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The exchange potential in path integral studies: Analytical justification

Randall W. Hall

Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803

(Received 19 July 1988; accepted 14 April 1989)

We present analytical justification for our previously described exchange pseudopotential. We
show how the fermi quantum partition function can be constructed from the Boltzmann
(distinguishable particle) wave functions if the states that correspond to like-spin electrons
occupying the same quantum state are excluded. A class of weighting functions that satisfy this
constraint approximately is discussed. Our previous pseudopotential falls under this class.
Essentially, our pseudopotential forces the unwanted states to have high energy and, hence, to
make negligible contribution to the partition function. Exchange potentials of the form
discussed in this article should be useful for studying systems where the (allowed) correlated
Boltzmann wave functions have negligible amplitude for like-spin fermion—fermion distances
less than the diameter of the individual particle wave packets. For example, in the case of two
spin-up (or spin-down) fermions, if one fermion is located at r, then |¥(r,q) |? is negligible if
g=r. This should be the case for systems where a tight binding model is appropriate or for

systems with strong interparticle repulsions.

I. INTRODUCTION

The study of quantum mechanical many-body systems
is of fundamental importance to our understanding of chem-
istry and physics. Of particular interest in this paper are
dense, disordered quantum systems, where traditional quan-
tum techniques are frustrated by the lack of long-range order
and the presence of strong intermolecular forces, which
hinder the simplification of the many-body Hamiltonian.
Quantum mechanics plays a central role in processes rang-
ing from electron solvation dynamics and electron transfer
to chemical reaction dynamics and conduction in semicon-
ductors and metals. One of the most successful methods for
treating condensed phase quantum systems is the path inte-
gral formulation of quantum mechanics,"? which replaces a
quantum Hamiltonian with a classical Hamiltonian upon
which classical techniques can be applied. To date, virtually
all path integral studies have been limited to systems where
Fermi statistics are not important,”* due in part to the diffi-
culty of treating exchange. Recently, we have used a pseudo-
potential based approach for treating exchange* and have
applied it to an ideal gas of fermions in a harmonic well and
to the triplet state of the sodium dimer. Our justification for
the form of the pseudopotential was physical in nature and
did not address the analytical properties of the approxima-
tion. In this paper, we show how our exchange potential is
one of a class of pseudopotentials that can be used to study
many-fermion systems in which the correlated Boltzmann
wave functions (from which the antisymmetrized wave
functions can be obtained ) important in determining the sys-
tem’s properties have negligible overlap between like-spin
fermions. Thus, this approach can be used to study systems
with many sites at which the correlated fermions can be lo-
calized (such as electrons in a metal or semiconductor) or
even many-electron atoms.

1I. REVIEW OF PSEUDOPOTENTIAL APPROACH TO
EXCHANGE

In this section, we will briefly review our solution? to the
problems associated with using path integrals to study
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many-fermion systems. Consider evaluating the partition
function for a two fermion Hamiltonian. In the usual discre-
tized path integral formulation we have'

P
o= drpdqp H p(riqiri+lqi+l9B/P) s

=1
where = 1/k; T (we will use € = /P), p is the density
matrix, P is the number of points in the path, and r and ¢
refer to the two different fermions. If the two fermions have
opposite spin, they cannot exchange and the path integral
evaluation of Q presents no computational difficulty. If,
however, the two particles have the same spin,

p(rqri, 19;,,€)

w(rigle”7Ir, 191 — (rigile= g 1741 )s

where 7 is the system’s Hamiltonian and p can be positive
or negative depending on the coordinates r;, g,,7;, ;, and
¢, 1. In the small € limit, one can show that

P
Q« drpquH (riqi|evEW 174 1G4 1)
i=1
X{l —exp[ — (r; —qi)'(r,-+1 _qi+l)/6]} ’

(2.2)

where in the path integral formulation, {r, } and {g; } repre-

sent paths the two quantum particles can take in imaginary

time. Since the subscript 7 refers to a particular imaginary

time, the Hamiltonian couples only particles that differ by

Z€ero or one unit imaginary time.' Our approximate form was

arrived at by making what appears to be a mean field approx-

imation:

P
O= drquP‘H (r,-q,-|€_sy/ I7: 1G5 1)

i=1

(2.1)

P
X II {1 —exp[ —alr, —gq,)-(r, — g)|/€]1}'"".
i=1

(2.3)

Here, a is a Hamiltonian independent constant that was cho-
sen to give the correct results in one system at one tempera-
ture, and the absolute value of the dot product prevents neg-
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This is just the Boltzmann density matrix in state k. Thus
Q“J dr’dq” z' Pi(11q17292€) P& (r2927r3G5€)
k

X"'Pf(rpqprlqlf)‘ (3.10)

Let the set of states k that contribute to Q be denoted by {F}
and assume that we can find a function f({r"}, {¢"}) such
that

Jdrz d%Pf(’lql’zqu) Pf("zqz"sqsf) 7({"1’}, {qp})

k #j
=0 if or .
k =jand ke{F}
Below, we will discuss the circuznstances under which such a
function may be found. Given f, we can write Q as

Q« | drfdg” H Zpk(rq,,+lq,+1€)]

x f{r} {g"D. (3.12)

3, PE(rg129:€) = p®(r1q,r9,€) is just the Boltzmann
density matrix in the position representation, for which nu-
merous approximations exist. In addition, p® is non-negative
and, hence, can be sampled by standard liquid methods. The
effects of exchange reside entirely within the sum over k; f
must exclude those states that do not contribute to the fer-
mion partition function. Thus, the fermion partition can be
written in terms of the Boltzmann density matrix if an ap-
propriate function fcan be found.

We now demonstrate that under certain conditions, Eq.
(3.11) can be satisfied approximately. To do this we must
show that

fd"z dq, ¢%(r,q;) & (’2q2)7§0

for k £k ' or for k = k '¢{F} for some choice of 7. Since =1
would give the proper weighting for k = k ‘e {F}, we want f
to deviate from unity only in those regions of space where
b, (r,q,) is small for ke{F}. If ka{F}, ¢, will be symmetric
in its coordinates, since otherwise ¢, (7.q;)
— &.(go1) [ = Wi (ryg,)] would not vanish, as required
by the Pauli exclusion principle. Thus, if ¢ is expanded in a
complete set of single particle eigenstates, it must have the
form

(3.11)

(3.13)

&1 (r292) =za§Xa(’2)Xa(%)' (3.14)
On the other hand, ¢, {F} has the form
b (r29,) = zazgxa(rz)x,;(qz). (3.15)

Note that a’, is not a symmetric function. Assume that b
can be adequately represented by a set {} of localized func-
tions; that is, the states {y} have significant amplitude only
in a small region of space ({y} should be thought of as mo-
lecular orbitals, rather than atomic orbitals). This assump-
tion will be valid in a variety of systems, from chemical
bonds to metals, where the conduction electrons can be stud-
ied using a tight-binding model. The largest contributions of
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#,&{F} to Eq. (3.13) will come when |r, — ¢,| < A, the size
of the single particle wave packets. On the other hand, there
is no a priori reason for ¢, {F} to have finite amplitude as r,
approaches g¢,. If {y} are localized on different spatial sites,
then we expect ¢, (7,¢,) ke{F} to be negligible as r—gq. If
some of the functions y are located at the same spatial site
(such as might occur in an atomic calculation), this does not
mean that ¢ is large as »,— g,, since ¢ is the correlated wave
function. Indeed, it is well known that the diagonal compo-
nent of the two particle density p2(r,, r,) is about half the
bulk density, due to the exclusion of the like-spin electrons
(which make up roughly half the total electrons). Thus, if A
is smalll compared to the average distances between like-
spin particles for ¢, {F}, we can categorize the Boltzmann
wave functions ¢, according to their behavior as r, ap-
proaches g,; states that should be excluded from the fermion
partition function will have a major contribution in regions
where |r, — g,| < A, while states that contribute to the parti-
tion function will have a small contribution from regions
where |7, — g,| < A. Thus, fcan differ from unity in regions
of small interparticle distances without affecting significant-
ly the contributions from states ¢,e{F}. Our strategy is to
pick f to go to zero as r—q and to approach unity as
|r, — g2| » . This will ensure the proper weighting for
large like-spin particle distances and make negligible the
contribution from ¢,, k¢{F} to the partition function. In
addition, different states will not be connected by f; since
regions in phase space that are important for k,k ‘e{F} are
weighted with unit weight (approximately) and hence, the
orthogonality constraint should still hold (if either or both
of kand k '¢{F}, f=0in the regions where the wave functions
are large and, hence, integrations over phase space will give
0). Thus, while this may not completely exclude the unde-
sired contributions to @, it will make them very small com-
pared to the desired contributions. Another way of puttting
this is that we are increasing the energy of the forbidden
states and, hence, they are no longer important in determin-
ing the system’s properties (since their contributions are
« e~ PE), The same situation occurs in the usual pseudopo-
tential theory, where the core energy levels are shifted to
very high energies. This also occurs in the practical applica-
tions of density functional theories, where, due to the ap-
proximate treatment of exchange and correlation, the Pauli
exclusion principle is not satisfied since the energy of two
like-spin particles in the same orbital is not infinity, but is
some large number. This forces the system into the lower
energy triplet state in an analogous manner to our path inte-
gral procedure. Thus, if f with the above properties can be
found, we should be able to obtain accurate results for many-
fermion systems.

How should we go about developing a function f? It is
clear from our previous work® that setting

B P P
=H H {l_exP[—a|("k—Qk)'("j_qj)l/fl}]m
j=1k=1
' (3.16)
gives excellent agreement with exact results. We now dem-

onstrate that Eq. (3.16) is a reasonable guess for function f
Equation (3.5) shows that the fermion density matrix will
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differ from the Boltzmann density matrix by terms like
|1 — @, (g,r)/di (r,q)|? for each k. Notice that this term is
identically zero for k¢{F}. Thus, we need an approximation
to ¢, . While this means that in principle f is ¥ dependent, we
will show how the short time propagator in the position rep-
resentation allows us to estimate the wavefunction ¢, from
the set of positions {r"},{g"}.

Consider the weight associated with a single quantum
particle in a fixed quantum state:

p; (riry€) p;(rrs€) - p;(rpri€)
= e—BEjl(lsj(’l)'z |¢j(r2)|2' "|¢j("P)|2-

In the short-time approximation this has the form

(3.17)

p; (rir€) p;(ryrs€) - p; (rpr€)

P P
werp| ~P/28 3 (=1 )= B/P S V()
i=1 i=1
(3.18)
and

P P
E,=3P/2B—P/2B*> Y (r,—r )+ /P Y V(r),
i=1 i=1

(3.19)

where V(r;) is the potential energy. This means that the
short-time approximation for the wave functions is Gaus-
sian, but in a different sense than one usually means. Each
particle is harmonically bound to another point in the path,
rather than to a center. Since there is no connection between
r;and 7, in Eq. (3.17) when the system is in a pure state,
we can connect r; to any other particle. Since the wave pack-
ets are Gaussian, we find

1 — ¢, (q,r)/di (r,9)
=1l—exp[ —A(g—RY—A(r—Q*)/
exp[ —A(r—R)* —A(g— Q)*]
=1—exp[ -24(r—¢)"(R—-Q)], (3.20)

where A is related to the eigenvalue of ¢, and R (Q) can refer
to any of the beads {7, } ({g.}). To make the above equation
goto 1 as |r — ¢g| — oo, we must take the absolute value of the
dot product. Since R and Q can correspond to any of the
other coordinates, we use the “average”

F=TI{1 —exp[ —24|r, —q,|-(r; —g)[1}"". (32D
[

The average must be a geometric average to preserve the
Pauli exclusion principle. Notice that f will only be small if
{r; — ¢;} is small for most i this is just the behavior we
expect from ¢, , k¢{F}.

We must now estimate 4. We can do this from the prop-
erties of the short-time propagator. Consider the short-time
propagator for a single quantum particle. This given by
p(rr.€) = (rle<¥|r'), where € = B/P. It is well known
that if the short-time approximation is valid, p(r,7,€) =0
unless r=7r." Thus, p(r,F,€)=8(r—r') for € small. Ex-
panding p in the eigenfunctions of the Hamiltonian, we find

p(rre) = ; YE(r) e By (7).

We also know that

(3.22)

1929

5(r—r’)=z¢2‘(r)¢k(r’). (3.23)
k

Examination of Egs. (3.22) and (3.23) indicates that € must

be small enough so that exp( — €E, ) is a slowly varying

function of k. Thus, €E, =ed =a/2, where a/2 < 1. Substi-

tuting this into Eq. (3.21) leads to

F=TI{t —exp[ —alr, — q,|* (r, — g))|7€]}""*
' (3.24)

which is the same as our previous work. Our previous work*
used a = 0.6, which is consistent with our estimate.

We now examine Eq. (3.24) in some detail. Let z denote
a times the absolute value of the dot product and note that
for finite e, ](z/e) —0as z-0and }”(z/e) —laszo . In
addition,]” has the behavior as a function of e shown in Fig. 1.
That is, as €0 (the limit we take when we discretize the
pathintegral), f is unity over larger regions of , and g, if zis
finite. If 240, then

fz/e) =Ffl._o — € [fz—-a}’/a(z/d] le<o + O()

=1 —e-[é-af/a(z/e)]L:o + 0(€”). (3.25)
If the term in brackets is zero for € = 0 (as it is in our approx-
imation), fwill not connect different states and will proper-
ly weight the states ke{F} to order ¢, which is the accuracy
of the usual short time approximation.' Thus, as long as z is
finite in those regions of phase space that contribute signifi-
cantly to Eq. (3.11 ), f will not connect different states and
will weight correctly the regions of phase space.

The dot product z can go to zero either as the length of
one of the two vectors approaches zero or as the angle
between them goes to 90°. For systems with repulsive inter-
actions or with spatially separated fermion binding sites, we
expect that the regions of phase space that contribute to Eq.
(3.11) have relatively large values of |(r, —¢,)| and
|r, — q,| for ke{F}, since @, (r,q) is the correlated wave
function and should have vanishingly small amplitude as

1.00

{

Hz/¢) 67

33
|

0.

0.00

| ! | I
0.00 125 250 375 5.00
z

FIG. 1. Plot of f{z/€) vs z for three values of €. As z— w0, f— . The z axis
has arbitrary units and €, > €, > €;.
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approaches g (for particles with the same spin, which we are
considering). For k¢{F}, z = Qis the important region of the
integration space. In this region,f= 0, as we desire.

A more serious constraint is that the angle between the
vectors not approach 90°. To examine this constraint, ima-
gine a small region in space in which fdgq ¢, (r,q) is signifi-
cant. Now find the corresponding set of g values for which
&, (r,q) is large. We can imagine two limiting cases, as
shown in Fig. 2. The first is where there is negligible overlap
between the set of 7 values and the set of ¢ values. In this case
we can estimate the minimum value of cos , where ¥ is the
angle between the two vectors. If x is the radius of the two
regions and D is the distance between the two regions,
cosy=1—2x*/(x*+ D?*/4). If D> x, this number will
certainly be greater than 0 and, hence, will remain finite even
as €—0. D> x will occur when states are localized at differ-
ent points in space or when the interparticle interactions are
strongly repulsive (as will happen for electrons). We should
emphasize that the relative magnitudes of x and D are prop-
erties of the correlated wave functions and, consequently,
D> x can occur even when the particles are centered about
the same site in space. That is, while the molecular orbitals
that are determined from a Hartree-Fock calculation may
indicate significant overlap between particles, the correlated
wave functions that result from a configuration-interaction
(CI) calculation may indeed satisfy D> x. Thus, the ap-
proximate form used above may work even for many-elec-
tron atoms. Indeed, the success of the method in treating

(a)

FIG. 2. Representations of two possible correlated wave functions. The
concentric circles denote regions where |#/(7,¢) |* is large for some values of
rand g. Given that ris in one of the shaded regions, the other shaded region
denotes that set of ¢ for which the wave function has significant amplitude.
(a) There is no amplitude for r~gq. (b) There is a region of overlap, here
indicated by the dark shaded region.

noninteracting fermions localized about a single point in
space (three-dimensional harmonic oscillator) indicates
this to be the case.

The other case we need to consider occurs when D < x.
In this case, there are potentially many sets of (r,g) for
which the dot product is small. Even here, though, Eq.
(3.11) may still be satisfied. If we hold cos ¥ fixed and vary
|r, — g;| (=X), there will be a certain range of X values
for which f is approximately constant since
[(ry — g,) (r, — q,)|/€<1. If it so happens that the wave
functions are orthogonal when the integrations are per-
formed in this manner, then Eq. (3.11) will still be satisfied.
In addition, there may be symmetry considerations that lead
to orthogonality. Thus, even in this rather extreme limit of
overlap (which may not be of importance in chemical sys-
tems), Eq. (3.11) may hold.

IV. DISCUSSION

We have shown how an approximate exchange potential
can be used in path integral studies. Under the conditions of
small overlap between particles (with like-spin) in the corre-
lated wave functions, approximate pseudopotentials of the
type shown above adequately represent exchange. It should
also be emphasized that our approximation does not require
a “guess” other than that like-spin particles have small over-
lap in the correlated Boltzmann wave function. In contrast,
most of the other quantum techniques that are used to study
disordered many-fermion systems require much more infor-
mation about the wave functions. These other methods in-
clude both the traditional quantum techniques (HF, CI,
etc.) and the so-called “quantum Monte Carlo methods”
(Green’s function and diffusion Monte Carlo,” for in-
stance). In addition, our method has a reasonably well de-
fined limit of validity, in contrast to density functional meth-
ods® which rely on a local density approximation to both
exchange and correlation. Finally, path integral techniques
are useful because temperature is included, allowing for
transitions between electronic states; this ability is either ab-
sent or difficult to include in the aforementioned ap-
proaches.

In our simulations, we have used the ”primitive” esti-
mator for p® along with Eq. (3.16). It is possible to use
higher quality estimates for either p® and £, if they exist. We
can also imagine using the wave functions determined from
these calculations as inputs into other quantum chemical
methods, particularly those that require an initial guess for
the wave function such as Green’s function Monte Carlo or
diffusion Monte Carlo. It will also be worthwhile to investi-
gate the possibility of using functions of the form fin density
functional calculations in the place of exchange terms or to
evaluate the exchange-correlation hole. Finally, it will be
important to determine the limits of the method by examin-
ing many-electron atoms and systems with unbound elec-
trons.
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