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Abstract
The ability to efficiently convert mechanical energy into electrical energy has become an important
topic of discussion and research in the last decade. Triboelectric generators have recently been
popular for vibration energy harvesting, but despite plenty of research on its material aspect,
research on combining mechanical characteristics and voltage generation output has been sparse.
Many energy harvesters suffer from low operating bandwidths and are usually restricted to operating
at a specific frequency. We propose a tunable triboelectric energy harvester that has a large
response over a wide frequency bandwidth at low frequencies. The tunability is implemented by
axially pre-loading a beam that reduces the system stiffness. This stiffness reduction strengthens
the collisions that naturally occur in the triboelectric generators, resulting in larger voltage
outputs. As the system stiffness decreases, the impacts occur over a broader frequency range,
widening the frequency bandwidth. To describe the dynamic and voltage responses, a continuous
electromechanical model is derived. The presented mathematical model sheds light on the coupled
characteristics of mechanical vibration and triboelectric voltage generation, and can be used as a
design tool for high-efficiency energy harvesters to operate wireless sensor networks.
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Nomenclature
Aamp Excitation amplitude
Ap Cross-sectional area of polymer beam
bm Width of center mass and upper electrode
Bi, si Constants for mode shape analysis
c, ci Mechanical damping coefficient, impact damping coefficient
cσ Multiplier for surface charge density
d0 Initial total electrode gap
D1 Mechanical damping coefficient for the reduced order model
Da, Db Axial stiffness term, flexural rigidity for second beam span
D(x) Function for flexural rigidity along the beam
E,Ea, Ep Modulus of elasticity in general, for aluminum, for polymer
Eair, EPDMS Electric fields in the air gap and the PDMS layer
F (x) Function for axial stiffness term along the beam
Fi, Fd Impact stiffness and damping forces
g, gi Acceleration due to gravity, nominal distance between upper electrode and PDMS layer
h, hm Thickness of the polymer beam, combined thickness of center mass and upper electrode
Ip Moment of inertia of polymer beam
ki,KL Impact and linear stiffness coefficients
L,L1, LL, LR Length of beam, midspan location, location of beginning of upper electrode, location of end

of upper electrode
m(x) Function for mass per unit length along the beam
M1,MZ Mass coefficient, base acceleration coefficient
p Compressive axial force
q(t) Charge transferred through the load resistance
R Load resistance
S Contact area
T Kinetic energy
TPDMS Thickness of PDMS layer
u(x, t) Longitudinal deflection of the beam
U Potential energy
w(x, t) Absolute transverse deflection of the beam
Wnc Work done by nonconservative forces
y(x, t) Relative transverse deflection of the beam
z(t) Base motion
zc Coordinate for the transverse direction

Introduction

The burgeoning internet of things uses rapidly growing networks of sensors, which urgently need reliable
power sources. The major sources for powering sensors are batteries. However, their limited lifespan,
detrimental environmental effects, and high replacement costs are significant drawbacks. Mechanical
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Nomenclature, cont.
αa,b, βa,b Constants for mode shape analysis
α1,2 Electromechanical coupling terms
γi(t) Arbitrary function of time
δ Penetration distance
ε, ε0, εr Permittivity, vacuum permittivity, relative permittivity
εs, εt Mechanical strain terms
η(t) Function of time
ρp Density of polymer beam
ρa Density of aluminum
ρA Mass per unit length of second span of beam
σ Surface charge density
σs Mechanical stress
φ(x) Mode shape
ω,Ω Natural frequency, excitation frequency

vibrations are considered one of the most widespread energy sources that can be converted into electrical
energy (energy harvesting). These vibrations are prevalent in transportation vehicles, structures, and the
environment. The motivation to power small electronics and sensors through harvesting energy from
ambient vibrations has driven many research efforts in the last decade (Shafer et al. (2015); Cook-
Chennault et al. (2008); Mathúna et al. (2008)). Conventional harvesters maximize the energy they
can scavenge when their natural frequency matches the excitation frequency from ambient sources.
Because of the narrower bandwidth of the linear harvesters compared to the wider bandwidth of the
ambient vibrations, linear energy harvester are considered inefficient. To overcome this limitation,
several studies have demonstrated how nonlinear harvesters can attain wider bandwidths than their linear
counterparts (Twiefel and Westermann (2013)). The most common types of energy harvesters that can use
nonlinearities are magnetic (Ibrahim et al. (2017); Mann and Sims (2009)), mechanical force (Masana and
Daqaq (2011a); Sneller et al. (2011)), internal resonance (Chen and Jiang (2015); Yang and Towfighian
(2017)), and mechanical stoppers or impacts (Ibrahim et al. (2018); Mahmoud et al. (2009); Soliman
et al. (2009)).
When the fundamental frequency of an energy harvester does not match the excitation frequency, even
with a small deviation, the harvested energy drops significantly, and the efficiency of the harvester will
be low. Accordingly, the need for new energy harvester designs with the capability to tune the resonant
frequency has become an important topic. Different research studies addressed this point through closed-
loop techniques (Roundy and Zhang (2005); Wu et al. (2006)), or external power sources (Mann and Sims
(2009); Shahruz (2006)). One of the most used approaches for frequency tuning is the addition of an axial
load, where an axial static load can be applied to the harvester structure to change its natural frequency
(Leland and Wright (2006); Morris et al. (2008)). Lesieutre and Davis (Lesieutre and Davis (1997))
found that compressive axial preloads can increase the coupling coefficient of an electrically driven
piezoelectric bimorph for a higher output. Leland and Wright (Leland and Wright (2006)) tuned the
natural frequencies of a piezoelectric bimorph harvester through applying a compressive axial preload to a
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simply supported beam with a center mass. The natural frequencies were reduced by approximately 20%.
Roundy and Zhang (Roundy and Zhang (2005)) examined using electrical feedback to tune the resonance
frequency of a piezoelectric bimorph. A continuous actuation is needed to adjust the device periodically
to tune its resonance frequency. Other ways to tune the bimorph frequency include changing the beam
length or the attached mass to control the beam stiffness. Masana and Daqaq (Masana and Daqaq (2011a))
developed and experimentally validated a nonlinear electromechanical model of a clamped-clamped
tunable piezoelectric energy harvester subjected to transversal excitations and static axial loading. With
the axial load, they were able to achieve a 65% decrease in the natural frequency. Increasing the axial
force resulted in higher output energy and bandwidth because of the increase in the electrical damping,
oscillation amplitudes, and structural nonlinearity.

In addition to bandwidth, the transduction mechanism used for energy harvesting plays a significant role
in energy conversion efficiency. Transducers convert mechanical energy into electrical energy through
different mechanisms such as electromagnetic, electrostatic, and piezoelectric (Daqaq (2010); Nguyen
et al. (2013); Masana and Daqaq (2011b)). Though piezoelectric generators have been very popular for
energy harvesting, their charge density fell behind triboelectric generators (Fan et al. (2012b); Wang
(2013)) that were introduced recently for energy harvesting. The area power density of these generators
reaches 313 W/m2 with a conversion efficiency of 60% (Wang (2013)). Triboelectric transduction
generates power from the repetitive contact and separation of two materials with different tendencies
to lose and gain electrons. Compared with piezoelectric energy harvesters, triboelectric energy harvesters
have the advantages of lower fabrication costs, better flexibility, and higher energy density (Wang
(2015)). Mechanical impact is an inherent property of the triboelectric generators that can be converted to
electricity, but has not received much attention for these generators. In our previous work (Ibrahim et al.
(2018)), we showed that the frequency bandwidth widens and higher output can be produced when the
triboelectric generators are combined with impact vibration. Although our previous triboelectric impact
vibration harvester was effective in increasing bandwidth, the frequency range and further bandwidth
widening was fixed by the design of the structure.

To create tunability and to increase output at low frequencies, we introduce the compressive load to
the triboelectric energy harvester. The axial force allows the system to be tuned to accommodate various
vibration sources at low frequency. The wider frequency bandwidth is achieved because the increase
of the axial force reduces the system stiffness, strengthens the collisions between triboelectric layers
with small gaps, and spreads the larger output voltage over more frequencies. The result is an energy
harvester with its bandwidth widened at low frequencies, which enhances the conversion efficiency
because ambient vibrations often have a wide frequency spectrum at low frequencies. Instead of the
lumped parameter model used in the previous study, a continuous electromechanical model of the system
was developed to accurately capture the dynamic response of the harvester as well as its output. To
derive the equations of motion, the Extended Hamilton’s Principle for linear Euler-Bernoulli beams and
Galerkin’s decomposition were used. The model provides a platform for designing high-performance
energy harvesters with tunable frequency ranges that are wider spread at low frequencies.

The outline of the article is as follows. The principle of operation will be discussed and a continuous
model will be derived in great detail. Experimental results for varying axial forces and excitation
amplitudes will be displayed. Then numerical simulations will be performed to show the accuracy of
the derived model compared with the experimental results.
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Principle of Operation
A solid model and a schematic of the system is shown in Fig. 1. The compressive axial force at the ends
of the beam will be tuned to change the system’s response and the dynamics. Although a compressive
axial force was used in this system, the axial force was controlled so that it was less than the critical axial
load. Therefore, the beam will not buckle, but instead, the axial force will reduce the beam’s stiffness.
The harvester consists of an aluminum upper electrode with semi-cylindrical, 127-micron grooves facing
the reversely patterned Polydimethylsiloxane (PDMS) that covers the lower electrode aluminum layer,
see Fig. 1c. The two electrodes are connected with a load resistance, and the voltage across the load is
measured. When the upper electrode and PDMS layer are initially brought in contact with each other, they
will generate triboelectric charges on their surfaces because of the triboelectric effect where the PDMS
will be negatively charged and the aluminum will be positively charged. When there is a relative change
in displacement between the electrodes, an electric potential difference will be established and charges
will be transferred between the electrodes that result in a generated current. When the upper electrode is
at its maximum absolute displacement, there will be an equilibrium of charge, and the electric potential
difference will be zero. When the two layers approach each other again, the voltage potential difference
builds up and causes the current to flow in opposite direction to the previous one. For more details on the
operation of triboelectric generators, one can refer to the work conducted by Dr. Z. L. Wang’s group (Fan
et al. (2012a,b); Wang (2013)).

The system will be subjected to a harmonic base excitation, which will allow the upper and lower
electrodes to periodically impact each other at certain frequencies. At frequencies where an impact does
not occur, the upper and lower electrodes will effectively behave as a variable capacitor system. An
additional mass was placed at the midspan of the beam to increase the inertial force, which will result in
a higher velocity and impact force of the upper electrode and a higher voltage output.

Problem Formulation

Mathematical Modeling
We developed a continuous system for the electromechanical governing equations by using linear Euler-
Bernoulli beam theory. The continuous system will be more accurate than the model we used for the
lumped parameter system previously (Ibrahim et al. (2018)), and it will more easily and accurately
capture the effects of the compressive axial force. As the gap will be limited between the upper electrode
and the PDMS layer to relatively small distances, any nonlinear effects that would have arisen from
mid-plane stretching will be neglected.

To develop the equations of motion, the system is first described. The system will be modeled as a
three-span beam, with the first and third spans being the polymer beam, and the second span being a three-
layer beam consisting of two aluminum layers and a polymer layer. The system is initially represented in
terms of the absolute deflection of the beam and the base motion.

The equations of motion are derived using the Extended Hamilton’s Principle. Its kinetic and potential
energy terms are written as

T =
1

2
ρpAp

∫ LL

0

ẇ2
1dx+

1

2
ρA

∫ LR

LL

ẇ2
2dx+

1

2
ρpAp

∫ L

LR

ẇ2
3dx (1)
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Figure 1. 3D model and schematic of the system. (a) A 3D model of the system. (b) A schematic of the
system.(c) Microscopic image of the Al mold and SEM image of the PDMS layer.

where ρA = ρabmhm + ρpAp. The potential energy of the system is

U =
1

2

∫
V

εtiσsidV– +
ε0
2

∫
V

E2
airdV– +

ε0εr
2

∫
V

E2
PDMSdV– (2)

where

εti = εsi − zcw′′i

εsi = u′i +
1

2
w′

2

i

σsi = Eεti

Eair =
(−q + σS)

ε0S

EPDMS = − q

ε0εrS

(3)

Expanding the potential energy expression using Eq. (3) results in
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U =
1

2
EpAp

∫ LL

0

ε2s1dx+
1

2
EpIp

∫ LL

0

w′′
2

1 dx+
1

2
Da

∫ LR

LL

ε2s2dx+
1

2
Db

∫ LR

LL

w′′
2

2 dx

+
1

2
EpAp

∫ L

LR

ε2s3dx+
1

2
EpIp

∫ L

LR

w′′
2

3 dx+
TPDMS

2ε0εrS
q2 +

d0 − w2(L1) + z(t)

2ε0S
q2

− σ(d0 − w2(L1) + z(t))

ε0
q +

σ2S(d0 − w2(L1) + z(t))

2ε0

(4)

where

Da = Eahmbm + EpAp

Db =
1

4
Eabm

(h3m
3

+ hh2m + h2hm

)
+ EpIp

(5)

The variation of the work from nonconservative forces is

δWnc = −c
∫ LL

0

ẇ1δw1dx− c
∫ LR

LL

ẇ2δw2dx− c
∫ L

LR

ẇ3δw3dx−Rq̇δq − pδw3(L) (6)

Letwi(x, t) = yi(x, t) + z(t), and using the Extended Hamilton’s Principle
∫ t2
t1

(δT − δU + δWnc)dt =
0 yields the governing equations for the longitudinal and transverse directions for each span.



EpApε
′
s1 = 0 0 ≤ x ≤ LL

EpIpy
′′′′
1 + ρpApÿ1 + ρpApz̈ − EpAp(εs1y′1)′ = 0 0 ≤ x ≤ LL

Daε
′
s2 = 0 LL ≤ x ≤ LR

Dby
′′′′
2 + ρAÿ2 + ρAz̈ −Da(εs2y

′
2)′ = 0 LL ≤ x ≤ LR

EpApε
′
s3 = 0 LR ≤ x ≤ L

EpIpy
′′′′
3 + ρpApÿ3 + ρpApz̈ − EpAp(εs3y′3)′ = 0 LR ≤ x ≤ L

(7)

As the mechanical strain is mostly in the longitudinal direction because of limited transverse
deflections, the approximation εsi ≈ u′i will be made. The longitudinal and transverse equations of
motion will now be decoupled. The boundary conditions will be
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u1(x) = γ1(t)x+ γ2(t)

u2(x) = γ3(t)(x− LL) + γ4(t)

u3(x) = γ5(t)(x− LR) + γ6(t)

u1(0) = 0

u1(LL) = u2(LL)

u2(LR) = u3(LR)

u1(LL) = − pLL
EpAp

u2(LR) =
pLL
Da
− pLL
EpAp

− pLR
Da

u3(L) = − pL

EpAp
+
pLL
Da
− pLL
EpAp

− pLR
Da

+
pLR
EpAp

(8)

It can be shown that

εs1 = εs3 = γ1(t) = γ5(t) = − p

EpAp

εs2 = γ3(t) = − p

Da

(9)

The longitudinal and transverse equations of motion have now been successfully decoupled. The
transverse equations of motion along with the corresponding boundary conditions can now be fully
represented. The physical boundary conditions are determined from the clamped edges. Since there is
a large plate in the center of the beam, the position at x = LL, and x = LR is the same, and the slope
is zero at x = LL and x = LR. The remaining boundary condition is determined from the Extended
Hamilton’s Principle.
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

EpIpy
′′′′
1 + ρpApÿ1 + ρpApz̈ + py′′1 = 0 0 ≤ x ≤ LL

Dby
′′′′
2 + ρAÿ2 + ρAz̈ + py′′2 = 0 LL ≤ x ≤ LR

EpIpy
′′′′
3 + ρpApÿ3 + ρpApz̈ + py′′3 = 0 LR ≤ x ≤ L

q̇ = −q
ε0RS

[
TPDMS

εr
+ d0 − y2(L1)

]
+ σ(d0−y2(L1))

ε0R

y1(0, t) = 0

y′1(0, t) = 0

y3(L, t) = 0

y′3(L, t) = 0

y1(LL, t) = y2(LL, t)

y2(LR, t) = y3(LR, t)

y2(LL, t) = y2(LR, t)

y′1(LL, t) = 0

y′2(LL, t) = 0

y′2(LR, t) = 0

y′3(LR, t) = 0

EpIpy
′′′
1 (LL, t) +Dby

′′′′
2 (LR, t)−Dby

′′′′
2 (LL, t)

−EpIpy′′′3 (LR, t) + q2

2ε0S
− σq

ε0
+ σ2S

2ε0
= 0

(10)

The mode shapes and natural frequencies of the system around the static configuration will now be
determined. The static configuration will be the trivial solution as the transverse motion is perpendicular
to the force of gravity. Therefore, there will be a negligible gravitational effect on the static configuration.
The deflection about the trivial static configuration is represented as

yi(x, t) = φi(x)ejωt (11)

The i subscript for the mode shape denotes the span, not the mode number, as only the first mode will be
considered. Substituting Eq. (11) into Eq. (10) and neglecting the damping, forcing, and electrical terms,
yields


−ρpApω2φ1 + EpIpφ

′′′′
1 + pφ′′1 = 0 0 ≤ x ≤ LL

−ρAω2φ2 +Dbφ
′′′′
2 + pφ′′2 = 0 LL ≤ x ≤ LR

−ρpApω2φ3 + EpIpφ
′′′′
3 + pφ′′3 = 0 LR ≤ x ≤ L

(12)

To simplify, let αa = p
EpIp

, βa =
ρpApω

2

EpIp
, αb = p

Db
, and βb = ρAω2

Db
. Trial functions φi(x) are defined

as
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φ1,3(x) = B1 cosh(s1x) +B2 sinh(s1x) +B3 cos(s2x) +B4 sin(s2x)

φ2(x) = B1 cosh(s3x) +B2 sinh(s3x) +B3 cos(s4x) +B4 sin(s4x)
(13)

where s1,2 =

√
∓αa+

√
α2

a+4βa

2 and s3,4 =

√
∓αb+

√
α2

b+4βb

2 . As it is seen in Fig. 2, the mode shape
qualitatively describes the physical system, with the polymer beam for the first and third spans and the
stiff three layer beam for the second span.
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Figure 2. Mode shape of the three span beam with no compressive axial force.
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Figure 3. Effect of axial force on the fundamental natural frequency of the system.

The effect of the compressive axial force on the natural frequency is simulated and is shown in Fig. 3.
The calculated natural frequency of 45Hz at zero axial load was in close agreement with a finite element
model. This finite element model was created to ensure that for the base case of p = 0 N the natural
frequency matched the analytical value from the mode shape analysis. As the axial force increases before
the critical buckling load is reached, the fundamental natural frequency of the system decreases. The
natural frequency will theoretically approach zero as the axial force approaches the critical axial load.
The critical buckling axial load for this system, as observed in Fig. 3, is approximately 39 N .
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Reduced Order Model
This section develops a Reduced Order Model to study the dynamics of the system. Now that the mode
shape of the system has been determined, the first mode shape of the system will be denoted as φ(x) and
the span notation will not be used anymore. Therefore, the mass per unit length, flexural rigidity, and
axial stiffness terms of the system are defined as functions of the longitudinal coordinate.

m(x) =


ρpAp 0 ≤ x ≤ LL
ρA LL ≤ x ≤ LR
ρpAp LR ≤ x ≤ L

D(x) =


EpIp 0 ≤ x ≤ LL
Db LL ≤ x ≤ LR
EpIp LR ≤ x ≤ L

F (x) =


EpAp 0 ≤ x ≤ LL
Da LL ≤ x ≤ LR
EpAp LR ≤ x ≤ L

(14)

The Lagrangian of the system (L = T − U) is constructed and Lagrange’s Equations are used to

determine the equations for the Reduced Order Model. The substitution εs = − p
F (x) + y′

2

2 is used to
determine the Reduced Order Model, but the cubic terms can be neglected because of small deformations
in the transverse direction of motion. The Lagrangian is defined by

L =
1

2
m(x)

∫ L

0

(ẏ + ż)2dx− 1

2
D(x)

∫ L

0

y′′
2

dx− 1

2
F (x)

∫ L

0

[
− p

F (x)
+

1

2
y′

2
]2
dx− TPDMS

2ε0εrS
q2

− d0 − y(L1)

2ε0S
q2 +

σ(d0 − y(L1))

ε0
q − σ2S(d0 − y(L1))

2ε0

(15)

To approximate the dynamic deflection of the beam about its trivial static configuration, a one mode
approximation is used, with

y(x, t) = φ(x)η(t) (16)

By using the one mode approximation and adding the mechanical and electrical damping, a coupled set
of ordinary differential equations in η(t) and q(t) are generated. After subtracting the static terms, the
dynamic coupled equations give
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M1η̈ +MZ z̈ +D1η̇ +KLη + α1q
2 + α2q = 0

q̇ = − q

ε0SR

[TPDMS

εr
+ d0 − φ(L1)η

]
+
σ(d0 − φ(L1)η)

ε0R

(17)

where

M1 = m(x)

∫ L

0

φ(x)2dx

MZ = m(x)

∫ L

0

φ(x)dx

D1 = c

∫ L

0

φ(x)2dx

KL = D(x)

∫ L

0

φ′′
2

(x)dx− p
∫ L

0

φ′
2

(x)dx

α1 = −φ(L1)

2ε0S

α2 =
σφ(L1)

ε0
z̈ = Aamp cos Ωt

(18)

Eq. (18) reveals as the compressive axial force is increased, the linear natural frequency will decrease
because of the decreasing stiffness of the system. Therefore, increased axial forces will generate larger
responses.

Impact Model
A separate equation of motion must be implemented to describe the case when the impact occurs.
When the impact occurs, the upper electrode will penetrate into the PDMS layer, with the maximum
penetration distance being δ such that d0 = gi + δ. The impact forcing and damping terms are determined
by following studies by Narimani et al. (2004); Mahmoud et al. (2009), and letting

Fi = (KL + ki)η − kigi
Fd = ciη̇

(19)

Once Eq. (19) are substituted into Eq. (17), the full piecewise governing equations are completed. The
governing equations for the complete system are shown below. The mechanical equation is represented as
a piecewise function, with the condition being whether the upper electrode is separated from the PDMS
layer or impacting the PDMS layer.
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{
M1η̈ +MZAamp cos Ωt+D1η̇ +KLη + α1q

2 + α2q = 0 y(L1, t) < gi

M1η̈ +MZAamp cos Ωt+ (D1 + ci)η̇ + (KL + ki)η − kigi + α1q
2 + α2q = 0 y(L1, t) ≥ gi

q̇ = − q

ε0SR

[TPDMS

εr
+ d0 − φ(L1)η

]
+
σ(d0 − φ(L1)η)

ε0R
(20)

Experimental Setup
To experimentally test the concept of the wideband energy harvester, the system was placed on an
electrodynamic shaker. Fig. 4 shows the experimental setup. The input signal to the shaker was
controlled in a closed-loop with Matlab. The signal was sent to a data acquisition device (NI USB-6251),
then through a power amplifier (Techron 5530 Power Supply Amplifier), and then to the shaker. An
accelerometer (PCB Piezotronics 352A24) was placed on the base of the shaker and the accelerometer
signal was used in the feedback control loop. The accelerometer signal was sent through an amplifier
(Kistler Dual Mode Amplifier) and was then sent to the DAQ. The voltage was recorded using an
oscilloscope (Tektronix MDO3034). The axial force was controlled by adjusting a screw fixed to the
setup. The amplifier that powers the electrodynamic shaker is not pictured. System parameters are defined
in Table 1. Trials were conducted in which the compressive axial force and the excitation amplitude
were varied and the frequency response of each trial was recorded. The values for the axial force
were approximated from the model that produces the corresponding experimentally determined natural
frequencies.

(a) (b)

Figure 4. (a) Picture of the experimental setup, (b) Block diagram of the experimental setup.

Results and Discussions
Experimental frequency response results of various axial forces and acceleration amplitudes are displayed
in Figs. 5 and 6. The results show the generator output voltage when the frequencies are swept upward.
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Table 1. Experimental parameters

Parameter Value
(L x b x h) (12.25 x 3.7 x 0.1) cm
(Lm x bm x hm) (3.7 x 5.2 x 0.475) cm
c variable
d0 260 µm
δ 10 µm
gi 250 µm
Ep 2.344GPa
R 10MΩ
TPDMS 500 µm
εr 2.5
ρp 1220 kg/m3

σ variable
ki 2000 N/m
ci 5000 Ns/m

Regarding Fig. 5, each set of plots are conducted at a fixed excitation amplitude with a varying axial force.
As the axial force was varied, the natural frequency was experimentally recorded and the corresponding
axial force was determined through the relationship that is seen in Fig. 3. The larger the axial force, the
higher the output voltage. This is because the axial force reduces the system’s stiffness. This stiffness
reduction allows the upper electrode to travel at faster velocities, which corresponds to a harder impact
between the upper electrode and the PDMS layer causing a larger output. The stiffness reduction is shown
by the shift of the natural frequency with the change in the axial force. The operating bandwidth increases
with the increase in axial force. The bandwidth is measured by recording the frequency difference where
the RMS voltage is 0.5 V . With the higher axial force, there is a significant increase in voltage output.
Now regarding Fig. 6, each set of plots are conducted at a constant axial force value, with varying
excitation amplitudes. With higher excitation amplitudes, there are higher voltage outputs, caused by
harder impacts. The operating bandwidth increases with the increase in excitation amplitude, which is
due to the impact being able to occur over a larger frequency range. And as the impact is related to
more noticeable voltage outputs, larger operating bandwidths are seen. For the low axial force cases,
there is a gradual increase in voltage output with excitation amplitude. But with stronger axial forces,
the voltage outputs increase at a faster rate with the same excitation amplitude steps. We hypothesize
this occurs from a greater increase of the charge density because of the stronger collision as the system’s
stiffness decreases. The small frequency bump at low frequencies is attributed to the other harmonics of
the response.
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Figure 5. Experimental results for various axial forces and acceleration amplitudes of (a) 0.6g, (b) 0.8g, and
(c) 1.0g. The arrow indicates the direction of increasing the axial force.
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Figure 6. Measured frequency voltage responses for various excitation amplitudes at axial forces of (a) 0.0 N ,
(b) 6.0 N , (c) 21.0 N , and (d) 27.0 N
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To validate the reduced order electromechanical model (Eq. (20)), the Shooting Method was
implemented to numerically solve for the frequency response of the system. The Shooting Method
is a computationally efficient alternative to Long Time Integration as the response is iteratively
calculated until the correct initial conditions are determined for periodic solutions (Younis (2011)).
First, displacement frequency responses are obtained using the shooting technique. For an axial force
of p = 6 N , the maximum displacements at the center are displayed in Fig. 7. In this figure, as expected,
the frequency bandwidth widens as the excitation amplitude increases (comparing parts (a) and (b)). The
flat region indicates the impact that occurs between the triboelectric layers and that the displacement is
limited by the lower electrode at a small distance. Increasing the axial force from p = 6 N to p = 15 N
widens the frequency bandwidth (see Fig. 8). This widening happens because the stiffness reduction
increases the amplitude at the same frequency, and since the travel range is limited, the impact region
widens over the frequency range. To shed light on the electromechanical coupling of the system, the
voltage frequency responses are then obtained that present useful information about the relationship
between axial force, impact, and triboelectric voltage generation.
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Figure 7. Simulated maximum displacement when (a) p = 6 N and Aamp = 0.8g, (b) p = 6 N and
Aamp = 1.0g
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Figure 8. Simulated maximum displacement when (a) p = 15 N and Aamp = 0.8g, (b) p = 15 N and
Aamp = 1.0g

Case studies include voltage frequency responses for three different axial forces, each at two excitation
amplitudes, see Figs. 9 to 11. It is noted that the value of the surface charge density is not constant, but
varies with the frequency. For the frequency ranges when there is no impact, there is a constant free
vibration surface charge density. Once the impact between the upper electrode and PDMS layer starts
occurring, the surface charge density increases with the frequency. The increase occurs because, in the
impact region, an increase of the frequency causes a harder collision that generates larger penetration
into the PDMS layer. The larger penetration produces more charges on the contact surfaces of PDMS
and Al that accumulate resulting in higher output voltage as the frequency increases. For the scope of
this paper, an empirical recursive model for the surface charge density is determined as σi = σi−1 · cσ ,
where σ is the surface charge density that starts with the free vibration density and cσ is a multiplier for
the surface charge density. The subscript i indicates a frequency step where the impact happens, and i− 1
denotes the preceding frequency step. For each trial of axial force, values for the free vibration surface
charge density and its multiplier were identified by comparing simulations and experiments. This formula
is only used in the impact region, which means it starts at the first frequency where impact occurs and
ends at the frequency where impact ends. Further investigation is required for a more accurate dynamic
model for the surface charge density, but this simplistic model could explain the drastic increase of the
slope in the frequency response as a stronger collision occurs. The mechanical damping coefficients (c)
vary by the axial force. The variability is because the support is not perfectly rigid and thus affects the
support loss at each axial force. These values are identified from the experiments and are reported in the
captions of Figs. 9 to 11. The coefficients for impact damping (ci) and impact stiffness (ki) were chosen
by first ensuring that an impact and rebound occurred, and then by matching the frequency response of
the system during the impact region. These values are reported in Table 1.

As this paper is focused on energy harvesting, power output is also considered. As the output power is
related to the voltage and the load resistance, it is necessary to determine the optimal resistance in order
to maximize the power output. This is a critical step because in general, tuning the load resistance is one
of the easier parameters to tune in a system. The optimal load resistance is obtained by determining the
maximum RMS voltage value in the frequency range of 10− 60Hz and then varying the load resistance
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until the maximum power is found. The calculated average powers based on the RMS voltage values
are depicted in Fig. 12. The figure compares average power for two cases of no axial force and an axial
force of p = 15 N . As seen in this figure, with larger axial forces, there are higher output power values
and higher optimal load resistances. The optimal load resistance for the case of no axial force is around
55− 60MΩ and the optimal load resistance for the case of an axial force of 15N is around 65− 70MΩ.
This increase is because of the electromechanical coupling of the system, with the electrical components
(load resistances) and mechanical components (axial forces) working with each other to create different
systems that have different responses.
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Figure 9. Experimental and simulated voltage frequency response for an expected axial force of 0 N , (a)
Aamp = 0.8g, σ = 0.05 C/m2, cσ = 1.05, c = 25 Ns/m and (b) Aamp = 1.0g, σ = 0.05 C/m2, cσ = 1.055,
c = 40 Ns/m
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Figure 10. Experimental and simulated voltage frequency response for an expected axial force of 6 N , (a)
Aamp = 0.8g, σ = 0.05 C/m2, cσ = 1.047, c = 25 Ns/m and (b) Aamp = 1.0g, σ = 0.05 C/m2, cσ = 1.047,
c = 40 Ns/m
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Figure 11. Experimental and simulated voltage frequency response for an expected axial force of 15 N , (a)
Aamp = 0.8g, σ = 0.035 C/m2, cσ = 1.057, c = 35 Ns/m and (b) Aamp = 1.0g, σ = 0.041 C/m2, cσ = 1.05,
c = 40 Ns/m
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Figure 12. Average power response curves for various load resistance values and (a) no axial force, (b) axial
force of 15 N

Conclusions
A tunable wideband energy harvester using triboelectric transduction is introduced to improve efficiency
in vibration energy harvesters. The harvester combines the high energy density of triboelectric generators
with impact vibration and axial force to enable the use of wider frequency bandwidths at lower
frequencies. A continuous electromechanical model was developed that describes the behavior of the
system in terms of dynamic amplitudes and voltage outputs. The simulated results were then validated
with experimental data. With an increase in the axial force, the voltage output increases. This increase
happens because larger collisions occurs between triboelectric layers as a result of the stiffness reduction.
The increase in axial force led to an increase in operating bandwidth. The system seemed to behave
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differently for weaker and stronger axial forces, with drastic increases in voltage output for stronger axial
forces. This increase was explained by the linear increase of the surface charge density as a function of
frequency in the impact region. The inclusion of the axial force also allowed the system to be tuned to
a wide range of natural frequencies to accommodate different frequency sources. The presented study
contributes to the development of triboelectric energy harvesters that can adapt to their environment for
powering wireless sensor networks.
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