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Abstract 

Huntington’s disease (HD) is a heritable neurodegenerative disorder that affects muscle 

coordination and diminishes cognitive abilities, by affecting the medium spiny neurons in 

the brain. In HD patients, neurons are damaged and destroyed because of the toxicity of 

the mutant Huntington protein (mHtt). The mechanism of how mHtt protein affects the 

neurons is unknown.  In this study we explored the effects of mHtt expression by looking 

at changes in huntingtin localization, changes in the expression and co-localization of 

related proteins and differences in cell morphology.  We examine how this expression 

affects the cytoskeletal structures using neural stem cells Q7 (wild type) and Q140 (mHtt) 

and differentiated neurons as a model for studying HD. In addition we looked at the 

interference of mHtt protein with RRAS, the downstream signaling components of 

Plexin/Semaphorin pathway of the neurons. Our work began with optimization of the 

growth conditions of the cell lines of our model cell system.  We then focused on 

developing protocols for differentiation into neurons, and continued with 

immunocytochemistry studies and confocal microscopy for imaging the fluorescently 

labeled cells. We found differences in growth rate and morphology between Q7 and 

Q140 cell lines. We studied the effects of mHtt protein on the differentiation process of 

the neurons and noticed differences in the mHtt  protein expression between both 

differentiated cell lines. There is evidence that mHtt interferes with cell adhesion, 

motility, and molecules related to signaling and cytoskeleton remodeling. The results of 

these studies leave us with a well-characterized tool for the study of HD. 
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Introduction 

Huntington’s disease (HD) is an inherited disorder characterized by neuronal dysfunction 

and degeneration in the brain that affects muscle coordination and diminishes cognitive 

abilities. It is caused by a variant of the Huntingtin gene that includes an extended stretch 

of glutamine residues. It is named after George Huntington, the physician who first 

described the illness in 1872.  HD used to be known as Huntington's chorea, from Greek 

for choreography, or dance.  HD affects both women and men and all ethnic groups. 

People from two to 80+ years of age can develop HD. 

Approximately 200,000 Americans are at risk of inheriting the disease from an affected 

parent. Those who have a parent with HD have a 50 percent chance of inheriting the 

defective gene. This disease results in a gradual patient decline over a period of 10 - 25 

years, typically leading to a very poor quality of life with complete dependence on others 

for care. 

In HD patients, the presence of mutant Huntingtin protein (mHtt) is associated with 

neuronal damage and eventual death due to severe neurodegeneration.  There are multiple 

theories regarding the mechanism of the mHtt toxicity, but there is no definitive evidence 

for the cellular process that causes this disease. Normal functioning Huntingtin protein 

(Htt) contains a stretch of 10-35 glutamines (the number of CAG repeats present in the 

Huntington gene).  Patients with more than 40 CAG repeats in their Huntingtin gene are 

considered to have the condition.  The mechanism of the cellular toxicity for this protein 

is not yet clearly elucidated, but many of the studies are hovering around one hypothesis, 
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that is mHtt toxicity is related to direct interaction with the neuronal signaling pathways 

(Miller, JP., et al., 2012). 

 Neurons are the basic building blocks of the nervous system. Neurons are specialized in 

receiving and transmitting the signaling information. They are the information processing 

units of the brain. Each part of the neuron plays a role in the communication of 

information throughout the body. Any malfunction in this system can lead to serious 

imbalance of the human body and with HD patients the malfunction goes much further 

causing the death of the neurons and eventually the end of human life.  What has been 

understood about the mHtt protein so far that it is a toxic protein for the neurons and it 

may interact with some of downstream signaling component of Plexin/Semaphorin 

pathway of the neurons. 

Slit /Robo and Plexin/ Semaphorin are signaling pathways controlling neural outgrowth 

and axonal guidance. Any interaction with mHtt may be associated with mHtt toxicity. In 

both of these pathways extracellular ligands bind to their cognate receptors and signal 

through downstream effectors to inhibit binding of integrin to extracellular matrix.  This 

inhibition leads to growth cone collapse in the case of migrating axons. In this regard, 

Slits and Semaphorin are thought of as repulsive signals in that they inhibit cell migration 

and axonal outgrowth of neurons. According to work done by the Hughes lab at the  

BUCK Institute for Age Research,  RRAS was identified as a downstream component of 

the Plexin/Semaphorin pathway and as a potent loss of function suppressor of death in 

cells expressing mHtt, by screening for RNAi modifiers of mHtt toxicity (Miller JP et al. 

2012) (Fig1). 
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The lack of effective interventions to HD disease means that patients and the families that 

care for them have very few options and must suffer with the debilitating symptoms. 

Developing such interventions requires an understanding of the mechanism of the way 

Figure 1:  The Plexin-Semaphorin signaling pathway.  Receptor activation 
inhibits RRAS activity, which leads repulsive signaling (in relation to axon 
guidance). RRAS inhibition alters cytoskeletal dynamics to favor retraction of 
filopodia and detachment from the extracellular matrix. (Derijck, A. A., 2010)  
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mHtt protein negatively impacts neuronal function. Mouse models of HD are important 

for understanding disease progression and for the development of therapeutics (Figiel, et 

al., 2012, Pouladi et al., 2013)   Cell culture models derived from these mice are an 

important tool for studies of the effects of mHtt protein interactions because they can 

provide neurons similar to the neurons predominantly affected in Huntington’s patients..  

These disease models provide researchers with a replenishing supply of live cells, 

without the need for extracting from live animal brains. The neural stem cells are very 

important tool in studying the HD because they are non-immortalized self-renewing cells 

with widespread differentiation potential. While human cell HD model systems have the 

advantage of a better match to the true disease state, they are not a good for these early 

studies because they are more difficult to grow and the differentiation process is 

excessively long. 

In this study we are using the neural stem cell lines  derived from the brains of 

homozygous fetal Hdh CAG Q7 (wild-type) and heterozygous Q140 (mutant Htt) knock-

in mice. The cell lines have been developed by (Ritch, Valencia et al. 2012), and 

differentiated neurons as models. The Q140 mutant Htt came from a generated knock-in 

mouse that has rotating sequences of the polyglutamine stretch located in exon 1 of 

the Hdh mouse gene. This gene is homologous to the human HD gene and was replaced 

by a mutant polyglutamine repeat.  The mutation is expressed under the Hdh promoter in 

the full-length huntingtin protein (Fig. 2A). 
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The characterization of the specific cell lines that we are using (Q7 and Q140) has 

demonstrated their relevance in helping to understand HD.  One benefit of these lines is; 

they follow previously defined phenotypes for HD patients, such as lowered levels of 

cholesterol increased levels of reactive oxygen species, and a reduced motility  (Ritch, 

Valencia et al. 2012). Also these cell lines grow as adherent radial glial-like stem cells, 

making them relatively easy to culture in vitro. These cell lines can be derived from fetal 

and adult brains as well as from induced pluripotent stem cells (iPS) cells and Embryonic 

stem (ES) cells (Conti, Pollard et al. 2005, Goffredo, Conti et al. 2008, Spiliotopoulos, 

Goffredo et al. 2009).   This allows some flexibility to utilize the type of cell line ideal for 

Figure 2A: HD mice created by homologous recombination of human 
exon 1 with 140 CAG repeat into the endogenous mouse gene for Htt.	
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the study.  Another advantage of these NS cells is that they remain highly neurogenic 

even after 100 passages they can still undergo complete neuronal differentiation in 2-3 

weeks. In addition, these models do not exhibit the neurochemical characteristics, 

receptors and antigenic features typical of mature neurons (Conti et al., 2005; Goffredo et 

al., 2008; Pollard et al., 2006). Finally, the cell lines are useful for the study of some 

therapies such as those using proteases inhibitors to modulate the toxicity of mutant 

huntingtin. 

Despite the discovery in 1993 of the mutation responsible for Huntington’s Disease, the 

mechanism of how the mutant protein disrupts cell function remains elusive. 

Neurodegenerative diseases such as HD, Alzheimer’s and Parkinson’s disease are 

complicated by the fact that they all have relatively slow progression from the first onset 

of symptoms.. Huntingtin protein (Htt) is found in many of the body's tissues*, with the 

highest levels of expression in the brain. Studies suggest that this protein may be 

involved in chemical signaling, transporting materials, attaching (binding) to proteins and 

other structures, and protecting the cell from self-destruction (apoptosis). Many studies 

have found that Htt protein appears to play an important role in nerve cells (neurons) in 

the brain and is essential for normal development before birth, but the mutation that 

results in HD is an increase in the copies of the amino acid glutamine (CAG) in a stretch 

of repeated glutamines at the amino-terminus of the Htt (Fig 2B). This “expanded 

polyglutamine” huntingtin acquires toxic properties, presumably through mechanisms 

that involve its reduced solubility and aberrant interactions with other cellular proteins 

that do not occur with the normal Htt protein. 
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Figure 2B: Insertion of additional CAG repeats in the Huntingtin gene translates into 
an extended stretch of glutamine residues in the protein.  The mutant Huntingtin 
(mHtt) protein leads to neurodegeneration through an unknown mechanism of action.   

(Cambray, 2014)  
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There is evidence indicating that	
  the signaling protein RRAS is involved in mutant 

huntingtin toxicity. (Miller, Yates et al. 2012). The authors found that mutant Htt and 

RRAS are co-localized in STHdhQ111/Q111 Cells and in BACHD and R6/2 Mouse Models. 

They also identified multiple components of the RRAS signaling pathway as loss-of-

function suppressors of mutant huntingtin toxicity in human and mouse cell models. 

Loss-of-function in orthologous RRAS pathway members also suppressed motor 

dysfunction in a Drosophila model of Huntington's disease (Miller, Yates et al. 2012). 

These previous results support  the the possibility of a functional link between mHtt 

protein and RRas. Second we are investigating this relationship using the neurons, the 

primary cells damaged in Huntington’s disease. The goal of this study is to provide 

insights into the mechanism of mHTT toxicity and to identify any other molecular 

players such as RRas that could play a role in this process. 

In this study we are exploring the effects of mHtt expression by looking at changes in 

huntingtin localization, changes in the expression and localization of related proteins as 

well as effects on differences in cell morphology. Our plan is to culture the cells, 

differentiate them to neurons, and then continue with Immunocytochemistry studies 

including use of confocal microscopy for imaging the fluorescently labeled cells. In 

addition we are focusing on some characteristics of the mHtt protein in the signaling 

pathways of neurons, by investigating the interaction of mHtt protein with some of the 

downstream signaling components of Plexin/Semaphorin pathways (i.e. RRAS).  

 One of the most important aspects of our studies is the differentiation of the neural 

progenitor cells into mature neurons. Previous studies that investigated pathways affected 
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by mHtt protein used non-neuronal cell lines and so the conditions are not as relevant to 

the true HD disease state. In this study we are analyzing the toxicity of mHtt protein in 

the neurons by using the embryonic stem cells from the brains of homozygous fetal HD 

CAG Q7 (wild-type) and heterozygous  CAG Q140 (mutant Htt) knock-in mice and 

differentiated neurons as model to study the toxic effects of mutant Htt protein in those 

cells . We study how the expression of mHtt protein alters the growth pattern, cell 

morphology, and process of neuronal differentiation. Also we investigate the interaction 

of the mHtt protein with RRAS (downstream signaling component of Plexin/Semaphorin 

pathway), and we are doing this part in collaboration with Robert Hughes and Brad 

Gibson at the Buck institute for Research on Aging. In this study we aim to: 

 1- Investigate the phenotypic effects of mutant Huntington (mHtt) expression in neuronal 

stem cells (NSCs), by watching and comparing the WT Q7 with HD Q140 during the 

culturing and the differentiation process for both cell lines. 

2- Explore the role of Htt in the process of neuronal differentiation in both of the wild 

type (Q7-WT) and the mutatant (Q140-HD) cell lines, by using the immunochemistry to 

label Htt and other potentially relevant proteins.  

3- Study the changes in the cytoskeleton structure and neurite growth in both of Q7 and 

Q140 cell line. 

4- Look at the co-location of mHtt protein and the RRAS at the Q140 differentiated 

neurons and compare them with the Q7 differentiated neurons using the 

immunochemistry technique. Also investigate the relationship between the Htt protein 

and RRAS protein in both Q7 and Q140, using the florescent microscopy images.     
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By comparing the cell growth and morphology, the co-localization of proteins, and even 

the differentiation process itself in neuronal cell populations, to the wild type, we expect 

our results to be particularly applicable to the human disease state. Comparisons between 

differentiated neurons with either the Q7 or the Q140 at different stages through the 

differentiation period will also be particularly useful.  For example, one study looks at the 

co-localization of Htt with RRAS to help determine the relevance of RRAS signaling in 

the HD disease mechanism. Clearly the more that is understood regarding the effects of 

mutant huntingtin on neuron function the closer we are to identifying targets that can lead 

to new treatments for HD. 
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Research Design and Methods 

1 -Culturing protocol: 

Because we began our project with just one aliquot of each cell line, our first efforts were 

directed towards expanding these lines to have sufficient back up stocks and also share 

our stocks with our collaborators. The two cell lines are neural stem cell lines HD (Q170, 

mHtt) and the WT (Q7 Htt). The second goal was to characterize each cell line and 

optimize the methods and conditions required to propagate each line. Our studies 

progressed to include examination of the phenotypic effects of mutant Huntington (mHtt) 

expression in neuronal stem cells (NSCs).  

Protocols used in this study were adapted from the neural stem cell culturing (NSC) 

protocol from J.J.Ritch et al. /Molecular and Cellular Neuroscience 50(2012)70-81. 

1.1-Thawing the cells: 

First, coat a T25 with 2.5ml of gelatin for 15 min in the hood (note: we do not 

coat overnight). Second, make the Neural Stem Cell Expansion medium (NSEM). 

Use 5 ml of pre-warmed NSEM on 15ml conical tube. After that, thaw the 

cryotube in water bath (but not completely thaw).Third, add 1ml of NSEM to the 

cryotube and transfer all what in cryotube to 15ml conical tube and spin down for 
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3 minutes at 1200 rpm. Meanwhile, aspirate off gelatin from T25 and add 3ml of 

NSEM to T25, then re-suspend pellet in 2ml of NSEM minimizing titrations. 

Forth, gently rock the flask side to side. When the cells are nearly confluent, split 

up into T75 flask using all cells.  

1.2-Splitting the cells: 

Before splitting the cells, coat T75 with gelatin, for T75, add 4ml of gelatin. 

Gently aspirate off the NSEM, and washed once with HBBS.  After that, added 

5ml of pre-warmed Accutase and left it in the incubator for 1 minute. Then gently 

collected all the cells and moved them to 15ml conical tube and spun it down at 

1200RPM for 3 minutes, meanwhile aspirated off gelatin from the T75 flask and 

added 14ml of the pre-warmed NSEM. 

The following step is aspirate off the Accutase and add 1ml of NSEM to the cells 

in the 15ml conical tube, then by using P1000  break up the cells gently in order 

to have a single cells solution (no clumps), before transferring the cell solution to 

the T75 flask, counted the cells using the Hemocytometer. The final volume 

should be ~15ml in T75. 

1.3-Feeding the cells:   

 Media changed every other day and checked out each flask before aspirating off 

medium. If the cells are attached, aspirate off half of medium from T75 (~7.5ml) 

and added 7.5 of the pre-warmed NSEM. 
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If the cells floating aggregates, transfer 7.5ml of the medium from T75 to 15ml 

conical tube and spin it down for 3 min at 1200RPM, after that lightly snap pellet 

and add 7.5ml of pre-warmed NSEM to conical tube (if it necessary titrate with 

P1000 to get pellet into suspension) transfer all to T75.  

 

 

1.4-Freezing the cells: 

 Split the cells as normal but this time, re-suspend pellet in 11ml of 10% glycerol 

in DMEM/F12 and count them, after that wrap cryotube in Kim-wipe and place in 

50ml conical holder. The following step is wrapped Styrofoam holder with under-

pad and tape, then placed in -80ºC overnight (do not invert or tilt), then placed 

them in LN2 next day. 

 

 

 

Figure 3: Example of cell culturing steps that we did at the lap. 
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2 - Differentiation protocol:  

To look at the impact of Htt on the process of neuronal differentiation we differentiated 

the cells according to the protocol of (Spiliotopoulos, Goffredo et al. 2009), this protocol 

takes 21days to progress, 85% of the cells will differentiate into molecularly and 

electrophysiological mature neurons belonging to the GABAergic lineage. 

 Cells were split normally using the Accutase and spin down at 1200RPM for 3 minutes, 

aspirate off the Accutase and add 2ml of media D1, by using P1000, gently breakdown 

the cells to single cells solution. Then  we count the cells and plate them on to un-coating 

T75 flask (density: 1.0 × 105–1.5× 105 cells/cm2) in media D1 for 3 days (from day 0-3). 

The cells incubate at 37ºC and on day 3, change half of the medium D1 with fresh pre-

warmed D1 media.  

Media D1 (50ml) recipe: 47.7ml Advance DMEM/F12, 0.5ml Pen/Step, 0.5ml 

GlutaMAX, 0.5ml Gentamicin,  0.25ml N2, 1ml B27, 5µl FGF2 of 100ug. 

The second step was On day 4,  we split the cells using the Accutase and spin down at 

1200RPM for 3 minutes and re-suspended gently in 2ml of media A by pipetting the 

cells. After that, count the cells and plate them in 12 well plastic coverslip plate that have 

been coated with laminin and has 2ml of pre-warmed A media in each well (density: 5 × 

104 –7.5× 104 cells/cm2), and incubate at 37ºC.  On day 6, we  change half of medium A 

with pre-warmed media A and incubate at the same conditions.  
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Media A (50ml) recipe: 12ml DMEM/F12, 36ml Neurobasal media, 0.5ml 

Pen/Strep, 0.5ml GlutaMAX, 50 µl Gentamicin, 0.25ml N2, 1ml B27, 5µl FGF2 

of 100 ug/ml, 10 µl BDNF of 100 ug/ml. 

On day 7, we  replace half media A with pre-warmed media B, and did that every 

other day until day 21. Replacing the media by using P1000, aspirate off 1ml of 

the old media and add 1ml of the fresh media. 

Media D (5oml) recipe: 12ml DMEM/F12, 36ml Neurobasal, 0.5ml Pen/Strep, 

0.5ml GlutaMAX, 50µl Gentamicin, 0.25ml N2, 1ml B27, 2.5µl FGF2 of100ug / 

ml, 15µl BDNF of 100ug / ml.  

Fixing the Neurons (Day 7, 13 and 21): 

 Aspirate media (leave behind a small amount (~200 µl)) to facilitate gentle 

rinsing and rinsed each well with 2mL of PBS, then aspirate PBS. add 1mL of 

10% Formalin (4% paraformaldehyde) to each well and let it sit for ~ 30 minutes 

at room temperature.  After that, remove ~90% of the formalin with the vacuum 

and added 2mL of PBS to each well.  Seal with Parafilm and stored the plates at 

4oC. 
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3- Labeling protocol: 

 Wash the cells 2x with 1ml PBS at room temperature (RT), then permeabilize 

the cells by adding 1ml PBS-Triton (0.5%) for 5-15 min at RT. After that 

wash 2x with PBS at RT. The next step is block with 1ml 5% of normal goat 

serum (5%NGC in PBS) for 30 min at RT.  During the blocking step prepare 

Petri dishes for incubation: fold and then cut out circles of paper towels and 

placed 4 layers into the bottom of Petri dish, one dish for every 4 cover slips. 

Then moistened the paper and placed a slightly smaller circle of Parafilm on 

top. After that, incubate using 100µl primary antibody solution diluted in 5% 

NGC. Then pipet 100µl of antibody solution onto the Parafilm, use forceps to 

carefully take the cover slip over so that side with attached cells is the one 

facing down in contact with the antibody solution. We incubated over night at 

4ºC.  Move the cover slips back to the 12-well plates. Then we wash 2x with 

PBS at RT. In dark room  incubate the cells with 500µl of the secondary 

antibodies diluted in PBS (1:500) for 1-2 hours at RT. then  washed 2x with 

PBS at RT, then Count stained nucleus with 1ml of DAPI for 1-2 hours at RT, 

then wash 2x with PBS at RT.  Add distilled H2O then for the final step 

remove the cover slip from the wells to be placed on a microscope slide 

containing 1 drop close to 50µl of ProLong Gold mounting media and let them 

dry for 24 hours. 
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4- The Examination Using Confocal Microscopy:  
	
   	
  

The four available laser channels will be used to capture images consecutively 

from each of our fluorescently labeled proteins.  The removal of light from other 

planes of focus will more easily resolve the relevant details of neuron morphology 

such as neurite branching and even smaller structures such as filopodia. 
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Results	
  
1- Bright-Field Microscopy: 

1.1 Differences in growth rate between WT (Q7) and HD (Q140).  

We found that the growth rate of the Q7 cell line was consistently greater than that of the 

Q140 cell line.  This was determined through watching the growth process and recording 

the progress of cell line expansion with a camera attached to an inverted microscope 

(Fig4). We also counted the cells using the Haemocytometer on different days through 

the culturing period (Fig5). During the initial period of optimization, a variety of growth 

conditions were tested on both Q7 and Q140 cell lines.  Variables that were investigated 

included media components, growth fractors, passaging protocol and seeding density.  

Several conditions were identified as particularly important for the successful growth of 

both NSC lines. The addition of freshly thawed fibroblast growth factor 2 (FGF2) a 

minimum of every other days was needed to maintain a healthy cell population.  Also 

important was the settling out of cell clusters that formed in the Q140 plates. For this 

investigation we were looking for conditions that could be used for both cell lines so that 

growth conditions were varied as little as possible.  For experiements, both lines were 

subjected to the same conditions except the seeding density of Q140 was sometimes 

doubled to accout for slower growth rates.  
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HD1$DAY2(WT$DAY2(
(

((HD1$DAY(6(WT$DAY(6( 100µm%

Figure 4: Q7 WT cells (left) grow and divide more rapidly compared to Q140 HD (right)  

 Pictures were taken on day 2 and day 6 after passaging. Initial seeding with  1 x 106 cells 
on a T-75 culture dish. 
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1.2  Morphology Differences between WT and HD 

 To study the morphology changes in both Q7 and Q140 cell lines we watched and 

recorded any differences between the WT Q7 and HD Q140.  By analyzing the bright-

field microscopy images, we notice that the Q140 cells behavior is different compared to 

Q7 cells. Q140 cells tend to grow as a hybrid mixture of monolayer cells, which are the 

same cells attached to neurospheres, on the other hand Q7 cells grow as a flat layer of 

single cells (Fig6).   

DAYS%

N
or
m
al
ize

d%
ce
ll%
co
un

t%(
x%
%1
0⁶
)%

Figure 5: Normalized growth curves for Q7WT and Q140HD cell lines, show the differences 
on the growth rate between Q7 and Q140.  

Cells were counted each time before passaging. 
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Another morphological difference in the Q140 cell line that was noteworthy was a greater 

tendency of neurites to grow in curved paths.  This can sometimes be observed as the 

neurite tending to circle in one direction towards the cell body. (Fig7a).  Finally, in some 

preparations, the neurons  

 

 

 

 

 

(Day%5)% (Day%5)%

Q7# Q140#

Figure 6: Q7 and Q140 NSCs imaged on day 5 after passaging. Q7 cells are 
growing as a single layer while Q140 cells are growing as a layer of clustered cells.	
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Figure 7: Morphological differences in live differentiated neurons.  

A) Q140 (right) showing circular growth patterns as compared to the more straight 
and outwardly projecting Q7 neurons . B) When crowded, neurons with the Q140 
mutation can form clusters with less distinct cell projections than observed in Q7  
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2- Confocal Microscopy results: 

2.1 - mHtt affects the differentiation process (proportion of MAP2 positive cells). 

We used the same differentiation protocol to differentiate both Q7 and Q140 cells. We 

labeled for both GABA and MAP2 protein at the final stage of the differentiation process 

(day 21) in order to view the impact of Htt protein on the process of the neuronal 

differentiation.  From the result we observed that all of the Q7 differentiated neurons are 

expressing GABA and MAP2, but not all of the Q140 differentiated neurons are 

expressing GABA (fig8.A&B).   

 

 

	
  

	
  

Figure 8.A: Imaging of MAP2 and GABA expression reveals effect that Q140 has on 
the differentiation process. Here, all differentiated neurons show some expression of 
MAP2 but not all of the cells express GABA. 

Green: MAP2,  Red: GABA, Blue: DAPI (nuclear stain)  
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2.2 - Difference in the Htt expression in differentiated neurons. 

 The Q140 mature neurons (expressing GABA and MAP2) were inconsistent regarding 

their relative level of Htt expression.  Sometimes they showed a higher level of Htt 

protein expression compared to the Q7 mature neurons when we labeled for the Htt 

protein and MAP2 protein (Fig9A) to study the effects of the mHtt protein expression in 

the neuronal stem cells. However usually there is little difference in the Htt protein 

expression in neurons that label positively for GABA and this is true for both Q7 and 

Q140	
  (Fig9B).	
   

15µm%Q7%
15µm%

Q140%Q7%

Figure 8B:  20X confocal microscopy image for Q7 differentiated cells labeled for both 
GABA red and MAP2 green (on the left side of picture) compared to the Q140 cells (on 
the right side of picture) where GABA red and MAP2 green. Both were under the same 
differentiation conditions. 	
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Q7# Q140# 20µm#20µm#

Figure 9A: Confocal microscopy images suggest  differences in the Htt protein 
expression between Q7 differentiated cells and Q140 differentiated cells. Laser 
intensities used to collect images are the same for Q7 and Q140.   

Green: Huntingtin (Htt),  Red: MAP2  
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2.3 - RRAS expression differences. 

In the Q140 differentiated neurons we observe from the labeled result for RRAS and 

the Htt protein, that RRAS expression level is higher compared to the Q7 

differentiated neurons (Fig10A). Also combining the labeling for RRAS antibody and 

Htt antibody we observe a co-localization of RRAS with mHtt in Q140 differentiated 

Figure 9B:  Differentiated neurons showing similar expression of the Huntingtin 
protein levels in Q7 and Q140 mature neurons.  Samples are labeled using an antibody 
that recognizes both Htt and mHtt.   

Note there are differences between the size of nuclei relative to the cell body.   

Green: Huntingtin Protein, Blue: DAPI nuclear stain. 



27	
  

	
  

cells (fig10B).  The expression pattern of RRAS was more punctate in 140Q 

compared to 7Q. 

 

 

 

 

 

!RRas!

!!! 20µm!

!!20µm!

Q140!

!H-!

Q140!Q7!

Q7!

Figure10A:  The relative expression level of RRAS is higher in Q140 cells.  
Comparison of Q7 and Q140 indicates a difference in expression levels.  
Huntingtin expression is about equal in both cell lines, while in Q7, there is 
relatively less RRAS than Huntingtin.  

Green: RRAS, Red: Huntingtin (Htt or mHtt)	
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Figure 10B: - Merging red and green channels shows Htt and RRAS are co-localized in 
the cytoplasm. 

Figure 10C:  The pattern of RRAS expression was observed as more punctate in the 
mutant Q140 and smooth in Q7.  Morphological differences between these cell lines is 
clear in the more definable cell bodies of the Q7 cells.  
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Discussion and Conclusion 
 

Through our investigation of the phenotypic effects of mHtt expression neuronal stem 

cells, we noted several significant differences between the WT-Q7 and HD-Q140. 

Observing growth characteristics, we found out that Q140 cells multiply more slowly 

than Q7. Even when the dishes of Q140 were fed and cared for additional time, the total 

yield was never reached greater than 50% that of a comparable dish of Q7 cells.  (Fig5) It 

is challenging to determine the direct cause of this phenotypic difference, but the effect is 

consistent and reproducible, and was also observed in a second Q140 cell line that we 

tested. It is clear that mHtt interferes sufficiently with the cellular processes so as to 

measurably inhibit proliferation and this result is consistent with the loss of neurons 

observed during the progression of Huntington’s disease. 

Most analysis of differentiated neurons was done using fluorescent labeling techniques, 

but phase-contrast imaging of live cells revealed a few differences worth noting. 

Consistent with observations by our collaborator Brandon Tavshanjian, we found that 

some of the neurites of Q140 cells grow along a curved path, tending to circle back 

towards the cell body (Fig7). This unusual growth pattern has not been yet been noted in 

the literature and is of interest because it may be an indication of altered axon guidance 

signaling caused by the presence of mHtt. Because these cell lines have not yet been well 

characterized, any documented differences in their growth or morphology offer valuable 

information that contributes meaningfully to our understanding of the cellular mechanism 

of Huntington’s disease. 



30	
  

	
  

One of the most clear phenotypic differences we found in the NSCs was a  very clear 

clustering of Q140 cells.  This is in contrast with the consistent monolayer pattern of 

growth observed in the Q7 cells (Fig4). To confirm it was not an unrelated issue with the 

cell line, we cultured a second Q140 cell line side by side and found the clustering 

phenotype again.  This was an important observation for two reasons.  First, it was 

helpful that the Q140 cell clusters are immediately recognizable under phase contrast 

imaging, which allows for an unambiguous distinction between the cell lines. It is also 

relevant because it directly supports our hypothesis.  The tendency of the Q140 cells to 

cluster is likely to be a consequence of the mHtt interfering with the signaling pathways 

that are involved in cell migration and cell adhesion. 

 

There were additional consequences of the clustering that directly affected culturing and 

care of these cells.  The cells contained within the clusters are protected from Accutase 

treatment and are also resistant to physical disruption and disruption by mechanical 

means.  One clear example of the practical implications of this is when treating with the 

enzyme solution Accutase used to detach cells during passaging protocols.  Clustered 

cells are so resistant to the enzymes that identical treatments of Q7 and Q140 can lead to 

ten-fold differences in survival rates.   Optimization of these steps was essential in 

obtaining similar seeding densities for differentiation.  Clustered cells have a greater 

capacity to survive in general, for example in media even  that is limited in the nutrition 

sources. On the other side Q7 cell line grows fast as layer of single cells, and is more 

sensitive external effects such as Accutase or old media. Q7 cells did not survive well 
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more than 4 days in the same media. During the time we spent in culturing, extending and 

watching both cell lines behavior it was demonstrated that the expression of mHtt in the 

Q140 cells results in the cells to behaving differently compared to Q7 cells, even when 

both are placed under the same conditions.   

In our differentiation studies we treat both Q7 and Q140 cell lines to a set of conditions 

that induce the neural stem cells to differentiate into mature neurons.  Cell lines are 

grown side by side under identical conditions so the only variable during the culturing 

phase of these studies is the presence of the mutant huntingtin protein in the cell. Our 

protocol takes 21 days to differentiate the cells to mature neurons, most of which we 

show are GABAergic.  

The results from the immunochemistry labeling showed expression of GABA and MAP2 

in close to 100% of the differentiated neurons, but this number was not always observed 

from Q140 cells. This reduced number of mature GABA neurons was an unexpected 

result.  We found that all of the differentiated neurons were expressing MAP2 marker but 

not all of them show expression of GABA marker (Fig8B). We applied the same 

differentiation protocol and labeling process to both cell lines repeatedly, and each time 

we had the same result. Because GABA is a marker of GABAergic neurons this result 

shows that the proportion of cell types is different in cells that have been differentiated in 

the presence of mHtt.  MAP2 and GABA do not provide clues regarding what caused the 

changes in differentiation, but the clear difference we observe in the two populations of 

differentiated cells indicates that mHtt can influence the process of differentiation into 

neurons.  
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An important part of our study included labeling of the Huntington protein (Htt) within 

both cell lines.  The antibody we used binds to both Htt and mHtt so we can use it to label 

both the Q7 and Q140 lines for Huntingtin expression.  We also label for GABA or 

MAP2 to help identify the stage of differentiation the cells are in.  Labeling of Htt varies 

from sample to sample somewhat, but there was no clear trend of different expression 

levels of Htt when comparing Q7 and Q140 (Fig9A). It is important to point out that just 

the capturing the pattern of expression Htt in these cells in an important result that 

facilitates a better understanding of this model HD system. This is illustrated in Figure 

11, which clearly show the pattern of Htt expression in NSCs.  

            

 

Another interesting area that we were able to investigate is the relationship between the 

mHtt protein and the RRAS protein. Our collaborators suggested that the expression of 

mHtt is able to activate RRAS, and this activation leads to altered cell association with 

20µm%

Figure 11:  Neural stem cells showing cytoplasmic expression of 
Huntingtin (green). Cell structures are visible as a result of actin 
(red) and nuclear (blue) stains.  
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the extracellular matrix and altered cell motility. In our lab and as a part of our 

immunochemistry studies, we labeled both Htt protein and RRAS protein in Q7 and 

Q140 differentiated neurons.  

The first observation is that in Q140 neurons there is a higher level of RRAS expression.  

The expression is not only high but labeling intensity was similar to that of mHtt 

(Fig10A). For Q7 cells we did not find that the expression of RRAS was equal to the 

level to Htt protein expression (Fig10B). The second observation is the co-localization of 

mHtt protein and RRAS in the Q140 compared to Q7, where we only find RRAS close to 

the nucleus and not as co-localized with Htt protein (Fig10B). These observations support 

the hypothesis suggested by the Hughes lab, and indicate there may be a direct 

relationship between RRAS and mHtt protein. RRAS is a downstream singling 

component of the Plexin/Semaphorin pathway. Plexins function as receptors for the 

repulsive axonal guidance molecules Semaphorins,	
  Intracellular domains of Plexins are 

responsible for initiating cellular signal transduction inducing axon repulsion. 

Intracellular domains of Plexins are responsible for initiating cellular signal transduction 

inducing axon repulsion. Plexin-B1 possesses an intrinsic GTPase-activating protein 

activity for RRAS and induces growth cone collapse through RRAS inactivation. Also 

recent advances have revealed molecular mechanisms for Plexin mediated cytoskeletal 

leading to repulsive responses.  Further studies of this pathway will help confirm whether 

mHtt is interacting with RRAS in such a way that this interference is a causative factor in 

the mechanism of mHtt toxicity in the disease state.  
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As a conclusion we have found multiple lines of evidence that mHtt interferes with cell 

adhesion, motility, and molecules related to the cytoskeleton signaling and remodeling.  

The cell lines that we are working with are almost completely uncharacterized and our 

studies represent a very useful set of information regarding their propagation and 

differentiation.  Development of this functional model of HD was an important step in the 

elucidation of cellular mechanisms of this debilitating disease.. Our studies all point 

towards a role of mHtt in affecting cytoskeleton dynamics.  Though some observations 

are preliminary and will be the subject of continued investigations, most gave meaningful 

support to our hypothesis.  Finally, the results of theses studies leave us with a well-

characterized tool for the study of HD.  
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