
Dominican Scholar Dominican Scholar 

Graduate Master's Theses, Capstones, 
and Culminating Projects Student Scholarship 

5-2014 

Application of High-Performance Liquid-Chromatography Mass-Application of High-Performance Liquid-Chromatography Mass-

Spectrometry Platform to Study Metabolism and Epigenetic Spectrometry Platform to Study Metabolism and Epigenetic 

Control of Metabolism Control of Metabolism 

Kylie Patricia Mitchell 
Dominican University of California 

https://doi.org/10.33015/dominican.edu/2014.bio.07 

Survey: Let us know how this paper benefits you. 

Recommended Citation 
Mitchell, Kylie Patricia, "Application of High-Performance Liquid-Chromatography Mass-
Spectrometry Platform to Study Metabolism and Epigenetic Control of Metabolism" (2014). 
Graduate Master's Theses, Capstones, and Culminating Projects. 60. 
https://doi.org/10.33015/dominican.edu/2014.bio.07 

This Master's Thesis is brought to you for free and open access by the Student Scholarship at 
Dominican Scholar. It has been accepted for inclusion in Graduate Master's Theses, Capstones, and 
Culminating Projects by an authorized administrator of Dominican Scholar. For more information, 
please contact michael.pujals@dominican.edu. 

https://scholar.dominican.edu/
https://scholar.dominican.edu/masters-theses
https://scholar.dominican.edu/masters-theses
https://scholar.dominican.edu/student-scholarship
https://dominican.libwizard.com/dominican-scholar-feedback
mailto:michael.pujals@dominican.edu


i 
 

“Application of High-Performance Liquid-Chromatography Mass-Spectrometry 

Platform to Study Metabolism and Epigenetic Control of Metabolism” 

 

 

 

 

 

 

A Thesis Submitted to the Faculty of 

Dominican University of California 

& 

Buck Institute for Research on Aging 

In Partial Fulfillment of the Requirements  

For the Degree 

 

 

Master of Science 

In  

Biology 

 

 

By: 

Kylie Patricia Mitchell 

San Rafael, California 

May, 2013 

  



ii 
 

 

 

 

 

 

 

 

Copyright by 

Kylie Patricia Mitchell 

2013 

  



iii 
 

CERTIFICATION OF APPROVAL 

 

I certify that I have read Application of High-Performance Liquid-Chromatography 

Mass-Spectrometry to Study Metabolism and the Epigenetic Control of Metabolism by 

Kylie Patricia Mitchell, and I approved this thesis to be submitted in partial fulfillment of 

the requirements for the degree: Master of Sciences in Biology at Dominican University 

of California and the Buck Institute for Research on Aging. 

 

Dr. Arvind Ramanathan                                                                                  May 20, 2013 

Graduate Research Advisor 

Assistant Professor 

 

Dr. Dorn Carranza                                                                                           May 20, 2013 

Second Reader 

 

Dr. Kiowa Bower                                                                                             May 20, 2013 

MS Biology Thesis Coordinator 

  



iv 
 

Abstract: 

Naturally occurring small molecules (metabolites, signaling intermediates) are a 

critical component of the information flow in biology, along with DNA, RNA, and 

proteins. Metabolomics is an analytical approach that seeks to comprehensively analyze 

naturally occurring small molecules and quantify their dynamic changes in biological 

systems. In recent years metabolomics has begun to provide understanding of the 

metabolic basis of different diseases, such as heart disease, cancer, and diabetes. 

 Our lab built a High-Performance Liquid-Chromatography Mass-Spectrometry 

(HPLC-MS) based metabolomics platform to analyze metabolites from mammalian cells, 

spent cellular media, and model organisms such as C. elegans. We used C. elegans to 

elucidate the metabolic changes seen after treatment with Metformin, which is a known 

activator of the AMPK pathway. 

 Cancer cells exhibit high levels of glycolysis producing large amounts of lactate; 

circumventing the mitochondrial pathway. This phenomenon is known as the Warburg 

effect. We hypothesize that cancer metabolism is epigenetically regulated. Epigenetics 

refers to inheritable traits that are not due to alterations in the primary DNA sequence. 

DNA methylation is an important epigenetic modification. DNA methylation mainly 

occurs in the CpG islands of the promoter region of genes. It is believed that during 

cancer development de novo DNA methyltransferases methylate tumor-suppressing genes 

allowing cancer cells to proliferate uninhibited. There are two de novo DNMTs, 

DNMT3A, and DNMT3B. These DNMTs establish the pattern of methylation. We 

examined de novo DNMT-mediated control of cellular metabolism, identifying global 
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changes in metabolism, as well as differential sensitivity towards glycolytic and 

mitochondrial inhibitors.  
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Chapter 1: Developing an HPLC-MS based metabolomics platform to 

characterize metabolism In Vitro 

Introduction: 

Metabolomics is an emerging field of study that seeks to systematically identify and 

quantify naturally occurring small molecules in a complex biological system. The field of 

metabolomics compliments the other “omic” fields such as proteomics, transcriptomics, and 

genomics. The central dogma of biology states DNA is transcribed into RNA, and then RNA is 

translated into proteins. Cellular biochemicals are a central component of biology, and mediate 

the flow of information in the central dogma. Cellular metabolites are biochemicals with low 

molecular weight (<1,800Da) including lipids, amino acids, peptides, nucleic acids, organic 

acids, vitamins, thiols, and carbohydrates. The analysis of these naturally occurring biochemical 

allows the metabolic status of a biological system to be defined (Zhou et al., 2012). Metabolism 

is a complex process that can be broken into two complementary reactions, anabolism and 

catabolism. Anabolism is the synthesis of large molecules from smaller molecules, and 

catabolism is the breakdown of large molecules into smaller molecules. Metabolism is a systemic 

reaction occurring in every tissue and cell of an organism all of the time. Metabolomics has two 

different but complementary analytical of approach-targeted and untargeted. When approaching 

metabolomics in a targeted fashion identification and quantification of specific metabolites or 

metabolite classes in a particular pathway is the focus of study. A targeted approach is therefore 

hypothesis driven. An untargeted approach seeks to identify all metabolites in a biological 

system, this approach is generally used to further develop a hypothesis, an untargeted approach is 

more discovery based. Metabolomics is currently being developed to identify biomarkers; in 

response to environmental stress, drug discovery, comparing mutants, toxicology, nutrition, 

studying global effects of genetic manipulation, cancer, comparing different growth stages, 
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diabetes and natural product discovery (Zhang et al., 2012a). The range of chemical properties of 

these different small molecules is diverse and therefore requires the appropriate separation 

technique to analyze metabolites.  

A wide variety of analytical approaches must be employed in metabolomics analysis. 

There are multiple highly validated instruments used to study metabolism. Of the different 

instruments available that are accepted to produce high quality, reproducible results include but 

are not limited to NMR, MS, GC-MS, HPLC-MS, CE-MS, and UPLC-MS. These methods will 

briefly be discussed. 

Nuclear Magnetic Resonance (NMR) uses the magnetic properties of certain nuclei 

creating magnetic dipole and quadrapole moments (Kleckner and Foster, 2011). NMR is one of 

the most common spectroscopic analytical techniques because it has the ability to identify and 

quantify a wide range of organic metabolites. NMR-based metabolomics provides a real-time 

analysis of metabolites allowing one biological sample to be used in a time course without 

disrupting the sample itself. However, NMR has a relatively low sensitivity threshold when 

measuring metabolites, making it an inadequate method for measuring low-abundance 

metabolites (Zhang et al., 2012a). 

Mass Spectrometry (MS) is a method of analyzing metabolites that can either be 

performed on its own, or coupled with another analytical technique such as chromatography. MS 

has gained prominence because of its high sensitivity, and wide range of detectable metabolites. 

MS has also proven to be reliable, reproducible, and high-throughput (Lei et al., 2011). A mass 

spectrometer is comprised of three main parts; ion source, mass analyzer, and detector. The ion 

source first converts sample molecules into ions, depending on the mass analyzer, ions are either 

resolved in a time-of-flight tube or in an electromagnetic field, then metabolites are measured by 
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the detector (Zhou et al., 2012). Direct injection is not an ideal method to examine complex 

mixtures and identifying individual metabolite peaks because of the possibility of ion 

suppression and the matrix effect (Gosetti et al., 2010), however MS fingerprinting is still a 

useful tool in examining patterns of metabolites. Fingerprinting is also useful when trying to 

distinguish between two different physiological states (Allen et al., 2003). 

For higher resolution of metabolites a common practice has been to couple MS with 

chromatography. Gas Chromatography (GC) is a common analytical technique used in plant 

metabolomics. GC provides an ideal profiling approach to analyzing polar and non-polar 

metabolites, especially lipid metabolites. Polar metabolites are derivatised to render them 

volatile. If a metabolite is not volatile it cannot be detected by GC. Polar metabolites require 

derivitization at a functional group such as hydroxyl (-OH), sulfhydryl (-SH), and carboxyl (-

COOH), etc. This is to reduce polarity, and increase thermal stability and volatility (Dettmer et 

al., 2007; Zhang et al., 2012a). Common derivitization methods include alkylation, acylation and 

silylation. Alkylation reagents reduce the polarity of the compounds by substituting aliphatic or 

aliphatic-aromatic group for labile hydrogens. Acylation removes the labile hydrogens and 

transforms the compound into an ester, thioester, and amides. These two methods require a 

purification step before analyses on the GC (Schummer et al., 2009). Silylation is another 

common derivatization method in which the labile hydrogens from acids, alcohols, thiols, 

amines, amides or enolizable ketones and aldehydes are replaced by a trimethylsilyl group, this 

reaction occurs via nucleophilic attack (SN2). Common silylation reagents are N, O-bis-

(trimethylsilyl)trifluoroacetamide (BSTFA), and N-methyl-trimethylsilyltrifluoroacetamide 

(MSTFA) (Schummer et al., 2009). The advantage of using GC is typically that it can be coupled 

to a single quadrupole instrument and uses Electron Ionization (EI). The advantages of an EI are 
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a low influence of molecular structure on response, and a large number of characteristic 

fragments. The disadvantage is the derivitization process and the necessity of metabolites to have 

labile hydrogens that can undergo derivatization (Alder et al., 2006). 

Capillary Electrophoresis (CE) is a method of separation. CE separates analytes with high 

resolution based on their migration through a liquid filled capillary column in an electric field. 

Capillary Electrophoresis-Mass Spectrometry (CE-MS) is a favorable method of identifying 

polar or ionic compounds found in biological samples, including urine, blood, and saliva. CE-

MS is also used to analyze inorganic ions, organic acids, amino acids, nucleotides and 

nucleosides, vitamins, thiols, carbohydrates, and peptides (Metzger et al., 2009; Zhang et al., 

2012a). A disadvantage of CE-MS is that in order to achieve unidirectional movement of 

analytes the electrophoretic separation must be done in an electric field. This makes it difficult to 

couple CE to the ion source of an MS. Decreasing the electric field is possible, however this 

action reduces efficiency and resolution (Heiger, 2000). 

A method that has been extensively developed for metabolomics analysis is high 

performance liquid chromatography coupled to mass spectrometry (HPLC-MS). HPLC-MS 

separates metabolites through a column in one of two ways, isocratic or gradient elution. 

Isocratic elution uses a water-solvent composition that remains constant during the metabolite 

separation. Isocratic elution is common when a sample contains approximately 10 metabolites. 

The other method is a gradient elution, which uses a gradient of solvents over a time course, 

based upon the composition of the buffers, metabolites with similar chemical properties will 

elute. Gradient elution creates narrow metabolite peaks, and faster analysis (Zhou et al., 2012). 

HPLC-MS allows semi-polar and polar metabolites to be identified. The spectrum of chemical 

properties observed in metabolomics prevents any one column from identifying all metabolites, 
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therefore a variety of columns and chemistries must be employed. Hydrophilic Interaction Liquid 

Chromatography (HILIC) is the ideal method for separating amino sugars, amino acids, 

vitamins, carboxylic acids and nucleotides (Buszewski and Noga, 2012; Xiao et al., 2012). 

HILIC also compliments Reverse Phase LC (RPLC), allowing compounds that are not 

sufficiently retained under RPLC conditions to be resolved by giving an opposing elution of 

metabolites to that of RPLC. Normal-Phase LC (NPLC) can also separate polar compounds, 

however NPLC is more compatible with APCI-MS instead of ESI-MS. HILIC can use any polar 

stationary phase. A commonly used stationary phase is an amino-propyl stationary phase (Xiao 

et al., 2012). The mobile phase consists of a mixture of water-water miscible organic solvents, 

usually acetonitrile. Starting with a high percentage of organic solvent non-polar metabolites are 

able to elute from the column. Gradually increasing water or aqueous content allows polar 

metabolite elution from the column (Greco and Letzel, 2013). HILIC is different from both 

normal phase, and reverse phase LC with characteristics of both methods.  

Our lab specifically uses an Agilent HPLC, which directly injects samples into an Agilent 

6520 Accurate Mass Quadrupole Time-Of-Flight (TOF) System. This system has a mass 

accuracy of 0.001 amu. Since metabolites of interest have an average mass of ~1,000 Da 

identifying metabolites using this system reduces the possibility of formulae. In Figure 1 the 

orange bar denotes the mass accuracy of this system. Metabolites of interest are typically <1,000 

Da which means that an identified metabolite has approximately 10 possible chemical formulae. 

This prevents the necessity of fragmenting large quantities of standards to eliminate potential 

formulae of metabolites. 
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Materials and Methods: 

Extracellular Metabolite Extraction:  

1 ml of culture medium was collected from each sample for extracellular metabolite 

extraction. Samples were centrifuged for 10 minutes at 15,000 x g and at 4°C to remove cell 

debris. If samples were not processed immediately, they were placed at -80°C. 400 µL of sample 

was placed in a glass vial containing 400 µL of 100% MeOH +0.1% Agilent Mix (AM). AM is a 

mixture of two known metabolites with distinct peaks and abundances. Solvents are spiked with 

a known concentration, when samples are run on the MS we use these peaks to ensure the 

abundance is equal across all samples, as well as ensuring the retention time is the same. This 

ensures the HPLC is running properly. Non-polar metabolites were extracted by adding 800 µL 

of CHCl3 was spiked with 0.1% fatty acid standard. The samples were centrifuged at 3,000 x g 

for 10 minutes. Forming two distinct layers, separated by a thin white film, this is debris that has 
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precipitated out and will not be further analyzed. The top layer, MeOH, contains the polar 

metabolites. The lower organic layer, CHCl3 contains the non-polar lipid metabolites which were 

removed using a glass pasture pipette and dried using liquid nitrogen (LN2). The polar 

metabolites in MeOH were dried down using a SpeedVac. Polar metabolites were reconstituted 

in 100 µL of 50% MeOH and nonpolar metabolites were reconstituted in 100 µL of CHCl3, 

before being run on the HPLC-MS. Any remaining sample was placed at -80°C. 

Intracellular Metabolite Extraction: 

Cells were washed twice with cold 1X PBS in order to remove any residual media or 

extracellular components and then lysed using 400 µL 50% MeOH + 0.1% A.M. when plated in 

a 6-well dish. The cells were scraped and collected into a 9ml glass separation vial. Samples 

were centrifuged at 3,000 x g for 10 minutes at 4°C, forming two distinct layers. The top layer 

contains the polar metabolites. The lower organic layer contains the non-polar lipid metabolites. 

The lower organic layer was removed and dried using LN2, and the polar metabolites, in MeOH, 

were dried down using a SpeedVac. Polar metabolites were reconstituted in 100 µL of 50% 

MeOH, and the nonpolar metabolites were recinstituted in 100 µL of CHCl3. Remaining samples 

were stored at -80°C. 

Extracellular MS Fingerprinting: 

Spent media was used to detect extracellular metabolites. The samples were then diluted 

ten-fold. Aliquot 5µl of media and combine that with 50µl of 30% MeOH+0.1% ammonium 

hydroxide. Samples were then centrifuged at 8,000 x g for 5 minutes at 4°C. 30µl of sample was 

then transferred to an auto-sampling vial and directly injected into the MS. 
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High Performance Liquid Chromatography-Mass Spectrometry: 

Performance of LC-MS was accomplished using an Agilent 1200 series HPLC system 

and a G6520 accurate mass Q-TOF high resolution mass spectrometer. Data was acquired from 

10μl injections of each sample employing a 35 minute gradient at a flow rate of 0.3ml/minute. A 

HILIC gradient was employed, which includes two solvents: A. 20 mM Ammonium Acetate 

(NH4OAc) + 5% Acetonitrile (ACN) and B. ACN. Solvent gradients are listed in Table 1. Total 

time per HPLC run is 47 minutes. 

 

The conditions of the column include: a Luna amino propyl (NH2) column (150 x 2.0 mm 

3μm) held at 20°C, purchased from Phenomenex. Data was acquired over a mass range of 100-

1100 Daltons in negative ion mode, and data analysis was conducted using Agilent MassHunter 

version B.04.00 and Mass Profiler Professional version B.12. 
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Results and Discussion 

 

The method of extraction first designed in our lab was taken directly from the Rabinowitz 

lab at Princeton University. At this lab, extractions using varied solvents, and varying amounts 

were performed. A method of combining acetonitrile/ methanol/ water (40:40:20) with their 

samples and then placing this mixture at -20°C for 15 minutes, removing the supernatant, and 

adding additional solvent to re-extract metabolites was described (Rabinowitz and Kimball, 

2007). When using this method of extraction we were able to detect a range of metabolites; 

however the life of the HPLC column was short-lived. The extraction method above was causing 

large molecules to clog the separation column and guard column. Figure 2 shows a small 

sampling of metabolites from different metabolic pathways that were detected after extracting 

neural stem cells. Due to the premature decline of the column, we went back into the literature 
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and discovered an alternative method of extraction, employing a 1:1:3 H2O; MeOH; CHCl3 

mixture (Sana and Fischer, 2009). After performing the two extraction methods side by side, we 

are able to identify more metabolites using chloroform in the extraction. 

 

After determining the chloroform method was more advantageous in terms of quantities 

of identified metabolites, and less error among biological replicates optimization trials of 

multiple parameters was conducted. To ensure no artificial peaks were being detected 

optimization trial solidified the notion that plastic is highly incompatible with chloroform. Figure 

3 shows the comparison of two Total Ion Chromatograms (TIC); the extractions were performed 

side by side of two control samples of neural stem cells. Sample conditions were consistent, the 

only variable was plastic or glass consumable products. The green line denotes samples that were 
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extracted using glass vials, and glass pasture pipettes, where the black line represents that 

extraction performed using autoclaved microcentrifuge tubes, and autoclaved plastic pipette tips.  

 

Use of plastics with chloroform can indeed cause artificial peaks to appear. After data 

analysis a heat map of various unidentified mass spectral features shows large variation between 

glass consumables and plastic consumables. Figure 4 is a heat map of unidentified mass spectral 

features that are either up or down-regulated. The only experimental condition that was different 

was the use of glass or plastic. This leads us to believe that chloroform is allowing plasticizer 

molecules to leach into the samples causing these contaminating peaks. All steps that include the 

use of chloroform are performed in glassware only, as to prevent these artificial peaks. OSHA 

guidelines, regarding the storage and use of chloroform, clearly states “Do not use rubber or 

plastic hose or pipe to transfer chloroform” (Administration). leading us to believe the best 
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approach would be to use chloroform in glassware, preventing the chloroform from leaching 

plastics into samples, and the HPLC/MS. 

Conclusions: 

Developing a method necessitates intense literature searches. All aspects starting from 

sample preparation to conducting statistical analysis of metabolites after data analysis is 

completed is a time-consuming process. Once an analytical technique has been developed, and 

metabolites can successfully be identified, samples from a wide range of biological applications 

can be examined. This is not to say that once a satisfactory method has been developed no other 

methods should be examined. Therefore, as different methods become available they may be 

viewed as alternatives.  
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Chapter 2: Caenorhabditis elegans- a model organism to examine the 

interaction between ahr-1 and Metformin. 

Introduction: 

The Aryl Hydrocarbon Receptor (AHR) pathway is known for its importance in 

development, and its role in dioxin mediated cytotoxicity.(Nebert et al., 2000) AHR is a basic 

helix-loop-helix (bHLH) and Per-Arnt-Sim containing transcription factor that is ligand-

dependent (Nguyen and Bradfield, 2008) .Figure 5 shows these different domains in murine 

model, the Ala375 position has been identified as a polymorphism that is responsible for ligand 

affinity. When Ala375→Val375 ligand affinity is greatly reduced.  

 

AHR has many high affinity ligands including a wide variety of ubiquitous and 

hydrophobic environmental contaminants such as halogenated aromatic hydrocarbons (HAHs) 

and non-halogenated polycyclic aromatic hydrocarbons (PAHs). The most well characterized 

HAHs is 2, 3, 7, 8-tetrachlorodibenzodioxin (TCDD) which is the most potent known agonist of 

AHR (Denison et al., 2002). While AHR was discovered for its importance in dioxin binding, it 

gained much interest when it was discovered to play a role normal physiology and development 

(Zhang, 2011). In AHR null mice many developmental issues arose, the portcaval shunt in the 
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developing liver failed to close immediately causing hepatovascular blood flow and altered 

disposition of small molecules requiring hepatic clearance. Mice also experienced other vascular 

issues including the persistence of the hyaloid artery and an altered limbal vasculature within the 

developing eye. This led to the conclusion that AHR plays an important role in the regulation of 

normal vascular or hematopoietic development (Nguyen and Bradfield, 2008). Mice carrying the 

hypomorphic AHR allele experienced the same developmental issues. These mice could be 

rescued by TCDD treatments. The ductus venosus closed properly after this activation, which 

suggests this is an endogenous function of AHR (Zhang, 2011). Non-ligand bound AHR is 

located in the cytoplasm in an inactive protein complex composed of a dimer of Heat Shock 

Protein 90 (Hsp90), prostaglandin E synthase 3, and a single molecule of the immunophilin-like 

protein hepatitis B virus X-associated protein 2 (XAP2). Figure 6 is a schematic representation 

of a ligand binding to AHR. Upon ligand binding the XAP2 is released, then ligand bound AHR 

translocates to the nucleus and dissociate from the remaining protein complex, exposing the PAS 

domains, which allows the Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT) to bind 

AHR. This heterodimer complex then directly and indirectly interact with DNA by binding to the 

5’ regulatory region of dioxin-responsive genes (Zhang, 2011). AHR has been referred to as an 

“environmental sensor” because of its ability to bind to and metabolize environmental toxins 

(Nguyen and Bradfield, 2008). Understanding cellular metabolism of environmental stimuli is 

crucial in understanding how the environment alters gene transcription, metabolism, and other 

physiological functions. Because the levels of metabolites can be regarded as the ultimate 

response of biological systems to genetic or environmental changes, coupling it to 

transcriptomics and proteomics allows for a more comprehensive understanding (Ma et al., 

2012). 
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Caenorhabditis elegans (C. elegans) are free-living soil nematodes. C. elegans have a 

defined lifespan of approximately 3 weeks, including a 3 day larval period. C. elegans were the 

first multicellular organism to have their entire genome sequenced. Along with their 

transparency, hermaphroditic nature C. elegans genetics are also easily manipulated via RNAi, 

or creating gene knockout mutant strain (Frooninckx et al., 2012). All of these factors make C. 

elegans powerful model organisms. AHR is conserved in C. elegans, the ortholog is termed ahr-

1, and the nuclear dimerization partner is encoded by aha-1. Ahr-1 and aha-1 has been directly 

implicated in the differentiation of neurons, more specifically the AVM and SDQR. C. elegans 

have a surprising resemblance as far as their nervous system is concerned to vertebrates 

(Frooninckx et al., 2012). When ahr-1 is knocked down, strains showed reduced growth, 

reproduction, and survival. Defects in other systems have also been reported including the liver, 
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heart, ovaries, and the vascular and immune system (Qin and Powell-Coffman, 2004). There are 

multiple ahr-1 knock out worms ZG24 and CZ2485. The ZG24 strain is a deletion of 1165 base 

pairs which includes multiple exons in the PAS domain. The CZ2485 strain is a substitution of 

one nucleotide (c/t) (wild type/ mutant) causing a premature stop codon in the ahr-1 protein 

(WormBase). C. elegans ahr-1 mutants are valuable in vivo models. Although there may be 

differences between the mammalian and C. elegans ahr-1 ortholog certain similarities can shed 

light on the mammalian counterparts. Determination of pathway interactions could allow for 

further understanding regarding cross talk between different pathways of interest. The AMPK 

pathway is another pathway that is conserved in C. elegans. Metformin, 1, 1-Dimethylbiguanide 

hydrochloride has been shown to have a lifespan extending phenotype through activation of the 

AMPK pathway. The AMPK pathway has been dubbed the energy sensing pathway, however 

how it senses an environmental cue is still unknown. Determining the relationship between 

Metformin, the AHR pathway and AMPK pathway may help understand how environmental 

cues affect metabolism. Utilizing ahr-1 knockout worms and Metformin, we can examine cross 

talk of AMPK-AHR pathways. 

Materials and Methods: 

Strains and Culturing: 

The ahr-1 mutant strains - CZ2485 and ZG24 - were ordered from Caenorhabditis 

Genetics Center (CGC). The Bristol N2 strain a kind gift from Dr. Gordon Lithgow (Buck 

Institute) served as a control. Worms were cultivated and maintained on nematode growth 

medium (NGM) plates with OP50 as a food source. 
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Lifespan Assay: 

For the first seven days of the lifespan the worms were placed on 5-fluorodeoxyuridine 

(FUdR) (+) plates to prevent the eggs from hatching. The final concentration of FUdR is 10 

µg/mL. Metformin (Sigma-Aldrich St. Louis, MO) was added at varying concentrations, 50 mM, 

and 25 mM. 30-40 L4 worms were placed on each plate Worms are counted every 2-3 days 

during the experiment; the dead worms are tallied. As the lifespan continues the worms will 

begin to move less frequently. During lifespans, platinum wire should be used to gently prod the 

worm on the head if the worm does not respond to the prod they are considered dead. Worms 

were censored if they crawled off the plate, suffered from internal hatching, or protrusion of 

gonads was observed. The lifespan data were plotted on a survival curve using Graphpad Prism 

4. 

Mass Cultures:  

When mass culturing worms, OP50 must be concentrated. Place 25 g of Luria Broth (LB) 

into a 2L flask. Add 1L of nanopure water, autoclave the solution, once the solution has cooled 

inoculate the LB with 10µl of OP50. Allow the bacteria to grow for 16 hours. Once the cultures 

become cloudy centrifuge at 3,000 RPM for 1 hour, remove the supernatant and resuspend the 

bacteria, for every liter of bacteria ~15 ml of s-basal should be used.  

 When mass culturing worms, thousands of eggs must be harvested. To obtain this amount 

of eggs in the same developmental stage, adult worms must be dissolved while keeping the eggs 

intact. To hypo the worms wash a 10 cm plate with 3 ml of S-basal. Place the worms into a 15 ml 

conical. Pellet the worms, than add 10 ml of a hypochlorite solution to the worms. The adult 

carcasses should dissolve after vigorously shaking the conical for ~30 seconds. Once the adult 

worms have completely dissolved the eggs should be washed 5 times with S-basal to ensure all 
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the hypochlorite solution is removed. Eggs should be incubated in S-basal overnight to ensure all 

eggs have hatched and have entered into the L1 stage of development. The L1 worms should be 

counted and approximately 10,000 L1s should be placed on a 10 cm plate and incubated until 

they have reached the L4 stage of development. Once the worms have reached the L4 stage they 

are to be placed on Metformin + FUdR plates, or the control plates containing FUdR. After the 

appropriate time has elapsed the worms should be collected. To collect the worms place 3 ml of 

S-basal on the plate and swirl the plate to suspend the worms. Collect the worms into a 15 ml 

conical; allow the worms to gravity settle for 10-15 minutes, than aspirate off access S-basal. To 

snap freeze the worms until they are ready to be processed further place the conical in liquid 

nitrogen until the entire pellet has frozen then immediately place the samples at -80°C. 

Metabolite Extraction: 

In a 50 ml glass centrifuge vial place the worm pellet, obtaining both the weight of the 

glass vial, then the weight of the glass vial with the sample. Add 4 ml of ice cold 50% MeOH. 

Maintain the worms on ice from this point. Subject the culture to 4- 1 minute sonication while on 

ice. Add 8 ml of chloroform to each sample, vortex the samples vigorously for 30 seconds. 

Allow the two layers to settle, slowly remove the top aqueous layer of MeOH containing the 

polar metabolites. Once the aqueous layers have been removed add equal volumes 0.5M KCl/ 

0.08M H3PO4. Vortex the samples vigorously for an additional 30 seconds, now Place the 

samples in an ultrasonic water bath for 15 minutes. Samples were vortexed twice in 1 minute 

intervals. Centrifuge the samples for 2,000 x g for 10 minutes to separate the phases. Collect the 

lower organic layer which contains non-polar metabolites. Samples were dried under nitrogen 

until all chloroform has been removed.  
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Results and Discussion 

Lifespan of Wildtype N2 and ahr-1 Mutant Worm Treated with 50mM Metformin: 

 

Lifespans of ahr-1 null worms in the presence and absence of Metformin were conducted 

to determine if ahr-1 influenced Metformin mediated lifespan extension. Figure 7 shows the 

lifespan of N2 wild-type worms treated with 50 mM Metformin, a dramatic increase in lifespan 

is seen with the addition of Metformin. C. elegans not only experienced an overall extension, but 

a median extension as well. During the lifespan assay not only was worm death taken into 

account but worm health-span was also noted. (Data not shown) Metformin worms showed 

increased mobility later in life, in contrast to respective control worms. Both ahr-1 mutant 

worms showed a statistically significant increase in lifespan. Figure 8 is a lifespan comparing the 
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ahr-1 null Metformin treatment worms to the N2 Metformin treated worms no statistically 

significant changes occurring.  

 

The lifespan analysis of ahr-1 null worms compared to the wild-type worms showed no 

median lifespan extension, or overall lifespan extension that was statistically significant. This 

leads us to believe that Metformin is acting independently of the ahr-1 gene. 

Metabolomics of Metformin Treated C. elegans: 

Implementing our untargeted metabolomics based platform as discussed in Chapter 1, a 

global analysis of polar and non-polar metabolites was conducted. Mass cultures of N2 worms 

were grown on Metformin plates for 5 days. The goal of extracting metabolites after 5 days is to 

determine the early metabolism changes that the worms experience while being exposed to 50 

mM Metformin. 
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Figure 9: is a subset of metabolites from an array of different pathways that were found to 

be significantly altered upon Metformin treatment. From our initial screen of significantly altered 

metabolites one pathway showed potential. The branched chain amino acid degradation pathway 

(BCAA) showed three metabolites were significantly altered, leucine, isoleucine, and valine. 

Further analysis of the BCAA degradation pathway is shown in Figure 10. Analysis of 

intermediates in the BCAA degradation pathway showed slight increases and decreases, however 

no additional significantly altered metabolites were identified. 
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This pathway could be cooperating with other pathways in mediating Metformin 

metabolism. Mutant strains lacking enzymes in the branched-chain amino acid pathway can shed 

more light on the role BCAA’s play in Metformin mediated lifespan extension. 

Conclusions: 

Metformin is an important drug that is currently being used by millions of Americans to 

combat type II diabetes. The mechanism of Metformin is not fully understood. Our first 

hypothesis was ahr-1 was involved in the metabolism of Metformin. When conducting a lifespan 

using the null worms no significant change was examined. The mechanism of Metformin may be 

working through multiple pathways, with varied effects in many pathways. A global analysis of 

all metabolites was conducted to determine if a certain pathway was up or down regulated. This 

portion of research was not a main focus, therefore we have not completed data mining to 
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determine if another pathway was significantly altered. Some prospective pathways include 

NAD metabolism, serine degradation pathway, and tryptophan degradation pathway. Along with 

mining the current data; future experiments could include more biological replicates, and 

collection points. 

Initially, this data lead us to believe the branched chain amino acid degradation pathway 

could be the potential target. BCAA degradation pathway has been shown to be important in 

glucose and insulin sensitivity in mice that were fed a high fat diet (Newgard et al., 2009). The 

data that was collected suggests that the mechanism by which Metformin works could be the 

BCAA degradation pathway in cooperation with other pathways. 
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Chapter 3: DNA Methyltransferase Mediated Regulation of Cellular 

Metabolism  

Introduction: 

Epigenetics is a term that refers to the reversible, inheritable trait (e.g. gene expression) 

wherein the DNA sequence itself is not altered. DNA methylation is an example of epigenetic 

modification that mainly occurs at the C5 position of cytosine (5mC) within a CpG island. CpG 

islands are short regions of DNA ranging from 0.5-4kb in length that is often found in the 

promoter regions of genes. The donor methyl group comes from S-Adenosyl methionine 

(AdoMet). The process of DNA methylation as seen in Figure 5 is carried out by DNA 

Methyltransferases (DNMTs). These enzymes catalyze the covalent addition of a methyl group 

from AdoMet to the 5 position of the cytosine ring (Fukushige and Horii, 2013). DNA 

methylation can be inhibited by the compound 5-azacytidine, which contains a nitrogen in the 

cytosine ring at the 5 position. This forms a covalent bond between the 5-azacytidine and the 

DNMT (Fukushige and Horii, 2013). 
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Methylation of DNA plays an especially important role during early embryonic 

development, stem cells differentiation, and tissue-specific gene expression (Yim et al., 2012). 

However, DNA methylation also plays a significant role in the development of many different 

forms of cancers (Liu et al., 2007; Yan et al., 2011). In tumor cells, unlike normal cells, a high 

proportion of CpG islands are hypermethylated, thereby silencing specific genes, such as tumor 

suppressing genes (TSG). Hypermethylation of the TSGs is one of the most well-categorized 

epigenetic events in tumor formation (Jones and Baylin, 2002). For example, hypermethylation 

of the promoter region of the BRCA1 gene has been shown to lead to breast cancer and 

hypermethylation of STK11 genes have been linked to familial forms of renal, breast and colon 

cancer (Jones and Baylin, 2002). Along with TSGs being hypermethylated, cancer cells also 

exhibit demethylation of oncogenes during the development of cancer. For example, certain 
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carcinogens, such as cigarette smoke extract (CSE) have the ability to downregulate the DNMT 

isoform DNMT3B, which leads to demethylation of oncogenes (Liu et al., 2007). Recent studies 

have shed light upon demethylating enzymes. The TET family of genes has specifically TET1, 

TET2, and TET3 has been gaining increased attention because they demethylated mammalian 

DNA (Tsumagari et al., 2013). 

There are two different families of DNMTs, DNMT1, and 3. Figure 12 is a schematic of 

DNMTs, DNMT1 is a maintenance enzyme that is responsible for maintaining methylation 

patterns during chromosomal replication and repair by associating with replication sites by 

directly binding to proliferating cell nuclear antigen. The newly synthesized strand of DNA now 

contains the same DNA methylation pattern (Mortusewicz et al., 2005). DNMT1 has a 30-40 

fold preference for hemimethylated sites (Cheng and Blumenthal, 2008). DNMT2 appears to 

contain high sequence and structural similarity; however DNMT2 does not contain any DNA 

methylating activity. DNMT2 methylates cytosine 38 in the anticodon loop of tRNA (Cheng and 

Blumenthal, 2008). DNMT2 is also believed to be involved in the recognition of DNA damage, 

DNA recombination and mutation repair and does not exhibit de novo or maintenance activity in 

either embryonic stem cells, or adult somatic tissues (Turek-Plewa and Jagodzinski, 2005). The 

DNMT3 family contains two active de novo DNMTs. De novo is a Latin expression meaning 

"from the beginning" the DNMT3 family is able to methylate previously unmethylated CpG 

sites. These de novo methyltransferases establish methylation patterns in embryonic stem cells. 

In the DNMT3 family there are 3 different DNMTs; DNMT3A, DNMT3B, and DNMT3L. 

DNMT3A and DNMT3B are both active de novo DNMTs, DNMT3-Like protein is a regulatory 

factor (Cheng and Blumenthal, 2008). DNMT3L is known to be involved in maternal genomic 

imprinting which affects the activity of DNMT3A and 3B, however DNMT3L does not seem to 
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actively methylate DNA (Cheng and Blumenthal, 2008; Turek-Plewa and Jagodzinski, 2005). 

Figure 12 displays the different DNMT domains, the conserved catalytic domains lead to activity 

or lack of activity on DNA. 

 

De novo methylation activity has been shown to be important to embryonic development. 

DNMT3B knockout mice have multiple developmental defects. These defects include growth 

impairment and rostral neural tube development. Okano et al. developed DNMT3B knockout 

mice; none of these mice experienced a live birth. DNMT3A knockout mice also suffered major 

developmental deficiencies. The DNMT3A mice were able to experience a live birth; however 

they quickly became runted and died about 4 weeks after birth. DNMT 1 knockout mice were 

also not viable (Okano et al., 1999). 

In addition to playing a key role in the development of cancer, DNA methylation also 

plays a key role in metabolic regulation in cells. DNA methylation in normal and cancer muscle 
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cells is altered when exposed to butyrate, a short-chain fatty acid. Similarly, when muscle cells 

were exposed to acute palmitate, or oleate increased promoter methylation was observed in the 

mitochondrial protein peroxisome proliferator-activated receptor gamma coactivator 1 α 

(PGC1α) (Barres et al., 2012). DNA methylation can modify the expression of PGC1α and 

PPARγ, two transcription factors that are involved in fatty acid storage and glucose metabolism 

(Barres et al., 2009). This suggests that cellular metabolism is epigenetically regulated by DNA 

methylation, and may play an important role in cancer metabolism. Cancer cells exhibit an 

altered basal metabolism. Normal cells produce energy via oxidative phosphorylation occurring 

in the mitochondria, when starved of oxygen normal cells will produce energy via glycolysis. 

Cancer cells are less dependent on the mitochondria pathway; instead cancer cells produce a 

large portion of their ATP via glycolysis regardless of oxygen availability. This phenomenon of 

altered metabolism was discovered in 1924 by Otto Warburg. Warburg's hypothesis regarding 

the altered metabolism was that aerobic glycolysis was the primary energy source because 

mitochondrial (respiratory) injury had occurred (Upadhyay et al., 2013; Warburg, 1956). During 

glycolysis a large amount of lactic acid builds, creating a highly acidic local environment. Tumor 

cells proliferate at a high rate in a vastly different environment, tumor cells prefer an acidic 

environment; they also prefer hypoxic conditions. Micro-environments that lack sufficient 

oxygen are said to be hypoxic. Hypoxia is associated with tumor progression, metastasis and 

resistance to therapy (Upadhyay et al., 2013). HIF1α is a critical transcription factor associated 

with hypoxic conditions, becoming highly upregulated in these conditions. HIF-1 activity has 

been shown to promote tumor progression, while inhibition of HIF-1 could represent a novel 

approach to cancer therapy (Semenza, 2002) 
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Materials and Methods 

Cell Culture: 

C2C12 mouse myoblasts, HEK293T, and HEK293F human embryonic kidney cells, and 

human lung adenocarcinoma cells (A549) were cultured under normal conditions prior to 

treatments with compounds and siRNA. Normal culture conditions includes; Dulbecco’s 

Modified Eagle Medium (DMEM) with the addition of 10% Fetal Bovine Serum (FBS), and 1% 

penicillin/streptomycin, cells were grown in a 37 °C 5% CO2 incubator. For differentiation 

experiments, C2C12 cells were plated at 1.5 x 10
5
 cells per well, in a 6-well dish, or 5 x 10

5
 cells 

in a 10 cm plate, DMEM was supplemented with 2% HS, and 1% P/S. Media was changed every 

other day for 5 days, after which the cells were either lysed, or treated with compounds. 

siRNA: 

siGENOME SMARTpool- DNMT3B siRNA (M-006395-01-0005), DNMT3A siRNA 

(M-006672-03-0005), and DNMT1 (M004605-01-0005)  were purchased from Dharmacon 

(Thermo Fisher Scientific Waltham, MA). siGENOME Non-Targeting siRNA Pool #2 served as 

a control (D-001206-14-05). siNT acts as our control because it is similar to the other siRNA’s, 

however it does not target anywhere in the genome. The siRNA was received lyophilized, and; 

they were reconstituted in RNase and nuclease-free water at a final concentration of 20 µM, and 

stored at -80°C per manufacturer’s instructions. 

siRNA Transfection: 

A549 cells were plated on Day 0 at 3 x 10
5
 cells per well in a 6-well dish in DMEM 

supplemented with 10% FBS, without phenol red or antibiotics. The following day, cells were 

transfected with 100nM siRNA, using DharmaFECT 1, as recommended by the manufacturer. 
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After 48 hours, culture media were collected and stored at -80°C for future analysis. Cells were 

incubated for an additional 24 hours before being harvested.  

DNMT3A overexpression: 

Addgene Plasmid 35521 was received as a stab cultures from Addgene (Cambridge, 

MA). Vector constructs were produced in the Arthur Riggs laboratory (Chen et al., 2005). 

Cultures were streaked onto LB agar plates + 100 µg/ml ampicillin (Amp). Single colonies were 

selected and inoculated in 5 mL of 2X YT media + Amp, and placed in a 37°C shaking incubator 

for 16 hours at 250 rpm. Plasmid DNA was isolated via Qiagen Plasmid Mini Kit. Plasmids were 

sequenced by Eurofins US (Huntsville, AL) to confirm the identity of the construct. Large-scale 

plasmid purification was accomplished with the Zyppy Plasmid Maxi-Prep Kit (Zymo 

Scientific), (Irvine, CA) and all DNA was brought to a final concentration of 1 mg/ml. 

DNMT3B Overexpression: 

DNMT3B constructs were generated using Gateway cloning technology. DNMT3B-GFP was 

generated by performing an LR Clonase reaction (Life Technologies) using pENTR223.1-

DNMT3B (Open Biosystems clone 40080753) and pcDNA-DEST47 (Life Technologies) to 

produce a C-terminal GFP fusion construct driven by the human cytomegalovirus (CMV) 

promoter. DNMT3B-HIS was generated by performing an LR Clonase reaction (Life 

Technologies) using pENTR223.1-DNMT3B (Open Biosystems clone 40080753) and pcDNA-

DEDT40 (Life Technologies) to produce a C-terminal 6XHIS/V5-fusion construct driven by the 

CMV promoter. Bother constructs are shown below in Figure 13. 
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Transfection: 

A549 cells were plated on Day: 0 at 5*10^5 cells per well in a 6-well dish. 2µg of DNA 

was incubated in 250µL of Opti-MEM Reduced Serum Media, Lipofectamine 2000 (Life 

Technologies) was used 3:1 in excess, also incubated in 250µL Opti-MEM. The two components 

incubated for 5 minutes at room temperature, then incubated together for 20 minutes. 1.5mL of 

Opti-MEM was added directly onto cells, 500µL of DNA Lipofectamine 2000 was added 

dropwise to each well. Cells were incubated for 16 hours, then DMEM +10%FBS +1%Pen/Strep 

was added and incubated for an additional 24 hours. 

RNA Collection: 

Cells were collected via incubation with Trypsin + EDTA (0.25%) (MediaTech Inc. 

Manassas, VA) for 4 minutes at 37°C, 5% CO2, and centrifuged at 1,500 rpm for 3 minutes. 

Supernatant was removed and cells were snap-frozen on dry ice. Cell pellets were stored at -80° 
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or processed immediately. Total RNA was extracted using Qiagen’s (Valencia, CA) RNeasy Plus 

Mini Kit according to the manufacturer’s instructions.  

Reverse Transcriptase PCR: 

cDNA was synthesized from 0.5-1 µg of total RNA input using iScript Reverse 

Transcription Supermix for RT-qPCR Bio-Rad (Hercules, CA. Reactions occurred in a T100 

Thermal Cycler (Bio-Rad), following manufacturer’s instructions. 

Real-Time Quantitative PCR: 

Real-Time Quantitative PCR (RT-qPCR) was performed using a Bio-Rad CFX Connect 

Real-Time PCR Detection System. Data acquisition was performed on Bio-Rad CFX Manager 

3.0 software. Each 20 µl reaction was comprised of forward and reverse primers at a final 

concentration of 500nM, 5 µl cDNA diluted five-fold, 3 µL water, and 10µl SsoAdvanced SYBR 

Green Supermix (Bio-Rad). 
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Protein Collection and Concentration Assay: 

Cells were collected using trypsin, centrifuged for 3 minutes at 1,500 rpm at 4°C. Cells 

were then lysed in 1X RIPA buffer containing 1X PhosSTOP (Roche Kaiseraugst, Switzerland), 

and 1X Protease Inhibitor(Roche). Depending on the plate size the volume of RIPA buffer was 

adjusted accordingly. Samples were subjected to 30 second sonication, and then centrifuged at 

15,000 x g for 30-40 minutes at 4°C. A Bradford-Coomassie Assay (Pierce/ Thermo Fisher 

Scientific) was performed to determine the concentration of total protein per sample. 

Western Blot Analysis: 

50-150µg of protein per sample was run on Invitrogen’s NuPAGE SDS-PAGE Gel 

System using 1.0 mm 4-12% Bis-Tris precast gels in 1X MOPS running buffer following the 

manufacturer’s instructions. Transfers were done following manufacturer’s instructions and 

membranes were blocked for one hour at room temperature with 5% milk in 1XTBST. 

PhosSTOP phosphate inhibitor cocktail(Roche) was added to the blocking buffer for membranes 

that were to be probed with specific antibodies. 

Antibodies: 

Primary antibodies were purchased from Cell Signaling Technology (Boston, MA) unless 

otherwise stated. They were used as instructed by manufacturer. Mouse anti DNMT3A antibody 

was purchased from New England BioLabs Inc. (Ipswich, MA), used at a final concentration of 

1:1,000. Antibodies were diluted in 5% non-fat dry milk in 1XTBST. 5% Sodium Azide (NaN3) 

was added at a 1:100 dilution, To serve as a preservative. Secondary antibodies were purchased 

from Cell Signaling Technology and GE Healthcare (Waukesha, WI), and diluted at 1:2,000 in 

5% non-fat milk in 1XTBST. 
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Immunoprecipitation: 

 Pierce A/G Magnetic beads were a generous gift by the Lunyak Lab. 500µl of sample 

was combined with 5 µl of 1° antibody and incubated overnight at 4°C. Beads were washed, and 

then incubated with sample for 5 hours. Samples were then heated for 10 minutes at 100°C. 20µl 

of sample was then run on a 4-12% Bis-Tris precast gels in 1X MOPS running buffer per 

manufacturers instructions. 

Results and Discussion 

DNMT3B Endogenous Protein Immunoprecipitation: 

We began examining the de novo methyltransferase DNMT3B with great interest. The 

two active de novo DNMT’s are of great interest because they are responsible for establishing 

the pattern of methylation. This causes gene silencing, which is fundamental in cancer 

development. However, methylation is not only important in cancer development. DNA 

methylation also has also been shown to play a role in cellular metabolism and physiology. 

Isolation of the protein would allow us to examine the crystal structure using mass spectrometry. 

We first wanted to examine the DNMT3B protein to measure endogenous levels. We started by 

conducting a western blot. Lane 2 and lane 3 are both control samples. DNMT3B has a 

molecular weight of 96 kDa. 
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The total amount of protein that was loaded into each well was approximately 180µg of 

protein and the DNMT3B protein showed a very slight band pattern. After determining low 

expression via western blot as shown in Figure 14, an immunoprecipitation was conducted. The 

goal of immunoprecipitating the protein was to excise the band from the gel, and examine the 

crystal structure of the band using mass spectrometry. 
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After multiple trials of trying to immunoprecipitate the protein we were unable to see the 

DNMT3B protein band. Two vector constructs were used in our attempt to immunoprecipitate 

the protein. A DEST40 vector containing the DNMT3B protein fused to a 6x HIS tag, and a 

DEST 47 vector containing the DNMT3B protein fused to GFP. The GFP was used as a 

transfection control to ensure transfection efficiency. Unfortunately, 48 hours post transfection a 

very small amount of GFP was present in the DEST 47 transfected cells. (data not shown)  
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DNMT3B Overexpression Western Blot: 

 

When we did not see the protein bands via immunoprecipitation we decided to ensure the 

band could be seen once conducting a transient transfection and preforming a western blot. 

Figure 16 shows that we were only able to detect a protein band in one lane, and at very minute 

amounts. The results obtained from all western blot analyses, and immunoprecipitations 

prompted moving from a normal cell, to a cancer cell.  
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DNMT3B Endogenous Protein Expression in A549 Adenocarcinoma Cells 

 

A549 lung adenocarcinoma cells are known to have higher expression levels of 

DNMT3B. Western blot analysis confirmed, Figure 17 shows A549 cells grown in a 10-cm dish, 

cells were collected and prepared. Each lane was loaded with 44µg of protein. Purifying the 

DNMT3B protein proved more difficult than initially anticipated, therefore we decided to 

examine an alternative method of protein manipulation. Overexpression of the DNMT3B protein 

is still of great interest. Further optimizations of overexpression protocols are necessary. 

siRNA Mediated Silencing of DNMT1, DNMT3A, DNMT3B 

Using RNA interference (RNAi) to silence DNMT1, DNMT3A, and DNMT3B genes 

allows us to study the effects of these genes, and their importance. To test the level of 
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knockdown in samples qRT-PCR analysis was completed, the level of knockdown was 

ascertained. As seen in Figure 18 knockdown efficiencies were successful, approximately 80%. 
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A549 Show Increased Sensitivity to Glycolytic and Mitochondrial Inhibitors when DNMT’s 

are Knocked Down  

Once the level of gene knockdown was confirmed, glycolytic and mitochondrial 

inhibitors were tested to examine the role DNMTs play in regulating cellular metabolism, 

specifically lung cancer metabolism. Cancer cell metabolism differs from non-meiotic cells in 

ATP production. Cancer cells and other highly proliferative tissues acquire a large portion of 

their energy from glycolysis, whereas non-meiotic cells produce large amounts of ATP via 

oxidative phosphorylation in the mitochondria. This prompted examination of multiple metabolic 

inhibitors. A549 cells were transiently transfected with 100nM siRNA for 48 hours, siRNA was 

then removed and inhibitors were added. Figure 11 shows the effects of the different glycolytic 

and mitochondrial inhibitors on ATP production levels. A CellTiter-Glo Assay (Promega 

Madison, WI) measures ATP, which is representative of metabolically active cells. Normal 

glucose containing media was used as a control for all samples. Galactose forces cells into 

mitochondrial respiration because oxidation of galactose to pyruvate via glycolysis yields no net 

ATP. (Marroquin et al., 2007). The next inhibitor used was 2-deoxyglucose, which is a glucose 

analogue that competitively inhibits hexokinase activity in the first enzymatic step of glycolysis. 

(Suchorolski et al., 2013) Bromo-pyruvate is also a hexokinase II inhibitor.(Nakano et al., 2011) 

Oligomycin was the next inhibitor; oligomycin inhibits the mitochondrial ATP synthase. (Zhang 

et al., 2012b) The final inhibitor used was rotenone, rotenone is a potent mitochondrial complex I 

inhibitor. (Xiong et al., 2013) In figure 11 A549 cells were treated with siRNA for 48 hours, then 

the media was changed and compounds were added. Upon addition of compounds all siRNA 

mediated knockdown samples showed increased sensitivity towards glycolytic and mitochondrial 

inhibitors.  
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The altered basal metabolism cancer cells experience has been known for about 100 

years. Otto Warburg’s hypothesis regarding cancer cells preference towards glycolysis is still a 

mystery. Figure 19 shows A549 cells treated with siRNA, and then treated with compounds that 

inhibit the glycolytic (2-DG, BP) or mitochondrial pathway (OL, ROT) cellular viability is 

decreased dramatically. DNMT1 knock-down shows increased sensitivity, but cells are not quite 

as inhibited by glycolytic inhibitors as DNMT3B knockdown samples. DNMT3B shows a 

dramatic loss in viability when treated with glycolytic inhibitors, which shows DNMT3B could 

be mediating glycolysis. Whether the effect is causal, or cooperative is unknown. DNMT3A 

shows a similar trend towards sensitivity when treated with inhibitors, however the effect is less 

dramatic when treated with 2-DG. Interestingly 2-DG and BP had differing results. 2-DG 

showed a slight increase in sensitivity, where BP showed a very extreme sensitization. 
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Oligomycin is a potent inhibitor of ATP synthase. Not surprisingly, oligomycin showed a very 

dramatic effect in all the DNMT knockdown samples. Rotenone also displayed a similar effect. 

Due to the large amount of sensitivity conveyed by the different inhibitors, we believe DNMT’s 

are important for metabolism.  

Global Analysis of Metabolites after DNMT Knockdown via HPLC-MS 
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Figure 20 represents metabolites from the glycolytic pathway. DNMT1 knockdown 

samples show a slightly reduced level of glycolytic intermediates, the changes seen are slight, 

however they are statistically significant. The amount of lactic acid produced by DNMT1 

knockdown is much higher than control samples. The DNMT3A knockdown samples show an 

increase in a large portion of glycolytic intermediates, silencing of the DNMT3A gene shows an 

upregulation in glycolysis. This is also confirmed by figure 21 showing a large increase in lactic 

acid present. Glycolysis is a rapid way of producing ATP, a byproduct is lactic acid. Following a 

similar trend as the DNMT1 knockdown, DNMT3B shows significantly altered metabolites, both 

up and down regulated. The extracellular fingerprinting of lactic acid on DNMT3B media 

confirms that lactic acid production is slightly less than control samples. The most dramatic 

difference in glycolysis was seen in the DNMT3A knockdown samples. 
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The pentose phosphate pathway (PPP) is important for two main reasons, one is the production 

of ribose-5-phosphate (R5P), which is used for the synthesis of nucleotides, and also the 

formation of NADPH which protects against oxidative stress. NADPH neutralizes reactive 

oxygen intermediates. (Perl et al., 2011) In figure 22 we can see that DNMT1, and DNMT3B 

have similar patterns of metabolites, this was also seen in the glycolytic pathway. Metabolites 

from the pathway are significantly up and down regulated. These data points suggest that 

DNMT1 and DNMT3B enzymes have similar characteristics in metabolism. DNMT3A shows a 

different pattern. DNMT3A shows a very strong trend towards upregulation of metabolites and 

intermediate products.  
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Figure 23 represents metabolites in the tricarboxylic acid (TCA) cycle, also known as 

Krebs cycle. The TCA cycle is the major final common pathway for oxidation of carbohydrates, 

lipids, and some amino acids, resulting in large amounts of ATP via oxidative phosphorylation. 

Fluctuation of the TCA cycle directly affects oxidative phosphorylation. (Bowtell et al., 2007) 

Figure 23 shows intermediate metabolites of the TCA cycle. In this pathway all DNMT’s seem 

to have a slightly different affect. The DNMT1 knockdown samples are all slightly increased, the 

most dramatic increase being 2-hydroxygluterate, and malic acid. DNMT3A knockdown samples 

a very noticeably increased in all metabolites and intermediate products. DNMT3B shows a 

small amount of decrease in some metabolites, of all the conditions DNMT3B seems to have to 

smallest effect in the TCA cycle.  
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Figures: 20, 21, 22, 23 show global metabolite changes after treatment with siRNA. The amount 

of metabolites and intermediates that are both increased and decreased show that all DNMT’s 

play a role in cellular metabolism. DNMT3A knockdown seems to have the most significant 

effect in all pathways. DNMT3A knockdown samples seem to increase all metabolites in 

glycolysis, PPP, and TCA cycle. These three cycles differ in many respects, which lead us to 

believe that DNMT3A is very significantly involved in cellular metabolism. Analysis of these 

pathways and transcription factors that could be involved in the metabolism changes prompts 

investigation into energy signaling. 
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Transcription Factors Involved in DNMT Mediated Metabolism: 

 

PPARγ is a member of the nuclear hormone receptor suerfamily. PPARγ is associated 

with sensing fatty acids, and other nutritional signals (Semple et al., 2006). DNMT1 silencing 

does not seem to alter the expression level of PPARγ, however DNMT3A, and DNMT3B seem 

to have differential effects on PPARγ expression levels. DNMT3A causes a 2-fold increase, 

where DNMT3B causes almost a 1.5 fold decrease in expression level.  
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PGC1α is a key transcriptional regulator of lipogenesis and oxidative metabolism. 

PGC1α has been implicated in cancer development, however different sources have reported 

opposing results. Initially lower PGC1α expression was associated with cancerous tissue. 

Conversely, PGC1α expression has been shown in cancer cell proliferation. (Bhalla et al., 2011) 

Figure X represents the expression level of PGC1α. Both DNMT1, and DNMT3A knockdown 

samples show elevated PGC1α levels. In contrast DNMT3B samples show a large decrease in 

expression. 
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Hypoxic-Inducible factor 1α (HIF-1α) is a transcription factor that mediates adaptive 

responses to reduced O2 availability, including angiogenesis and glycolysis. Expression of HIF-

1α increases dramatically when cells are hypoxic. DNMT1, and DNMT3B knockdown does not 

seem to alter the level of HIF-1α, DNMT3A knockdown seems to have a large effect on HIF-1α 

expression. 
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Conclusions: 

 

Figures 24, 25, 26 show expression level of samples; promoter methylation status is not 

taken into account. Promoter methylation analysis is the next step. The data collected thus far 

shows that DNMT1 is important in metabolism and silencing the gene causes global metabolism 

changes. DNMT3B is also important in metabolism. DNMT3B is also important in regulating 

transcription factors associated with metabolic homeostasis. DNMT3A seems to have the most 

dramatic effect in metabolism. DNMT3A knockdown samples showed a more ideal environment 

for cancer cell proliferation. The lactic acid increase, increased sensitivity to both glycolytic and 

mitochondrial inhibitors, and the high induction of HIF1α all suggest that DNMT3A is playing a 

significant role in cancer metabolism. As previously mentioned promoter methylation status is 

the next step in determining what genes are being expressed. Enzymatic activity assay kits that 

measure DNMT activity are also available. Determining DNMTs exact mechanism in the context 

of cancer cell metabolism will ideally shed light on the Warburg Effect.  
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