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ABSTRACT  
 

Recombinant proteins have revolutionized the biomedical industry, providing 

therapeutics for life-threatening diseases and protein reagents for research applications. 

BioMarin Pharmaceutical Inc. develops recombinant protein therapeutics to treat rare 

diseases including lysosomal storage disorders (LSDs), a group of about 50 individually 

rare disorders together affecting 1 in 8,000 live births. With an increase in the number of 

novel therapeutics in our drug discovery pipeline, there is a high demand to produce a 

variety of recombinant proteins for early-stage drug development projects. In order to 

equip our protein production process with the tools and capability for diverse protein 

expression, it is valuable to expand our expression toolbox with high-expressing 

platforms. The goal of this project is to expand to our current expression platforms by 

developing a murine myeloma based expression system with SP2/0 cells as a host. Since 

the SP2/0 cell line is amongst the most commonly used cell lines for therapeutic and 

reagent protein production, developing a SP2/0 expression system may offer additional 

benefits to our recombinant protein production needs including: expression of difficult-

to-express proteins, improving titers, and extending recombinant cell line stability. A 

lysosomal enzyme therapeutic candidate is expressed in the SP2/0 cells as a proof-of-

concept for developing this protein expression platform.  To this end, we have shown that 

SP2/0 cells can be grown to a high density in commercially available serum-free media 

with a doubling time of less than twenty four hours. A clone isolation strategy was used 

to pick the top clone expressing high levels of recombinant protein. Using the highest 

expressing clone, we developed a high yielding bioprocess at a two liter scale to 
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demonstrate the utility of this system for generating recombinant proteins at large scale. 

Furthermore, the therapeutic properties of the recombinant protein expressed in SP2/0 

cells are similar to the recombinant protein expressed in CHO cell lines, demonstrating 

similar uptake into diseased cells (Kuptake values) and binding affinity to the receptor 

responsible for drug mediated cellular uptake.  Thus, the SP2/0 expression system proves 

to be a valuable addition to our expression toolbox for the production of research-grade 

protein therapeutics for cell-based assays. 
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1.0 INTRODUCTION  
 

Development of recombinant proteins for therapeutic and research purposes 

represent one of the fastest expanding branches of the biotech industry. BioMarin 

Pharmaceutical Inc. utilizes recombinant protein technology to develop protein 

treatments for patients with rare genetic disorders including lysosomal storage diseases 

(LSDs). Although each LSD is individually rare, the entire group of LSDs affect 1 in 

8,000 live births and make up a significant fraction of diseases caused by inborn errors of 

metabolism (Platt, Boland, & van der Spoel, 2012; M. Xu et al., 2016). LSDs are 

characterized by disruption of lysosomal homeostasis, due to the deficiency of a 

lysosomal enzyme, lysosomal membrane protein, or other proteins necessary for 

lysosomal biogenesis. Since the lysosome is essential for degrading and recycling 

macromolecules from autophagy, endocytosis, and phagocytosis, cell metabolism is 

significantly impacted when the lysosome malfunctions (Appelqvist, Wäster, Kågedal, & 

Öllinger, 2013). For example, lysosomal disruption eliminates downstream recycled 

products necessary for cellular functions, causing cellular problems including 

mitochondrial dysfunction, inflammation, altered calcium homeostasis, and accumulation 

of toxic waste products (Appelqvist et al., 2013). Patients with LSDs display a range of 

clinical symptoms depending on the type of LSD. Generally, clinical phenotypes of LSDs 

include damage to the central nervous system, bone abnormalities, and organomegaly 

(Meikle, Hopwood, Clague, & Carey, 1999). The severity of the symptoms from LSDs 

vary depending on the type of accumulating substrate, the amount of functioning 

hydrolase activity, and the tissue affected by the accumulating substrate.  
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Currently, there are limited options to improve or restore the enzymatic activity of 

the missing lysosomal hydrolase in patients with LSDs. Current therapeutic approaches 

include hematopoietic stem cell transplantation, enzyme replacement therapy, gene 

therapy, substrate reduction therapy, and chaperone therapy (Bruni, LoSchi, coppa, & 

Bruni, 2007). Enzyme replacement therapy (ERT) is currently the most widely-used 

therapy to treat LSDs especially in the cases where lysosomal enzyme production is 

affected (Parenti, Pignata, Pietro, & Salerno, 2013). As the name suggests, ERT is the 

therapeutic approach to replace or restore deficient enzymatic activity by delivering the 

functional recombinant lysosomal enzymes into the cell and its lysosome. This critical 

step of delivering the drug to the lysosomal compartment is achieved by endocytosis of 

the recombinant protein through the binding with mannose-6-phosphate (M6P) receptors. 

In 1990, the first successful ERT used recombinant galactocerebrosidase to treat patients 

with Gaucher’s disease (Neufeld, 2006). As of 2013, commercially available ERT 

treatments are available for six LSDs (Ratko, Marbella, Godfrey, & Aronson, 2013).  

A key component to producing an effective ERT is to ensure that the recombinant 

enzyme contains M6P residues on N-glycans, glycans that are covalently bound to 

asparagine residues on a protein (Stanley, Schachter, & Taniguchi, 2009). The mannose-

6-phosphate residues serve as a recognition marker for the transport of newly-synthesized 

enzymes into the lysosome (Figure 1). In healthy cells, lysosomal enzymes are 

synthesized and glycosylated on the N-linked oligosaccharide residues in the 

endoplasmic reticulum. Then, lysosomal enzymes are modified with M6P residues during 

a two-step reaction process in the Golgi apparatus. During the first step, a 
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phosphotransferase, UDP-N-acetylglucosamine 1-phosphotransferase (GlcNAc-1-

phosphotransferase) catalyzes a reaction allowing the transfer of a GlcNAc-1-phosphate 

residue from UDP-GlcNAc to specific mannose sites on the N-linked oligosaccharides on 

the lysosomal enzymes (Coutinho, Prata, & Alves, 2012). The second step requires an 

uncovering enzyme, N-acetylglucosamine-1-phosphodiester α-N-acetyl-glucosaminidase 

(UCE), which removes the GlcNAc residue, uncovering the M6P residue (Coutinho et al., 

2012). At the trans-face of the Golgi, the lysosomal enzymes with the M6P recognition 

marker are separated from other newly-synthesized proteins by binding to M6P receptors. 

Next, the lysosomal enzymes bound to the M6P receptors are packaged in clathrin-coated 

vesicles and bud off from the Golgi apparatus. The clathrin-coated vesicles containing the 

lysosomal enzyme then fuse with late endosomes (Coutinho et al., 2012).  As the internal 

pH of the endosome lowers during lysosomal maturation, the lysosomal enzymes become 

active and can function to degrade macromolecules within the cell.  
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Figure 1. Transport of lysosomal enzymes to the lysosome 

 

Newly synthesized lysosomal proteins are transported to the lysosome by the mannose-6-

phosphate pathway.  

Source: Coutinho et al., 2012 

 

In addition to the transport of newly synthesized enzymes to the lysosome, M6P 

residues are also important for the internalization of extracellular lysosomal enzymes, for 

example ERTs (Figure 2). Two types of mannose-6-phosphate receptors, the cation-

independent M6P receptor (CI-M6PR) and the cation-dependent M6P receptor (CD-

M6PR) are scattered along the surface of the plasma membrane. Upon binding of an 

extracellular M6P-marked enzyme, to the CI-M6PR, the enzyme is endocytosed and can 

be transported to the lysosome. Although the CD-M6PR and the CI-M6PR both mediate 
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trafficking of newly-synthesized endogenous lysosomal enzymes to the lysosome, 

extracellular M6P-marked lysosomal enzymes are only internalized into the cell upon 

binding to the CI-M6PR (Saftig, 2006). Another key component of a successful ERT is to 

manufacture the lysosomal enzyme in its active conformation. ERTs need to be active to 

degrade accumulating macromolecules within diseased cells. Due to the critical role of 

M6P residues, all ERT production host candidates must have complex glycosylation 

capabilities.  

 

Figure 2. Cellular uptake of recombinant enzymes by M6P pathway 

 

Extracellular uptake of extracellular recombinant enzymes including ERTs, are mediated 

by the M6P. Binding of extracellular M6P-marked lysosomal enzymes to the M6P 

receptors on the plasma membrane of the cell initiates enzyme delivery to the lysosome 

by the endocytic route (dotted arrows).  

Source: Parenti et al., 2013 

 



 

 

6 

 

Most commonly, Escherichia coli (E. coli), mammalian cells, yeast, or 

baculovirus-infected insect cells are used as hosts to produce biologics. While producing 

biologics in bacteria is cheaper, faster to grow, and yield higher titers compared to 

mammalian cells, bacteria lack appropriate machinery to post-translationally modify 

proteins with glycoproteins, a critical component to biologic drug efficacy and uptake 

efficiency (Jayapal, Wlaschin, Hu, & Yap, 2007). Most biologics require human 

glycosylations, usually N-glycans, where the glycosylation site is on the asparagine 

residue (e.g. ERTs), and sometimes O-glycans, where the glycosylation site is on the 

serine or threonine residues (Ghaderi, Zhang, Hurtado-Ziola, & Varki, 2012; Solá & 

Griebenow, 2010). Variation in glycan branching pattern, length, and the arrangement of 

monosaccharides also add complexity to N-glycan structure (Solá & Griebenow, 2010). 

All N-glycans fall into one of the three categories: high-mannose, complex, or hybrid 

(Figure 3). The type of N-glycan structure added to a recombinant protein is dependent 

on the cellular machinery of the cell host. M6P residues are usually added to complex N-

glycans on human lysosomal enzymes. Furthermore, human proteins have additional 

structural variation since the terminal ends of the glycan contain variations of chemically-

charged glycans, such as sialic acid. These chemically-charged glycans are important for 

drug efficacy because they affect the isoelectric point (pI) and the surface charge of the 

protein therapeutic (Solá & Griebenow, 2010). Ideally, protein therapeutics should mimic 

human protein glycosylations to improve drug efficacy and minimize immunogenicity to 

the drug. Recently, new genetic modifications in yeast and insect cells have improved the 

cell’s capability of post-translationally modifying proteins. However, post-translational 
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modifications (PTMs) from yeast and insect cells are still limited to simple PTMs or do 

not have the complex human glycosylation patterns, impairing drug quality (Figure 4).  

 

Figure 3. Types of N-glycans 

 

The structures of the three major categories of N-glycans: high mannose, complex, and 

hybrid. All N-glycan types are added to proteins on the asparagine residues. All 

structures have two N-acetylglucosamine (GlcNAc) residues followed by three mannose 

residues.  

Source: Higel, Seidl, Sorgel, & Friess, 2016 
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Figure 4. Comparison of N-glycan structures from different expression platforms 

 

Above are examples of N-glycan structures added to biologics in different eukaryotic 

expression platforms during protein production. The first step of N-glycan synthesis 

occurs in the endoplasmic reticulum (ER), where glycosylation machinery in all species 

are highly conserved, generating the common Man3GlcNAc2 structure. Glycosylation in 

the Golgi apparatus varies greatly among different species, contributing to N-glycan 

variation. Varying residues between species include N-glycolylneuraminic acid 

(Neu5Gc), galactose (Gal), fucose (Fuc), N-Acetylneuraminic acid (Neu5Ac), xylose 

(Xyl), and mannose (Man). Since animal (mammalian) N-glycan structures are most 

similar to humans, mammalian cell platforms are the system of choice for the production 

of complex protein therapeutics or reagents. Humans generate antibodies to the Neu5Gc 

and Galα1-3Galβ1-(3)4GlcNAc (alpha-Gal) epitopes (shown by black arrows), making 

biologics with these structures more immunogenic.  

Source: Ghaderi et al., 2012 

 

Owing to the need for complex PTMs, ERTs are usually produced in mammalian 

cell lines. Currently, only a few mammalian cells have the ability to produce biologics 

with human-like N-glycans, including but not limited to, Chinese hamster ovary (CHO) 

cells, SP2/0 (murine myeloma), and NS0 cells (murine myeloma). However, selecting 
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host cells for biologic production requires more consideration than choosing between a 

platform with or without complex PTM capabilities. Human-like glycans produced by 

animal cells still exhibit differences that are immunogenic to humans. Specifically, 

humans produce antibodies to two structures commonly present on non-human 

mammalian cells, the Galα1-3Galβ1-(3)4GlcNAc (alpha-Gal) epitope and N-

glycolylneuraminic acid (Neu5Gc), a sialic acid (Ghaderi et al., 2012) (Figure 4). Over 

the past few years, research efforts have been put into engineering cell lines that mimic 

human glycosylation patterns, and reduce alpha-Gal and Neu5Gc. For example, the 

enzyme, cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH), is 

responsible for catalyzing N-acetylneuraminic acid (Neu5Ac) to Neu5Gc and is active 

and highly expressed in mammals but deficient in humans (Xu et al., 2012). Gene editing 

can be utilized to knockout CMAH, removing the Neu5Gc epitope (Beaton et al., 2015). 

In addition, the gene, glycoprotein alpha-galactosyltransferase 1 (GGTA1), can also be 

knocked-out to remove the presence of the alpha-Gal epitope (Beaton et al., 2015).   

Currently, CHO cells are the workhorse of the biopharmaceutical industry, 

producing about 70% of the FDA-approved biologics on the market (Jayapal et al., 2007). 

The first commercial therapeutic protein, tissue plasminogen activator (tPA) was 

produced in CHO cells (Wurm, 2004). Ever since, CHO cells have gained increasing 

popularity for biologic production due to its FDA regulatory approval rate, ability to 

produce protein with human-like N-glycans, high protein production yields, and can 

quickly grow in serum-free media, high cell densities and large-scale bioreactors 

(Ghaderi et al., 2012). Proteins expressed in CHO expression systems are more 
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compatible with the human immune system compared to other mammalian cell lines due 

to their ability to modify proteins with human-like N-glycan residues (Ghaderi et al., 

2012). Although more compatible than most mammalian systems, CHO cells add the 

Neu5Gc and the alpha-Gal epitope to the recombinant protein which can result in an 

immunogenic response in humans (Ghaderi et al., 2012). CHO cells are also limited by 

phenotypic drift, affecting desired phenotypic properties of a clonal cell line including 

product quality, cell growth, and viability during the production process (Bandaranayake 

& Almo, 2014). 

Myeloma cells, such as SP2/0 and NS0, naturally secrete high amounts of 

antibodies, making them a logical host for protein manufacturing. Murine myeloma cells 

still make up the second most popular choice of mammalian expression platforms due to 

high regulatory approval of antibody therapeutics. Due to high regulatory approval, 

murine myeloma cells are known to produce some of the top-selling blockbuster 

therapeutics, including Remicade (infliximab), generating over $8.37 billion annually 

(Walsh, 2014).  Myeloma cells originate from immunoglobulin-producing tumor cells, 

but were genetically engineered to eliminate the production of its native immunoglobulin 

(Markusen & Robinson, 2013). As a result, the required machinery for protein production 

remains available for the manufacturing process of recombinant proteins. Together, 

SP2/0 and NS0 cells are the most popular antibody production platform due to their 

ability to produce high protein titers, add human α2-6 sialyl linkages, and have much 

higher sialylation compared to CHO cells (Ghaderi et al., 2012). In addition, murine 

myeloma cells are the fusion partner for antibody-producing hybridoma cell lines. 
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However, recombinant proteins expressed in myeloma cells are limited by higher levels 

of alpha-Gal and Neu5Gc compared to CHO, making myeloma products more 

immunogenic (Ghaderi et al., 2012). To prevent immunogenic responses, careful dosing 

of a myeloma-produced biologic is required (Ghaderi et al., 2012). With the high protein 

productivities and gene editing technology to remove or minimize immunogenicity, 

murine myeloma cell lines remain a top choice for recombinant protein production and 

still have the capability of producing high quality proteins for research applications.  

The traditional method to produce protein therapeutics is to express the 

therapeutic protein in a stable cell line. The protein therapeutic is usually encoded in 

genetic material with the sequences for the protein of interest and a selectable marker 

encoding a resistance gene. Due to increasing regulatory requirements, most biologic-

producing cell lines are usually selected using metabolic selection methods instead of 

antibiotic selection. The use of antibiotic resistant markers is discouraged for biologic 

production in order to avoid horizontal genetic transfer of antibiotic resistant genes to 

bacteria that may be present in the normal microflora or the environment (Mignon, 

Sodoyer, & Werle, 2015). The genetic material is transfected into the host cell and is 

subjected to rounds of selection pressure, giving a survival advantage to cells 

successfully transfected with the selectable marker (Wurm, 2004). A stable pool of 

successfully transfected cells will grow, expressing the protein of interest. Next, a single 

clonal cell expressing the recombinant protein is isolated into its own cell culture, usually 

performed in individual wells within a 96-well cell culture plate. Clonal cells are then 

expanded into larger culture volumes, where they can then be screened by various assays 
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to ensure that the recombinant protein is expressed. After confirmation that the clonal cell 

expresses the recombinant protein, the clone will be scaled up to liter-scale volumes in 

bioreactors. The cells and media are harvested days later after the start of a production 

run in the bioreactor. The collected harvest is later purified and stored for future use.  

One of the most commonly used metabolic selection methods to isolate a high-

expressing clone is Lonza’s glutamine synthetase (GS) system, which is the selection 

method for the manufacture of 29 FDA-approved therapeutics (Lai, Yang, & Ng, 2013).  

Glutamine is essential for cell growth and metabolism. The glutamine synthetase (GS) 

selection method utilizes mammalian cell’s dependence on glutamine for survival. In 

glutamine-free culture conditions, cells rely on GS, an enzyme which catalyzes the 

synthesis of glutamine from glutamate and ammonia. The method works best using host 

cells with low or no endogenous GS expression (e.g. murine myeloma cells), promoting 

survival of the cells successfully transfected with a genetic construct encoding glutamine 

synthetase and the recombinant protein of interest. The GS system can also be used to 

amplify recombinant protein expression by using methionine sulphoximine (MSX), an 

inhibitor of GS. The overexpression of the recombinant protein is the result of cellular 

survival mechanisms for adaptation to increasing selection stringency. Adaptation to 

selection pressure can be accomplished by gene amplification of the integrated vector, or 

more efficient transcription (Zhang, 2010). Usually, the GS selection marker and the 

recombinant protein are closely linked in the genetic construct allowing the recombinant 

protein to be co-amplified with GS. This is an effective selection method to use while the 

cells are recovering after transfection and during the cloning process.  
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With an increase in the number of novel therapeutics in our drug discovery 

pipeline, there is a high demand to produce a variety of recombinant proteins, including 

biologics and reagent proteins, for early-stage drug development projects. Currently, the 

main challenges of biotherapeutic and protein reagent production are the high cost, low 

production yields, and lengthy process of cell line development. For these reasons, most 

research efforts in protein production are focused on improving the speed of the 

production process and boosting the recombinant protein yield. Furthermore, some 

proteins are considered difficult-to-express because they may aggregate, demonstrate 

protein instability, or they could be modified without critical PTMS for proper 

functioning. Some proteins are also considered difficult-to-express if the expressed 

protein is toxic to the host cell. Lysosomal enzyme recombinant therapeutics fall under 

the difficult-to-express protein category for several reasons. First, it is estimated that only 

10-20% of the overexpressed lysosomal enzyme expressed is secreted, with the rest of the 

lysosomal enzymes localizing to the host cells’ lysosomes (Migani, Smales, & Bracewell, 

2017). This reduces the secreted protein yield available for harvesting and potentially 

causes a LSD within the production host itself. Various techniques are currently available 

to overcome some of the factors that cause a protein to be difficult-to-express. For 

example, a common issue during the protein production process is that a cell line can 

undergo cell death early during a production as a result of shear stress or nutrient 

deprivation, lowering the amount of cells available for protein production. To increase 

cell productivity, the cells can be co-transfected with the gene encoding the recombinant 

protein with an anti-apoptotic gene such as, Bcl-XL or Bcl-2, extending cell line viability. 
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However, the production of some difficult-to-express proteins may pose several different 

problems involving many cellular pathways that need to be adjusted. Instead of finding 

ways to implement many changes in the host cells’ biochemistry, it is faster and usually 

more effective to change expression platforms. Having multiple expression platforms is 

invaluable during cell line development process for efficient production of recombinant 

proteins. 

The goal of this project is to expand to our current expression systems for 

difficult-to-express proteins by developing a protein production platform using the SP2/0 

myeloma cell line as a host. By expanding our expression toolbox with high-expressing 

platforms, we can equip our protein production process with the tools and capability for 

diverse protein expression. Since the SP2/0 cell line is amongst the most commonly used 

cell lines for therapeutic and reagent protein production, developing a SP2/0 expression 

system may offer additional benefits to our recombinant protein production needs 

including: expression of difficult-to-express proteins, improving titers, and extending 

recombinant cell line stability. A lysosomal enzyme therapeutic candidate, a difficult-to-

express protein, was expressed in SP2/0 cells as a proof-of-concept for developing this 

protein expression platform. Using high-resolution imaging in conjunction with a GS 

selection method, we isolated a high-yielding SP2/0 clone. The bioprocess for the high-

yielding clone was optimized to establish a working SP2/0 protein production method, 

boost production titers, and maintain high cell viability during protein production. Using 

the optimized SP2/0 expression platform, milligram amounts of the ERT was generated 

for a series of assays for product quality characterization including its glycosylation 
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profile and cellular uptake.  

2.0 RESEARCH DESIGN AND METHODS  
 

2.1 Cell Culture 

 

SP2/0 cells were maintained in a proprietary myeloma medium (referred to in this 

paper as SP2/0-BMN media) supplemented with 8 mM GlutaMAX (Life Technologies, 

Grand Island, NY) in shake flasks. The SP2/0 cells were incubated at 37˚C, 125 RPM, 

and 8% CO2. Cell cultures were passaged 2-3 times a week, at a seeding density of 0.5 to 

2 x 10
6
 cells per mL. This maintenance culture was used for early experiments and 

transfections for this project where wild-type SP2/0 cells were needed. The cell culture 

was kept under 20 passages for the experiments. 

Primary human fibroblast cells with the lysosomal storage disease of interest 

(Coriell, Camden, NJ), were grown in DMEM with L-glutamine (ThermoFisher 

Scientific, Rockford, IL) supplemented with 15% fetal bovine serum (VWR, Radnor, 

PA). Cell cultures were passaged when cells reached 90% confluence, and were 

maintained in 150-cm
2
 tissue culture flasks (Corning, Manassas, VA) at incubation 

conditions of 37˚C and 5% CO2. All cells were kept under 20 passages for the 

experiments. 

2.2 Total Protein Extraction from Cell Lysates 

  

Total protein was extracted from cell lysates using the manufacturer’s instructions 

included with the Pro-Prep Protein Extraction Solution. The cell pellet was washed once 

in 1 X Dulbecco’s phosphate buffered saline (DPBS) (Corning) and removed after 
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centrifugation at 250 x g for 5 minutes. Excess DPBS wash was removed after a second 

round of centrifugation at 13,000 RPM for 30 seconds. The cell pellet was resuspended in 

400 µl prep protein extraction solution for approximately every 5 x 10
6
 cells. The cell and 

lysis buffer solution was then incubated at -20 ˚C for 20 minutes. After incubation, the 

cells were spun down at 13,000 RPM for 10 minutes. The supernatant, which contains the 

cell lysates, was carefully removed and stored in a separated microcentrifuge tube.   

2.3 BCA Assay  

 

A BCA assay (Pierce, Rockford, IL) was performed for each sample, using the 

manufacturer’s protocol, to estimate total protein concentration. Each sample was done in 

duplicate at three different dilutions, 2X, 5X, and 10X, plated at a volume of 10 µl per 

well in a 96 well plate. 24.5 ml Reagent A and 0.5 ml Reagent B were mixed and 

immediately added to each of the wells at a volume of 200 µl per well. Plates were 

incubated for 30 minutes at 37˚C then were immediately read using a plate reader at a 

wavelength of 562 nm. Each sample concentration was estimated using the average of the 

duplicate wells which were within range of the standard curve.  

2.4 Western Blots and Ponceau S Staining 

 

Protein samples, cell lysates, and media samples with secreted proteins were 

treated with NuPAGE 1X LDS buffer (Life Technologies, Carlsbad, CA). The protein 

samples were then denatured by heating at 95˚C for 10 minutes, and separated in 

NuPAGE 1.0 mm 4-12% Bis-Tris Gel (Life Technologies). The protein was transferred 

from the gel onto a nitrocellulose membrane using the iBlot 2 device (Life Technologies) 
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at 20V, for 7 minutes. Following the transfer, the membrane was stained using one 5 

minute wash of 1X Ponceau S stain in 5% acetic acid followed by two washes in 5% 

(v/v) acetic acid for 5 minutes each, then two washes in distilled water for 5 minutes 

each. The membrane was imaged using a photo scanner to provide an image of total 

protein, demonstrating equal loading. After imaging, the membrane was then washed in 

StartingBlock T20 (TBS) blocking buffer (Thermo Fisher Scientific) for 1 hour.  The 

primary antibodies (listed per experiment, with the exception of proprietary antibodies) 

were diluted at 1:1,000 in StartingBlock T20 (TBS) blocking buffer. The secondary 

antibodies (listed per experiment) were diluted to 1:5000 in StartingBlock T20 (TBS) 

blocking buffer. Blots were visualized by adding Western blue stabilized substrate for 

alkaline phosphatase (Promega, Madison, WI) or if using an IRDye 800CW antibody, 

imaged using the Odyssey CL Imaging system (LI-COR Lincoln, Nebraska).  

 

2.5 Development of a SP2/0 Cell Line Expressing an ERT as a Proof-of-Concept 

Model 

 

 

2.5.1 Testing the Glutamine Synthetase (GS) Selection System in SP2/0 Cells 

  

In order to determine whether expressing the GS gene can be used as an 

appropriate metabolic marker for successfully transfected SP2/0 cells, SP2/0 cell growth 

and viability were monitored in the presence and absence of glutamine. Three other cell 

lines were also tested for comparison. Each cell line was seeded into shake flasks with 

different proprietary basal media, each of which is optimal for cell viability and growth 

specific to each cell line. SP2/0 cells were seeded in SP2/0-BMN media. In total, four 
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different cell lines were tested: SP2/0, wild-type CHO, GSKO CHO cells, and SP2/0 cells 

transfected with a vector encoding GS. The flasks were seeded at a cell density of 5 x 10
5
 

cells per ml in 30 ml of basal media supplemented with 8 mM GlutaMAX and another 

flask with the same basal media but lacking glutamine. 1 ml sample was collected daily 

for 8 days to track viable cell density (viable cells/ml) and viability using the Vi-Cell XR 

cell counter (Beckman Coulter, Indianapolis, IN). In addition, 400 µl of the culture was 

pelleted by centrifugation at 250 x g for 5 minutes and stored at -80˚C until the all of the 

time point samples were collected and were ready for further experimentation. Protein 

from cell lysates were extracted using Pro-Prep Protein Extraction Solution (iNtRON 

Biotechnology Inc., Korea) and the western blot protocol as described previously. For the 

western blot, the gel was loaded with 15 µg protein per well. The glutamine synthetase 

was probed using the glutamine synthetase AB1055 monoclonal antibody (Novus 

Biologicals, Littleton, CO) diluted at 1:1,000 in StartingBlock T20 (TBS) blocking 

buffer. The primary antibodies were probed using anti-mouse IgG (H+L) AP Conjugate 

(Promega) diluted 1:5,000 in StartingBlock T20 (TBS) blocking buffer, and visualized by 

adding Western blue stabilized substrate for alkaline phosphatase (Promega). 

 

2.5.2 Stable Transfection of SP2/0 Cells 

             

100 µg plasmid DNA encoding the recombinant lysosomal enzyme and a 

glutamine synthetase (GS) selection marker was linearized at 37˚C overnight in 1X 

cutsmart buffer (New England Biolabs, Ipswich, MA) and 20U PvuI-HF (New England 

Biolabs). The linearized DNA was cleaned up using QiaQuick PCR cleanup kit (Qiagen, 
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Valencia, CA) using the spin column and centrifuge method detailed in the 

manufacturer's instructions. This linearized DNA was used for the stable transfection. 

One day before transfection, SP2/0 cells were counted using the Vi-Cell XR and were 

passaged to a viable cell density of 1 x 10
6
 cells/ml in SP2/0-BMN media supplemented 

with 8 mM GlutaMAX. The day of transfection, the culture cell density was counted 

using the Vi-Cell XR to calculate the volume of cell culture required for 2 x 10
6 

total 

cells, the amount of cells needed for transfection. 2 x 10
6 

cells were pelleted by 

centrifugation at 250 x g for 5 minutes. The cell pellet was resuspended in Hyclone 

Buffer EP (GE Healthcare, Gaithersburg, MD) and 20 µg of the linearized plasmid DNA 

to a final volume of 400 µl. The cell-DNA mixture was transferred into an OC-400 

processing assembly (Maxcyte, Gaithersburg, MD) then electroporated using the 

MaxCyte STX Scalable Transfection System and its SP2/0 electroporation program, the 

optimal voltage for SP2/0 cells pre-programed into the MaxCyte STX Scalable 

Transfection System. After electroporation, the cells were placed into an empty shake 

flask and recovered in a stationary incubator at 37˚C and 5% CO2 for 30 minutes. The 

cells were then resuspended in 13 ml of SP2/0-BMN media+8 mM GlutaMAX and 

incubated in a 37 ˚C stationary incubator overnight. One day after transfection, cells were 

pelleted by centrifugation at 250 x g for 5 minutes, then resuspended in a different 

proprietary media, SP2/0-BMN-2 glutamine-free media. The transfected cells were 

maintained in the stationary incubator until cell viability increased to 80%. The 

transfected cell population was maintained in glutamine-free SP2/0-BMN-2 media + 8 

mM GlutaMAX in volumes of 10 mL or less.       
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2.5.3 Screening the Transfected Pool and Clones for ERT Expression Using Western 

blots 

 

The transfected SP2/0 cells were tested to ensure that the cell population 

expressed the recombinant lysosomal enzyme. The transfected SP2/0 cell population was 

counted using the Vi-cell XR. 4 x 10
6 

cells were pelleted using the centrifuge at 250 x g 

for 5 minutes. The supernatant, containing the culture media and the secreted 

recombinant lysosomal enzyme was separated from the cell pellet and stored at -80˚C 

until needed for the enzyme activity assays or western blots. A western blot was 

performed to screen for the presence of the secreted recombinant enzyme using the 

protocol described previously. For this western blot, the gel was loaded with 15 µl of the 

supernatant and LDS mixture per well, each well containing a different clone sample. 

The secreted recombinant enzyme was probed using a proprietary antibody specific to the 

enzyme, which was diluted at 1:1,000 in StartingBlock T20 (TBS) blocking buffer. The 

primary antibody was probed using anti-rabbit IgG (Fc) AP Conjugate (Promega) diluted 

1:5,000 in StartingBlock T20 (TBS) blocking buffer, and visualized by adding Western 

blue stabilized substrate for alkaline phosphatase (Promega). The membrane was imaged 

using a photo scanner. 

2.5.4 Single Cell Isolation to Collect High-Expressing Clones 

  

Clones were isolated from the transfected cell population by limiting dilution. The 

clones were seeded and expanded in increasing volumes using an optimized post-

transfection method for SP2/0 cells which requires two different types of media 

(Supplementary Figure 1, Supplementary Figure 2, and Supplementary Figure 3). The 
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cells were diluted to a low cell concentration in SP2/0-BMN-2 glutamine-free media, and 

were seeded into each well in 96 well plates at one cell per well or 0.5 cells per well (one 

cell per two wells).  In order to track and document the growth from a single cell, a high-

resolution imaging instrument, the Cell Metric CLD (Solentim, UK), was used to image 

and monitor the growth of single cells after 2 hours, 24 hours, 4 days, 5 days, 7 days, 14 

days, and 19 days after plating. Wells that contained more than one cell per well were 

excluded from the clonal selection.  

The fastest growing clones were chosen for expansion. These 24 clones were 

expanded in increasing volumes in stationary incubation settings at 37˚C and 5% CO2. In 

small volumes of 2 mL or less, SP2/0-BMN-2 media was used. When a clonal colony 

was expanded to volume larger than 2 mL, SP2/0-BMN media was used. Clones were 

expanded in stationary incubation conditions until the cells reached a cell density of 2 x 

10
6 

cells per ml in 40 ml volume. Viable clones were then transferred to 25 ml shake 

flasks and were maintained at a cell density of 0.5-2 x 10
6
 cells/ml in SP2/0-BMN media. 

The viable clones were used for further experiments after a minimum of three rounds of 

passaging in with 96% viability or higher in shake flasks.  

2.5.5 Screening for the Top-Producing Clone 

 

 All clones that were able to scale up in volume and survive in shake flasks were 

seeded into separate flasks at 5 x 10
5
 cells/ml in 25 ml SP2/0-BMN media for an initial 

production run. 1 ml was taken from each cell culture at seven time points over the 

course of 10 days to monitor cell growth, viability, and lysosomal enzyme production. At 

the peak of cell growth and viability, day 8, a lysosomal enzyme activity assay was used 
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to quantify the amount of lysosomal enzyme produced by each clone. 

2.5.6 Recombinant Enzyme 4-Methylumbelliferone (4-MU) Activity Assay 

 

 To quantify the amount of active recombinant lysosomal enzyme produced from 

the transfected SP2/0 cells, a fluorescent plate-based 4-methylumbelliferone (4-MU) 

assay was used. Cell samples were pelleted in the centrifuge at 250 x g for 5 minutes. The 

supernatant, containing the secreted lysosomal enzyme, was separated into a fresh tube. 

The enzyme-media mixture was diluted 10 fold and 20 fold in a dilution buffer (5 mM 

sodium phosphate, 150 mM NaCl, 0.005% Tween 80, 0.1% BSA, pH=6.5) and plated in 

duplicate within a black flat-bottom 96-well plate. 90 µM of 4-MU conjugated substrate 

specific to the recombinant lysosomal enzyme, mixed with an assay buffer (50 mM 

sodium citrate, 125 mM NaCl, 0.5% Triton X 100, 0.1% BSA, 2 mM 4-MU, pH=4.5) 

then added to the plated samples. The plate was incubated at 37˚C for 40 minutes. After 

incubation, the reaction was stopped by adding 200 µl/well stop buffer solution (0.5 M 

glycine, 0.3M NaOH, pH 10.3). 4-MU-conjugated substrate cleavage by the lysosomal 

enzyme released fluorescent 4-MU which was measured using a fluorescent plate reader 

(Molecular Devices, Sunnyvale, CA) using excitation wavelength, 355 nm and emission 

wavelength 460 nm. In addition, fluorescent 4-MU was serially diluted to generate a 

standard curve in known concentrations to convert relative fluorescent units (RFU) to 4-

MU concentrations. A known concentration of a control lysosomal enzyme sample was 

used to convert the 4-MU concentrations to concentrations of the enzyme.  

2.5.7 Production Run of the Top Five Clones Expressing the Lysosomal Enzyme 

 

 The top five clones went through a second production run to ensure consistent 
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results with the previous production run. The top five clones were seeded into separate 

flasks at 5 x 10
5
 cells/ml in 25 ml SP2/0-BMN media. 1 ml sample of cell culture was 

collected daily for 8 days to monitor cell growth, viability, and lysosomal enzyme 

production. The clone capable of maintaining high viability and producing the highest 

amount of the lysosomal enzyme was considered the top clone from this experiment. This 

clone will be used for further characterization experiments.  

2.6 SP2/0 Cell line Characterizations of the Top-Producing Clone 

 

 

2.6.1 Screening Basal Media for the SP2/0-2H3 Clone 

 

 A seven-day production run of the SP2/0 clone with the highest expression of the 

lysosomal enzyme, clone SP2/0-2H3 was used to screen a panel of five proprietary 

serum-free basal media. Over the course of seven days in different media, cell growth, 

viability, and protein yields were observed for SP2/0-2H3. Clone SP2/0-2H3 was seeded 

at 5 x10
5
 cells per ml in a total volume of 25 ml of each of the different basal medium, 

Media A, Media B, Media C, Media D, or Media E. Each 25 ml culture was cultured in 

125 ml shake flasks and were incubated at 37˚C, 8% CO2, and 125 RPM. One ml culture 

sample was taken daily for seven days to count viable cell density (viable cells per ml) 

and cell viability using the Vi-Cell XR cell counter. The sample was also used to 

determine protein production yields by the enzyme activity assay described previously. 

This condition was done in two independent experiments with two technical replicates 

per independent experiment.  

2.6.2 Production Runs of Clone SP2/0-2H3 using Temperature Shifting 
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A popular approach to improving protein yields involves using a temperature 

shift, a method which slows cell growth to extend the cultivation process. During a 

temperature shift, mild hypothermia is induced to the cell cultures by shifting incubation 

temperature from 37˚C to a temperature a few degrees lower. To determine whether the 

induction of mild hypothermia improves protein production yields for clone SP2/0-2H3, 

six 250 ml shake flasks of the clone were seeded at 5 x10
5
 cells per ml in a total culture 

volume of 50 ml using the top performing media, determined previously. Each flask was 

incubated at 37˚C, 8% CO2, and 125 RPM, and later temperature shifted to 32˚C, 8% 

CO2, and 125 RPM on different days during the production run. Specifically, of the six 

flasks, one flask was not shifted and remained at 37˚C, one flask was temperature shifted 

day 0, and the remaining four flasks were temperature shifted either days 1, 2, 3, or day 4. 

1 ml samples were collected daily for 7 days to observe changes in cell growth, viability 

and protein yields in response to temperature shifting.  

2.6.3 Screening Myeloma Supplements for Improved Protein Production 

 

 A seven day production run of the SP2/0-2H3 clone was used to screen five 

commercial serum-free nutrient supplements formulated for improved protein production 

from myeloma cell hosts. Clone SP2/0-2H3 will be seeded at 5 x10
5
 cells per ml in a total 

volume of 50 ml in the best basal media as determined previously. The cultures were 

incubated in 250 ml shake flasks at 37˚C, 8% CO2, and 125 RPM. For feed strategy 1, 

cell cultures were fed with 5% volume feed on day 0, 10% volume feed on day 3, and 

10% volume feed on day 5 with three commercial supplements. For feed strategy 2, cell 

cultures were fed with 10% volume feed on day 3 and 10% volume feed on day 5 with 
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five commercial supplements.  Cell culture samples were taken daily for seven days to 

measure viable cell density, cell viability, and protein yield. Each condition was done in 

two independent experiments.  

2.6.4 Gene Amplification of SP2/0-2H3 Clone Using Methionine Sulphoximine 

(MSX) Selection Pressure 

 

 To further boost protein yields for clone SP2/0-2H3, methionine sulphoximine, an 

inhibitor of GS, was added to the cell cultures to amplify the copy number of the 

integrated plasmid encoding the protein of interest. The top performing clone, SP2/0-

2H3, was seeded into five 250 ml shake flasks, in a 50 ml volume with a cell density of 5 

x10
5
 cells per ml in the top performing media determined previously. Each flask 

contained a different concentration of MSX: no MSX, 5 µM, 10 µM, 20 µM, or 50 µM 

MSX. The cells were passaged every 2-3 days to 5 x10
5
 cells per ml for three weeks. 

Passaging was performed by pelleting cells by centrifugation at 250 x g for 5 minutes, 

and resuspending the cell pellet in fresh Media A supplemented with the same MSX 

concentration. Gene amplification was checked by western blot after three weeks using 

the protocol described previously. Each well was loaded with 6 µg total protein, 

determined by a BCA using the protocol described previously. The nitrocellulose 

membrane was probed with the glutamine synthetase AB1055 monoclonal antibody and 

detected using the anti-mouse IgG (H+L) AP conjugate antibody (Promega). 

 After three weeks of selection pressure under different concentrations of MSX, 

the SP2/0-2H3 cells were seeded at a cell density of 5 x10
5
 cells per ml in 50 ml fresh 

MSX-free media for a production run. Over the course of the seven day production run, 
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cell culture samples were taken daily to measure viable cell density, cell viability and 

protein yield. Each production run was done in two independent experiments, with two 

technical replicates per independent experiment.  

2.7 Large Scale Recombinant Protein Production Run 

 

 The SP2/0-2H3 clone was scaled up to two liters with the goal of producing at 

least milligrams to gram quantities of the recombinant lysosomal enzyme. To produce the 

recombinant enzyme, a production run was done using the 50 µM MSX-pressured SP2/0-

2H3 cell line and the optimal bioprocess conditions determined previously including: 

basal media, supplement, and temperature. The 50 µM MSX-pressured SP2/0-2H3 clone 

was scaled up to 2 liters in Media A and seeded at 5 x10
5
 cells per ml in a 5L shake flask. 

On days 3 and 5, 10% volume Feed 2 was added to the culture. On day 6, the protein was 

harvested from the cell culture by centrifugation at 250 x g for 15 minutes. The 

supernatant containing the recombinant protein was filtered using a vacuum filter, 

HarvestMax-100 (Marin Scientific Development Company, Greenbrae, CA), to remove 

the remaining cells and cell debris for fluid suitable for chromatography.  

2.8 Recombinant Protein Purification 

 

 The filtered supernatant containing the recombinant protein was thawed from -

80˚C storage. The recombinant protein was diluted with the half the volume of 20 mM 

Tris and was adjusted to pH 7.3. The recombinant protein was loaded into a GigaCap Q-

650M column (Sigma) and washed with 20 mM Tris. The purified samples were eluted 

with 20 mM Tris 1M NaCl buffer. The recombinant protein was further concentrated 

using Amplicon Ultra 0.5 ml Centrifugal Filters (Millipore, Billerica, Massachusetts) and 
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the manufacturer instructions. 

2.9 ELISA Quantification of the Recombinant Protein 

 One day before performing the sandwich ELISA, wells of 96-well plates were 

coated with 15 µg/ml of antibody specific to the recombinant enzyme, diluted in coating 

buffer (0.05 M carbonate, pH9.6) and incubated at 4˚C overnight. Approximately 16 

hours later, the wells were washed three times with TBST, then incubated in blocking 

buffer (6% BSA in TBST) for 1 hour. After blocking, and after each step of the ELISA, 

the wells were washed three times with TBST. The wells were then incubated with 3125 

pg/well of recombinant protein produced from CHO cells or SP2/0 cell hosts, diluted in 

blocking buffer for 2 hours. The recombinant protein was probed in a 1 hour room 

temperature incubation with 50 µL 1 µg/ml of a biotin-conjugated antibody diluted in 

blocking buffer. The biotin was bound by 100 µL Streptavidin-HRP (R and D Systems, 

Minneapolis, MN), which was diluted 1:200 in blocking buffer and incubated for 1 hour. 

Binding of the biotin-conjugated antibody was detected using a QuantaBlu Fluorogenic 

Peroxidase Substrate kit (ThermoFisher Scientific) according to manufacturer 

instructions.  

2.10 Protein Quality Comparison Studies 

 

2.10.1 Passaging to Determine SP2/0-2H3 Cell Line Stability 

 

 The top five SP2/0 clones with the highest recombinant enzyme production were 

determined by the enzyme activity assay. The top clone was passaged 2-3 times a week. 

Cells were passaged down to a viable cell density of 5 x10
5
 cells per ml in a total volume 

of 25 ml. Four days after passaging, one ml of each cell culture was kept for the 4-MU 
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enzyme activity assay. Enzyme activity was tracked over the course of 30 passages. 

These cultures were maintained in Media A, the best basal media determined by the 

media screen.  

 

2.10.2 Uptake Assays  

 Primary human fibroblast cells were seeded into 24-well culture plates (Corning) 

at 150,000 cells/well and were grown for 24 hours at 37˚C and 5% CO2 to reach 

approximately 90% confluency. To generate a dose-response curve, the cells were then 

dosed with six concentrations of recombinant protein produced from CHO cells or the 

same recombinant protein expressed in SP2/0 cells. Doses of the recombinant protein 

were diluted with uptake medium (DMEM with L-glutamine supplemented with 0.5 

mg/ml BSA and 1 mM HEPES). In addition, 5 mM M6P (Sigma) was added to some 

wells as a competitive inhibitor to the recombinant protein drug. Each well containing the 

recombinant protein therapeutic and for some wells, M6P, were incubated at 37˚C and 

5% CO2 for 4 hours. After incubation, the cells were washed twice with DPBS, and lysed 

by shaking for 10 minutes at room temperature in 100 µL Mammalian Protein Extraction 

Reagent (M-PER) (ThermoFisher Scientific) supplemented with 1x protease inhibitor 

cocktail (Sigma). The cell debris from the lysates was removed by centrifugation at 

14,000 x g, 10 minutes, and 4 ˚C. The recombinant enzyme activity in the cell lysates 

were measured using the recombinant enzyme 6-HMU assay. 

2.10.3 6-HMU Enzyme Assay 

 Assay standards, 6-HMU, and recombinant enzyme controls, were diluted in M-
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PER. 30 µL of lysate samples from the uptake assays, controls, and standards were plated 

per well. The enzyme reaction was initiated by adding 30 µL mixture of 31.25 µM 6-

HMU conjugated substrate in assay buffer (0.1/0.2 M citrate phosphate buffer, sodium 

taurocholate, and sodium oleate, pH 4.4) to each sample. The reactions were incubated at 

37˚C for one hour. The reaction was stopped with 200 µL stop buffer (0.5 M glycine, 0.3 

M NaOH, pH 10.3). Fluorescence was measured with a plate reader (Molecular Devices, 

Sunnyvale, CA), using excitation wavelength, 355 nm and emission wavelength 460 nm. 

Dose response curves were fit using Michaelis-Menten in Prism version 7.02 (Graphpad 

Software Inc., La Jolla, CA), where KM and Vmax values were calculated using that curve.  

2.10.4 CI-M6PR Binding Assay 

 

 Cation-independent mannose-6-phosphate receptor (CI-M6PR) was diluted to 4 

µg/mL in coating buffer (100 mM Carbonate/bicarbonate buffer). 100 µL of CI-M6PR at 

µg/mL was immobilized to the wells of a black FluoroNunc MaxiSorp 96 well plate. The 

plate was incubated at 4˚C overnight. Wells of the plate were washed three times with 

wash buffer (PBS + 0.05% Tween 20), then blocked with 100 µL per well of SuperBlock 

T20 (PBS) Blocking Buffer (ThermoFisher Scientific) for one hour. Blocking buffer was 

removed by washing three times with wash buffer. CHO-produced ERT and SP2/0-

produced ERT were diluted to 100 nM, 50 nM, 25 nM, 12.5 nM, 6.25 nM, 3.125 nM, 

1.56 nM, and 0 nM. 50 µL of each sample was added to the plate, and incubated for two 

hours at room temperature. After incubation, the plate was washed three times with wash 

buffer. 4-MU conjugated ERT substrate was diluted to 1.8 mM in assay buffer (50mM 

Citrate / 125mM NaCl / 0.5% Triton X-100, pH 4.5). 50 µL 4-MU substrate solution was 
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added to the receptor coated plate and incubated at 30 minutes for 37˚C. At the end of the 

incubation period, 200 µL stop buffer (0.5M Glycine, 0.3 M NaOH, pH 10.5) was added 

per well. 4-MU fluorescence was released upon cleavage of the 4-MU-conjugated 

substrate by the ERT. Fluorescence was measured using a plate reader (Molecular 

Devices) using excitation wavelength, 366 nm and emission wavelength 446 nm. 

 

2.10.5 Comparison of ERT Half-life Using the 6-HMU Enzyme Activity Assay and 

Western Blot 

  

 Primary human fibroblast cells were seeded into 24-well culture plates (Corning) 

at 150,000 cells/well and were grown for 24 hours at 37˚C and 5% CO2 to reach 

approximately 90% confluency. The CHO and SP2/0-produced ERTs were diluted to 50 

nM in uptake medium (DMEM with L-glutamine (ThermoFisher Scientific) 

supplemented with 0.5 mg/ml BSA and 1 mM HEPES). The fibroblasts were dosed with 

500 µL of the 50 nM ERT produced from CHO or SP2/0 hosts. For each time point, the 

SP2/0-produced ERT, CHO-produced ERT and uptake media were dosed to the 

fibroblasts in duplicate. Four hours after ERT dosing, the ERT was removed from the 

fibroblasts by washing wells once with DPBS. One mL DPBS media with L-glutamine 

and 15% FBS was added to the wells then incubated in a stationary incubator at 37˚C and 

5% CO2. The 0 hour time point sample was taken immediately after the four hour 

incubation dose. Five additional time points were collected at 24 hours, 48 hours, 72 

hours, 120 hours, and 168 hours. Each sample was harvested by washing cells twice with 

DPBS, then lysing using 100 µL M-PER supplemented with 1X protease inhibitor 

cocktail and shaking for 10 minutes. Samples were stored at -80˚C until needed for 
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analysis by the 6-HMU enzyme activity assay and western blot. The western blot was 

performed using the methods described previously. A proprietary monoclonal antibody 

specific to the ERT was used as a primary antibody, diluted 1:1,000 in blocking buffer. 

The primary antibody was probed using a secondary antibody, IRDye 800CW Goat anti-

mouse (LI-COR) diluted 1:5,000 in blocking buffer and detected using the Odyssey 

Imaging System (LI-COR).  

3.0 RESULTS 
 

3.1 Development of a SP2/0 Expression Platform for ERT Production 

 

The first goal of this project was to build a model SP2/0 expression platform for 

difficult-to-express proteins. For this project, a difficult-to-express human lysosomal 

enzyme that could potentially be used as an enzyme replacement therapy (ERT), was 

expressed in the SP2/0 cells as a proof-of-concept model. Compared to CHO cells, SP2/0 

cells have low endogenous GS expression, making the GS selection system (Lonza) ideal 

for selection of successfully transfected cells (Yazaki et al, 2004). To build a stable cell 

line, SP2/0 cells were transfected with a linearized plasmid encoding the GS and ERT 

gene. To select for successfully transfected cells, glutamine was removed from the media, 

forcing cells to rely on the incorporation of the transfected GS gene to convert glutamate 

and ammonia into glutamine.  

To verify that the endogenous levels of GS in SP2/0 cells is insufficient for cell 

division, cell growth, and viability, SP2/0 cell cultures were tracked over the course of 6 

days in glutamine supplemented and glutamine-free conditions (Figure 5). In addition to 
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the SP2/0 cells, other cell lines with varying levels of endogenous GS expression were 

tested in glutamine-free and glutamine supplemented conditions. In glutamine 

supplemented conditions, cell growth was constant and maintained high percent viability 

(over 80 percent viability) until it reached maximum cell capacity within the culture 

vessel, seen on day 5. In the absence of glutamine, a cell line without endogenous GS, the 

GS knockout CHO (GSKO) cells, and the cell line with low endogenous GS levels, SP2/0 

cells, were unable to survive, dropping below 50% viability by day 6, and halted cell 

growth immediately after removing glutamine (Figure 5). The only cell lines capable of 

healthy cell division and maintenance of high viability in glutamine-free media were the 

wild-type CHO cells, which are known to express higher levels of endogenous GS 

compared to SP2/0, and the SP2/0 cell line transfected with the plasmid encoding the 

ERT and selectable marker (SP2/0-GS-ERT). Furthermore, after only four passages of 

SP2/0 cells in glutamine-free media, cell viability dropped below 4% (data not shown). 

These results are consistent with literature review, demonstrating that low level of 

endogenous GS is not sufficient for survival in glutamine-free conditions, making the GS 

selection system a logical choice for selection of successfully transfected cells.  
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Figure 5. The effect of glutamine-free media on cell growth and viability 

 

Suspension adapted CHO cells, SP2/0 cells, GS knockout CHO cells, and SP2/0-GS-ERT 

cells (transfected with a plasmid encoding the GS selection marker and a gene encoding 

the ERT) were tested in glutamine-free media or the same media supplemented with 8 

mM GlutaMAX. 1 ml sample from each cell culture was collected daily to determine cell 

growth and viability over the course of 6 days. Error bars represent a variability of two 

biological replicates.  

 

To confirm the GS phenotype of the CHO, GSKO CHO, SP2/0, and SP2/0-GS-

ERT cell lines, cell lysates from the four cell lines and NS0 cells were run on a western 

blot to observe GS expression levels. The western blot results demonstrate that the CHO 

cells and SP2/0-GS-ERT express high levels of GS, whereas SP2/0 cells have lower 

endogenous levels of GS compared to CHO, and the GSKO CHO and NS0 cells did not 

express GS (Figure 6). Together, the western blot along with the growth and viability 

data indicate that the low endogenous GS levels in SP2/0 cells are insufficient for cell 

division or healthy metabolism in the absence of glutamine. To rescue this phenotype, 

exogenous GS is required to increase GS levels in SP2/0 cells for survival in glutamine-

free conditions. This confirms that the GS selection method can be used to isolate 

successfully transfected clones which express the ERT.  
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Figure 6. Endogenous glutamine synthetase in different cell types 

 

15 µg total protein from cell lysates of SP2/0, SP2/0-GS, NS0, CHO-S, and GS knockout 

CHO cells (GSKO CHO) cells were loaded into each well. A Ponceau staining of the 

membrane (left) was used to demonstrate equal loading. The western blot (right) displays 

endogenous expression levels of glutamine synthetase (GS) of various cell lines. 

  

To verify that the ERT is expressed in the transfected SP2/0 cells, the presence of 

the lysosomal enzyme was tested by western blot. Since the recombinant lysosomal 

enzyme is secreted from the cell, enzyme was harvested by removing the cell pellet from 

the media. Results demonstrate that the lysosomal enzyme was expressed in the 

transfected SP2/0 cell population. The SP2/0 cells continued to express the lysosomal 

enzyme after passaging the transfected SP2/0 cells in glutamine-free media for over two 

weeks, indicating that the plasmid was successfully integrated into the host genome, and 

was not expressed transiently.   

 After verifying that the transfected SP2/0 population stably expresses the 

transfected plasmid, single cells from the transfected population were isolated to limit 

genetic variation, a factor which could affect recombinant protein titers after several 
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passages. To do this, single cells were isolated by limiting dilution, and were plated 1 cell 

per well or 0.5 cells per well (one cell every other well) in 96-well plates. To eliminate 

wells that contained more than one cell per well, the plated cells were checked using the 

Cell Metric high-resolution imaging system. Wells with more than one cell per well were 

eliminated from clonal analysis. Of the wells which contained one cell per well, photo 

images were collected to demonstrate monoclonality (Figure 7). The most critical time 

points for clonal imaging are at 2-3 hours and 24 hours post-seeding. Imaging 2 hours 

post-seeding allows cells to settle into the well, reducing any cell migration while 

suspended in the media. The 24-hour time point is also an important time point as it 

provides photo evidence of the first cell division.  
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Figure 7. Example of monitoring transfected SP2/0 clones by high-resolution 

imaging 

 

Transfected SP2/0 cells capable of surviving in glutamine-free media were plated into 96-

well plates and monitored using a high-resolution imaging system. Cell growth was 

monitored for all clones for 19 days. An overview of the entire well is imaged by the 

imaging system (top image, well timeline) as well as a 10X magnification image of the 

entire well for each time point. Upon identification of a single cell in a well, the cell was 

marked clonal on the imaging program, allowing the software to compile photos of the 

same spot in the well for the duration of the cloning procedure (bottom images).  

 

 

 Out of the clones that derived from a single cell, the 24 fastest growing clones 

were screened for recombinant protein expression. The 24 clones were expanded in 
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increasing volumes, maintaining the viable cell density between 0.5 million cells per ml 

and two million cells per ml. Of the 24 clones, 7 clones were not able to expand to a 25 

ml culture volume, due to low viability or growth impairment. The remaining 17 clones 

were screened for expression of the recombinant enzyme by western blot, indicating 

successful integration of the transfected plasmid into the host genome. Out of the 17 

clones, four clones, 2F1, 257, 2D6, and 1H7, did not express the recombinant enzyme, 

and two clones 1C7 and 1B8 expressed low levels of the recombinant enzyme (Figure 8).  

 

 

Figure 8. Screening SP2/0 clones for expression of the lysosomal enzyme 

 

Culture media samples were harvested from each clone and were screened for the 

secretion of the recombinant lysosomal enzyme by western blotting. The lysosomal 

enzyme is expressed at 68 kDa, as seen by the positive control sample. Out the clones 

screened, clones 257, 2F1, 2D6, and 1H7 did not express the lysosomal enzyme.  

 

The remaining 13 clones were passaged about four times to restore normal cell 

growth and improve viability to a minimum of 90%. Although the western blot confirmed 

that the clones express the recombinant enzyme, its analysis is limited since it does not 

provide any information about the enzymatic activity or quantity of the enzyme 
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produced. To determine which of the 13 clones have the highest production yield of the 

active enzyme, small scale production runs of the 13 clones were used to produce the 

recombinant protein. While the clones showed varying rates of cell growth, most clones 

maintained at least 70 percent viability by day 8 (Figure 9). To quantify the amount of 

active recombinant enzyme produced by each clone, a plate-based 4-MU enzyme activity 

assay was used. This production screen identified clone 2H3 as the highest producing 

clone and the clone capable of maintaining at least 80 percent viability until day 8. 
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Figure 9. First clone screen: Recombinant enzyme production run using the GS-

ERT transfected SP2/0 clones 

Shake flasks were seeded at 5 x 10
5
 cells/ml in a total volume of 25 ml. At seven 

different time points during the production run, a sample from each cell culture was 

collected to monitor cell viability (A) and growth (B) during the production run. On day 

8, the day of highest cell density, a sample was collected to quantify the amount of 

lysosomal enzyme produced by each clone using a 4-MU enzyme activity assay (C).  
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 To confirm that clone 2H3 is the top producing clone, a second production run 

was done using the top five clones with the best production yields determined by the 

initial production run. The same procedure was used as the first production run except 

that 10% volume of supplemental nutrient feed was added to the clones on day 3. Adding 

the cell supplement improved the rate of cell growth for all clones, maximizing cell 

growth at day 5 instead of day 8 (Figure 10). The culture media from each flask was 

analyzed to quantify the amount of active lysosomal enzyme produced. Consistent with 

the previous experiment, clone 2H3 yielded a higher amount of active lysosomal enzyme 

and was considered the best production clone (Figure 10).  
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Figure 10. Second clone screen: Lysosomal enzyme production run using the 5 top-

producing clones 

A seven-day production run was used to confirm which clones yield the highest 

recombinant protein titers. Using the top five producing clones from the previous screen, 

shake flasks were seeded at 5 x 10
5
 cells/ml in a total volume of 25 ml. A sample of each 

cell culture was collected daily to monitor cell viability (A), growth (B) and production 

titer of the active recombinant enzyme (C). Each point represents one independent 

experiment.  
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3.2 Bioprocess Studies for the SP2/0 Cell Line  

 

 

To establish a working protein production protocol for the top producing SP2/0 

clone, a few characterization studies were done to optimize media, incubation 

temperature, and nutrient feed for improved protein productivity. 

3.2.1 Basal Media Screen 

 

 Generally, basal media is one of the most important components of cell culture 

optimization process since it is key source of nutrients to the cells, directly affecting cell 

viability and growth. The first cell line characterization study for this project screened a 

panel of five serum-free myeloma or hybridoma specific media for optimal viability, cell 

growth, and productivity. Shake flasks were seeded at 5 x 10
5
 cells per ml in a 50 ml 

volume, each with different media. Out of the five different media types, Media A was 

able to support rapid cell growth and maintain high cell density during the production run 

up to day 6 (Figure 11A and B). In addition to supporting fast growth and cell health, 

using Media A yielded the highest amount of the recombinant lysosomal enzyme (Figure 

11C). Since Media A was the best performing media to maintain cell health and 

recombinant protein production, this media will be used for the rest of the 

characterization experiments for the SP2/0-2H3 clone.   
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Figure 11. Screen of serum-free basal medium panel for SP2/0 clone 2H3 

A production run for the lysosomal enzyme was done using SP2/0 clone 2H3. Samples 

were collected daily for 7 days to track cell viability (A) and growth (B). On day 5, the 

day of the highest cell density and percent viability (over 80% viable), the active 

recombinant enzyme was quantified (C). Each bar represents the mean of two 
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independent experiments. Error bars represents range in variability of two biological 

replicates, each of which represent the average of two technical replicates.  

 

3.2.2 Temperature Shifting with SP2/0 Clone 

 

A widely used technique to boost protein productivity in CHO cells during the 

production process is temperature shifting, where mild-hypothermia is induced to 

suppress cell growth and glucose consumption while enhancing protein productivity 

(Furukawa & Ohsuye, 1998; Kumar, Gammell, Meleady, Henry, & Clynes, 2008) and 

extending cell viability (Moore et al., 1997). When cell cultures are temperature shifted, 

the incubation temperature is reduced from 37˚C to a few degrees lower. The effect of 

temperature shifting is different per cell line and can also have varying effects between 

different clones (Yoon, Hwang, & Lee, 2004). Unlike CHO cells which generally have a 

positive response to temperature shifting, there are varying reports on how temperature 

shifting affects productivity and metabolism in hybridoma cells (myeloma cell fused with 

a B-cell) (Furukawa et al, 1998, Mason, 2014). To observe whether production of our 

recombinant enzyme from the SP2/0-2H3 clone can be improved using a temperature 

shift, shake flasks at a 50 ml volume were seeded at the same cell density in Media A. 

Shake flasks were either temperature shifted and incubated at 32˚C a specific day during 

the production run or remained at 37˚C. When temperature shifting the SP2/0-2H3 cells 

line early during the production run (days 0, 1, or 2), cell growth increased at a steady 

rate and maintained high percent viability through the entire duration of the production 

run (Figure 12A and B). In comparison, the flasks that were temperature shifted later in 

the production run (days 3 and 4) reached the maximum cell density, resulting in a drop 

in percent viability. These results were reflected in protein productivity. By temperature 
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shifting early into the production run, clone 2H3 was able to reach over 18 mg/L, 

compared to the shifting late into the production run, which was only able to yield 

between 11 and 14.9 mg/L (Figure 12C). These results suggest that temperature shifting 

at day 0 can be used to maintain high viability and higher titers.  
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Figure 12. The effects of temperature shifting on clone SP2/0-2H3 

 

Shake flasks were seeded at 5 x 10
5
 cells/ml and were sampled and counted daily for 7 

days to track viability (A) and cell growth (B). Samples were collected day 0 and days 3-

7 to quantify lysosomal protein production during the production run (C). Each data point 

represents one biological replicate. 
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3.2.3 Nutrient Feed Optimization 

 

 Developing a feeding strategy is one of the main optimizations for fed-batch 

processes. In a fed batch process, the basal media supports initial cell growth, and 

additional nutrient feed is added to replenish the consumed nutrients, maximize 

productivity and extend the production phase.  A general feed strategy method for fed-

batch cultures, feed strategy 1, was a previously used method for fed batch cultures in the 

lab. In feed strategy 1, 5% volume feed was administered to the cultures on day 0, and 

10% volume feed on days 3 and 5. Cell cultures were assessed for improved productivity 

using three different nutrient feeds. When feeding strategy 1 was used, productivity was 

improved slightly (Figure 13). Using feed strategy 1, the culture without feed reached an 

average titer of 15.4 mg/L, while adding feed 2 improved the titer to an average of 23.1 

mg/L. Although this is an improvement in titer, it is also known that protein production 

from fed-batch processes can be limited when the cultures are over supplied with 

nutrients (Gorfien, Paul, Judd, Tescione, & Jayme, 2003). When a culture has excess 

nutrients, metabolic byproducts can accumulate, increasing cellular toxicity and stunting 

cell growth (Gorfien et al., 2003). If this was the case for feed strategy 1, a new feeding 

strategy needed to be employed to overcome that limitation. To create a strategy that 

reduces supplementation, feed strategy 2 was used. For feed strategy 2, cultures were fed 

with 10% volume feed on days 3 and 5 without the day 0 feed. As a result of changing 

feed strategy, productivity increased from an average titer of 17.7 mg/L to 37.8 mg/L and 

23.1 mg/L to 46.9 mg/L for feed 1 and feed 2 respectively. Overall, feed 2 was capable of 

reaching the highest product yield using feed strategy 2, reaching an average of 46.9 
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mg/L compared to feed 2, feed, 3 and the control culture without feed which reached an 

average titer of 37.8 mg/L, 0.771 mg/L, and 16.9 mg/L respectively. These results 

indicate that both the nutrient feed and the strategy are important optimization parameters 

for improving protein titers.  

 

Figure 13. The effect of feeding strategy on protein productivity 

 

Three different nutrient feeds were administered to SP2/0 clone 2H3 using either feed 

strategy 1 (5% volume feed on day 0, and 10% volume feed on days 3 and 5) or feed 

strategy 2 (10% volume feed on days 3 and 5). On the last day of the production run, day 

7, the recombinant protein activity was measured. Error bars represent two biological 

replicates.  

  

Since feed strategy 2 had the most success in boosting protein productivity, 

strategy 2 was used to screen two additional supplements to identify other nutrient feed 

candidates at a 50 ml scale. All nutrient feed, with the exception of feed 3, was able to 

extend high viability past day 5 compared to the control (Figure 14A).  In addition, all 
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feed with the exception of feed 3, increased viable cell density (Figure 14B). As a result 

of extending high viability during the production run and increasing the cell density, feed 

1, 2, 4, and 5 yielded higher titers than the control. Of the four supplements that improved 

protein production, two feeds were high performing, feed 2 and 5. Compared to the 

control which yielded an average titer of 16.9 mg/L by day 7, feed 2 and 5 increased the 

average titer to 46.9 mg/L and 47.1 mg/L respectively (Figure 14C). It should also be 

noted that recombinant protein titer for each nutrient feed may reach its maximum titer at 

different days during the production run. For example, where feeds 1, 2 and 5 reached 

maximum titer at day 7, feed 4 reached its maximum titer at day 6 yielding 41.9 mg/L. 

When optimizing nutrient feed, the protein titers should be measured the last few days of 

the production run to ensure that the recombinant proteins are harvested on their peak day 

during the production run. Using this optimization method, two nutrient feeds that 

doubled average protein production were quickly identified.  
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Figure 14. Screening glutamine-free nutrient feed for SP2/0 clone 2H3 

Ten percent volume of five nutrient feeds was administered to SP2/0 clone 2H3 

production cultures on days 3 and 5. Over the course of 7 days, culture viability (A), cell 

density (cell growth) (B), and protein production (enzyme activity) (C) were measured to 
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identify nutrient feeds that support robust growth and improved production. Error bars 

represent the range of two biological replicates. 

3.2.4 Amplification of the Expression Vector using GS-based MSX Selection  

 A widely-used method to amplify protein production from industrial cell lines is 

to amplify copy number of the gene encoding the recombinant protein. The GS selection 

marker is known to be a useful target for gene amplification (Wilson, 1993). Adding 

MSX to the cell culture acts as a selective pressure, requiring the cells to overexpress or 

amplify the GS gene along with the recombinant protein in the same vector construct. 

Cell colonies resistant to the MSX selective pressure are known to amplify the GS gene 

copy number up to 10 copies in a single round of selection (Wilson, 1993). The GS-MSX 

selection pressure method was used to increase expression of the GS along with the 

recombinant lysosomal enzyme stably integrated into the SP2/0-2H3 clone. The SP2/0 

clone 2H3 was pressured in four different concentrations of MSX for three weeks. As 

seen in the western blot images in Figure 15, GS expression of SP2/0 clone 2H3 

increased, along with the recombinant protein, as the concentration of MSX increased. 

Results of this experiment indicate that endogenous GS expression levels were 

successfully increased in response to MSX selection pressure. Since the recombinant 

lysosomal enzyme in the same expression vector was also co-amplified, these results 

indicate that the GS-MSX selection can be successfully used to increase protein 

production within three weeks.       
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Figure 15. Amplification the recombinant protein expression in clone 2H3 by adding 

MSX 

SP2/0 clone 2H3 was pressured in methionine sulphoximine (MSX) concentrations at 

either 5 µM, 10 µM, 20 µM, 50 µM, or no MSX for three weeks. 5.5 µg protein from 

MSX-pressured cells lysates were separated on an SDS-PAGE gel and were blotted onto 

a nitrocellulose membrane. Total protein load is visualized with a Ponceau-S stain (left) 

while GS and the recombinant protein were probed with either an anti-glutamine 

synthetase antibody or an antibody specific to the recombinant (right). The asterisk (*) 

indicates a nonspecific band.  

  

Although an increase in recombinant enzyme expression was previously shown 

by western blot, the western blot analysis cannot provide any information about enzyme 

activity or cellular health during protein production. To determine the quantity of the 

active recombinant enzyme that can be harvested from the MSX-pressured SP2/0 clone, a 

seven-day production run of MSX-pressured SP2/0 clone was performed. During the 

production run, percent viability was not dependent on MSX selection pressure (Figure 

16A). By day 5 all cell cultures started to decrease in viability regardless of MSX 
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concentration. When a higher concentration of MSX was used to pressure the cells, the 

maximum cell density was reduced (Figure 16B). Although cell density was lowered as a 

result of higher MSX concentration, this did not translate to a lower amount of 

recombinant protein. The production titers increased incrementally with MSX 

concentrations up to 50 µM. On day 5, the day before the viability and cell density 

dropped, each sample pressured with MSX was assayed to determine the recombinant 

protein titers. The cells pressured with 50 µM MSX were capable of reaching the highest 

average active recombinant protein titer, 35.9 mg/L, compared to the control, which 

reached 8.1 mg/L (Figure 16C). Using this method to increase protein productivity took 

three weeks, but was effective and would not require many supplements for large scale 

production. 
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Figure 16. MSX-amplified GS-ERT expression vector in clone 2H3 raises 

productivity 

SP2/0 clone 2H3 was pressured in methionine sulphoximine (MSX) concentrations at 

either 5 µM, 10 µM, 20 µM, 50 µM, or no MSX for three weeks. Shake flasks were 

seeded at 0.5 million cells per ml and sampled daily to monitor cell health including 
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viability and growth (A and B). On day 5 of the production run, the last day before a 

decrease in cell viability, protein production titers were measured by an enzyme activity 

assay (C). As concentrations of MSX selection pressure increased, protein titers 

increased. Error bars represent variation of two biological replicates, each of which was 

done in duplicate. 

 

 

Stable cell lines are characterized as cells that have the ability to maintain 

constant protein production over a long period of time. However, literature reports 

demonstrate that recombinant protein production can be affected by long-term culture of 

the stable cell lines. After a number of cell generations, cell line characteristics including 

cell morphology and growth rates are altered due to genetic variation. Changes in stable 

cell line characteristics ultimately lower recombinant protein expression and affect 

protein quality. The number of passages, or number of subculturing cells from one vessel 

to another vessel in fresh growth medium, is commonly kept under 20 passages to ensure 

cell line stability. To ensure that the top clone can maintain long-term cell line stability, 

recombinant protein expression was measured after four day production runs for each 

passage up to 20 passages. In addition, the recombinant protein expression was detected 

in cell lysates by western blot to visualize any changes in protein over several passages. 

Western blots display consistent expression up to passage 20 (Figure 17A). At passage 

25, the recombinant protein seems to be expressed at a slightly lower molecular weight. 

Although the protein appeared to be expressed differently, normal molecular weight 

returned by passage 30, but with lower expression. The protein titer decreased at passage 

25 but was still higher than the titer from passage 1, indicating that the SP2/0 clone is 

stable at least up to 20 passages (Figure 17B).  In addition, the method used to transfect 

SP2/0 cells and isolate high-yielding clones is capable of establishing cell lines with 
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protein stability up to 20 passages.  

A 

 

 
 

Figure 17. Determining SP2/0 clonal cell line stability 

 

Recombinant protein titers were quantified over 30 passages to determine long-term 

recombinant protein production in a stable SP2/0 cell line, clone 2H3. A) Western blot 
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bands display expression of the recombinant lysosomal enzyme (top) along with a 

Ponceau S stain to demonstrate equal loading (bottom). B) Enzyme activity titers after a 4 

day production run for over 30 passages. 

 

3.3 Quality and Functionality of SP2/0 Products 

 

Comparison of ERT Drug Uptake from CHO cells and SP2/0 cells 

SDS-PAGE reveals that the ERT produced in CHO and SP2/0 cells have the same 

molecular weight of 65 kDa (Figure 18). To verify that the recombinant proteins 

produced by SP2/0 cells can be used for research applications, the recombinant proteins 

were tested for function in two cell-based experiments. Purified SP2/0 and CHO 

produced ERT were administered to diseased lysosomal storage disorder fibroblasts at six 

concentrations to generate a dose-response curve. Cellular uptake of the ERT was 

quantified for each ERT dose. The dose response curve was fit to the Michaelis-Menten 

equation on Graphpad Prism 7. Both CHO and SP2/0 cells have similar Kuptake, 4.5 and 

4.6, respectively (Figure 19). Although Kuptake values of SP2/0 and CHO cells are similar, 

the SP2/0-produced ERT had a higher Vmax compared to CHO cells. Overall, this 

experiment demonstrates that cellular uptake of CHO and SP2/0 produced ERTs are 

comparable. 
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Figure 18. Western blot of the CHO and SP2/0 produced ERT 

 

0.1 µg ERT sample produced from CHO (CHO-ERT) and SP2/0 (SP2/0-ERT) cell hosts 

used for protein comparison studies in this experiment were separated by non-reducing 

SDS-PAGE. The gel was then transferred to a nitrocellulose membrane and probed using 

a polyclonal antibody specific to the proprietary ERT. The sizes of the ERTs were 

estimated using the molecular weight markers, labeled in kDa.  
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Figure 19. Comparison of Kuptake for SP2/0 and CHO-produced ERT 

 

Six increasing concentrations of SP2/0-produced ERT (green triangle) and the same ERT 

produced by CHO cells (blue circle) were administered to lysosomal storage disorder 

fibroblasts to establish an ERT dose-response curve. Data points were fit to the 

Michaelis-Menten equation on Graphpad Prism 7.0 to determine Kuptake values. Each data 

point represents the results of two replicates. This experiment was repeated twice. 

Representative results are shown.  

 

The enzymatic activity decay of ERT uptake into lysosomal storage disease 

fibroblasts were measured over a 7 day period. The ERT produced in both CHO and 

SP2/0 cells had half-lives of 36.5 hours and 14.9 hours respectively (Figure 20). When 

the ERT is internalized into the cell, it is processed from its full length form at 65 kDa 

into the 25 kDa form (Figure 21).  Although enzymatic activity decay of the ERT is 

similar from both CHO and SP2/0 expression platforms, the ERT processing is different. 

The ERT produced by CHO cells was mostly processed from the full-length 65 kDa form 
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into the 25 kDa form within 24 hours, with full processing after 48 hours. The ERT 

produced by SP2/0 cells was not fully processed into its 25 kDa form after 168 hours. 

The SP2/0-produced ERT are processed slowly, with a continuous increase in expression 

of the 25 kDa processed form over the 168 hour period. Total protein was stained by 

Ponceau S, and showed a gradual increase in amounts of protein over time, as a result of 

fibroblast cell growth (Supplementary Figure 5).  

 

 

Figure 20. Determination of ERT half-life from CHO and SP2/0 production hosts 

 

Lysosomal storage disorder fibroblasts were dosed with 50 nM ERT produced from CHO 

and SP2/0 expression platforms. After a 4 hour incubation period, the ERT dose was 

removed and replaced with DMEM media supplemented with FBS. At each time point, 

the fibroblasts were washed twice and cell lysates were harvested. Cell lysates were 

assayed using a 6-HMU enzyme activity assay to determine concentration of the 
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internalized ERT. The curve was fit to a one phase exponential decay curve on GraphPad 

Prism 7.0 software to calculate the ERT half-life in hours. Each point and error bar 

represents mean and error of two technical replicates. 

 

Figure 21. Half-life comparison of CHO and SP2/0-produced ERTs 

 

Cell lysates from the half-life uptake experiment were separated by SDS-PAGE and 

transferred to a nitrocellulose membrane. The western blot on the left shows cell lysates 

of diseased fibroblasts dosed with 50 nM ERT produced by CHO cells, while the western 

blot on the right shows cell lysates of diseased fibroblasts treated with 50 nM ERT from 

SP2/0 cells. Time points are measured in hours after the ERT was removed (4 hours after 

incubation in the ERT). As a control, diseased fibroblasts were dosed with a diluent, 

DMEM media, without an ERT. The nitrocellulose membrane was probed with a 

monoclonal antibody enzyme specific to the proprietary ERT. Full length-ERT is 

expressed at 65 kDa (indicated by top arrow), and the ERT processed within the 

lysosome is expressed at 25 kDa (indicated by bottom arrow).   

 

 The internalization of an ERT into the cell is mediated by endocytosis after 

binding to the cation-independent mannose-6-phosphate (CI-M6PR) receptor. To further 

explore characteristics of the ERTs, M6P binding to the CI-M6PR was measured for 

seven concentrations of the CHO and SP2/0-produced ERTs, generating an enzyme 

binding curve (Figure 22). Wells of a 96 well plate were coated with 100 µL of 4 µg/mL 
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CI-M6PRs. The ERTs produced from CHO and SP2/0 cells were bound to the CI-M6PR 

during a two hour incubation period at room temperature. ERT bound to the CI-M6PR 

was detected by measuring enzyme activity of cleaved 4-MU conjugated substrate. 

Binding affinity (KD) to the CI-M6PR was calculated by linear regression to for both 

CHO and SP2/0 produced ERTs (Table 1).  

 
 

Figure 22. ERT binding affinity to CI-M6PR 

0.4 µg of the CI-M6PR was bound to each well of a 96 well plate. CHO and SP2/0-

produced ERT was bound to the CI-M6PR and was measured for fluorescence released 

from cleaved 4-MU conjugated substrate. Each data point represents variability of two 

assays, each with two technical replicates.  

 

 

ERT Host Lineweaver-Burk  Hanes-Woolf  

KD KD 

CHO 12.54 10.23 

SP2/0 10.36 9.21 

 

 

 

  

Table 1. Binding affinity summary of ERT to CI-M6PR 

 

Binding affinities of M6P residues on CHO and SP2/0 ERTs to the CI-M6PR was tested. 

The KD determined for the binding of the M6P residue on CHO or SP2/0-produced ERT 

to the CI-M6PR was calculated by linear regression using Lineweaver-Burk and Hanes-

Woolf. KD values are reported in nM.  
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4.0 DISCUSSION  
 

As research and development groups continue to develop therapeutic proteins, 

there is increasing demand for efficient expression of a variety of recombinant proteins 

including biotherapeutics and protein reagents. Some proteins including lysosomal 

enzymes are especially difficult-to-express, yielding considerably low titers, making the 

cell line development process timely, costly, or unsuitable for manufacture. Instead of 

altering multiple molecular pathways to force expression of a difficult protein, another 

cell line may already possess the cellular machinery required to express the protein of 

interest. With multiple expression platforms available for recombinant protein 

production, difficult-to-express proteins can be produced more efficiently, and cell lines 

can be developed quicker.  

To address the lab’s need for additional mammalian recombinant protein 

expression platforms for production of difficult-to-express proteins, this project explored 

the use of a SP2/0 expression platform for a difficult-to-express lysosomal enzyme. After 

establishing a stable cell line, a bioprocess capable of producing milligram quantities of a 

difficult-to-express recombinant protein was developed. Finally, the same recombinant 

protein expressed in CHO and SP2/0 were compared to determine whether protein 

function was affected by the expression host. This project successfully identified a 

working SP2/0 expression platform capable of producing milligram quantities of a 

research-grade recombinant protein that is difficult-to-express. The fed-batch process 

established may be used as an additional expression system for production of difficult-to-

express recombinant proteins, for research-grade therapeutics or reagents.  



 

 

64 

 

4.1 Assessment of GS-Based Selection System for the SP2/0 Expression Platform 

 

This project first evaluated the GS-based selection method for isolating high-

yielding SP2/0 clones. One of the main concerns about using the GS-based selection 

method for SP2/0 cells was that non-transfected cells would be able to survive due to the 

low levels of endogenous GS expression. An accepted GS-based selection method for 

cell lines that endogenously express GS requires the supplementation of small amounts of 

MSX to the cell culture to inhibit GS (Birch, Mainwaring, & Racher, 2008). To 

determine whether MSX was required for the selection of transfected SP2/0 cells, the 

SP2/0 cell line was tested for glutamine dependence. When removing glutamine from the 

media, SP2/0 cells were not capable of synthesizing enough glutamine for survival, 

requiring an exogenous source of GS. Thus, the GS-based selection system can 

successfully eliminate non-transfected SP2/0 cells without the use of MSX. Furthermore, 

protein expression levels of the top-yielding clone, 2H3, demonstrated long-term 

maintenance of protein expression (Figure 17). This ensures that the co-expression of GS 

and the recombinant protein is still favored in glutamine-free conditions even with the 

expression of endogenous GS. To this end, the implemented clonal selection strategy of 

combining selection pressure with high resolution imaging can be used to quickly select a 

high-yielding stable SP2/0 clone within 5-6 weeks. To further improve production yields 

and long-term recombinant protein expression from SP2/0 cells, a larger number of 

clones could be screened.  

4.2 Bioprocess Analysis 

 

In a fast-paced industry setting, many high-quality recombinant proteins need to 
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be expressed simultaneously for several different projects at the early research stage. For 

SP2/0 cells to be considered a valuable expression tool for early stage research purposes, 

the SP2/0 generated cell lines need to be able to yield high amounts of protein after a few 

optimizations. This project focused on three bioprocess optimization strategies and one 

selection pressure strategy, each of which could be used to increase protein production 

titers.  

The first bioprocess optimized for the SP2/0 production platform was the cell 

culture media. Cell culture basal media is one of the most critical components of cell 

based expression platforms since it is the central supply of nutrients to the cells, directly 

influencing cell growth and viability. For this reason, culture media is generally one of 

the first few components of the bioprocess that is optimized. In addition to cell health, 

media can also influence glycan distribution on recombinant proteins (Wells & Robinson, 

2016). Today, culture media with different formulations of sugar content, amino acids, 

and serums are commercially available to fit protein production needs for specific cell 

lines (Wells & Robinson, 2016). Selecting the optimal media that supports high cell 

density, with minimal reduction in viability or cellular phenotype is vital to maintaining 

the quality of recombinant proteins. For this project, five commercially available serum-

free media specific for hybridoma or myeloma host cell lines were screened for optimal 

cell health and productivity. As seen in Figure 11, different media formulations can 

greatly influence cell health and productivity. When comparing Media A to Media C, 

basal media was capable of having devastating effects reducing productivity from an 

average titer of 19.6 mg/L to 0.33 mg/L, as a result of a dropping in viability from 96.7% 
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to 3%. Results from this project suggests that Media A boosts productivity and cell 

growth, making it an ideal basal media for both production and culture maintenance 

(Figure 11). When selecting an optimal media, other parameters for example specific 

productivity, the amount of recombinant protein produced per cell, also need to be taken 

into consideration. For example, Media A was able to support rapid cell growth rates and 

cell density up to 9 million cells per mL, compared to Media D, which maintained cell 

density under 1 million cells per mL. Although Media D did not support high cell 

density, it supported higher specific productivity, shifting cellular energy was towards 

recombinant protein production rather than cell division. This allowed the Media D to 

yield an average titer of 15.17 mg/L, comparable to the titers of Media A 19.64 mg/L 

despite large differences in cell density. It should be noted that only five types of 

myeloma/hybridoma media were screened when there are many other commercially 

available media for further optimizations. Perhaps with a larger panel of commercially-

available medium or upon using an optimized in-house media formula for the SP2/0-2H3 

clone, higher productivity and extended viability could be achieved. For optimization at 

the research stage of therapeutic development, the goal is to identify a few types of media 

that can be quickly screened so multiple clones and cell types can be optimized 

simultaneously. After leading therapeutic candidates and their cell lines are identified at 

the research stage, the production process of these therapeutic candidates will be fully 

optimized in later stages of the therapeutic pipeline. Overall, this project demonstrated a 

straightforward and quick method for selecting a high-yielding basal media for a SP2/0 

production cell line at the research stage of therapeutic development. 
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The second bioprocess optimized was incubation temperature, a widely-used 

method to optimize protein production in industrial cell lines. Inducing mild-

hypothermia, or temperature shifting, to a lower incubation temperature is known to 

suppress cell growth, reduce glucose consumption, and extend viability, ultimately 

enhancing protein productivity (Furukawa & Ohsuye, 1998; Kumar et al., 2008; Moore et 

al., 1997). Temperature shifting has mainly been studied in CHO cells, and usually 

supports an increase in productivity. In contrast, the effect of temperature shifting in 

murine myeloma or hybridoma cells can vary depending on the cell line being used and 

the protein expressed (Furukawa & Ohsuye, 1998; Mason, Sweeney, Cain, Stephens, & 

Sharfstein, 2014).  Generally, reports of temperature shifting in murine myeloma or 

hybridoma cell lines decrease productivity or does not affect productivity (Al-Fageeh, 

Marchant, Carden, & Smales, 2006). Unlike general reports, temperature shifting using 

our SP2/0 clone slightly benefits protein production when temperature shifted to 32˚C on 

days 0, 1 or 2 of the protein production process (Figure 12). By temperature shifting early 

in the production run, maximum cell density was not reached until the last day of the 

production run, ultimately extending viability. This was not the case for cell cultures 

shifted after day 3 since cultures reached their maximum cell density before the end of 

the production run. Temperature shifting provided excellent viability throughout the 

production process, which could contribute to maintaining the quality of recombinant 

proteins. Protein production in our proof-of-concept model was slightly improved using 

temperature shifting, but should be optimized per generated SP2/0 cell line as previous 

reports of temperature shifting on myeloma and hybridoma cell lines can have varied 
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results. Furthermore, each clone can have varying responses to temperature shifting 

(Yoon et al., 2004), and temperature shifting may have a different effect depending on 

the recombinant protein being expressed (Mason et al., 2014). Although reports in the 

literature have stated that temperature shifting usually does not increase production in 

murine myeloma cell lines, the results from this project suggests that temperature shifting 

may be beneficial for clones that require higher viability throughout the protein 

production process. 

To further investigate ways to improve the SP2/0 expression platform, a fed-batch 

bioprocess was adapted and tested using a panel of serum-free and commercially 

available nutrient feed. Fed-batch cell culture is commonly used for recombinant protein 

production since it offers a simple method to boost production by replenishing depleted 

nutrients, it is reproducible at a large scale, and it gives experimental control over relative 

nutrient levels (Khattak, Xing, Kenty, Koyrakh, & Li, 2010). For this reason, many 

therapeutics are manufactured using a fed-batch process with both mouse myeloma and 

CHO cell hosts, producing therapeutics including but not limited to Synagis 

(AstraZeneca), Erbitux (Eli Lilly & Company), Humira (AbbVie), Herceptin (Roche), 

and Rituxan (Genentech and Biogen Inc.). Similar to basal media, nutrient feed had 

drastic effect on protein production using the SP2/0 clone, either reducing titers from 

16.9 mg/L to 0.76 mg/L, or doubling production titers (Figure 14). It was observed that 

over-feeding the cells by adding feed on day 0, 3 and 5 did not benefit production (Figure 

13). From these results, we hypothesize that nutrient overfeeding increased the amount of 

accumulated toxic waste metabolites in the culture. Feeding strategy was further 
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investigated by implementing a different feeding strategy, replenishing depleted nutrients 

by adding ten percent feed on days 3 and 5. The second feed strategy had a beneficial 

effect resulting in doubling titers, extending viability and cell growth (Figure 13). These 

results suggest that feeding strategy has a drastic impact on recombinant protein 

production, and that feed strategy should be optimized to maximize protein titers. Similar 

to the media optimizations performed in this project, a larger nutrient feed panel of 

commercially-available feed or an in-house optimized nutrient feed panel could be 

screened for further optimization. This experiment successfully developed a quick and 

practical approach to screening a panel of feed for the identification of two types of 

nutrient feed capable of doubling production titers. Together, nutrient feed and basal 

media optimizations had the most impact on raising production from the SP2/0 clone. 

The SP2/0 cells used in this project expresses low levels of GS, but still require 

glutamine to survive (Figure 5), similar to what is reported in literature reviews (Birch et 

al., 2008). Expression systems which utilize the GS expression system can amplify copy 

number of the gene encoding the recombinant protein by adding MSX, a GS inhibitor, to 

add selection pressure (Nakamura & Omasa, 2015). The GS expression system is an ideal 

selection method for SP2/0 cells since they express low levels of endogenous functional 

GS compared to CHO cells.  

The MSX selection pressured SP2/0 clone successfully increased recombinant 

protein activity using a single round of selection pressure without cloning for all four 

concentrations of MSX within a three week time frame (Figure 16). Within three weeks 

of 50 µM MSX selection pressure, titers were able to double. 50 µM MSX seems to be a 
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reasonable selection pressure concentration for SP2/0 cells according to our results and 

previous reports of MSX concentrations for cell lines of varying endogenous GS levels. 

For example, NS0 expression systems, which are GS deficient, usually maximizes 

recombinant protein expression or gene copy number at MSX concentrations of 10-100 

µM. Due to high levels of functional endogenous GS in CHO cells, GS-CHO expression 

systems usually maximize gene amplification at 250- 500 µM MSX (Barnes, Bentley, & 

Dickson, 2000). Although there are limited literature reports reporting the range of MSX 

concentrations in SP2/0 cells, the optimal MSX selection pressure concentration is likely 

to be between 10-100 µM (GS-NS0 range with little to no endogenous GS) and 250-500 

µM (GS-CHO range with higher endogenous GS). By using 50 µM MSX, a slightly 

lower MSX concentration predicted for SP2/0 cells, unfavorable effects of MSX 

including cellular toxicity and cell line instability are minimized. However, it would be 

valuable to explore the effects of higher MSX concentrations on SP2/0 cells. A limitation 

to the current gene amplification process by MSX is that adding the best performing 

nutrient feed with the 50 uM MSX clone did not have a synergistic effect with nutrient 

feed (Supplementary Figure 4). Currently, results from basal media, nutrient feed, and 

MSX selection experiments suggest that SP2/0 cells have great potential for titer 

improvements after several process optimizations.  

4.3 Comparative Analysis of Therapeutic Protein Quality from CHO and SP2/0 

Cell Hosts 

 

To consider SP2/0 cell as production hosts for recombinant therapeutics, the 

SP2/0-produced protein therapeutic product needed to demonstrate comparable quality to 

the same therapeutic known to be research-grade quality. The ERT expressed in CHO 
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cells was previously tested and is known to be our research-grade ERT for in vitro 

studies. One criteria for recombinant protein production is that protein expression in 

SP2/0 cells should not interfere with protein functionality. To be considered research-

grade, the ERT needs to meet several criteria including similar molecular weight, uptake 

into a diseased cell, half-life and processing within a diseased cell. The first round of 

comparative studies verified that the ERT is expressed at the same molecular weight, 

indicating that the SP2/0 cells are not likely to add or delete any part of the protein 

(Figure 18). Furthermore, this suggests that any differences identified between SP2/0 and 

CHO produced ERTs are likely due to host cell post-translational modifications. ERT 

therapeutic uptake into diseased cells in vitro is similar, regardless of the production host. 

Interestingly, the therapeutic produced in SP2/0 host cells had a higher VMax which 

suggests that a higher amount of the SP2/0-produced ERT was able to enter the cells 

compared to CHO. Alternatively, a higher VMax could be due to assay variability if more 

cells were harvested from the fibroblasts treated with SP2/0-produced ERT.  

In addition to similar uptake values, SP2/0 and CHO expression platforms 

produced ERTs with similar binding affinities to the CI-M6PR (Figure 22). This feature 

is critical to ERT drug efficiency, since the CI-M6PR is the receptor responsible for the 

binding and internalization of M6P-tagged lysosomal enzymes from the extracellular 

space into the cell and ultimately to the lysosome (Saftig, 2006). Similar KD values 

suggest that binding to the CI-M6PR is not affected and it is unlikely that there are 

variations in M6P post-translational modifications between the two cell lines. These 

results seem to correlate to the similar uptake values, suggesting that similar ERT binding 
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affinities to the CI-M6PR receptor would facilitate similar uptake into the cell.  

Although cellular uptake is similar, differences in ERT half-life were identified, 

showing over two times faster ERT degradation in the SP2/0 produced ERT compared to 

the CHO produced ERT (Figure 21). Interestingly, fibroblast lysates from an uptake half-

life experiment showed differences in intracellular processing of the ERT. Normally, the 

ERT is known to be processed from its full-length 65 kDa precursor form, into the active 

25 kDa form inside the lysosome. The ERT from the CHO cells follows these normal 

processing steps. In the SP2/0-produced ERT the full-length ERT is maintained in the 

full-length form and is slowly processed into the 25 kDa form, showing an increase in the 

25 kDa expression until the 168 hour time point. These results are inconsistent with the 

half-life generated by the enzyme activity assay, showing decreasing recombinant 

enzyme expression over time. We propose two hypotheses explaining the internalized 

SP2/0-produced ERT western blot results. First, the ERT from the SP2/0 host may not be 

internalized into the cell and instead, could be immobilized at the cell surface. One reason 

internalization of the ERT may be affected is due to the semi-pure state of the SP2/0-

produced ERT, allowing some molecules to interfere with pathways involving the M6P-

mediated internalization. The uptake and processing of the SP2/0-produced ERT could be 

different after complete purification. Second, the ERT may be internalized into the cell 

but is not being processed into its active form due to various interactions with other 

molecules within the cell. Differences in intracellular molecule interactions could be due 

to variation in SP2/0 post-translational modifications or protein structure. These 

differences visualized by the western blot need to be further investigated, first by 
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understanding where the SP2/0-produced ERT localizes into the diseased cells. In 

addition, comparing protein structure and glycan distribution of the CHO and SP2/0 

ERTs could provide better understanding about structural differences which could 

interfere with the enzyme processing.  Understanding these intracellular processes may 

hold great potential in improving therapeutic efficacy, providing hints to manipulations in 

the ERT that could extend the half-life.   

   

5.0 CONCLUSION 
 

To address our lab’s need for alternative production platforms for efficient 

expression of a diverse set of proteins, this project established a working SP2/0 

expression platform capable of producing milligram quantities of a difficult-to-express 

recombinant protein. The cloning process was quick, demonstrating an effective way of 

establishing a high-yielding SP2/0 clone within 5-6 weeks. Furthermore, this project 

proposes several optimization strategies for doubling recombinant protein titers in SP2/0 

cell lines. Importantly, the therapeutic efficacy of lysosomal enzyme proteins is 

comparable in both SP2/0 and CHO cells, showing similar cellular uptake and binding 

affinity to the CI-M6PR. However, there are some differences in intracellular processing 

of the ERT produced in SP2/0 cells, suggesting some interference with either the 

internalization of the ERT or the processing of the ERT within the cell. This phenomena 

could be explored more thoroughly, as extending the half-life could have great potential 

on improving therapeutic efficacy. From this project, we propose that having SP2/0 cells 

as an additional mammalian expression platform for recombinant protein production is 
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valuable since it offers new benefits to our existing expression system including 

expression of a difficult-to-express protein, quick process optimization to double titers, 

long-term cell line stability, and demonstrates similar cellular ERT uptake in diseased 

cells. 
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6.0 SUPPLEMENTARY FIGURES 
 

 
Supplementary Figure 1. Post-transfection media optimization 

 

24 hours post-transfection, transfected cells were split into three different types of 

glutamine-free media: SP2/0-BMN (A), SP2/0-BMN-2 (B), and SP2/0-BMN-3 (C). 

Bright field images were taken 24 hours after incubating in the media. Healthy cells post-

transfection are visualized in small cell colonies indicated by the black arrows in figure 

B. Scale bars represent 400 µm.  
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Supplementary Figure 2. Media optimization during clone expansion 

 

A cell population of a SP2/0-GS-ERT clone was split into two wells of a 24 well plate, 

each with different media either SP2/0-BMN-2 (A) or SP2/0-BMN (B). Bright field 

images were taken 24 hours after media was administered to the cells. During clonal 

expansion, cells in SP2/0-BMN-2 media adapted to adherent culture conditions, seen by 

their elongated morphology (A). SP2/0-BMN media kept the cells in a suspension-

adapted culture, seen by their round shape. Scale bars represent 400 µm.  

 
 

Supplementary Figure 3. SP2/0 media optimization summary 

 

Summary of optimal media for growth of suspension-adapted SP2/0 clones during early 

phases of cell line development.  
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Supplementary Figure 4. Combined effects of nutrient feed and MSX pressured 

cells on protein expression and cell health 

 

SP2/0 clone 2H3 was pressured in methionine sulphoximine (MSX) concentrations at 

either 5 µM, 10 µM, 20 µM, 50 µM, or no MSX for three weeks. On days 3 and 5, 10% 

volume feed was added to some of the flasks. Shake flasks were seeded at 0.5 million 

cells per ml and sampled daily to monitor cell health including viability and growth (A, 

B, D, and E). For days 1-7 of the production run, protein production titers were measured 

by an enzyme activity assay (C and F).  
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Supplementary Figure 5. Ponceau S total protein stain of cell lysates dosed with 

CHO and SP2/0-produced ERT 

 

Cell lysates from the half-life uptake experiment were separated by SDS-PAGE and 

transferred to a nitrocellulose membrane. The membrane on the left shows cell lysates of 

diseased fibroblasts dosed with 50 nM ERT produced by CHO cells, while the membrane 

on the right shows cell lysates of diseased fibroblasts treated with 50 nM ERT from 

SP2/0 cells. Time points are measured in hours after the ERT was removed (4 hours after 

incubation in the ERT). As a control, diseased fibroblasts were dosed with a diluent, 

DMEM media, without an ERT. Protein was stained red with Ponceau S stain.  
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