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Path integral studies of the 2 Hubbard model using a new projection 
operator 

Randall W. Hall 
Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804 

(Received 17 August 1990; accepted 1 October 1990) 

Feynman’s path integral formulation of quantum mechanics, supplemented by an approximate 
projection operator (exact in the case of noninteracting particles), is used to study the 2D 
Hubbard model. The projection operator is designed to study Hamiltonians defined on a finite 
basis set, but extensions to continuous basis sets are suggested. The projection operator is 
shown to reduce the variance by a significant amount relative to straightforward Monte Carlo 
integration. Approximate calculations are usually within one standard deviation of exact 
results and virtually always within two to three standard deviations. In addition, the algorithm 
scales with the number of discretization points Pas either P or P2 (depending on the method 
of implementation), rather than the P 3 of the Hubbard-Stratonovich transformation. 
Accuracy to about 5%-10% in energies and spin-spin correlation functions are found using 
moderate amounts of computer time. 

1. INTRODUCTION 

The study of condensed phase, many-Fermion systems 
is a challenge to all numerical methods. While Feynman’s 
path integral formulation of quantum mechanics’ offers sev- 
eral important advantages over alternative techniques (such 
as exact inclusion of electron correlation, ability to study 
finite temperatures, and the use of complete sets of states), 
its practical application has been hindered because the den- 
sity matrix can be negative, which prevents the straightfor- 
ward use of Monte Carlo or related methods that rely on 
sampling from nonnegative weighting functions. The popu- 
lar Hubbard-Stratonovich (HS) transformation’ has made 
studies of small systems possible, but only by straining the 
limits of modern computational resources. Recently, we 
have developed3 an approximate implementation of the path 
integral formulation that gives accurate results in a variety of 
systems defined on continuous basis functions. The justifica- 
tion for the approximation was that it “projected out” re- 
gions of phase space that did not contribute to the properties 
of the Fermion system. In this paper, we make this idea of 
excluding regions of phase space well defined by studying 
the 2D Hubbard model, which has a Hamiltonian that is 
defined on a finite set of states. By excluding a set of paths 
corresponding approximately to the nodes of the density ma- 
trix at different temperatures, we demonstrate that accurate 
results (exact for the case of noninteracting particles) with 
reasonably small variances can be obtained in a relatively 
small amount of computer time. The spirit of the projection 
operator is similar to that used in Green’s function Monte 
Carlo or quantum Monte Carlo,U where the approximate 
location of the ground state wave function’s nodes are used 
to reduce the variance. 

II. FORMALISM 
In this section, we describe our path integral approach. 

Consider the discretized form of the partition function for 
N, spin-up Fermions and NP spin-down Fermions with 
N=N, +N,: 

Q=J dr, dr, “‘drPp(r1,r22,E)p(r*2r3,E)“.p(rp,.r,,E), 

a.11 
where ri stands for the Ncoordinates at imaginary time iand 
E = B/P, where /3 is the inverse temperature and P is the 
number of discretization points. Since any of the p’s can be 
negative, the integrand cannot be interpreted as a probability 
and, hence, standard Monte Carlo and molecular dynamics 
techniques cannot be used. The integral can, however, be 
cast into a form that allows straightforward Monte Carlo 
using importance sampling 

Q/Q’=sdr, dr2-.*drp[P(r,,r2, . . . . rpp)l 

' l 
P(r, ,r2, . . . ,rp 1 
IP(r, ,r2, . . . ,rp) 1 I/ 

s dr, d-r2 *--drpIP(r,,r2, . . . ,rp)I 

( 
P(r, ,r2, . . . ,rp) = 
IP(r, .r2, . . . ,rpP) I i IPCT,.~,. . . . . +I ' 

(2.2) 

where 

Q’=Jdrl dr2*--drplP(r,,r2, . . . . .rp)l, (2.3) 

P(r r ,, *, . . . ,rp)Ep(r,,r2,E)p(r2,r3,E)..*p(rp,rl,~) and 
(A ) P denotes the ensemble average of A over a distribution 
function P. As should be clear, the Monte Carlo estimator 
for Q/Q ’ is the sum of plus and minus ones. If we denote the 
number of + 1 contributions to the estimator by N, and 
the number of - 1 contributions to the estimator by N _ , 
then 

Q/Q’ = W, -fV- VW, + N- 1 
and 

d=d(N+ +Nm )W+ +N-) 

-N?+ -Nt +2N+N-11 
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[(AC+ -I-N- 12(N+ +Ns. - 111 

= 4N+ N- /C(N, + N- )‘(N+ + N: - 1)). 
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= IP(r, ,r2, ( 
P(r, ,r2, . . . ,rp) 

. . . ,rp>l .F(r,lr* *..., r,)lP(rI.Q . . . . JP)l’ 

(2.7) Lettingn = N, -N- andN+ f N- = N andassuming 
N- l=N, wefind 

d(Q/Q’, where 
p+1 

--2,/N, N /(N,+ -t N- - l)/(N, -N- ) 

= 2~~~)~&‘f/n. (2.4) 
Thus, the smaller n, the larger the relative error. Let us as- 
sume that it is possible to find a subset of the N + + N- 
p_aths containing N paths (SC N) for which 
N, - p ._ = m with m 4n (for noninteracting particles, 
we will have m = 0). If we do not include these fi paths in 
the average (through the use of a projection operator, for 
instance), it is straightforward to show that the relative error 
is now (assuming a total of N passes that successfully pass 
the projection test) 

.Y(r, lr2, . . . ,rp) = 
Jy[ rl,rk,(k - lk]. 

o-/(Q/Q’), = 2dwrm/N/ii, (2.5) 
where ii ={N/(N-#)}(n-m)>naslongasmissmall 
and by ( Q/Q ’ > m we indicate that a projection operator for 
which k, _ - N _ r^- m has been used; thus if m # 0, only an 
approximate value of Q /Q ’ will be obtained since we will be 
ignoring nonzero contributions to Q. However, our numeri- 
cal results indicate that the approximate result can still be in 
good agreement with exact results, justifying this approach. 
By using this projection operator, the relative error from Eq. 
(2.5) is reduced since ii > n. Thus, we look for a projection 
operator that can discard paths that make no net contribu- 
tion to Q/Q ‘. In this paper, we work with a projection opera- 
tor that is similar in spirit to the one previously used, how- 
ever, several alternative operators do exist, some of which 
are mentioned later in this section. 

To show this is exact, assume that for a specific r, and r,,, , 
p[r, ,r,,(m - 1) E] = 0. In this case, the sum over all inter- 
mediate points must be zero and, hence, all paths which have 
these particular values ofrl and r,,, can be discarded in order 
to lower the fractional error. We note that this idea can be 
extended in an approximate manner to exclude configura- 
tions for which p is “small”; i.e., to exclude sums for which 
contributions to Q are negligible, leading to a nonzero value 
of m in the determination of fi in Eq. (2.5). For noninteract- 
ing particles, we know whenp is 0 for all temperatures since 
we know its exact form. For interacting particles, we do not 
necessarily know where the nodes inp are. However, we can 
use two approaches to obtain accurate results. The first, 
which we use here and which is similar to the approach we 
have taken in our previous work, is to assume that ifp = 0 at 
temperature p/P, then it is small for lower temperatures 
and, hence, exclude those paths from our calculations. The 
second approach would be to numerically find the nodes of 
the density matrix (or the ground state wave function) and 
use this information to obtain accurate energies and densi- 
ties. In the next sections, we apply these ideas to the 2D 
Hubbard model. For our applications, we have symmetrized 
Eq. (2.7) by writing it as 

We proceed in obtaining a projection operator in the 
following way: assume that we know the set of coordinates 
for whichp(T,,,r,,,y) = Ofor l<m,n<Pand e<y@. In this 
case, we can write the exact form of the partition function as 

Q/Q’=sdr, dr2..*drp TJ IP(r,,r2, . . . ,rp)l 

Q = s dr, dr2*.* drpp(r1,r2,E)p(r2,r3,E)...p(rp,r,,E) 

P+I 
X n P[rl,rk,(k - 11~1, 

k=2 

P(r, ,r,, . . . ,rp) 
I 

’ i IP(r1,r2, . . . ,rp)l I/ 

s dr, drz *.*dr, 5 IP(r,,r,, . . . ,rpP)l (2.8) 

(2.6) 

= ([ 
P(rl ,r2, . . . ,rp) 
JP(r1,r2, . . . ,rp)l 1) f (2.9a) 

h IP(q.729 ,+)I 

or wherV’[r, ,rdk - lkl = 1 otherwise 
I 

0 if p[r,,rk,(k- l)~] =O 

and 

Q/Qf=Jdrl dr,*-*dr,F(rljrz ,,.., Tp)lP(r,,rz, . . . . rp)l = ’ IP(r1,r2, ( 1 p(rl?:::z::l l~,p~,,, ,.... +J 

x 
fYr1,r2, . . . ,rp) 
IfYrI,r2, . . . ,rp)l dr , dr2 * * * drp 

XF(r, 172 , I.+ ,rp) IfYrl ,r2, . . . ,rp 1 I 

(5) ,PC T,.rl, ... sr,dl 

where 

a=$ ,$ F(rilrl, . . . ,ri- l,rl+ l, . . . ,rp). 
1 1 

(2.9b) 

(2.10) 
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in the form of Eq. (2.9a), the algorithm should scale as P *, 
while in the form of Eq. (2.9b), the scaling should be as P. 
Which form is used clearly depends on the problem at hand, 
for if 3 projects out most of the regions allowed by 1 P I, then 
it is better to use Eq. (2.9a), while if a significant fraction of 
the paths allowed by (P ( are not discarded by 8, then Eq. 
(2.9b) is the proper choice. In the calculations described in 
this paper, we have found Eq. (2.9b) to be satisfactory and 
hence expect the algorithm to scale approximately as P 
(these scalings should be compared to the P 3 scaling of the 
HS transformation’ ) . In the cases of interacting particles, 
we do not know the exact form of 3, rather we use the ap- 
proximation described above and determine both the exact 
and approximate results by 

Q/Q e&pm = c3:pow,,,m),,, (2.10a) 
and 

Q/Q &act = WIPI),,,. (2.1Ob) 
A similar strategy was performed for the calculation of the 
average energy and the site-site spin correlation functions. 
Comparison between exact and approximate results will be 
listed in the tables. 

III. APPLICATION: THE 2D HUBBARD MODEL 
The 2D Hubbard model’ is defined on an L x L lattice 

by 

..sY=pi +p2ii, (3.1) 
i icj 

where Xi are the single particle Hamiltonians that couple 
nearestneighbor sites with coupling strength - t, ??J g is the 
interaction between particles, equal to U if particles i and j 
have different spins and are at the same site and is zero other- 
wise, and (as is commonly done) periodic boundary condi- 
tions are not used. In our calculations, we have used t = 1 
and U = 0.0, 2.0, and 4.0. L = 3 and we have studied the 
(N,,N,) = (3,2) and (3,3) (number of holes Nh = 5 and 
4). Z was diagonalized ‘in order to determine exact results 
and /? = 5.0 a.u.; at this temperature, excited state contribu- 
tions are small, but not negligible, requiring P = 30 for 
U = 0.0 and 2.0 and P = 60 for U = 4.0. We have chosen a 
simple algorithm for choosing moves for the individual par- 
ticles, although in principle we could have used the ideas of 
Newman and K&i7 or Ceperley and Pollock.’ Denote e as 
the ath of the N particles at imaginary time i. A new state 6 
was sampled from the distribution 

P(G) = Ip(Ti- ,,7i,E)P(7i,~ii+ 1 rE) 1 
by sampling from one of the nine possible lattice sites in the 
manner described by Kales and Whitlock.’ Sampling in this 
manner led to adequate convergence in our calculations. 

Our results are shown in Tables I and II. Between 
100 000 and 275 000 passes were required to obtain the sta- 
tistics shown, requiring the reasonable amounts of computer 
time shown in Table III. The number of passes used was 
chosen to achieve errors of about 5%~10%; clearly, more 
passes could have been made if smaller error bars were re- 
quired. For the purposes of many calculations though, this 
level of accuracy is sufficient to extract desired answers. 

TABLE I. Energies and site-site spin correlation functions. U is the Hub- 
bard CJ parameter in units of 1 t I, N,, is the number of holes relative to half- 
filling on a 3 x 3 lattice, fl is in atomic units, and P is the number of points 
into which the path is divided. Eis the energy in units of [t [ and nij (k) is the 
site-site correlation function for particles of type i andj (corresponding to 
up and down electrons) separated by k lattice sites. Exact results are from 
numerical diagonalizations and projected and total MC are the Monte 
Carlo results with and without the use of the projection operator. The 
numbers in parentheses represent one standard deviation. 

Exact Projected 

u=o, N,,=5, p=5.0, P-=30 
E - 8.4805 __ 8.45 (0.36) 

n,“(l) 0.1877 0.190 (0.006) 
nuu (2) 0.4376 0.438 (0.012) 
nun (3) 0.3123 0.311 (O.OD9) 
nuu (4) 0.06239 0.060 (0.002) 
%d (0) 0.4531 0.461 (0.018) 
n,,(l) 1.2501 1.248 (0.047) 
n”d (2) 1.4062 1.398 (0.053) 
nud (3) 0.7499 0.744 (0.028) 
nud (4) 0.1407 0.148 (0.006) 

Total MC 

- 8.53 (1.89) 

0.197 (0.032) 
0.428 (0.062) 
0.307 (0.043) 
0.067 (0.010) 
K454 (0.093) 
1.234 (0.251) 
1.411 (0.280) 
0.732 (0.145) 
0.168 (0.033) 

U=O, N,r=4, p-5.0, P=30. 
E - 9.890 - 9.98 (0.52) 

n,,(l) 0.6260 0.632 (0.032) 
n,,(2) 1.375 1.369 (0.066) 
nuu (3) 0.8740 0.870 (0.043) 
nuu (4) 0.1253 0.129 (0.007) 
n,,(l) 0.1877 0.191 (0.010) 
ndd (2) 0.4376 0.443 (0.022) 
4, (3) 0.3123 0.310 (0.016) 
&Id (4) 0.0624 0.056 (0.004) 
n”d (0) 0.6719 0.669 (0.033) 
nlld ( 1) 1.813 1.825 (0.090) 
nud (2) 2.094 2.096 (0.102) 
nud (3) 1.187 1.178 (0.057) 
fh (4) 0.2344 0.232 (OJl12) 

10.02 (2.21) 

0.584 (0.137) 
1.424 (0.289) 
0.875 (0.178) 
0.116 (0.033) 
0.188 (0.046) 
0.435 (0.094) 
0.322 (0.065) 
0.056 (0.015) 
0.652 (0.140) 
1.839 (0.389) 
2.105 (0.440) 
1.166 (0.239) 
0.237 (0.050) 

Upon doubling P, the timing increases by a factor of about 
2.7, slightly larger than P, but significantly less than P2, 
indicating our analysis of the timings to be substantially cor- 
rect. In the case of U = 0, the projection is exact, while for 
U #O, our results are approximate. Examination of the ta- 
bles indicates that the projected values agree quite well with 
exact results, implying that the value of m discussed in Sec. 
II is indeed “small.” In addition, it can be seen that the errors 
are significantly smaller when the projection is used with 
error bars on the order of 5%-IO%, which should be accu- 
rate for examination of correlated electronic properties. The 
error in energies is fairly large and may inhibit the use of this 
approach to study the binding of holes in the high-tempera- 
ture superconductors unless large amounts of computer time 
are utilized. However, this should be a useful method for 
studying other problems. 

IV. CONCLUSIONS 

Straightforward use of the path integral approach has 
been supplemented by a new type of projection operator. By 
discarding paths that pass through nodes of the density ma- 
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TABLE II. Energies and site-site spin correlation functions. Uis the Hub- 
bard Uparameter in units of 1 t I, N,, is the number of holes relative to half- 
filling on a 3 X 3 lattice, B is in atomic units, and P is the number of points 
into which the path is divided. Eis the energy in units of It 1 and n,(k) is the 
site-site correlation function for particles of type i andj (corresponding to 
up and down electrons) separated by k lattice sites. Exact results are from 
numerical diagonalizations and projected and total MC are the Monte 
Carlo results with and without the use of the projection operator. The 
numbers in parentheses represent one standard deviation. 

Exact Projected Total MC 

U=2.0, N,, = 5, p= 5.0, P= 30 
E - 7.860 0 - 7.86 (0.29) - 1.47 (1.70) 

11,” (1) 0.175 0 0.178 (0.004) 0.163 (0.028) 
11”” (2) 0.427 8 0.431 (0.010) 0.448 (0.061) 
nuu (3) 0.325 5 0.319 (0.007) 0.330 (0.044) 
JZ,, (4) 0.071 67 0.072 (0.002) 0.059 (0.011) 
lZ”d (0) 0.231 7 0.230 (0.008) 0.227 (0.051) 
tr,,(l) 1.293 6 1.307 (0.042) 1.338 (0.260) 
tl,d t2) 1.583 3 1.558 (0.049) 1.521 (0.295) 
l&l (3) 0.768 1 0.775 (0.025) 0.776 (0.15 1) 
hd (4) 0.123 4 0.130 (0.005) 0.139 (0.031) 

u= 4.0, 
E 

&, ( 1) 
4” (2) 
nuu (3) 
tz,, (4) 
nud to) 
tl”d ( 1) 
$d (2) 
t&l (3) 
Gl(4) 

IV,, = 5, /3= 5.0, P = 60 
- 7.528 7 - 7.49 (0.20) 

0.164 9 0.169 (0.003) 
0.418 2 0.423 (0.006) 
0.336 5 0.333 (0.005) 
0.080 46 0.075 (0.001) 
0.135 6 0.138 (0.003) 
1.302 9 1.301 (0.028) 
1.671 2 1.648 (0.034) 
0.773 4 0.782 (0.017) 
0.116 5 0.130 (0.003) 

7.56 (1.05) 

0.169 (0.017) 
0.415 (0.034) 
0.336 (0.026) 
0.077 (0.007) 
0.128 (0.019) 
1.330 (0.148) 
1.641 (0.180) 
0.772 (0.088) 
0.129 (0.018) 

8.82 (1.25) 

0.612 (0.086) 
1.370 (0.177) 
0.893 (0.114) 
0.125 (0.022) 
0.189 (0.029) 
0.446 (0.059) 
0.297 (0.040) 
0.068./0.010) 
0.389 (0.054) 
1.961 (0.259) 
2.171 (0.286) 
1.183 (0.154) 
0.296 (0.037) 

U= 4.0, N,, = 4, ,~3= 5.0, P= 60 
E - 8.179 9 - 8.44 (0.64) - 8.65 (2.30) 

n,,(l) 0.616 7 0.629 (0.043 ) 0.667 (0.161) 
n”” (2) 1.330 3 1.343 (0.086) 1.338 (0.309) 
nuu (3) 0.900 0 0.884 (0.057) 0.871 (0.200) 
11”” (4) 0.153 1 0.143 (0.011) 0.124 (0.041) 
t&j ( 1) 0.192 4 0.186 (0.013) 0.173 (0.050) 
ndd (2) 0.464 7 0.439 (0.028) 0.447 (0.105) 
ndd (3) 0.3 10 3 0.311 (0.021) 0.318 (0.073) 
%d (4) 0.058 87 0.064 (0.006) 0.062 (0.019) 
%I (0) 0.240 4 0.243 (0.017) 0.234 (0.063) 
%d (1) 1.991 2 1.993 (0.129) 1.988 (0.467) 
nud (2) 2.263 6 2.232 (0.146) 2.240 (0.526) 
nud (3) 1.196 0 1.225 (0.078) 1.261 (0.286) 
nud (4) 0.308 8 0.306 (0.020) 0.278 (0.066) 

u= 2.0, N,, =4, /3=5.0, P=30 
E - 8.827 6 - 8.84 (0.40) 

11”” ( 1) 0.615 7 0.609 (0.027) 
)I”” (2) 1.355 1.358 (0.056) 
tz,, (3) 0.890 0 0.895 (0.037) 
If”” (4) 0.138 9 0.139 (0.007) 
n,,(l) 0.190 4 0.189 (0.009) 
n&J (2) 0.437 5 0.444 (0.019) 
4ld ( 3 1 0.310 2 0.310 (0.014) 
n&l (4) 0.061 89 0.058 (0.003) 
%I (0) 0.401 1 0.383 (0.017) 
&I (1) 1.941 1 1.971 (0.082) 
nud (2) 2.189 7 2.177 (0.091) 
n*d (3) 1.1910 1.180 (0.049) 
nud (4) 0.277 1 0.290 (0.012) 

TABLE III. Timing information for Monte Carlo runs. N,, is the number of 
holes in the 3 X 3 lattice, Nis the total number of electrons, Uis the Hubbard 
Uparameter, Pis the number of discretization points, passes is the number 
of Monte Carlo passes used to obtain error bars shown in Tables I and II, 
and the times are for runs on an FPS 500 computer (our FORTRAN pro- 
gram ran about three times slower on the FPS 500 than on the IBM 3090 
located at LSU) . 

Time 
u P Passes 1000 Passes 

(min) 

0.0 or 2.0 30 100 000 7.4 
4.0 60 275 000 20.5 
0.0 or 2.0 30 100 000 10.2 
4.0 60 200 000 27.0 

Randall W. Hall: Path integral studies 1315 

trix at different temperatures, we have significantly de- 
creased the errors associated with the Monte Carlo estima- 
tor. Despite using an approximate projection for cases of 
interacting particles, we have demonstrated that accurate 
results can still be obtained, encouraging pursuit of more 
accurate representations of the lower temperature density 
matrix than we have used. Further, this method scales as 
either Por P2, depending on when the projection is applied. 
A variety of projection operators are suggested by this work, 
including numerical evaluation of the nodes of the density 
matrix or ground state wave function, or using approximate 
representations of the above (along the lines of quantuni 
Monte Carlo or Green’s function Monte Carlo“-’ ) . In addi- 
tion, we are pursuing the use of a modified form of this ap- 
proximation in studies with continuous basis sets. 

It is instructive to compare and contrast the approach 
suggested in this paper with the fixed node4 (FN) and nodal 
relaxation’ (NR) methods popular in quantum Monte 
Carlo and Green’s function Monte Carlo. In both methods, 
the Schr6dinger equation is solved with a diffusion process 
that allows births and deaths of diffusers. In the FN approxi- 
mation, the nodes of the wave function are fixed and the 
Schradinger equation is solved in each nodal region. The 
nodes act as absorbing boundaries and prevent particles 
from diffusing from positive to negative (and vice versa) 
regions. In addition to specifying the nodal structure, an im- 
portance wave function is used to reduce the variance by 
prohibiting unlimited growth of diffusers. In the NR method 
(an extension of the FN approximation which also uses an 
importance wave function), diffusion across approximate 
nodal boundaries is allowed, but unless the nodes are close to 
the exact nodes, the variance grows quickly. This is due to 
the use of a Boson wave function as an importance function 
which rapidly mixes a Bose contribution into the variance as 
the nodes are relaxed. As a result, the relatively small contri- 
butions from the Fermi wave function are overwhelmed by 
the relatively large Bose contributions. In the path integral 
approach, the nodes are approximate as in both FN and NR 
methods. In contrast to the FN approximation, however, 
there is no importance function and paths are allowed to 
cross nodal regions and assigned the proper weights. In addi- 
tion, the path integral method samples from the Fermi distri- 
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1316 Randall W. Hall: Path integral studies 

bution, rather than the Bose distribution and should not suf- 
fer from the mixing of Bose contributions as does the NR 
method. Indeed, we have found that the error scales with the 
number of Monte Carlo passes iVp as l/n thus there 
appears to be no growth of errors as seen in the NR method. 
In addition, since the nodal information in the path integral 
method is calculated “on the fly,” there is a potential time 
and memory savings over the other approaches. The FN and 
NR methods, however, do appear to attain higher accuracy 
(tenths of percent vs percent errors), although a detailed 
comparison of total computer time, length of run, etc. has 
not been made. However, for quantities where a few percent 
error is sufficient (such as correlated wave function proper- 
ties), or for problems where the time scaling we achieve can 
allow a large number of Monte Carlo passes, the path inte- 
gral approach should be very useful. 
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