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Abstract 

 The cognitive and motor decline associated with aging can be said to reflect the failure of 

synaptic homeostasis, which refers to the coordinated pre- and post-synaptic mechanisms that 

maintain activity levels at the synapse within a precise range. An important mediator of synaptic 

homeostasis is a compensatory signal from the post- to pre-synaptic nerve terminal or muscle for 

diminished postsynaptic responses to neurotransmitter that increases presynaptic transmitter 

release.  The magnitude of the retrograde response and the homeostatic set point have been 

shown to change over the course of the life span, however the precise mechanisms that promote 

changes in retrograde signaling and the developmental consequences of impaired homeostatic 

compensation have yet to be determined.  

 At the Drosophila melanogaster neuromuscular junction (NMJ), a strong retrograde 

response is observed in mutants lacking the GluRIIA glutamate receptor subunit. Glutamate 

receptors lacking this subunit also exhibit decreased permeability to calcium, an established 

physiological mediator of the retrograde response. In mammals, the permeability of AMPA-type 

glutamate receptors is largely governed by the presence of a pair of glutamine (Q) residues 

within the transmembrane pore of the channel. Preliminary work suggests that calcium 

permeability can be restored to Drosophila GluRIIA -/- mutants by expressing a mutated 

GluRIIC subunit construct containing point mutations to glutamine within the channel pore-

forming region of the subunit. Our examination of the mechanisms underlying synaptic signaling 

during the lifespan in Drosophila may provide insight into the processes underlying declines in 

cognitive and motor function associated with human aging and age-related pathologies.    
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Background 

 Synaptic strength is maintained by the coordinated activity of excitatory and inhibitory 

signals. In the mammalian central nervous system (CNS), glutamate is the primary excitatory 

neurotransmitter. Glutamatergic transmission plays an established role in the maintaining 

synaptic plasticity and memory formation. The efficiency of glutamatergic transmission depends, 

in large part, on the conductance properties and composition of postsynaptic glutamate receptors.  

 In the mammalian nervous system, glutamate receptors are classified by their responses 

to pharmacological agents, such as N-methyl-D-aspartate (NMDA) or a-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA). The majority of excitatory transmission in the 

mammalian CNS is mediated by ionotropic glutamate receptors of the NMDA, AMPA, or 

Kainate subtypes (Ozawa et al, 1998). These receptors are generally tetrameric ligand-gated ion 

channels that express different subunits which in turn contribute to the conductance properties of 

the channels (Cull-Candy et al, 2006). A critical property of glutamate receptors is that they 

exhibit varying degrees of permeability to calcium, which is critical not only for strong post-

synaptic depolarization but also participates in signaling pathways that promote local protein 

synthesis. 

 As discussed briefly, mammalian the conductance properties of AMPA receptors are 

governed by the representation of subunits which assemble as tetramers. AMPA receptors 

mediate the majority of excitatory transmission in the brain, and the incorporation of the GluR2 

subunit has been associated with varying degrees of permeability to calcium (Kumar et al., 

2002). Specifically, Kumar et al. demonstrated in 2002 that early in development in murine 

hippocampal cells, AMPA receptors are more permeable to calcium than at later time points. The 

authors found that, accompanying the age-related shift in calcium permeability of AMPA 
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receptors, there was a greater abundance of GluR2 subunits in older mice relative to younger 

mice, suggesting that the calcium permeability of the receptor decreases over time, and that this 

shift is attributable to GluR2 expression.  

 Significant RNA editing has been demonstrated in glutamate receptor subunits; within 

the GluR2 transmembrane region, this process converts a glutamine to an arginine in most of the 

regions in which it is expressed. It has been shown in several studies that mature brains contain a 

higher proportion of the edited form of this subunit, and that this modification renders the 

receptors calcium impermeable (Pachernegg et al., 2015). Similar editing of the Kainate subunit 

GluR6 was shown by Egebjerg & Heinemann in 1993. The authors found that the permeability 

of the unedited form of the subunit to calcium was significantly higher than the arginine-

containing subunit, again implying a functional role of amino acid sequence within the channel 

pore in the conductance properties of glutamate receptors.    

 Excessive glutamate receptor activity is associated with excitotoxicity, which refers to 

glutamate signaling-induced neuronal damage and death (reviewed in Lewerenz & Maher, 

2015). Excitotoxicity is observed in cases of traumatic brain injury and epileptic events, but the 

severity of tissue damage can be ameliorated by pharmacologically antagonizing NMDA-type 

glutamate receptors, which are highly permeable to calcium (Lewerenz & Maher, 2015). 

Glutamate-induced excitotoxicity is associated with the progression of amyotrophic lateral 

sclerosis (ALS) and Alzheimer’s disease (AD). Our study of the calcium permeability and 

activation states of glutamate receptors could therefore have significant implications for the 

study of neurodegeneration and neurodegenerative disease.   

 AMPA receptors are of particular interest in the progression of ALS, a degenerative 

condition that primarily affects motorneurons. Carriedo et al (1996) demonstrated that damage to 
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motorneurons could be attributed to the expression of calcium permeable AMPA receptors in 

these cells. The authors exposed these neurons in culture to varying concentrations of calcium 

and found that the extent of tissue damage was directly proportional to calcium concentration, 

with greater severity resulting from higher concentrations and minimal severity resulting at low 

concentrations.  

 Excitotoxicity can result from the sustained activation of NMDA receptors, which exhibit 

the highest calcium permeability of glutamate receptors in the CNS (Danysz & Parsons, 2012). 

Excessive calcium conductance through NMDA receptors is linked to the cognitive disturbances 

characteristic of AD (Danysz & Parsons, 2012). These findings have suggested potential 

therapeutic use of the NMDA receptor antagonist memantine. (Hu et al., 2010). Increased 

calcium influx is thought to activate apoptotic pathways via calcineurin or calpain, an apoptotic 

protease (Dong et al, 2009). The cell death effected by increased calcium influx, as well as the 

suggested protective effects of the expression of the GluR2 AMPA receptor subunit against 

excitotoxicity, contribute to the rationale for our present experimental manipulations in 

Drosophila with respect to calcium permeability and glutamate receptor subunit composition.  

 A concept fundamental to the understanding of memory and how cognition may change 

across the lifespan is that of long term potentiation (LTP), which refers to the reinforcement of 

the strength of a given synapse through repeated activation by multiple coordinated inputs 

(Rosenzweig & Barnes, 2003). LTP has been a reliable experimental measure of memory 

formation for decades, and the processes underlying its induction and maintenance have 

important implications for age related memory impairment (Rosenzweig & Barnes, 2003) as well 

as age related pathologies characterized by cognitive impairment.  
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 Experimental measures of memory retention are usually tests of spatial reasoning, such as 

the Morris Water Maze or the T-Maze, the objective of which is for a rat to learn the locations of 

rewards or hazards. The performance of older rats in these tasks is consistently poorer than that 

of their younger counterparts, and these age-related deficits in spatial reasoning are accompanied 

by experiments suggesting age-dependent decline in the maintenance of LTP (Rosenzweig & 

Barnes, 2003). These studies, however, are complicated by differences in experimental protocols 

used to induce and measure LTP and overall neuronal excitability, and a more consistent set of 

data would be required to draw meaningful conclusions.  

 What is more thoroughly established, however, is the role of calcium in LTP induction. 

The activation of NMDA receptors allows a large postsynaptic influx of calcium, which activates 

CamKII and initiates signaling cascades required for the maintenance of synaptic potentiation 

(Luscher & Malenka, 2012). Another property of NMDA-type glutamate receptors, in addition to 

their high permeability to calcium, is that they are blocked by magnesium. In order to initiate 

activity-dependent plasticity at a synapse through NMDA receptors, the binding of glutamate 

must first trigger the opening of a sufficient quantity of postsynaptic AMPA receptors. If the 

depolarization due to AMPA receptor activation is strong enough, the magnesium block of 

NMDA receptors at a given synapse will be relieved, allowing for a large postsynaptic influx of 

calcium. Calcium influx will then activate postsynaptic CamKII, which in turn will 

phosphorylate AMPA receptor subunits and activate AMPA receptors, as well as facilitate the 

addition at the synapse of more AMPA receptors. These CamKII-mediated events will further 

contribute to the strengthening of the synapse by maintaining depolarization at the synapse 

(Luscher & Malenka, 2012).  



 
 

6 

 

 While calcium signaling is required for sustained activation and potentiation of synapses, 

it has been suggested that perturbations to synaptic calcium signaling and the activity of CamKII 

can promote cell death. Inhibiting CamKII in culture induces exposure-duration dependent 

apoptosis (Ashpole et al., 2012). The authors also found that acute CamKII inhibition resulted in 

increased intracellular calcium concentrations. Further, the study examined the relationship 

between CamKII activation and neuronal excitability; it was shown that when CamKII was 

inhibited and then NMDA receptors were pharmacologically activated, neuronal death was 

significantly higher than in cells exposed to NMDA without CamKII inhibition. The authors 

showed that this effect is not present when extracellular glutamate was buffered, implying that 

the effects of altered calcium signaling at excitatory synapses is dependent on glutamate.  

 The excitotoxic effects of CamKII inactivation have been observed in epilepsy and 

ischemia following traumatic brain injury and stroke (Ashpole et al., 2012). CamKII has also 

recently been investigated with respect to Alzheimer’s disease. Immunoreactivity and expression 

analyses have been inconclusive and display region-specific variation, however correlations have 

emerged between altered CamKII expression at dendrites and synapses in hippocampal regions 

associated with memory formation (Ghosh & Giese, 2015). Studies in cultured murine cells have 

been recapitulated in cells taken from AD patients (Ghosh & Giese, 2015). Postmortem tissue 

analyses suggest deficiencies in CamKII autophosphorylation in AD patients; experimental 

impairment of CamKII autophosphorylation has, indeed, been correlated with impaired cognitive 

function in mice (Ghosh & Giese, 2015).  

 A prominent characteristic of AD pathology is amyloid-beta (AB) peptide aggregation. 

Interestingly, it was shown that when cortical neurons are exposed to AB oligomers in culture, 

expression of the GluR1 AMPA receptor subunit is decreased, corresponding to decreased 
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AMPA receptor conductance and decreased levels of synaptically localized CamKII (Gu et al, 

2009). The electrophysiological responses observed at synapses where AMPA receptors were 

deficient in the GluR1 subunit were similar to responses elicited by CamKII knockdown (Gu et 

al, 2009). These results implicate glutamate receptor-mediated calcium signaling in the 

maintenance of cognitive function and the induction of pathological cognitive symptoms 

observed in age-related diseases where cognitive decline is a prominent symptom.  

 Mammalian AMPA receptors are comprised of four different subunits, designated 

GluR1-GluR4 (Cull-Candy et al, 2006). Typically, a functional AMPA receptor can be 

comprised of varying combinations of these subunits, and variable abundance of each subunit is 

associated with different receptor properties and tissue types (Grossman et al., 1999). Each of 

these subunits contains a genetically-encoded pair of glutamine residues (QQ) within the putative 

channel pore of the receptor; however the GluR2 subunit undergoes RNA editing at this site, 

converting one of these glutamine (Q) residues to arginine (R) (Isaac et al, 2007 The calcium 

permeability of AMPA receptors is dictated by the relative abundance of the unedited GluR2 

subunit. (Isaac et al, 2007). It has therefore been proposed that the calcium permeability of 

glutamate receptors depends on the presence of the signature QQ pair in the channel pore.  

Furthermore, the magnitude of homeostatic regulation of neurotransmitter release 

changes as a function of age at the Drosophila NMJ, abruptly increasing later in the life of the 

fly (Mahoney, Rawson, & Eaton, 2014). In this study, the authors examined electrophysiological 

responses at the NMJ at different time points across the lifespan of the organism. They found 

that while miniature excitatory junctional potential amplitudes did not differ, there was a 

presynaptic neurotransmitter release did increase between the ages of 35 and 42 days. They 

further found that this change could not be attributed to age-dependent changes in innervation 
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patterns or synaptic morphology, based on staining patterns for the synaptic markers VGlut and 

Dlg.  

 Homeostatic compensation at the synapse has been studied not only in flies but in the 

mammalian CNS as well (Macleod & Zinsmaier, 2006). The complexity of the murine nervous 

system combined with a broader availability of behavioral assays in mice allows for comparisons 

to be made between age, performance on memory tests, and electrophysiological read-outs for 

memory function such as LTP. The subunit composition of glutamate receptors has also been 

extensively characterized in mice; it has been shown through biochemical assays that a 

developmental shift occurs in the assembly of subunits in mammalian glutamate receptors, with 

AMPA receptors favoring configurations that lack GluR2 subunits (Deak & Sonntag, 2012). It 

would therefore be interesting to comprehensively characterize both electrophysiological 

responses over time and receptor subunit composition in Drosophila, since the Drosophila NMJ 

represents a relatively simple analogue for glutamatergic central synapses. 
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Figure 1. Synaptic homeostasis at the Drosophila NMJ. 

Responses to single units of neurotransmitter are severely limited in the GluRIIA-/- mutant, as evidenced by 

decreased mEPSP amplitudes, which are indicators of spontaneous responses to single vesicles of neurotransmitter 

(bottom right) relative to wildtype (bottom left). Summed evoked release does not differ significantly between the 

GluRIIA-/- mutant (top right) and wildtype (top left). Adapted from Petersen et al., 1997). 

 

  

 As in mammalian central excitatory synapses, the Drosophila neuromuscular junction 

(NMJ) is glutamatergic. Drosophila glutamate receptors bear a high degree of genetic similarity 

to mammalian AMPA/Kainate receptors, further contributing to the accessibility of this system 

as a model for the mammalian CNS. Robust homeostatic responses as well as retrograde 

signaling have been observed in Drosophila as a result of impaired postsynaptic glutamate 

receptor function (Petersen et al., 1997, Fig. 1), deficiencies in presynaptic proteins in pathways 

associated with neurotransmitter release (Ball et al., 2010; Penny et al., 2012), and inhibition of 

calcium calmodulin kinase II (CamKII) in muscle (Haghighi et al., 2003). 

 There are currently five known genetically-encoded Drosophila ionotropic glutamate 

receptor subunits, GluRIIA-GluRIIE (Collins & DiAntonio, 2007). GluRIIC, GluRIID, & 

GluRIIE are obligatory, however GluRIIA and GluRIIB are redundant and are present in variable 

proportions. (Marrus et al, 2004). Mutants lacking the GluRIIA subunit exhibit severely limited 



 
 

10 

 

responses to spontaneous release of single units of neurotransmitter, as evidenced by diminished 

amplitude of miniature excitatory junctional currents or potentials (mEJCs or mEJPs, 

respectively); however, their responses to evoked release, measured in terms of excitatory 

junctional currents or potentials (EJCs or EJPs) resulting from an action potential, do not differ 

significantly from wildtype (Fig 2) (Frank, 2014).  

 

 

 

 

 

 

 

 

 

 

Figure 2: Postsynaptic Glutamate Receptor Composition in Drosophila 

Drosophila glutamate receptors are characterized by the relative abundance of different subunits. Those possessing 

the GluRIIA subunit (yellow) exhibit robust responses in muscle to single units of neurotransmitter. Those 

composed solely of the GluRIIB subunit (green) and lacking the IIA subunit exhibit diminished responses to 

spontaneous release, as evidenced by significantly smaller miniature excitatory junctional current (mEJC) 

amplitudes (right) relative to wildtype (left).  

 

The decreased response to spontaneous neurotransmitter release, which is reflected in the 

amplitude of mEJPs or mEJCs and is referred to as quantal size, observed in these mutants is 

accompanied by a complementary upregulation of presynaptic neurotransmitter release, implying 

the presence of a muscle-to-motorneuron retrograde signal in these mutants (Frank, 2014; 

Petersen et al, 1997). The presence of the retrograde signal is inferred from the equivalence of 
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evoked responses between wildtype and GluRIIA-/- mutants despite the significantly decreased 

spontaneous activity in the mutant. This amounts to an upregulation in what is termed quantal 

content, which is calculated by dividing the amplitude of the evoked response by that of the 

spontaneous response at a given neuromuscular junction and yields a quantifiable estimate of 

neurotransmitter release (DiAntonio et al., 1999; Fig 3). Similar studies examining the loss of the 

GluRIIB subunit revealed insignificant differences in quantal size compared to wildtype, 

implying a unique role for GluRIIA in the biophysical properties of the receptor (Fig 2). 

  

  
Figure 3: Quantifying homeostatic 

regulation at the Drosophila NMJ. 

Representative EJC and mEJC traces 

in wildtype (left) and GluRIIA-/- 

mutant (right) 3rd instar larvae. 

Quantal content (grey bars) is 

calculated by dividing the mean 

amplitude of the EJC by the mean 

amplitude of the mEJC for each NMJ. 

In GluRIIA-/- mutants, mEJCs (white 

bars) are significantly reduced 

compared to wildtype, however EJCs 

(black bars) are approximately 

equivalent between genotypes. This 

corresponds to a significant 

upregulation in quantal content at the 

GluRIIA-/- mutant NMJ.  

 

 

These studies implicate the GluRIIA subunit in the induction of a retrograde response that 

maintains synaptic homeostasis. The variable Drosophila GluRIIA and GluRIIB subunits share 

similar amino acid sequences, however the residues present in the channel pore differ by one 

amino acid; while the GluRIIA subunit contains the QQ pair associated with calcium 

permeability in mammalian AMPA receptors, the GluRIIB subunit instead expresses an 

asparagine-glutamine pair (NQ) at this site (Han et al., 2015). We therefore wondered whether 
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the effect on retrograde signaling observed in the GluRIIA-/- mutant may be an effect of the 

calcium permeability potentially conferred on the receptor complex by the presence of a 

glutamine pair in this subunit.  

 A 2003 study by Haghighi et al investigated the relationship between 

electrophysiological response properties and postsynaptic calcium activity. The authors 

expressed either an inhibitor of CamKII or constitutively active CamKII in muscle and observed 

electrophysiological response properties under each condition. They demonstrated that when 

CamKII is inhibited in muscle, it causes an increase in excitatory junctional potential (EJP) 

amplitude without affecting mEJP amplitude, correlating to an upregulation of quantal content. 

Conversely, constitutively active CamKII decreased the amplitude of the EJCs, corresponding to 

a downregulation of quantal content. These data imply a role for calcium activity in the 

maintenance of the retrograde signal.  

 In addition to electrophysiological aberrations, previous work has shown that GluRIIA-/- 

mutants exhibit limited permeability to calcium (personal communication). Of the Drosophila 

glutamate receptor subunits, GluRIIB and GluRIIIC are the only subunits lacking the signature 

QQ pair in the channel pore region that is associated with calcium permeability in mammalian 

AMPA receptors (Marrus et al, 2004). Following the rationale that the QQ pair is necessary for 

calcium permeability, we have expressed a mutated GluRIIC containing point mutations to 

glutamine at critical positions within the channel pore region in a GluRIIA-/- mutant 

background. We chose to express our construct in a GluRIIA-/- mutant background because the 

GluRIIC, GluRIID, and GluRIIE have been demonstrated to be essential subunits for synaptic 

transmission at the larval NMJ (Marrus et al, 2004), and due to the unique synaptic phenotype 

observed specifically as a result of GluRIIA loss of function. (Fig. 4) 
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  DGluRIII (635)  SIM TA GCDILPR SP 

  DGluRIIA (612)  SIM QQ GCDILPR GP 

 
 Figure 4. Generation of UAS GluRIIC construct. 

 Sequence alignment is shown for the pore loop of the GluRIIC (DGluRIII) subunit and the GluRIIA 

 subunit. At positions 638 and 639, a point mutation was made from threonine to glutamine (T638Q), 

 alanine to glutamine (A639Q) or both residues were  mutated to glutamine. (Adapted from Marrus et al., 

 2004) 

  

 SynapGCamp3 is a synaptically targeted, genetically encoded calcium indicator that 

reports postsynaptic calcium influx through glutamate receptors in response to action potentials. 

Its construction is similar to a previously developed reporter, SynapCam, which is a Cameleon 

FRET-based calcium reporter targeted to the muscle with a CD8 N-terminus region and to the 

postsynapse with a C-terminus PDZ domain of the Shaker potassium channel (Guerrero et al., 

2005). The reporter used instead of Cameleon is GCamp3, a non-ratiometric fluorescent calcium 

indicator with higher signal-to-noise than previous reporters (Peled & Isacoff, 2011). Using 

confocal microscopy coupled with electrophysiology, it is possible to generate in vivo activity 

maps of postsynaptic calcium activity in response to nerve stimulation.  Preliminary calcium 

imaging data suggest that the GluRIIC mutant construct restores calcium permeability to the 

GluRIIA-/- mutant. We are investigating the effect of restored calcium permeability on the 

magnitude of the retrograde response in the GluRIIA-/- mutant. If calcium is a trigger of the 

retrograde response, we expect to see abolition of the homeostatic response observed in the 

GluRIIA-/- mutant. Preliminary electrophysiological data suggests that this is the case; in 

GluRIIA-/- mutants expressing the modified GluRIICQQ construct, we observe decreased EJC 

amplitudes relative to wildtype larvae and GluRIIA-/- mutants. The amplitude of the mEJCs 
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remain equivalent to those observed in the GluRIIA-/- mutant alone, implying that retrograde 

compensation for this decreased spontaneous activity has been interrupted by the addition of our 

construct. 
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Materials & Methods 

Methods 

Fly stocks.  SynapGCamp3 (MHCGC3, gift of Ehud Isacoff) recombined with the 24b gal4 

muscle driver in a w1118 or df(2L)ClH4 background were used to generate the following lines: 

Df(2L)Clh4/cyogfp;MHCGC3/+, Df(2L)Clh4/sp16; MHCGC3/+, Df(2L)Clh4/sp16;UAS-

GluRIICQQ/MHCGC3, Df(2L)Clh4/sp16;UAS-GluRIICQ/MHCGC3, +/cyogfp; MHCGC3/+; 

+/cyogfp; UAS-GluRIICQQ/MHCGC3, +/cyogfp; +/UAS-M/R.  Crosses were performed using 

virgin females of the genotype Df(2L)Clh4/cyogfp; 24b,MHCGC3/TM6B or +/cyogfp; 

24b,MHCGC3/TM6B were crossed to males of the following genotypes: w1118, 

sp16/cyogfp;+/TM3GFP, sp16/cyogfp;UAS-GluRIICQQ/TM3GFP, +/cyogfp;UAS-

GluRIICQQ/TM3GFP, or sp16/cyogfp;UAS-GluRIICQ/TM3GFP. Crosses were maintained at 

25°C.  

Electrophysiology.  Two electrode voltage clamp recordings were acquired with an Axon 

Instruments Axon900A amplifier (Molecular Devices, Sunnyvale CA). Wandering 3rd instar 

larvae were dissected in cold Stewart’s HL3 saline (Stewart et al., 1994) containing 70mM NaCl, 

5mM KCl, 20mM MgCl2, 10mM NaHCO3, 5mM Trehalose, 115mM Sucrose, and 5mM 

HEPES. Recording solution was buffered to pH 7.4 using KOH. Recordings were performed at 

room temperature in 0.5mM extracellular calcium (or 1.5mM extracellular calcium for imaging 

recordings) on muscle 6, segment A2 or A3. Muscles were held at a potential of -80mV and 

larvae with a resting membrane potential below -60mV or with input resistances below 4 

megaohms were not selected for further analysis. Electrophysiology data were analyzed in 

Clampfit (Molecular Devices). EJC amplitudes were measured using peak-detection functions of 

the Clampfit software (Molecular Devices), and mEJC amplitudes were analyzed using the peak 
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detection functions of the MiniAnalysis software program (Synapsoft, Inc., Fort Lee NJ). 

Quantal content was calculated by dividing the mean EJC amplitude of 40 trials per NMJ by the 

mean mEJC amplitude for three minutes of continuous recording at the same NMJ.  

Statistical analysis was performed in Excel (Microsoft Inc., Redmond WA) or Origin 

(OriginLab, Northampton MA). For comparison of EJCs and Quantal Content, pairwise 

Student’s T-Tests were conducted. Values reported are means +/- SEM.  

Immunohistochemistry.  Following electrophysiology, larval fillets were fixed in methanol for 

10 minutes and incubated with primary antibody against dGluRIIA or dGluRIIC (gifts of Aaron 

DiAntonio) for 24 hours at 4°C overnight. Mouse anti dGluRIIA was diluted at 1:250 and Mouse 

anti dGluRIIC was diluted at 1:1000. Following incubation with primary antibody, Goat anti-

Cy3-HRP (Jackson ImmunoResearch Laboratories, West Grove PA) conjugated secondary 

antibody was added and incubated for 2 hours at room temperature. Neuromuscular junctions 

were imaged using a Zeiss LSM 780 NLO AxioExaminer (Carl Zeiss, Oberkochen Germany) at 

40x or 63x magnification.   

Calcium Imaging.  Two electrode voltage clamp was performed on muscle 6/7 in extracellular 

solution containing 1.5mM calcium. 0.2-0.4 micromolar Thapsigargin (Sigma Aldrich, St. Louis 

MO) was added to the recording solution to prevent muscle contraction. Type 1b boutons were 

imaged continuously using a Zeiss 5-Live Axioskop line scanning confocal microscope (Carl 

Zeiss) or an Andor IQ CCD camera coupled to an Olympus BX50WI microscope (Olympus 

Corporation, Shinjuku, Tokyo Japan) . Boutons were imaged at 63x magnification. Each NMJ 

was subjected to at least 20 cycles of stimulation at 0.1 Hz. Image series were taken such that 

one image was taken immediately prior to stimulation and one taken after. Calcium imaging data 

were analyzed in Matlab (Mathworks, Natick MA) using custom routines written by Einat Peled 
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(Peled & Isacoff, 2011).  Statistical comparison of calcium imaging quantification was done in 

Excel (Microsoft) using pairwise Student’s T-tests. Values reported are means +/- SEM.  

qPCR/RT-PCR.  RNA extraction was performed on 8 3rd instar larval muscle fillets and 8 adult 

whole bodies using a Qiagen RNA Easy Plus kit (Qiagen Sciences, Germantown MD). cDNA 

was synthesized using a BioRad iScript cDNA synthesis kit (BioRad, Hercules CA). qPCR was 

performed with BioRad Sso Advanced Universal SybrGreen Supermix (BioRad) and a BioRad 

CFX96 RealTime system (BioRad). qPCR primers used were as follows: 

GluRIIA forward: TTCAATCCCTCGGCCTTCAC 

GluRIIA reverse: GTCCGGTAATCAGAGCCCAG 

RPL32 Control forward: AAGCGGCGACGCACTCTGTT 

RPL32 Control reverse:  GCCCAGCATACAGGCCCAAG 
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Results  

SynapGCamP3 Expression Does Not Affect Presynaptic Release 

SynapGCamp3 is a synaptically targeted calcium indicator that reports calcium influx through 

glutamate receptors at single active zone resolution (Peled & Isacoff, 2011). It was previously 

reported that modulation of calcium-dependent processes at the Drosophila NMJ via the 

activation or suppression of CamKII in muscle directly affects synaptic physiology (Haghighi et 

al., 2003). We therefore sought to assess whether the introduction of a calcium-binding 

compound at the neuromuscular junction could have a similar effect on baseline 

electrophysiological responses. We compared mean EJC amplitude, mEJC amplitude, and 

quantal content between wildtype controls and larvae expressing SynapGCamp3. We found a 

marginal but statistically insignificant differences in mEJC amplitude, with no difference in 

quantal content (Figure 5).  

   

 Figure 5. SynapGCAMP3 does not affect EJC amplitude or quantal content. Mean mEJC and EJC 

 amplitudes in larvae expressing synaptically targeted GCamp3 (MHCGC3) and wildtype larvae, expressed 

 as a percentage of control. Mean EJC amplitude differed insignificantly between MHCGC3 larvae (n=8) 

 and controls (n=8) (p=0.923). Mean mEJC amplitude also differed insignificantly between larvae 

 expressing GCamp and control larvae (p=0.1456).  
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GluRIIA-/- Mutants Exhibit Decreased Calcium Permeability 

Drosophila larvae lacking functional GluRIIA glutamate receptor subunits exhibit reduced mEJC 

amplitude and increased presynaptic neurotransmitter release that maintains EJC amplitude at 

wildtype levels (Petersen et al., 1997). Since inhibition of the activity of CamKII in muscle 

results in an increase in presynaptic transmitter release (Haghighi et al, 2003), we speculated that 

this compensatory mechanism may depend on calcium influx at the NMJ. To assess calcium 

influx through glutamate receptors, we performed calcium imaging experiments on wildtype 

larvae and GluRIIA-/- mutants expressing SynapGCamp3 and compared changes in fluorescence 

at each bouton (∆F/F). Comparison of fluorescence changes in response to neurotransmitter 

release indicate that GluRIIA-lacking receptor assemblies are significantly less permeable to 

calcium than those that contain the GluRIIA subunit (Figure 6).  

 

  

 
Figure 6. GluRIIA mutants exhibit decreased calcium activity at the NMJ.   Representative fluorescence 

imaging data for wildtype controls (n=10) and GluRIIA-/- mutants (n=10) expressing GCamp3 at the synapse. 

Control larvae exhibited significantly higher fluorescence changes than GluRIIA-/- mutants (p=.00981). Values are 

expressed as mean ∆F/F. Means were normalized to baseline fluorescence values for all groups.  
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Expression of UAS GluRIIC in Sp16 Background Suppresses Quantal Content 

In mammalian AMPA receptors, the presence of a pair of glutamine (Q) residues within the 

channel pore confer calcium permeability on the receptor complex as a whole (Liu & Cull 

Candy, 2000). The GluRIIA subunit also bears a pair of glutamine residues at a corresponding 

position within the channel pore; however, the obligatory subunit GluRIIC instead bears a 

threonine and alanine at these positions. We therefore sought to assess the effect of expressing a 

UAS-GluRIIC construct wherein either one or both of these residues was mutated to Q. We 

found that when expressed in an sp16 mutant background, UAS-GluRIICQQ results in a 

suppression of the increased quantal content exhibited by the GluRIIA-/- mutant. Moreover, 

expression of a GluRIIC construct in which only a single residue has been mutated to Q fails to 

suppress quantal content upregulation (Figure 7). 
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Figure 7. Expression of UAS-GluRIICQQ suppresses quantal content upregulation in GluRIIA -/-

mutant. (a) Sequence alignment of mammalian GluR6 and Drosophila GluRIIA-GluRIID subunits within 

pore loop. (b) Representative traces for EJCs (averaged over 40 trials) and mEJCs in controls (n=12), 

GluRIIA-/- mutants (n=14), and GluRIIA-/- mutants expressing either UAS GluRIICQQ (n=21) or UAS 

GluRIICQ (n=11). (c) Bar graph expressing mean mEJC, EJC, and quantal content values as a percentage of 

control. Expression of UAS GluRIICQQ in the Sp16 mutant background result in significant (p=.0014) 

suppression of quantal content. Quantal content differed insignificantly between Sp16 mutants and Sp16 

mutants expressing UAS-GluRIICQ.  
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UAS GluRIICQQ Fails To Suppress Quantal Content in Dominant Negative GluRIIA 

Mutant 

We observed a significant impairment of the quantal content upregulation normally observed in 

the GluRIIA mutant when we expressed a modified GluRIIC construct at the GluRIIA-/- mutant 

NMJ. The GluRIIA mutant we used for these experiments represents a genetic deletion of the 

functional subunit. We also wished to examine the effects of the IICQQ transgene when expressed 

with a dominant negative GluRIIA construct. DGluRIIAM/R is a UAS construct wherein an 

arginine within the channel pore region is substituted with a methionine. Postsynaptic expression 

of this transgene results in miniature EJC amplitude reduction accompanied by increased EJC 

amplitudes, corresponding to quantal content upregulation (Haghighi et al., 2003). When we co-

expressed DGluRIIAM/R with GluRIICQQ, we failed to find any significant differences in EJC 

amplitude or quantal content between flies expressing both UAS-GluRIICQQ and UAS GluRIIA 

M/R, and flies expressing only the UAS M/R dominant negative construct. (Fig 8). 

 

Figure 8: UAS GluRIICQQ Fails to Suppress QC in GluRIIA Dominant Negative Background 

Mean amplitudes of mEJC and EJC, and quantal content in larvae expressing UAS GluRIICQQ and UAS GluRIIA 

M/R in muscle (n=6 NMJs). Values are expressed as percent of UAS GluRIIA M/R expressed in w1118 background 

(n=6 NMJs). Mean mEJC amplitude (p=.083115), EJC amplitude (p=.511635), and quantal content (p=.964191) did 

not differ significantly between genotypes.  
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UAS GluRIICQQ Restores Calcium Permeability to GluRIIA-/- Mutants 

Having observed a synaptic phenotype in GluRIIA-/- mutants expressing a modified GluRIIC 

subunit, we next sought to observe the effects of this construct on calcium permeability at the 

NMJ. To do so, we again performed calcium imaging experiments on wildtype larvae, GluRIIA-

/- mutants, and GluRIIA-/- mutants expressing GluRIICQQ. When expressed in a GluRIIA-/- 

mutant background, the GluRIICQQ construct resulted in increased calcium permeability at the 

NMJ, as inferred from comparison of fluorescence changes in response to stimulation (Figure 9).  

 

Figure 9. GluRIIC Mutant Construct Affects Calcium Permeability in GluRIIA-/- Mutants. Calcium 

imaging data comparing fluorescence changes in GluRIIA-/- mutants and GluRIIA-/- mutants expressing 

UAS GluRIICQQ. GluRIICQQ larvae exhibit significantly higher mean fluorescence (n=10, p=.0006) than 

GluRIIA-/- mutants.   
 

 

Expression of GluRIICQQ Is Sufficient to Reduce Quantal Content in Wildtype 

Background 

If regulation of presynaptic neurotransmitter release is dependent on calcium, we conjectured 

that perhaps the apparent increase in calcium permeability conferred by the expression of the 

UAS-GluRIICQQ construct in the Sp16 background could have an effect on baseline 

physiological responses in wildtype larvae as well. When we overexpressed UAS-GluRIICQQ in 
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a wildtype background, we observed reduced EJC amplitudes without a significant effect on the 

amplitude of mEJCs (Figure 10). 

 

 

Figure 10. Effects of GluRIICQQ overexpression on synaptic physiology in wildtype background. (a) 

Representative traces for GCamp controls and flies expressing UAS GluRIICQQ in the same background. 

(b) Quantification of average values for mEJC, EJC, and QC, expressed as percentage of control. 

Preliminary data suggests a slight increase in mEJC amplitude and a slight reduction in EJC amplitude in 

IICQQ overexpressing flies (n=6) relative to controls (n=12). This equates to an approximately 40% 

reduction in quantal content when UAS GluRIICQQ is expressed in a wildtype background.  

 

Glutamate Receptor Subunit Composition Shifts With Age 

It has been proposed that the homeostatic mechanism whereby presynaptic neurotransmitter 

release is maintained changes as a function of age in Drosophila (Mahoney et al., 2014). 

Specifically, Mahoney et al found that quantal content increases significantly in 42-day old flies 

relative to 7 day old flies. Developmental shifts in the subunit composition of AMPA and 

NMDA-type glutamate receptors have been observed throughout synapse development in mice, 

with different subunits conferring different kinetic properties and permeability to divalent cations 

upon the receptor assembly (Elias et al, 2008). Given the well-established sensitivity of 

homeostatic compensation and retrograde signaling to the presence of the GluRIIA subunit at the 
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later points in the life of the fly may be attributable to a shift in the expression of GluRIIA. In 

larvae, impairment of the GluRIIA subunit results in depressed mEPSC amplitude with a 

compensatory upregulation in EJC amplitude and quantal content. We therefore quantified the 

relative abundance of the GluRIIA subunit in 3rd instar larval muscle and 40 day adult muscle 

using qPCR. We found that, in 40 day aged flies (n=8), there is a roughly 2.5-fold decrease in 

GluRIIA transcript abundance relative to the 3rd larval instar (n=8). (Fig 11). 

 

Figure 11: Decreased Abundance of GluRIIA mRNA at the 

Adult Drosophila NMJ 

Relative abundance of GluRIIA transcript quantified using RT-

qPCR. Expression of GluRIIA in 3rd instar larval muscle (n=8) 

is increased 2.43 fold relative to adult muscle (age 40 days, 

n=8).  
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Conclusions & Discussion 

Sustained synaptic activity and the regulation of neurotransmission is critical throughout 

development to the maintenance of learning and memory, motor function, and the regulation of 

complex behaviors (Frank, 2014). Retrograde compensation has been shown to act at the 

Drosophila melanogaster NMJ to maintain synaptic activity in response to a loss of postsynaptic 

glutamate receptor function (Petersen et al., 1997). CamKII plays a regulatory role in this 

homeostatic compensation, abrogating the retrograde response when constitutively activated 

(Haghighi et al., 2003). It is therefore proposed that calcium, the postsynaptic admittance of 

which relies heavily on glutamate receptors, mediates retrograde signaling. By attempting to 

restore calcium permeability to glutamate receptors lacking the GluRIIA subunit, known to 

confer calcium permeability to Drosophila glutamate receptors (personal communication), we 

observe abolition of the retrograde response in glutamate receptor mutants that mimics that 

observed when CamKII is constitutively active, implying that calcium is indeed a trigger for 

homeostatic compensation.  

 Calcium functions in the nervous system not only as a necessity for the propagation of 

action potentials due to its capacity to carry depolarizing charge, but also as a second messenger 

that initiates a variety of developmental programs. In glutamate receptor mutants that lack 

functional GluRIIA subunits, we observe a dramatic decrease in the magnitude of the electrical 

response to single units of neurotransmitter vesicle fusion. Acutely, we see that this reduction is 

compensated for by an upregulation in quantal content at GluRIIA-/- mutant NMJs. Based on the 

amplitude of EJCs in GluRIIA-/- mutants expressing a modified GluRIIC UAS, we no longer see 

this compensatory upregulation of quantal content, and we also observe concomitant restoration 

of calcium permeability in these animals based on our imaging data.  
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 Taken together with previous findings that CamKII has similar effects on retrograde 

compensation, these results strongly implicate the calcium permeability of glutamate receptors as 

a defining factor in the maintenance of homeostatic compensation. Recent findings also indicate 

that the homeostatic set-point changes with age at the Drosophila NMJ Mahoney et al., 2014); in 

the context of these findings, it would be of interest in future studies to determine the relative 

overall abundance of glutamate receptors, as well as the expression levels of the subunits 

themselves, at the adult NMJ. Previous work implies that the magnitude of retrograde 

compensation observed during aging could be attributable to a shift in the relative expression of 

the GluRIIA subunit at later time points, and that these shifts may be accompanied by changes in 

the calcium permeability of the receptors.  

 Fluctuations in homeostatic compensation during normal aging imply that this system 

may be susceptible to dysregulation during pathological aging as well, and may account for 

disturbances in motor function and cognition characteristic of neurodegenerative diseases. 

Excessive calcium entry via glutamate receptors may be cytotoxic in established neural 

networks, whereas the proliferative neurogenesis observed very early in development requires 

excessive glutamatergic activity. Indeed, developmental shifts in glutamate receptor 

composition, with configurations favoring higher calcium permeability early in development and 

lower calcium permeability later in life, have been observed in the mammalian glutamatergic 

system.  

 While it has been electrophysiologically established that homeostatic compensation at the 

synapse exists, its developmental function has remained unclear. Homeostatic compensation 

serves to maintain overall network activity during developmentally sensitive periods of muscle 

and synapse growth, but the potential effects of this regulation as an animal ages may be more 
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subtle. In GluRIIA-/- mutants, we observe diminished calcium permeability corresponding to an 

upregulation in quantal content. A key subject of future work would therefore be to determine if 

this persistent retrograde compensation has any significant effect on lifespan or muscle health. 

We could then proceed to examine any differences in locomotion or behavior in aging GluRIIA-

/- mutants expressing the GluRIICQQ construct. In expressing this construct, we are effectively 

restoring wildtype calcium permeability to these receptors and eliminating the need for 

retrograde compensation. In the absence of appropriate presynaptic neurotransmitter release, 

however, it is possible that we would observe defects in synaptic strength and muscle health if 

the dampening of the retrograde response persists throughout the lifespan. We may also observe 

inappropriate developmental shifts in retrograde compensation, as this process is induced during 

the course of aging at the wildtype NMJ. Our preliminary observation that, at the level of 

transcription, GluRIIA expression is diminished in adulthood relative to expression during larval 

development could correlate to a commensurate change in electrophysiological response 

properties at the adult NMJ. Mahoney et al.’s 2014 study at the CM9 NMJ produced results 

consistent with those observed at the larval NMJ in response to impaired GluRIIA function. 

Further characterization of electrophysiological responses and the biophysical properties of 

glutamate receptors in wildtype and GluRIIA-/- mutant adults could yield valuable insight into 

the role of the homeostatic response in the maintenance of nervous and motor function. In future, 

we seek to establish correlations between glutamate receptor function, calcium permeability, and 

behavioral and motor function assays that serve as reliable markers of aging and 

neurodegeneration phenotypes across the lifespan of the adult fly.   

 An extensive body of literature exists on the physical hallmarks of neurodegenerative 

disease. Models have been developed on the basis of lifespan and brain legions in response to 
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genetic manipulations associated with AD or PD. Specifically, studies of AD related 

neuropathology have been conducted in mice using human tau protein, a microtubule associated 

protein thought to cause the neurofibrillary tangles observed in AD. In mice and in flies, studies 

have also targeted a family of proteins called presenilins, which are believed to facilitate the 

formation of amyloid beta plaques, another major component of AD pathology (Lu & Vogel, 

2009). Tau phosphorylation has been repeatedly shown to be significantly increased in 

postmortem analyses of AD brain tissue, and the ease of genetic manipulation in Drosophila has 

yielded a variety of promising investigations into the biochemical basis of phosphorylated tau 

toxicity. The focus of a preponderance of these studies has been on morphological changes and 

neuronal tissue loss in response to tau phosphorylation or amyloid beta plaque formation, with a 

comparative dearth of electrophysiological interrogation of the synapses affected by these 

processes. In the past several decades, it has been shown that amyloid precursor protein is 

capable of effecting cognitive deficits in mice without accompanying neuronal tissue damage 

(Lu & Vogel, 2009), suggesting that synaptic dysfunction may be a core feature of AD 

pathology.  

 It was also shown that PAR-1, a kinase that phosphorylates tau, can affect synaptic 

recruitment of the protein discs-large (Dlg). Dlg was shown to be critical for synaptic 

incorporation of the GluRIIB subunit in Drosophila; this protein is also sensitive to 

phosphorylation by CamKII and is therefore believed to regulate receptor subunit composition in 

an activity dependent manner (Chen & Featherstone, 2005).  Disruption of synaptic protein 

localization has been observed as a result of beta amyloid accumulation as well; Almeida et al 

showed in 2009 that cultured neurons expressing mutant APP secrete excessive AB peptide, 

resulting in reduced PSD-95 expression at mutant synapses. PSD-95 is required for the post-
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synaptic anchoring of glutamate receptors. Almeida et al observed reduced GluR1 subunit 

density in APP mutant synapses, consistent with more recent evidence that PSD-95 is required 

for the synaptic anchoring of NMDA and AMPA receptors (Chen et al, 2015).  

 In examining the connections between calcium permeability, the maintenance of network 

activity at the synapse, and the functional outcomes of these interactions, we must also consider 

the regulation of synaptic localization of scaffolding proteins and glutamate receptor subunits. 

These processes are activity dependent, and it will be important to establish the relationship 

between retrograde signaling and the relative representation of GluRIIA at the NMJ.  

 In the literature on neurodegenerative disease, synaptic dysfunction is discussed in 

greater detail with respect to Parkinson’s disease. Several genetic markers for PD have been 

identified recently, the best characterized being leucine-rich repeat kinase 2 (LRRK2). LRRK2 

mutations are found in approximately 13% of cases of inherited late-onset PD (Belluzi, Greggio, 

& Piccoli, 2012). A recent study demonstrated that overexpression of the disease-associated 

LRRK2 mutation G2019S in mice increased glutamatergic transmission in cultured cortical 

neurons (Beccano-Kelly et al., 2014), and our lab has observed upregulation of retrograde 

synaptic compensation as a result of overexpression of human or drosophila LRRK2 transgenes 

(Penny et al, 2015, in review). These findings indicate a potential role for synaptic dysfunction 

and retrograde signaling in the development of neurodegenerative disease.  

 In Drosophila, genetic manipulations of LRRK2 represent the most well characterized 

model system for PD, both mechanistically and electrophysiologically. Expression of mutant 

LRRK2 shortens the lifespan of the fly and causes a loss of dopaminergic neurons (Liu et al, 

2007). LRRK2 also interacts directly with the mTOR pathway via its phosphorylation of 4E-BP 

(Imai et al., 2008). 4E-BPs are regulatory proteins that ordinarily inhibit the activity of the 
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translational activator eIF4E. When 4E-BPs are phosphorylated, this suppression of eIF4E is 

relieved and translation can occur via the helicase activity of eIF4E, which helps to unwind the 5’ 

cap of mRNAs and facilitate translation initiation (Penney et al., 2012). mTOR regulates 

synaptic strength and retrograde signaling by phosphorylating 4E-BP and facilitating translation 

initiation; knocking down mTOR in Drosophila abolishes retrograde compensation at the NMJ 

in GluRIIA-/- mutants, while also reducing levels of the GluRIIA subunit in wildtype organisms 

(Penney et al., 2012). The effect of mTOR loss of function on the retrograde response also 

depended upon the time course of mTOR inactivation, based on experiments in which GluRIIA-

/- mutants were fed rapamycin and their physiological responses were measured at regular 

intervals (Penney et al., 2012).  

 A clear role has been established for translational control of synaptic homeostasis and 

retrograde signaling. Given the observed effects on lifespan in Drosophila models wherein this 

compensation is disrupted, as well as the sensitivity of these pathways to environmental factors, 

it is also clear that synaptic homeostasis has broad physiological consequences and is subject to 

activity dependent fluctuation. The experimental evidence we have obtained so far adds a greater 

dimension of specificity to the current literature on the translational control of synaptic activity. 

Specifically, if calcium activity and the immediate targets of calcium at the synapse can be 

placed within the context of pathways that regulate the translation of critical synaptic proteins, 

new insights could be generated into the interactions between translational control pathways and 

potential targets within these pathways that depend upon the activity of calcium. Calcium plays 

distinct roles not only in learning and memory, but in neurodegenerative process via cellular 

excitotoxicity. Therefore, establishing a causal link between synaptic activity, calcium, and local 

protein synthesis during development and aging will not only benefit research into 
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neurodegenerative processes, but also diseases of dysregulated synaptic transmission such as 

epilepsy and schizophrenia.  

 Retrograde signaling and the maintenance of synaptic homeostasis are sensitive to 

environmental factors, and recent experimental evidence supports the idea of an age-dependent 

change in synaptic function and the maintenance of an ideal level of synaptic activity. In the 

context of these data, the relationship between calcium permeability and glutamate receptor 

function and composition becomes relevant not only to the cognitive and motor function deficits 

seen in otherwise healthy aging, but to disease states as well. 

 Our preliminary work with our GluRIIC mutant construct strongly suggests a role for 

calcium activity in the induction and maintenance of the retrograde response. We have not only 

observed decreases in quantal content on the introduction of the GluRIIC mutant construct into a 

GluRIIA-/- mutant background, but have also observed a corresponding increase in fluorescence 

in calcium imaging experiments performed on these same flies. It remains to be seen whether 

altered calcium permeability of glutamate receptors at the Drosophila NMJ will have an effect 

on behavior or muscle health throughout the course of development and lifespan. We also aim to 

verify our calcium imaging data with more robust electrophysiological assays of calcium current 

during voltage clamp. However, results up to this point offer a potentially novel insight into the 

basic mechanisms underlying the retrograde signal in Drosophila.  
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