, molecular, and mycotoxin data (Olempska-Beer et al. 2006). In 2001, the 

FDA reviewed a GRAS notice for the xylanse enzyme produced from F. venenatum 

containing the xylanse gene from Thermomyces lanuginosus (Olempska-Beer et al. 

2006). The F. venenatum strain used for xylanase expression is a descendant of the wild-

type strain A3/5 (Olempska-Beer et al. 2006). 

F. venenatum mycelium has been utilized as a source of mycoprotein for human 

consumption in the United Kingdom under the trade name ‘Quorn’ since 1985 

(Olempska-Beer et al. 2006). Twelve years of research was completed to ensure the 

safety of this organism (also a potential plant pathogen) before testing the product in the 

European market (Wiebe 2002). F. venenatum myco-protein contains approximately 44% 

protein on a dry basis (Wiebe 2002). To produce Quorn, glucose is provided as the 

carbon source and ammonium as the nitrogen source, both in levels of excess (Wiebe 

2002). Both temperature (28-30°C) and pH (6.0) are controlled during this process and a 

specific growth rate of 0.17-0.20 h
-1

 and biomass titer ~15 g/L can be produced (Wiebe 

2002). Quorn is one of the few successful fermentor-grown fungal foods on the market 
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(Moore and Chiu 2001). In 2001, the FDA reviewed a GRAS notice of F. venenatum 

production of mycoprotein and was accepted as safe for use in food as a meat replacer in 

the United States (Wiebe 2002; Olempska-Beer et al. 2006). Studies have shown that F. 

venenatum is capable of producing mycotoxins, however their production can be avoided 

by controlling fermentation conditions (Wiebe 2002). F. venenatum has been proven as 

an established and safe source of fungal protein, as long as mycotoxin production is 

avoided.  

1.7.2.2 Trichoderma reesei 

T. reesei is a filamentous fungus that belongs to a group of metabolically versatile 

aerobic mesophilic fungi (Nevalainen et al. 1994). T. reesei is common in soil in all 

climatic zones and are particularly prevalent in humid, mixed hardwood forests 

(Nevalainen et al. 1994). T. reesei was first isolated from the Solomon Islands during 

World War II (1944) because of its degradation of canvas and garments of the US army 

(Olempska-Beer et al. 2006). All strains of T. reesei used in industry were derived from 

the original isolate. 

Ghanem (1992) produced a fungal cell mass with 49.3% crude protein using beet 

pulp as a substrate. He et al. (2014) produced a cell mass titer of 25.4 g/L from cane 

molasses medium. T. reesei fungal cell mass is also GRAS listed (Seiboth et al. 2011). 

Many Trichoderma species are well-known for their capacity to produce enzymes that 

hydrolyze cellulose and hemicellulose (Muthuvelayudham and Viruthagiri 2006). In 

1999, the FDA confirmed the GRAS status of the cellulase enzyme from a non-

pathogenic and non-toxicogenic strain of T. reesei (Olempska-Beer et al. 2006). 

Cellulases from T. reesei have been used safely in food, animal feed, and pharmaceuticals 
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since the 1960s (Nevalainen et al. 1994). Major food applications of Trichoderma 

cellulases include baking, malting, and grain alcohol production (Olempska-Beer et al. 

2006). Solid-state fermentation of agro-industrial residues using T. reesei has shown to be 

an economical method for cellulase production (Pandey et al. 1999; Xia and Cen 1999; 

Latifian et al. 2007). The combination of metabolic diversity and extracellular enzyme 

production would make T. reesei an ideal fungal strain to hydrolyze and convert 

oligosaccharide and fiber fractions into single-cell protein. 

1.7.2.3 Mucor circinelloides 

Mucor circinelloides is a dimorphic fungus that belongs to the Zygomycete class 

(Nordberg et al. 2014). Members of the genus Mucor occur typically as saprophytes in 

soil, but have been utilized in the food and fermented beverage industry (Andrade et al. 

2002). This fungus has the capacity of accumulating high levels of lipids in its mycelium, 

has good biomass production during submerged batch cultivation in bioreactors, is able to 

use a wide range of carbon sources, and can grow in industrial stirred-tank fermentors 

(Nordberg et al. 2014). Mucor biomass could be an alternative feedstock in biodiesel 

production by utilizing microbial oil accumulated pellets formed during cell growth (Xia 

et al. 2011). M. circinelloides is a GRAS listed organism (Ratledge, 2013). There is 

currently no literature available on the protein content of M. circinelloides.  

M. circinelloides has been determined to be a cellulolytic fungus and has the 

ability to convert various cellulose substrates to glucose. One study had found that M. 

circinelloides was able to produce a complete cellulase enzyme system, which includes 

endoglucanase, cellobiohydrolase, and β-glucosidase (Saha 2004). Another study 

observed protease enzyme production from several agro-industrial residues using M. 
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circinelloides (Sathya et al. 2010). Proteases produced by this fungi possess high milk-

clotting activity and low proteolytic activity, making them ideal substitutes for the cheese 

industry (Andrade et al. 2002). M. circinelloides may benefit bioprocessing of agro-

residues from cellulase production and increasing digestibility from proteolytic activity. 
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Chapter II - Introduction 

The demand for food, and especially protein, is increasing along with the increase 

in the global human population (Steen 2014). By the year 2050, the global human 

population is expected to reach 9 billion (World Bank 2013), which will require a >70% 

increase in food production compared to today (FAO 2009). Fish are an important source 

of protein for a large percentage of the population (Steen 2014), and this trend is expected 

to continue. Fish and shellfish currently, represent 16% of all animal protein consumed 

on a global basis (World Bank 2013).  

Due to increasing demand for fish and a finite supply of wild caught fish, the 

majority (70%) of marine fish stocks are exploited, over-exploited, or depleted (FAO 

2014). This has led to rapid growth in aquaculture as a means to fill the gap between 

demand and wild caught fish resources. The worldwide aquaculture industry has 

sustained a 9% annual growth rate for the last three decades (FAO 2014). Aquaculture is 

also the most efficient means of increasing animal protein production due to the much 

higher feed conversion efficiency of fish compared to traditional livestock (Kaushik and 

Seiliez 2010). Fish have a feed conversion efficiency of 1:1 compared to poultry at 2:1, 

swine at 4:1, and cattle at 8:1 (National Research Council 2000; Brown et al. 2001; FAO 

2006).  

The rapid growth of aquaculture has resulted in an equally large increase in 

demand for fish meal, which is the primary protein source used in aquaculture diets 

(Olsen and Hasan 2012). Fish meal and other animal protein byproducts (blood meal, 

poultry meal, bone meal, etc) have traditionally been used in feed applications where 

highly concentrated and digestible proteins are needed (e.g. aquaculture, weaning diets, 
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etc.) (Booth et al. 2001; Goebel 2010). Fish meal is derived from the waste stream of fish 

processing (whole fish, fish remains, or other fish by-products such as heads, tails, bones, 

and other offals) and from the harvest of small pelagic fish, particularly anchoveta 

species (FAO 2014).  

Unfortunately, decades of over-harvest of marine species used to produce fish 

meal have capped annual global fish meal production. Fish meal production peaked in 

1994 at 30.2 million tons while dropping to 16.3 million tons in 2012 (FAO 2014). 

Meanwhile, growth of aquaculture and other competing uses of fish meal have caused 

prices to exceed $2,000/ton, and this has adversely affected profitability (World Bank 

2014). Thus, efforts are being made to investigate alternative protein and energy sources 

(Booth et al. 2001) to replace fish meal with more sustainable and economical plant-

based proteins (Barnes et al. 2014).  

The principal plant-based protein sources that have been investigated as fish meal 

replacements include soybean meal (Barnes et al. 2014), soy protein concentrates (Stein 

et al. 2008), corn distillers’ grains (Boucher et al. 2009), and alternative oilseed meals 

(Allan and Booth 2004). The main challenges in plant-based protein sources include the 

presence of anti-nutritional factors (e.g., indigestible oligosaccharides and fibers, trypsin 

inhibitors, saponins, glucosinolates, etc), non-optimal amino acid profiles, and/or low 

protein digestibility (Sindelar 2014).  These compositional issues have limited the amount 

of plant-based proteins that can replace fish meal to less than 60% (Barnes et al. 2014; 

Von Eschen 2014). 

Single cell protein is another alternative protein source that could be used in 

applications where highly digestible protein is required. Fungi are ideal organisms to use 
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for production of single-cell protein, as the biomass contains all of the essential amino 

acids (Moore and Chiu 2001). In addition, single cell protein can be produced from 

different residual streams derived from industry (Pandey et al. 1999). This provides the 

possibility to have inexpensive production from renewable and sustainable feedstocks. 

The protein content of fungal single-cell protein typically ranges from 20-30% (Moore 

and Chiu 2001), but some species may reach up to 50% dry matter crude protein (Steen 

2014). Many fungal species also have generally recognized as safe (GRAS) status in the 

food and food processing industry (Wang et al. 2005).  

In 2011, Gibbons and Brown (2012) combined the ideas of using filamentous 

fungi to metabolize the anti-nutritional factors in plant based proteins with the production 

of single celled protein to create a highly digestible, high protein feed to replace fish 

meal. Development work on this idea has primarily focused on enhancement of soybean 

meal and corn distillers’ grains (Sindelar 2014; Von Eschen 2014). Microbial processed 

soybean meal has been successfully used to replace 100% of the fish meal in yellow 

perch diets (Gibbons and Brown 2012). The base product contains ~65% protein on a dry 

basis prior to diet formulation (Gibbons and Brown 2012). The process developed by 

Gibbons and Brown is being rapidly commercialized by Prairie AquaTech (Brookings, 

SD) under a NSF SBIR Phase II award. 

Another feedstock that could be potentially improved using this technology is 

canola meal. Canola production has rapidly expanded over the past 40 years, rising from 

the sixth largest oilseed crop to the second largest (Ash 2012). On a worldwide basis, 

canola meal is second only to soybean meal for use as a feed (Newkirk 2009). Oil 

extracted canola meal generally contains 35-36% protein, 12% crude fiber, and a high 
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content of minerals and vitamins (Khattab and Arntfield 2009). Unfortunately, the lysine 

content of canola meal protein is ~5.8%, which is also less than soybean meal (Cromwell 

2008). Canola meal also contains less digestible energy and protein than soybean meal, 

but over three times as much fiber (Bell 1993).  

The main limitation of meals from canola and other Brassica spp. is the presence 

of glucosinolates (GLS), which are anti-nutritional and can even be toxic at high 

ingestion levels (Tripathi and Mishra 2007). When consumed, the breakdown products of 

GLS can cause deleterious effects on the thyroid, and ultimately cause goiters from 

iodine deficiency (Burel et al. 2001). Furthermore, large amounts of GLS can reduce 

palatability for livestock and thus reduce intake and growth rates (Bonnardeaux 2007). 

For this reason canola was bred to contain lower levels of GLS and erucic acid (Newkirk 

2009). Canola is characterized as containing less than 2% erucic acid in the oil and < 30 

umol/g GLS (Bonnardeaux 2007, Newkirk 2009). However, feed inclusion rates are still 

limited to ~30%, and this reduces the value of canola meal (Newkirk 2009). Canola meal 

is typically sold at a 30% discount to soybean meal (47% protein), but only 90% of this 

differential can be explained by protein levels. The remaining discount is due to the 10-

15% lower digestibility of canola meal and to the presence of GLS, which are toxic 

secondary metabolites found in almost all Brassicales. 

To increase the nutritional value of canola meal, solid-state and submerged fungal 

incubation methods were used to screen the performance of seven metabolically diverse 

fungal strains. For many types of filamentous fungi, solid-state incubation more closely 

replicates the natural environment (absence of free water) to which fungi are adapted 

(Couto and Sanromán 2006). Lower drying costs and the ability to use smaller incubation 
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vessels, compared to submerged incubation processing, can help minimize industrial 

processing costs (Smits et al. 1993). However, the main disadvantages of solid-state 

incubation are mass transfer and control of temperature, pH and moisture (Holker et al. 

2004). Submerged incubation has been defined as processing in the presence of excess 

water, and has been a proven large-scale process due to easier material handling, process 

control, and improved standardization (Singhania et al. 2010; Chicatto et al. 2014). Solid-

state incubation results are provided in Chapter III, while submerged incubation results 

are in Chapter IV. Based on this work, three fungal strains were down-selected and used 

to evaluate four pretreatment methods to enhance breakdown of the fiber fraction. 

Pretreatment methods included extrusion, hot water cook, dilute acid, and dilute alkali. 

Following pretreatment, submerged fungal incubation was used to evaluate effects on 

product composition. These results are provided in Chapter V.   
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Chapter III - Conversion of canola meal into a high protein feed additive via solid-

state fungal incubation process 

 

Abstract 

The study goal was to determine the optimal fungal culture to reduce 

glucosinolates (GLS), fiber, and residual sugars while increasing the protein content and 

nutritional value of canola meal. Solid-state incubation conditions were used to enhance 

filamentous growth of the fungi. Flask trials were performed using 50% moisture content 

hexane extracted (HE) or cold pressed (CP) canola meal, with incubation for 168 h at 

30ºC. On HE canola meal Trichoderma reesei (NRRL-3653) achieved the greatest 

increase in protein content (23%), while having the lowest residual levels of sugar (8% 

w/w) and GLS (0.4 μM/g). On CP canola meal Trichoderma reesei (NRRL-3653), A. 

pullulans (NRRL-58522), and A. pullulans (NRRL-Y-2311-1) resulted in the greatest 

improvement in protein content (22.9, 16.9 and 15.4%, respectively), while reducing total 

GLS content from 60.6 μM/g to 1.0, 3.2 and 10.7 μM/g, respectively. HE and CP canola 

meal GLS levels were reduced to 65.5 and 50.7% by thermal treatments while solid-state 

microbial conversion further reduced GLS up to 99 and 98%, respectively. Fiber levels 

increased due to the concentration effect of removing oligosaccharides and GLS. 

 

3.1. Introduction 

Canola (Brassica napus) is grown widely in Canada and the northern U.S. as a 

source of edible oil or for biodiesel/jet fuel production. The U.S. Department of 

Agriculture’s National Agricultural Statistics Service estimated the 2014 US canola crop 

at 2.52 billion pounds harvested over 1.55 million acres (US Canola Association 2014). 

Following oil extraction, the remaining meal is used as a protein source for livestock. On 
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a worldwide basis, canola meal is second only to soybean meal for use as a feed 

(Newkirk 2009). There has been much interest in utilizing rapeseed meal to replace 

soybean meal in ruminant and monogastric feeds (Lomascolo et al. 2012). However, a 

limitation of meals from Brassica spp. is the presence of GLS, which are anti-nutritional 

and can even be toxic at high ingestion levels (Tripathi and Mishra 2007).  

GLS and the enzyme myrosinase are compartmentally stored separately in 

Brassica spp. (Rask et al. 2000). Upon disruption of plant tissues, myrosinase cleaves 

glucose from GLS, and the intermediate is then converted into toxic compounds such as 

nitriles, thiocyanates, and isothiocyanates, depending on pH (Kliebenstain et al. 2005). 

This self-defense mechanism evolved to reduce animal and insect browsing of the plant 

(Halkier and Gershenzon 2006). When consumed, a few of these toxic breakdown 

products can cause deleterious effects on the thyroid, and ultimately cause goiters from 

iodine deficiency (Burel et al. 2001). For this reason canola was bred to contain lower 

levels of GLS (Newkirk 2009). However, feed inclusion rates are still limited to ~30%, 

and this reduces the value of canola meal (Newkirk 2009). Canola meal would be more 

competitive in the marketplace if it had more digestible energy, more protein, and less 

GLS (Bell 1993).  

 One approach to improving the composition of canola meal is use of physical 

fractionation methods to remove anti-nutritional factors from the protein. In 2006, MCN 

Bioproducts Inc. patented a mechanical process to concentrate and purify canola proteins 

(Newkirk et al. 2006). This process is similar to methods currently used to produce soy 

protein concentrate and isolate, and achieves a product with up to 80% protein by weight 

dry matter (Newkirk et al. 2009). Unfortunately, the multiple separation steps of this 
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process are expensive and result in a low protein yield, since proteins also fractionate into 

lower value co-products. The result is an expensive product similar to soy protein isolate 

that is more suitable for use in human foods. In 2012 Bunge acquired MCN BioProducts 

to commercialize this technology for high value protein applications.  

 To generate a less expensive canola protein concentrate, this work was completed 

to take advantage of the metabolic diversity of fungi to convert canola fiber and 

carbohydrates into protein-rich cell biomass, while simultaneously degrading GLS and 

the breakdown products. We hypothesized that this process would generate a more 

digestible product with enhanced nutritional value to a range of aquaculture and other 

livestock species.  Based on their ability to produce cellulose degrading enzymes, 

filamentous fungi selected for initial evaluation included Trichoderma reesei, Fusarium 

venenatum, Mucor circinelloides, and Aureobasidium pullulans.  T.reesei (Seiboth et al. 

2011), F. venenatum (Wiebe 2002), and Mucor circinelloides (Ratledge 2013) are listed 

GRAS strains, while enzymes and pullulan from A. pullulans are GRAS products 

(Olempska-Beer 2006; Prajapathi et al. 2013).  The yeast Pichia kudriavzevii was also 

included due to its potential probiotic effects (Ogunremi et al. 2015). Since the cold press 

and hexane extraction are the two commercialized methods of oil extraction, meals from 

both processes were evaluated. 

A single-step, solid-state incubation process was used in this research because it 

replicates the natural environment to which fungi are adapted (Pandey et al. 2000; Couto 

and Sanromán 2006). Research has shown that fungal mycelia can effectively penetrate 

solid substrate agro-industrial residues (Ramachandran et al. 2014). Solid-state conditions 

also limit bacterial contamination due to the reduced water activity (Pandey et al. 2000; 
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Singhania et al. 2009). Lower drying costs and the ability to use smaller incubation 

vessels, compared to submerged incubation processing, can help minimize industrial 

processing costs (Smits et al. 1993). The main disadvantages of solid-state incubation are 

mass transfer and control of temperature, pH and moisture (Holker et al. 2004). 

3.2. Materials and Methods 

3.2.1. Feedstocks and Preparation 

HE canola meal was obtained from North Dakota State University (Fargo, ND, 

USA), while CP canola meal was obtained from Agrisoma Biosciences (Ottawa, Ontario, 

Canada). Both HE and CP meals were milled through a 2 mm screen via knife mill prior 

to use, and were stored at room temperature in sealed buckets throughout the duration of 

experimentation. Dry weight (dw) analysis was conducted by drying ~5 grams of canola 

meal at 80ºC in a drying oven for at least 48 h. Proximate analysis was conducted 

following AOAC protocols by SGS (Brookings, SD, USA) and Table 1 provides the 

composition of each feedstock.  

3.2.2. Cultures, Maintenance, and Inoculum Preparation 

 Aureobasidium pullulans (NRRL-58522), A. pullulans (NRRL-42023), A. 

pullulans (NRRL-Y-2311-1), Trichoderma reesei (NRRL-3653) and Fusarium 

venenatum (NRRL-26139) were obtained from the National Center for Agricultural 

Utilization Research (Peoria, IL). Pichia kudriavzevii and Mucor circinelloides were 

isolated as contaminates from prior trials, and were identified by ARS-USDA (Peoria, IL, 

USA) using 16s RNA analysis from methods developed by O’Donnell (2000). Short-term 

maintenance cultures were stored on Potato Dextrose Agar (PDA) plates and slants at 4 

degrees Celsius (ºC).  Lyophilization was used for long-term storage. Inocula for all 
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experiments were prepared by transferring isolated colonies or a square section of agar 

growth (filamentous fungi) into glucose yeast extract (GYE) medium consisting of 5% 

glucose and 0.5% yeast extract. The flasks used for inocula growth consisted of 100 

milliliter (ml) GYE working volume in 250 ml Erlenmeyer flasks, covered with a foam 

plug and aluminum foil. Cultures were incubated for ~72 hours (h) at 30ºC in a rotary 

shaker at 150 revolutions per minute (rpm). 

3.2.3. Solid State Trials 

Solid-state trials were conducted in 500 ml Erlenmeyer flasks with 100 g of 50% 

moisture content canola meal (hexane extracted vs cold pressed). The pH of individual 

flask contents was adjusted with 10 N sulfuric acid to the optimum pH for each organism. 

The pH for Aureobasidium, Pichia, and Mucor cultures was adjusted to 3 with 10N 

sulfuric acid, while pH 5-5.5 was used for Trichoderma and Fusarium. Flasks were 

covered with foam plugs and aluminum foil and were then autoclaved at 121ºC for 20 

min. Flasks were inoculated with 10 ml of 72 h inoculum cultures, then incubated 

statically at 30ºC for 168 h. Visual subjective rating of colonization percentages on 

surfaces were conducted daily. Following incubation the solids were recovered, the pH 

was measured, and the solids were then dried and analyzed for carbohydrates, protein, 

fiber, and GLS.  

3.2.4. Analytical Methods 

3.2.4.1. Residual Sugars 

After 168 h incubation, the pH of each sample was measured (Oakton pH Spear). 

The solids were then dried for 2 d at 80ºC. One g of each dried sample was removed and 

mixed with 9 ml DIH2O, then allowed to solubilize at 4ºC overnight. This solution was 
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then centrifuged at 10,000 rpm for 10 min and the supernatant was then poured into a 2 

ml microcentrifuge tube and frozen overnight. After thawing, the supernatant was 

centrifuged a second time at 10,000 rpm for 10 min to remove any precipitants, and this 

supernatant was then filtered through a 0.2 μm filter and into a HPLC vial.  A Waters 

size-exclusion chromatography column (SugarPak column I with pre-column module, 

Waters Corporation, Milford, MA, USA) and high performance liquid chromatography 

system (Agilent Technologies, Santa Calara, CA, USA) equipped with refractive index 

detector (Model G1362A) were used to measure the sugars. The sugars were eluted using 

a de-ionized water as mobile phase at flow rate of 0.5ml/min and column temperature of 

80ºC. Sugars quantified included arabinose, galactose, glucose, raffinose, stachyose, and 

sucrose.  

3.2.4.2. Total protein 

Approximately 5 g of sample was used for protein and GLS analysis. Protein was 

quantified using a LECO model FP528 (St. Joseph, MI, USA) to combust the sample and 

to measure the total nitrogen gas content in the sample. Protein percentage was then 

calculated from the nitrogen content of the sample using a conversion factor of 6.25.  

3.2.4.3. Glucosinolates 

Individual GLS (gluconapin, glucotropealin, and sinigrin) were confirmed to be 

present by quadrupole time-of-flight (q-tof) liquid chromatography-mass spectrometry 

(LC-MS) and quantified using reverse phase high performance liquid chromatography 

(RP-HPLC) (Berhow et al. 2013). For GLS quantification, a modification of a high-

performance liquid chromatography (HPLC) method developed by Betz and Fox (1994) 

was used. The extract was run on a Shimadzu (Columbia, MD) HPLC System (two LC 
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20AD pumps; SIL 20A autoinjector; DGU 20As degasser; SPD-20A UV-VIS detector; 

and a CBM-20A communication BUS module) running under the Shimadzu LCsolutions 

Version  1.25 software. The column a C18 Inertsil reverse phase column (250 mm X 4.6 

mm; RP C-18, ODS-3, 5u; with a Metaguard guard column; Varian, Torrance, CA).  The 

GLS were detected by monitoring at 237 nm. Initial mobile phase conditions were 12% 

methanol/88% aqueous 0.005M tetrabutylammonium bisulfate (TBS) at a flow rate of 1 

ml/min. After injection of 15 ul of sample, the initial conditions were held for 2 min, and 

then up to 35% methanol over another 20 minutes, then to 50% methanol over another 20 

minutes then up to 100% methanol over another 10 minutes.  

3.2.4.4. Fiber 

Fiber analysis was completed as Neutral Detergent Fiber (NDF) and Acid 

Detergent fiber (ADF). NDF is a method commonly used for animal feed analysis to 

determine the amount of lignin, hemicellulose and cellulose while ADF represents the 

least digestible fiber fraction of animal feed including lignin, cellulose, silica but not 

hemicellulose. NDF and ADF analysis were completed by Midwest Laboratories 

(Omaha, NE, USA) using ANKOM Technology (Macedon, NY, USA) filter bag 

methods. 

3.3. Results and Discussion 

 

Seven fungal strains were grown on HE vs CP canola meal using a solid state 

incubation process. These trials were done in shake flasks, where mixing and mass 

transfer are limiting factors. However, these non-optimized trials were simply meant to 

quickly down-select for the best microbe for each type of canola meal. Other 

investigators have previously used a similar solid-state incubation process to quickly 
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assess phytase activity of various strains of bacteria, yeasts and fungi when grown on 

canola and other rapeseed meals (Saha 2004; Bhargav et al. 2008).  

3.3.1. Compositional analysis 

As listed in Table 3.1, the composition of HE and CP meals were different in 

terms of the fat and fiber content. We were concerned that GLS in both feedstocks (42.8-

60.6 μM/g), or the higher oil content of CP canola meal (Table 3.1), might be inhibitory. 

It is known that GLS can inhibit some types of microbes (Bogar et al. 2003), although we 

anticipated that the fungi tested herein could actually metabolize these compounds. We 

also postulated that canola oil might be inhibitory, as it is known that high oil 

concentrations can reduce microbial growth (Bock et al. 2007; Bednarek et al. 2009). 

Cold pressing typically remove only 75-85% of canola seed oil, while solvent extraction 

removes 96%+ (Haron et al. 2013). 

Table 3.1 Proximate analysis of hexane extracted and cold pressed canola meal 

before and after processing with A. pullulans (Y-2311-1)
1
  

 Hexane 

Extracted 

Cold Pressed 

Analysis 

(% w/w, db)
2 

Raw Processed Raw Processed 

Dry Matter 93.5 96.1 93.7 96.9 

Crude Ash 7.5 8.7 6.8 7.2 

Crude Fat 5.4 5.7 17.1 18.6 

Crude Fiber 12.4 13.5 7.3 7.9 

Crude Protein 36.1 41.3 38.6 44.6 
1
The data in Table 1 represents composite samples of three replicates. This was necessary 

to have sufficient material for the proximate analysis.  
2
Proximate analysis was completed as a percentage weight per weight (% w/w) on a dry 

basis (db). 
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3.3.2. Fungal growth rates 

When the microbial strains were cultivated in those meals, a different trend of 

colonization was observed. Figures 3.1a and 3.1b show the percent surface colonization 

for each strain during incubation of HE and CP canola meal, respectively. While these 

visual ratings were subjective, they do provide an indication of relative growth rates on 

the two feedstocks. Figure 1a shows that A. pullulans (NRRL-Y-2311-1) and F. 

venenatum grew the most rapidly on HE canola meal, achieving 100% colonization in 72 

h. P. kudriavzevii grew the slowest, only achieving 20% colonization in 168 h. Figure 1b 

shows that A. pullulans (NRRL-Y-2311-1), F. venenatum, and T. reesei grew the most 

rapidly on CP canola meal, achieving 100% colonization in 72 h. P. kudriavzevii again 

grew the slowest, only achieving 30% colonization in 168 h. Therefore the higher oil 

content of CP canola meal did not affect growth of A. pullulans (NRRL-Y-2311-1) and F. 

venenatum, and actually stimulated growth of T. reesei. The extra oil also improved the 

growth of A. pullulans (NRRL-42023) and M. circinelloides, perhaps by providing an 

additional carbon and energy source (Spragg and Mailer 2007). The slower colonization 

rate and extent of P. kudriavzevii on both feedstocks was expected, as it is a single celled 

yeast that does not grow in a filamentous morphology. It was included in these trials 

because it frequently occurs as a contaminant in larger scale trials where we are 

processing plant-based protein meals in submerged conditions. In broth culture P. 

kudriavzevii exhibits a much faster growth rate of >0.30 h
-1

 compared to the filamentous 

fungi (Salihu et al. 2012).  
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Figure 3.1a Surface colonization of various fungi ± SD on hexane extracted canola 

meal 

 
 

Figure 3.1b Surface colonization of various fungi ± SD on cold pressed canola meal 
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3.3.3. pH change over fungal incubation 

Table 3.2 shows the initial versus final pH levels for these trials. The pH in the 

un-inoculated controls stayed stable throughout 168 h incubation, and the pH in trials 

with A. pullulans (NRRL-58522), A. pullulans (NRRL-42023), and P. kudriavzevii 

increased by less than 1 pH unit. The pH increased from 3.0 to 3.9-4.9 in the M. 

circincelloides trials, however studies have shown this fungus has a broad pH range of 

3.0-8.0 (Toivari et al. 2013). In trials with A. pullulans (NRRL-Y-2311-1), T. reesei, and 

F. venenatum, the pH also rose, in some cases to slightly above the optimal range. 

Nevertheless, these strains still exhibited the most rapid colonization rates in both HE and 

CP canola meals.  

In most cases the pH rose to a higher level in HE canola meal compared to CP 

meal. Due to the fact that these solid-state trials were not mixed or sampled until the end 

of incubation, it was not possible to adjust pH during incubation. However it is possible 

that the increased pH might have affected fungal metabolism, and hence protein 

production. Therefore, subsequent optimization studies that will be conducted in a 

paddle-type reactor will include pH control. 
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Table 3.2 Initial versus final pH ± SD of hexane extracted and cold pressed canola 

meal 

Fungal Culture Optimal 

pH 

Range 

Initial 

pH HE 

Canola 

Final 

pH 

HE 

Canola 

Initial 

pH CP 

Canola 

Final 

pH CP 

Canola 

Control 

 

-- 3.2±0.0 3.2±0.0 2.9±0.1 3.0±0.1 

A. pullulans  

(NRRL-58522) 

3.0-5.0
1 

3.0±0.0 3.8±0.5 3.1±0.1 3.9±0.4 

A. pullulans  

(NRRL-42023) 

3.0-5.0
1
 3.1±0.0 3.7±0.1 3.0±0.0 3.0±0.4 

A. pullulans  

(NRRL-Y-2311-1) 

3.0-5.0
1
 3.2±0.2 6.2±0.4 3.1±0.1 4.9±0.6 

P. kudriavzevii 

 

3.0
2
 3.0±0.0 3.7±0.3 3.0±0.1 3.1±0.2 

T. reesei  

(NRRL-3653) 

4.0-6.0
3
 5.0±0.0 7.7±0.1 5.0±0.1 7.1±0.3 

F. venenatum  

(NRRL- 26139) 

4.5-6.0
4 

5.1±0.3 7.4±0.4 5.1±0.1 6.2±0.7 

M. circinelloides 

 

3.0-6.0
5 

3.1±0.1 4.9±0.7 3.1±0.1 3.9±0.8 

1
(Chen et al. 2014) 

2
(Toivari et al. 2013) 

3
(Li et al. 2013) 

4
(Gordon et al. 2000) 

5
(Saha 2004) 

 

3.3.4. Residual sugars 

Residual sugars represent the combined levels of arabinose, galactose, glucose, 

raffinose, stachyose, and sucrose. Between 50-95% of sugars present in the HE and CP 

meals were utilized by the fungi during incubation, resulting in residual sugar levels of 

0.9-8.4 % w/w. A. pullulans (NRRL-Y-2311-1) and F. venenatum exhibited the lowest 

residual sugar levels on both substrates, while M. circincelloides and T. reesei had the 

highest final levels of residual sugars. In the case of T. reesei, the higher than optimal 

final pH levels might explain why sugars were not more completely consumed (Li et al. 
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2013). As we have shown with our previous work with soybean meal (Brown and 

Gibbons 2014), optimization of process conditions (such as mixing and nitrogen 

supplementation) will substantially increase protein levels and further reduce residual 

sugars. Other studies have also noted that nitrogen supplementation boosts conversion of 

sugars into cell mass, thereby increasing protein and reducing residual sugar levels 

(Bertolin et al. 2003; Membrillo et al. 2008). 

3.3.5. Total protein 

Figures 3.2a and 3.2b present the maximum protein levels and residual sugar 

levels in HE and CP canola meals, respectively, for the un-inoculated control versus the 

various fungi. Protein levels increased from 36.1% in hexane extracted meal to 39.7-

44.4% after solid-state microbial conversion, representing relative improvements of ~10-

23%. Protein levels increased from 38.6% in CP meal to 42.2-47.5% after solid-state 

microbial conversion (relative improvements of ~9-23%). T. reesei achieved the highest 

protein levels for both substrates, while P. kudriavzevii exhibited the lowest protein 

enhancement of all strains. T. reesei is known to produce many hydrolytic enzymes (Li et 

al. 2013), and was expected to provide the greatest conversion of fiber and 

oligosaccharides into cell mass. As a single-celled yeast, P. kudriavzevii does not produce 

cellulase enzymes and was therefore anticipated to result in the lowest protein 

improvement. The final protein levels for all other fungal strains were relatively similar, 

at 40-41% in HE canola meal and 43-45% protein in CP canola meal.  
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Figure 3.2a Maximal protein and residual sugar levels ± SD of hexane extracted 

canola meal 

 
 

Figure 3.2b Maximal protein and residual sugar levels ± SD of cold pressed canola 

meal 
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3.3.6. Glucosinolates 

Table 3.3 lists GLS and fiber (ADF and NDF) levels for the raw HE and CP 

canola meals, and for the meals following incubation (un-inoculated control vs the 

various fungal cultures). GLS levels were reduced from 42.8 μM/g in raw HE meal to 

14.8 μM/g after the thermal treatments in the control (autoclave sterilization and final 

drying), representing a 65.5% reduction. This was presumed due to the conversion of 

some of the GLS to volatile breakdown products (Halkier and Gershenzon 2006). Solid-

state microbial conversion further reduced GLS content to 0.4-13.3 μM/g, representing a 

total reduction of 69-99%. Similarly, GLS levels in raw CP meal were reduced from 60.6 

μM/g to 29.9 μM/g due to the thermal steps of the conversion process (reduction of 

50.7%). Again, solid-state microbial conversion further reduced GLS content to 1.0-

28.73 μM/g (total reduction of 53-98%). In future trials with the best fungi we will seek 

to quantify GLS breakdown products. 

T. reesei (NRRL-3653) exhibited the greatest reduction in GLS levels, likely due 

to its robust capability for producing extracellular enzymes (Li et al. 2013). Several of the 

A. pullulans strains were next most effective. Previous studies have shown that various 

microbes, including Aspergillus sp. and Rhizopus oligosporus, are able to degrade GLS 

and metabolize the resulting glucose and sulfur moieties (Rakariyatham and Sakorn 

2002; Vig and Walia 2001). The complete degradation of GLS was achieved after 60-96 

h using solid-state fermentation with Aspergillus sp. (Rakariyatham and Sakorn 2002). 

As expected due to its minimal production of extracellular hydrolytic enzymes, P. 

kudriavzevii resulted in the least reduction in GLS.  There was a large standard deviation 

in GLS levels for CP canola processed with A. pullulans (NRRL-42023). In some 
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instances, the quantification of total GLS can be problematic using HPLC 

chromatography due to low baselines levels. This gives a much higher standard deviation 

value for the replicates as the numbers can vary at these low levels. 

3.3.7. Fiber 

Fiber levels (Table 3.3) actually increased during the fungal incubation process as 

a result of the “concentration effect” as sugars and GLS were metabolized, along with the 

apparent lack of any substantial fiber hydrolysis due to cellulase activity. We have 

previously shown that feedstock pretreatment increases the susceptibility of fibers to 

hydrolysis (Karki et al. 2013), and that optimizing the fungal incubation conditions will 

also enhance cellulase production and activity. This will be evaluated in future studies. 

The resulting sugars would then be available for conversion into additional cell mass and 

protein.  
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Table 3.3 Reduction of total glucosinolates and fiber ± SD during solid-state fungal incubation 

 

 Glucosinolates Fiber 

 Hexane Extracted Cold Pressed Hexane Extracted Cold Pressed 

Fungal Culture Total GLS 

(μM/g) 

Reduction 

(%)
1 

Total GLS 

(μM/g) 

Reduction 

(%)
1 

ADF 

(%) 

NDF 

(%) 

ADF 

(%) 

NDF 

(%) 

Raw Meal 42.8±1.3 -- 60.6±2.5 -- 19.9±0.2 23.1±0.3 11.5±0.5 

 

15.0±0.3 

Process Control 

 

14.8±1.2 65.5±2.7 29.9±0.8 50.7±1.3 17.2±0.5 20.4±0.6 

 

9.7±0.4 

 

11.9±0.6 

A. pullulans  

(NRRL-58522) 

4.5±1.0 89.4±2.4 3.2±2.5 94.8±4.1 17.7±1.3 21.3±0.7 10.2±1.0 12.9±0.2 

A. pullulans  

(NRRL-42023) 

2.6±1.5 94.0±3.5 15.1±14.1 83.4±21.9 18.0±0.6 20.7±0.7 10.5±0.8 14.1±0.9 

A. pullulans  

(NRRL-Y-2311-1) 

3.9±1.0 90.9±2.2 10.7±2.7 82.4±4.4 22.4±0.7 25.8±0.7 12.4±0.7 15.4±0.2 

P. kudriavzevii 

 

13.3±1.1 68.9±2.5 28.7±0.8 52.6±1.3 18.7±0.7 22.3±0.6 10.6±0.1 12.6±0.5 

T. reesei  

(NRRL-3653) 

0.4±0.0 99.1±0.1 1.0±0.2 98.3±0.3 19.1±0.4 23.6±0.8 11.0±0.9 13.5±0.7 

F. venenatum  

(NRRL- 26139) 

5.7±1.6 86.7±3.8 10.9±4.0 82.1±6.6 22.5±0.7 28.9±0.5 11.6±1.2 14.6±1.2 

M. circinelloides 

 

10.4±1.0 75.8±2.2 25.4±2.7 58.1±4.4 20.1±0.8 23.4±0.5 11.1±0.8 13.3±0.7 

1
GLS reduction from raw canola meal
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3.3.8. Protein Yield 

Table 3.4 provides a summary of the dry matter yield and total amount of protein 

achieved in these trials. While the composition (protein, GLS and fiber) of the 

microbially converted canola meal is important, the product yield (especially protein) is 

also important. Based on dry matter yield and protein concentration, one can calculate the 

total protein content in the product, and on this basis, T. reesei performed the best for 

both HE and CP canola meal. M. circinelloides was the second best, while P. kudriavzevii 

was next, due to the high yield. Several of the filamentous fungi that produced relatively 

high protein levels actually yielded less total protein due to their reduced dry matter 

yields. 

Table 3.4 Dry matter yield and protein ± SD from solid-state incubation of canola 

meal 

 Hexane Extracted Cold Pressed 

Fungal Culture Dry 

Matter 

Yield (%) 

Protein 

(%, dw) 

Total 

Protein  

(g) 

Dry 

Matter 

Yield (%) 

Protein 

(%, dw) 

Total 

Protein 

(g) 

Control 

 

100.3±0.3 36.1±0.8 18.1±0.1 100.7±0.4 38.6±0.7 19.4±0.1 

A. pullulans  

(NRRL-58522) 

95.2±3.2 41.0±1.8 19.2±0.4 92.0±1.2 45.2±0.7 20.7±0.3 

A. pullulans  

(NRRL-42023) 

97.3±1.3 39.7±0.5 19.2±0.1 88.5±3.4 43.7±1.6 19.3±0.7 

A. pullulans  

(NRRL-Y-2311-1) 

91.0±1.2 41.3±0.2 18.8±0.3 90.6±1.6 44.6±0.2 20.3±0.4 

P. kudriavzevii 

 

100.0±1.2 39.7±0.1 19.9±0.2 98.0±1.4 42.2±0.1 20.5±0.0 

T. reesei  

(NRRL-3653) 

91.9±1.8 44.4±1.7 20.6±0.0 91.2±1.7 47.5±1.5 21.5±0.4 

F. venenatum  

(NRRL- 26139) 

92.5±5.0 40.2±2.1 18.3±1.2 91.5±3.1 44.4±1.9 20.1±0.8 

M. circinelloides 

 

96.9±1.0 40.7±0.8 19.7±0.0 97.4±1.0 43.0±1.4 20.9±0.0 
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3.4. Conclusions 

 

Solid-state incubation with various fungal strains enhanced the nutritional 

composition of canola meal. T. reesei (NRRL-3653), A. pullulans (NRRL-58522), and A. 

pullulans (Y-2311-1) resulted in the greatest improvement in protein content, exhibiting 

maximum protein increases of 22.9, 16.9 and 15.4%, respectively, in solid-state 

incubated CP canola meal. This treatment also resulted in the reduction of the total GLS 

content to the greatest extent, ranging from 89.4-99.1 and 82.4-98.3% in HE and CP 

canola meal, respectively. Fiber levels were increased due to a “concentration effect” as 

sugars and GLS were metabolized.
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Chapter IV - Enhancing the nutritional value of Brassica napus meal using a 

submerged fungal incubation process 

 

Abstract 

The aim of this study was to determine the optimal fungal culture to increase the 

nutritional value of canola meal so it could be used at higher feed inclusion rates, and for 

a broad range of monogastrics, including fish. Submerged incubation conditions were 

used to evaluate performance of seven fungal cultures in hexane extracted (HE) and cold 

pressed (CP) canola meal. Aureobasidium pullulans (Y-2311-1), Fusarium venenatum 

and Trichoderma reesei resulted in the greatest improvements in protein levels in HE 

canola meal, at 21.0, 23.8, and 34.8%, respectively. These fungi reduced total 

glucosinolate (GLS) content to 2.7, 7.4, and 4.9 μM/g, respectively, while residual sugar 

levels ranged from 0.8-1.6% w/w. In trials with CP canola meal, the same three fungi 

increased protein levels by 24.6, 35.2, and 37.3%, and final GLS levels to 6.5, 4.0, and 

4.7 μM/g, respectively. Additionally, residual sugar levels were reduced to 0.3-1.0 % 

w/w.   

4.1. Introduction 

 

Canola (Brassica napus) is grown widely in Canada and the northern United 

States and is the second most abundant source of edible oil (Aider and Barbana 2011). 

Canola meal is also the second most abundant protein source for livestock feed, behind 

soybean meal (Newkirk 2009). The abundance and lower price of canola meal have 

driven interest in replacing soybean meal in ruminant and monogastric feeds (Lomascolo 

et al. 2012). On a cost per Kg of protein basis, canola protein is typically valued at 80-

85% the value of soybean meal because it contains less gross energy, less protein, and 

over three times as much fiber. Canola also contains GLS that can have anti-nutritional 
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effects on livestock. However, due to its lower cost it may be an economical protein 

source for animals that do not have high energy or lysine requirements (Bell 1993).  

The presence of GLS in canola meal limits inclusion levels in livestock diets, as 

they can be toxic when consumed at high levels (Tripathi and Mishra 2007). GLS and the 

enzyme myrosinase are compartmentally stored separately in Brassica spp. (Rask et al. 

2000). Upon mechanical disruption or other stresses on plant tissues, myrosinase cleaves 

glucose from GLS, which produces toxic compounds such as nitriles, thiocyanates, and 

isothiocyanates. This self-defense mechanism evolved to reduce animal and insect 

browsing of the plant (Halkier and Gershenzon 2006). When consumed, these toxic 

breakdown products can cause deleterious effects on the thyroid, and ultimately cause 

goiters from iodine deficiency (Burel et al. 2001). For this reason canola was bred to 

contain lower levels of GLS and erucic acid (Newkirk 2009). However, feed inclusion 

rates are still limited to ~30%, and this reduces the value of canola meal (Newkirk 2009).  

MCN Bioproducts Inc. patented a process to fractionate high value protein 

concentrates from solvent and non-solvent expelled canola meal (Newkirk et al. 2006; 

Newkirk et al. 2009). These protein concentrates contained greater than 60% protein, no 

detectable phytic acid, and less than 5 μM/g of total GLS. However, this process utilizes 

multiple separation steps, which can be expensive and result in a relatively low protein 

yield in the primary marketed fraction. Bunge licensed this technology in 2012.  

In contrast to mechanical separation to isolate protein, the metabolic diversity of 

fungi may be exploited to convert canola carbohydrates into protein-rich, single celled 

protein, and thereby produce a less expensive canola protein concentrate. In addition, 

fungal bioprocessing has been shown to significantly reduce GLS levels (Croat et al. 
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2015). We hypothesized that this process would generate a more digestible product with 

enhanced nutritional value to a range of aquaculture and other livestock species.  Fungi 

selected for initial evaluation included Aurobasidium pullulans, Trichoderma reesei, 

Fusarium venenatum, Pichia kudriavzevii, and Mucor circinelloides. Several of these 

fungi are known to produce cellulose degrading enzymes. Both HE and CP canola meals 

were evaluated with a submerged incubation process, which allowed for better activity of 

cellulolytic enzymes.  

4.2. Materials and Methods 

4.2.1. Feedstocks and Preparation 

HE canola meal was obtained from North Dakota State University (Fargo, ND, 

USA), while CP canola meal was obtained from Agrisoma Biosciences (Ottawa, Ontario, 

Canada). Both HE and CP meals were milled through a 2 mm screen via knife mill prior 

to use, and were stored at room temperature in sealed bucket throughout the duration of 

experimentation. Dry weight (dw) analysis was conducted by drying ~5 grams of canola 

meal at 80 degrees Celsius (°C) in a drying oven for at least 48 h.  

4.2.2. Cultures, Maintenance, and Inoculum Preparation 

 A. pullulans (NRRL-58522), A. pullulans (NRRL-42023), A. pullulans (NRRL-Y-

2311-1), T. reesei (NRRL-3653) and F. venenatum (NRRL-26139) were obtained from 

the National Center for Agricultural Utilization Research (Peoria, IL, USA). P. 

kudriavzevii and M. circinelloides were isolated as contaminates from prior trials, and 

were identified by ARS-USDA (Peoria, IL, USA) using 15s RNA analysis. Short-term 

maintenance cultures were stored on Potato Dextrose Agar plates and slants at 4°C.  

Lyophilization was used for long-term storage. Inocula for all experiments was prepared 
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by transferring isolated colonies or a square section of agar growth (filamentous fungi) 

into glucose yeast extract (GYE) medium consisting of 5% glucose and 0.5% yeast 

extract. The pH for Aureobasidium, Pichia, and Mucor cultures was adjusted to 3 with 

10N sulfuric acid, while pH 5-5.5 was used for T. reesei and F. venenatum. GYE flasks 

consisted of 100 milliliter (ml) working volume in 250 ml Erlenmeyer flasks, covered 

with a foam plug and aluminum foil. Cultures were incubated for ~72 hours (h) at 30°C 

in a rotary shaker at 150 revolutions per minute. 

4.2.3. Experimental Procedures 

Submerged trials were conducted in 1 L Erlenmeyer flasks with 500 ml total 

volume at 10% solid loading rate (SLR) dry weight canola meal. Flasks were covered 

with foam plugs and aluminum foil. For trials to be subjected to an initial saccharification 

step, 10 N sulfuric acid was used to adjust the initial pH to 5 (this is the optimal pH level 

for the commercial cellulase and hemicellulase enzymes used). For trials lacking the 

saccharification step, the pH was adjusted to the levels indicated previously for specific 

microbes. Flasks were then autoclaved at 121°C for 20 min. For saccharification trials, 

0.052 mL CTec2 and 0.138 mL HTec2 (Novozymes, Franklinton, NC, USA) were added, 

and flasks were incubated at 50°C and 150 RPM for 24 h. Following saccharification, the 

pH was adjusted (if necessary) for the specific microbes and the slurry was cooled to 

30°C. Saccharification and non-saccharification trials were inoculated with 5 ml of a 72 h 

culture of the appropriate organism and incubated at 30°C at 150 RPM for 168 h.  Daily 

samples of ~50 ml were collected and used to monitor pH, cell counts, carbohydrates, 

protein, fiber, and GLS as described later. At the end of incubation the slurry was dried 

for 2 d at 80°C.  
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4.2.4. Analytical Methods 

4.2.4.1. Total Protein 

The pH of each sample was measured (Oakton 110 series pH meter). Forty-five 

ml of each sample was dried for 2 d at 80°C. Approximately 0.5 g of sample was used for 

protein analysis in duplicate. Protein was quantified using a LECO model FP528 (St. 

Joseph, MI, USA) to combust the sample and to measure the total nitrogen gas content in 

the sample. Protein percentage was then calculated from the nitrogen content of the 

sample using a conversion factor of 6.25. An additional 0.25 g of sample was dried at 

80°C for 48 h to determine the dry matter of protein samples. 

4.2.4.2. Residual Sugars  

HPLC was used to measure residual sugars using five ml of sample supernatant. 

Samples were boiled for 10 min to ensure the fungal culture and/or saccharification 

enzymes were inactivated. Samples were then centrifuged at 10,000 RPM for 10 min, and 

the supernatant was poured into 2 ml microcentrifuge tubes and frozen overnight. The 

supernatant was then thawed re-centrifuged at 10,000 RPM for 10 min to remove any 

precipitants. The final supernatant was then filtered through a 0.2 micrometer (μm) filter 

and into a HPLC vial and frozen until analysis. A Waters size-exclusion chromatography 

column (SugarPak column I with pre-column module, Waters Corporation, Milford, MA, 

USA) and high performance liquid chromatography system (Agilent Technologies, Santa 

Calara, CA, USA) equipped with refractive index detector (Model G1362A) were used to 

measure the sugars. The sugars were eluted using a de-ionized water as mobile phase at 

flow rate of 0.5mL/min and column temperature of 80°C. Sugars to be quantified 

included arabinose, galactose, glucose, raffinose, stachyose, and sucrose.  
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4.2.4.3. Glucosinolates 

Approximately 3 g of dried sample was used for GLS analysis. Individual GLS 

were confirmed to be present by quadrupole time-of-flight liquid chromatography-mass 

spectrometry and quantified using reverse phase high performance liquid 

chromatography (Berhow et al. 2013). For GLS quantitation, a modification of a high-

performance liquid chromatography (HPLC) method developed by Betz and Fox (1994) 

was used. The extract was run on a Shimadzu (Columbia, MD) HPLC System (two LC 

20AD pumps; SIL 20A autoinjector; DGU 20As degasser; SPD-20A UV-VIS detector; 

and a CBM-20A communication BUS module) running under the Shimadzu LCsolutions 

Version  1.25 software. The column a C18 Inertsil reverse phase column (250 mm X 4.6 

mm; RP C-18, ODS-3, 5u; with a Metaguard guard column; Varian, Torrance, CA).  The 

glucosinolates were detected by monitoring at 237 nm. The initial mobile phase 

conditions were 12% methanol/88% aqueous 0.005M tetrabutylammonium bisulfate 

(TBS) at a flow rate of 1 ml/min. After injection of 15 ul of sample, the initial conditions 

were held for 2 min, and then up to 35% methanol over another 20 minutes, then to 50% 

methanol over another 20 minutes then up to 100% methanol over another 10 minutes.  

4.2.4.4. Fiber 

Fiber analysis was completed as Neutral Detergent Fiber (NDF) and Acid 

Detergent fiber (ADF). NDF is a method commonly used for animal feed analysis to 

determine the amount of lignin, hemicellulose and cellulose while ADF represents the 

least digestible fiber fraction of animal feed including lignin, cellulose, silica but not 

hemicellulose. NDF and ADF analysis were completed by Midwest Laboratories 
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(Omaha, NE, USA) using ANKOM Technology (Macedon, NY, USA) filter bag 

methods. 

4.3. Results and Discussion 

 

Seven fungal strains were grown on HE vs CP canola meal using a submerged 

incubation process. The fungi were tested both on raw (non-saccharified) and 

saccharified meal slurries using commercial cellulases to enhance fiber breakdown. 

These trials were done in shake flasks, where mixing and mass transfer are limiting 

factors. However, these non-optimized trials were meant to quickly down-select the best 

microbe for each type of canola meal. Other investigators have previously used a similar 

submerged incubation process to quickly assess phytase activity of various strains of 

bacteria, yeasts and fungi when grown on canola and oilseed meals (Nair and Duvnjak 

1991). 

4.3.1. Total Protein 

Figures 4.1a and 4.1b present the maximum protein levels in HE and CP canola 

meals, respectively, for raw meal and un-inoculated controls versus the various fungi, 

both under non-saccharified and saccharified conditions. As expected, protein levels for 

the un-inoculated controls were similar to the raw meals. In HE meal, protein levels 

increased from 36.1% in the raw meal to 39.0-48.7% after the fungal conversion process 

(relative improvements of ~8.0-34.9%) (Fig. 4.1a). The M. circinelloides trial was the 

only one in which an enzymatic hydrolysis step prior to inoculation proved beneficial. In 

the case of T. reesei, the non-saccharified trial actually resulted in higher protein titers. 

We had anticipated that saccharification would have a significant positive effect on fiber 

hydrolysis, and subsequently protein levels. It could be that canola fibers require 
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pretreatment to increase susceptibility to enzymatic hydrolysis (Gattinger 1991; Yaun 

2014). In future work we will investigate various pretreatment methods to make canola 

fibers more susceptible to hydrolysis by the fungal enzymes, thus releasing more sugar 

for conversion into single celled protein.  

Figure 4.1a. Maximal protein levels ± SD of HE canola meal following submerged 

fungal incubation  

 
 

In the CP canola meal (Fig. 4.1b) the protein level in the un-inoculated control 

was 38.6%, and rose to 40.9-53.0% after microbial conversion, representing relative 

improvements of ~6.0-37.3%. CP canola meal was ~3% higher in protein than HE meal 

and following incubation, protein levels were ~2-8% higher in CP canola meal trials 

compared to HE meal for each pair of fungi. HE is a more effective method of removing 

oil from canola seed, however this process applies significantly higher levels of heat, 

which may denature or degrade some protein (Spragg and Mailer 2007). We observed 

that the enzymatic hydrolysis step prior to inoculation did not significantly affect protein 
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levels for all the fungi tested. Thus for un-pretreated canola meal, there was no benefit to 

adding cellulolytic enzymes.  

Figure 4.1b. Maximal protein levels ± SD of CP canola meal following submerged 

fungal incubation 

 
 

T. reesei achieved the highest protein levels for both substrates, while P. 

kudriavzevii exhibited the lowest protein enhancement. T. reesei is known to produce 

many hydrolytic enzymes (Li el al. 2013), and was expected to provide the greatest 

conversion of fiber and oligosaccharides into cell mass. As a single-celled yeast, P. 

kudriavzevii does not produce cellulase enzymes and was therefore anticipated to result in 

the lowest protein improvement. The final protein levels for all other fungal strains were 

relatively similar, at 40-45% in HE canola meal and 43-52% protein in cold pressed 

canola meal. 

4.3.2. Residual Sugars  

Arabinose, galactose, glucose, raffinose, stachyose, and sucrose were measured 

throughout incubation via HPLC. For simplicity, the final levels of these sugars were 
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combined and are presented as residual sugars in Figures 4.2a and 4.2b for HE and CP 

canola meal, respectively. The total residual sugar concentrations decreased slightly (2.7-

5.5%) from the raw meals compared to the process controls. Nyombaire et al. (2007) 

found that a pre-soaking and 80°C cook was sufficient to hydrolyze oligosaccharides 

such as raffinose and stachyose. Autoclaving the 10% SLR canola slurries may have 

achieved a similar effect, thereby reducing the raffinose and stachyose concentrations.  

In non-saccharified HE meal (Fig. 4.2a) between 37.0-94.6% of sugars present 

were used by the fungi during incubation, resulting in residual sugar levels of 0.8-9.4%. 

Similarly, 39.0-88.6% of sugars present in saccharified HE meal was utilized by the 

fungi, resulting in residual sugar levels of 1.7-9.1 %. T. reesei exhibited the lowest 

residual sugar levels on both non-saccharified and saccarified HE meals, while M. 

circinelloides and P. kudriavzevii had the highest final levels in non-saccharified and 

saccharified trials, respectively. M. circinelloides did show a benefit from 

saccharfication, showing a significant drop in residual sugars from 9.4 to 2.7% w/w when 

compared to non-saccharification.   
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Figure 4.2a. Residual sugar levels ± SD of HE canola meal following submerged 

fungal incubation  

 
 

In non-saccharified CP meal (Fig. 4.2b) between 61.0-98.1% of sugars present 

were metabolized by the fungi during incubation, decreasing residual sugar levels to 0.3-

6.3%. Similarly, 40.0-95.0% of sugars present in saccharified CP meal were metabolized 

by the fungi during incubation, decreasing residual sugar levels to 0.8-9.7%. F. 

venenatum and T. reesei exhibited the lowest residual sugar levels on both non-

saccharified and saccarified CP meal, while A. pullulans (NRRL-42023) and P. 

kudriavzevii had the highest final levels in non-saccharified and saccharified material, 

respectively. Saccharification significantly reduced residual sugars in trials with M. 

circinelloides and A. pullulans (NRRL-42023) when compared to non-saccharification 

trials. 
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Figure 4.2b. Residual sugar levels ± SD of CP canola meal following submerged 

fungal incubation  

 
 

4.3.3. Glucosinolates 

Figures 4.3a and 4.3b show GLS levels for the HE and CP canola meal trials, 

respectively. GLS levels were reduced from 42.8 μM/g in raw HE meal to 8.7 μM/g 

(non-saccharified) and 18.3 μM/g (saccharified) in the un-inoculated process controls. 

This represents 79.6 and 57.2% reductions, respectively, and was presumed due to the 

conversion of some of the GLS into volatile breakdown products (Halkier and 

Gershenzon 2006). Newkirk et al. (2003) also noted that high processing heat can be used 

to remove volatile anti-nutritional factors, however this can also denature proteins. 

Submerged microbial conversion further reduced GLS content to 1.0-14.4 μM/g, 

representing a total reduction of 66.5-97.8%.  
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Figure 4.3a. Reduction of total GLS ± SD following sterilization submerged fungal 

incubation in HE canola meal 

 
 

GLS levels in raw CP meal (60.6 μM/g) were higher than in HE meal (42.8 μM/g) 

since the former does not include the high temperature de-solventizing step which can 

eliminate GLS. Treatment of the CP meal with the autoclaving and drying steps in the 

process control reduced GLS levels to 18.6 and 26.2 μM/g, respectively in non-

saccharified and saccharified trials (reduction of 69.4 and 56.8%), respectively. Again, 

submerged microbial conversion further reduced GLS content to 0.7-23.7 μM/g (total 

reduction of 60.8-98.9%).  
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Figure 4.3b. Reduction of total GLS ± SD sterilization submerged fungal incubation 

in CP canola meal 

 
 

Overall, A. pullulans (NRRL-58522) caused the greatest reduction in GLS levels 

in both HE and CP canola meals (ranging from 94.5-98.9%), likely due to its robust 

capability for producing extracellular enzymes (Kudanga and Mwenje 2005). A. pullulans 

(NRRL-Y-2311-1) was also very effective in reducing GLS concentrations (ranging from 

86.3-93.7%), followed by F. venenatum (81.8-93.5%) and T. reesei (78.7-92.2%). 

Previous studies have shown that various microbes are able to degrade GLS and 

metabolize the resulting glucose and sulfur moieties. For example, Vig and Walia (2001) 

observed that Rhizopus oligosporus reduced GLS and their byproducts during fungal 

incubation of Brassica napus meal. Similarly, Rakariyatham and Sakorn (2002) reported 

the complete degradation of GLS after 60-96 h using solid-state fermentation of Brassica 

juncea with Aspergillus sp. In the work reported herein, P. kudriavzevii and M. 

circincelloides resulted in the least reduction in GLS, as expected due to minimal 

production of extracellular hydrolytic enzymes when compared to the other fungi tested. 
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4.3.4. Fiber  

Table 4.1 provides the ADF and NDF fiber levels of raw, process control, and 

treated canola meals. In general, most fiber levels were statistically similar to the raw 

meal, indicating that the conversion process had minimal effects on fiber levels. The only 

trial to show a statistically significant reduction in ADF in HE meal was P. kudriavzevii,  

while trials with A. pullulans (Y-2311-1), P. kudriavzevii, T. reesei, F. venenatum, and 

M. circincelloides all statistically reduced ADF and/or NDF fiber levels in CP canola 

meal (Table 4.1). Thus the cellulase producing fungi were effective in hydrolyzing fiber 

in CP canola meal, however did not show similar results in HE canola meal. A possible 

explanation for the reduced fiber degradation in HE canola meal is that the heating steps 

of the hexane extraction process may have reduced the susceptibility of the fibers to 

subsequent enzymatic hydrolysis. Also, the enzyme cocktail used in the saccharification 

trials were not optimized for canola fiber, and this may provide a future opportunity to 

enhance fiber degradation. In some cases the conversion process actually resulted in a 

concentration of fibers, caused by the removal of sugars and GLS. Trials with A. 

pullulans (58522), A. pullulans (Y-2311-1), F. venenenatum, and M. circinelloides all 

increased fiber levels in HE canola meal, while A. pullulans (58522) and A. pullulans 

(42023) treatments both increased ADF and/or NDF fiber levels in CP canola meal 

(Table 4.1). Karki et al. (2013) had shown that feedstock pretreatment increases the 

susceptibility of fibers to hydrolysis, and that optimizing the fungal incubation conditions 

will also enhance cellulase production and activity. The resulting sugars would then be 

available for conversion into additional cell mass and protein. This will be evaluated in 

future studies using extrusion, hot cook, dilute acid, and dilute alkali pretreatments.
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Table 4.1. Fiber reduction of non-saccharified and saccharified canola meal ± SD during submerged fungal incubation 

 

 Hexane Extracted Cold Pressed 

 Non-Saccharified Saccharified Non-Saccharified Saccharified 

Fungal Culture ADF (%) NDF (%)
 

ADF (%) NDF (%) ADF (%) NDF (%) ADF (%) NDF (%) 

Raw Meal 19.9±0.2  23.1±0.3 

 

19.9±0.2 23.1±0.3 11.5±0.5  

 

15.0±0.3 11.5±0.5 15.0±0.3 

Process Control 

 

18.7±0.3 22.0±0.8 

 

23.0±1.1 29.0±1.8 9.5±0.6  

 

12.4±0.8 14.8±1.4 16.1±1.6 

A. pullulans 

(NRRL-58522) 

22.0±1.6
2
 29.1±0.8

2
 20.6±2.4 25.2±4.6 12.1±1.0 16.8±0.7

2
 11.6±1.1 15.9±0.6 

A. pullulans 

(NRRL-42023) 

20.4±1.5 24.3±1.3 19.4±2.2 22.6±0.5 12.4±0.4  16.9±0.4
2
 11.2±1.1 15.1±0.3 

A. pullulans 

(NRRL-Y-2311-1) 

22.3±0.9
2
 24.5±0.7

2
 21.2±1.4 24.0±0.9 13.6±2.1  14.8±2.4 11.0±0.9 12.6±1.0

1
 

P. kudriavzevii 

 

19.7±1.6  23.1±1.9 18.6±0.3
1
 22.7±1.9 11.0±0.4

 
 13.5±0.3

1
 10.4±0.4

1
 12.4±0.5

1
 

T. reesei  

(NRRL-3653) 

19.9±3.1 22.5±4.0 19.8±0.8 26.4±3.3 7.6±0.8
1
 10.1±0.6

1
 8.1±1.2

1
 10.8±2.0

1
 

F. venenatum 

(NRRL- 26139) 

21.3±2.4  26.7±2.6
2
 20.8±2.2 26.9±0.7

2
 7.6±0.9

1
 10.7±1.2

1
 10.7±2.5 12.9±3.0 

M. circinelloides 

 

21.0±0.5
2
  25.9±1.2 19.6±1.2 22.6±1.0 10.2±0.9 12.8±0.9

1
 10.8±0.6 15.6±1.3 

1
Indicates fiber level was statistically lower than raw meal 

2
Indicates fiber level was statistically higher than raw meal 
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4.4. Conclusions 

 

Submerged incubation with various fungal strains improved the nutritional 

content of canola meal. T. reesei (NRRL-3653), F. venenatum (NRRL-26139), and A. 

pullulans (Y-2311-1) resulted in the greatest improvement in protein content in HE 

canola meal (34.8, 23.8, and 21.0%), respectively, while reducing total GLS and residual 

sugar content by 82.6-93.7% and 89.3-94.6%. In trials with CP canola meal, the same 

three fungi increased protein levels to the greatest extent (37.3, 35.2, and 24.6%), 

respectively, while reducing total GLS and residual sugar content by 89.3-93.5% and 

93.8-98.1%. 
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Chapter VI - Utilizing pretreatment and fungal incubation to enhance the 

nutritional value of canola meal 

 

Abstract 

The objective of this study was to determine the optimal pretreatment and fungal 

strain to reduce glucosinolates (GLS), fiber, and residual sugars while increasing the 

nutritional value of canola meal. Submerged incubation conditions were used to evaluate 

four pretreatment methods (extrusion, hot water cook, dilute acid, and dilute alkali) and 

three fungal cultures (Aureobasidium pullulans Y-2311-1, Fusarium venenatum NRRL-

26139, and Trichoderma reesei NRRL-3653) in hexane extracted (HE) and cold pressed 

(CP) canola meal. The combination of extrusion pretreatment followed by incubation 

with T. reesei resulted in the greatest overall improvement to HE canola meal, increasing 

protein to 51.5%, while reducing NDF, GLS, and residual sugars to 18.6%, 17.2 μM/g, 

and 5% w/w, respectively. Extrusion pretreatment and incubation with F. venenatum 

performed the best with CP canola meal, resulting in 54.4% protein while reducing NDF, 

GLS, and residual sugars to 11.6%, 6.7 μM/g, and 3.8% w/w, respectively.  

5.1. Introduction 

 

The use of plant proteins to replace animal-based protein sources (such as fish, 

blood, and bone meals) in livestock diets has become a recent priority due to economic 

and regulatory issues (Booth et al. 2001). The growth of aquaculture and other competing 

uses of fish meal have caused prices to exceed $2,000/ton (World Bank 2014). 

Furthermore, there have been increasing concerns with potential transmission of infective 

agents due to the practice of feeding livestock with animal byproducts (European Food 

Safety Authority 1997; Crump et al. 2002). 
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Canola meal has been recognized as a highly concentrated protein source with a 

well-balanced amino acid profile (Mailer et al. 2008; Seneviratne et al. 2010). Canola is 

the second most abundant plant protein source for livestock feed, behind soybean meal 

(Newkirk 2009). The abundance and lower price of canola meal have driven interest in 

replacing soybean meal in ruminant and monogastric feeds (Lomascolo et al. 2012). 

However, the presence of GLS and fiber in canola meal has limited inclusion of this meal 

in livestock diets (Montoya and Leterme 2010). GLS are anti-nutritional factors present 

in Brassica spp. meals, and can be toxic when consumed at high levels (Tripathi and 

Mishra 2007). Canola meal also contains less gross energy, less protein, and over three 

times as much fiber when compared to soybean meal (Bell 1993; Liu et al. 2014). 

Excessive fiber in monogastric animal diets may also lead to a decrease in feed utilization 

by obstructing digestive enzymes and diluting nutrient density (Booth et al. 2001). 

Canola meal would be more competitive in the market if it contained more digestible 

energy, more protein, and less GLS.  

We have previously demonstrated that the metabolic diversity of fungi can be 

exploited to convert canola carbohydrates into protein-rich single celled protein, and 

thereby produce a less expensive canola protein concentrate. Aureobasidium pullulans 

(NRRL-58522), A. pullulans (NRRL-42023), A. pullulans (NRRL-Y-2311-1), Pichia 

kudriavzevii, Mucor circinelloides, Trichoderma reesei (NRRL-3653), and Fusarium 

venenatum (NRRL-26139) were evaluated under solid-state and submerged incubation 

conditions (Croat et al. 2015b; Croat et al. 2015c). Solid-state incubation with T. reesei, 

A. pullulans (NRRL-58522), and A. pullulans (NRRL-Y-2311-1) resulted in the greatest 

improvement in protein content  (23.1, 13.6 and 14.5%, respectively) on HE canola meal, 



 

 

97 

while also resulting in the greatest improvement in protein content of CP canola meal 

(22.9, 16.9 and 15.4%, respectively) (Croat et al. 2015b). The same fungi reduced the 

total GLS content to the greatest extent, ranging from 89.4-99.1 and 82.4-98.3% 

reductions in HE and CP canola meal, respectively (Croat et al. 2015b). Submerged 

incubation with A. pullulans (Y-2311-1), F. venenatum and T. reesei resulted in the 

greatest improvements in protein levels in HE canola meal, at 21.0, 23.8, and 34.8%, 

while increasing protein levels of CP canola meal by 24.6, 35.2, and 37.3%, respectively 

(Croat et al. 2015c). The same fungi reduced the total GLS content to the greatest extent, 

ranging from 82.6-93.7% and 89.3-93.5% in HE and CP canola meal, respectively (Croat 

et al. 2015c). Unfortunately, fiber levels were not reduced, and actually increased in some 

cases due to the concentration factor of removing oligosaccharides, sugars, and GLS. 

To further improve this process, we hypothesized that pretreatment would make 

canola fibers more susceptible to hydrolysis by the fungal enzymes, thus releasing more 

sugar for conversion into single celled protein. This could potentially result in even 

higher protein levels and lower fiber levels, creating a more digestible product with 

enhanced nutritional value to a range of aquaculture and other livestock species. 

Numerous biomass pretreatment approaches have been assessed over the past four 

decades to enhance the susceptibility of lignocellulosic biomass for subsequent enzymatic 

hydrolysis (Hendriks and Zeeman 2009). In this paper we report on the use of these four 

pretreatment methods on both hexane extracted and cold pressed canola meals, followed 

by microbial conversion with A. pullulans (Y-2311-1), F. venenatum (NRRL-26139) and 

T. reesei (NRRL-3653).   
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Thermal extrusion has long been utilized in the animal feed industry to destroy 

anti-nutritional factors and improve digestibility, nutrient availability, and palatability of 

animal feeds (Liang et al. 2002; Allan and Booth 2004). The interaction of screw speed, 

moisture content, and bore temperature can reduce GLS and fiber concentrations, 

resulting in an improvement in protein digestibility (Liang et al. 2002). Extrusion has also 

been widely evaluated as a pretreatment for lignocellulosic ethanol processes (Zheng and 

Rehmann 2014). For example, Ahmed et al. (2014) reduced the crude fiber of canola 

meal by ~21% utilizing thermal extrusion.  

Treating biomass with hot water at 150-180°C solubilizes hemicelluloses and then 

lignin (Hendriks and Zeeman 2009). Hemicellulose hydrolysis promotes the formation of 

acids that catalyze further hydrolysis (Hendriks and Zeeman 2009). Hot water 

pretreatment does not require additional chemicals that add to process costs from 

neutralizing and/or recovery (Mosier et al. 2006). Mosier et al. (2006) and Zhou et al. 

(2010) have both achieved ~90% glucose yields from the hydrolysis of corn stover using 

hot water pretreatment at 190 and 210°C, respectively.  

Dilute acid pretreatment solubilizes hemicellulose into fermentable sugars, 

especially under strong acid conditions, however temperature needs to be closely 

monitored to avoid production of compounds such as furfural and hydroxymethyl furfural 

that can inhibit fermentation organisms. (Saha et al. 2005). Karki et al. (2011) achieved 

glucose yields of 98 and 84% from the hydrolysis of dilute acid pretreated wheatgrass 

and switchgrass, respectively.  

Dilute alkali pretreatment swells biomass, making it more accessible for enzymes 

and microbes (Hendriks and Zeeman 2009). However, this pretreatment often results in 
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the conversion of hemicellulose into degradation products that can inhibit fermentation 

microbes (Hendriks and Zeeman 2009). Karki et al. (2011) achieved glucose yields of 

70.4 and 70.7% from the hydrolysis of dilute alkali pretreated wheatgrass and 

switchgrass, respectively. Pryor et al. (2012) achieved glucose yields greater than 85% 

from the hydrolysis of dilute alkali pretreated switchgrass. 

5.2. Materials and Methods 

5.2.1. Feedstocks and Preparation 

HE canola meal was obtained from North Dakota State University (Fargo, ND, 

USA), while CP canola meal was obtained from Agrisoma Biosciences (Ottawa, Ontario, 

Canada). Both HE and CP meals were milled through a 2 mm screen via knife mill prior 

to use, and were stored at room temperature in sealed bucket throughout the duration of 

experimentation. Dry weight (dw) analysis was conducted by drying ~5 grams of canola 

meal at 80°C in a drying oven for at least 48 h.  

5.2.2. Cultures, Maintenance, and Inoculum Preparation 

 A. pullulans NRRL-Y-2311-1, T. reesei NRRL-3653 and F. venenatum NRRL-

26139 were obtained from the National Center for Agricultural Utilization Research 

(Peoria, IL, USA). Short-term maintenance cultures were stored on Potato Dextrose Agar 

plates and slants at 4°C.  Lyophilization was used for long-term storage. Inocula for all 

experiments were prepared by transferring isolated colonies or a square section of agar 

growth (filamentous fungi) into glucose yeast extract (GYE) medium consisting of 5% 

glucose and 0.5% yeast extract. Flasks to grow inocula consisted of 100 ml GYE medium 

in 250 ml Erlenmeyer flasks, covered with a foam plug and aluminum foil. Cultures were 

incubated for ~72 hours (h) at 30°C in a rotary shaker at 150 revolutions per minute. 
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5.2.3. Pretreatments 

Extrusion was conducted under conditions previously determined as optimal 

(Kaur and Muthukumarappan, 2015), which included a barrel temperature of 80°C, and a 

screw speed of 50 or 100 rpm for CP and HE canola meals, respectively. Extrusion was 

completed at meal moisture contents of 4.6 and 7.3% for CP and HE canola meals, 

respectively. Extruded material was stored in a sealed bucket until trials were completed. 

Hot water cook, dilute acid, and dilute alkali pretreatments were conducted on 

homogenized, 15% w/w (dm) slurries of CP and HE canola meals at 160°C for 20 min 

using a stainless steel steam jacketed reactor tube in 8-10 l batch-wise increments. Dilute 

acid pretreatment also incorporated 0.5% w/w sulfuric acid, while dilute alkali 

pretreatment used a 4% w/w ammonia concentration (using 30% ammonium hydroxide). 

Following pretreatment these slurries were frozen for storage. Prior to use, slurries were 

thawed, re-homogenized, and evenly dispensed into flasks for various trials. 

5.2.4. Experimental Procedures 

Submerged fungal incubation trials were conducted in 1 L Erlenmeyer flasks with 

500 ml total volume at 15% SLR dry weight canola meal. The pH for A. pullulans was 

adjusted to 3 with 10N sulfuric acid, while pH 5-5.5 was used for T. reesei and F. 

venenatum. Flasks were covered with foam plugs and aluminum foil. Flasks were then 

autoclaved at 121°C for 20 min. Trials were inoculated with 10 ml of a 72 h culture of the 

appropriate organism and incubated at 30°C at 150 RPM for 168 h.  Daily samples of ~50 

ml were collected and used to monitor pH, cell counts, carbohydrates, protein, fiber, and 

GLS as described later. At the end of incubation the slurry was dried at 80°C for 2 d.  
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5.2.5. Analytical Methods 

5.2.5.1. Total Protein 

The pH of each sample was measured with an Oakton 110 series pH meter. Forty-

five ml of each sample was dried for 2 d at 80°C. Approximately 0.5 g of sample was 

used for protein analysis in duplicate. Protein was quantified using a LECO model FP528 

(St. Joseph, MI, USA) to combust the sample and to measure the total nitrogen (N) gas 

content in the sample. Protein percentage was then calculated from the N content of the 

sample using a conversion factor of 6.25. An additional 0.25 g of sample was dried at 

80°C for 48 h to determine the dry matter of protein samples. Dilute alkali samples were 

also assayed for non-protein nitrogen (NPN) levels due to the high content of residual 

ammonia. NPN analysis was completed by Midwest Laboratories (Omaha, NE, USA) 

using AOAC method 941.04.  

5.2.5.2. Residual Sugars  

HPLC was used to measure residual sugars. Samples were boiled for 10 min to 

ensure the fungal cultures were inactivated. Samples were then centrifuged at 10,000 

RPM for 10 min, and the supernatant was poured into 2 ml microcentrifuge tubes and 

frozen overnight. The supernatant was then thawed re-centrifuged at 10,000 RPM for 10 

min to remove any precipitants. The final supernatant was then filtered through a 0.2 

micrometer (μm) filter and into a HPLC vial and frozen until analysis. A Waters size-

exclusion chromatography column (SugarPak column I with pre-column module, Waters 

Corporation, Milford, MA, USA) and high performance liquid chromatography system 

(Agilent Technologies, Santa Calara, CA, USA) equipped with refractive index detector 

(Model G1362A) were used to measure the sugars. The sugars were eluted using a de-
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ionized water as mobile phase at flow rate of 0.5mL/min and column temperature of 

80°C. Sugars to be quantified included arabinose, galactose, glucose, raffinose, 

stachyose, and sucrose.  

5.2.5.3. Glucosinolates 

Approximately 3 g of dried samples were used for GLS analysis. Individual GLS 

were confirmed to be present by quadrupole time-of-flight liquid chromatography-mass 

spectrometry and quantified using reverse phase high performance liquid 

chromatography (Berhow et al. 2013). For GLS quantitation, a modification of a high-

performance liquid chromatography (HPLC) method developed by Betz and Fox (1994) 

was used. The extract was run on a Shimadzu (Columbia, MD) HPLC System (two LC 

20AD pumps; SIL 20A autoinjector; DGU 20As degasser; SPD-20A UV-VIS detector; 

and a CBM-20A communication BUS module) running under the Shimadzu LCsolutions 

Version 1.25 software. The column a C18 Inertsil reverse phase column (250 mm X 4.6 

mm; RP C-18, ODS-3, 5u; with a Metaguard guard column; Varian, Torrance, CA).  The 

glucosinolates were detected by monitoring at 237 nm. The initial mobile phase 

conditions were 12% methanol/88% aqueous 0.005M tetrabutylammonium bisulfate at a 

flow rate of 1 ml/min. After injection of 15 μl of sample, the initial conditions were held 

for 2 min, and then up to 35% methanol over another 20 minutes, then to 50% methanol 

over another 20 minutes then up to 100% methanol over another 10 minutes.  

5.2.5.4. Fiber 

Fiber analysis was completed as Neutral Detergent Fiber (NDF) and Acid 

Detergent fiber (ADF). NDF is a method commonly used for animal feed analysis to 

determine the amount of lignin, hemicellulose and cellulose while ADF represents the 
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least digestible fiber fraction of animal feed including lignin, cellulose, silica but not 

hemicellulose (Udén et al., 2005). NDF is presented in this work for simplicity and to 

include hemicellulose into the total fiber fraction. NDF and ADF analysis were 

completed by Midwest Laboratories (Omaha, NE, USA) using ANKOM Technology 

(Macedon, NY, USA) filter bag methods.  

5.3. Results and Discussion 

 

Three fungal strains were grown on pretreated and non-pretreated HE versus CP 

canola meal using a submerged incubation process. These trials were done in shake 

flasks, where mixing and mass transfer are limiting factors. However, these non-

optimized trials were meant to down-select the best pretreatment method and fungus for 

each type of canola meal 

5.3.1. Total Protein 

Figures 5.1a and 5.1b represent the maximum protein levels achieved during the 

various treatments with HE and CP canola meal, respectfully. The initial protein level of 

the raw, un-pretreated meals is provided, along with process control samples, which were 

processed identically to the other treatments within each series, except that they were not 

inoculated with fungi. Hence the process controls represent the effects of the 

pretreatment, autoclaving, and drying steps.  

As shown in Figure 5.1a, extrusion pretreatment by itself did not affect protein 

levels, and very slight increases were observed for the process controls in the hot water 

cook and dilute acid pretreatments. However, the dilute alkali pretreatment resulted in a 

large reduction in true protein, dropping the levels from ~36% to ~25% in the respective 

process controls. The most likely explanation is that the alkali treatment cleaved 
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ammonia groups from amino acids. Kaye et al., (2004) noted that alkaline hydrolysis can 

initiate random breaking of ~40% of peptide bonds in protein, while some amino acids 

(arginine, asparagine, glutamine, and serine) are destroyed and others are racemized. 

Dilute alkali pretreatment may also cause other adverse effects on the nutritional quality 

of livestock meals. De Groot and Slump (1969) found that severe alkali treatment at pH 

12.2 resulted in the formation of the amino acid derivative lysinoalanine, which 

contributes to decreased cysteine and lysine content, along with decreased net protein 

utilization. Bell et al. (1981) evaluated alkali treated Brassica hirta and B. juncea and 

found a 15-20% reduced lysine availability when fed to swine. 

Figure 5.1a. Maximal protein levels ± SD in HE canola meal following submerged 

fungal incubation 
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The dilute alkali pretreatment used a 4% w/w ammonia concentration, and 

because the final meal following pretreatment and incubation contained high levels of 

ammonia, all these samples were assayed for NPN levels. The NPN value was then 

subtracted from the LECO nitrogen analyzer data so that true protein content could be 

calculated. For example, in the case of HE canola meal, the LECO N content (12.7%) 

was subtracted from the NPN content (8.8%), resulting in a nitrogen level of 3.9%, which 

converts into a protein content of 24.17%. 

In a previous study that evaluated seven fungal strains on non-pretreated HE 

canola meal, protein levels increased from 36.1% in raw meal to 41.9-48.7% after 

incubation with the three best fungi (T. reesei > F. venenatum > A. pullulans) (Croat et 

al., 2015c). This represented relative improvements of ~16.1-34.8%. Similar results were 

observed herein with the un-pretreated, extrusion pretreated, and how water cook 

pretreated HE canola meal, with T. reesei achieving the highest protein level, although it 

was not statistically different from F. venenatum.  

Overall, extrusion was the most effective pretreatment for HE canola meal, 

achieving protein levels of 51.5, 50.4, and 43.5% for T. reesei, F. venenatum, and A. 

pullulan, respectively. Hot water cook and dilute acid pretreatments were relatively 

similar to the un-pretreated control, however, dilute alkali pretreatment reduced protein 

levels to 20.7-24.2, representing a protein loss of ~33.0-42.7%. Dilute alkali was also the 

only pretreatment in which subsequent fungal incubation did not increase the protein 

content compared to the process control. The enhanced degradation of fiber from dilute 

alkali pretreatment may have produced inhibitory compounds that could have prevented 

fungal single-cell protein production (Haque et al., 2012). Gossett el al. (1982) concluded 
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that alkaline treated lignin at a concentration of 1 g/l was inhibitory to microorganisms. 

Canola meal may contain up to 10.4% lignin and polyphenols (Khajali and Slominski, 

2012), which can be solubilized and form microbial inhibitory compounds, such as 

furfural and hydroxyfurfural (Hendriks and Zeeman, 2008). 

Figure 5.1b shows similar data for pretreatments of the CP canola meal. Again, 

extrusion pretreatment by itself did not affect protein level, while the process controls in 

the hot water cook and dilute acid pretreatments showed very slight gains in protein. The 

dilute alkali pretreatment once again resulted in a significant loss of protein, due to the 

reasons mentioned previously. 

Figure 5.1b. Maximal protein levels ± SD in CP canola meal following submerged 

fungal incubation 
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In our previous study we also evaluated fungal performance on non-pretreated CP 

canola (38.6% protein), and protein levels increased to 47.5-53.0% with the same three 

fungi (T. reesei > F. venenatum > A. pullulans), representing relative improvements of 

~23.0-37.3% (Croat et al. 2015c). Figure 5.1b shows similar performance improvements 

by the three fungi in this study on the same un-pretreated feedstock. For the unpretreated, 

extrusion, and hot water cook pretreated samples, T. reesei and F. venenatum performed 

better than A. pullulans. However, unlike the trials with HE canola meal where extrusion 

was clearly the best pretreatment (Fig. 5.1a), both hot water cook and extrusion resulted 

in similar performance, which was not much different than the un-pretreated control. 

Dilute acid pretreatment slightly reduced protein levels, while dilute alkali pretreated 

caused a significant reduction in protein levels due to the reasons postulated earlier.  

In summary, T. reesei achieved the highest protein levels for both substrates, 

while A. pullulans exhibited the lowest protein enhancement. T. reesei is known to 

produce many hydrolytic enzymes (Li, et al. 2013), and was expected to provide the 

greatest conversion of fiber and oligosaccharides into cell mass (i.e. protein). Extrusion 

of HE canola meal was the only pretreatment to show a consistent boost in protein levels 

following incubation with the three fungi. Dilute alkali pretreatment resulted in a 

significant loss of protein in all cases. Maximal protein levels for the other pretreatments 

were similar to the un-pretreated control.  

5.3.2. Residual Sugars  

 Figure 5.2a provides the total residual sugar levels following pretreatment and 

fungal incubation of HE canola meal. The residual sugar content represents combined 

levels of arabinose, galactose, glucose, raffinose, stachyose, and sucrose. The un-
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inoculated process controls showed that the hot water cook (18.2%) and dilute acid 

pretreatments (18.6%) increased residual sugar levels compared to the un-pretreated 

control (14.9%). These results suggest that these pretreatments hydrolyzed 

oligosaccharides such as pectin into shorter chain carbohydrates including arabinose, 

galactose, glucose, xylose, and mannose (Garna et al., 2004). Garna et al. (2004) also 

found that acid concentration, temperature, and hydrolysis time commonly used for the 

hydrolysis of pectin vary from 1-2 M, 100-121°C, and 2-3 h, respectively. Extrusion 

pretreatment did not affect residual sugar levels, while dilute alkali pretreatment resulted 

in a decrease in residual sugar content at 12%. Monosaccharides, such as glucose, 

galactose, and mannose, are rapidly destroyed by the hot aqueous alkaline solution used 

with dilute alkali pretreatment (Kaye et al., 2004).  

Following fungal incubation, the non-pretreated HE canola meal samples showed 

the lowest residual sugar content, ranging from 0.8, 1.4, and 1.7% with T. reesei, A. 

pullulans, and F. venenatum, respectively. For the pretreated samples, A. pullulans 

depleted sugar levels to the greatest extent, with the exception of the dilute alkali trial. In 

comparing the four pretreatments, extrusion and hot water cook had the lowest residual 

sugar titers, while dilute alkali pretreatment had the highest. 
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Figure 5.2a. Reduction of total residual sugar levels ± SD from raw HE canola meal 

by pretreatment and submerged fungal incubation 
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Figure 5.2b. Reduction of total residual sugar levels ± SD from raw CP canola meal 

by pretreatment and submerged fungal incubation 
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trend was that the hot water cook pretreatment resulted in a slight increase in NDF levels, 

perhaps as a result of solubilizing other components (eg. oligosaccharides) and thus 

“concentrating” NDF.  

There were no strong trends regarding the effects of the fungal incubation 

process, but trials with T. reesei and F. venenatum typically had lower residual fiber 

levels than A. pullulans. This is consistent with the greater cellulase production 

capabilities of these two filamentous fungi. However, fiber levels were not reduced to the 

levels we anticipated. This may have been due to the presence of simple sugars into the 

latter stages of incubation (Fig. 5.2a and 5.2b), which would have repressed cellulase 

production. Addition of external cellulases will be explored in future trials. In some 

instances (Fig. 5.3a and 5.3b), fiber levels actually increased during the fungal incubation 

process as a result of the “concentration effect” as sugars and GLS were metabolized and 

protein levels increased (Fig. 5.1a and 5.1b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

112 

Figure 5.3a. NDF fiber levels ± SD in HE canola meal following submerged fungal 

incubation 
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Figure 5.3b. NDF fiber levels ± SD in CP canola meal following submerged fungal 

incubation 
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explains the higher starting GLS content in CP versus HE canola meals (Newkirk et al., 

2003; Spragg and Mailer, 2007).  

Dilute alkali was the only pretreatment that reduced total GLS content to lower 

levels than non-pretreated meals in un-inoculated process controls of HE and CP canola 

meal (dilute alkali < non-pretreatment < hot cook < extrusion < dilute acid) (Fig. 5.4a and 

5.4b). Surprisingly, GLS levels in the process controls in the extrusion, hot water cook, 

and dilute acid pretreatments were higher than the corresponding non-pretreated trials. 

The enzyme myrosinase is temperature sensitive, however it is very pressure stabile, 

which implies that high activity can still be retained after pressure treatment (Van Eylen 

et al. 2006).  

Submerged microbial conversion further reduced GLS content in almost all cases 

to below that of the corresponding un-inoculated process control, however there was no 

consistent pattern in the most effective fungi. In our prior studies (Croat et al. 2015b) T. 

reesei exhibited the greatest reduction in GLS levels, likely due to its robust capability 

for producing extracellular enzymes (Li et al., 2013). Other researchers have shown that 

various microbes are able to degrade GLS and metabolize the resulting glucose and sulfur 

moieties. For example, Vig and Walia (2001) observed that Rhizopus oligosporus 

reduced GLS and their byproducts during fungal incubation. Similarly, Rakariyatham and 

Sakorn (2002) reported the complete degradation of GLS after 60-96 h using solid-state 

fermentation with Aspergillus sp.  
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Figure 5.4a. Reduction of total GLS levels ± SD from raw HE canola meal by 

pretreatment and submerged fungal incubation 
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Figure 5.4b. Reduction of total GLS levels ± SD from raw CP canola meal by 

pretreatment and submerged fungal incubation 
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Chapter VI – Summary and Conclusions 

Canola production has rapidly expanded over the past 40 years, rising from the 

sixth largest oilseed crop to the second largest (Ash 2012). On a worldwide basis, canola 

meal is second only to soybean meal for use as a feed (Newkirk 2009). De-fatted canola 

meal generally contains 35-36% protein, 12% crude fiber, and a high content of minerals 

and vitamins (Khattab and Arntfield 2009). Canola meal contains less digestible energy 

and protein than soybean meal, but over three times as much fiber (Bell 1993).  

The main limitation of meals from canola and other Brassica spp. is the presence 

of glucosinolates (GLS), which are anti-nutritional and can even be toxic at high 

ingestion levels (Tripathi and Mishra 2007). Furthermore, large amounts of GLS can 

reduce palatability for livestock and thus reduce intake and growth rates (Bonnardeaux 

2007). For this reason canola was bred to contain less than 30 μmol/g GLS (Newkirk 

2009; Bonnardeaux 2007). However, feed inclusion rates are still limited to ~30%, and 

this reduces the value of canola meal (Newkirk 2009). To increase the nutritional value of 

canola meal, pretreatment and solid-state versus submerged fungal incubation methods 

were used to screen the performance of seven metabolically diverse fungal strains. 

For many types of filamentous fungi, solid-state incubation more closely 

replicates the natural environment (absence of free water) to which fungi are adapted 

(Couto and Sanromán 2006). Lower drying costs and the ability to use smaller incubation 

vessels, compared to submerged incubation processing, can help minimize industrial 

processing costs (Smits et al. 1993). However, the main disadvantages of solid-state 

incubation are mass transfer and control of temperature, pH and moisture (Holker et al. 

2004).  
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Solid-state incubation with various fungal strains enhanced the nutritional 

composition of canola meal (Chapter III). T. reesei (NRRL-3653), A. pullulans (NRRL-

58522), and A. pullulans (Y-2311-1) resulted in the greatest improvement in protein 

content, exhibiting maximum protein increases of 22.9, 16.9 and 15.4%, respectively, in 

solid-state incubated CP canola meal. These treatments also resulted in the reduction of 

total GLS content to the greatest extent, ranging from 89.4-99.1% and 82.4-98.3% in HE 

and CP canola meal, respectively. Fiber levels were increased due to a “concentration 

effect” as sugars and GLS were metabolized. 

Submerged incubation has been defined as processing in the presence of excess 

water, and has been a proven large-scale process due to easier material handling, process 

control, and improved standardization (Singhania et al. 2010; Chicatto et al. 2014). 

Submerged incubation with various fungal strains improved the nutritional content of 

canola meal (Chapter VI). T. reesei (NRRL-3653), F. venenatum (NRRL-26139), and A. 

pullulans (Y-2311-1) resulted in the greatest improvement in protein content in HE 

canola meal (34.8, 23.8, and 21.0%), respectively, while reducing total GLS and residual 

sugar content by 82.6-93.7% and 89.3-94.6%. In trials with CP canola meal, the same 

three fungi increased protein levels to the greatest extent (37.3, 35.2, and 24.6%), 

respectively, while reducing total GLS and residual sugar content by 89.3-93.5% and 

93.8-98.1%. 

Based on this work, three fungal strains were down-selected and used to evaluate 

four pretreatment methods to enhance breakdown of the fiber fraction (Chapter V). 

Pretreatment methods included extrusion, hot water cook, dilute acid, and dilute alkali. 

Pretreatment, followed by submerged fungal incubation, improved the nutritional content 
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of canola meal. Extrusion and T. reesei (NRRL-3653) incubation resulted in the greatest 

overall improvement to HE canola meal, increasing protein to 51.5% and reducing NDF, 

GLS, and residual sugars to 18.6%, 17.2 μM/g, and 5% w/w, respectively. Extrusion and 

F. venenatum (NRRL-26139) incubation performed the best with CP canola meal, 

resulting in 54.4% protein while reducing NDF, GLS, and residual sugars to 11.6%, 6.7 

μM/g, and 3.8% w/w, respectively.  

Future trials should be conducted in bioreactors under more controlled conditions 

of aeration and agitation, where better mass transfer can be achieved. Research into 

alternative pretreatments should also be evaluated, as well as the use of a separate 

saccharification step using pectinase and cellulase enzymes. Once sufficient fiber 

conversion into simple sugars is achieved, nitrogen supplementation during fungal 

incubation should be studied to determine if protein levels can be further increased. 

Converted canola meal should then be used in fish feeding trials to determine palatability, 

digestibility, and growth performance.   
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