Oat Feed as a Substitute for Roughage

T.M. Olson

Follow this and additional works at: http:// openprairie.sdstate.edu/agexperimentsta _bulletins

Recommended Citation

Olson, T.M., "Oat Feed as a Substitute for Roughage" (1933). Bulletins. Paper 281.
http://openprairie.sdstate.edu/agexperimentsta_bulletins/281

Oat Feed as a Substitute For Roughage

Dairy Department
Agricultural Experiment Station
South Dakota State College
of Agriculture and Mechanic Arts
Brookings, South Dakota

Oat Feed as a Substitute For Roughage

by
By Thomas M. Olson

Because of drought and large number of grass hoppers in 1931 farmers in many sections of South Dakota were without adequate roughage feed for their livestock. The cost of shipping and handling roughages such as hays, makes them rather expensive to ship any great distance. The problem, therefore, of providing roughage which would carry the livestock through the feeding season of 1931 and 1932 at a reasonable cost was a vital one.

One solution to the problem was the use of oat feed which could be purchased in most sections of South Dakota at about the price of wild hay. Wild hay is fed very extensively in this state and provides a large portion of the dry roughage used. When hay could not be obtained many farmers purchased oat feed. Organizations assisting with the feed problem also shipped in many carloads of the oat feed. Questions concerning the feeding value of oat feed were soon coming to the college. These questions prompted the organization of the above experiment.

Because wild hay is so generally used in the state, and its feed value pretty well understood, it was thought best to compare the feeding value of oat feed with wild hay. Another reason why wild hay was used in the comparison is the similarity of composition of the two feeds.

Several experiment stations have compared oat feed with concentrates and as part of the roughage, but very little data are available in which oat feed has been used as the sole dry roughage for dairy cows, as in these trials.

Wild hay is the native hay, grown and fed extensively in South Dakota. Its quality and feeding value vary greatly, depending on the variety of grass, the type of soil on which it is grown, and the time and method of cutting and curing. The wild hay used in these trials was upland wild hay. It was fine stemmed, good quality and cut in July. It was wild hay that would be classed as of very good quality hay for feeding.

The following definition of oat feed is taken from circular material issued by the Livestock Service Department of the Quaker Oats Company: "Oat feed is the mill run by-product in the manufacture of table oatmeals. It comes entirely from cleaned, graded, sweet, sound oats yielding approximately 60 per cent oat meals of the various grades and 35 per cent oat feed. To this mill run by-product of the Quaker Oats Company nothing is added and from it nothing is taken. It is therefore, free from weed seeds, cleaning house offal, screenings if any, or other extraneous matter."

Review of Literature

Linsey and Beals (1) found in trials with milking cows that oat feed was slightly superior to timothy and mixed grass hay, when about onethird of the hay components of the ration were replaced by oat feed.

In a special circular from College of Agriculture, University of Wisconsin, (2) in which oat feed was substituted for a good grade of timothy hay for milk cows, the silage and grain ration remaining the same, the cows ate from 10 to 12 pounds of oat feed daily, or about the same amount as they ate of hay. No differences were observed in the amount of milk production or body weight obtained from the two feeds.

Beam, Pennsylvania Station, (3) found when oat feed was substituted for one-half of the daily mixed hay ration of a group of growing heifers over 126 days, the gain in weight was 1.16 pounds for the oat feed group and 1.24 pounds for the mixed hay fed group. The gain in height at withers was 10.22 and 10.25 centimeters respectively for the oat feed and mixed hay groups.

The Maryland Station (4) reported a 120 -day feeding trial with two groups of seven heifers. The results showed that oat feed could be substituted pound for pound for alfalfa meal when the difference in protein was made up by the addition of cotton seed meal. The cost of the alfalfa meal was much greater than the oat feed, and so the latter was a more economical feed under the conditions of these trials.

Wisconsin Experiment Station Report 1930 (5) on trials in which oat feed was compared to wheat bran, indicated that oat feed has at least 70 per cent the feeding value of wheat bran when fed to dairy cows in amounts not to exceed one-fourth of the grain ration.

The 1931 Annual Report of the Wisconsin Station, states that oat feed has shown that it can be satisfactorily used as a substitute for hay.

Method of Procedure

Two trials were run by the double reversal plan. Six cows were used in each trial. The cows were weighed at ten day intervals; milked with a machine, and handled in very much the same way as the regular herd. They were allowed to run in a dry lot when the weather was fit, with water and salt before them at all times.

The ration of the first trial consisted of corn silage, and a grain mixture of 3 parts of ground oats, 4 parts of ground corn, $31 / 2$ parts of linseed oil meal. Grain was fed according to milk production, allowing one pound of the mixture to 3 pounds of milk for Holsteins, and one pound of the grain mixture to $21 / 2$ pounds of milk for Jerseys and Guernseys. The silage was fed according to live weight, allowing three pounds of silage to 100 pounds live weight. The cows were fed all the wild hay or oat feed that they would eat. The refused feed in each case was weighed back.

In the second trial the same grain mixture was used, and the entire feeding procedure was identical, except for the amount of wild hay and oat feed fed. The hay and oat feed were fed according to live weight instead of feeding all the cows would eat. One pound of the dry roughage was fed per one hundred pounds live weight. The amount of oat feed was limited in the second trial because of the heavy consumption of the oat feed by several of the cows during the first trial.

In both trials we noted that some cows refused to eat the oat feed at first，although after the cows got used to it，they ate it readily．The oat feed was fed in bushel baskets．Because of its fineness it needs to be handled in this manner．Where cows are stall fed this is of no practical significance．However，many farmers in this state feed in feed－racks，and feed roughage once a day．Under such an arrangement，the oat feed can－ not be handled as conveniently as the coarser roughages．

| Analysis of Oat Feed and Two Well Known Dry Roughages | | | | | | |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Water | Ash | Pro． | Fiber | Ext． | Fat |

Discussion of Results

Weight of Cows

The cows were weighed at ten－day periods on three successive days．It was felt that the gain or loss in weight would be a check on the nutritive value of the feed．

Tables 1 and 2 indicate that the two feeds had no appreciable influence on the weight of the cows，even when the cows were allowed to eat all they wanted of the hay and oat feed．The average weight per cow on the oat feed in the first trial was 1248 pounds as against 1219 pounds on wild hay． In the second trial，in which the dry roughage feeding was limited to ap－ proximately one pound to 100 pounds of live weight the difference in weight for the six cows on the oat feed was 1378 pounds，as against 1381 pounds for the cows on wild hay．The average weight for the 12 cows on the two trials was 1313pounds on the oat feed and 1300 pounds on the wild hay，an average of 13 pounds in favor of oat feed．

TABLE 1．－FIRST TRIAL

$\begin{aligned} & \text { Cow } \\ & \text { No. } \\ & \hline \end{aligned}$	Weight of Cows by 10 Day Periods＊											
		1	2	3	4	Av．		5	6	7	8	Av．
		Lbs．	Lbs．	Lbs．	Lbs．	Lbs．		Lbs．	Lbs．	Lbs．	Lbs．	Lbs．
270	入్త	1013	1042	1040	1050	1044	セ	1052	1063	1090	1095	1083
273	－	1072	1077	1070	1070	1072	＋	1005	1110	1125	1127	1121
352	3	1507	1462	1470	1485	1472	0	1493	1526	1553	1597	1559
						1196						1254
110	＇80	1005	1007	1023	1012	1014	宝	1008	1013	1017	1017	1016
356	\％	1293	1273	1265	1263	1267	］	1267	1250	1257	1247	1251
332	\bigcirc	1473	1423	1452	1457	1444	3	1463	1467	1458	1457	1461
						1242						124＇5

CowNo.	TABLE 2．－SECOND TRIAL Weight of Cows by 10 Day Periods											
		$\stackrel{1}{\text { Lbs. }}$	$\stackrel{2}{\text { Lbs. }}$	$\begin{gathered} 3 \\ \text { Lbs. } \end{gathered}$	$\stackrel{4}{\mathbf{L b s}}$	Av． Lbs．		$\stackrel{5}{\mathbf{L b s} .}$	$\stackrel{6}{\text { Lbs. }}$	$\stackrel{7}{\text { Lbs. }}$	$\stackrel{8}{\text { Lbs. }}$	Av． Lbs．
272	＇80	1142	1130	1135	1130	1132	－	1105	1165	1195	1160	1173
222	U	1167	1135	1140	1160	1145	\％	1175	1180	1225	1165	1190
357		1590	1590	1595	1600	1595		1630	1610	1690	1625	1642
	む̃					1291	セ	1615	1640	1660	1628	1335
355		1652	1645	1610	1625	1627						1643
360	苛	1522	1490	1470	1530	1497	H	1605	1575	1590	1600	1588
215		1175	1155	1150	1170	1158		1155	1140	1190	1165	1165
	ver	age of	three	ccessi	e days	1427 weigh						1465

Effect on Production

The test of oat feed as a substitute for wild hay for dairy cows is indi－ cated in the production of milk and fat．

In a study of tables $3,4,5$ and 6 we note that the cows produced a total of 5381.6 pounds of milk on the wild hay as against 5062.6 pounds of milk on the oat feed．

The difference in milk production for the 12 cows over a 30 －day period is not great，representing a 6.33 per cent increase in favor of the wild hay． The decrease in milk when the cows were changed from the wild hay to the oat feed was somewhat greater than when the reverse change was made． When the cows were changed from wild hay to oat feed there was a total loss of 754 pounds of milk．When the reverse change was made，that is， from oat feed to wild hay，there was a total loss of 435 pounds of milk． The decrease in milk production in changing from one feed to the other indicated that the wild hay probably is somewhat better than the oat feed in keeping up milk production．

The greater loss in milk production when the cows were changed from wild hay to oat feed no doubt resulted partially from the fact that the oat feed was fed as a finely ground product and the cows were not accustomed to it，and therefore it was not as readily eaten as the hay to which they were accustomed．

It is interesting to note in tables 5 and 6 showing the fat production for the two trials，that when the cows were changed from wild hay to oat feed there was a loss of 2.8564 pounds of fat for the twelve cows．In the reverse change there was a gain of .1822 pounds of fat，again substanti－ ating the previous statement that the wild hay was more effective in main－ taining production．

TABLE 3．－FIRST TRIAL

Pounds of Milk hy 10 Day Periods＊

TABLE 4．－SECOND TRIAL
Pounds of Milk by 10 Day Periods

Cow No．		1	2	3	4	Total		5	6	7	8	Total
		Lbs．	Lbs．	Lbs．	Lbs．	Lbs．		Lbs．	Lbs．	Lbs．	Lbs．	Lbs．
272	苋	129.9	114.2	100.7	90.4	305.3	\％	87.4	79.6	55.6	48.4	183.6
222	－	206.5	180.1	161.9	152.7	494.7	菏	134.6	124.4	119.7	116.6	360.7
357		174.2	151.8	144.7	139.8	436.3		132.0	121.0	107.9	110.2	339.1
						1236.3						883.4
355	ત్త	256.7	231.4	233.4	215.7	680.5	『	198.8	178.3	158.8	176.8	513.9
360	$\begin{aligned} & 0 \\ & i=1 \end{aligned}$	170.2	155.6	151.1	124.5	431.2	$\stackrel{\stackrel{\rightharpoonup}{\pi}}{0}$	99.2	76.6	72.5	44.2	193.3
215		203.4	211.1	185.3	184.6	581.0		167.6	142.2	135.5	132.2	409.9
						1692.7						1117.1

＊ 1 and 5 are transition periods．The data are not used in compiling results．

Cow No．		TABLE 5．－FIRST TRIAL Pounds of Fat by 10 Day Periods										
		1	2	3	4	Total		5	6	7	8	Total
		Lbs．	Lbs．	Lbs．	Lbs．	Lbs．		Lbs．	Lbs．	Lbs．	Lbs．	Lbs．
270	嵒	9.3786	7.4676	8.0556	7.5720	23.0952	＇®	7.6230	6.8208	4.8749	7.3612	19.0569
273	믈	5.1100	3.6500	3.6873	3.3200	10.6573	＋	3.1100	2.7183	2.8550	3.1824	8.7557
352		7.6024	6.2186	7.5672	6.6432	20.4290		7.0770	6.6822	6.5905	7.2936	20.5663
						54.1815						48.3789
110	苞	6.6234	5.3067	5.2805	4.8272	15.4144	坔	5.1794	4.7554	4.5999	4.5828	13.9381
356	ö	11.8476	9.6156	10.6560	10.6244	30.8960	$\frac{0}{3}$	10.3896	10.1158	9.4644	8.7448	28.3250
332		5.7288	3.9039	4.2240	4.3260	12.4539		4.5705	4.1632	4.5573	4.1856	12.9061
						58.7643						55.1692

Grain Consumption

Tables 7 and 8 indicate no appreciable difference in grain consumption during the feeding of the two roughages．During the wild hay periods a total of 1900 pounds of the grain mixture was consumed as against 1844 pounds for the oat feed periods，the grain mixture being the same in com－ position for the two trials．Expressed in terms of milk production this would indicate 2.83 pounds of milk for every pound of grain during the hay periods as against one pound of grain for 2.74 pounds of milk in the oat feed periods．The pounds of grain required per unit of milk produced was about the same for the two feeds．

TABLE 7．－FIRST TRIAL
Pounds of Grain Consumed by 10 Day Periods

TABLE 8．－SECOND TRIAL
Pounds of Grain Consumed by 10 Day Periods

	Pounds of Grain Consumed by 10 Day Periods											
No．		1	2	3	4	Total		5	6	7	5	Total
	＇ס	Lbs．	Lbs．	Lbs．	Lbs．	Lbs．		Lbs．	Lbs．	Lbs．	Lbs．	Lbs．
272		60	50	45	38	133	స్త	36	33	32	23	88
222	だ	80	81	70	64	215	？	60	53	50	48	151
357		60	57	49	47	153	3	47	44	42	37	123
						501						362
355	玉్త	90	84	77	77	238	］	71	66	61	52	179
360	\％	60	56	51	49	156	\pm	40	32	27	25	84
$\underline{215}$		85	81	83	74	238	\bigcirc	73	62	58	54	174
						632						437

Wild Hay and Oat Feed Consumed

The total consumption of wild hay and oat feed is signficant as these are the two feeds which are being compared．During the experimental trials these feeds were sold at the same delivered price．If the wild hay would have to be shipped any distance it would require baling which would add about $\$ 2.00$ per ton to the price，or increase the price by 20 per cent． However，wild hay is grown so generally in South Dakota there is no need for shipping it any distance under normal seasonal conditions．

During the two trials the cows consumed 5250 pounds of wild hay and 6222 pounds of the oat feed，or 972 pounds more of oat feed than wild hay． The greater consumption of the oat feed occurred during the first trial when the cows were allowed all they would clean up．Tables 9 and 10 show that some of the larger cows ate up to 31 pounds a day of the oat feed， while the same cows ate about 18 pounds of the wild hay．The larger con－ sumption of oat feed occurred with two Holstein cows．

Expressed in terms of milk it required 95.7 pounds of wild hay to pro－ duce 100 pounds of milk while 123.0 pounds of oat feed was required to produce 100 pounds of milk for the two trials．

During the first trial the six cows consumed 2772 pounds of wild hay． During this time they produced 2805.5 pounds of milk，or .988 pounds of wild hay was consumed for every pounds of milk produced．

During the oat feed feeding periods，the six cows consumed 3747 pounds of the oat feed，and produced 2709.2 pounds of milk． 1.384 pounds of oat feed were required to produce one pound of milk．In the first trial one pound of wild hay was equal to 1.4 pounds of oat feed for milk production．

In the second trial when both dry roughages were fed according to live weight the six cows consumed 2475 and 2478 pounds of oat feed and wild hay respectively．During this period the cows produced 2353.4 and 2576.7 pounds of milk on oat feed and wild hay．In the second trial， 1 pound of wild hay was equal to 1.09 pounds of oat feed or about 9 per cent more milk was produced on the wild hay than oat feed．

The pounds of grain mixture and silage fed were approximately the same for the two feeding periods；hence the difference in production can be attributed to the dry roughage．

Cow No．	Hay and Oat Feed Consumed by 10 Day Periods											
			5	8	4	Total		5	6	7	8	Total
		Lbs．	Lbs．	Lbs．	Lbs．	Lbs．		Lbs．	Lbs．	Lbs．	Lbs．	Lbs．
270	㐫	100	110	130	130	370	\％	114	140	140	129	409
273	\％	100	123	130	130	383	－	144	144	136	154	434
352		150	285	174	180	639		246	316	302	300	918
						1392						1761
110	O	100	160	178	180	518	\％	114	120	120	120	360
356	苟	280	300	255	250	805	爰	164	160	160	160	480
332		150	215	218	230	663		174	180	180	180	540
						1986						1380

TABLE 10．－SECOND TRIAL
Hay and Oat Feed Consumed by 10 Day Periods

Cow No.		1	2	3	t	Total		5	5	7	8	Total
		Lbs．	Lbs．	Lbs．	Lbs．	Lbs．		Lbs．	Lbs．	Lbs．	Lbs．	Lbs．
272	『	100	113	113	113	339	స్త	114	110	116	119	345
222	ぞ	110	113	114	116	343	$\frac{0}{7}$	116	117	118	122	357
357		130	159	159	160	478		161	163	161	169	493
						1160						1195
355	त	150	164	161	162	487	『	162	161	164	166	491
360	훌	140	149	147	153	449	ॐ	154	160	157	159	476
215		110	115	115	117	347		118	115	114	119	348
						1283						1315

Silage Consumed

The silage consumed remained about the same for both periods．This would be true because the silage was fed according to live weight．

TABLE 11．－FIRST TRIAL
Silage Consumed by 10 Day Periods

TABLE 12．－SECOND TRIAL
Silage Consumed by 10 Day Periods

Cow No．		1	2	1	4	Total		5	6	1	5	Total
		Lbs．	Lbs．	Lbs．	Lbs．	Lbs．		Lbs．	Lbs．	Lbs．	Lbs．	Lbs．
272	－	330	339	340	339	1018	玉	344	331	349	358	1038
222	$\stackrel{+}{\square}$	330	339	342	348	1029	－	349	352	354	367	1073
357	\bigcirc	400	477	478	480	1435	β	485	489	483	507	1479
						3482						3590
355	ส	450	493	483	487	1463	$\underset{\sim}{\text { ® }}$	487	484	492	498	1474
360	$\begin{aligned} & \text { 믈 } \end{aligned}$	450	447	441	459	1347	U	464	481	472	477	1430
215		330	347	345	351	1043		349	334	342	357	1033
						3853						3937

[^0]| SUMMARY TABLE | | |
| :---: | :---: | :---: |
| Weight of Cows | Oat Feed Lbs. | Wild Hay Lbs. |
| First trial 6 cows | 1248 | 1219 |
| Second trial 6 cows | 1378 | 1381 |
| Average for two trials | 1313 | 1300 |
| Total Milk Production (30 days) | | |
| First trial | 2709.20 | 2805.50 |
| Second trial | 2353.40 | 2576.10 |
| Average for two trials | 2531.30 | 2690.80 |
| Total Fat Production (30 days) | | |
| First trial | 107.14 | 109.35 |
| Second trial | 89.42 | 90.25 |
| Average for two trials | 98.28 | 99.80 |
| Total grain consumption (30 days) | | |
| First trial | 906 | 906 |
| Second trial | 938 | 994 |
| Average for two trials | 922 | 950 |
| Total Roughage Consumption 2772 | | |
| First trial --------------1 | 3747 | 2772 |
| Second trial | - 2475 | 2478 |
| Average for two trials | 3111 | 2625 |
| Total Silage Consumption | | |
| First trial --------- | 6719 | 6568 |
| Second trial | - 7419 | 7443 |
| Average for two trials | - 7069 | 7005 |
| Average Milk Production per 100 Pounds of Grain | 274.54 | 283.24 |
| Average Milk Production per 100 Pounds of Roughage | 81.37 | 102.51 |
| Average Fat Production per 100 Pounds of Grain | 10.66 | 10.51 |
| Average Fat Production per 100 Pounds of Roughage | 31.59 | 38.02 |

Palatability of Oat Feed

Some of the cows did not eat the oat feed as eagerly as the wild hay. One cows refused to eat the oat feed and had to be taken off the experiment. In all cases the cows did not accept the oat feed as readily as wild hay, but with the one exception the cows ate it after becoming accustomed to the feed.

The oat feed was fed as finely ground material, it was also a feed to which the cows were not accustomed; both factors would no doubt have an effect on the readiness with which the cows would eat the oat feed.

Conclusions

1. Oat feed can be used as the sole dry roughage for dairy cows.
2. Oat feed is slightly less palatable than good quality wild hay.
3. Oat feed is comparable with wild hay in the maintenance of live weight.
4. Good quality wild hay is slightly more efficient than oat feed in maintaining milk and fat production.
5. When oat feed can be purchased at a price equal to or lower than that of good quality wild hay, its use for roughage for dairy cows can be recommended.
6. Oat feed must be fed in a tight container, and indoors to prevent waste.

BIBLIOGRAPHY

1. Linsey and Beals, Mass. Sta. Bul. 200.
2. Special Circular-Winter Feeding in the Drought Area-College of Agric., Univ. of Wis.
3. Beam, A. L.-Oat Feed as a Partial Substitute for Mixed Hay in the Ration of Growing

Heifers-44th An. Rpt. of Pa. Agric. Expt. Sta. Bul. 266.
4. Berry, M. H.-Oat Feed Roughage-Agr. Expt. Sta. Univ. of Maryland, Bul. 332.
5. Wisconsin Experiment Station Report 1930.

[^0]: ＊ 1 and 5 are transition periods．The data are not used in computing results．

