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Abstract

As with any complex biological pathway, the splicing process has both advantages
and obstacles with respect to the diversity and fidelity of protein production. The po-
tential benefits of being able to produce multiple versions of a gene (isoforms) must
be weighed against the additional complexity introduced by the noisy and mecha-
nistically complicated process of splicing. Indeed, research has found that errors in
splicing can be implicated in an increasing number of disorders.

Variants that cause disease may operate by disrupting splicing; however many
of the variants are frequently annotated as disrupting function through a missense
mutation, or via an unknown mechanism.

The objective of this study is to determine the ubiquity of splice-altering variants
(SAVs) in the human genome with a focus on coding missense and silent synonymous
polymorphisms that may impact splicing. As a first step, we evaluated the ability of
in silico prediction tools to predict whether a given variant will disrupt splicing.

Top performing tools were then used to predict splicing disruption for two sets
of variants in the genome; one data set contained variants located anywhere in an
exon, and the second restricted variants by location with the focus specifically on
those annotated as being involved in disease. The results demonstrate that for some
of these prediction tools there is a bias in the results based on variant proximity to
the exon-intron junction. Also, analysis of the data sets suggests that the variants
listed as non-splice a↵ecting in the database include a considerable number of false
negatives. These results may be beneficial for updating the information in widely
used databases to improve the usefulness of such resources.

The e↵orts summarized in this thesis will hopefully bring insights into the mech-
anisms by which splicing errors contribute to disease development and thus facilitate
disease treatment improvements.
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1 Introduction

The initial product of transcription is the pre-mRNA which requires extensive

modification prior to translation into a functional protein. Splicing is the process by

which non-coding RNA segments (introns) are removed from a pre-mRNA transcript

and the appropriate coding RNA segments (exons) are retained. The splicing process

is important to the ability of a cell to produce mature transcripts, which are then

translated. On average, 90% of a pre-mRNA transcript is removed as introns, leaving

the remaining 10%, the exons, to be ligated and form the mature mRNA [Roy and

Irimia, 2009]. While many researchers choose to focus on the beneficial aspect of

splicing’s ability to produce multiple isoforms of a single gene [Niu and Yang, 2011],

it should not be overlooked that this mechanism’s inherent complexity makes it sus-

ceptible to a myriad of sources of error, and thereby may enable the development of

many diseases [Tazi et al., 2009]. The highly complex process of splicing often occurs

cotranscriptionally and thus requires careful regulation to ensure the precision and

accuracy of the resultant mRNA [Kornblihtt et al., 2004].

Research suggests that many human diseases are the result of aberrant splicing

resulting from mutations that disrupt various components of the process [Cooper

et al., 2009]. The connection between defects in the splicing process and disease

occurrence has been demonstrated for various diseases such as Smith-Lemli-Opitz

syndrome and Sandho↵ disease in which disruptions in the splice site motifs result

in aberrant splicing and pathology [Fitzky et al., 1998, Wakamatsu et al., 1992].

Furthermore, the severity of disease is likely proportional to how the splicing process

a↵ects the resulting protein function [Krawczak et al., 2007].

Splicing also interacts with the process of nonsense mediated decay (NMD) [Cartegni L,

2002]. As splicing mutations may result in frame shifts, or premature stop codons

this then makes the resulting mRNA a potential target of NMD. NMD ultimately

e↵ects gene expression by degrading damaged mRNA thus preventing the translation
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of potentially aberrant proteins [Wollerton et al., 2004]; it can result in complete

loss of function even if the individual is heterozygous for the premature stop codon

variant. Some bioinformatics tools have estimated that approximately 35% of human

alternative splicing isoforms produce targets for NMD [Lewis et al., 2003].

Within the context of of splicing and disease, there are several areas that warrant

further investigation. First, although most splice-altering variants (SAVs) have been

documented as resulting in a loss of function from the destruction of splice sites,

some may result in the gain of splice sites. Furthermore, since the discovery of

splicing additional elements aside from the 50 and 30 motifs and the polypyrimidine

tract have been discovered, such as exonic splicing enhancers (ESEs), exonic splicing

silencers (ESSs), intronic splicing enhancers (ISEs), and intronic splicing silencers

(ISSs) [Cartegni L and AR, 2003]. The inactivation or creation of any of these splicing

regulatory elements as well as the creation of cryptic splice sites in ectopic locations

can impact the resulting mature transcript and hypothetically be just as detrimental

as mutations at the branch site, or 50 or 30 splice sites [Woolfe et al., 2010]. There

is also evidence that mutations in the spliceosome complex, the cellular machinery

that carries out splicing, may also play a significant role in the incidence of disease

[Padgett, 2012]. This further illustrates the potential mistakes in splicing have to

contribute to a variety of pathologies.

A variety of computer-based prediction tools have been developed for identifying

variants in the genome and predicting the consequence on protein function of such

variants [Mort et al., 2014, Xiong et al., 2015, Desmet et al., 2009]. Since confirming

how a single variant disrupts function experimentally can be costly and time consum-

ing, in silico prediction is advantageous with its potentially high level of precision in

determining how a mutation may impact protein function.

Prediction tools utilize diverse modeling methods and data sets, and as a result

vary in the features they predict. For instance, a tool such as MutPred Splice con-
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siders only exonic variants that may act to disrupt pre-mRNA splicing [Mort et al.,

2014]; while others such as Human Splice Finder (HSF) consider both intronic and ex-

onic information to identify potential splice sites, and to predict possible branch sites

[Desmet et al., 2009]. Tools such as these examine variants collected from databases

like HGMD [Stenson et al., 2014] for their source data. Some of the information

produced from these predictors may then be further investigated for input into ref-

erence portals that collect information on rare diseases that may be a↵ected by such

mutations. These reference portals provide a source for disease classification, drug

inventories, and additional material for researchers and patients [Maiella et al., 2013]

which may be enhanced by the information from the predictors.

However, there is a potential problem with the accuracy of these predictors in

that a potential annotation bias exists in the reporting of information in them. For

example, any mutations in the exonic sequence may be associated with disease but

the reason for disease or protein malfunction may be incorrectly labeled. Often the

disease is attributed to missense or possibly even synonymous mutations a↵ecting

the functionality of the protein on the amino acid level, rather than being recog-

nized as the variant actually causing a disruption in the splicing of the mRNA and

thereby changing protein function. More importantly, many synonymous variations

are filtered out when the protein a↵ected was being assessed for functionality and

the investigation incorporated the amino acid substitution without observing how

the variant may have impacted splicing. Variants may be mislabeled and as such not

associated with pathology at all, yet they do in fact a↵ect splicing and may thus be

a contributing factor to the occurrence of disease.

The purpose of this study is to more accurately determine the contribution to

disease of splice-altering variants (SAVs) located at and around the donor and accep-

tor splice sites. We utilize computer-based prediction tools and literature searches

in an attempt to identify previously unknown, or incorrectly annotated SAVs with
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gene-disease associations and identify SAVs which have been incorrectly annotated

in various databases. Seven in silico prediction tools were evaluated for use in this

context. The hope is that this investigation will provide information to improve

upon the current models or develop an ensemble approach to improve the precision

of prediction.
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1.1 Splicing and Disease

The complexity of the splicing process leaves it vulnerable to error and these errors

can be pathological. Multiple regulatory processes are necessary due to the intricacy

of splicing mechanisms and these range from splice site recognition by the spliceosome,

to alternative splice site selection [Keren et al., 2010]. It has been estimated that up to

half of those point mutations which have been associated with causing genetic disease

in humans do so as the result of defects in splicing [Cartegni L, 2002]. Forces such

as changes in the environment of the cell can cause alterations to control elements

and thus alter the proteins translated. Though some of this regulation is based

upon the location and recognition of the splice sites themselves, this alone is not

su�cient for management of the process [Tazi et al., 2009]. Additional regulatory

protein complexes, RNPs (ribonucleoproteins), bind the pre-mRNA and aid in exon

recognition [Tazi et al., 2009]. Mutations in any of the proteins or the site motifs may

disrupt the regulatory processes and lead to splicing errors causing disease.

Depending upon the particular gene involved and its function, the presence of a

variant may be more or less likely to cause aberrant splicing. Those genes whose

function is not supported by an alternate pathway are particularly susceptible to mu-

tations, as the system has no means for compensation if the function is interrupted.

Examples of genes susceptible to aberrant splicing in the presence of suitable variants

include DHCR7, responsible for Smith-Lemli-Opitz syndrome; HEXB, causing Sand-

ho↵ disease; PAH, which results in phenylketoneuria (PKU); and CFTR, that causes

cystic fibrosis. The various mutations influencing these genes include disruptions to

normal splice sites and/or the activation of cryptic splice sites, disruption of splic-

ing enhancers, or the creation of splicing silencers. Any of these issues may lead to

aberrant of splicing, dysfunctional or non-functional proteins, and disease pathology.
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1.1.1 DHCR7 Gene and Smith-Lemli-Opitz Syndrome

Smith-Lemli-Opitz syndrome (SLOS) is a disease which results from insu�cient

production of cholesterol and the accumulation of potentially toxic by-products of

this process [National Library of Medicine (US), 2013d]. Cholesterol is a necessary

component of the plasma membrane of every cell type hence this disease can have

wide-spread consequences a↵ecting multiple organs and systems, including cardiopul-

monary, digestive, renal, and others [National Library of Medicine (US), 2013d].

SLOS results from mutations in theDHCR7 gene (7-dehydrocholesterol reductase)

which is involved in the manufacture of cholesterol in numerous cell types [National

Library of Medicine (US), 2013a]. The most common mutation associated with SLOS

is the IVS8-1G>C mutation which has an associated allele frequency (AF) of 4.2 x

10�3 in ExAC [The Broad Institute, 2015]. This mutation disrupts a 30 splice site and

activates cryptic splice sites; the consequence is an alteration in the reading frame and

introudction of a premature stop codon [Fitzky et al., 1998]. The abnormal mRNA

produced is translated into an altered protein which lacks a C-terminal domain [Yu

et al., 2000] which renders it non-functional.

1.1.2 HEXB Gene and Sandho↵ Disease

Some mutations in the HEXB gene, which codes for the beta subunit of the

hexosaminidase enzyme, do cause the lipid storage disorder Sandho↵ disease. Beta-

hexosaminidase A and B enzymes reside in lysosomes and function in the breakdown

of sphingolipides, oligosaccharides, and gangliosides. Dysfunction of a subunit of this

enzyme can inhibit these metabolic processes and cause substrate buildup resulting

in destruction of neurons in the CNS [National Library of Medicine (US), 2013c].

Multiple splicing-associated mutations have been demonstrated to cause Sandho↵

disease and many of them consist of either exonic or intronic mutations that interefere

with the 50 or 30 splice sites [Furihata et al., 1999][Yoshizawa et al., 2002]. A C to T

6



mutation in exon 11 results in the incorporation of the amino acid leucine instead of

proline at position 417 of the protein [Wakamatsu et al., 1992]; according to ExAC

(Exome Aggregation Consortium) [The Broad Institute, 2015], this mutation has an

allelic frequency of 6.6 x 10�4 and in spite of being a missense mutation has been

demonstrated to cause the activation of a cryptic 30 splice site.

In one particularly surprising instance this mutation presented in a Sandho↵ pa-

tient in conjunction with an A to G substitution in exon 2 that resulted in the

incorporation of a lysine to arginine substitution at position 121 of the protein. Here

the investigators observed that there was an alteration of the splicing process yet the

protein produced was not “biochemically defective” [Wakamatsu et al., 1992]; they

thus determined that in this situation there existed “a novel mechanism for the cause

of disease” [Wakamatsu et al., 1992].

The introduction of the IVS2-1G>A variant within intron 2 of the HEXB gene

was reported to cause disruption of the 30 splice site of intron 2; this resulted in

the skipping of exon 3 in the translated beta subunit. However, due to the length

of exon 3 (66 bases) no frameshift resulted from this change. As a result of the

decreased length of the beta subunit, the e↵ect of this SAV on the resulting protein

was interference with protein folding and disruption to the secondary and tertiary

structures, not damage to the protein active site or formation of a premature stop

codon which is commonly anticipated [Yoshizawa et al., 2002].

1.1.3 PAH Gene and Phenylketoneuria

Another disease example is phenylketoneuria (PKU), one of the more common of

these diseases with an incidence in the United States of 1 in 10,000 to 1 in 15,000

newborns [National Library of Medicine (US), 2013b]. PKU is the result of an inability

to process the amino acid phenylalanine, present in all dietary protein, to tyrosine

which is then further processed to generate homrones, neurotransmitters, and melanin
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[National Library of Medicine (US), 2013b]. PKU has a range of severity of expression

due to the levels of enzyme function present in the a↵ected individual. In mild cases

the disease can be controlled with dieteary restrictions while more severe cases may

necessitate additional medication. If untreated hyperphenylalaninemia can lead to

mental retardation seizures, and behavioral problems [National Library of Medicine

(US), 2013b].

PKU results from a variety of di↵erent types of mutations in the PAH gene, some

of which are associated with splicing. A common splicing variant is the c.30C>G

mutation which occurs in exon 1 of PAH [Dobrowolski et al., 2010] with an allelic

frequency of 5.6 x 10�4 [The Broad Institute, 2015]. This SAV results in the creation of

an ESS located in the region of a weak 50 splice site and as such results in the skipping

of exon 1. Of note, prior to recent investigations [Dobrowolski et al., 2010], this variant

was categorized as neutral due to the fact that it is a synonymous mutation (p.G10G).

It was not until further research was performed that it was recognized that pathology

was induced by a↵ecting the splicing process.

Another example of is the c.1144T>C [Heintz et al., 2012] SAV which is located

within the motif of an ESE; its disruption results in the skipping of exon 11 due to

alterations to the reading frame. Additionally, the abnormal mRNAs which stem from

this variant are frequently the targets of NMD and thus degraded without producing

a protein [Heintz et al., 2012].

1.1.4 CFTR Gene and Cystic Fibrosis

The extension of repeat elements within the genome can also be detrimental to

the splicing process. Under normal circumstances these repeats help splicing factors

to recognize their binding sites; however alterations to the number of repeats in the

sequence can impede this recognition process [Tazi et al., 2009]. This has been seen

in the context of the disease cystic fibrosis (CF), where an increase in the number

8



of UG repeats present causes abnormal splicing of the CFTR gene. It has been

shown that approximately 13% of the mutations which cause CF by disruption of

the chloride/bicarbonate ion channel encoded by CFTR are splicing mutations [Bell

et al., 2015]. The SAV more commonly seen in CF is c.2657+5G>A located near the

50 splice site in intron 16 of the CFTR gene [Igreja et al., 2015].

1.1.5 HEXA gene and Tay-Sachs Disease

Tay-Sachs disease is a neurodegenerative disorder in which the lack of functional

protein products from the HEXA gene causes toxic substances to accumulate in

neurons, resulting in the disease pathology including loss of motor skills in infants,

seizures, and cognitive impairment [National Library of Medicine (US), 2013e]. Of

the various point mutations described in association with this disease, multiple exam-

ples have been identified at or near the exon-intron junctions frequently disrupting the

splice site motifs [Myerowitz, 1988] and resulting in exon skipping and the production

of multiple incorrect transcripts [Akli et al., 1990]. The most common SAV associ-

ated with Tay-Sachs according to ExAC is c.1073+1G>A with an allelic frequency

of 2.2 x 10�4 [The Broad Institute, 2015]. This variant results in the disruption of

a donor splice site. The abnormal transcripts produced are either degraded by the

mechanism of NMD, or produce defective proteins [Levit et al., 2010]. In either case

the end result is a lack of functional protein which permits the toxic accumulations

in neurons and thus causes this disease pathology.

Clearly from the e↵ects demonstrated in multiple disease processes, there are nu-

merous ways in which splicing can be disrupted and thus lead to disease. This knowl-

edge underscores the importance of identifying such aberrations in normal splicing

and being able to identify those variants likely to result in pathology.
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1.2 The Molecular Biology of Splicing

Splicing is a complex process by which segments of a pre-mRNA are cut and re-

joined to form the instructions to build a protein. It must be meticulously carried

out by the interplay of enzymes, mRNAs, proteins, and the pre-mRNA alternately

coming together and dissociating in sequence. These component interactions are

choreographed to ensure that the introns and select exons are removed, and appro-

priate exons are retained and ligated to form the final mRNA.

The process of splicing begins with transcription of pre-mRNA from the DNA

template. This transcript contains a series of coding and non-coding regions; those

elements which do not contain information needed for production of the desired pro-

tein must be removed, and the remaining segments then reattached to form a sequence

which can be translated. The cellular machinery which performs the task of actually

splicing the mRNA is the spliceosome. The spliceosome is an association of small nu-

clear ribonucleic proteins (snRNPs), U1, U2, U4, U5, and U6, which form a complex.

Specific sequences at various positions on the pre-mRNA are recognized by particular

spliceosomal components. Located at the junctions of the exons and introns are the

50 donor splice site and the 30 acceptor splice site (Figure 1), and within the sequence

of the intron is the branch site. In the intron between the branch site and the 30 splice

site is the polypyrimidine tract (PPT). The PPT does not have a conserved sequence,

rather consists of a general enrichment of the region with pyrimidines, or the bases

cytosine (C), thymine (T), and uracil (U). These four areas contain conserved motifs

that are recognized by elements of the spliceosome and used for orientation of those

components and the complex as a whole in the splicing process.

The first component of the spliceosome complex is the U1 snRNP which binds the

GU residues of the 50 splice site of the pre-mRNA. Next the U2 associated factors

recognize the AG residue of the 30 splice site and the PPT, and bind at that location

[Padgett, 2012]. The U2 snRNP then recognizes the components of the branch point

10



Splice Site Motifs

Figure 1: The nucleotides in bold are the most conserved portion of the sequence, however
extended sections of the sequence are recognized in binding components of the spliceosome.
The branch site of the intron is located within the body of the intron. The adenosine residue
within the intron (shown in bold) is the site of attachment for formation of the intron lariat.
The polypyrimidine tract consists of a sequence of nucleotides particularly saturated with
pyrimidines (cytosine and uracil) and located between the branch site and the 30 splice site.
The 30 acceptor splice site at the intron/exon boundary is a site of recognition with the
nucleotides in bold being the most conserved in the sequence. [Szauter, 2015]

Spliceosome Assembly: First Steps

Figure 2: Assembly of the first components of the spliceosome on the pre-mRNA. The SR
protein binds to the ESE within the exon and has a stabilizing e↵ect on the two subunits
of the U2 additional factor (U2AF(a) and (b)) bound to the PPT within the intron. This
U2AF in turn promotes the binding of the U2 snRNP at the branch point. (Adapted with
permission from [Cartegni L, 2002])

sequence around the main adenosine, it is stabilized by the e↵ects of the U2AF, and

binds with U1 to form the pre-spliceosome complex (Figure 2) [Matera and Wang,

2014]. The rearrangement of these elements allows three regions of the intron (50

splice site, branch site, and 30 splice site) to be brought close together.

Components U4, U6, and U5 form a complex independently and subsequently

interact with the pre-spliceosome complex (U1, U2, and U2AF) already bound to the

pre-mRNA (Figure 3). After further rearrangement of the elements, the U1 and U4
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snRNPs dissociate. At this point the first cutting of the pre-mRNA takes place; a

transesterification reaction cleaves the 50 end of the intron. This free end is then bound

to the adenine residue in the branch site, forming the lariat structure of the intron

which will eventually be removed. Next a second transesterification reaction cleaves

the 30 end of the intron and the two exons are ligated. This forms the newly spliced

mRNA which is now free and ready for translation. The intron lariat is released

from the spliceosome and will be degraded, while the remaining components of the

spliceosome dissociate to be available for the splicing of another transcript [Matera

and Wang, 2014].

Spliceosome Complex Assembly

Figure 3: From [Matera and Wang, 2014]. The pre-spliceosome (U1 and U2) once assem-
bled on the pre-mRNA, can interact with the U4, U6, U5 complex which formed separately.
These two structures complex while bound to the pre-mRNA and subsequently release the
U1 and U4 snRNPs. The remaining complex B (U2, U5, and U6) then performs the first
transesterification reaction. The lariat structure is formed by the binding of the free end of
the intron to the adenine residue of the branch point. Next the second transesterification
reaction occurs to cleave the intron and the exons are spliced together. The remaining
snRNPs separate from the intron lariat to be used in another splicing sequence.
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1.3 Splicing in Evolutionary Context

Alternative splicing is an important and necessary component of human genetic

regulation. It allows the coding sequences for multiple proteins to be contained within

a single gene and produced by splicing in or out the appropriate exons. The human

genome contains 24,000 genes which code for proteins, yet there are an estimated

100,000 protein isoforms that are actually synthesized in humans [Modrek and Lee,

2002]. However, the process of splicing in humans is far less fastidious than it is in

other organisms.

Aberrant splicing and exon skipping has been associated with increased intron

length; this may be because in the context of longer introns it is more likely that the

intron sequence will include potential false splice sites. By contrast, exons associated

with smaller introns are more frequently expressed in the spliced mRNA [Wu and

Hurst, 2015]. As a result the donor and, particularly, acceptor sites flanking these

extended introns tend to be weak; research has demonstrated, weak splice sites tend

to be associated more frequently with the presence of ESEs [Wu and Hurst, 2015],

since this enhances the ability of the spliceosome components to recognize said splice

site and thus avoid errors. It follows logically that the presence of ESEs is more

necessary in genes which contain more and/or longer introns. In this situation the 50

and 30 splice sites are further removed from each other and thus likely to be weaker

due to the presence of potential decoy splice sites in the intron code. Hence it is

beneficial to have more ESEs so that in conjunction with the support of SR proteins,

the true splice sites can be identified and the components of the spliceosome may

bind appropriately, enabling correct splicing of the mRNA.

The splicing process itself has evolved through various processes such as the accu-

mulation of mutations in introns and exons resulting in both damage to constitutive

splice sites and the creation of new ones [Keren et al., 2010]. When mutations arise

in existing splice sites it can make them unrecognizable by the machinery of the
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spliceosome or by SR proteins, and thus unusable. With the creation of new splice

sites, these sites are then in competition with existing ones and their use can result in

splicing aberrations. However, in circumstances where there is an e↵ective negative

selection pressure in place, this can push the new sites to exist only as “minor” splice

sites, with the ancestral ones remaining the primary location for splicing; this would

retain the function of the resulting protein [Keren et al., 2010].

The e↵ects of evolution of the splicing process on the genome is not entirely

negative. Aberrant splicing may result in the creation of a protein isoform which

has slightly di↵erent protein-protein interactions from those of its source and which

are beneficial to the organism [Roy and Irimia, 2009]. Splicing has evolved through

additional processes such as changes to exon-intron structure, exon shu✏ing, and ex-

onization [Keren et al., 2010]. Changes to the structure and relative sizes of exons and

introns result in changes to the propensity that exons will or will not be retained in

the product mRNA. Exon shu✏ing is a process by which new exons are incorporated

into genes, or are duplicated within their original gene. It has been suggested that this

process is advantageous to the organism since it may create a beneficial new protein

isoform [Gilbert, 1978]; but it is much more likely that the altered protein will either

have no function and consequently be degraded, or may be detrimental, interfering

with the correctly functioning ancestral protein and potentially resulting in disease.

An example of this is seen with the CFTR (cystic fibrosis transmembrane conduc-

tance regulator) membrane protein which causes cystic fibrosis [Lubamba et al., 2012]

[Linsdell, 2015].

The process of exonization is the means by which regions of the genome become

new exons. Frequently these regions are transposable elements, in humans the most

common of which is the Alu element [Keren et al., 2010]. While in theory the addition

of exons could confer an evolutionary advantage to the organism, in practice it seems

much more likely that the addition of new exons would likely interfere with the
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functioning of normal proteins and the cell, and thus result in disease [Kreahling and

Graveley, 2004]. An example of this can be seen with respect to the TRIM24 gene.

In cases where Alu elements have become exons, the result was a lack of production of

normal protein from this gene, which has been associated with leukemia [Amit et al.,

2007].

Overall, though the process of genetic mutation and aberrant splicing has been

associated theoretically with the evolutionary advancement of species, the process of

splicing ultimately is less auspicious. It frequently is associated with the creation of

errors in the resulting proteins, a phenomenon which often has the potential if not

the actual consequence of causing disease. A noisy, and disruptive process, aberrant

splicing may be more correctly viewed as doing more harm than good.
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2 Review of Prediction Methods

The purpose of this project is to assess the performance of in silico predictors in

the evaluation of variants in and around the splice sites and ESRs to determine the

likelihood that their presence will result in aberrant splicing. In doing so, multiple

tools were researched and screened, and of these seven in silico prediction tools were

ultimately considered for evaluation.

SPANR (splicing-based analysis of variants) is the most recently developed of the

predictors used in this project [Xiong et al., 2015]. This tool is unique in that it

was not trained using disease annotations, functional genome annotations, or allele

frequencies in the population. Even though disease phenotype associations were not

utilized in training this predictor, according to its creators in practice it has proved

able to detect variants relating to disease expression when combined with phenotype-

matched genotype data [Xiong et al., 2015]. Furthermore, with respect to assessment

of genome-wide association studies (GWAS) or quantitative trait loci data (QTL),

though SPANR does not rely on allele frequency, it “can reliably detect rare and

even spontaneous disease variants” [Xiong et al., 2015]. The combination of these

techniques by SPANR serves to improve the specificity of GWAS and QTL in order

to identify variants causing particular diseases [Xiong et al., 2015].

The dataset used in the development of the SPANR predictor consisted of 75

base pair single-end RNA-seq datasets that were collected from the Illumina Human

BodyMap 2.0 project [Xiong et al., 2015]. The program was trained using cassette

exons identified from RefSeq annotations, and screened to ensure that only high

quality data from normal tissue was used. The data was further filtered to remove

exons which had any overlap, were very similar to each other, or were excessively

short (<10nt) or long (>6000nt) [Xiong et al., 2015]. SPANR looks for disruptions in

splicing resulting from single nucleotide variants which occur throughout the exon and

intron; it does not restrict its evaluation to the areas of the 50 and 30 splice sites, and
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the branch point. While the scope of this tool’s analysis is broad, it does not provide

as much information in its output as some other prediction tools, yielding three

values based on the value “psi” ( ). Psi is defined as the percentage of transcripts

which splice-in the exon containing the variant when said variant is present in the

genome; thus the predictions returned relate to the propensity for exon-skipping when

a particular variant is present.

Another prediction tool to identify single base substitutions that a↵ect mRNA

splicing is MutPred Splice [Mort et al., 2014]. MutPred Splice is a supervised learning

method which used a training set of data from which its algorithm could build a

model. New input is then applied to this model and assessed based on how similarly

it compares. One of the goals of the MutPred Splice program is to be able to predict

the severity of disease caused by a particular mutation by utilizing genotypic data

and evaluating the resulting gain or loss of exonic splicing regulatory elements (ESRs)

ensuing from a substitution [Mort et al., 2014]. In addition to evaluating ESRs,

MutPred Splice considers the potential for splice site disruption, creation of cryptic

splice sites, and exon skipping as a result of single nucleotide variants (SNVs). The

results from all these considerations are combined into a single overall score. This

predictor was trained using allelic information from instances of human disease to

predict those exonic single nucleotide polymorphisms (SNPs) which result in aberrant

splicing [Mort et al., 2014]. Unlike some other tools, MutPred Splice uses not only

missense, but also synonymous and nonsense variant data in order to expand the

scope of its predictions. However, its output is limited to variants located within the

exon that may impact splicing [Mort et al., 2014].

Skippy is a web-based tool which scores exonic variants with respect to the like-

lihood that they will result in exon skipping during splicing, and looks to identify

potential SAVs [Woolfe et al., 2010]. This tool focuses on the e↵ects that alterations

to ESRs may have on splicing, particularly with respect to exon skipping. It gauges
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the likelihood that said variants will result in the creation, loss, or change in ESRs

and thus may cause a splicing aberration. However, this predictor does not look at

SAVs within the splice site sequences themselves or less than three base pairs from

the 50 or 30 junction [Woolfe et al., 2010]. Analysis suggests that there may exist bind-

ing “hotspots” near but not within exon-intron junctions which are more important

than other areas of the sequence for splicing regulation [Woolfe et al., 2010]. Though

the implication is that these areas have a larger impact on the process of splicing,

locations all throughout the exon still are important for splicing regulation [Woolfe

et al., 2010].

Being web-based, this tool is easily and freely accessible; additionally it only

requires the chromosome location and the identity of the variant alleles as input. The

focus of Skippy on the e↵ects of disruptions to ESRs is beneficial in that it does not

limit the search for variants which may impact splicing to areas in the immediate

vicinity of the splice sites. The authors argue that their predictor has demonstrated

that SAVs occurring in regions removed from the exon-intron junctions in fact have

a larger impact on splicing than mutations within the traditional splice site locations

(i.e. the 50 and 30 ss, branch point, and PPT) [Woolfe et al., 2010]. Despite this

however, Skippy may not give ample weight to the e↵ects of features in those more

traditional areas on the process of splicing. Furthermore, in its focus on the e↵ects

of ESRs may make its results less comprehensive than is needed for more general

analysis purposes.

We also considered the predictor Human Splice Finder (HSF) [Desmet et al.,

2009]. The HSF data set includes both intronic and exonic data from the Ensembl

human genome database. This enables HSF to make predictions not only related

to the e↵ects of varians located at donor and acceptor splice sites, but also branch

points, ESEs, and ESSs [Desmet et al., 2009]. In addition to evaluating variants in

the aforementioned locations, this predictor was designed to predict potential branch
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points, 50 ss, and 30 splice sites. Theoretically this might increase the precision in

recignizing cryptic splice sites. HSF can also predict whether a variant will result

in the gain or loss of functionality of these splice sites. Based upon the literature,

HSF had good results in predicting mutations resulting in either exon skipping or

cryptic splice-site activation or creation for variants at the 50 and 30 ss. Though there

was some variation in precision depending upon the proximity of the variant to the

splice sites, overall the predictors performance was e�cient [Desmet et al., 2009].

Unfortunately the submission of variants to this predictor requires the separation of

said variants by gene; only those variants located in the same gene can be submitted

together. This unique requirement for data formatting was the dominant reason HSF

was not incorporated in the predictor evaluation.

The Alternative Splice Site Predictor (ASSP) uses a neural network model, and

a data set which looks at 70 base pairs in the exon and intron around skipped,

cyptic, alternative, and constitutive splice sites [Wang and Maŕın, 2006]. In addition

to evaluating the landscape of the 50 or 30 splice sites, this tool also examines the

regions of the branch point, polypyrimidine tract, and regulatory elements in its

assessment of the gain or loss of splice sites due to the e↵ects of variants on splicing.

Though thorough in its examination of the pre-mRNA and the components thereof,

the creators recognize that a shortcoming of this program is the amount of false

positives and false negatives in the identification of splice sites [Wang and Maŕın,

2006]. However, the authors did identify a phenomenon that those genes with cassette

exons, i.e. skipped and cryptic exons, occur more frequently in GC-poor regions

[Wang and Maŕın, 2006]. This discovery is demonstrative of the value of ASSP in

identifying elements of the genetic code which could be used as markers in the search

for variants a↵ecting splicing, despite the shortcomings inherent in any tool. However

a significant challenge with respect to the usefulness of this tool is the format in

which data must be submitted. ASSP requires that the FASTA or raw sequence be
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submitted including 70 base pairs before the first and after the last splice site. This

was the primary factor in the decision not to include ASSP in the final comparison

analysis.

ESE Finder [Smith et al., 2006] is a prediction tool that considers the e↵ects

of variants on not only the 50 and 30 splice sites and the branch sites, but also on

the serine-arginine protein splicing factors (SRSFs) which a↵ect the proclivity of

the spliceosome to act on the pre-mRNA [Krainer Lab; Zhang Lab; Cold Spring

Harbor Laboratory, 2007]. This method used SELEX (systematic evolution of ligands

by exponential enrichment) to identify potential ESEs [Smith et al., 2006]. After

multiple rounds of selection are performed using SELEX, the results were sequenced

to determine the consensus motif for each of the five SRSFs this tool considers [Smith

et al., 2006]. The sequences determined were then used to create a position-specific

weight matrix for each SRSF [Cartegni L and AR, 2003]. These matrices allow

the program to predict “the location of SR-protein-specific putative ESEs in exonic

sequences” [Krainer Lab; Zhang Lab; Cold Spring Harbor Laboratory, 2007]. One of

the benefits of this web-based prediciton tool is the fact that it considers the e↵ects

of variants not only on the splice sites and the branch site themselves, but also on

these SR proteins which contribute to the regulation of the actions of the spliceosome

itself. Originally the authors used sequences 20 nucleotides in length for the creation

of libraries used in the SELEX process [Cartegni L and AR, 2003]. In the update

to this tool in 2006, the length was changed to either seven or 14 nucleotides due

to the fact that the sequence that is recognized by the SRSFs is actually a sequence

of seven nucleotides [Smith et al., 2006]. As a result this reduces the likelihood of

multiple ESEs being present on the same insert and thus improves exactitude of the

predictions made.

Our final inclusion is the prediction tool MaxEnt, which uses the principal of

maximum entropy to assess splice sites and evaluate the possibility that the presence
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Predictors Considered for Assessment

Predictor Variants Detected Prediction Output

SPANR (Xiong et al. [2015]) SNV e↵ects on splicing
throughout the exon and in-
tron

dPSI, dPSI percentile, PSI
WT

MutPredSplice (Woolfe
et al. [2010])

SNV e↵ects on ESR
gain/loss, splice site dis-
ruption, cryptic splice site
formation, exon skipping

Overall splicing likelihood
score

Skippy (Woolfe et al. [2010]) ESR gain, loss, or change ESE/ESS gain/loss, LOR,
RC, 50 score, 30 score

Human Splice Finder (HSF)
(Desmet et al. [2009])

Location of branch points,
50 and 30 ss. E↵ect on splice
site function, exon skipping,
cryptic splice site creation

2 consensus value scores:
HSF and Maximum entropy
(50 or 30)

Alternative Splice Site Pre-
dictor (ASSP) (Wang and
Maŕın [2006])

E↵ects of variants on
branch point, PPT, ESRs,
gain/loss of splice site

putative splice site type;
confidence value 0-1

ESE Finder (Smith et al.
[2006])

E↵ects on 50 and 30 ss,
branch sites, and SRSFs

score for each of 5 di↵erent
SRSFs

MaxEnt (Eng et al. [2004]) Evaluation of e↵ect of SNVs
on 50 and 30 ss

MaxEnt, MM, WMM

Table 1: In silico predictors of splice-a↵ecting variants considered for assessment.

of a variant will disrupt normal splicing [Eng et al., 2004]. This predictor scores

50 and 30 splice sites in estimation of the e�ciency of splicing occurring at each.

MaxEnt focuses on the areas immediately around the 50 and 30 splice sites and does

not consider the e↵ects of variants located elsewhere in either the exon or intron [Eng

et al., 2004]. For the 30 splice site up to 23 base pairs can be input, while the maximum

is nine base pairs for the 50 splice site. Data entry for this predictor requires that

both the positive and negative sequences be entered. Though the input of data for

this predictor may be rather involved, MaxEnt performed well when its results were

compared with cDNA data [Eng et al., 2004].
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The in silico prediction tools we have selected for the assessment of SAVs represent

a range of approaches to the evaluation of variants and their impact on splicing. The

use of a diverse group of methods yet the same data sets as input provides greater

insight into the results which emerge as it allows for comparisons between the di↵erent

tools.
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3 Data and Methods

3.1 Evaluated Predictors

We employed the prediction tools SPANR [Xiong et al., 2015], MutPred Splice

[Mort et al., 2014], Skippy [Woolfe et al., 2010], and MaxEnt [Eng et al., 2004] to

predict splice sites and evaluate the e↵ects of the variants as well as those appear-

ing in annotations in HGMD. We then quantified the performance of each tool by

creating ROC (Receiver Operating Characteristic) curves and calculating the AUC

(Area Under the Curve) for each tool. The tools were chosen to represent a variety of

approaches to the prediction process regarding the impact of a particular variant on

splicing. At the same time it was important that the same data sets could be used for

all the predictors in order to facilitate legitimate comparisons of the results returned.

3.2 Evaluation Data Sets

To evaluate predictor performance we generated two data sets referred to as the

Exonic Missense (EMDS) and Junction Region data sets (JRDS) which consist of dis-

ease causing variants selected from the 2014.3 version of the Human Gene Mutation

Database (HGMD). In both data-sets positive, splice-a↵ecting variants annotated as

such in HGMD were selected. Any disease-causing variant not annotated as a↵ect-

ing splicing in HGMD was designated as a negative, putatively non-splice-a↵ecting,

variant.

In an attempt to ensure that performance was not influenced by variants belonging

to the training set of any predictor listed in Table 1, we excluded all variants used

in the training of the most recent predictor for which we could obtain such a list,

MutPredSplice [Mort et al., 2014]. It must be noted that SPANR was a newer method

we evaluated, but a training set of positive and negative data points was not available

for it.
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3.2.1 The Exonic Missense Data Set (EMDS)

The first data set generated consisted of 1000 exonic missense variants, 363 positive

and 637 negative, located anywhere within the exon. This Exonic Missense data

set enabled evaluation of the predictors with respect to how they appraise missense

variants specifically. With this data set limited to exonic variants, four paramaters

of three di↵erent in silico tools could be compared. It also facilitated an evaluation

of the information catalogued in the variant databases, as most of the information

therein primarily relates to exonic variants. The positive data points in the EMDS

are missense mutations and are identified as being disease-causing in HGMD.

3.2.2 The Junction Region Data Set (JRDS)

The second data set generated consisted of both synonymous and missense variants

collected within a specific range around the exon-intron junctions. These are exonic

variants located within three exonic nucleotides of the 50 splice site or the 30 splice

site. This is referred to as the Junction Region data set and includes 301 variants,

219 positive and 82 negative. The primary benefit of this data set is it restricts

the locations of the variants considered and removes any which are far from the

exon-intron junction. By so doing we can control for a confounding variable, the

distance the variant lies from the junction. If those tools which rely on this variable to

determine the likelihood of the variant a↵ecting splicing vary in the results returned

across the two data sets, that has implications regarding the predictor’s accuracy.

Additionally, the JRDS facilitates the inclusion of an additional predictor, MaxEnt,

in the evaluation process.

3.3 Using ROC Curves to Quantify Predictor Performance

In order to use predictive methods to uncover novel SAV’s it was necessary to

first quantify the performance of each predictor to systematically identify predictors
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which may or may not be useful. Each tool’s performance was evaluated based on its

Area Under the ROC curve (AUC) value calculated from the ROC (receiver operating

characteristic) curve. The ROC curve is used to assess the performance of any test

with two possible outcomes, given a continuous valued predictor. This is done by

varying the decision threshold from the largest to the smallest value along the range

of scores returned by the predictor. The decision threshold separates the scores

into positives and negatives and based upon where it is placed, the proportion of

positives and negatives will change. The confusion matrix in Table 2 illustrates the

four possible outcomes when classifying a datapoint. A truly positive point may be

labeled as positive (correctly) or negative (incorrectly). Likewise a truly negative

point may be labeled by the tool as positive (incorrectly) or negative (correctly).

These constitute the four possible designations: true positive (TP), false negative

(FN), false positive (FP), and true negative (TN), respectively. A curve is produced

from this information by plotting sensitivity, or the true positive rate (y axis), against

the false positive rate (FPR), or 1-specificity (x axis) while using a sliding decision

threshold; as shown in Figure 4A and Figure 5A.

Confusion Matrix

True label

Positive Negative

Predicted label
Positive True positives False positives

(Type I)

Negative False negatives
(Type II)

True negatives

Table 2: A sample confusion matrix showing the four potential outcomes when performing
binary classification.

Sensitivity, also referred to as the true positive rate, is the probability that a test

being performed will correctly identify a positive datapoint [Tape, 2015]; in this case,

the proportion of actual splice a↵ecting variants that the test correctly recognizes.
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This is plotted on the y-axis of the ROC curve. Sensitivity is calculated as the number

of true positives divided by the number of actual positives

sensitivity =
|TP |

|TP |+ |FN | (1)

In the equation, vertical lines indicate the set cardinality operator (not absolute

value). This refers to all the elements in a particular set of terms. For example, |TP |

refers to all the True Positive data points for a particular decision threshold.

Specificity is the probability that the classifier will accurately identify a negative

datapoint [Tape, 2015]. Here it represents the proportion of non-splice a↵ecting vari-

ants correctly reported by the test. Specificity is calculated as the number of true

negatives divided by the number of actual negatives,

specificity =
|TN |

|TN |+ |FP | . (2)

On an ROC curve sensitivity is plotted as a function of FPR. FPR is mathemat-

ically equivalent to 1-specificity and is defined as the fraction of negative datapoints

incorrectly predicted to be positives:

FPR =
|FP |

|TN |+ |FP | . (3)

A curve is generated using a sliding decision threshold; the value at which posi-

tive and negative prediction cuto↵s are determined for a predictor. As the decision

threshold is moved from one end of the x-axis to the other, a confusion matrix can

ge generated for each point. By plotting each of these points the result is the ROC

curve.

The ROC curve shows several things. First, there is always a trade-o↵ between

sensitivity and specificity: if there is an increase in sensitivity, there will be a decrease

in specificity. If the decision threshold is shifted left, the threshold for identifying a
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positive result is decreased. This results in a greater proportion of the datapoints

in the overlapping section to be considered positives and consequently decreases the

number of those overlap points which are considered negative. Second, the ROC curve

also represents the probability that the predictor evaluated will score a randomly

selected positive variant higher than a randomly selected negative variant [Tape,

2015]. Finally, the closer the curve follows the left hand border and the top border,

the more accurate the test is. Conversely, if the curve more closely follows the 45

degree diagonal, it indicates that the results attained are just as likely to be generated

at random. Additionally, should the curve appear under the diagonal, it likely that the

predicted labels have been inverted. The AUC value calculated for a particular ROC

curve indicates the accuracy of the predictor. The closer to 1.0 the more accurate the

test; the closer to 0.5 the more likely the same results could be achieved at random.

The AUC value is what is most commonly referenced regarding a test or predictors

validity hence it is being employed as the measure for the predictors evaluated.
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4 Results

In silico prediction tools have the potential to be valuable in examining large

amounts of disease-associated variants to indentify SAVs. This process of reviewing

thousands of data points by in vitro methods would take years to complete. However

in order to have confidence in the results obtained, it is vital to first screen potential

in silico methods in order to determine those most accurate and suitable for the

project’s circumstances.

To quantify and compare the performances of multiple prediction tools, we evalu-

ated the performance of each predictor on the EMDS and JRDS. The results returned

by the predictors were each plotted as an ROC curve on a single graph for each data

set; this allowed for a visual comparison of how the tools performed in comparison

with one another and enabled the area under the ROC curve (AUC) to be calcu-

lated with respect to each data set. This AUC value provided a numerical basis for

comparison of the di↵erent tools.

4.1 Performance on Exonic Missense Data Set

The results in Figure 4 show the AUC scores calculated for each ROC curve and

demonstrate appreciably good performance by two of the predictors, namely MutPred

Splice [Mort et al., 2014] and Skippy’s distance from the junction parameter [Woolfe

et al., 2010]. As is seen in the ROC curve in Figure 4A, the lines for these two

predictors demonstrate a much more convex shape. However the remaining curves

follow a more linear path much closer to the 45 degree diagonal.

In looking at all four of the predictors, SPANR, MutPred Splice, Skippy, and

MaxEnt, there were dramatic di↵erences in the results returned by the various in

silico tools which evaluated in the EMDS. The data indicates that MutPred Splice

outperformed the other predictors with an AUC value of 0.87 (Figure 4B) followed by
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Skippy’s distance to the junction with 0.78. A distinguishing similarity between these

two predictors that is not present for SPANR or Skippy LOR is the reliance on the

variant location within the exon in assigning a score regarding the impact on splicing.

Examination of all four predictor outcomes suggests that variant location with respect

to the exon-intron junction appeared to be a confounding variable a↵ecting the results

returned by the predictors. To control for this variable, the Junction Region data set

was evaluated.

Results on the Exonic Missense Data Set

Figure 4: Figure A shows ROC curves for the Exonic Missense data set for the predictors
SPANR, MutPred Splice, and Skippy. The Skippy LOR and Distance from Junction de-
terminations were both from the Skippy predictor. Figure B shows a chart of AUC values
from the ROC curve data using the Exonic Missense data set.
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4.2 Performance on Junction Region Data Set

In the analysis of the Junction Region data set all of the predictors performed

relatively similarly. As can be seen in Figure 5A, the ROC curves created from the

predictors’ results are all located closer to the 45 degree diagonal (shown in grey) than

to the left-hand and top borders of the graph, and four of the five lines demonstrate

a more linear shape rather than the parabolic curve that would be expected if the

predictor performs well. Figure 5B quantifies the similar performances of all the

predictors as demonstrated by their respective AUC scores. All are within eight one-

hundredths of one another, and the range is substantially closer to a value of 0.5 than

that of 1.0.

The variants included in the JRDS are all within three nucleotides of either the

donor or acceptor splice sites, thus essentially removing any e↵ect that variant location

should have on the predictors’ evaluation. An explanation of the results seen here for

all the predictors might therefore lie in the characteristics of the dataset itself.

Results on the Junction Region Data Set

Figure 5: Figure A shows ROC curves for the Junction Region data set for the predictors
SPANR, MutPred Splice, Skippy, and MaxEnt. The Skippy LOR and Distance from Junc-
tion determinations were both from the Skippy predictor. Figure B shows a chart of AUC
values from the ROC curve data using the Junction Region data set.
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5 Discussion

The process of splicing removes introns and particular exons from the pre-mRNA

transcript in order to facilitate its translation into a protein. Due to the complexity

of splicing, factors which result in disruption of the normal flow of this process have

the potential to cause or contribute to the development of disease. This connection

has been confirmed for a range of diseases from phenylketoneuria [Dobrowolski et al.,

2010] to cystic fibrosis [Kuyumcu-Martinez et al., 2007]. Disruptions in splicing could

be the result of mutations in the splice site or ESR motifs, or from damage to the

components of the spliceosome itself that cause aberrant splicing of the pre-mRNA

and thus disease.

The use of in silico methods to predict the e↵ects from variants in the genetic code

enables the evaluation of both their local impact and the likelihood that they will re-

sult in disease. By correctly identifying variants that contribute to gene-associated

diseases, the possibility arises for developing new treatments. Many of the diseases

associated with aberrant splicing cause serious disruption to the quality of life of the

patients a✏icted; thus, advances in treatment that might emerge from this informa-

tion have the potential to be very beneficial.

5.1 Predictors are Biased by Distance to the Junction

As can be seen in Figure 4 when the performance of selected predictors on the

EMDS was evaluated, the overall outcome from two of the predictors was distinctly

better than the others. It was surmised from these results that with respect to the

EMDS, predictors which take into consideration the distance the variant lies from

the exon-intron junction perform better than those which do not. The prediction

tool which performed the best based on its AUC score of 0.87 was MutPred Splice

[Mort et al., 2014], which incorporates distance to the junction as a feature. The
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Skippy distance to the junction parameter [Woolfe et al., 2010] though still inferior to

MutPred Splice’s combined approach, still out-performed the other two predictors.

Further explanation of the performance seen here is that this data set is enriched in

positive variants and depleted in negative data points in the region of the exon-intron

junction. If one looks at the distribution of positive (SAVs) and negative (NSAVs)

points contained in the EMDS, 52% of those variants annotated as splice-a↵ecting

lie at the first position next to the exon-intron junction (Figure 6). The negative

points, those annotated as causing disease by a mechanism not related to splicing,

are overwhelmingly located far from the junction; 96% are six or more bases away.

As MutPred Splice uses multiple features to make a determination with respect to

how much a variant may impact splicing, this enrichment is expected to di↵erently

impact the apparent performance of the tool with respect to this data set.

Distance to the Splice Junction

Figure 6: Distribution of the proportion of variants at each position one to six or more
bases from the exon-intron junction.

However, when the distance to the junction is controlled as a confounding variable

in the JRDS, the results returned are noticeably di↵erent. Under these circumstances,

the tool that performs the best is MaxEnt. MaxEnt is a traditional motif-based

method which only looks at sequences containing the splice site motifs, within three
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exonic nucleotides of the border between the exon and the intron.

5.2 False Negatives at Donor Sites

As the AUC scores in Figure 5 demonstrate, all four predictors performed poorly

on the JRDS; this is likely due to the characteristics of the data set itself. Fig-

ure 7 shows the proportions of the positive and negative variants in the region of

the donor site. There are a large number of negative variants in the first position at

the exon-intron border. Research has suggested that this location is highly conserved

containing “key” nucleotides in the 50 splice site motif, disruption of which is likely

to cause aberrant splicing. Therefore this suggests that the dataset likely contains a

large number of false negatives.

Donor Site Variants

Figure 7: Distribution of positive and negative data points at the donor site for the JRDS.
The vast majority of all the variants are located at the first position. The substantial
number of putative non-splice-a↵ecting variants suggests that the data set may contain a
considerable number of false negatives. The last pair of bars is the sum of the additional
variants not explicitly listed; the majority of these are variants which appear only once or
twice.

Further explanation for the poor predictor performance on the JRDS is illustrated

by the creation of two sample logos (TSLs). The TSLs were formed from the com-
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parison of positive and negative, or mutant and wild-type nucleotide sequences at

either the donor or acceptor sites. The web-based image generation program created

a visual representation of which bases were enriched and depleted at each location

within the splice site motif [Vacic et al., 2006]. Figure 8, Figure 9, and Figure 10 are

two sample logos (TSLs) constructed from the JRDS variants. In examining the mo-

tifs in Figure 8 and Figure 9 one can see that mutations located at position three at

the 50 splice site cause both splicing associated and non-splicing associated diseases.

This indicates that many of the NSAVs at this location may be misannotated in the

database from which they were collected. These “key” nucleotides are those closest

to the junction and appear to be the most highly conserved; thus any alterations are

expected to have detrimental consequences [Lee, 2015].

SAVs: Mutants vs Wild Type at the Donor Site

Figure 8: At position three adjacent to the junction the A, C, and T enrichments; and G
depletion appear to cause splicing associated disease. These are the same enrichments and
depletions seen in the NSAVs TSL.

The result of this enrichment of possible false negatives at the junction likely causes

a disturbance in the overall results from the predictors and is the reason behind the

surprisingly low AUC values.
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NSAVs: Mutants vs Wild Type at the Donor Site

Figure 9: At position three adjacent to the junction the A, C, and T enrichments; and G
depletion appear to cause non-splicing associated disease. These are the same enrichments
and depletions seen in the SAVs TSL.

Mutants: SAV vs NSAV at the Donor Site

Figure 10: Based on the singular enhancement at positions two and three of the donor
site, the TSL suggests that at least some of the SAVs and NSAVs which were evaluated in
this TSL are misannotated.
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5.3 Conclusions

The development of bioinformatics has been of great help in biology by facilitating

the processing of immense amounts of data in much shorter periods of time than ever

before. New tools are constantly being considered, created, and polished to further

expediate and expand the ability of scientists to probe and discover; one type of such

an in silico tool is the prediction tools developed to predict how genetic variants will

impact the process of splicing and may thus cause disease.

In the evaluations of such predictors performed here, it has been revealed that

multiple factors influence the e�cacy of such tools. The type of analysis process

employed by the predictor is a significant factor in determining how the tool will

perform; and perhaps equally important is the type of data input. Depending on the

evaluation method, features of the data being evaluated such as variant location, type

of variant, etc. will influence the accuracy of the results provided.

We have determined that a key feature important for the value of any of the

prediction tools is the quantity and ease of data processing. For these tools to be

truly helpful, they must be high-throughput. Frequently the types of investigations

which make use of these in silico methods are processing quantities of data with

hundreds or thousands of individual points. Those tools which were not designed to

process large amounts of data may still have utility for smaller inquiries, but are not

likely to be employed for larger projects. Also, predictors which required the data to

be input in formats that require significant amounts of additional research to find the

information, or to construct the formatting are again of little use when it comes to

selecting a tool for a large project.

From our consideration of numerous in silico prediction tools, and the system-

atic evaluation of four of these we have determined that bioinformatics prediction

tools for the evaluation of splicing are useful to determine with respectable accuracy

the likelihood that a given variant will a↵ect splicing. Yet as some predictors have
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demonstrated biases with respect to the distance the variant being evaluated lies from

the exon-intron junction, this should be taken into consideration when selecting the

appropriate tool for analysis in a particular project. It is also important to carefully

evaluate the results obtained since data sets may contain characteristics, such as false

positives or negatives, or enrichments of various types; and these elements are likely

to influence the accuracy of the results returned.

There is clearly room for improvement in the construction of in silico predictors.

As new prediction methods are being developed and refined, it would be prudent to

revisit this comparison with the inclusion of new methods such as �tESRseq and

�HZEF [Soukarieh et al., 2016].

Another future direction for predictor evaluation might be to consider their per-

formance with respect to cancer-causing variants. The fact that these cell types

behave substantially di↵erently from those in other types of disease and from each

other, may provide additional illumination with respect to how such predictors may

be developed and improved. There is still a large potential for new innovations in the

field of in silico predictors. And as these tools prove useful and even irreplaceable in

new ways, scientists will undoubtedly continue to employ and advance them within

various fields.
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