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Dynamic Response of a Tunable MEMS Accelerometer Based on
Repulsive Force

Meysam Daeichin, Mehmet Ozdogan, Shahrzad Towfighian ∗1, Ronald Miles

Abstract
This paper describes a tunable MEMS electrostatic accelerometer that uses repulsive electrode configuration so that the design is
not hampered by capacitive pull-in instability. The repulsive force configuration enables the increase of DC bias voltage without
suffering from the pull-in failure mode. This flexibility in increasing voltage can be employed as a tuning parameter to widen the
working frequency range and to improve the robustness of the accelerometer. A lumped parameter model is developed to simulate
the response of the microstructure under a combination of electrostatic and dynamic mechanical loading. The electrostatic force is
estimated using a finite element simulation. The nonlinear equations of motion are solved for harmonic base excitations and half-
sine shock loads using the shooting and the long-time integration methods, respectively. To validate the model, a sensor is fabricated
and characterized under harmonic base excitation and mechanical shocks. A mechanical sensitivity of 0.1 µm

g is achieved when the
bias voltage is 40(V). The experimental data are in good agreement with the simulation results. The comprehensive dynamical
characterization presented in this study contributes to the development of functional accelerometers with tunable capabilities to
harmonic and shock accelerations.

© 2016
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1. Introduction

MEMS sensors and actuators have replaced their macro counterparts in many applications
including, for example, pressure sensors, inertial navigation systems, and adaptive optic systems
[1–3]. They have enabled consumer electronic products like smartphones, laptops, virtual reality
headsets, and health monitoring wearable devices to deliver more enriched functionality. Their
reliable performance, low cost, low power consumption, and more importantly, their compatibility
with semiconductor fabrication technology have made MEMS technology popular.

Electrostatic actuation and detection is the most common transduction method in MEMS
[4], and almost all the current commercially available electrostatic MEMS devices are based on
parallel-plate [5] or interdigitated comb drive configurations [6]. In a parallel-plate configuration,
the electrostatic force attracts a movable electrode to the substrate or bottom electrode. One can
apply a specific voltage to move an electrode to a desired position in the case of an actuator (like
micromirrors), or exert an excitation and sense change in the capacitance between two electrodes
in the case of a sensor (like accelerometers).
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The main drawback of this electrostatic force is pull-in instability. Pull-in happens when the
restoring force of the microstructure is no longer able to overcome the attractive electrostatic force
and as a result, the microstructure collapses to its substrate. Capacitive MEMS transducers are
designed to operate far from the pull-in region and this limits the device operation range; for
example, it limits the travel range in micro-mirrors [7]. This issue is a significant constraint that
needs to be considered in designing the microstructure geometry. Particularly, the initial gap
between the movable electrode and the substrate is affected by this design limitation. This initial
gap plays a crucial role in squeeze film damping [4] and the magnitude of the electrostatic force.
As a result, it has a significant effect on the device sensitivity and performance in general.

As a new design paradigm, the repulsive capacitive sensing configuration is an alternative to
parallel-plate or comb-drive configurations [8–10]. This approach takes advantage of the fringe
electrostatic field to generate a repulsive force that pushes the movable structure away from the
substrate, which essentially eliminates the possibility of pull-in (Fig. 1). This design approach
opens a new door to build MEMS sensors and actuators without the limitation on performance
imposed by dynamical instability from pull-in. Furthermore, because the movable electrode has
the same voltage as the substrate (grounded), the possibility of micro-welding is eliminated. This
failure mode happens when two microstructures with different voltages contact each other [11].

Lee et al. first introduced the repulsive approach [12]. A new generation of repulsive actuators
was developed by He and Ben Mrad [8, 9, 13, 14]. The nonlinear dynamics of microstructures
under a repulsive force has been investigated in the previous work of the authors [15–17]. In
our previous work [15], we presented a comprehensive dynamical analysis of microbeams with
clamped-clamped and cantilever boundary conditions under repulsive force. These microbeams
are building blocks of this transduction scheme. We have investigated the nonlinear dynamic
performance of a repulsive micro-mirror that showed significant travel ranges under parametric
excitation [16]. However, to the best of our knowledge, there is no comprehensive study of the
nonlinear dynamics of a sensing element in a repulsive electrode configuration.

In this study, we examine the repulsive approach to build a capacitive accelerometer. There
are numerous applications for accelerometers. They are main components of inertial navigation
systems used in cars, airplanes, smartphones, etc. For example, They are used to deploy airbags in
automobiles in an accident [18] or, as a part of wearable health monitoring technologies, to detect
the sudden fall of elderly people[19] to provide them with necessary medical attention as soon as
possible. For a comprehensive study on accelerometer sensors based on the parallel-plate scheme,
see [20].

The electrostatic force on the moving element in the system examined here differs considerably
from that found in conventional parallel-plate electrode designs and cannot be estimated using
simple analytical expressions. This, along with the large amplitude vibration of the proof-mass,
make the dynamics of the system fully nonlinear and complicated. Therefore, our present focus
is on exploring the dynamics of the sensing element as it vibrates in electric field. This should
be accomplished prior to the development of a read-out circuit, which will be addressed in a
subsequent work.

The structure of this paper is organized as follows. In Section 2, the working principle of the
sensor design is explained. In Section 3, a mathematical model of the structure is developed, and
a lumped parameter model is extracted. Section 4 presents the fabrication process of the device.
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Experimental results from dynamic tests on the fabricated device are presented and discussed in
Section 5 followed by a conclusion.

2. Structure design and working principle

The general schematic of the structure under base excitation is shown in Fig.1. There are
four elements that comprise this design. The first element is the square plate that is attached to
its anchors through two torsional beams. The two beams undergo torsional deflection as the proof
mass rotates because of applied acceleration and electrostatic forces. The second part is the 200µm
long micro-beams that are attached to three sides of the proof mass. The proof-mass and fingers
attached to it are all electrically grounded. Under these fingers, there are sets of grounded fingers
fixed on the substrate as the third element of the sensor. The fourth part is the sets of electrodes
adjacent to the grounded fingers. These fingers carry electrical voltage, the electric field of which
exerts electrostatic forces on the beams connected to the proof mass.

The dimensions of all these beams and their electrostatic field are illustrated in Fig. 1. The
fringe electrostatic field exerts different forces on the top and bottom surfaces of the moving fin-
gers. The resultant force is an upward force that pushes the fingers and the proof mass away from
the substrate. Beyond a certain distance, the electrostatic force becomes attractive and tends to
bring the microstructure back into the repulsive region. Therefore, there is an equilibrium point
where the electrostatic force on the structure becomes zero. Once a voltage is applied on the
side electrodes, the accelerometer plate rotates away from the substrate to an equilibrium position
where the electrostatic force is equal to the restoring force of the torsional springs. This equi-
librium point can be tuned by changing the voltage on the side electrodes. As will be discussed
below, this is advantageous when we want to set the threshold acceleration that the sensor can de-
tect. When the base of the plate accelerates, the plate tends to stay at rest because of its inertia and
this leads to a relative displacement between the base and the plate. Because of this displacement,
the capacitance between the electrodes will change as well. This change in capacitance can be
measured and related to the relative motion of the plate. If the load is large enough, the fingers can
hit the bottom electrodes. However, because of the repulsive nature of the force, they will bounce
back and will remain free to move. This collision can be detected with the aid of an electrical
circuit. Our main focus here is to investigate the motion of the microstructure under the combined
nonlinear electrical and mechanical loads as understanding this behavior is an essential part of
the sensor characterization for making functional MEMS accelerometers. In the next section, the
mathematical model of the structure will be presented to explore the dynamical characteristics of
the system.

3. Mathematical modeling

The mathematical model presented in this section can be used as a tool to refine the sensor
design before going through the fabrication process. As shown in our previous work [16], this
simple single degree of freedom model is a very powerful tool to predict the response of the
system and capture the inherent nonlinearity caused by the electrostatic force. We consider a
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Figure 1: (a) The general schematic of the accelerometer. Base excitation (shown by yellow bi-
directional arrows) will be transferred to the microstructure through its supports causing the plate
to rotate. (b) A closer view of the electrodes configuration. (c) Voltage distribution on beams. (d)
Asymmetric fringing electric field exerts an upward force on the moving electrode (e) Side view
of accelerometer and substrate when Vdc = 0(f) when Vdc , 0 but there is no mechanical load and
(g) When Vdc , 0 and a mechanical load is applied.

lumped parameter oscillator as the following:

I ˆ̈θ + c ˆ̇θ + kθ̂ = Mes(θ̂) + Msh (1)

in which θ̂ is the rotation of the proof-mass plate about its anchors’ axis, I, c and k are the moment
of inertia, torsional damping, and torsional stiffness coefficients, respectively. On the right-hand
side, Mes and Msh represent the nonlinear moments caused by the electrostatic and base accelera-
tion forces, respectively.

The electrostatic force has a nonlinear dependence on the position of the moving fingers in the
electric field. To obtain an expression for the electrostatic moment, first we calculate the force
profile for a unit-cell using a 2D finite element analysis in COMSOL. Such a unit cell consists
of the moving electrode, bottom electrode and two side electrodes as shown in Fig. 1. The force
profile is shown in Fig. 2.

Using a curve fitting technique, the force profile (Fig. 2) can be approximated as a 9th-degree
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Figure 2: Electrostatic force profile obtained from COMSOL for the two-dimensional unit cell of
the sensor

polynomial, in terms of the deflection, z.

Fes = V2
dc

9∑
i=0

(Aizi) (2)

where z is the gap between the bottom electrode and moving fingers in each cross section. In order
to write the electrostatic force as a function of θ, we use the following trigonometric equation.

sin θ =
z
x

(3)

which yields

Fes−mov− f ing(x, θ) = V2
dc

9∑
i=0

Ai(x · sin θ)i (4)

Integrating Eq. (4) over the finger length results in the total electrostatic force on each beam.

Fes−tip(θ) =

∫ Ls+Lb

Ls

Fes−mov− f ing(x, θ)dx =∫ Ls+Lb

Ls

V2
dc(

9∑
i=0

Ai(x · sin θ)i)dx

= V2
dc

9∑
i=0

Ai(sin θ)i

i + 1
· ((Ls + Lb)i+1 − Li+1

s )

(5)

Where the parameters are given in Table 1. To calculate the corresponding moment caused by
this force, the distance between the acting point of the resultant force and the axis of rotation (xc)
is needed, which can be calculated as follows:

xc =

∫ Ls+Lb

Ls
x · Fes−mov− f ingdx∫ Ls+Lb

Ls
Fes−mov− f ingdx

(6)
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Therefore, the moment of electrostatic force on the tip fingers about the axis of rotation can be
written as

Mes−tip = Nt · Fes−tip(θ) · xc =

NtV2
dc

9∑
i=0

Ai(sin θ)i

i + 2
· ((Ls + Lb)i+2 − Li+2

s )
(7)

where Nt is the number of fingers on the tip side of the proof mass. Following a similar approach
and assuming that the electrostatic force on the fingers on the sides of the proof-mass does not
change over the finger length, we can calculate the moment of the electrostatic force on these
fingers as follows.

Mes−side = V2
dc ·

Ns∑
j=0

9∑
i=0

(Ai(u j · sin θ)i · Lb) · u j (8)

Where u j is the distance of the jth side finger from the axis of rotation and Ns is the number of
fingers on each side. So, the total electrostatic moment in Eq. (1) can be written as:

Mes(θ̂) = Mes−tip + 2 · Mes−side (9)

The factor 2 in Eq. (9) accounts for the fact that there are two sets of side fingers, one on each side
of the proof-mass. The moment from acceleration (Msh) also can be written as:

Msh = [mp · a(t) ·
Ls

2
] + [Nt · mb · a(t) · (Ls +

Lb

2
)]+

[2 · (
Ns∑
j=1

mb · a(t) · u j)]
(10)

where the first bracket is the moment caused by proof mass acceleration, the second shows the
moment caused by the tip fingers acceleration, and the third is for the side fingers. In Eq. (10), mp,
mb, and a(t) are the mass of the rotational plate, mass of the moving electrode, and the acceleration
load that is exerted on the microstructure through base excitation. This mechanical load can be
modeled as a harmonic base excitation or as a shock load. There are different shock profiles
commonly used for modeling shock loads such as square, saw-tooth, half-sine or full-sine shock
profiles. The most commonly used shock load is the half-sine with the profile given in Eq. (11),
which will be used in the following in our description of the experiment on the fabricated device,

a(t) = A sin(ωt) · u(
π

ω
− t) (11)

Where u( π
ω
− t) is the step function. Dividing Eq. (1) by I and using Eq. (9) and Eq. (10)

and following non-dimensional parameters (Eq. (12)), we can rewrite the governing equation of
motion in non-dimensional format (Eq. (13)).

θ =
θ̂

θ0
, t =

t̂
T
, T =

1
ωn
, ωn =

√
k
I

(12)
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θ̈ + 2ξωnθ̇ + ω2
nθ =

T 2

Iθ0
· (Mes(θ) + Msh) (13)

As discussed in Section 2, by applying a DC voltage on the side electrodes, the proof-mass rotates
around its anchors’ axis and goes to an equilibrium point away from the substrate. To obtain this
static rotation, all the time derivative terms in Eq. (13) are set to zero and then the equation is
solved for static rotation (θst). The static rotation can be used to solve for the dynamic solution
(θdyn) of Eq. (13) in the presence of any time-varying load using the following change of variable.

θ = θst + θdyn (14)

The moment of inertia, I, in Eq. (13) can be calculated as

I =
1
3

mpL2
s + Nt · (

1
12

mbL2
b + mb(

Lb

2
+ Ls)2)+

Ns∑
j=1

(
1

12
mbb2 + mbu2

j)
(15)

The natural frequency of the first mode, ωn is obtained from the ANSYS finite element package.
The first mode is a rotational mode as expected. The corresponding natural frequency for this
mode is predicted to be 1320(Hz). After examining our subsequent experimental data, we can
modify this value for the natural frequency to account for all the fabrication imperfections, residual
stresses and mathematical simplification in this 1 DOF model.

Equation (13) can be solved numerically using the Runge-Kutta method for various damping
conditions. However, it is likely that a simple linear damping does not capture the physics of
energy dissipation in this problem. In general, modeling energy dissipation in the repulsive scheme
is more challenging compared to the attractive scheme because of two reasons. First, the amplitude
of vibration can get very large compared to the initial fabrication gap because the initial static
deflection of the structure (from Vdc) moves the structure away from the substrate, providing more
space for vibration. Therefore, those damping models available in the literature [21–23] that are
based on Reynolds’ equation are not valid because the underlying assumptions such as negligible
pressure change across the fluid film or small gap to lateral dimension ratio are not valid here.
Second, because there is no limitation from pull-in, the device can get very close to the substrate
while having a large amplitude vibration. So, in each cycle of vibration, when the moving part
is far away from the substrate the dominant damping mechanism is the drag force in free air.
However, when the structure gets close to the substrate, the squeeze film damping mechanism
starts to play a significant role in energy dissipation. Thus, the damping force is likely to be quite
nonlinear.

Another challenge in modeling damping in this problem is that the continuity assumption for
the air breaks down when the microstructure gets very close to the substrate, especially at low
pressures. In this situation, the characteristic length of the problem is even smaller than the initial
fabrication gap, and the characteristic length of the problem becomes comparable with the mean
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free path of air molecules. The Knudson number is the parameter to check to see if the continuity
assumption is valid (Eq. (16)). This number is defined as the ratio of the mean free path of air (gas)
molecules to the characteristic length of the problem, which is usually the gap between moving
and stationary parts of the microstructure. The mean free path of air molecules depends on the air
temperature and pressure. Assuming the room temperature condition (25oC), the dependence of
the molecules’ mean free path on pressure can be written as in Eq. (16).

Kn =
λ

H
, λ =

P0

P
λ0 (16)

Using the Knudsen number, the flow is divided into four regimes: continuum flow, slip flow,
transitional flow and free molecular flow. Assuming the characteristic length to be equal to the
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Parameter Symbol Value Unit
Density ρ 2330 kg

m3

Proof mass length Ls 990 µm
Proof mass width Lw 1000 µm
finger length Lb 200 µm
number tip fingers Nt 31 µm
number side fingers Ns 25 µm
Voltage fixed finger width d1 8 µm
Gap between fixed fingers d1 8 µm
Moving finger width d2 4 µm
Ground fixed finger width d2 8 µm
Electrodes and Proof thickness t1 2 µm
Initial gap h1 2 µm
Natural frequency ωn 2 × π × 1740 rad

s
Damping ratio (Vdc = 40) ξ0 0.016
Damping ratio (Vdc = 40) ξ1 0.033
Damping ratio (Vdc = 50) ξ0 0.016
Damping ratio (Vdc = 50) ξ1 0.038
Damping ratio (Vdc = 60) ξ0 0.017
Damping ratio (Vdc = 60) ξ1 0.055
Force Constant A0 3.4079 × 10−7 N/m
Force Constant A1 −6.7113 × 10−2 N/m2

Force Constant A2 7.5644 × 103 N/m3

Force Constant A3 −8.8555 × 108 N/m4

Force Constant A4 8.1341 × 1013 N/m5

Force Constant A5 −4.6766 × 1018 N/m6

Force Constant A6 1.6139 × 1023 N/m7

Force Constant A7 −3.2602 × 1027 N/m8

Force Constant A8 3.5560 × 1031 N/m9

Force Constant A9 −1.6175 × 1035 N/m10

Moment of inertia I 1.7954 × 10−15 kg × m2

Table 1: Dimensions for the MEMS accelerometer in Figure 1.

Pressure (Torr) regime
P > 2200 Continuum

1000 < P < 2200 Slip flow
10 < P < 1000 Transient

P < 10 Molecular

Table 2: Air flow regimes for characteristic length H = 2µm

initial gap and using equations (16) we can categorize the flow according to pressure (Table
9



2). As we will be performing the experiment on the device at very low pressure (P < 350mTorr),
the flow regime would be in the free molecular regime. Also, as the microstructure gets very close
to the substrate, the characteristic length of the problem becomes even smaller than 2µm, which
leads to higher threshold pressure for the molecular region. In our previous work, we proposed a
modular damping that captured the complicated physics of this energy dissipation mechanism. The
proposed modular damping depends on the ratio of vibration amplitude to the initial gap (initial
fabrication gap + static deflection caused by DC voltage). When the vibration amplitude is small
compared to the initial gap, the damping is dominated by linear viscous damping. However, as the
vibration amplitude becomes comparable with the initial gap, the squeeze film damping increases
as the air molecules are trapped between the proof mass and substrate. The equation accounting
for this variable damping that modulates itself with the amplitude-gap ratio is given in Eq. (17)
[16].

ξ = ξ0 + ξ1(
|θdyn|

θinitial
) (17)

With the description of damping above, all the parameters in Eq. (13) have been defined. Next,
the fabrication process is explained followed by experimental results.

4. Fabrication Process

The process flow of the device fabrication is depicted in Figure 3. It starts with 4-inch standard
silicon wafers which are dipped into base and acid baths (RCA Cleaning). This process removes
residues such as organic particles and the native oxide on the wafer surface. After the cleaning,
we grew 1 µm thick oxide as an insulation layer using a low-pressure chemical vapor deposition
(LPCVD) furnace. On top of this layer, we deposited 0.2 µm thick low-stress nitride. The oxide
and nitride layers serve as insulators that isolate the device from the substrate. On top of the nitride
layer, a 2 µm thick phosphorus-doped amorphous silicon (N+ a-Si) was deposited in a LPCVD
furnace. The deposition rates and the deposition temperatures of the LPCVD films are presented in
Table 3. This amorphous layer was then formed to polycrystalline silicon (poly-Si) by an annealing
process [24, 25]. Following the annealing, we spun a 2 µm thick positive photoresist and exposed
it with an i-line stepper. Exposed wafers were baked at 115 °C for 90 seconds and developed with
726 MIF developer for 60 seconds. After the developing step, the first layer of fingers was created
via the Bosch etching process. The chamber conditions of the etching process are presented in
Table 4. On top of the fixed fingers, we deposited 4 µm thick high-temperature oxide (HTO) film
as a sacrificial layer. This layer provides a vertical gap between the first and second poly-Si films
which are the fixed and the moving fingers, respectively. Following the deposition process, we
planarized 2 µm of the oxide using a Chemical Mechanical Polisher (CMP). This process removes
the step difference between the proof mass and the fixed fingers. Later, using Inductively Coupled
Plasma Reactive Ion Etching (ICP-RIE), we etched the sacrificial oxide to open vias between first
and second poly-Si. The chamber condition of this process is presented in Table 4. Upon etching
the vias, we deposited another layer of 2 µm thick phosphorus-doped a-Si which is also annealed
to form poly-Si as done before. This layer is etched to form the moving fingers that are attached
to the rectangular shaped proof mass. After the etching, 20 nm Cr and 150 nm of Au are deposited
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Film Temp. (°C) Thickness (µm) Dep. Rate (Å /min)

SiO2 1100 1 74
Si3N4 800 0.2 25
HTO 800 4 12.7
a-Si 570 2 11.7

Annealing 1000 - -

Table 3: Information related to the thin film depositions.

Bosch Process for Silicon Etching
Process Pressure (mTorr) C4F8 (sccm) SF6 (sccm) Ar (sccm) RF 1 RF 2 Duration (sec)

Etch 1 23 2 100 40 8 850 5
Passivation 24 70 2 100 0.1 850 5

Etch 2 23 2 70 40 8 850 2
Etch 3 23 2 100 40 8 850 5

ICP Process for Oxide Etching
Process Pressure (mTorr) CHF3 (sccm) O2 (sccm) Ar (sccm) RIE (W) ICP (W) Duration (sec)

Etch 5 52 2 - 15 2500 -

Table 4: Chamber conditions for dry etching. Etch rates for silicon and oxide are measured around 2 µm/min and 150
nm/min, respectively.

on the pads using an e-beam evaporation tool. Then the wafers are diced and released in HF:HCl
solution. Following the release, the chips are critical point dried (CPD) to avoid stiction. The
scanning electron microscope (SEM) images of the fabricated device are presented in Figure 4.
The chip is mounted on a printed circuit board and wire-bonded using an aluminum wire wedge-
bonder.

5. Experimental Setup and Results

We conducted experiments on the fabricated sensor to investigate the accelerometer dynamical
performance and verify the mathematical model that was developed in section 3. The sensor was
subjected to two different mechanical loads, harmonic excitations and shock loads. For harmonic
loading, the dynamic response of the microstructure in the resonance region will be discussed that
sheds light on the effects of inherent nonlinearities in the electrostatic force. Also, the mechanical
sensitivity of the accelerometer will be obtained which is an important parameter with a significant
contribution to the overall sensitivity of the sensor. This mechanical sensitivity is obtained from
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Figure 3: Fabrication process (a) 4-inch, 525 µm thick bare Si wafer. (b-c) Insulation layers growth
and deposition. (d) First polysilicon deposition. (e RIE etch of polysilicon. (f) Sacrificial layer
deposition and CMP processing. (g) Anchor etch on a sacrificial layer. (h) Second polysilicon
deposition. (i) Polysilicon etch and gold deposition on the pads. (j) Release in HF:HCl solution
and CPD.

Figure 4: (a) SEM image of the device from top. (b) Closer view of the device anchor point. (c)
Moving and fixed electrode configuration.

the frequency response before reaching the resonance region because accelerometers are always
used at frequencies below their resonance range. The robustness of the accelerometer against
mechanical shocks is another important parameter that will be analyzed in the following.

The printed circuit board containing the MEMS chip is mounted to the head of the shaker and
placed inside the vacuum chamber at 200mTorr. A laser vibrometer (Polytec MSA-500) is used
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to monitor the time-response of the sensor. This set up is shown in Fig. 5. The next part addresses
how the shaker acceleration is kept constant while sweeping the frequency.

Figure 5: Experimental setup. (a) NI-USB 6366 Data Acquisition Box (b) Krohn-Hite 7600 power
amplifier. (c) Vacuum chamber. (d) MSA-500 Polytec Laser Doppler Vibrometer. (e) Shaker
inside the vacuum chamber and the chip attached on the PCB.

5.1. Shaker Characterization
The output acceleration of the shaker depends on the amplitude and frequency of the voltage

signal given to the shaker. To conduct a frequency sweep on the microstructure, the shaker needs
to provide a base acceleration with a constant amplitude at different frequencies. Usually, a closed
loop system is used with the shaker where the output acceleration of the shaker is constantly mon-
itored so acceleration amplitude can be kept constant by modifying the amplitude of the voltage
signal. Here, the shaker is used in an open loop mode. To identify the required voltage needed
to send to the shaker at each frequency ( f ), the shaker is characterized in a separate setup where
we use the laser vibrometer to measure the shaker velocity. For example, if we need to obtain a
harmonic base acceleration with 1g amplitude at 3000Hz from the shaker, we send voltages with
3000Hz frequency and different amplitudes to the shaker until we find a voltage amplitude that
results in 1g ± 1% acceleration. Then we repeat the same procedure for the next frequency step
(3010Hz). To characterize the shaker for half-sine shock excitations with different time duration,
the shaker response is measured with a commercial accelerometer (PCB-352A24). If the shock
amplitude is within ±1% range of the desired amplitude, the voltage will be recorded to be used
for the shock experiment.
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5.2. Harmonic Loading
After the shaker characterization, we start testing the device by applying harmonic base ex-

citation and performing a frequency sweep. Such an analysis is important to investigate the ac-
celerometer dynamical performance and verify the mathematical model that was developed in
Section 3.

The motion of the sensor proof-mass relative to the substrate is obtained by subtracting the
substrate response from the device response for each excitation frequency ( f ). As the motion of
the substrate does not depend on the electrical voltage on the device, for each mechanical loading
scenario, the substrate motion was measured by reading its velocity with the laser vibrometer. The
device response, on the other hand, depends on the mechanical load and electrical voltage on the
side electrodes. For each loading case, the proof-mass response was measured again by reading
its velocity using the laser vibrometer. Then, the velocity of the substrate for each mechanical
load was subtracted from the device response for the corresponding mechanical load to obtain the
relative velocity of the proof-mass. Subsequently, the fast Fourier transform (FFT) of this relative
velocity signal was calculated to extract the velocity amplitude in the steady-state region. Divid-
ing this velocity amplitude by 2π f results in the displacement amplitude for the corresponding
frequency.
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Figure 6: Frequency response to harmonic excitation for Vdc = 60V , 50V , and 40V and accelera-
tion amplitude of 1 − 4g

Figure 6 shows the device response for different voltages on the side electrodes. For each
voltage, different harmonic excitations with different amplitudes are applied. These figures show
that the resonance frequency increases as the bias DC voltage increases on the side electrode. Fur-
thermore, for DC voltages of 50 and 60(V), as the amplitude of vibration increases, a nonlinear
softening behavior appears in the response. These two phenomena can be explained by looking
at nonlinear terms in the electrostatic force. According to Table 1, A1 (coefficient of x in elec-

15



trostatic force) is negative, when it is on the right-hand side of Eq. (1). This means that linear
stiffness caused by electrostatic force will add to the linear mechanical stiffness of microstructure,
which leads to an increase in stiffness and resonance frequency as DC voltage increases. This
property of the microstructure can be beneficial for increased robustness of the sensor against se-
vere mechanical loads. By increasing the DC voltage, the proof-mass plate gets further pushed
away from the substrate, hence the maximum mechanical load that is required for the proof-mass
to hit the substrate is increased. This means that we can increase the voltage on the side electrodes
and use the sensor for more harsh environments in terms of mechanical loads such as mechanical
shocks. This is the opposite of what happens to conventional shock sensors that are based on the
attractive scheme where an increase in the bias voltage results in early pull-in [20]. Also, one can
tune the DC voltage on the side electrodes to obtain the frequency ranges of interest for different
applications.

The softening behavior in the frequency response at a high voltage of 50 and 60(V) can be
explained by the even-order terms in electrostatic force (A2, A4, A6, A8). Simulation results are
presented in Fig. 6. These results are obtained when the linear natural frequency of the structure
is set to be the measured value of 1740(Hz) in the governing equation of motion (Eq. (13)). This
value is 30% different from what we obtained from finite element analysis (FEA). This discrep-
ancy can be explained by the imperfections in the fabrication process that are not considered in
the FEA. These include a slight bending of the plate that happens because of thermal stresses.
The residual stress on the supports plays a significant role on the structural stiffness of the sensor.
This residual in-plane stress was measured to be approximately 50MPa in the fabrication process,
which causes a slight curvature in the proof mass plate. The static deflection due to residual stress
was measured to be approximately 6µm per 1mm length of the plate. Because a static FEA pre-
dicted approximately the same deflection as the measured result, we conclude that this deflection is
due to in-plane stress only and the variation of residual stress along the thickness may considered
to be negligible. Once the estimated linear frequency for the fabricated device is considered in the
lumped model, the model captures the experimental results with good accuracy. The slight differ-
ence between the simulation results and experimental data, especially at low frequencies, is also
attributed to these inevitable fabrication imperfections and residual stresses as well as limitation
of approximating a continuous system with a discrete (lumped) model. The damping ratios are ad-
justed slightly to match the experimental results for each voltage scenario. It is worth mentioning
that the squeeze film damping is dependent on the resonance frequency. The resonance frequency
changes by varying the DC voltage as shown in Fig.7. Therefore, the damping coefficients will
slightly vary with the DC voltage. For the frequency sweep, the lumped model is solved for the
dynamic solution (θdyn) using the shooting method [26]. The static rotation caused by DC voltage
is calculated and shown in Fig.8 as a function of DC voltage.

The nonlinearity in the device response when the bias voltage is 40(V) is slightly hardening
while the lumped model predicts softening. This discrepancy between the simulation results and
experimental data can be reconciled by introducing a cubic nonlinear term for mechanical stiff-
ness for this specific voltage but such a nonlinearity makes the response hardening for higher
voltages which does not match the experimental data. Also, because the vibration amplitudes with
different voltages for the same mechanical loads are very close to each other (for example, the
resonance amplitudes for 40 and 50(V) when the acceleration amplitude is 3g), this difference in
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behavior cannot be attributed to the nonlinearities in the electrostatic force or stiffness caused by
air in squeeze film regime. This hardening behavior at low voltages needs further investigation.
Although the model does not catch the nonlinear behavior of the microstructure in the resonance
region for low voltages, it matches the experimental data away from this region with good accu-
racy. Because inertial sensors are generally operated in frequency ranges away from their natural
frequency the model still could be used to simulate the device response at low voltages.

The sensitivity of the device for different voltages is shown in Fig. 9. The relative displacement
of the proof-mass for harmonic base excitation with a different amplitude at 2500(Hz) is recorded
and shown in this figure. The slopes of these lines give the mechanical sensitivity for each voltage.
The sensitivity for lower voltages is higher because the contribution of electrical stiffness in the
total stiffness of the sensor (structural and electrical) is smaller. For example, the sensitivity of
the accelerometer at 40V is about 0.1µm

g . This is extremely superior to the numbers found in the
literature, which are generally in the range of nanometer to femtometer per g [27, 28]. In the next
step, half-sine shocks will be considered as the mechanical load on the microstructure.
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Figure 7: Simulation results for linearized natural frequency for different DC voltages on side
electrodes

5.3. Shock Loading
Robustness of accelerometers against mechanical shocks is an important parameter that needs

thorough investigation. Under mechanical shocks, a force is transmitted to the microstructure
through its anchors during a short period of time compared to the natural period of the microstruc-
ture. These loads are usually characterized by the induced acceleration on the affected structure
with three parameters: maximum acceleration (amplitude), time duration, and pulse shape, also
called shock profile. Here, we use half-sine shock loads with different amplitudes and time dura-
tions to investigate the response of microstructure to a shock load. The actual output of the shaker
is measured with the PCB accelerometer, which is mounted on the shaker. Figure 10 shows this
measured acceleration as well as the device response, which is obtained by integrating the velocity
of the microstructure measured by the laser vibrometer.

The time responses of the microstructure for 60(V) bias voltage on the side electrode to shock
loads with different time durations and amplitudes are given in Fig. 11. Similar experiments were
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Figure 8: Simulation results for static displacement at the edge of the proof-mass plate for different
DC voltages
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Figure 9: Mechanical sensitivity of the sensor for different DC voltages on the side electrodes
obtained from experimental results

conducted for 50(V) on the side electrodes to obtain the larger displacements of the proof-mass
(Fig. 12). These shock experiments are done for shock loads that have time durations close to the
natural period of the microstructure. The linearized natural frequency of the microstructure for
each voltage (Fig. 7) is obtained from stability and eigen-value analysis on the Jacobian matrix for
Eq. (13). The linearized natural frequency of the microstructure can be extracted from harmonic
experiments at low g levels (Table 5). Because the stiffness of the microstructure and hence, the
natural period of the microstructure, would change with the DC voltage, the maximum dynamical
displacement of the accelerometer would be a function of the voltage.

The simulation results are in good agreement with the shock-experiment outcomes as shown in
Fig. 11 and 12. The small discrepancies can be attributed to the error in the numerical integration
of the velocity signal and the fact that the shock that is actually applied on the device is not a
perfect half-sine shock considered in the mathematical model. It should also be mentioned that
the same damping coefficients that were used for harmonic simulation at 50 and 60(V) are used for
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Figure 10: The actual shock in the experiment (25g and 0.25(ms)), simulated shock profile in the
mathematical model and relative displacement at the proof-mass edge for the corresponding shock
(Vdc = 60)

simulating the shock responses. The close agreements of the results show that the damping model
can accurately capture the dissipation.

The mechanical sensitivity to shock is an important factor in the performance of shock sensors.
According to Figure 11 at 60(V), the maximum displacement at the proof-mass edge is less than
1.2µm when the shock amplitude is 25g. If we consider the collision of the microstructure with
its substrate as a failure mode or a limit to define the maximum allowable shock load, this 1.2µm
is 10% of the initial gap between the proof-mass edge and the substrate (2µm fabrication gap +

10µm static gap caused by 60(V) applied to the side electrodes). However, as discussed in sections
1 and 2, because there is no pull-in with this repulsive approach, even if the proof-mass hits the
substrate, it could bounce off safely. In fact, if this impact could be detected electrically, the device
could be employed as a tunable threshold shock sensor. As opposed to conventional parallel-plate
shock sensors, the threshold shock could be tuned by applying voltage on the side electrodes. This
capability is enabled in the repulsive configuration because of the additional two electrodes on the
sides.

Because of the limitation on the shock amplitudes that could be generated by the shaker, we
could not test the device under more severe shocks. However, we can use the developed model to
predict the threshold shock at different voltages. These threshold shock amplitudes are given in
Table 5 for different voltages on side electrodes. As discussed in Section 5.2, the sensor resilience
against mechanical shock could be improved by increasing the voltage on the side electrodes. This
also means the threshold shock the sensor can detect can be tuned by varying the DC voltage on
the side electrodes.

6. Conclusion

In this study, a capacitive electrode system that achieves a repulsive electrostatic force is em-
ployed for acceleration-sensing for the first time. An accelerometer is simulated and fabricated. A
single degree of freedom lumped parameter model is constructed that captures the nonlinear dy-
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Figure 11: Simulation and experimental time responses for half sine shocks with different time
duration at 60 (V) bias voltages. (a) TS h
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Figure 12: Simulation and experimental time responses for half sine shocks with time duration
(Tsh) equal to 25% - 300% of the natural period of the microstructure (Tn) at 50 (V) bias voltages

namics of the system. Comprehensive dynamic analysis of the microstructure under electrostatic
force and different mechanical loads is investigated. As the presented accelerometer does not suf-
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Vdc(V) Threshold
shock (g)

Resonance
frequency (Hz)
(experiment)

Resonance
frequency (Hz)

(simulation)
Error (%)

40 200 3000 2981 0.64
50 300 3280 3262 0.55
60 410 3540 3523 0.67

Table 5: Threshold shock amplitude that results in proof-mass hitting the substrate (Shock duration = 90% of natural
period of microstructure for each voltage) and comparing resonance frequencies obtained from experiments (at low g
(1g)) with linearized natural frequencies derived from Jacobian matrix

fer from pull-in, the DC voltage can be increased to increase the fundamental natural frequency.
This capability enables the accelerometer to become tunable. That means the detection range of
the accelerometers, which is often below one third of their natural frequency, can be tuned by
changing the DC voltage of the side electrodes. This is superior to current commercial accelerom-
eters that often have a fixed resonance frequency, which limits their performance. Here, because
the resonance frequency of the accelerometer can be tuned, it has the potential to be used in a
wider range of applications. Furthermore, the initial gap between the proof-mass and the substrate
is increased by increasing the voltage on the side electrodes, which improves the accelerometer
robustness against mechanical shocks without sacrificing its stability. This device also has the
potential to be designed and used as a shock sensor. By changing the voltage difference between
the side and bottom electrodes, the threshold shock amplitude needed to collide the structure with
the substrate can be tuned. Also, the natural period of the sensor can be tuned to use the sensor
for shock loads with different time duration. In the harmonic and shock cases, simulations are
validated by experimental results.
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