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ABSTRACT

Cyber-physical system (CPS) has become an integral part of human life, ranging from aircraft

to health care systems. The security of these critical components ensures its wider acceptabil-

ity [1]–[4]. Traditionally, many works [5]–[9] to secure cyber-physical system (CPS) has been

done in the cyber domain, like securing inter/intra CPS communication, securing the exposed

software, rebuilding control input derived from sensor data post-digitization, using sensor fu-

sion. All of this security software suffers from a basic attack wherein an attacker compromises

the physical/analog sensing system. Researchers have made some progress in mitigating such

attacks on physical/analog signals of CPS, the current state of the art methodology proposed

in PyCRA [10] uses temporal random signals for physical challenge-response authentication.

Though this approach immensely enhances the capability of identifying the sensor attacks, it

fails to provide any recovery mechanism to the system. Recent work like Dutta et al., 2017

[11] tries to address this by introducing recursive least squares (RLS) based recovery mech-

anisms over PyCRA. Although these systems provide some recovery in trivial scenarios, they

fail during longer attacks and also result in loss of control because of longer/frequent ran-

dom no-signal periods. Which could be catastrophic in real-time systems. This work presents

Spatio-Temporal Challenge-Response (STCR), an authentication scheme designed to pro-

tect active sensing systems against physical attacks occurring in the analog domain. This

system utilizes multiple beam-forming [12] and provides physical challenge-response authen-

tication (CRA) in both spatial and temporal domain. Thus providing a much more resilient

authentication mechanism that not only detects malicious attacks, but also provides recovery

from them. We demonstrate the resilience and effectiveness of STCR over the state of the art

in detecting and mitigating attacks through several experiments using a car following (CF)

model. This model deploys CPS in the follower car to sense the lead car’s relative position

and maintain a safe distance by manipulating acceleration.
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Chapter 1
Introduction

The term CPS was coined in 2016 by Helen Gill at the National Science Foundation in the

US [13]. Since then it has gone on to be associated with popular terms like the internet of

things (IoT), industry 4.0, the industrial internet, machine-to-machine (M2M), the internet

of everything, smart cities, and smart vehicles. All of which underscores the vision of a tech-

nology, to be deeply integrated into the fabric of our lives, motivating a lot of research into

securing these systems. Although most of the work in securing these systems has been done

at a system-level, like securing inter/intra CPS communication, securing the exposed software,

rebuilding control input derived from sensor data post-digitization, using sensor fusion. It has

been found that if an attacker is able to spoof the physical sensors of the system, they can

render the system level security solutions useless [14], [15].

A CPS consists of three main component sensors, control system and actuators affecting each

other via feedback loops. Sensors of these systems can be classified as passive or active. Pas-

sive sensors like temperature sensors just measure the ambient energy around them, where

active sensors send out energy probes and measure their impact on the environment, like mea-

suring the reflected signal as shown in Fig. 1.1. These sensors are susceptible to spoofing at-

tacks, where an attacker captures and measures the original probe and sends out a malicious

response, which may be a function of the expected response signal keeping the response un-

der bounds set by a system level security scheme, hence by-passing them. To address this,

recently a lot of research on securing active sensors of autonomous CPSs has been done and

several attack detection schemes have been proposed such as PyCRA which highlight that the

underlying physics governing the sensor can be used to come up with a security mechanism.
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And there has been some research done on estimating correct sensor measurements during

these attacks like in Dutta et al. 2017, which uses RLS based regression techniques, implying

the need for these systems to report measurements under acceptable bounds even when under

attack.

Figure 1.1: A typical CPS system with its sensors under physical attack: The actuator sub-
system generates a signal and probes the measured entity. The response from the measured
entity is captured by the analog front-end, undergoes analog to digital conversion and is sent
to the control system for further processing. Here is a physical entity that captures the probe
and sends a spoofed response to the sensor subsystem, altering the observed reality of the
whole CPS subsystem.

A CPS system with PyCra uses a CRA modulator built into its actuator and sensor. The sig-

nal is modulated via pseudo-random binary modulation {0,1}, which means the system at ran-

dom time intervals does not send out any signal, called as the challenge period. A naive at-

tacker might continue to emit attack signal even during the challenge periods and can be de-

tected. Although PyCRA schemes provide fundamental guarantees based on the physics of the

sensors. It has to shut off the sensor during the challenge periods which can result in tempo-

rary loss of control and also it does not provide any recovery mechanisms. To address the 2nd
limitation of PyCRA, Dutta et al. 2017 proposed an RLS based recovery mechanism which

relies on the energy sensed during the challenge period and uses it as an initial error input to

an RLS estimator. Which predicts the sensor readings during the attack period. The issue

with this approach is that it requires longer and more frequent challenge periods which results

in longer duration of loss of control, also RLS estimator only has the initial challenge period

readings where it can observe the true error introduced by the attacker, and after which it just

assumes that the observed signal has the same error component which might not be true and

the calculated sensor readings may no longer be accurate. We in this paper propose STCR

which deploys CRA in both spatial and temporal domains. This is achieved by using multi-
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ple beams forming with all beams separated in angle and base frequency and then applying

synchronized CRA. Synchronized CRA makes sure that no two frequencies are in the chal-

lenge phase at the same time, hence the system can measure its environment all the time.

Also, we don’t assume the target to be a point target, i.e. we assume it has a non-zero radar

cross-section (RCA). This allows us to send multiple physical CRA at different angles to the

measured entity. We also propose a way to compartmentalize and isolate the attacked sen-

sor elements and prune them from our observed signal matrix, enabling the system to operate

even under attack.

With modern vehicular systems heavily relying on CPS systems, [16] identifies frequency-

modulated continuous-wave radar (FMCW) sensors used in driving assist can be jammed and

even worse spoofed using off-the-shelf equipment. The feasibility of such contact-less attacks

were also highlighted in works by [17], [18]. This threat coupled with the sensitivity of the

automobile industry to cost, there is a need to come up with a solution that is both cost-

effective and secure. We in this paper take adaptive cruise control (ACC) used in vehicular

systems as our case study. And propose a novel method to secure the physical FMCW sensor

using currently deployed phased array radars coupled with synchronized CRA to come up with

a cost-effective and reliable countermeasure system for vehicular radar sensors. We also simu-

lated PyCRA and Datta et al. based approaches in the ACC system to provide a comparative

performance analysis for our approach with respect to the current state of the art. We used

the sensitivity of the system to detect attacks and accuracy of the system to provide measure-

ments close to ground truth during attacks as the matrices to compare these approaches and

found that STCR bettered the accuracy of the system by 6 times and was more sensitive to

detect attacks.

The remainder of this paper is organized as follows. Section 2 lists the current state of the art

and compares it to STCR. In Section 3, we list down the techniques used such as FMCW, ac-

tive beam forming, the angle of arrival detection using multiple signal classification (MUSIC)

and CF model. Then we explain STCR in Section 4 followed by performance evaluation in

Section 5 and conclude in 6.
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Chapter 2
Related Work

PyCRA is based on physical challenge response, which uses randomly spaced physical stimu-

lation and subsequent behavior analysis to determine if the system is under attack. The ran-

domly spaced physical stimulation p(τ) at time τ is provided by binary modulation u(τ) of the

sensor probe s(τ) as in eq (2.1)

Figure 2.1: PyCRA model: A CPS system with CRA modulator built into its actuator and
sensor. The signal is modulated via pseudo-random binary modulation 0,1, which means the
system at random time intervals does not send out any signal. A naive attacker might con-
tinue to emit attack signal even during these random periods and can be detected.
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Figure 2.2: PyCRA in ACC output: Red line represents an attack vector and red region the
period in which the algorithms detected the attack. Green line represents the ground truth
and the blue distance calculated using received signal. Black spaced line is the safe distance
based on the current relative speeds between the two vehicles

p(τ) = u(τ)s(τ), u(τ) ∈ {0, 1} (2.1)

PyCRA uses residual energy r(τ) eq (2.2) which is the difference between the predicted out-

put p̂(τ) and the observed output o(τ) during u(τ) == 0 (challenge period) to detect if the

system is under attack. Here p̂(τ) is some function over p(τ) which is defined by the under-

lying physics of the sensor system. PyCRA uses χ2 method eq (2.3) to overcome the noise in

the system by accumulating the squares of r(τ) during challenge period T , if the accumulated

value is greater than a certain set threshold (θ) an alarm is raised.p̂(τ) is equal to θ when χ2

method is used eq (2.2).

r(τ) = o(τ)− θ, u(τ) = 0 (2.2)

χ2 = 1/T (
t∑

τ=t−T+1
r2(τ)) > θ (2.3)

To analyze PyCRA algorithm, we modeled it in a vehicle’s ACC system Fig.2.1 with θ = 5.

We can observe the output o(τ)(observed distance) of the active sensor in Fig.2.2, during no

attack when u(τ == 10) < θ which is as expected. Now, at τ = 30 r(τ) ≈ 20 which is > θ,

hence the system triggers an alarm.

Although PyCRA provides good theoretical guarantees based on fundamental properties of

physics, however, as we can see from the experiment output in Fig.2.2 it:

• Results in loss of control: As we can see during the challenge period the sensor ceases

5



measurements, this could be of serious concerns to real-time CPS, which rely heavily

on their sensors to have a very high uptime. STCR does not suffer from such limitation

as it uses multiple beam forming with synchronized CRA, theoretically ensuring 100%

uptime.

• Provides no recovery: As we see from the Fig.2.2 that during an attack the actual dis-

tance between vehicles drops below the safe distance, there is no effort made by the

system to recover even after the attack is detected. This might not be desirable in sce-

narios where switching off the CPS system relying on these attacked sensors is not an

option e.g. medical equipment, automobiles, etc. STCR uses in-sensor fusion to safely

estimate the sensor readings hence providing good recovery.

Then there is the solution proposed by Dutta et al., 2017. This solution tries to address the

2nd drawback of PyCRA system and proposes a mechanism to provide recovery. They use

RLS to predict sensor values when the attack is detected. The "RLSEstimate" function pro-

posed in this paper depends on the r(τ) eq (2.2) value as the initial error input when an at-

tack is detected. RLS also uses a forgetting factor λ which reduces the weight-age of older

inputs, more essentially r(τ) calculated in challenge period. We know that Regression Al-

gorithm’s such as RLS have a very fast convergence speed [19] to the mean of the running

variable, in this case running variable is r(τ) which tends to 0 until the next challenge period.

This mechanism has 2 limitations:

• Firstly: r(τ) calculated during the challenge period is a critical feedback to "RLSEsti-

mate" i.e. more challenge period readings mean better performance, resulting in longer

periods of loss of control, which is not good for real-time CPS that rely heavily on their

sensors to have a very high uptime.

• Secondly: due to fast convergence of RLS, as attack persists the system will trust that

the error between observed and actual sensor readings(running variable) is ≈ 0 hence

recoveries will stop.
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Figure 2.3: Dutta et al. 2017: A CPS system with CRA modulator built into its actuator and
an RLS recovery module in the sensor. The module triggers recovery when an attack is de-
tected,future values of the active sensor are estimated by using the recursive least square esti-
mation method.

Figure 2.4: Dutta et al. 2017: Red line represents an attack vector and red region the period
in which the algorithms detected the attack. The green line represents the ground truth and
the blue distance calculated using received signal. The magenta line is the corrected reported
distance. Black spaced line is the safe distance based on the current relative speeds between
the two vehicles

To analyze this algorithm, we modeled it in a vehicle’s ACC system Fig.2.3 with θ = 5. We

can observe the output o(τ)(observed distance) of the active sensor in Fig.2.4, during no at-

tack when u(τ == 10) < θ which is as expected. Now, at τ = 30 r(τ) ≈ 20 which is

> θ, hence the system triggers an alarm. Also, if we observe from τ = 30 to 40 we can see

the magenta line which is the corrected output by the RLS system converges to the distance

reported by the error signal (observed signal) rather than actual signal.

We have also analyzed systems like FIRED [20] which frequently reset the system and depend

on its own inertia to compensate for the loss of signal. And found they tend to suffer from

temporary loss of control and fails in CF models where the lead car dynamics are not in con-

7



trol of the CPS and can vary over time. Although they acknowledge the same in their paper

and provide solutions using multiple sensors which perform interleaved resets. STCR inher-

ently achieves this interleaving using multiple beam forming and synchronized CRA, which are

randomly distributed and grouped to provide a more resilient system.

There are also systems such as [9] which leverage heterogeneous sensors to model an attack

vector which will be hard for the attacker to achieve. In their model, it is safely assumed that

due to the heterogeneity of the system, not all sensors can be attacked at the same time. As

we will be showing in our work, that we can achieve similar attack vectors by grouping ran-

dom frequencies which cannot all be attacked at the same time.

And there are systems such as [21]–[23] which show how sensor fusion/voting based systems

fail when more than 50% sensors are compromised and propose different mechanisms such

as "a secure local control loop" can improve the resilience of the system, we achieve this by

bucketing Multiple beams thereby curtailing the impact of an attack.

8



Chapter 3
Background

Now we take a look at the enabling technologies for STCR.

3.1 FMCW

Frequency-modulated,continuous-wave based radar Fig. (3.1) is widely used in automobile

industry due to its low cost and form factor.

In FMCW a signal is transmitted, which increases or decreases in the frequency as a function

of time. The difference between the transmit (TX) f1 and receive (RX) f2 frequencies known

as a beat frequency fb is used to calculate the time delay 4t. Which can be used to calculate

the Range.

fb = f2 − f1 (3.1)

4t/Ts = fb/Bs (3.2)

Range = cTsfb/2Bs (3.3)

9



Figure 3.1: FMCW Principle

Where c is the speed of light 3 × 108m/s, Ts >> 4t is the sweep time, that is the maximum

round trip duration of the signal which is a function of the maximum range of the system. Bs
is the bandwidth response range of the signal.

The above principle can be used to calculate the relative radial velocity vr by using doppler

frequency shift 4f for a given radar wavelength λ.

4f = 2vr/λ (3.4)

3.2 MUSIC

MUSIC by Schmidt, 1986 [24] has been a fundamental technique to estimate the direction

of arrival (DOA) and number of distinct wavefronts in the received signal using m element

radar(phase array).

A narrow band signal source s(t) for frequency ρ,angular frequency ω can be represented by:

s(t) = ρejωt (3.5)

Now, we can define m narrow band signals as:

s1(t) = ρ1e
jωt, s2(t) = ρ2e

jωt, ..., sm(t) = ρme
jωt, (3.6)

The assumption here is that all frequencies are different and the amplitude/angle σ2
i uncorre-

10



lated.

E{ρiρj} =


σ2
i ρi <> ρj

0 ρi == ρj

(3.7)

Now, we model the sensor with m elements separated by distance d Fig. (3.2).

4i = (i− 1)d sin θ
c

(3.8)

xi(t) = e−jω4is(t) (3.9)

xi(t) is an RX signal of a sensor i at an angle θ and delayed by 4i.

Figure 3.2: Block Diagram for MUSIC

Now putting all m sensor elements together eq (3.10).
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X1

X2

↓

Xm


=



1

e−jω41

e−jω42

↓

e−jω4m


s(t) +



W1

W2

↓

Wm


= a(θ)s(t) + w(t) (3.10)

Where W is the complex vector, representing noise.

We get a(θ) the steering vector used to calculate the DOA using eq (3.8) and eq (3.9) for the

ith signal.

3.3 Multiple beams forming

Multiple beams forming as described in detail by Pfeffer et al., 2013[25] uses frequency-division

multiple tx-beamforming (FDMB) and multiple-input multiple-output (MIMO) radar systems.

It is based on the FMCW principle and provides multiple TX beams using phase array radar.

The key component of their work is a vector modulator (VM) Fig. (3.3) in each TX path of

the phased array, which is used as a single side-band (SSB) mixer and is controlled by digital-

to-analog converters (DAC). This implementation provides us with some nice properties such

as:

Figure 3.3: FDMB system with 4 TRX Front-End

kτ = Bs/Ts (3.11)

fRF = f0 + kτ (3.12)

• Simultaneous TX: Different beams are transmitted simultaneously at different frequen-

cies fRF .

• Per beam steer-ability: Steering a beam is achieved by changing the phase relations be-

tween the TX cells. In case of multiple beams, the complex control signals are calcu-

lated by simply summing up of the required control signals of each TX beam for each

12



VM.

• One more beneficial property is the use of input frequencies fRF to each beam derived

using the ramp slope kτ eq (3.11). The resultant beams are separated in frequency do-

main satisfying the

FMCW principle.

3.4 Car-Following Model

ACC used in vehicles is an example of a typical CPS, which uses radars as physical sensors

that measure the distance to the lead car Fig. (3.4) and give feedback to a CF model-based

computation system which maintains the desired state of the vehicle by manipulating throt-

tle/acceleration. We will be using it for modeling STCR. ACC in vehicles uses FMCW based

phase array radars, which are capable of multiple beam forming and tracking different objects

using DOA estimation. This information is used as a feedback to a CF model which assumes

a two-vehicle system consisting of a following and a lead vehicle. Lead vehicle’s dynamics are

independent of the following vehicle. The behavior of the following vehicle is adjusted as per

distance, speed relative to the lead vehicle, reaction time of the driver and physics of the vehi-

cle. The CF model works in two modes:

• Speed control: The following car travels at a predefined (cruise) speed.

• Spacing control: The following car maintains a safe distance from the lead car.

In CF model which mode to be used is decided based on the real-time distance to the lead car

reported by the radar system, if the distance to lead car is less than safe distance Fig. (3.4) it

switches to Spacing Control else it runs in Speed Control. And this is achieved by controlling

throttle/acceleration of the following car.

Figure 3.4: CF Model
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We have used matlab’s "Adaptive Cruise Control System Using Model Predictive Control"

implementation of CF model.
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Chapter 4
STCR: Spatio-Temporal

Challenge-Response

The basic idea behind our approach is to have multiple points of authentication. This is achieved

by splitting the radar signal into many narrowband beams. Each beam is capable of perform-

ing physical CRA. Then sending those beams at multiple angles towards the leading car (angle

are randomly distributed bounded by the width of the lane). At every time interval, One of

these beams will perform physical CRA. ensuring that rest of the beams stay active and the

system does not stop sensing. This approach is further enhanced by bucketing these frequen-

cies into autonomous groups which based on the quality of the response received for there

individual beams provide a computed distance with a confidence level. Buckets with a con-

fidence level less than a certain threshold are pruned and the rest are used to select the dis-

tance based on closest bond or mean. In STCR we employ the existing MIMO beam-forming

techniques as mentioned in [25] to deploy a radar system with K independent beams sepa-

rated in time, space and frequency. a total number of radar elements M, N number of ele-

ments per beam we get K = M/N . From now on we will be explaining the algorithm taking

K independent beams.

STCR creates K independent beams using multiple beam forming:

• A λ/2 uniformly spaced linear array (uniform linear array (ULA)) with M the number of

TX and RX antennas, where λ is the wavelength of the signal.

• Linearly increasing radio frequency (RF) signal frequency fRF = f0 + krt where kr =

15



Bs/Ts is the ramp slope with Bs th sweep bandwidth and Ts the sweep duration eq 3.11,3.12

• Steering this beacon is achieved by changing the phase relations between TX elements.

Which is performed in baseband applying phase offsets to the complex control signals of

each VM Fig.3.3.

• In case of multiple beams, the complex control signals are calculated by simply summing

up the required control signals of each TX beam for each VM.

These beams are now grouped together in buckets Bi. We make sure that these frequencies

are randomly selected. These buckets work independently of each other, forming autonomous

sensor systems.

Below we will be defining 2 algorithms one implemented within buckets and other to perform

data fusion over these buckets to provide a reliable reading.

Algorithm1: Attack detection within Buckets

• Input: 1) angle α bounded by the width of the lane w and minimum safe distance d.

2) a vector
−→
f of frequencies.

• Output: 1) confidence value Vc initially set to ‖
−→
f ‖

2) measured distance d

• Step 1 We can provide a vector Ai ∈ R‖
−→
f ‖, of provided angle a

• Step 2 Synchronized CRA: then we apply the physical CRA Algorithm, by using a pseudo-

random generator to generate a vector −→u ∈ RK such that it has all ones except one

and take a dot product of it with Ai to get a vector At. This way we make sure that

the system supports interleaving by not having more than one element of −→u as 0.

• Step 3 We will be generating a reflection vector Ar ∈ RK and compare it with the

actual received vector Aa ∈ RK to find the edit distance ed, and if ed > ε will raise the

alarm that system is under attack.

• Step 4 In case attack is detected in Step 3 we will be reducing the confidence value Vc
of the bucket by the number of susceptible frequencies.

• Step 5 Also computes the distance and store it in d ignoring frequencies for which at-

tack was detected or are in challenge period.
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Algorithm2: Data fusion using confidence index

• Input: 1) a vector
−→
d of distances calculated by ith angle bucket

2) with a vector −→Vc indicating their confidence index.

• Output: measured distance D

• Step 1 Prune the buckets based on −→Vc : Vci < [somethreshold]

• Step 2 Use bound checking on remaining values in di and select the distance with the

tightest bound and save it in D

Figure 4.1: STCR model: A CPS system with a synchronized CRA module which generates
pseudo random 0,1 modulation for M beams making sure only one beam per bucket will be in
the challenge phase at any time τ .

Figure 4.2: STCR algorithm in ACC output: Red line represents an attack vector and red re-
gion the period in which the algorithms detected the attack. The green line represents the
ground truth and the blue distance calculated using received signal. The magenta line is the
corrected reported distance. Black spaced line is the safe distance based on the current rela-
tive speeds between the two vehicles

To analyze this algorithm, we modeled it in a vehicle’s ACC system Fig.4.1 with θ = 5. We

can observe the output o(τ)(observed distance) of the active sensor in Fig.4.2, during absence
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of attack when u(τ == 10) < θ which is as expected. Now, at τ = 20 r(τ) ≈ 20 which is

> θ, hence the system triggers an alarm. With STCR we were able to detect the attack early

due to synchronized CRA mentioned in Algorithm1: Step2. The system was resilient to attack

as the attack was curtailed to few buckets and using Algorithm 2 we were able to select the

buckets with the highest confidence index and selected D with tightest bound.
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Chapter 5
Performance Evaluation

We have modified "Adaptive Cruise Control System Using Model Predictive Control" [26] im-

plementation in matlab to model our experiments. This simulation implements ACC, which

uses a CF model having the following properties:

Inputs:

• Driver-set velocity Vset

• Velocity of the host car Vhost

• Actual distance to the lead car Dact (from radar)

• Velocity of the lead car Vlead (from radar)

Outputs:

• Acceleration

The dynamics between acceleration and velocity are modeled as:

1
s(0.5s+ 1) (5.1)

which approximates the dynamics of the throttle body and vehicle inertia. The same transfer

function applies to both the host car and lead car.

The safe distance between the lead car and the host car is a function of the velocity of the

host car, Vhost:

Dsafe = 10 + 1.4× Vhost (5.2)
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where 10 (m) is the standstill distance and 1.4 (sec) is the time gap.

The following rules are used to determine the ACC system operating mode:

• If Dact ≥ Dsafe, then speed control mode is active. The control goal is to track the

driver-set velocity, Vset.

• If Dact < Dsafe, then spacing control mode is active. The control goal is to maintain

the safe distance, Dsafe.

Three major components of this design are lead car, sensed data and host car. We modified

the sensed data component by adding an "attack and noise subsystem" to introduce noise and

attack vectors into the sensor readings. Then we implemented three algorithms PyCRA, Dutta

et al. and STCR for detecting and recovering from the attack in the sensed data component.

We also modified the Host car component to create measurement check points.
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Figure 5.1: No detection and mitigation: Long duration static attack scenario
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Figure 5.2: PyCRA: Long duration static attack scenario
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Figure 5.3: Dutta et al. 2017: Long duration static attack scenario
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Figure 5.4: STCR: Long duration static attack scenario
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Figure 5.5: No detection and mitigation:Sinusoidal attack scenario
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Figure 5.6: PyCRA:Sinusoidal attack scenario
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Figure 5.7: Dutta et al.: Sinusoidal attack scenario
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Figure 5.8: STCR: Sinusoidal attack scenario

To evaluate STCR we have taken 2 spoofing test scenarios: constant and sinusoidal. We have

implemented and compared STCR against [11] which implements regression based recovery

and have also taken as benchmark [10] implementation to compare results in case there is no

recovery. A vanilla implementation is taken with no detection/recovery mechanism to show

system behavior under attack when there is no recovery.

The charts from Fig.5.1 - 5.8 capture outcome of the results. It has 2 graphs each, where the

top one is modeling the impact of attack/recovery on the vehicle dynamics of the following

vehicle with respect to the lead vehicle and the bottom one represents the spacing error ob-

served by the ACC system of the following car, which helps the vehicle to switch between

speed control or spacing control modes.

The red solid line in the charts represents distance calculated via attack signal and red region

the period in which algorithm detected the attack. The green ’-’ line represents the ground

truth and blue solid line distance calculated using received signal. The magenta "-." line is
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the corrected distance based on the signal reported by the algorithms. Black dotted line is the

safe distance based on the current relative speeds between the two vehicles, the spacing error

in bottom graph is calculated based on the difference of safe distance and actual/observed

distance respectively.

As we can see from our experimental results in Fig. 5.3 and 5.7 regression based solutions

tend to degrade as the attack goes on. We were able to attribute this behavior to two key

factors. First, these algorithms rely on learning done during the challenge period, and we can

not have this period too long as it would impact sensitivity of the system and can result in

temporary loss of control. Secondly, due to the forgetting factor λ involved in algorithms such

as RLS the learning done during the challenge period carries a much lower weight-age and the

current attack signal has higher weight-age, hence longer the attack persists we observe that

the recovery algorithm starts converging to the attack signal.

We came up with two criteria for comparing the different approaches.

First is sensitivity Salgo of the algorithm used, which is given by:

Salgo = 1
(Ae −Ad)

n∑
1

(Dei −Dsi) (5.3)

Dei =


Dei Dei < Ae

Ae Dei >= Ae

Dsi =


Dsi Dsi > As

As Dsi <= As

(5.4)

In all cases, the attack starts at time As = 20 and ends at Ae = 35 for short attacks and

Ae = 60 and the red regions in these graphs are the detection periods D. We found that

STCR outperformed the regression-based algorithms in all cases

Algo Short Attack Long attack Sinusoidal attack
STCR 1 0.9575 0.625
Dutta et al. 0.625 0.85 0.625
PyCRA 0.625 0.85 0.625

Table 5.1: Sensitivity Comparison: This table represents the Sensitivity of the system given by
eq. 5.3

Second is accuracy, we used continuous root mean square error (CRMSE) to calculate Acalgo
which is given by:

Acalgo =

√
1
T

∫ T

0
(s2
err)dt (5.5)
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After comparing different algorithms we found that regression-based algorithms have a re-

ally high base root mean square error (RMSE) due to there long learning phase, even after

normalizing for this we found that STCR performed better in all cases to regression-based ap-

proaches.

Algo Base error Short Attack Long attack Sin attack
STCR 3.96 4.44 5.27 4.44
Dutta et al. 19.35 21.29 21.18 21.29
PyCRA 18.97 23.03 22.16 21.15
Vanilla 4.05 10.77 16.48 11.81

Algo Base error
normalised Short Attack Long attack Sin attack

STCR 0.0 0.48 1.31 0.48
Dutta et al. 0.0 1.94 1.83 1.94
PyCRA 0.0 4.06 3.19 2.18
Vanilla 0.0 6.72 12.43 7.76

Table 5.2: RMSE comparison: This table represents the Accuracy of the system in meters
given by eq. 5.5
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Chapter 6
Conclusions and Future Work

We have presented STCR a spatial and temporal challenged response based spoofing attack

mitigation method for active sensors. One of the key features of STCR is that it uses cur-

rently available radar technologies (FMCW + phased array) deployed in vehicles and improves

detection and resilience of the system by grouping a random set of frequencies in a bucket,

and then treating them as different sources as they are both distinct in space (angle) and fre-

quency, allowing us to create a framework based on belief representation and hence achieve

benefits of sensor fusion. In our approach buckets are interleaved together in time domain,

hence avoiding temporary loss of control which other solutions suffer from. Then we simu-

lated and compared our approach with the current state of the art using Matlab. We per-

formed several experiments and showed that our approach was more sensitive to attacks and

had 6 times better accuracy than the state of the art. However, our approach will fail if the

attacker is able to compromise all the sensor buckets, and is also very specific to sensors which

support multiple beam-forming. Our future research will try to address these limitations and

we will try to extend this to enhance Sensor Fusion based schemes by increasing the confi-

dence level in radar based techniques.
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