
Dominican Scholar Dominican Scholar 

Collected Faculty and Staff Scholarship Faculty and Staff Scholarship 

2009 

Ab initio Study of the Formation and Degradation Reactions of Ab initio Study of the Formation and Degradation Reactions of 

Chlorinated Phenols Chlorinated Phenols 

Cheri McFerrin 
Department of Chemistry, Louisiana State University, Baton Rouge 

Randall Hall 
Department of Chemistry, Louisiana State University, Baton Rouge, randall.hall@dominican.edu 

Barry Dellinger 
Department of Chemistry, Louisiana State University, Baton Rouge 

https://doi.org/10.1016/j.theochem.2009.01.031 

Survey: Let us know how this paper benefits you. 

Recommended Citation 
McFerrin, Cheri; Hall, Randall; and Dellinger, Barry, "Ab initio Study of the Formation and 
Degradation Reactions of Chlorinated Phenols" (2009). Collected Faculty and Staff 
Scholarship. 208. 
https://doi.org/10.1016/j.theochem.2009.01.031 

DOI 
http://dx.doi.org/https://doi.org/10.1016/j.theochem.2009.01.031 

This Article is brought to you for free and open access by the Faculty and Staff Scholarship at 
Dominican Scholar. It has been accepted for inclusion in Collected Faculty and Staff Scholarship by 
an authorized administrator of Dominican Scholar. For more information, please contact 
michael.pujals@dominican.edu. 

https://scholar.dominican.edu/
https://scholar.dominican.edu/all-faculty
https://scholar.dominican.edu/faculty-scholarship
https://dominican.libwizard.com/dominican-scholar-feedback
http://dx.doi.org/https://doi.org/10.1016/j.theochem.2009.01.031
mailto:michael.pujals@dominican.edu


Ab initio study of the formation and degradation reactions of 
chlorinated phenols

Cheri A. McFerrin, Randall W. Hall*, and Barry Dellinger
Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA

Abstract

The formation, stability, and reactivity of chlorinated phenoxyl radicials was studied using ab 

initio methods. All 19 congeners from mono- to penta-chlorinated species were considered. The 

radical species are formed in combustion reactions via unimolecular scission of the phenoxyl-

hydrogen bond or hydrogen atom abstraction by hydrogen atom or hydroxyl radical. The resulting 

radicals are stable with respect to unimolecular decomposition and reaction with molecular 

oxygen is relatively slow. Activation energies are similar to those of the phenoxyl radical for both 

the decomposition pathway and the reaction with molecular oxygen at the more reactive para-

position. Calculations were performed with the model chemistries B3LYP/6-31G(d,p), 

BHandHLYP/6-31G(d,p), BHandHLYP/aug-cc-pVDZ and QCISD(T)/6-31G(d,p)//BHandHLYP/

6-31G(d,p) (for selected reactions.) The results suggest the radicals are sufficiently stable and 

unreactive to be moderately persistent in the atmosphere, especially when associated with some 

types of particulate matter. An additivity analysis is made to decompose the relative energetics of 

the congeners into contributions from hydrogen bonding, resonance stabilization, and repulsive 

interactions. The results of this analysis correlate well with the results of the calculations.
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1. Introduction

Chlorinated phenols are toxic chemicals frequently found in hazardous wastes and at 

Superfund sites. Upon heating or burning they can be converted into even more toxic 

polychlorinated diben-zo-p-dioxins and dibenzofurans (PCDD/F) by both gas-phase [1] and 

metal catalyzed pathways [2]. Chlorinated phenoxyl radicals, formed by dissociation or 

abstraction of the phenolic hydrogen, are resonance stabilized radicals. Phenoxyl radicals are 

known to be resistant to oxidation [3,4] and chlorinated phenoxyl radicals may even be less 

reactive. In fact, chlorinated phenoxyl radicals are thought by some to be so stable that they 

only react with other radicals or themselves, the self-reaction resulting in the formation of 

PCDD/Fs [5–10]. In addition, it has recently been noticed that substituted phenoxyl radicals 
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were environmentally persistent when associated with copper oxide-containing particles 

[11].

Monochlorinated phenoxyl radicals are valence isoelectronic with semiquinone radicals 

which are suspected to be responsible for much of free radical damage induced by inhalation 

of cigarette smoke. Semiquinone radicals are known to be quite stable [12] and capable of 

reducing molecular oxygen to superoxide radical anion in a cyclic process [13]. Since 

monochlorinated phenoxyl radicals are valence isolectronic with semiquinone radicals and 

probably even more resistant to oxidation due to chlorine substitution, it is possible that 

chlorinated phenoxyl radicals may be even more toxic than the better studied semiquinone 

family of radicals.

Previous experimental studies of the thermal degradation behavior of chlorinated phenols 

have been confined to the mono-, di-, or tri-chlorophenol precursors and their products with 

an aim for developing a PCDD/F formation mechanism [1,6–9,14–19]. Some of these 

models have used the O–H bond dissociation energy of phenol as the activation energy for 

decomposition of chlorinated phenols. Previous computational gas-phase studies of 

chlorophenols have focused primarily on O–H bond dissociation energies as a function of 

position of mono- and di-chlorination [20–27]. There are no experimental or computational 

studies of the stability and reactivity of the 19 congeners of chlorophenol despite the role 

these species play in the formation of PCCD/F.

The present work is the first study to examine both the stabilities and reactivities of the 19 

congeners. Amongst the mono-chlorinated phenols, it is well established that O–H bond 

dissociation energies are lowered by a para-chloro substituent and are increased by the 

presence of ortho- and meta-chloro substituents [20,22,23,26,28]. This observation is used 

as a test of the validity of the present calculations. Earlier ab initio calculations [29] suggest 

that phenoxyl radical thermally decomposes by proceeding through a rate-determining 

bicyclic intermediate followed by α-CC bond cleavage to produce CO and a 

cyclopentadienyl radical. Using this transition state structure as a model, we report the 

activation energies for concerted elimination of CO to form chlorinated cyclopentadienyl 

radicals. Chlorinated phenoxyl radicals are significantly resonance stabilized relative to the 

phenoxyl radical and chlorine substitution may make them even less reactive than phenoxyl 

radicals, and consequently more persistent, in oxidative environments. To address these 

issues, bimolecular reactions between 2-, 3-, and 4-monochlorophenoxyl radicals and 

molecular oxygen were studied.

2. Computational procedures

Ab initio calculations were performed using the Gaussian 03 [30] suite of programs. For 

open-shell systems, restricted methods were used. Despite known deficiencies [31,32], 

density functional theory (DFT) is a common computational procedure. The best agreement 

between experimental and calculated values for thermodynamic and kinetic parameters is 

obtained using computationally expensive correlated methods such as configuration 

interaction. However, if one is interested in the differences in these parameters between 

similar compounds, then DFT calculations are accurate [20,22,23,27,33,34]. In terms of 
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absolute values of a thermodynamic parameter, the bond dissociation energy of phenol has 

been measured experimentally and found to be between 84.0 and 88.8 kcal/mol 

[8,16,20,22,23,27,33,35–38], in excellent agreement with our calculated value of 89.4 

kcal/mol (QClSD(T)/6-31G(d,p)//BHandHLYP/6-31G(d,p)) and in good agreement with our 

DFT values of ~80–81 kcal/mol [39]. ΔErxn for three other routes to the formation of the 

phenoxyl radical can be estimated from heats of reaction available from experiments [40]. 

This analysis gives ΔErxn = −16.2 kcal/mol for the abstraction of the hydroxyl hydrogen 

atom by a second hydrogen atom (Fig. 2, Reaction 2), which compares favorably to our 

previously calculated values of −18.8 kcal/mol (BHandHLYP/aug-cc-pVDZ) and −16.4 

kcal/mol (QClSD(T)/6-31G(d,p)//BHandHLYP/6-31G(d,p)). For the displacement of the 

hydroxyl group by a hydrogen atom (Fig 2, Reaction 3), experiment[40] finds ΔErxn = 0.1 

kcal/mol and our previous calculations give −8.5 kcal/mol (BHandHLYP/aug-cc-pVDZ) and 

−6.2 kcal/mol (QClSD(T)/6-31G(d,p)//BHandHLYP/6-31G(d,p).) For the reaction with OH 

to give water and the phenoxyl radical (Fig 2, Reaction 4), this analysis gives finds ΔErxn = 

−31.2 kcal/mol [40] and our previous calculations give −28 kcal/mol (BHandH-LYP/aug-cc-

pVDZ) and −26.5 kcal/mol (QClSD(T)/6-31G(d,p)//BHandHLYP/6-31G(d,p).) This 

agreement between absolute values of experimental and ab initio calculations is sufficiently 

accurate for our purposes.

There is less experimental data available for the reactions of radicals relevant to the present 

work. However, the activation energy has been measured for the decomposition of the 

phenoxyl radical to CO and cyclopentadienyl radical and found to be ~44 kcal/mol [41]. Ab 

initio calculations have been performed to analyze this reaction [29]. There are three local 

maxima along the proposed reaction path and the transition state (with the largest activation 

energy relative to a nearby local/global minimum) geometry is consistently predicted across 

a variety of basis sets and ab initio methods [29]. The best estimate from calculation for the 

activation energy for this reaction is 52.2 kcal/mol (G2M/MP2 model chemistry) in good 

agreement with the DFT estimate (B3LYP/6-31G* model chemistry) of 56.6 kcal/mol [29]. 

Our previous calculations found the activation energy to be 61.6 kcal/mol (BHandHLYP/cc-

aug-pVDZ model chemistry) [39]. Thus ab initio calculations show similar accuracy for 

both reaction energies (ΔErxn) and activation energies. DFT calculations are therefore 

somewhat less accurate than higher level ab initio methods for these systems, but still in 

reasonable agreement with experimentally derived parameters. Most importantly for the 

present work is that the relative values of ΔErxn and activation energies are found to be the 

same using either DFT or higher level methods [39]. Studies of transition state properties 

have shown that the BHandHLYP [42] and the MPW1K [32] DFT implementations are 

reasonably accurate. Based on this information, we used the B3LYP and BHandHLYP DFT 

methods, and, as a check on the quality of the DFT energies, the QClSD(T)//BHandHLYP 

model chemistry.

Calculations were performed using the B3LYP/6-31G(d,p) (l), BHandHLYP/6-31G(d,p) (ll), 

and BHandHLYP/aug-cc-pVDZ (lll) model chemistries. ln some cases, QClSD(T)/

6-31G(d,p)//BHandH-LYP/6-31G(d,p) (lV) model chemistry was employed to validate the 

relative ordering of the DFT results. ln this work, we are interested in the relative ΔErxn and 

Ea for the reactions of a series of similar molecules; therefore, we used different model 
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chemistries to assess the accuracy of our calculations. Full optimizations using CCSD/aug-

cc-pVDZ were attempted but proved beyond our computational resources. Stationary points 

were characterized as either a local minimum structure (no imaginary frequencies) or a 

transition state (one imaginary frequency) by analytical evaluation of their Hessians. When 

more than one isomer of a particular species existed, the most stable isomer was used in the 

calculations. The energies are unscaled and zero-point corrected. All energies except those 

in Table 5 are given in kcal/mol. Transition states were located by performing relaxed 

potential energy surface scans followed by implementation of a Synchronous Transit-

Guided Quasi-Newton (STQN) method, integrated into the Gaussian suites of programs by 

Schlegel et al. [43]. Transition states for the radical decomposition and oxidative channels 

have been lRC confirmed and are similar to those found in our earlier work [39]. ΔErxn and 

Ea were calculated by taking the difference of product or transition state species and reactant 

species using the zero point corrected energies. The relative values of these parameters were 

defined as

and

3. Results and discussion

3.1. Radical formation

Formation of substituted phenoxyl radicals from their parent phenols is clearly affected by 

the number and type of the substituents. Previous studies [39,44] found that additional 

hydroxyl groups at ortho- or para-positions slightly lowered the ΔErxn for radical formation. 

Our study [39] found that the activation energies for elimination of CO from the resulting 

radicals were increased relative to the phenoxyl radical as a result of the hydroxyl 

substitution. Reaction of the radicals with molecular oxygen yielded slightly larger values of 

ΔErxn for the substituted species and no obvious trends in the activation energies. The results 

presented below can therefore be used to contrast chlorine substitution with hydroxyl 

substitution, as well as comparison amongst the chlorinated congeners.

The optimized structures of o-chlorophenol and the o-chlorophenoxyl radical (BHandHLYP/

aug-cc-pVDZ) are depicted in Fig. 1, along with the bonding structure and location of the 

unpaired electron suggested by the bond lengths. The bond lengths are similar for the meta- 

and para-chloro congeners, and all are similar to phenol and the phenoxyl radical, 

respectively. The differences between the radical and its parent suggest that there will be 

substantive differences between parent and radical due to the effect of added chlorine atoms. 

The bond lengths suggest the resonance structure with the unpaired electron at the 4-position 

is the most stable. This suggests that the most likely self-reaction product of 2-

chlorophenoxyl radicals is a chlorinated 4,4′-diphenyl quinone. In contrast, the structure 

with the unpaired electron at the 2- or 6-positions can react to give PCDD/F.
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Four different pathways of degradation by decomposition or reaction were investigated. Fig. 

2 displays these pathways: (1) unimolecular decomposition via O-H bond scission, (2) 

abstraction of the hydroxyl hydrogen by reaction with atomic hydrogen, (3) displacement of 

the hydroxyl group by reaction with atomic hydrogen to produce substituted benzenes, and 

(4) abstraction of the hydroxyl hydrogen by reaction with OH. The values of ΔErxn for these 

routes are given in Tables 1–4.

With the exception of p-chlorophenol, the BHandHLYP/aug-cc-pVDZ calculated bond 

dissociation energies (Fig. 2, Reaction 1) of all the substituted phenols are greater than 

phenol by as much as ~4 kcal/mol (Table 1). Similarly, ΔErxn values for hydrogen atom 

abstraction (Fig. 2, Reaction 2) are greater than the corresponding value for phenol, again by 

up to ~4 kcal/mol (Table 2).

The values for dehydroxylation via H-substitution to form chlorinated benzenes (Fig. 2, 

Reaction 3) do not systematically vary with chlorine substitution, with values ranging from 

~2 kcal/mol lower to ~1 kcal/mol greater than phenol (Table 3).

Phenoxyl hydrogen abstraction by OH (Fig. 2, Reaction 4) has trends in ΔErxn similar to the 

other chlorophenoxyl radical-producing reactions (Table 4). These results suggest the 

formation of chlorinated phenoxyl radicals is slightly less energetically favored than the 

formation of the phenoxyl radical itself.

This contrasts with the effect of hydroxyl substitution in o- and p-semiquinone, which is to 

decrease the ΔErxn for radical formation [39]. Therefore, with the exception of p-

chlorophenoxyl radical, we expect radicals to be slightly more difficult to form with chlorine 

substitution. Relative to phenol, the average bond dissociation energy, ΔErxn, (Fig. 2, 

Reaction 1) via BHandHLYP/aug-cc-pVDZ is +1.0 kcal/mol greater for the mono-

substituted phenols, +2.1 kcal/mol greater for the di-substituted phenols, +2.2 kcal/mol 

greater for the tri-substituted phenols, +2.5 kcal/mol greater for the tetra-substituted phenols, 

and +2.0 kcal/mol greater for pentachlorophenol. There is thus a modest increase (except for 

pentachlorophenol) in the bond dissociation energy with increasing chlorination. Abstraction 

of the hydroxyl hydrogen by H and OH (Fig. 2, Reactions 2 and 4) displays a similar trend. 

Displacement of hydroxyl by H (Fig. 2, Reaction 3) has the opposite trend; increasing 

chlorination yields increasingly more negative values for ΔErxn.

The absolute energies (in Hartrees) of the mono-chlorinated species using the BHandHLYP/

aug-cc-pVDZ model chemistry are given in Table 5. The stability of the mono-chlorinated 

phenols and phenoxyl radicals can be understood using the concept of electron donation (via 

resonance) of the hydroxyl and chlorine groups, as well as intramolecular hydrogen 

bonding. First, the intramolecular hydrogen bond that is formed in o-chlorophenol makes 

this the most stable of the monochlorophenols. There is EPR evidence from experiment that 

chlorine acts as an electron donator [28] in p-chlorophenol, presumably via resonance. The 

hydroxyl group is a strong electron donor (via resonance) [45], while in the radical, the 

oxygen atom acts as a net electron withdrawing group, again via resonance. Therefore, in the 

parent compound, having electron donating groups (–OH and –Cl) ortho- or para- with 

respect to each other is destabilizing, while the opposite is the case in the radical. Thus, p-
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chlorophenol is less stable than m-chlorophenol and because hydrogen-bonding stabilization 

outweighs other effects both are less stable than o-chlorophenol. For the radicals, the 

situation is reversed for the p- and m-chloro-phenoxyl radicals as the m-chlorophenoxyl 

radical is less stable. ln the o-chlorophenoxyl radical, inductive, electrostatic repulsion, and 

steric repulsion explain why this is the least stable of the mono-chlorinated radicals.

When these trends are used to make qualitative predictions for the bond dissociation 

energies, the energetics are consistent with experiment [28] and previous computational 

works [20,22,23,26]. These same trends were also found in a study of monochlorophenols 

and dichlorophenols used as precursors to understand chlorinated-dibenzofuran formation 

under both pyrolytic and oxidative conditions [14]. For the mono-chlorophenols and 

pyrolytic conditions, p-chlorophenol decomposes most readily while o-chlorophenol is most 

resistant to decomposition (based on unreacted precursor amounts in identical experiments.)

Displacement of the hydroxyl group by a hydrogen atom to form chlorobenzenes has been 

previously studied in the gas-phase [46]. lt was reported that this reaction proceeds via an 

addition/ipso substitution pathway and experimentally the dehydroxylation rate constants for 

the mono-chlorophenols are similar in magnitude to the analogous reaction for phenol. 

Specifically, the ratio of the rate constants to that of phenol were 1.08, 0.75, and 0.88 for 2-, 

3-, and 4-monochlorophenol, respectively.

3.2. Radical decomposition

The decomposition of the phenoxyl radical to form cyclopentadienyl radical and carbon 

monoxide has been studied using density functional theory (B3LYP/6-31(d), Fig. 8) [29]. 

We use these authors’ proposal for the transition state as the starting point for locating 

transition states for the decomposition of the chlorinated species studied herein. The 

activation energies and ΔErxn for the decomposition via CO elimination of the 19 congeners 

of the chlorophenoxyl radical are listed in Table 6. In contrast to the parent compounds, the 

bond lengths in both the transition states and the cyclopentadienyl products exhibit some 

single and double bond character, as opposed to the aromatic character seen in the parent 

compounds (Fig 1). Overall, increasing the degree of chlorine substitution results in both 

lower activation energies and ΔErxn, although there are exceptions, e.g. 2,4,6-

trichlorophenoxyl radical.

3.3. Radical reaction with molecular oxygen

The activation energies and ΔErxn for reaction of molecular oxygen with various 

monochlorinated phenoxyl radicals (Fig. 3) are presented in Table 7. Addition of molecular 

oxygen is slightly favored (based on ΔErxn) at the para-position, relative to the ortho-

position. This is somewhat surprising for the p-chlorophenoxyl radical. Relative to the 

phenoxyl radical, reaction at the 4-position in the p- and o-chlorophenoxyl radicals has a 

greater activation energy, while m-chlorophenoxyl radical has essentially the same the 

activation energy as the phenoxyl radical.
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3.4. Additivity analysis

Given the correlations found for the absolute energies of parent and radical species (vide 

infra), we investigated whether an additivity analysis can be used to explain the variation in 

reaction energetics of the various congeners. We began by considering the various factors 

that contribute to the relative stabilities of parent compounds and resultant radicals. We 

considered the following aspects of the stability/reactivity (applying to both the parent and 

resulting radical unless otherwise noted):

• O–Cl repulsion – for both molecular parents and radicals, when an O atom is 

adjacent to a Cl atom, there is a repulsive interaction, consisting of inductive, 

electrostatic, and steric effects. We denote this destabilizing repulsion SO-Cl and for 

simplicity use the same value for molecular parents and radicals.

• Cl–Cl repulsion – when two Cl atoms are adjacent, there is a destabilizing repulsive 

interaction, SCl–Cl. As with SO–Cl, we use the same value for both molecular 

parents and radicals.

• Hydrogen bonding – in a parent compound with a Cl atom adjacent to the OH 

group there is additional stability when the H atom is directed toward an adjacent 

Cl atom. We denote this energy EH. This term is only present in the parent 

compounds.

• Chlorine electron donation – in the parent, molecular compounds, the electron 

donating (via resonance) character of Cl leads to a destabilization when Cl is ortho- 

or para- to the –OH group. We denote this energy RM (molecular parent compound 

only.) In the radicals, this same effect leads to stabilization when Cl is ortho- or 

para-relative to the –O group due to the switch from the electron donating –OH 

group to the electron deficient –O. atom. We denote this energy RR (radicals only.)

• Delocalization in cyclopentadienyl radicals – in cyclopentadienyl radical, bond 

lengths suggest the unpaired electron is delocalized over 3 carbon atoms. In the 

chlorosubstituted cyclopentadienyl radicals, this delocalization occurs in some, but 

not all of the congeners. lf the delocalization includes a carbon to which a Cl atom 

is attached, this will lead to a stabilization of the radical. This stabilization energy 

is denoted by RCl.

• Repulsion between added 3O2 and Cl and O groups are denoted SOO2 and SClO2, 

respectively. For simplicity, we have assumed SClO2 is the same, whether the Cl 

and O2 are geminal or vicinal. A more refined treatment of additivity would allow 

for a geminal and vicinal value for this quantity.

There are two stable planar isomers of o-chlorphenol; one with the OH bond directed toward 

the Cl atom and the other with the OH bond directed away from the Cl atom. It is possible to 

form a hydrogen bond in the former isomer. Our calculations give the difference in energy 

between these two isomers (and hence the energy of the O–H–Cl hydrogen bond) to be EH = 

−3.1 kcal/mol (BHandHLYP/aug-cc-pVDZ.) The energy of p-chlorophenol relative to m-

chlorophenol is RM, which our calculations give as +0.46 (which we round to 0.45) kcal/mol 

(BHandHLYP/aug-cc-pVDZ.) The energy of m-chlorophenol relative to o-chlorophenol is 

+0.81 kcal/mol (BHandHLYP/aug-cc-pVDZ) leading to our (rounded) value for SO–Cl of 
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1.85 kcal/mol. RR is determined by the relative energies of the o-chlorophenoxyl and m-

chlorophenoxyl radicals and yields RR= −1.35 kcal/mol. Finally, SCl–Cl can be determined 

by the relative energy of 2,5-dichlorophenol to 2,3-dichlorophenol and yields a rounded 

value of SCl–Cl = 2.55 kcal/mol. For simplicity, we assume no changes in these values for all 

the chlorinated parent and radical species and ignore the relatively small effect from Cl–Cl 

resonance effects on the ring. RCl is obtained as the difference between 1,2- and 1,3-

dichloropentadienyl radicals, which we find to be −0.45 kcal/mol (BHandHLYP/aug-cc-

pVDZ). SOO2 and SClO2 are obtained using the differences between the addition of 3O2 to 

the 2-, 4-, and 6-positions of the 2-chlorophenoxyl radical and are found to be 4.4 and 0.9 

kcal/mol, respectively (BHandHLYP/aug-cc-pVDZ).

For isomers with the same number of chlorine atoms, these values allow the prediction of 

the relative values of ΔErxn for all the reactions considered in this work. The contributions to 

the relative energies for the monochlorinated species are given in Table 8. The Appendix 

shows a calculation using the additivity analysis. Correlation plots of predicted versus 

calculated values for the ΔErxn for the four reaction channels given in Fig. 2. and depicted in 

Figs. 4–7. Correlation plots for radical consumption channels depicted in Figs. 3 and 8 are 

given in Figs. 9 and 10. The agreement between calculated and predicted values is excellent 

and lends credence to the ideas underlying the additivity analysis.

While this additivity analysis can in principle be extended to the prediction of activation 

energies, this requires a careful examination of the transition state geometries, which we 

determined would require more parameters than would make such a procedure credible. 

Therefore, we do not present any predictions for activation energies.

4. Conclusions

Chlorine substitution has modest, but measurable impacts on the rate of formation of 

phenoxyl radicals and the persistence of phenoxyl radicals once they are formed. Relative to 

phenol, increased chlorination generally increases the ΔErxn of radical formation through the 

phenoxyl radical forming pathways. In contrast, increasing chlorination decreases the ΔErxn 

of formation of chlorobenzenes. Increasing chlorination results in a decrease in the average 

Ea for decomposition of the radical, viz. greater radical stability. Chlorine substitution 

slightly increases Ea for reaction with O2 at the o- and p-positions [11].

A driving force for this study was the discovery that substituted phenoxyl radicals were 

environmentally persistent when associated with copper oxide-containing particles [11]. 

While we know that chemisorption of the parent molecular species and electron transfer to 

the metal on the particle surface are at least partially responsible for this persistence, it is 

reasonable that these types of radicals may also be persistent in the gas-phase under some 

conditions.

It is known that ortho- and para-hydroxy substituted phenol (catechol and hydroquinone) 

form semiquinone radicals that are persistent under some conditions and, most importantly, 

are reducing agents that initiate formation of biologically damaging reactive oxygen species 

(ROS) when inhaled. Since the chlorinated phenols are valence isolectronic with catechol 
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and hydroquinone, we were interested in whether chlorinated phenoxyl radicals were as easy 

to form and were as persistent as semiquinone radicals.

We find that while chlorinated phenoxyl radicals are not as easy to form as semiquinone 

radicals [39], they are still readily formed compared to most other organic radicals. Once 

formed, although still quite stable, chlorinated phenoxyl radicals decompose by elimination 

of CO more readily than semiquinone radicals. This may reduce their concentration in 

combustion systems and thermal processes. However, once emitted into the atmosphere 

where the primary route for consumption of radicals is reaction with O2, our calculations 

indicate that generally chlorination decreases the rate of reaction with O2.

In summary, based on our calculations, chlorinated phenoxyl radicals have the potential to 

be even more environmentally persistent than semiquinone radicals. This suggests that the 

reduction potentials of chlorinated phenoxyl radicals should also be measured and calculated 

to determine if they are as powerful and potentially biologically active as semiquinone 

radicals.
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Appendix A

We present the calculation of the relative bond dissociation energies of 2,3-dichlorophenol 

and 2,4-dichlorophenol as an example of using the additivity analysis. The five energy terms 

EH, SO–Cl, SCl–Cl, Rp, and RR are described in the body of this work and are used here. The 

relative bond dissociation is given by
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Fig. 1. 
Geometries of o-chlorophenol and the o-chlorophenoxyl radical. The radical indicates the 

resonance structure suggested by the bond lengths.

McFerrin et al. Page 12

Theochem. Author manuscript; available in PMC 2014 December 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. 
Radical forming reactions studied in the present work.
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Fig. 3. 
Ortho- and para-addition of molecular oxygen to the para-monosubstituted radical.
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Fig. 4. 
Correlation plot of the predicted versus calculated values for the relative ΔErxn for Reaction 

1 in Fig. 2. Monochlorinated species are given relative to o-chlorophenol, dichlorinated are 

relative to 2,3-dichlorophenol, trichlorinated are relative to 2,3,4-trichlorophenol, and 

tetrachlorinated are relative to 2,3,4,5-tetrachlorophenol.
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Fig. 5. 
Correlation plot of the predicted versus calculated values for the relative ΔErxn for Reaction 

2 in Fig. 2. Monochlorinated species are given relative to o-chlorophenol, dichlorinated are 

relative to 2,3-dichlorophenol, trichlorinated are relative to 2,3,4-trichlorophenol, and 

tetrachlorinated are relative to 2,3,4,5-tetrachlorophenol.
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Fig. 6. 
Correlation plot of the predicted versus calculated values for the relative ΔErxn for Reaction 

3 in Fig. 2. Monochlorinated species are given relative to o-chlorophenol, dichlorinated are 

relative to 2,3-dichlorophenol, trichlorinated are relative to 2,3,4-trichlorophenol, and 

tetrachlorinated are relative to 2,3,4,5-tetrachlorophenol.

McFerrin et al. Page 17

Theochem. Author manuscript; available in PMC 2014 December 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 7. 
Correlation plot of the predicted versus calculated values for the relative ΔErxn for Reaction 

4 in Fig. 2. Monochlorinated species are given relative to o-chlorophenol, dichlorinated are 

relative to 2,3-dichlorophenol, trichlorinated are relative to 2,3,4-trichlorophenol, and 

tetrachlorinated are relative to 2,3,4,5-tetrachlorophenol.
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Fig. 8. 
Top: Decomposition reaction of the phenoxyl radical to the cyclopentadienyl radical, 

including the transition state from Ref. [28]. Bottom: A rendering of the transition state for 

addition of O2 to 2-chlorophenoxyl radical.
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Fig. 9. 
Correlation plot of the predicted versus calculated values for the relative ΔErxn for 

elimination from the chlorinated phenoxyl radicals to form CO and a chlorinated 

cyclopentadienyl radical. Monochlorinated species are given relative to o-chlorophenoxyl 

radical, dichlorinated are relative to 2,3-dichlorophenoxyl radical, trichlorinated are relative 

to 2,3,4-trichlorophenoxyl radical, and tetrachlorinated are relative to 2,3,4,5-

tetrachlorophenoxyl radical.
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Fig. 10. 
Correlation plot of the predicted versus calculated values for the relative ΔErxn for the 

addition of O2 to the chlorinated cyclopentadienyl radicals. Mono-chlorinated species are 

given relative to o-chlorophenoxyl radical, dichlorinated are relative to 2,3-

dichlorophenoxyl radical, trichlorinated are relative to 2,3,4-trichlorophenoxyl radical, and 

tetrachlorinated are relative to 2,3,4,5-tetrachlorophenoxyl radical.
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Table 1

ΔErxn in kcal/mol for unimolecular decomposition of the chlorophenols producing a hydrogen atom and a 

chlorinated phenoxyl radical. The values for phenol are also reported for reference. Values relative to phenol 

are given in parentheses. The model chemistries are B3LYP/6-31G(d,p) (I), BHandHLYP/6-31G(d,p) (II), 

BHandHLYP/aug-cc-pVDZ (III) and QCISD(T)/6-31G(d,p)//BHandHLYP/6-31G(d,p) (IV).

Compound I II III IV

Phenol 81.3 80.2 80.5 89.4

2-Chlorophenol 83.1 (+1.8) 82.5 (+2.3) 82.9 (+2.4) 91.1 (+1.7)

3-Chlorophenol 82.4 (+1.1) 81.4 (+1.2) 81.6 (+1.1) 90.6 (+1.2)

4-Chlorophenol 80.7 (−0.6) 80.1 (−0.1) 80.0 (−0.5) 89.0 (−0.4)

2,3-Dichlorophenol 83.8 (+2.5) 83.2 (+3.0) 83.6 (+3.1)

2,4-Dichlorophenol 82.3 (+1.0) 82.1 (+1.9) 82.2 (+1.7)

2,5-Dichlorophenol 83.9 (+2.6) 83.5 (+3.3) 83.8 (+3.3)

2,6-Dichlorophenol 81.9 (+0.6) 81.8 (+1.6) 82.2 (+1.7)

3,4-Dichlorophenol 81.7 (+0.4) 81.2 (+1.0) 80.9 (+0.4)

3,5-Dichlorophenol 83.5 (+2.2) 82.6 (+2.4) 82.7 (+2.2)

2,3,4-Trichlorophenol 82.9 (+1.6) 82.9 (+2.7) 82.9 (+2.4)

2,3,5-Trichlorophenol 84.6 (+3.3) 84.3 (+4.1) 84.5 (+4.0)

2,3,6-Trichlorophenol 82.3 (+1.0) 82.4 (+2.2) 82.7 (+2.2)

2,4,5-Trichlorophenol 83.0 (+1.7) 83.0 (+2.8) 83.0 (+2.5)

2,4,6-Trichlorophenol 81.0 (−0.3) 81.3 (+1.1) 81.3 (+0.8)

3,4,5-Trichlorophenol 82.6 (+1.3) 82.2 (+2.0) 81.9 (+1.4)

2,3,4,5-Tetrachlorophenol 83.9 (+3.7) 83.8 (+3.3)

2,3,5,6-Tetrachlorophenol 82.9 (+2.7) 83.2 (+2.7)

2,3,4,6-Tetrachlorophenol 82.0 (+1.8) 82.0 (+1.5)

Pentachlorophenol 82.6 (+2.4) 82.5 (+2.0)
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Table 2

ΔErxn in kcal/mol for bimolecular reaction with a hydrogen atom producing H2 and a chlorinated phenoxyl 

radical. The values for phenol are also reported for reference. Values relative to phenol are given in 

parentheses. The model chemistries are B3LYP/6-31G(d,p) (I), BHandHLYP/6-31G(d,p) (II), BHandHLYP/

aug-cc-pVDZ (III) and QCISD(T)/6-31G(d,p)// BHandHLYP/6-31G(d,p) (IV).

Compound I II III IV

Phenol −24.0 −23.1 −18.8 −16.4

2-Chlorophenol −22.2 (+1.8) −20.8 (+2.3) −16.4 (+2.4) −14.7 (+1.7)

3-Chlorophenol −22.9 (+1.1) −21.8 (+1.3) −17.8 (+1.0) −15.2 (+1.2)

4-Chlorophenol −24.6 (−0.6) −23.2 (−0.1) −19.4 (−0.6) −16.9 (−0.5)

2,3-Dichlorophenol −21.5 (+2.5) −20.0 (+3.1) −15.7 (+3.1)

2,4-Dichlorophenol −23.0 (+1.0) −21.1 (+2.0) −17.2 (+1.6)

2,5-Dichlorophenol −21.4 (+2.6) −19.8 (+3.3) −15.6 (+3.2)

2,6-Dichlorophenol −23.4 (+0.6) −21.5 (+1.6) −17.2 (+1.6)

3,4-Dichlorophenol −23.7 (+0.3) −22.1 (+1.0) −18.4 (+0.4)

3,5-Dichlorophenol −21.8 (+2.2) −20.7 (+2.4) −16.7 (+2.1)

2,3,4-Trichlorophenol −22.4 (+1.6) −20.4 (+2.7) −16.4 (+2.4)

2,3,5-Trichlorophenol −20.7 (+3.3) −19.0 (+4.1) −14.8 (+4.0)

2,3,6-Trichlorophenol −23.0 (+1.0) −20.9 (+2.2) −16.7 (+2.1)

2,4,5-Trichlorophenol −22.3 (+1.7) −20.3 (+2.8) −16.4 (+2.4)

2,4,6-Trichlorophenol −24.3 (−0.3) −22.0 (+1.1) −18.0 (+0.8)

3,4,5-Trichlorophenol −22.7 (+1.3) −21.1 (+2.0) −17.4 (+1.4)

2,3,4,5-Tetrachlorophenol −19.4 (+3.7) −15.5 (+3.3)

2,3,5,6-Tetrachlorophenol −20.4 (+2.7) −16.2 (+2.6)

2,3,4,6-Tetrachlorophenol −21.3 (+2.8) −17.4 (+1.4)

Pentachlorophenol −20.7 (+2.4) −16.8 (+2.0)
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Table 3

ΔErxn in kcal/mol for bimolecular reaction with a hydrogen atom producing OH and chlorobenzene. The 

values for phenol are also reported for reference. Values relative to phenol are given in parentheses. The 

model chemistries are B3LYP/6-31G(d,p) (I), BHandHLYP/6-31G(d,p) (II), BHandHLYP/aug-cc-pVDZ (III) 

and QCISD(T)/6-31G(d,p)//BHandHLYP/6-31G(d,p) (IV).

Compound I II III IV

Phenol −2.3 −7.7 −8.5

2-Chlorophenol −1.5 (+0.8) −7.0 (+0.7) −7.8 (+0.7) −5.2 (+1.0)

3-Chlorophenol −2.5 (−0.2) −7.9 (−0.2) −8.7 (−0.2) −6.3 (−0.1)

4-Chlorophenol −2.8 (−0.5) −8.2 (−0.5) −9.1 (−0.6) −6.7 (−0.5)

2,3-Dichlorophenol −1.5 (+0.8) −7.0 (+0.7) −7.8 (+0.7)

2,4-Dichlorophenol −1.9 (+0.4) −7.4 (+0.3) −8.4 (+0.1)

2,5-Dichlorophenol −1.5 (+0.8) −7.1 (+0.6) −7.9 (+0.6)

2,6-Dichlorophenol −3.5 (−1.2) −9.0 (−1.3) −10.1 (−1.6)

3,4-Dichlorophenol −2.9 (−0.6) −8.2 (−0.5) −9.1 (−0.6)

3,5-Dichlorophenol −2.7 (−0.4) −8.0 (−0.3) −8.8 (−0.3)

2,3,4-Trichlorophenol −1.8 (+0.5) −7.3 (+0.4) −8.2 (+0.3)

2,3,5-Trichlorophenol −1.6 (+0.7) −7.1 (+0.6) −7.9 (+0.6)

2,3,6-Trichlorophenol −3.4 (−1.1) −9.0 (−1.3) −10.0 (−1.5)

2,4,5-Trichlorophenol −2.0 (+0.3) −7.5 (+0.2) −8.4 (+0.1)

2,4,6-Trichlorophenol −3.8 (−1.5) −9.4 (−1.7) −10.6 (−2.1)

3,4,5-Trichlorophenol −3.0 (−0.7) −8.4 (−0.7) −9.3 (−0.8)

2,3,4,5-Tetrachlorophenol −7.4 (+0.3) −8.3 (+0.2)

2,3,4,6-Tetrachlorophenol −9.2 (−1.5) −10.3 (−1.8)

2,3,5,6-Tetrachlorophenol −9.1 (−1.4) −10.0 (−1.5)

Pentachlorophenol −9.4 (−1.7) −10.5 (−2.0)
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Table 4

ΔErxn in kcal/mol for bimolecular reaction with OH producing water and chlorinated phenoxyl radical. The 

values for phenol are also reported for reference. Values relative to phenol are given in parentheses. The 

model chemistries are B3LYP/6-31G(d,p) (I), BHandHLYP/6-31G(d,p) (II), BHandHLYP/aug-cc-pVDZ (III) 

and QCISD(T)/6-31G(d,p)// BHandHLYP/6-31G(d,p) (IV).

Compound I II III IV

Phenol −30.4 −26.6 −28 −26.5

2-Chlorophenol −28.6 (+1.8) −24.4 (+2.2) −25.6 (+2.4) −24.9 (+1.6)

3-Chlorophenol −29.3 (+1.1) −25.4 (+1.2) −26.9 (+1.1) −25.4 (+1.1)

4-Chlorophenol −31.0 (−0.6) −26.8 (−0.2) −28.6 (−0.6) −27.0 (−0.5)

2,3-Dichlorophenol −28.0 (+2.4) −23.6 (+3.0) −24.9 (+3.1)

2,4-Dichlorophenol −29.4 (+1.0) −24.7 (+1.9) −26.3 (+1.7)

2,5-Dichlorophenol −27.8 (+2.6) −23.3 (+3.3) −24.7 (+3.3)

2,6-Dichlorophenol −29.9 (+0.5) −25.1 (+1.5) −26.3 (+1.7)

3,4-Dichlorophenol −30.1 (+0.3) −25.7 (+0.9) −27.6 (+0.4)

3,5-Dichlorophenol −28.2 (+2.2) −24.2 (+2.4) −25.8 (+2.2)

2,3,4-Trichlorophenol −28.8 (+1.6) −23.9 (+2.7) −25.6 (+2.4)

2,3,5-Trichlorophenol −27.1 (+3.3) −22.6 (+4.0) −24.0 (+4.0)

2,3,6-Trichlorophenol −29.4 (+1.0) −24.5 (+2.1) −25.8 (+2.2)

2,4,5-Trichlorophenol −28.7 (+1.7) −23.8 (+2.8) −25.5 (+2.5)

2,4,6-Trichlorophenol −30.8 (−0.4) −25.5 (+1.1) −27.2 (+0.8)

3,4,5-Trichlorophenol −29.2 (+1.2) −24.6 (+2.0) −26.6 (+1.4)

2,3,4,5-Tetrachlorophenol −23.0 (+3.6) −24.7 (+3.3)

2,3,5,6-Tetrachlorophenol −23.9 (+2.7) −25.3 (+2.7)

2,3,4,6-Tetrachlorophenol −24.9 (+1.7) −26.5 (+1.5)

Pentachlorophenol −24.3 (+2.3) −26.0 (+2.0)
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Table 5

BHandHLYP/aug-cc-pVDZ zero-point corrected absolute energies (in Hartrees) for the monochlorinated 

phenols and monochlorinated phenoxyl radicals.

Compound Energy (Hartrees)

o-Chlorophenol −766.83867

m-Chlorophenol −766.837384

p-Chlorophenol −766.836646

o-Chlorophenoxyl radical −766.208446

m-Chlorphenoxyl radical −766.209273

p-Chlorophenoxyl radical −766.211155
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Table 6

Activation and Reaction energies in kcal/mol for chlorophenoxy radical decomposition to CO and a 

chlorinated cyclopentadienyl radical. The values for the phenoxyl radical are also reported for reference. 

Values relative to phenol are given in parentheses. The model chemistries are B3LYP/6-31G(d,p) (I), 

BHandHLYP/6-31G(d,p) (II), BHandHLYP/aug-cc-pVDZ (III) and QCISD(T)/6-31G(d,p)//BHandHLYP/

6-31G(d,p) (IV).

Compound I II III IV

E a Δ E rxn E a Δ E rxn E a Δ E rxn E a Δ E rxn

Phenoxyl 56.4 29.6 62.9 29 61.6 26.4 56.4 22.9

2-Chlorophenoxyl 52.5 (−3.9) 26.4 (−3.2) 60.2 (−2.7) 25.7 (−3.3) 58.8 (−2.8) 22.9 (−3.5) 54.1 (−2.3) 19.5 (−3.4)

3-Chlorophenoxyl 56.5 (+0.1) 26.1 (−3.5) 63.0 (+0.1) 25.9 (−3.1) 62.0 (+0.4) 23.5 (−2.9) 56.3 (−0.1) 18.9 (−4.0)

4-Chlorophenoxyl 57.6 (+1.2) 27.4 (−2.2) 63.6 (+0.7) 26.9 (−2.1) 62.6 (+1.0) 24.6 (−1.8) 57.4 (+1.0) 20.2 (−2.7)

2,3-Dichlorophenoxyl 24.3 (−5.3) 59.0 (−3.9) 23.5 (−5.5) 57.7 (−3.9) 21.2 (−5.2)

2,4-Dichlorophenoxyl 24.7 (−4.9) 61.1 (−1.8) 24.0 (−5.0) 60.0 (−1.6) 21.6 (−4.8)

2,5-Dichlorophenoxyl 23.6 (−6.0) 59.8 (−3.1) 23.1 (−5.9) 58.5 (−3.1) 23.6 (−2.8)

2,6-Dichlorophenoxyl 26.6 −3.0 64.0 (+1.1) 25.4 (−3.6) 62.6 (+1.0) 23.0 (−3.4)

3,4-Dichlorophenoxyl 25.0 (−4.6) 62.0 (−0.9) 24.4 (−4.6) 61.3 (−0.3) 22.6 (−3.8)

3,5-Dichlorophenoxyl 22.8 (−6.8) 62.4 (−0.5) 22.9 (−6.1) 61.5 (−0.1) 20.7 (−5.7)

2,3,4-Trichlorophenoxyl 22.2 (−7.4) 57.9 (−5.0) 21.1 (−7.9) 57.0 (−4.6) 19.2 (−7.2)

2,3,5-Trichlorophenoxyl 20.7 (−8.9) 58.3 (−4.6) 20.4 (−8.6) 57.2 (−4.4) 18.2 (−8.2)

2,3,6-Trichlorophenoxyl 23.9 (−5.7) 62.7 (−0.2) 22.6 (−6.4) 61.5 (−0.1) 20.4 (−6.0)

2,4,5-Trichlorophenoxyl 22.0 (−7.6) 59.1 (−3.8) 21.2 (−7.8) 58.2 (−3.4) 19.2 (−7.2)

2,4,6-Trichlorophenoxyl 24.3 (−5.3) 64.7 (+1.8) 23.2 (−5.8) 63.6 (+2.0) 21.0 (−5.4)

3,4,5-Trichlorophenoxyl 21.3 (−8.3) 59.7 (−3.2) 20.7 (−8.3) 59.2 (−2.4) 19.2 (−7.2)

2,3,4,5-Tetrachlorophenoxyl 55.4 (−7.5) 17.3 (−11.7) 54.7 (−6.9) 15.8 (−10.6)

2,3,5,6-Tetrachlorophenoxyl 60.6 (−2.3) 19.5 (−9.5) 59.5 (−2.1) 17.6 (−8.8)

2,3,4,6-Tetrachlorophenoxyl 60.9 (−2.0) 19.9 (−9.1) 60.0 (−1.6) 18.2 (−8.2)

Pentachlorophenoxyl 57.1 (−5.8) 16.3 (−12.7) 56.5 (−5.1) 15.1 (−11.3)
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Table 7

Activation and Reaction energies in kcal/mol for bimolecular chlorinated phenoxyl radical-molecular oxygen 

channels. The values for the phenoxyl radical are also reported for reference. Values relative to phenol are 

given in parentheses. The model chemistries are B3LYP/6-31G(d,p) (I), BHandHLYP/6-31G(d,p) (II), 

BHandHLYP/aug-cc-pVDZ (III) and QCISD(T)/6-31G(d,p)//BHandHLYP/6-31G(d,p) (IV).

Compound/addition I II III IV

E a Δ E rxn E a Δ E rxn E a Δ E rxn E a Δ E rxn

Ortho-addition

Phenoxyl 13.7 9.3 23.5 12.3 23.8 12.7 14.6 1.8

2-Chlorophenoxyl (to C-6) 14.9 (+1.2) 11.5 (+2.2) 24.3 (+0.8) 13.6 (+1.3) 24.7 (+0.9) 14.3 (+1.6) 15.5 (+0.9) 3.0 (+1.2)

2-Chlorophenoxyl (to C-2) 15.7 (+2.0) 12.5 (+3.2) 25.8 (+2.3) 14.9 (+2.6) 25.9 (+2.1) 15.2 (+2.5) 15.2 (+0.6) 2.9 (+1.1)

3-Chlorophenoxyl (to C-6) 13.2 (−0.5) 9.0 (−0.3) 23.2 (−0.3) 11.6 (−0.7) 23.3 (−0.5) 11.9 (−0.8) 14.0 (−0.6) 0.7 (−1.1)

3-Chlorophenoxyl (to C–2) 13.7 (0.0) 9.8 (+0.5) 23.8 (+0.3) 13.0 (+0.7) 24.3 (+0.5) 13.8 (+1.1) 15.0 (+0.4) 2.1 (+0.3)

4-Chlorophenoxyl 14.6 (+0.9) 11.3 (+2.0) 24.2 (+0.7) 13.9 (+1.6) 24.5 (+0.8) 14.4 (+1.7) 15.2 (+0.6) 3.4 (+1.6)

Para-addition

Phenoxyl 10.8 6.2 20.7 8.4 20.9 8.5 11.1 −2

2-Chlorophenoxyl 13.8 (+3.0) 7.9 (+1.7) 23.1 (+2.4) 9.8 (+1.4) 22.9 (+2.0) 9.9 (+1.4) 15.8 (+4.7) −0.5 (+1.5)

3-Chlorophenoxyl 10.7 (−0.1) 7.3 (+1.1) 20.7 (0.0) 9.4 (+1.0) 20.8 (−0.1) 9.6 (+1.1) 10.7 (−0.4) −1.9 (+0.1)

4-Chlorophenoxyl 14.2 (+3.4) 9.7 (+3.5) 24.6 (+3.9) 12.1 (+3.7) 24.2 (+3.3) 12.1 (+3.6) 14.1 (+3.0) −0.1 (+1.9)
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Table 8

Predictions in kcal/mol for the relative energies of monochlorinated phenols and phenoxyl radicals. See text 

for definitions of EH, SO-Cl, RM, and RR.

Species Calculated Predicted E H S O-CI R M R R

o-Chlorophenol 0 0 −3.1 1.85 0.45 0

m-Chlorophenol 0.807 0.8 0 0 0 0

p-Chlorophenol 1.270 1.25 0 0 0.45 0

o-Chlorophenoxy 0 0 0 1.85 0 −1.35

m-Chlorophenoxy −0.519 −0.5 0 0 0 0

p-Chlorophenoxy −1.700 −1.85 0 0 0 −1.35
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