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Development, justification, and use of a projection operator in path integral 
calculations in continuous space 

Randall W. Hall and Melissa R. Prince 
Department of Chemistty, Louisiana State University, Baton Rouge, Louisiana 70803-1804 

(Received 7 May 199 1; accepted 8 July 199 1) 

A projection operator, similar to one previously used by us for problems with a finite set of 
basis functions, is suggested for use with continuous basis sets. This projection operator 
requires knowledge of the nodes of the density matrix at all temperatures. We show that a class 
of nodes, determined from the noninteracting density matrix and present at high temperatures 
in the interacting system are preserved to first order in the interaction at low temperatures. 
While we cannot show that the nodes are present at intermediate temperatures, we suspect 
they do exist and, as a test of this conjecture, we perform a calculation of two electrons 
confined in a harmonic well, using the projection operator. We find that accurate results are 
obtained at a range of temperatures, suggesting that our conjecture is indeed correct. We find 
that the error limits determined using the projection operator are l-2 times smaller than those 
obtained with straightforward Monte Carlo integration (corresponding to a reduction in time 
of l-4 in obtaining a desired level of accuracy). 

I. INTRODUCTION 

Feynman’s path integral formulation of quantum me- 
chanics has been useful in studying a variety of condensed 
phase quantum systems.‘*’ It has the advantage of automati- 
cally including correlation, of allowing the use of a complete 
set of states, and allowing studies at nonzero temperatures. 
Until recently, however, the application of this technique to 
many-fermion systems defined on a continuous basis set has 
been limited by the large statistical errors generated by 
straightforward Monte Carlo techniques (the infamous 
“sign” problem). We have developed an approximate imple- 
mentation of the path integral technique3 which has been 
shown to give accurate results in a variety of systems. In an 
effort to understand the nature of the approximation’s suc- 
cess, we recently studied the 2D Hubbard model,4 using a 
new projection operator technique. There, we showed that, if 
the nodes of the density matrix are known at all tempera- 
tures, the variance can be reduced in an exact calculation. In 
that paper, we demonstrated this for noninteracting parti- 
cles on the 2D lattice, where we know the precise location of 
the nodes. In addition, we used the nodes of the noninteract- 
ing system in an interacting system and showed that accu- 
rate results could be obtained even though the nodes were 
not exact. Our justification in that paper was that the nodes 
of the noninteracting system (which are the same as the in- 
teracting system at high temperature) were a good approxi- 
mation to the interacting system. In this paper, we consider 
the first order perturbation correction to the fermion density 
matrix defined in continuous space and show that a class of 
the nodes of the free particle density matrix, while nonzero 
in the interacting case, make negligible contributions to the 
density matrix at both high and low temperatures. For inter- 
mediate temperatures, we suggest conditions under which 
the density matrix will be negligible. As a test of this projec- 
tion operator’s ability to go beyond just first order in the 
interaction and to investigate our expectation that the nodes 

are preserved at intermediate temperatures, we study a sim- 
ple model system, two electrons confined in a harmonic well. 
We find that using this projection technique leads to smaller 
statistical errors by a factors ranging from l-2 (or, alterna- 
tively, reducing the time required to obtain a given set of 
error limits by a factor of l-4). 

II. REVIEW OF PREVIOUS FORMULATION 
In this section, we describe how knowledge of the nodes 

of the density matrix can be used to reduce the variance in a 
path integral calculation. Consider the following integral: 

p(rN,qN,W) = 
s 

dzNp(rN,zN,p)p(zN,qN,P), (2.1) 

wherep is the Fermi density matrix for Nquantum particles 
and assume that p(rN,qN,2fl) = 0. Imagine attempting to 
evaluate this integral via Monte Carlo by setting 

p’(rN,qN,Wl = 
I 

dzN Ip(rN,zN,P>p(zN,qN,a> 1 (2.2a) 

and using 

p(rN,qN,W)/p’ 

= [SdzN Ip(rN,zN,~>p(zNtaN,~) Ip(rN,zN8) 

Xp(zN,qN,B)/lp(rN,zN,~,p)p(zN,qN~) I I/ 

s dzN Ip(rN,zN,p>p(zN,qN,~) 1 
= ~(rN,zN,~>p(zN,sN,~)/lp(rN,zN,~)p(zN,qN,~) I) IpI, 

(2.2b) 
where the zN are sampled from the absolute value of the 
product of the Fermi weights. The quantity that is being 
averaged is simply a sum of an equal number of positive and 
negative ones, while the variance is determined from the sum 
of positive ones. If we were to use p ( rN,qN,2fl) in a further 
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6000 Ft. W. Hall and M. R. Prince: Path integral calculations 

calculation, it would add nothing to the average, but would 
add to the variance. Thus the variance of a calculation that 
usedp( rN,qN,2p) could be reduced by simply projecting out 
any path for which p(rN,qN,2P) = 0. This is the scheme we 
used in the 2D Hubbard model4 and it requires knowledge of 
the nodes of the density matrix at all temperatures. We note 
that in continuous space, very few paths actually have 
p(rN,qN,2p) = 0, but there may be many paths for which 
p( rN,qN,2/?) is small. If we discretize the path integral into 
temperature segment@ /P= E, the normal high temperature 
approximation leads to errors in the partition function of 
order E. If we discard all paths for which p(rN,qN,r) a E, 
~<r=@, we will add negligible additional error to the parti- 
tion function but can significantly reduce the variance. Thus 
we write the partition function for N quantum particles as 

Q(P) = s drrb2”***d$ 1 fi pCrf,rf+,,P/P)) 
j= 1 

X 
I 

where 

@(rjN> = fi Q(rjNX,7) 
i= 1 

and 

(2.3) 

this will occur if the N! permutations in Eq. (3.1) can be 
divided into iV!/2 pairs of exponentials, each pair consisting 
of a positive and a negative permutation, and with the argu- 
ment of the exponentials being equal. If the pairs of argu- 
ments differ by less than E, the inverse temperature incre- 
ment used to discretize the path integral, then the error in the 
low temperature partition function will be of order E, which 
is the same error as introduced by the “short time” propaga- 
tor. Such “temperature independent” nodes were used in our 
previous work to exclude paths in both the interacting and 
noninteracting 2D Hubbard model. In this paper, we shall 
examine such collections of {r”,qN) in the interacting sys- 
tem. For the interacting system, we know that the small p 
approximation has the form P(B) interacting 

=pm noninteracting -ftrN,qN,P) + 8 (B 2>, with the function 
f being independent of the permutation. Thereforepinte,acting 
has nodes at the same locations as Pnoninferacting at high tem- 
peratures (including the class of nodes described above). In 
this paper, we will examine these nodes at all temperatures to 
first order in the interaction. 

IV. FIRST ORDER CORRECTION 
In this section, we discuss the first order correction to 

the noninteracting problem. Consider the first order correc- 
tion to a Boltzmann statistics density matrix,’ WN,sN,r) = 0 if p(rN,qN,r) afl/P 

1 otherwise (2.5) 

and r is the difference in imaginary times of indices i and j. 
This is an exact formulation in the limit e--r0 and can be 
implemented if the nodes of p are known. In practice, we 
have found that we can sample from the absolute value of the 
Fermi density matrix and average the projection operator 
times any quantity we desire. The next part of this paper will 
be devoted, then, to determining conditions under which the 
nodes of the density matrix can be predicted from the nodes 
of the noninteracting density matrix. 

Ill. NONINTERACTING DENSITY MATRIX 

In this section, we discuss the conditions for the exis- 
tence of a particular set of nodes of the free particle density 
matrix. Consider the free particle density matrix for N like- 
spin fermions, ’ 

p (r”q”,B = & 
( - 1)“,5(r”q”,,fl) 

0 

= & ( - l)~[J-J3N’2 

Xexp - 
I 

XL 1 (ri - q&y+ 1’ 
1 w ’ 

(3.1) 

wherewehavesetfi= landm= 1,/3= l/kT,Yreferstoa 
particular permutation, rNand qN refer to the initial and final 
points in the path, and p is the Boltzmann statistics density 
matrix. If it is possible to find {rN,qN) for whichp is 0 for all 
values of @, this is one of the paths we excluded in our work 
on the 2D Hubbard model. In Appendix A, we show that 

B 
i5”‘(rNq$ ,/?) = - I s dr dzN/7, ( rNzN,r) 

0 

x uz)po cz”q$ ,P - 71, (4.1) 
where rNs (r r r, 2,...,rN), 9 refers to a particular permuta- 
tion, and V(z) is the perturbation. Physically, the structure 
of Eq. (4.1) suggests that p ( ’ ) should be small if p0 is zero. 
This can be seen in the following way. If Eq. (4.1) could be 
written for all 0 as 

P”‘(rNqN, $1 =jk (rNqN, ,P> fCr”,s”,LO, (4.2) 
where f is independent of the permutation, p”’ would have 
the same nodes as po. It is clear that Eq. (4.1) cannot be 
written in such a way due to the perturbation. However, if we 
consider the integral over r, though, we can see why p”’ 
might be expected approximately to satisfy Eq. (4.2). For 
small r, &, ( rNzNr) will be zero unless zj = ri for all i = 1,N 
and, hence the integral over zN will be essentially indepen- 
dent of qN. The same argument will be true for r close to 8, 
with rN and qN swapped. For values of r on the order offi/2, 
the PO terms will allow values of zN that differ significantly 
from either rN or qN. In this case, we might expect the inte- 
gral over zN to be only weakly dependent on rN and qN and 
hence Eq. (4.2) once again satisfied. Thus we have reason to 
believe that the first order correction to pO , when evaluated 
at the nodes ofp,, will be small and can be ignored in the 
calculation of properties of the interacting system. In the 
next section, we develop Eq. (4.1) and show that in three 
cases, our expectations are indeed met at low and high tem- 
peratures. 

We can write Vas a sum of one- and two-body interac- 
tions, 
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F’(rN> = 5 $ tl(ri - R,) + 2 u(ri - rj), (4.3) 
i=la=l i<j 

where the R, represent N, sites with which the individual 
fermions interact. In the rest of this paper, we shall assume 
that u and u are spherically symmetric, as this encompasses 
many interesting Hamiltonians. Since the first order correc- 
tion is linear in V, we can consider each term in the sums in 
Eq. (4.1) separately. We first work on the one-body term. 

V. OPlE-BODY TERM 

The typical term in the correction due to a single one- 
body interaction is 

B 
- 

s s 
dr dzNj5(rNzN,r) u(z, -R,) $(z”q”,jl-- r). 

0 

(5.1) 
It is straightforward to show that this can be written 

-Po(rNqN,P) Pl’dx (dd)“~dyu(y) 

Xexpi - a(~ - D)‘l, (5.2) 
where a= [2&(1-x)1-‘, D=rl +x(q, -r,) -RR, 
=I&, +x(Qo -It,) with R,=r, -R, and 
Q. =q, - Ra, andyE (~1. We shall consider three forms for 
u(y) : ( 1) u(y) = Q /y, where Q can be positive or negative, 

I 

(2 ) u (y > has some arbitrary, but short-ranged form such as 
might occur in a pseudopotential calculation, and (3) 
II(Y) = w*3/2. For the first two cases, we assume that u(y) 
is non-negligible only for y<;R, (some critical length). This 
will be true even for the Coulomb interaction as can be no- 
ticed by performing numerical integration of the 1D Schro- 
dinger equation for hydrogenlike atoms, where there is some 
distance beyond which integration is not necessary. It is use- 
ful to write the integral over x as 

ldx=lii[-‘dx, (5.3) 

where y is a small number. 

A. Case 1 

We can simplify Eq. (5.2) for u(y) = Q/y to find 

+,8pdl dx a[aF I . (5.4) 

We expand error function in a Taylor series expansion and 
obtain 

F-“o -f@Q$ nzo n,(2 ; ;$+ ,,2~w~~,n), . n 
where 

, 
(5.5) 

I 
1-Y 

X(Y,D,“) = dx 
[R; +2R,*(Qo -R,)x+ (Qo -W2x2-Jn 

7 (X-g)“+“2 

I 
X 

n. 6 “2 + 2n, 

n,!n,!n,! 
“, + “2 + n,,n J n-k l/2 f 

where the sums over n ], n2, n3 (with the corresponding fac- 
torials and S function) are just the multinomial expansion 
for D ’ and 

s 

1-Y 
JZ’, 1,2 = dx x” 

Y (x _ X2)n + l/2 ’ 

In Appendix B, we show that 

JZ, ,/z”r- 1’2 = (2 + 2S,,o)/(2n - 1) + 2;= ,vei 

= (2 + 2S,,, ) for y small 

and ci is a finite number. 
Thus 

ii(‘) =lim -jjoflQL 2 ( - 1)” 
y-0 J;; n=on!(2n + 1)(2p)“+‘” 

x 2(R 2 + Qi?) 
On - l)y”- “2 

(5.7) 

(5.6) 

+R:” f: /(2R,,*Q,/R;, Qo/Ro)y-““‘2+i, 
i= 1 1 

(5.8) 

where /m is some function of order unity and we have ar- 
ranged the sum over i assuming that R, > Q, (our conclu- 
sions are independent of this assumption). As y goes to zero, 
the leading order term of y - OI- *‘*I will be 

( - 1)” 2(R 2 + Q?, 
n!(2n + 1)(2fi)“+“’ (2n - 1)y”-1’2 

and the corrections are proportional to powers of R i/pt 
which can be deduced by collecting all terms in the sum over 
n of order y - II’ + “* which will have contributions from all 
n > n’. Such terms are of order (R i/P)” - “‘. We have as- 
sumed that R, is bounded above by some critical value R,. 
Hence asp is made very large, we can ignore the corrections 
and write the first order perturbation correction to p from 
this term in the interaction as a sum over permutations P of 
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6002 R. W. Hall and M. R. Prince: Path integral calculations 

= -po(rNqiV8)pQ 2 f dx a[0Fil +I’ dx a[:2p 1 
is1 0 1 0 l.9 

= PO (rNq$ $>f(rN,qN) 

correct for B large compared to R i. Since the only depend- 
ence on the permutation is in the noninteracting term, the 
nodes will be at the same place as in the noninteracting sys- 
tem, which is the desired result. For fl< R g, 

% -Qo 
-= 1 + B(p/Ri) and 

RZ 

Qo/Ro = 1 + @ (B/R;) (5.12) 

and Eq. (5.8) will depend only on R, (or Q,) to order 
fi /R i, and, hence, Eq. (4.2 ) will be satisfied. Therefore Eq. 
(4.2) is satisfied at both high and low temperatures. At the 
firesent time, we are unable to confirm that Eq. (4.2) is satis- 
fied for intermediate temperatures. However, as partial con- 
firmation of our expectation that Eq. (4.2) should also be 
satisfied at intermediate temperatures, we will offer a nu- 
merical calculation that demonstrates the accuracy of this 
approximation at several temperatures and we will discuss in 
a later section some reasons why Eq. (4.2) should be satis- 
fied at intermediate temperatures. 

B. Case 2 
We can perform the angular integration in Eq. (4.1) to 

tind 
1 RC 

- POS s 
dx(a/rr)“‘D -’ 

s 
dzzu(z) 

0 

x{eip[ -a(z-D)2] -exp[ -a(z+D)2]}. 
(5.13) 

Expanding the exponentials and rearranging leads to 

POP 2 q 
n=O . 

k odd 

x’dx D 
s 

2n-k-l 

[2@x(l -X)]n+1’2 ’ 0 
(5.14) 

where %k+ 1 (R,) &dzzk+’ U(Z), which will typically 
be proportional to R e k + 2. The integral over x is of the same 
form as Eq. (5.6) and, thus can be written to lowest order in 
Y= 

2(1+&,-k--1.0) 
[,p-k-I+,?-k-l] 

[(2n- 1)~-1'2(2~)"+1'21 ' 

with a correction of order 

leading to 

(5.10) 

(5.11) 

I 

k odd 

x ldx (RF-k-l+Q$z-k-l) , 

[2/?x(l -X)]n+1’2 

with additional terms of order, 

RF-k-’ ~k((IZO’Qo/R~,Qo/Ro)~k+,(R,) 

[PRO 
Zn-2-k’-1% 

,,-,(&)I ’ 

aR k’-k-,-2 
0 

(5.15) 

a [Ro/R,]k’-kRi/f3. 

Thus the additional terms are small in the same way as in the 
Coulomb interaction and the first order correction top has 
the desired form [Eq. (4.2) 1. 

C. Case 3 
For the harmonic oscillator, u(v) = 0*9/2 and &. 

(4.1) can be integrated straightforwardly, without expand- 
ing the exponential, to find 

-P,L+ I 
‘dx [D2+3/(2a)]. 

0 

The only term involving both R. and Q, is -pop I&,*Qo/3. 
When summed over all the particles, the dot product is the 
same for the two permutations with the samep, and, hence 
the first order correction for the harmonic oscillator is exact- 
ly zero for the harmonic oscillator (in fact, it is zero to all 
orders for the noninteracting particles confined to a harmon- 
ic well, as can be seen by direct inspection of the exact den- 
sity matrix for the harmonic oscillator’ ). 

Thus the single particle interactions considered here 
both satisfy the desired relation and lead to nodes that do not 
move to order E at both low and high temperatures. We now 
consider the two-particle interactions of the Coulomb form. 

VI. TWO-PARTICLE INTERACTION 

We now focus on the two-body interaction V( ri - rj>. 
For the purposes of this work, we consider only the repulsive 
Coulomb interaction because we are most interested in stud- 
ies of electrons. The typical term in the two-body correction 
to the density matrix is 

P 
- 

s s 
dr dzNpo (rNzN,r)bo (z”q”,,t? - r)/lz, - z2 /. 

0 
(6.1) 

It is straightforward to show that this is equal to 
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5 I 11 I 
No, singlet 

11 
I 

4 1 
I 
I 

3 : -11 

Oi , 
0 1 2 3 4 5 

R*/T 

FIG. 1. A plot of 2%.Q,/R g and (Q,,/R,)* vs R c/~for the singlet state 
of the sodium dimer as determined in a Monte Carlo simulation. 7 corre- 
sponds to the imaginary time difference between & and Q, . The solid line 
represents Z&*Q,/R & while the dashed line represent (Qo/Ro)‘. 

f 

I 

- POP dx( a/2r) 3’2 f 
dy -aa(~+D,d - e , (6.2) 

Jo J Y 
where D,, = (r, + rz ) + x(q, + q, ). This has the same 
form as the single particle interaction and, hence this term 
will have the same type of correction as the previous terms. 

Thus, to first order in one- and two-particle interac- 
tions, the density matrix has nodes at the same location as 
the noninteracting system at both high and low tempera- 
tures. We are not, at this time, able to show that intermediate 
temperatures also obey this relation, although we suspect 
this to be the case. In the next section, we offer some qualita- 
tive reasons why intermediate temperatures should also 
obey Eq. (4.2). 

VII. INTERMEDIATE TEMPERATURES 
From Eq. (5.8)) the corrections to the density matrix 

that do not cancel when summing over permutations involve 
2&*Q,/R $ and (QO/RO )*. If these two quantities were 
equal to unity, the sum over permutations would cancel even 
when at an intermediate temperature. These intermediate 
temperatures are defined by ,!!I= R z G Q z [if R, and Q, are 

not close, then Q, 4 R, and corrections will depend only on 
R, to order ( Qo/R, ) and the nodal locations will be pre- 
served]. In the present case, I& - Q. (* zR i z Q i &, the 
triangle formed by the vectors & - Q,, , R,, , Q. will be ap- 
proximately equilateral and the dot product 
l&-Q, = R, Q, cos( 60’) r R, Qo/2 and the corrections 

,&Wo*Qo/R;, Qo/Ro)=,K,(Ll) (7.1) 
and will be approximately independent of Q,. Thus these 
corrections should cancel to a large extent when summed 
over the permutations. As a test of what “typical” values of 
2h*Q,/R i and Q,/R, are, we have evaluated these for the 
singlet state (the singlet was studied in order to allow exact 
calculations to be performed) of several small sodium clus- 
ters studied in our previous work. Our results are similar for 
‘Na -, ‘Na, , ‘Nap, and we show the results for ‘Na, in Fig. 
1. Ascan beseen, forp/R i z 1,2R,*Q,/R i andQ,/R, are 
close to 1, so we believe that the corrections to the intermedi- 
ate temperature density matrix can indeed be small, even 
though we cannot demonstrate this analytically at the pres- 
ent time. 

We have attempted to confirm this expectation using a 
numerical calculation, where we can evaluate the energy of a 
model system at a variety of temperatures in order to study 
the accuracy of the intermediate temperature case and to 
demonstrate the results for low temperatures. A model sys- 
tem that we have found to be useful is the Kestner-Sinanoglu 
potential5 and, in the next section, we study this system at 
several temperatures. 

VIII. CALCULATIONS 

The Kestner-Sinanoglu Hamiltonian’ has the form 

x= - 1/2(Vi +v:> +w”cr: t-r:)/2 

+ Vlr, -r,I, (8.1) 
where we have used atomic units. This Hamiltonian mimics 
two electrons bound to an atom and is useful as a model 
because it is separable, allowing the calculation of the exact 
energies and correlated wave functions. The harmonic fre- 
quency can be chosen to mimic an atom with charge Z, we 
have chosen Z = 1 and, hence mimic H -. Our calculations 
used the formulation described briefly in Sec. III and in our 
paper on the 2D Hubbard model. The results are given in 
Table I and demonstrate that the projection operator can 

TABLE I. Energies vs reciprocal temperature for the Kestner-Sinanoau Hamiltonian. E,,,,, are the exact 
energies, EPIMC are the energies obtained using straightforward Monte Carlo integration and EPIMC, pro, are the 
energies obtained using our projection operator. All energies and p are in atomic units and the numbers in 
parentheses represent one standard deviation. Pis the number of points used to discretize the path integral and 
NP si the number of Monte Carlo passes used in determining the average values. 

B P % E exact E PlMC E PIMC,pra, 

3.0 15 1OOOCUl 3.183 3.192(.031) 3.191C.031) 
4.0 20 100000 2.898 2.912(.054) 2.911(.053) 
5.0 25 1OOooO 2.113 2.775( .076) 2.770(.074) 

10.0 50 4oocQo 2.653 2.643(.159) 2.637(.124) , 
20.0 100 4ooooo 2.647 2.726( 1.705) 2.648(.919) 
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indeed give accurate results at both low, high, and interme- 
diate temperatures, suggesting that, the nodes of the nonin- 
teracting system make negligible contributions to the inter- 
acting system properties not just a low and high 
temperatures to first order in the interaction (as we have Ji’c 1/2 = 

shown in this paper), but at all temperatures to higher order 
in the interactions. 

APPENDIX B 
We consider the integral 

dx x” 
(x - x*y+ 1’2 

for m<2n, n>l . 

(Bl) 

From Gradshteyn and Ryzhik,6 we find, letting I EX - x2 
IX. CONCLUSION 

We have shown that the first order perturbation correc- 
tion to the noninteracting density matrix has nodes at ap- 
proximately the same locations as the noninteracting density 
matrix at low and high temperatures, at least for the class of 
nodes described in this paper. We suspect that this may be a 
more general property of the density matrix, but at the pres- 
ent are unable to prove this speculation. In order to investi- 
gate this speculation, we have performed numerical calcula- 
tions on the Kestner-Sinanoglu Hamiltonian and have 
demonstrated agreement with exact results can be obtained 
by using a projection operator based on the nodes of the 
noninteracting density matrix. Future work will investigate 
higher orders of perturbation and alternative proofs of the 
intermediate temperature regime. 

X 
Zn- 1 1-r 

m  = 2n J,“, ,,* = 
(2n - l)F”-“* y 

+J i’+l:2/2 - J52, Wa) 

X  
m-1 l--Y 

O<m<2n Jr,,,, = 
(2n - m)r”-I’* y 

+(2n+l-2m) Jm-l 
2(2n - m) n+ l/29 

Wb) 

2(1-2x) 1-Y 
m=O J;+,,,= - 

(2n - l)l?“-“* Y 

+ 8(n - 1)  Jo- 

(2n - I) n “*’ 
(B2c) 
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Using the fact that F(x = 1 - y) = F(x = y), we find, to 
lowest order in y 

J11+1,2 = 4/[ (2n - l)y”-“2], (B3a) 

Jft+1,2 =J:,1,2 /2 = 2/[ (2n - l)y”-“*I. (B3b) 
For 1~ m  < 2n, we have 

APPENDIX A JT, l/2 = 
1 

(2n - rn)v-“* 
+ (2n+ 1-27~) Jm-l 

2(2n -m) n-l- l/2’ 

In this Appendix, we discuss the properties of the nonin- 
teracting density matrix for N like-spin fermions. At any 
temperature r, we know the exact form of the density matrix 
is 

If we assume that Jr;;,* = 2/[ (2n - l)y”-“2], we find 
that 

J ;+ ,,2 = y”* - n m--i-- 
2n+l-2m 

2n - m  + (2n-m)(2n- 1) I 
p(rN,qN,,r) = (2~r)-~~‘*5 (- l)p 

Xexp - 
1 

zk trk - qk,b )* 

1 2r - 
(Al) 

We seek conditions under whichp (7) CC E+ /P at all values 
of r given that p is the desired temperature of the partition 
function and P is the number of points used to discretize the 
path integral. If we expand the exponential, we find 

= 2/[ (2n - l)y”-“*I. 

Finally, for n = 2m, we have 
035) 

J;, l,* = y”* - ” m!-. + -!- 

2n - 1 2n - 1 

= 2/[ (2n - l)y”-‘/*I. WI 
The errors to terms of order yr’* - ’ are of order 9” - * and 
hence become small relative to the other terms with the same 
value of n as y goes to zero. 

x &t-l)” ~(rk-qk.$‘)* I [ 
” 

k II . 

(AZ) 
The only way for p to be 0 at all values of r is for all terms 
inside the curly brackets in Eq. (A2) to be zero. In order for 
this to be true, we must have the sums over 9 be paired into 
N!/2 pairs of equal numbers, but with opposite permutation 
weights. Otherwise, changing r would cause the sum over 
permutations to take on a non-negligible value. In addition, 
ifeach of the pairs of permutations ditfer by less than E,P will 
be proportional to E at all temperatures. 
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