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Abstract 

 

Cystinuria is an autosomal recessive disorder characterized by a defective renal transporter 

involved in the reabsorption of cystine and other dibasic amino acids. This leads to an 

accumulation of cystine in the urine, resulting in cystine stones. The SLC3A1/SLC7A9 cystine 

transporter accounts for 90% of cystine reabsorption and mutations in this transporter result in 

the formation of cystine stones. For this study, micro-computed tomography (µCT) scanning was 

evaluated for its feasibility to track accurate volumetric measurements of in vivo cystine stone 

growth in the Slc3a1
-/- 

cystinuric mouse model. Six pharmacological interventions – 

sulforaphane, methyl selenocysteine, homocysteine, tiopronin, TPEN and a zinc-supplemented 

diet– were also examined for their efficacy in reducing the rate of cystine stone growth. µCT 

analysis revealed stone growth proceeds linearly. Sulforaphane and TPEN supplementation 

resulted in a reduced rate of stone growth when compared to the respective vehicle controls; 

however, methyl selenocysteine and the zinc-supplemented diet displayed no effect on the rate or 

nature of stone formation. Homocysteine and tiopronin were shown to worsen stone growth rate. 

Sulforaphane and TPEN were effective interventions and our findings support both as a potential 

therapy for a cystinuric mouse model. A combination of treatments targeting the rate of cystine 

stone formation through similar agents appears to be a novel approach in further understanding 

cystine stone growth. Therapies that can manage the balance between these agents and adverse 

side effects provide an avenue to effectively treating cystinuria. 
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Introduction 

Cystinuria is an autosomal recessive disorder characterized by mutation(s) in the genes 

that code for the cystine transporter. This disorder causes a defect in the proper reabsorption of 

cystine (or cystine dimmers) in the proximal tubule of the nephron (Figure 1). Cystine is 

produced endogenously from methionine or from a disulfide bond between two molecules of 

cysteine. Due to the defect in cystine transport, cystine accumulates in the urine and eventually 

forming small stones and larger stones. Without proper intervention, this leads to renal colic 

(flank pain) while passing, urinary obstructions and lastly, renal failure if not treated (Evan, 

2010). 
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.  

Figure 1: Kidney Nephron Structure (Tikekar, 2014). The diagram depicts the parts of the 

nephron. This study focuses mainly on the proximal convoluted tubule.  
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I. Epidemiology of Cystinuria 

Cystinuria accounts for one to two percent of all kidney stone cases in adults and six to 

eight percent in children (Botzenhart, 2002; Eggermann, 2012). It is one of the more common 

inherited genetic disorders (Matoo, 2008) that eventually leads to renal failure due to a 60% 

recurrence rate in at least 50% cystinuric patients (Claes, 2012). Five percent of women and 

twelve percent of men develop a cystine-based stone at least once during their lifetime with 40% 

of familial history matching in children cases (Eggermann, 2012; Pearle, 2005). These figures 

may be an underestimation of the true prevalence since cystinurics may not actually develop a 

stone in their lifetime and therefore, evade statistical prevalence.  

II. Pathophysiology 

Stone formation is thought to arise from one of three pathways: overgrowth on interstitial 

plaques, formation of crystal deposits in the renal tubules or crystallization in free solution 

(Claes, 2012; Coe, 2010; Evan, 2006). Cystine stones mainly arise from the third pathway. The 

defective transporter leads to accumulation of cystine in the urine. Due to its poor solubility in 

urine, a supersaturated solution is created, where homogenous or heterogeneous nucleation can 

occur. This eventually leads to the formation of crystals that plug the ducts of Bellini; however, 

this mechanism of the anchorage is poorly understood. The crystals are thought to aggregate to 

form free-floating cystine-based stones that eventually grow in size.  

A. rBAT-b
0,+

 AT Transporter  

The rBAT-b
0,+

 AT transporter, composed of the SLC3A1 and SLC7A9 protein subunits, 

is characterized as a cystine and dibasic amino acid reabsorption transporter. The SLC3A1 

subunit encodes for rBAT protein while the SLC7A9 subunit encodes for the b
o,+

, AT (Calonge, 
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1994; Feliubadalo, 1999). This transporter accounts for an estimated 90% of cystine reabsorption 

(Silbernaglet, 1988). In an unaffected individual, cystine and other dibasic amino acids are 

filtered by the glomerulus and are reabsorbed across the apical membrane of the proximal tubule 

through the rBAT-b
0,+

 AT transporter. Once cystine and the dibasic amino acids are transported 

in the proximal tubule cell, intracellular cystine is readily reduced to two molecules of cysteine 

(Figure 2). In a cystinuric patient, cystine is not reabsorbed through the rBAT-b
0,+

 AT transporter 

and therefore, accumulates in the urine, leading to the formation of its stones.  
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Figure 2: Cystine Reabsorption in an Unaffected Individual and in a Cystinuric Patient. Adapted 

from Mattoo, 2008. Cystine and the dibasic amino acids are transported across the apical 

membrane through the rBAT- b
0,+

 AT transporter, the SLC3A1 and SLC7A9 heterodimer. Once 

inside, cystine is reduced to two molecules of cysteine. Mutations in either the SLC3A1 or 

SLC7A9 subunit cause a defective transporter. Due to the defective transporter, cystine is not 

reabsorbed, leading to its accumulation in the urine and eventually, the formation of cystine-

based stones. 
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B. xc
- 
Cystine-Glutamate Transporter  

In addition to the rBAT- b
0,+

 AT transporter, an alternate transport system, known as the 

xC
-
 Cystine-Glutamate Transporter, is classified as a high affinity low capacity system (Palacin, 

2001; Fernandez, 2002). It is composed of the SLC3A2 and SLC7A11 protein subunits and is 

responsible for approximately 10% of cystine reabsorption in the apical membrane of the S3 

segment of the proximal tubule (Mattoo, 2008). This transporter works by exchanging cystine 

with glutamate. In addition, studies have shown that SLC7A11 is regulated by the transcription 

factor, Nuclear Factor-like 2 - (Nrf2) (Ishii, 2000) (Figure 3). Nrf2 is commonly in the cytoplasm 

bound to Keap1, its inhibitor. However, through the dissociation of the Nrf2-Keap1 complex, 

Nrf2 is translocated into the nucleus, where its binding to the Antioxidant Response Element 

(ARE) motif, leads to its activation (Sasaki, 2002). This activation then leads to increased 

transcription of many genes and pathways including the xC
-
 Cystine-Glutamate Transporter 

(Johnson, 2008; Singh, 2006). 
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Figure 3: Cystine transport in the xC
-
Cystine-Glutamate System (Porcheray, 2006; Ishii, 2000; 

Sasakim 2002). This process accounts for 10% of cystine reabsorption. Cystine is exchanged 

with glutamate. Once in the tubular cell, cystine is reduced to two molecules of cysteine and 

exits into the bloodstream. 
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III. Slc7a9
-/-

andSlc3a1
-/- 

Mouse Models 

 To study the rBAT-b
0,+

 AT transporter in vivo, Slc7a9
-/-

 mice were generated and have 

become a model for cystinuria and cystine urolithiasis (Feliubadalo, 2003). In this study, the 

expression of the rBAT protein and b
0,+

 AT protein was evaluated. The Slc7a9
-/-

 mice were 

shown to express large amounts of rBAT protein and decreased levels of b
0,+

 AT protein. In 

addition, at least 42% of the Slc7a9
-/-

 mice formed cystine stones that continued to grow 

throughout the lifespan of the mouse.  

Recently, the Slc3a1
-/-

 mouse model was created and tested for its efficacy in studying 

cystinuria as well (Ercolani, 2010).  All the male Slc3a1
-/-

 mice had shown the formation of 

cystine stones that were visualized under a µCT scanner and upon dissection of the bladders, the 

number of stones ranged from a few to over 15 in number. Bladder function was also evaluated 

and partial outlet obstruction was found due to poor compliance and contractile responses. With 

both models, cystinuria can be further studied and advances can be made to target either gene 

deficiency.  

IV. Diagnosis 

Diagnostic approaches are mainly focused on metabolic screens and imaging evaluations. 

Metabolic screens include spot urine samples, fasting blood samples and 24-hour urine 

collections to measure cystine excretion, volume, etc. 24-hour urine collections typically exhibit 

high cystine concentrations during the night. Due to this, cystine analysis of separate day and 

night samples may be needed to detect proper cystine excretion levels (Fjellstedt, 2001). Normal 

cystine excretion is 30 mg/L per day. However, cystinuric patients excrete cystine anywhere 

from 300-400 mg/L per day.  
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Imaging screens include microscopic evaluation, ultrasound and computed tomography. Microscopic 

evaluation reveals the characteristic hexagonal crystal formations of cystine stones (Knoll, 2005). The 

ultrasound is one of the preferred routes and is used for newly developed stones, while computed 

tomography is preferred for characterization of stone appearance as rough or smooth. This rough or 

smooth distinction is then used to determine the efficacy of extracorporeal shock wave lithotripsy, a 

process used for stone dissolution.  

V. Treatments 

While the pathophysiology and genetics are well characterized, there’s been little 

progress in finding an effective drug treatment. Medical management primarily consists of 

reducing the free cystine concentration and/or increasing cystine solubility in the urine through 

dietary modifications, urine alkalinization, sulfhydryl agents and surgical interventions. Current 

medications rely heavily on sulfhydryl agents that have the ability to bind to cysteine and 

increase the solubility of the asymmetric disulfides formed. Agents such as D-penacillamine 

(DP), α-mercaptoproprionyl-glycine (MPG), captopril, and tiopronin are frequently used yet the 

efficacy is limited. However, even with these techniques, poor compliance, adverse side effects 

and the limitations with current medications still do not prevent cystine stone formation (Barbey, 

2000).  

A. Dietary Modification and Urine Alkalinization 

 Cystinuric patients are recommended a diet consisting of: hyperhydration (4-5 L per day), 

a sodium-restricted diet (2g per day) and a protein-restricted diet (1g per day) (Knoll, 2005). The 

goal of hyperhydration is to supersaturate urinary cystine at physiological pH. Previous studies 

have correlated hyperhydration, before bed and upon awakening, with a reduction in cystine 

saturation in the urine (Claes, 2012; Monnens, 2000; Fjellstedt, 2001). This ensures dilute urine 
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overnight. A low sodium intake has been previously shown to lower cystine excretion and is 

recommended for cystinurics; the mechanistic action of this effect is unknown. However, the 

known precursor to cysteine is methionine (Knoll, 2005) that is found low amounts in protein-

rich foods (Fattah, 2014; Rodman 1984). 

 In addition, urine alkalinization has been shown to be a beneficial treatment for 

cystinurics. Cystine solubility is known to increase by threefold with an increase in pH (Dent, 

1955). High pH of 7.5 for cystinurics is recommended. However, a pH higher than 8 usually runs 

the risk of forming calcium phosphate stones (Knoll, 2005). Potassium citrate and sodium 

bicarbonate are compounds given to increase pH in urine (Fjellstedt, 2001). Sodium bicarbonate 

is mainly administered to renal insufficient patients, while potassium citrate is recommended for 

most other cases.  

B. Pharmacological Intervention: Sulfhydryl Agents 

 Chelating and sulfhydryl agents have been used in the past when other treatment 

measures failed. However, they now are becoming the primary choice. These agents are often 

employed when cystine concentration reaches 2000 µmol/L or greater. Agents such as D-

penicillamine (DP), α-mercaptoproprionyl-glycine (tiopronin), captopril etc. are recommended 

for their ability to bind to cysteine, forming asymmetric disulfides that are hypothesized to be 

more soluble in urine (Harbar, 1986; Pak, 1986; Crawhall, 1963; Xu, 2013). This increased 

solubility reduces the formation of cystine stones.  

Tiopronin has been shown to present fewer side effects such as edema, hypouresis and 

nephrotic syndrome than DP and is frequently recommended by physicians (Pak, 1986; Fattah, 

2014). A study conducted by Chow et al. (1966) revealed that patients who did not experience 
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the effects of hyperhydration and alkalinization treatments displayed a reduced rate of cystine 

stone growth when treated with DP and tiopronin. Lastly, captopril is an angiotensin-converting 

enzyme inhibitor that contains a thiol group. A study conducted by Asplin et al. (2013) revealed 

that administration of captopril increases cystine solubility while increasing urinary pH in in 

vitro studies; however its effectiveness is debated (Chow, 1996; Cohen, 1995; Goldfarb, 2006; 

Asplin, 2013). Combinations of sulfhydryl agents have been suggested though haven’t been 

researched yet (Tiselius, 2001).  

C. Prospects for New Interventions 

There are four steps in the formation of cystine stones – nucleation, crystallization, 

aggregation and adhesion to nearby cells (Mandal, 2013). Current medications are known to 

mediate the effects of nucleation by reducing the cystine accumulation in the urine or by 

increasing cystine solubility. A study by Rimer et al (2010) revealed a new molecular approach 

in preventing cystine stones by focusing on the crystallization and aggregation steps. The design 

was based on an in vitro crystal growth inhibition model that was attained through the binding of 

L-cystine dimethylester (L-CDME) and L-cystine methylester (L-CME) to cystine crystals. 

Different binding modes were revealed in cystine crystals when treated with L-CDME and L-

CME, indicating that similar compounds can be administered to affect the binding and packing 

modes of the cystine crystals. In a recent study conducted by Lee et al. (2015), administration of 

CDME and CME to the Slc3a1
-/-

 mice model displayed both candidates to be effective inhibitors 

of the crystallization stage in cystine crystal growth. This novel approach to understanding 

cystinuria through binding and packing modes of cystine crystals provides newer avenues to 

targeting the steps of cystine stone formation. 

D. Surgical Intervention 
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Surgical interventions, such extracorporeal shock wave lithotripsy (SWL), ureteroscopy 

(URS) and percutaneous nephrolithotripsy (PNL), are commonly suggested due to their high 

success rate and their safety. Computed tomography reveals the appearance of cystine stones as 

either rough or smooth. From this, SWL, the most preferred route by physicians, is employed. 

This non-invasive procedure is used for patients with a stone in the upper urinary tract (Kim, 

2007; Kachel, 1991; Brinkmann, 2001; Muslumanoglu, 2003; Delakas, 2001). Previously, 

cystine stones were thought to be resistant to shock wave lithotripsy (SWL) (Harada, 1992). 

However, a study conducted by Bhatta et al. (1989) and later confirmed by Elkoushy et al. 

(2011) reported that cystine stones with rough morphology were more susceptible to SWL than 

those with smooth morphology. URS is also used for patients with stones in the upper urinary 

tract. However, optimal results occur in patients with distal ureter stones (Schuster, 2002; 

Choong, 2000). Lastly, PNL is used in cases where there are larger sized stones.  

VI. Proposed Pharmacological Interventions 

A. Sulforaphane 

Sulforaphane is an isothiocyanate molecule and is part of the organosulfur group. It is 

known to exhibit anticancer, anti-diabetic and antioxidant properties due to its Nrf2 activator role 

(Zheng, 2011; Hwang, 2015). Studies have shown that sulforaphane, when administered to wild-

type and Nrf2
-/-

mice, can be detected in the small intestine, lungs, and kidney (Clarke, 2011; 

Elbarbry, 2011; Cui, 2012). A recent study conducted by Zheng et al. (2011) has shown that 

sulforaphane rescues diabetic nephropathy through an Nrf2-dependent pathway. This suggests 

that sulforaphane is likely to be deliverable to the kidney and can activate Nrf2 in the renal 

epithelial cells of the proximal tubule. By administering sulforaphane, Nrf2 activation is 

hypothesized to promote the expression of Slc7a11 and thus, increase cystine reabsorption (Fig. 
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4). From this, we predict that the defective cystine reabsorption will be rescued by promoting the 

use of the xc
-
 system 

B. Methyl Selenocysteine 

Metallomics or kidney stone metal profiling has revealed amounts of selenium (Se) in 

human and mouse cystine-based stones (Killilea, unpublished, Figure 4). Se is known to exist in 

trace amounts in biological systems in organic (predominantly as selenocysteine and 

selenomethionine) or inorganic (selenite, SeO3
2-

 and selenate, SeO4
2-

) forms (Sunde, 2006; 

Zhang 2008). However, its appearance in both human and mouse cystine stones provides an 

avenue for testing a new in vivo approach to cystinuria.  

An in vitro study by Rimer et al (2010) revealed a new molecular approach in preventing 

cystine stones. The design was based on in vitro crystal growth inhibition attained through the 

binding of L-cystine dimethylester (L-CDME) and L-cystine methylester (L-CME) to cystine 

crystals (Rimer, 2010). Different binding modes were revealed in cystine crystals treated with 

these interventions. For the purpose of our study, Se-methyl selenocysteine (methyl 

selenocysteine) was similarly hypothesized to readily convert to selenocysteine and interact with 

endogenous renal cysteine to generate asymmetric cysteine-selenocysteine disulfides. The 

difference in atomic radii between selenium and sulfur is expected to impact the packing of these 

heterogenous cystine stones, resulting in a reduced rate of cystine stone growth. 
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Figure 4: Metallome Analysis of Human and Mouse Cystine Stones. (Killilea, unpublished data). 

Kidney stone metal profiling revealed amounts of selenium in cystine-based stones when 

compared to the calcium and uric acid stones. <DL : Below Detection Limit. 
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Methods 

I. Overview 

The Slc3a1
-/-

 mouse, in a mixed genetic background of A129 and C57Bl/6J, develops cystine 

stones in the bladder (Ercolani, 2010). These stones develop in the first 2-3 months of life and 

grow throughout the lifespan of the mouse. All procedures and protocols were conducted 

according to the Institutional Animal Care and Use Committee (IACUC), approved by the Buck 

Institute for Research on Aging.  

II. Genotyping – DNA Extraction and Amplification 

The Slc3a1
-/-

 mice were genotyped using a modified version of the REDExtract-N-Amp 

Tissue PCR protocol (Sigma-Aldrich, St. Louis, MO) (Amrik Sahota, Rutgers). 2mm tail clips 

were obtained and added to 100μL extraction buffer solution and 25 μL tissue preparation 

solution, following incubation at room temperature for 10 minutes and then inactivation at 95°C 

for 3 minutes. Samples were then neutralized by adding 100μL neutralization buffer solution.  

 For each PCR reaction, 2μL DNA sample were mixed with 8μL of the PCR Master Mix 

(Table 1) to a final volume of 10μL.  All primers used in this study were synthesized by IDT 

technologies, San Diego and are listed in Table 2. The PCR cycling parameters were set to 3 

minutes at 94°C (94°C, 40 seconds, 58°C, 40 seconds, 72°C, 60 seconds X 35 cycles) and 7 

minutes at 72°C. This standard PCR protocol was used to amplify the wild-type and Slc3a1
-/-

 

alleles. 1.5% Agarose gel electrophoresis was conducted to identify the products. 
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Table 1: PCR Master Mix.  

PCR Mix Amount per Reaction 

Water 2.7μL 

REDExtract-N-Amp PCR Reaction Mix 5μL 

10 uM Primer 1 0.1μL 

10 uM Primer 2 0.1μL 

10 uM Primer 3 0.1μL 

DNA sample 2μL 
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Table 2: PCR Primers.  

Primer Primer Sequence(5’-3’) Molecular Weight 

(Base Pairs 
Primer 1 AGAATGTCTTCACTTCTGCCA 6356.2 

Primer 2 CGAGACTAGTGAGACGTGCTA 7088.6 

Primer 3 CTGCCTCCCGCATGCTGAGAT 6975.6 
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III. Experimental Design 

A. Drug Preparation 

All drugs were freshly prepared daily prior to administering.  Each cohort received the 

respective dose administered daily or three times per week through intraperitoneal (IP) injections 

for the duration of the study. R,S-sulforaphane (IDT Technologies, San Diego, CA) was kept in a 

stock solution of 40mg/mL DMSO and was administered in 6.25% DMSO in PBS at 25mg/kg 

body weight. Methyl selenocysteine hydrochloride (IDT Technologies, San Diego, CA) was 

dissolved in 6.25% DMSO in PBS and administered at 100µg/kg body weight. Control mice 

received vehicle only (DMSO+PBS). Mice were randomized to avoid bias before being placed in 

the treatment groups. Preparation and dosage are summarized in Table 3. 
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Table 3: Preparation and Doses for Sulforaphane and Methyl Selenocysteine Hydrochloride.  

Treatment Preparation Dosage 

R,S-Sulforaphane Stock Solution in 40mg/mL 

DMSO 

Administered in 6.25% 

DMSO in PBS 

25mg/kg body weight 

Methyl Selenocysteine 

Hydrochloride 

Dissolved in 6.25% DMSO in 

PBS 

100µg/kg body weight 
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B. Cystine Stone Growth Detection Using the Micro-Computed Tomography in 

vivo(µCT)Scanner  

 A noninvasive method to detect stone growth was employed using the µCT scanner 

(SkyScan 1176, Bruker, Belgium) for this study. All mice received general anesthesia through 

inhalation of 1.5-4% isoflurane before and during the scanning period and were placed in a 

supine position in the scanner. Low resolution (35 µm) scans were performed at the level of the 

bladder using the following settings: X-ray voltage = 50 kV, anode current = 500 µA, exposure 

time = 4 minutes, rotation step = 0.3°, averaging = 2, image pixel size = 35 mm, and filter = Al 

0.5 mm. µCT scans were obtained weekly for the duration of the studies to track and measure the 

rate of cystine stone growth.  

C. Cystine Stone Growth Analysis 

The stones are radiolucent and appear on the µCT scan (Figure 5a). Images were 

reconstructed as cross-sectional three-dimensional (3D) image stacks using the software, Nrecon 

(Nrecon v1.6.9.8, Bruker-MicroCT, Belgium). The dynamic range parameter (-0.002 to 0.08) 

was set to minimize background noise and ensure the consistency between each individual 

mouse scans. The 3D image stacks were exported to the image analysis software, CT Analysis 

(CTAn v1.14, Bruker-MicroCT, Belgium). A threshold between 70 and 120 was chosen to 

obtain better contrast between the bladder wall and stones. Following, circular regions of interest 

(ROI) were drawn individually for each scan to enclose the bladder region. The rate of stone 

growth was detected and quantified into 3D volumetric measurements, provided by the CTAn 

package. 3D models of the stones were visualized using CT Volume (CTvol v2.0, Bruker-

MicroCT, Belgium) (Figure 5b).  
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Figure 5: A) Representative μCT scan of a bladder from a control male cystinuric with stones. B) 

3D model of a control male mouse tracked over a month. 

  



 
 

22 

IV. Statistical Analysis 

Linear mixed model with random intercept was used for analyzing and modeling 

longitudinal data to track the rate of stone growth by accounting for each individual mouse and 

the different baselines the stone events occurred at. The Kaplan Meier estimate was employed to 

track the rate of stone occurrence after a given time point and to determine whether interventions 

had preventative properties. The statistical package, R, was used to analyze the collected data. 

p<0.05 was considered statistically significant.  
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Results 

I. Confirmation of Cystine-Based Stone Formation 

A total of 17 male cystinuric mice were observed under the µCT scanner to ensure the 

formation of cystine stones prior to the study initiation. Stone formation in the bladder was 

detected in all the Slc3a1
-/-

 mice prior to treatment. The number of stones and sizes varied among 

the mutant mice. At the age of three months, the Slc3a1-/- mice were placed in three cohorts – 

vehicle control (n=6), sulforaphane (n=5) and methyl selenocysteine (n=6). The interventions 

were administered daily with IP injections and observed weekly for one month using the µCT 

scanner.  

Linear mixed model with random intercept was used to compare the rates of stone growth 

between the treatment groups. Stone growth for the treatment groups proceeded at a linear rate 

(Figure 6). Sulforaphane was significantly different from methyl selenocysteine (p=0.02). 

However, neither sulforaphane nor methyl selenocysteine were statistically different from the 

vehicle control group (Table 4). However, an interesting finding revealed that single stones may 

increase in size as the total stone volume increases, contributing to large stone accumulation. By 

tracking a single stone in a control mouse for one month, the rate of a single stone was shown to 

increase linearly (Figure 7) with a correlation coefficient (R
2
) of 0.96.   
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Figure 6: Volumetric Analysis of Cystine Stones in the Bladder of Slc3a1
-/-

 Mice. Regions of 

Interest (ROIs) were drawn encompassing the bladder region in the CTAn package. The rate of 

stone growth was tracked over a one month. At the end of the study, the linear mixed model with 

random intercept was employed. Our data suggests that the rates of all three treatment groups 

were similar and linear. 
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Table 4: Rate of Stone Growth per Treatment Group. N.S. – Not Significant 

Treatment Group Number of Mice Rate of Stone Growth 

(mm
3
/day) 

p-value 

Vehicle Control 6 0.981  

Sulforaphane 5 0.843 N.S. 

Methyl 

Selenocysteine 

6 1.170 N.S. 
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Figure 7: Single Stone Tracker Contributes to Stone Accumulation. A single stone was tracked 

weekly using the µCT scanner in a control Slc3a1
-/-

 mouse. Linear regression revealed that the 

rate of stone growth increased linearly with total stone volume. The correlation coefficient (R
2
) 

was 0.96. 
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II. Effect of the Pharmacological Treatments in Reducing the Rate of 

Cystine Stone Growth 

 
To understand the effects of the interventions further, Slc3a1

-/-
 mice without stones were 

studied. In this study, the mice were treated intraperitoneally with vehicle control (n=6), 

sulforaphane (n=6) and methyl selenocysteine(n=6) four weeks after birth. The doses were based 

on previous studies. The dose of sulforaphane was based on a study conducted by Zheng et al. 

(2011) that confirmed 12.5 mg/kg of the compound affects Nrf2 expression in the kidney. The 

dose of methyl selenocysteine was based on a study conducted by Cao et al. (2014) that 

confirmed the selective protective properties of Se- seleno methylcysteine against antitumor 

activity and anticancer drugs.  

The mice were treated three times a week and imaged weekly for four months using the 

µCT scanner. Eventually, all the Slc3a1
-/-

 mice formed stones. Body weights were recorded 

weekly and remained consistent between the treatment groups (Figure 8). To compare the rates 

of stone growth between the treatment groups, linear mixed model with random intercept was 

employed and a linear correlation was found, indicating that the stone volume increased at a 

linear rate (Figure 9). There was a statistical difference between the vehicle control and 

sulforaphane groups (chisq=28.62, df=1, p<0.001) (Figure 10) and between sulforaphane and 

methyl selenocysteine group (chisq-20.42, df=1, p<0.001). However, the difference between the 

vehicle control and methyl selenocysteine group (chisq=2.74, df=1, p=0.098) was not 

statistically significant. Overall, the slopes between the treatment groups were significantly 

different (chisq=34.48, df=2, p<0.001) and sulforaphane showed a 15% reduction in the rate of 

stone growth. 
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This study was repeated using 20 Slc3a1
-/-

 mice – 10 in vehicle control and 10 in a 

sulforaphane treated group – for the duration of five months. Sulforaphane exhibited a similar 

reduction of 18% in the rate of stone growth when compared to the vehicle control (chisq=4, 

df=1, p=0.046) (Figure ___), further confirming sulforaphane as a potential pharmacological 

intervention for cystinurics.  

In order to understand the probability of having another stone event after a given time 

point, a Kaplan-Meier survival plot was constructed. There were no significant differences across 

the treatment groups (chisq=4.4, df=2. p=0.109) (Figure 12), indicating these interventions do 

not possess preventative properties in cystine stone growth. Interestingly, by selecting for each 

individual stone as a ROI in the CTAn package, individual stone volumes and the numbers of 

stones in each size group were obtained and plotted in Figure 13. Stone size was then separated 

into six size fractions (<1, 1-5, 5-10, 10-15, 15-20, 20-25, >25 mm
3
). Our data suggests that 

sulforaphane produces medium sized stones.  
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Figure 8: Body Weights per Treatment Group. Body weights were tracked weekly. There is no 

significant difference between the body weights for the three treatment groups, indicating that 

the treatment had no effect on body weight. 
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Figure 9: The Rate of Stone Growth for the Treatment Groups. Each line represents an individual 

Slc3a1
-/-

 mouse in its respective treatment group. The thick solid lines are the estimated 

trajectories for the rate of stone growth. Statistical differences were noted between the vehicle 

control and sulforaphane groups and between the sulforaphane and methyl selenocysteine 

groups. However, no significant difference was found between the methyl selenocysteine and 

vehicle control groups.  
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Figure 10: Sulforaphane Reduced the Rate of Stone Growth by 15%. Vehicle control and methyl 

selenocysteine did not significantly reduce the rate of stone growth. However, sulforaphane 

showed a 15% reduction in the rate of stone growth. *** Significantly different from the vehicle 

control and methyl selenocysteiene treatment groups (p<0.001).  
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Figure 11: Sulforaphane Displayed a Similar Reduction Pattern in the Rate of Stone Growth. The 

study was repeated with vehicle control and sulforaphane treated groups. Statistical differences 

were found between the vehicle control and sulforaphane. *** Significantly different from the 

vehicle control group (p<0.001).  
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Figure 12: Proposed Interventions Do Not Show Preventative Properties. Kaplan Meier plot was 

used to determine the probability of having a stone event after a given period of time. 

Differences between the treatment groups were not found, indicating that these interventions do 

not possess preventative measures in reducing the rate of cystine stone growth. 
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Figure 13: Sulforaphane Produces More Medium Sized Stones. Size distribution for each 

individual mouse in all three treatments was performed by selecting for the region of interests 

(ROIs) and using the CTAn package to obtain the volumetric measurements. Our results suggest 

that sulforaphane has a preference for medium sized stones.  
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Discussion and Conclusions 

Cystinuria has been researched and redefined over the years. Medical management 

currently consists of dietary modifications and urinary alkalization. Cystinurics are now 

frequently given cystine-binding thiol drugs (CBTD) to reduce cystine accumulation and/or 

increase cystine solubility in the urine. With the creation of the Slc3a1
-/-

 mouse model for 

cystinuria, questions regarding treatment options - what pharmacological interventions should be 

investigated and what treatments should be given to reduce the rate of cystine growth - can be 

better answered. In this study, we determined a) the feasibility of using the µCT scanner in 

measuring 3D volumetric growth of the cystine stones and b) the efficacy of two 

pharmacological interventions on the Slc3a1
-/-

 mouse model in reducing the rate of cystine stone 

growth.  

I. Micro-Computed Tomography (µCT) Scanning as a Novel Approach to 

Tracking Stone Growth  

The µCT scanner has become a popular model for mapping the internal structures and 

surfaces in smaller organisms (Cavanaugh, 2004). The scanner has also been used in many 

longitudinal studies requiring quantitative information of 3D volumetric measurement changes 

during the lifespan of a small animal. While previous studies have employed the scanner to 

measure trabecular and cortical bone volume and morphology in small animals at high resolution 

(Yamashita, 2000; Bouxsein, 2010), measuring volumetric changes in stone volume at low 

resolution in live animals has not been attempted. However, a study conducted by Ercolani et al. 

(2010) revealed that the µCT scanner can be employed to visualize bladder stones in the Slc3a1
-/-

 

mouse model. Based on this, we developed a protocol using the CTAn package to measure 3D 

cystine stone volume over time and to also accurately measure the rate of cystine stone growth. 
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From the developed protocol, three treatment groups – vehicle control, sulforaphane and methyl 

selenocysteine – that had stones present in the bladder region were evaluated for at least a month. 

Comparison of stone growth rate was evaluated using linear mixed model with random intercept. 

Stone growth modeled by this system was shown to proceed linearly in all the treatment 

groups (Figure 6 and Figure 9). To further confirm the volumetric advances in stone volume, the 

size of a single stone was used as a marker for stone growth in the bladder. The single stone also 

displayed linear growth with increases in total observed stone volume, indicating that this growth 

contributes to the existing supersaturated solution in the bladder (Figure 7). This suggests that a 

supersaturated environment may rise as a contributor to increased stone volume over time. A 

previous study conducted by Ercolani et al. (2010) indicated that the environment provided by 

the bladder may yield to crystal precipitation and eventually, intensify stone formation. With the 

µCT scanner and the analysis packages, the scanner has provided valuable insight by delivering 

accurate measurements of stone volume over a period of time in live small animals. Our results 

support that the µCT scanner is a feasible instrument in determining the rate of stone growth 

longitudinally. 

II. Sulforaphane as a Potential Therapeutic in Reducing the Rate of 

Cystine Stone Growth 

With the use of this novel approach, the comparison of the rate of stone growth were 

calculated and evaluated using the linear mixed model with random intercept model. Our results 

suggest that sulforaphane was shown to reduce the rate of stone growth by 15% when compared 

to the vehicle control and methyl selenocysteine groups (Figure 10). This suggests that 

sulforaphane is deliverable to the kidneys (Zheng, 2011) and may upregulate SLC7A11 
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expression in the xc
-
 system. A previous study reported that the Nrf2 had shown significant 

upregulation in SLC7A11 expression in the human bladder cancer cell line, T24 (Ye, 2014). 

Further studies investigating the link between Nrf2 and SLC7A11 may provide insights to the 

mechanism through which this intervention functions. Also, understanding the mechanism of 

action and the role of other Nrf2 activators in this mechanism are of interest.  

An interesting observation from the study revealed that sulforaphane is associated with 

medium sized stones when compared to the vehicle control and methyl selenocysteine groups 

(Figure 12). This suggests that sulforaphane may be acting to promote medium size stone 

formation and prevent the growth of large stones. This was seen in parallel with a study 

conducted by Rimer et al. (2010) that showed CDME (l-cystine dimethylester) to promote small 

stone formation in vitro. Because sulforaphane showed a reduced effect on the rate of stone 

growth and the growth of medium sized stones, we conclude that sulforaphane may be a 

potential therapeutic for cystinurics.  

III. Methyl Selenocysteine Did Not Show Any Effect in Reducing Cystine 

Stone Growth 

Methyl selenocysteine did not show a significant reduction in the rate of stone formation. 

This suggests that methyl selenocysteine may not be delivered to the kidneys and may not have 

converted to selenocysteine to dimerize with cysteine. Studies have suggested that synthesis of 

selenocysteine is analogous that of cysteine; however, there is no evidence to support this claim 

(Esaki 1981). Selenocysteine and cysteine also have been shown to affect glutathione activity in 

mice and rats; however, no evidence was found indicating a conversion of selenocysteine to 



 
 

38 

cysteine (Watts, 2014). Further understanding is needed in determining the conversion of methyl 

selenocysteine to cysteine in mammalian and mice tissue.  

In order to obtain a chemical structure of the packing in cystine-based stones, 

understanding the arrangement of atoms in cystine stones and its chemical composition is of 

utmost importance. We hypothesized that selenocysteine would dimerize with cysteine and that 

the packing of the cystine stones was thought to be disrupted. However, our results suggest that 

selenocysteine may not have affected the packing of heterogeneous cystine stones and therefore, 

may not have displayed a significant change to the overall structure of the stones. When the 

crystals are packed closely together, the atomic radii may have assumed a larger distance 

between the molecules, giving rise to non affected cystine stones. Therefore, no significant 

changes were recorded in the Slc3a1
-/-

mouse model. Further studies will need to be done to 

confirm this possibility. Finally, a Kaplan-Meier plot was constructed to determine the 

probability of having another stone event (Figure 11). No significant differences were found 

between the treatment groups, indicating that these interventions do not possess preventative 

measures. Further analysis is still needed in understanding the preventative properties of 

cystinuria. 

IV. Future Directions 

While the pathophysiology of the cystine transport systems are widely known, studies 

can be conducted in evaluating deficiencies in the rBAT-b
0,+

 AT transporter and the xc
-
 system. 

In addition, understanding how these interventions affect the cystine transporters is also of 

interest. The interventions used in this study were chosen based on previous studies. 

Understanding the mechanism of how the interventions are received and processed in the kidney 

might provide insight in determining and evaluating newer interventions, such as other Nrf2 
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activators. Further studies should also evaluate the Nrf2 properties should be determined in 

whether Nrf2 can increase the expression of the xc
-
transporter and cystine. A combination of 

these therapies may also yield to progression in understanding treatment options for cystinurics.  

With the developed protocol, this study was able to use the in vivo µCT scanner in 

confirming the feasibility of tracking stone growth longitudinally. By using the analysis 

packages, the study was also able to evaluate the efficacy of the interventions in reducing the rate 

of cystine stone growth in the Slc3a1
-/-

 mice model. These approaches displayed a linear growth 

in total stone volume that can be visualized through 3D models and quantified through the CTAn 

package. Changes in stone size distribution provided insight into the phenotypic effects of the 

interventions used. The intervention, sulforaphane, showed promise as a preventative therapeutic 

for cystinurics by displaying a reduction in the rate of stone growth. With this approach, 

evaluating potential therapeutics in the Slc3a1
-/-

cystinuric mouse model will further our 

understanding and will provide newer interventions for cystinurics.  

  



 
 

40 

Addendum 

Introduction 

By using the established protocol, three additional interventions – homocysteine, 

tiopronin and TPEN – and a zinc-supplemented diet were evaluated for their ability to prevent 

cystine stone formation and/or reduce the rate of cystine stone growth. 

Effect of Homocysteine and Tiopronin in Reducing the Rate of Cystine Stone 

Growth 

Homocysteine is a homologue of the amino acid, cysteine. It is formed from methionine 

and is an intermediate in the methionine pathway. Homocysteine can be removed through the 

remethylation or trans-sulfuration pathway (Wu, 2012). The trans-sulfuration pathway is most 

related to cystinuria, in which homocysteine is readily converted to cystathionine and 

subsequently to cysteine, a process that mainly takes place in the kidneys. Based on the Rimer et 

al. (2010) study and the proposal for methyl selenocysteine, homocysteine is hypothesized to 

generate an asymmetric cysteine-homocysteine dimer. The packing of the stones will be 

disrupted, yielding to a reduced rate of cystine stones.  

Tiopronin is an amino thiol, antioxidant compound that is currently administered to 

cystinuric patients (Barbey, 2000; Chow, 1966). Tiopronin functions in many capacities 

including acting as a chelating agent, and has cardio- and radio-protecting properties 

(Penugonda, 2004). Due to the free sulfhydryl group, it is highly sensitive to oxidation and can 

readily form disulfide dimmers with other sulfhydryls (Leroy, 1991). This suggests that 

administering tiopronin can break the disulfide bond in cystine and form a bond with cysteine 

(Barbey, 2000). For the basis of our study, tiopronin is thought to also form asymmetric cysteine 

–tiopronin dimer, leading to a reduction in the rate of stone growth. 
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Homocysteine and Tiopronin were freshly prepared daily prior to administering. Each 

cohort received the respective dose, administered three times per week through intraperitoneal 

(IP) injections for the duration of the study. Homocysteine and tiopronin were dissolved in PBS. 

Control mice for the homocysteine and tiopronin groups received PBS only. Mice were 

randomized to avoid bias before being placed in the treatment groups. Preparation and dosage 

are summarized in Table 5. 

. 
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Table 5: Preparation and Doses for Homocysteine and Tiopronin.  

Treatment Preparation Dosage 

Homocysteine Dissolved in PBS 8.11mg/kg  

Tiopronin Dissolved in PBS 18.4mg/kg 
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A total of 11 male cystinuric mice were observed under the µCT scanner to ensure that 

the Slc3a1
-/-

 mice had not formed cystine stones prior to the initiation of the study. At two 

months of age, the Slc3a1
-/-

 mice were randomly placed in three cohorts – vehicle control (n=5), 

Homocysteine (n=2) and Tiopronin (n=4). The doses were chosen based on previous studies. The 

dose of homocysteine was based on dosage administered to humans and adjusted for mice. The 

dose of Tiopronin was based on the calculation used to determine L-CDME administration in the 

Rimer et al. (2010) study. The mice were imaged weekly for three months using the µCT 

scanner. Eventually, all the Slc3a1
-/-

mice formed stones. To compare the rates of stone growth 

between the treatment groups, linear mixed model with random intercept was employed. 

Linear mixed model with random intercept was used to compare the rate of stone growth 

between the treatment groups. Stone growth for the treatment groups proceeded at a linear rate. 

Both homocysteine (chisq=28.05, df=1, p<0.001) (Figure 14) and Tiopronin (chisq=2.81, df=1, 

p=0.094) (Figure 15) were statistically different from the vehicle control. However, both 

compounds increased the rate of stone growth as opposed to reducing the rate.  
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Figure 14: Homocysteine Worsens Cystine Stone Growth. Statistical differences were found 

when the homocysteine treatment group was compared to the vehicle control group. However, 

the differences displayed an increased rate of stone growth as opposed to a reduction.  
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Figure 15: Tiopronin Worsens Cystine Stone Growth Rate. Statistical differences were found 

between the Tiopronin treatment groups and the vehicle control group. However, the differences 

displayed an increased rate of stone growth as opposed to a reduction.  
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Effect of TPEN and Zinc-Supplemented Diet in Reducing the Rate of Cystine 

Stone Growth 

N, N, N′, N′-tetrakis (2-pyridylmethyl)-ethyenediamine (TPEN) is a Zn
2+

/ Fe
2+

chelator 

(Shumaker, 1998). Studies have shown that the administration of TPEN decreases zinc levels in 

the kidney (Li, 2013; Li, 2014; Hamon, 2014). Zinc is an essential trace element that has 

antioxidant properties and is associated with diabetes. In the Kapahi lab (Chi, unpublished data), 

zinc was found to promote urinary concretions in a Drosophila Melanogaster (fruit fly) model of 

chronic stone disease. In addition, and zinc was detected in the center of the stones (Figure 16). 

TPEN and a zinc-supplemented diet were hypothesized to affect the bioavailability of zinc in the 

Slc3a1
-/-

 mice, thereby reducing the rate of stone growth. 
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Figure 16: Zinc Detection in Cystine Stones. Zinc was shown to be present at the center of in a 

cystine stone.  
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TPEN was freshly prepared daily prior to administering. The TPEN and vehicle control 

cohorts received the respective dose, administered four to five times per week through 

intraperitoneal (IP) injections for the duration of the study. TPEN was kept in stock solution of 

100% EtOH and diluted to 5% with the addition of PBS. Control mice in this group received 5% 

EtOH in PBS only. The zinc-supplemented diet was prepared by Harlan Laboratories (Haslett, 

Ml). Control mice for this diet received Harlan Irradiated Pellet Rodent Diet (chow diet). All 

animals from zinc-supplemented cohort were fed weekly. Animals were randomized to avoid 

bias before being placed in the treatment groups. Preparation and dosage are summarized in 

Table 6. 

  



 
 

49 

Table 6: Preparation and Doses for TPEN and Zinc-Supplemented Diet.  

Treatment Preparation Dosage 

TPEN Stock Solution in 100% EtOH. 

Administered in 5%EtOH in 

PBS  

25mg/kg  

Zinc-Supplemented Diet Prepared by Harlan 

Laboratories 

250 ppm 
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A total of 33 male SLC3a1
-/-

 mice were observed under the µCT scanner to ensure that 

cystine stones had not formed prior to the initiation of the study. At the age of two months, the 

Slc3a1
-/-

 mice were placed in two cohorts – vehicle control (n=8) and TPEN (n=7). At one month 

of age, another cohort of Slc3a1
-/-

mice were placed in two groups – vehicle control (n=8) and 

zinc-supplemented diet (n=10). The mice were imaged weekly for three months using the µCT 

scanner. Eventually, all of the Slc3a1
-/-

mice formed stones. 

Linear mixed model with random intercept was employed, yielding the rate of growth. 

Stone growth for both treatments proceeded at a linear rate. There was a statistical difference 

between the vehicle control and TPEN group (chisq=10.71, df=1, p=0.001), indicating that 

TPEN may be an effective treatment for cystinurics. TPEN was shown to reduce the rate of 

cystine stone growth by 18% (Figure 17). However, no statistical difference was found in the 

zinc-supplemented diet (chisq=0.005, p=0.943) (Figure 18). 
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Figure 17: TPEN Reduced the Rate of Cystine Stone Growth by 18%. Statistical differences 

were found between the TPEN and vehicle control treatment groups.  
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Figure 18: Zinc-Supplemented Diet Did Not Display Any Effect on Cystine Stone Growth Rate. 

There were no statistical differences between the zinc-supplemented diet group and the vehicle 

control group. 
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Discussion and Conclusions 

I. Homocysteine Worsened Cystine Stone Growth  

In this study, we were able to evaluate three additional interventions– homocysteine, 

tiopronin and TPEN - and a zinc-supplemented diet – in reducing the rate of cystine stone 

growth. All interventions and the supplemented diet displayed a linear growth pattern. However, 

homocysteine and tiopronin were shown to increase the rate of stone formation in our Slc3a1
-/-

cystinuric model. This suggests that homocysteine may not have converted to cysteine to form a 

dimer or may have prompted the formation of cystine. Homocysteine has also been shown to 

bind to proteins, allowing its exportation out of the cell (Svardal, 1986).  This suggests that 

protein-protein interactions may have taken place within the cell. Further understanding is 

needed in the proteins interactions within and between cystine, cysteine and homocysteine in the 

urine.  

II. Currently Prescribed, Tiopronin, Did Not Reduce the Rate of 

Cystine Stone Growth  

In addition to homocysteine, tiopronin, a prescribed medication for cystinuric patients, 

also displayed an increased rate of stone growth. This is contradicted by multiple studies that 

have shown that tiopronin treatment is critical to treatment of cystinuria. These studies have 

shown that with tiopronin treatment, cystine excretion was remarkedly higher in cystinuric 

patients (Joly, 1999). However, its effectiveness is debated. Toxicity was a possibility; however 

a study conducted by Zhang et al. (1999) revealed that with tiopronin treatment, nephrotoxic 

effects in in vivo rat kidneys were protected. This indicates that tiopronin may have acted to 

protect kidney function as opposed to forming cysteine dimmers.  
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III. Zinc Bioavailability May Affect Cystine Stone Growth 

Our results confirmed the efficacy of TPEN in reducing the rate of stone growth and that 

zinc-supplemented displayed no effect. This suggests that TPEN is deliverable to the kidneys 

(Tainer, 1982) and the chelating properties of zinc may have affected zinc bioavailability in the 

cystine stones. Interestingly, a study conducted by Ho et al. (2003) revealed that p53 expression, 

a tumor suppressor, is increased by zinc depletion. Another study conducted by Jiang et al. 

(2015) revealed that p53 plays a role in inhibiting cystine uptake through the reduced of 

SLC7A11. In addition, zinc homeostasis is heavily regulated, indicating that zinc may have not 

been absorbed and therefore, may have been excreted; however, further studies will need to be 

conducted to confirm the possibility.  

IV. Future Directions 

Future studies in understanding the roles of homocysteine, TPEN and zinc bioavailability 

may provide further knowledge in the role of zinc and p53 in cystinuria as well as the 

mechanistic action that is taking place. Finally, evaluating early stones and late stones may 

provide new knowledge in the how the treatments are configured in the mouse cystinuric model. 

With the evaluation of the presented and future therapeutics, the incident of stone formation will 

decrease for cystinurics and will be a presentable treatment option.  
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