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A parametric resonator with low threshold excitation for vibration

energy harvesting

Wei Yanga, Shahrzad Towfighiana,∗

aState University of New York at Binghamton, Binghamton, New York 13902

Abstract

A parametric resonator for vibration energy harvesting is presented. Despite large re-
sponses from parametric resonance, two major drawbacks of parametric resonance harvesters
are the high threshold excitation and narrow bandwidth. We addressed these two shortcom-
ings by adding magnetic nonlinearity to the system. The proposed vibration energy harvester
consists of two piezoelectric cantilevers beams, each with a magnetic tip. By controlling the
distance between the two magnets, the threshold excitation level needed to trigger the para-
metric resonance decreases. Combining the softening and hardening behavior of the two
magnetically coupled beams increases the frequency bandwidth. In addition, the amplitude
of the response increases with the merger of the direct and parametric resonances of the two
beams. We present a mathematical model of the system consisting of two lumped systems
coupled by the magnetic force. The coupled governing equations are solved numerically, an-
alytically, and are verified by experiments. Unique characteristics of wider bandwidth, larger
response, and lower threshold excitation occur at the low frequency because of the added
magnetic nonlinearity to the two-beam system. These properties can improve the efficiency
of vibration energy harvesters.
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1. Nomenclature

X : Deflection of horizontal beam
Y : Deflection of vertical beam
m1 : Effective mass of horizontal beam and magnet
m2 : Effective mass of vertical beam and magnet
k1 : Stiffness of horizontal beam
k2 : Stiffness of vertical beam
c1 : Equivalent viscous damping of horizontal beam
c2 : Equivalent viscous damping of vertical beam
d : Initial distance between magnets (center to center)
D : Total distance between magnets (center to center)
x : Dynamic response of vertical beam
y : Dynamic response of horizontal beam
t : Time
xb : Base excitation
cp : Capacitance
R : Load resistance
θe : Coupling coefficient
M : Magnetization moment of magnet
µ0 : Permeability of space
v1 : Output voltage from the horizontal beam
v2 : Output voltage from the vertical beam
σ, σ1, σ2 : Small detuning parameters
T0, T1 : Two time scales
ε : Scaling parameter
yc : Deflection of the beam in conventional bistable system
µc : Equivalent damping ratio in conventional bistable system
Ω : Excitation frequency
Aa : Base excitation in conventional bistable system
ωnc : Natural frequency of the beam in conventional bistable system
α : Cubic nonlinearity in conventional bistable system
k : Effective stiffness of the beam and magnetic tip in conventional bistable system
Dc : Total distance between magnets in conventional bistable system

2. Introduction

Energy harvesting systems have become a prominent research area in the last two decades.
Applications include self-powering wireless sensor nodes to monitor structural health and to
run household security systems [1]. To convert kinetic energy to electric energy, a typical
method uses a linear resonator with a piezoelectric material. But a slight change of the
excitation frequency will cause a dramatic reduction of response. Therefore, a nonlinear
system was explored to broaden the frequency bandwidth to increase the efficiency of the
energy harvesting. Differing from a linear resonator that has only one peak with narrow
bandwidth in the frequency response, the nonlinear resonator can have a broad frequency
bandwidth with a large response because of its hardening or softening behavior [2].
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Among several approaches taken to apply nonlinearity, a bi-stable system using magnetic
force is a common way [3, 4, 5]. The magnetic force creates cubic stiffness that makes the
resonator act as a Duffing type oscillator. The performance of the bi-stable vibration energy
harvester using piezoelectric material was studied under random excitation [6, 7]. The bi-
stable system shows the advantage by increasing the amplitude at widespread low frequencies
[8, 9]. Other bi-stable vibration energy harvesters applying different transduction method
such as electromagnetic [10, 11, 12, 13] were studied as well.

Vibration energy harvesters usually use a single degree-of-freedom system. Recently,
several researchers proposed a multi-degree-of-freedom system to increase the output and
broaden the frequency bandwidth [14, 15, 16]. The resonators with multiple degrees of
freedom are designed to have close resonant frequencies combined together to widen the
frequency bandwidth. Furthermore, by placing multiple resonators in different directions, a
multi-degree-of-freedom system can be a directional energy harvester [17]. In multi-degree-of-
freedom systems, internal resonance has been reported. Xiong [18] and Chen [19] developed
the two-degree-of-freedom system using a L-shape beam to achieve the internal resonance
phenomeon. The authors’ previous work [20, 21] investigated movable magnets in the con-
ventional bi-stable system to increase the frequency bandwidth by activating the internal
resonance. The transfer of energy from one mode of vibration into another because of the
internal resonance phenomenon yields a large amplitude of oscillation at a wider frequency
range.

Our previous study [21] of a similar double cantilever system focused on the internal res-
onance phenomenon. For the same system, in this study, we report the parametric resonance
as an effective way to drive the system dynamics into a large distinctive response. Daqaq et
al. [22] proposed a lumped-parameter nonlinear model that describes the first mode dynam-
ics of a parametrically excited harvester. Their model considers the cantilever’s geometric
and inertia nonlinearity, but the main limitation of this is the requirement for a high excita-
tion amplitude. Jia designed a vibration energy harvester by introducing a lever pivot and a
pendulum mass to reduce the initial threshold value needed to trigger the parametric excita-
tion [23]. This two-degree-of-freedom system is less constrained by the initial threshold value
because the source of damping and primary oscillation acts in different freedoms. To apply
resonant amplification of the base excitation, Jia proposed an auto parametrically excited
vibration energy harvester [24]. Using a clamped-clamped beam whose natural frequency is
twice that of the primary cantilever, the parametric resonator has a lower threshold value
needed to trigger the parametric excitation, outperforming the same device driven into direct
resonance by more than an order of magnitude. Besides two-degrees-of-freedom paramet-
ric vibration energy harvesters, the researcher added nonlinearity to the system by using
magnets to increase the frequency bandwidth. Karami et al. [25] made a bi-stable system
by incorporating a repelling magnetic force, which achieved a nonlinear phenomenon and
generates sufficient power through a relatively large range of frequency.

In this work, we introduced magnetic nonlinearity to a two-degree-of-freedom system to
address two main drawbacks of parametric resonators, which are high threshold excitation
and narrow bandwidth. The system uses two piezoelectric cantilever beams, each with a
magnet tip. One cantilever beam is in the horizontal plane and the other is in the vertical
direction. The two piezoelectric cantilever beams are coupled by the magnetic force. The
magnetic force reduces the threshold excitation level needed for the parametric resonance.
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Furthermore, the frequency bandwidth widens by the combination of direct and parametric
resonances that show softening and hardening behavior. Thus, the introduced magnetic
nonlinearity decreases the threshold excitation value needed for parametric resonance and
widens the frequency bandwidth in which the harvester can operate efficiently.

The paper is organized this way. Section 3 gives the mathematical model of the nonlinear
vibration energy harvesting. In Section 4, simulation and experiments results are obtained
and compared. The effects of different parameters on the system response are studied in
Section 5, followed by a conclusion in Section 6.

3. Mathematical model

3.1. Governing equations

The prototype of the parametric vibration energy harvester is shown in Figure 1. The
energy harvester consists of a vertical cantilever beam with a magnetic tip facing another
magnet attached to a horizontal cantilever beam, creating a coupled oscillator system. Both
beams have piezoelectric layers into convert mechanical vibrations to electrical energy. The
same poles of the magnets face each other, creating the repulsive magnetic force that couples
the beams motions. The base excitation is along the longitudinal direction of the vertical
beam. Under the base excitation, the vertical cantilever beam vibrates in the perpendicular
direction of the base excitation. Therefore, the horizontal cantilever beam could show direct
resonance and the vertical beam could undergo parametric resonance. In general, parametric
resonators require a large threshold excitation to trigger the parametric resonance. To over-
come this drawback, we introduce the repulsive magnetic force (compressive axial force) to
decrease the natural frequency of the vertical beam to lower the initial threshold excitation
level. In addition, by carefully designing the resonant frequency of the horizontal beam to
be twice that of the vertical beam, while considering the effect of the magnetic force, the
threshold excitation level for the parametric resonance decreases more. When the system is
excited around the natural frequency of the horizontal beam, the vertical beam shows pri-
mary parametric resonance. This parametric excitation is caused both by the base motion
as well as the magnetic force that couples the motion of the two beam. The magnetic force
also acts on the vertical beam as a direct excitation source. Hence, the direct excitation
because of the magnetic force and the parametric resonance of the vertical beam merge in
the same frequency range and widen the frequency bandwidth with a simultaneous increase
in the harvester amplitude.

The mathematical model of the parametric energy harvesting is obtained by a lumped
model as shown in Figure 2. X and Y denote the deflection of the horizontal and vertical
beams, respectively. m1 and m2 are the effective mass of the horizontal beam and vertical
beam and k1 and k2 are the effective stiffness of the cantilever beam without the effect of the
magnetic force, respectively. c1 and c2 are the equivalent damping for both beams. d is the
initial distance between two magnets, center to center. xb is the base excitation that is in the
X direction. Using Hamilton’s principle as described in our previous work [21], the governing
equations are obtained. However, the equations are different from our previous study as they
include the parametric excitation term, which was neglected before. In addition, the setup
is rotated vertically, and the effect of the weight of the horizontal beam is considered in the
equation of motion.
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Figure 1: The parametric vibration energy harvester

Figure 2: The lumped model of the parametric vibration energy harvesting.

m1Ẍ + k1X + c1Ẋ − Fmagx − θev1 = −m1ẍb −m1g (1)

m2Ÿ + k2Y + c2Ẏ − Fmagy − θev2 +m2ẍbY = 0 (2)

cpv̇1 + θeẊ +
v1
R

= 0 (3)

cpv̇2 + θeẎ +
v2
R

= 0 (4)

where Fmagx and Fmagy are the magnetic force in X and Y direction respectively, cp is the
capacitance, θe is the coupling coefficient, andR is the load resistance. The same piezoelectric
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material is used for both horizontal and vertical beams. Therefore, the cp, θe and R are the
same for both beams. v1 is the output voltage for the horizontal beam, and v2 is the output
voltage for the vertical beam. For the horizontal beam, the gravity of the effective mass
m1g needs to be considered. For the vertical beam, the effect of gravity is ignored as it
is negligible compared to the magnetic force and it is perpendicular to its vibration. The
magnetic force is given from our previous work [21] as

Fmagx =
Mc

D4
(1 − 5Y 2

2D2
) (5)

Fmagy =
McY

D5
(1 − 5Y 2

2D2
) (6)

Mc =
3µ0M

2

2π
(7)

D = d+X (8)

where M denotes the magnetization moment of a magnet, µ0 is the permeability of space.
D is the total distance between two magnets considering the initial distance d and the
deflection of the horizontal beam X. To get the dynamic response of the system and the
resonant frequencies for both beams, the static equilibrium positions are obtained first. We
assume the vertical beam is not buckled so the static position of the vertical beam is ye = 0.
The static equilibrium position xe can be found as

k1xe −
Mc

(d+ xe)4
= −m1g (9)

A Taylor expansion is used to expand 1/Dn around the equilibrium positions. We write the
total displacement as a summation of static deflection and dynamic amplitude (X = xe + x,
Y = ye + y). After the static terms are eliminated and fourth and higher orders terms are
dropped, the dynamic governing equations are obtained as

ẍ+ ω2
1x+ 2µ1ẋ+ a1y

2 + a2xy
2 − θ1v1 = −ẍb (10)

ÿ + ω2
2y + ẍby + 2µ2ẏ + a3xy + a4y

3 − θ2v2 = 0 (11)

cpv̇1 + θeẋ+
v1
R

= 0 (12)

cpv̇2 + θeẏ +
v2
R

= 0 (13)

where x and y are the dynamic response of the horizontal and vertical cantilever beams,
respectively. The coefficients are µ1 = c1

2m1
, µ2 = c2

2m2
, a1 = 5Mc

2D6
em1

, a2 = − 15Mc

D7
em1

, a3 = 5Mc

D6
em2

,

a4 = 5Mc

2D7
em2

, θ1 = θe
m1

, θ2 = θe
m2

and

ω2
1 =

k1 + 4Mc

D5
e

m1

(14)
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ω2
2 =

k2 − Mc

D5
e

m2

(15)

Based on the equations (14-15), the resonant frequencies of two cantilever beams are
functions of the distance between two magnets if the dimensions of the cantilever beams are
determined. Hence, by controlling the initial distance d, the resonant frequency ω1 of the
horizontal beam can be set to around twice the resonant frequency ω2 of the vertical beam.
The equations (10-13) are solved numerically under the harmonic excitation. The simulated
displacement and voltage frequency responses are presented in the Section 4.

3.2. Analytical study of the coupled oscillator system

In this section, the perturbation method of multiple scales is used to study the qualitative
behavior of the coupled oscillator system analytically. This study expands previous work on
coupled oscillator system [26]. Two time scales T0 and T1 are used [27]:

T0 = t

T1 = εt

where ε is a scaling parameter. Let −ẍb = εfcos(Ωt), the governing equations (10-11)
become:

ẍ+ ω2
1x+ ε(2µ1ẋ+ a1y

2 + a2xy
2 − θ1v1(t))) = εfcos(Ωt) (16)

ÿ + ω2
2y + ε(2µ2ẏ + a3xy + a4y

3 − fcos(Ωt)y − θ2v2(t)) = 0 (17)

The next step is to assume an asymptotic series solution for x(t), y(t) and v(t). In this case,
a two-term expansion is assumed:

x(t) = x1(T0, T1) + εx2(T0, T1)

y(t) = y1(T0, T1) + εy2(T0, T1)

v1(t) = v11(T0, T1) + εv12(T0, T1)

v2(t) = v21(T0, T1) + εv22(T0, T1)

We use chain rules and drop orders higher than one to get time derivatives, then we plug time
derivatives into the governing equations and gather coefficients of orders up to one yields

ε0 order:
∂2x1
∂T 2

0

+ ω2
1x1 = 0 (18)

∂2y1
∂T 2

0

+ ω2
2y1 = 0 (19)

ε1 order:

∂2x2
∂T 2

0

+ ω2
1x2 = −2µ1

∂x1
∂T0

− 2
∂2x1
∂T0∂T1

− a1y
2
1 − a2x1y

2
1 + fcos(ΩT0)) + θ1v11 (20)
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∂2y2
∂T 2

0

+ ω2
2y2 = −2µ2

∂y1
∂T0

− 2
∂2y1
∂T0∂T1

− a3x1y1 − a4y
3
1 + f cos(ΩT0) + θ2v21 (21)

The solutions of (18-19) are given by:

x1 = P1(T1)e
iω1T0 + P̄1(T1)e

−iω1T0

y1 = P2(T1)e
iω2T0 + P̄2(T1)e

−iω2T0

To study the coupled motion of our two-degree of freedom system we use the internal
resonance relationship to eliminate the secular terms in the equations. Considering the case:

Ω = 2ω2 + εσ1 (22)

ω1 = 2ω2 + εσ2 (23)

The equations (22-23) give the reason analytically that we chose frequency ratio 1 to 2 to
trigger the parametric resonance of the vertical beam. When we have an internal resonance
condition, more nonlinear terms are given as below:

2µ1iω1P1 + 2iω1
∂P1

∂T1
+ a1P

2
2 e

−iσ2T1 + 2a2P1P2P̄2 −
f

2
ei(σ1−σ2)T1 + i

ω2P2θ1θe
1
R

+ iω2cp
= 0 (24)

2µ2iω2P2 + 2iω2
∂P2

∂T1
+ a3P1P̄2e

iσ2T1 + 3a4P
2
2 P̄2 −

1

2
feiσ1T1 + i

ω2P2θ2θe
1
R

+ iω2cp
= 0 (25)

The complex P1 and P2 are described in polar form as

P1(T1) =
1

2
p1(T1)e

iϕ1(T1)

P2(T1) =
1

2
p2(T1)e

iϕ2(T1)

The polar forms are substituted into equations (24) and (25). Set the real part and the
imaginary part to zero respectively and for the steady-state response, setting ∂p1

∂T1
= ∂p2

∂T1
=

∂γ1
∂T1

= ∂γ2
∂T1

= 0 yields

4ω1µ1p1 + a1p
2
2sin(γ1) − 2fsin(γ2) + 4ω1E11p1 = 0 (26)

a1p
2
2cos(γ1) − 2fcos(γ2) − 4ω1p1(σ1 − σ2) + a2p1p

2
2 + 4ω1E12p1 = 0 (27)

−4ω2µ2 + fsin(γ2 − γ1) + a3p1sin(γ1) + 4ω2E21 = 0 (28)

2a3p1cos(γ1) + 3a4p
2
2 − 2fcos(γ2 − γ1) − 4ω2σ1 + 8ω2E22 = 0 (29)

where
γ1 = 2ϕ2 − ϕ1 − σ2T1

γ2 = σ1T1 − σ2T1 − ϕ2
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E11 = −
θ1θe
2R

1
R2 + ω2

1c
2
p

E12 =
θ1θeω1cp

2
1
R2 + ω2

1c
2
p

E21 = −
θ2θe
2R

1
R2 + ω2

2c
2
p

E22 =
θ2θeω2cp

2
1
R2 + ω2

2c
2
p

The output voltages are

v1 =
ω1θe√

1/R2 + ω2
1c

2
p

p1 (30)

v2 =
ω2θe√

1/R2 + ω2
2c

2
p

p2 (31)

By solving equations (26-31), the frequency responses can be obtained. The results are
presented in Section 4.

3.3. Analytical study of a conventional bi-stable system

One of the main points of our novel design is that our two-degree-of-freedom coupled
oscillator system significantly decreases the initial threshold excitation level required to trig-
ger the parametric resonance. To understand how our coupled oscillator system reduces the
initial threshold excitation needed to induce parametric resonance, we discuss a conventional
bi-stable harvester with magnetic nonlinearity. A schematic of the conventional harvester is
shown in Figure 3.

Figure 3: A convential bi-stable system under parametric excitation.
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Assume this bi-stable system is excited by a parametric excitation whose direction is parallel
with the longitudinal direction of the beam. The governing equation [9] is

ÿc + 2µcẏc + ω2
ncyc − Aacos(Ωt)yc + αy3c = 0 (32)

where

ωnc =
k1c
m

k1c = k − Mc

D5
c

α =
k3c
m

k3c =
5Mc

2D7
c

and yc is the deflection of the beam, µc is the equivalent damping ratio including the effect
of the piezoelectric strip, Ω denotes the excitation frequency and Aa is the acceleration
amplitude. ωnc is the natural frequency of the beam, and α is the cubic nonlinearity. k is
the effective stiffness of the beam considering the effect of the magnetic tip, k1c is the linear
stiffness of the system that changes with the distance Dc between magnets, Mc = 3µ0M2

2π
,

where M is the magnetization moment and µ0 is the permeability of space. To solve the
equation (32) analytically, the perturbation method mentioned in section 3.2 is followed. For
the steady-state response, we obtain the analytical solution for the amplitude as excitation
frequency changes around twice the natural frequency:

p2c =
4σωnc

3α
± 2

3α

√
A2
a − 16ω2

ncµ
2
c (33)

In this conventional bi-stable system, the excitation level to trigger the parametric reso-
nance must be Aa > 4ωncµc, where the natural frequency ωnc depends on the initial distance
between two magnets. Thus, this relationship indicates that to have a lower threshold, the
natural frequency and the damping ratio should be low. Comparison between the conven-
tional bi-stable system and our coupled oscillator system design is studied in the following
section.

4. Results and discussions

4.1. Model verification

The experimental setup is shown in Figure 4. The prototype of the energy harvester is
placed on the shaker (VTB 100) to apply the harmonic base excitation. Data is acquired
with NI-6251 (DAQ) from National Instruments connected to Matlab software. The DAQ
sends the input signal through an amplifier to the shaker at the specific excitation level and
sweeps a range of frequency at 0.1 Hz/s. Simultaneously, the data from the accelerometer
and piezoelectric strip are sent to the Matlab to obtain a time series and frequency response
curve after signal processing. The accelerometer (PCB 352A24) measured the base excitation
of the shaker. The horizontal cantilever beam and vertical cantilever beam are made of a
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Figure 4: Schematic of the experimental setup for the energy harvesting.

polymeric (Makrolon polycarbonate) material with a modulus of elasticity of 2.34 GPa, and
partially covered by the piezoelectric material (Smart Materials Corp., model: M2807P2).
Two cubic permanent magnets with sides of 8 mm with magnetization moment of 0.53 Am2

are attached to the tip of each beam.
The parameters used in the simulation and experiment are shown in Table 1. The default

base excitation level is set to be 0.4 g. Without the effect of magnetic force, the natural
frequency of the horizontal beam is 10.03 Hz and the natural frequency of the vertical
beam is 7.02 Hz. When the distance between the two magnets is large, the deflections of
the two beams are not coupled by the magnetic force. The horizontal beam generates the
electrical energy because of the piezoelectric element in the same way as a linear resonator.
The vertical beam does not oscillate, because the excitation level is not large enough to
trigger the parametric resonance. The presence of the piezoelectric strip on the vertical
beam makes it even worse as it adds damping to the system demanding a high threshold
level for parametric resonance. As we decrease the distance between the two magnets, the
coupling between the two beam motions becomes stronger. Based on equations (14-15),
the natural frequency of the horizontal beam, ω1 increases. On the contrary, the natural
frequency of the vertical beam, ω2 decreases. At a distance when the resonant frequency ω1

is close to 2ω2, the parametric resonance of the vertical beam is triggered.
Numerically simulated frequency responses of the horizontal and vertical beams when

d = 34 mm at 0.4 g are shown in Figure 5a and 5b, respectively. The corresponding output
voltage of two beams are given in Figure 6a and 6b. These results were obtained by numeri-
cally solving equations (1-4). At d = 34 mm, ω1 = 11.61 Hz and ω2 = 5.97Hz. Both forward
and backward frequency sweeps were conducted to reveal the hysteresis phenomenon. As
expected, the parametric resonance of the vertical beam creates a larger amplitude than that
of the direct resonance of the horizontal beam. Similarly, the output voltage generated by
the vertical beam is larger than that of the horizontal beam. The frequency response of the
horizontal beam (Figure 5a and Figure 6a) shows it has a softening behavior. This agrees
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Parameters Values

Effective mass of horizontal beam and magnet, m1 8.6 g

Effective mass of vertical beam and magnet, m2 5.5 g

Stiffness of horizontal beam, k1 34.05 N/m

Stiffness of vertical beam, k2 7.72 N/m

Damping of horizontal beam, c1 0.029 Ns/m

Damping of vertical beam, c2 0.018 Ns/m

Coupling coefficient, θe −5.4 × 10−6 N/V

Load resistance, R 1.8 × 106 Ω

Capacitance, cp 10 × 10−9 F

magnetization moment, M 0.53 Am2

Table 1: Energy harvester parameters used in simulation and experiment.

with equation (10) where the cubic term is negative. The frequency response of the vertical
beam (Figure 5b and Figure 6b) is more complicated as it combines two nonlinear phe-
nomena. Hysteresis is observed, caused by the softening behavior induced by the horizontal
beam. However, the slope of the softening response is reduced because it is combined with
the hardening parametric resonance of the vertical beam, which has advantages for energy
harvesting as the amplitude stays on a high branch. The cause of the hardening behavior
of the vertical beam is the positive cubic term in equation (11). The combined nonlinearity
results in wider frequency bandwidth and unique large vibration amplitudes compared to di-
rect resonance. The absence of the multiple amplitudes for most of the frequency bandwidth
range is a superior property of this design compared to conventional bi-stable resonators.

(a) (b)

Figure 5: Frequency response of two beams at 0.4 g when d = 34 mm by simulation. a) the horizontal
beam, b) the vertical beam.

In addition to numerically solving the equations using long time integration, we used the
perturbation method of multiple scales as in Section 3.2 to solve the equations of motion.
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(a) (b)

Figure 6: Output voltage of two beams at 0.4 g when d = 34 mm by simulation. a) the horizontal beam,
b) the vertical beam.

Figure 7 shows the comparison of numerical and analytical solutions of the parametric res-
onance for the vertical beam. It is observed the analytical solution is in close agreement
with the numerical solution. The small difference may come from the assumption of the
asymptotic series solution, because some higher order terms are eliminated. Regardless of
the small difference, the perturbation method of multiple scales gives a reliable solution of
the governing equations.

Figure 7: Output voltage when d = 34 mm at excitation level of 0.4 g.

Figure 8a and 8b show the experimental output voltage for the horizontal beam and
vertical beam respectively with excitation level of 0.4 g when d = 34 mm. The forward and
backward sweeps represent the frequency output voltage. There is a good agreement between
the experimental and simulation results. It is observed that there is hysteresis phenomenon
because of the softening behavior. Also, the hardening parametric resonance combined with
the softening behavior broadened the frequency bandwidth.

To examine the difference of the direct resonance of the horizontal beam and parametric
resonance of the vertical beam, the simulated time responses at 12 Hz are depicted in Figure

13



(a) (b)

Figure 8: Output voltage of two beams at 0.4 g when d = 34 mm by experiment a) horizontal beam, b)
vertical beam.

9a and 9b. The period of the direct resonance of the horizontal beam is 0.0833 s and the
resonant frequency is 12 Hz that is equal to the excitation frequency. For the vertical beam,
the period of oscillation is 0.166 s and the frequency is 6 Hz. That means the vertical beam
motion is not from direct excitation caused by magnetic force, but rather it is parametric
resonance. Because if it was direct excitation, the frequency of oscillation of the vertical beam
would have been 12 Hz, but here its frequency is 6 Hz, which is the resonance frequency of
the vertical beam. That means the beam responds at half the excitation frequency and is an
indication of the activation of parametric resonance in the vertical beam. The parametric
excitation of the vertical beam is caused by both the base motion and the magnetic force.

(a) (b)

Figure 9: Time response of two beams at 12 Hz at 0.4 g when d = 34 mm a) horizontal beam, b) vertical
beam.

4.2. Comparison of the coupled oscillator system to the conventional bi-stable system

To show the advantage of low threshold excitation in our design, we compared the per-
formance of the conventional bi-stable system and proposed coupled oscillator system based
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on the analysis in the Sections 3.2 and 3.3. First, in the case of a conventional bi-stable sys-
tem, the excitation level to trigger the parametric resonance must be Aa > 4ωncµc according
to the equation (33). We use the same parameters shown in Table 1 for the conventional
bi-stable system. The parametric resonant frequency and initial threshold excitation level as
the distance between magnets varies are shown in Figure 10a and 10b. When the distance is
large, the system acts similar to a single cantilever beam without the effect of the magnetic
force. It demands at least a 5.5 g excitation level to trigger the parametric resonance. When
the distance decreases, the initial excitation level decreases as well. However, the minimum
threshold value for the conventional bi-stable system is 1.6 g, which is four times larger than
our proposed coupled oscillator system that shows parametric resonance at 0.4 g as shown
in Figure 8b.

(a) (b)

Figure 10: For the conventional bi-stable system including a cantilever beam with a magnetic tip and
fixed magnet a) Primary parametric resonant frequency changing with the distance between two magnets,
b) Initial threshold excitation level changing with the distance.

(a) (b)

Figure 11: a) The two instability tongues of the conventional bi-stable system for Dc = 30 mm and
Dc = 34 mm., b) instability tongue for the coupled oscillator system when d = 34 mm.

To show the superior performance of the coupled oscillator system, we used the analytical
solutions in Section 3.2. The solutions provide insight into the regions where the parametric
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resonance can be excited. Using equations (33) and (26-29), the instability tongues for a
conventional bi-stable system and coupled oscillator system obtained and depicted in Figures
11a and 11b. When the system works in the shaded zones, the parametric resonance is
triggered. Therefore, the lowest value of the instability tongue curve is the initial parametric
excitation. For the conventional bi-stable system, the base excitation level to initiate the
parametric resonance varies with distance between magnets and the parametric resonance
area (shaded area) is much narrower than the coupled oscillator system. The coupled system
has both a low threshold excitation value and broader frequency range. That means the
chances for large distinct parametric resonance of the system are much higher for the coupled
system.

Figure 12: Steady-state parametric resonance amplitude as the excitation level at 12 Hz when d = 34 mm
for coupled oscillator system and the conventional bi-stable system when distance between magnets are
Dc = 27 mm and Dc = 30 mm.

The other disadvantage for the conventional bi-stable system is that the parametric res-
onance amplitude is very small when the magnets are too close because of the strong non-
linearity of the system. From Figure 10b, we observe that the threshold excitation decreases
when the distance between magnets reduces, but the deflection decreases as well. If the
distance between the magnets increases, the amplitude can be larger but it requires harder
force to trigger the parametric resonance. Our coupled oscillator system resolves this issue
as the distance between magnets is variable and that reduces the stiffening effect from the
magnets. The parametric resonance amplitudes as a function of excitation level are depicted
for the coupled and conventional system in Figure 12, the threshold excitation to trigger the
parametric resonance of the coupled oscillator system is low and the parametric deflection
is much higher than the conventional bi-stable system. Thus, the proposed design takes
advantage of the magnetic nonlinearity to lower the threshold without stiffening the system.

5. Parametric study

In this section, we study the performance of the proposed energy harvester by comparing
the experimental and numerical results varying different parameters. When the excitation
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level is decreased to 0.3 g, the parametric resonance is still obtained. Figure 13a and 13b show
the output voltage changes with the excitation level. In Figure 13b, it is observed that the
frequency bandwidth increases as the excitation level increases. The slope of the softening
behavior does not change with excitation level; however, as the excitation level increases, the
output shows stronger hardening behavior because of the growth of the parametric resonance.
This growth flattens the frequency bandwidth and increases the output at the same time.

(a) (b)

Figure 13: Simulated output voltage for different excitation level when disatnce between magnets is d =
34 mm a) horizontal beam, b) vertical beam.

(a) (b)

Figure 14: Measured output voltage for different excitation level when the distance between magnets is
d = 34 mm a) horizontal beam, b) vertical beam.

To experimentally examine the effect of excitation level on the frequency response, three
excitation levels of 0.3 g, 0.4 g and 0.5 g are used. We obtained the same behavior as
predicted by the simulations. Higher excitation levels result in wider frequency bandwidth
for the vertical beam (Figure 14b). The parametric resonance depends on the excitation
level. If the excitation level is low, the parametric resonance is weak compared to direct
resonance with the softening behavior. As predicted by the model, the horizontal beam
shows softening behavior (Figure 14a).

17



As the input level for energy harvesting is uncontrollable, to widen the bandwidth, the
distance between the two magnets is decreased (from d = 34 mm to d = 32 mm) as shown
in Figures 15b and 15a. As the distance decreases to d = 32 mm, the growth of parametric
resonance and the hardening effect is stronger even for low excitation level 0.3 g as shown in
Figure 15a. This is expected because as the magnets get closer to each other, the magnetic
force causes a stronger coupling of the motions of the two beams. Thus, at the lower initial
distance between the two magnets, the parametric resonance is triggered even at a lower
excitation level and can even produce a larger output voltage. This result is opposite to
conventional bi-stable system, which has a lower amplitude at the smaller distance between
magnets. The theoretical results are in good agreement with experimental results, which
means the nonlinear phenomenon is captured accurately by the model. However, the model
underestimates the frequency bandwidth slightly.

(a) (b)

Figure 15: Output voltage results for different excitation level for vertical beam when distance between
magnets is d = 32 mm a) Theoretical, b) Experimental.

The distance between magnets has a critical effect on the behavior of the system. Figure
16a and 16b illustrate how varying distances between the magnets affect output over a range
of excitation frequencies. For the horizontal beam, in Figure 16a, the output decreases when
the distance decreases. The repulsive magnetic force is large when the distance is small. This
large magnetic force limits the motion of the horizontal beam. Hence the output voltage
of the horizontal beam is smaller at shorter distances. However, the output voltage from
the vertical beam is large when the distance (d) is small because the parametric resonance
dominates the response. In fact, the parametric resonance grows as the distance shrinks.
Even though the maximum value of output voltage for the parametric resonance (vertical
beam) is similar to that of the direct resonance (horizontal beam), the parametric resonances
have a broader frequency bandwidth. If we decrease the distance to less than 30 mm, the
response will be chaotic and unpredictable. When d = 30 mm, the resonant frequencies of the
horizontal and vertical beams are ω1 = 12.08 Hz and ω2 = 5.55Hz, respectively. That means
twice of the resonant frequency of the vertical beam is very close to the resonant frequency
of the horizontal beam. This closeness and the growth of the parametric resonance at this
distance causes the higher branch of the softening behavior of the horizontal beam and the
higher branch of the hardening behavior of vertical beam to overlap. At smaller distances
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below 30 mm, under the effect of the hysteresis, this overlap part becomes unpredictable.
Besides, if the distance is very small, the energy collected from the horizontal beam is
low. Therefore, the distance cannot be set below 30 mm. The optimal distance is around
34 mm where the energy from both beams has a relatively high level in a broader frequency
bandwidth.

(a) (b)

Figure 16: Simulated output voltage for different distance d with base excitation of 0.5 g a) horizontal
beam, b) vertical beam.

(a) (b)

Figure 17: Experimental output voltage for different distance d with base excitation of 0.5 g a) horizontal
beam, b) vertical beam.

To validate the influence of the distance between the magnets on the frequency band-
width, a series of experiments was conducted. Figures 17a and 17b present the output voltage
as the initial distance between magnets varies at the excitation level of 0.5 g. As numerical
simulations revealed, decreasing the distance between two magnets broadens the frequency
bandwidth and boosts the parametric resonance response. On the contrary, the maximum
output voltage generated by the horizontal beam decreases as the distance decreases. The
optimal initial distance is around d = 33 mm which is almost the same as we conclude from
the simulation.
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To examine the effect of the external resistance on the output power, the output power
versus different load resistance is presented in Figure 18. The power is calculated according
to P = V 2/R, where R is the external load resistance and V is the maximum output voltage
in the frequency output. In Figure 18, two cases of d = 32 mm and d = 34 mm are studied.
It can be observed that the optimal resistance for the vertical beam is 2.6 MΩ and the
optimal resistance for the horizontal beam is 1.2 MΩ regardless of the initial distance d
between two magnets. The output power from the vertical beam by parametric resonance
is much greater than that from the horizontal beam by direct resonance. Therefore, the
optimal load resistance is 2.6 MΩ as the tiny difference of the power from the horizontal
beam can be neglected. Furthermore, when the distance is small (d = 32 mm), the power of
the parametric resonance increases. On the contrary, the power of direct resonance decreases.
This is consistent with the output voltage frequency response presented in Figure 16a and
16b.

Figure 18: Simulation results of output power for different external load resistance.

6. Conclusions

A parametric resonator with low threshold excitation for vibration energy harvesting is
proposed. The harvester comprises two piezoelectric cantilever beams, each with a magnetic
tip. One is placed in the horizontal plane, the other in the vertical plane. The magnetic force
is carefully tailored to decrease the threshold excitation level required to trigger parametric
resonance. By controlling the initial distance between two magnets, the parametric resonance
of the vertical beam is activated at a low excitation level and the frequency bandwidth of
the energy harvester increases.

To simulate the response of the harvester, a two-degree-of-freedom mathematical model
including magnetic interaction is developed. Four coupled differential equations are obtained
to predict the dynamic behavior and output voltage of the energy harvester. The governing
equations are solved numerically and analytically. Experiments were pursued to verify the
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mathematical model. Compared to a single piezoelectric cantilever beam, the initial thresh-
old excitation level needed to trigger the parametric resonance decreases from 5.5 g to 0.3 g
by the proposed design. Because of the combination of hardening and softening behavior,
the parametric resonance of the vertical beam has a flattened and broader frequency band-
width. Unlike traditional systems with cubic nonlinearity and parametric resonators, the
harvester response is more robust to variation of initial conditions as the hysteresis region is
minimized and the response lies on the high oscillation branch.

As the magnets have the key role in the system dynamics, the effects of the initial distance
between magnets on the response are investigated. Considering the direct resonance of the
horizontal beam, the optimal initial distance is found around 34 mm where both beams
have a large output with broad frequency bandwidth. The optimal external load resistance
is estimated to be 2.6 MΩ. In summary, the direct resonance of the horizontal beam and the
parametric resonance of the vertical beam are carefully merged to increase the efficiency of
vibration energy harvesting by producing a large output over a wider frequency bandwidth.
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