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Abstract 

 

Conformal coatings are a means to protect printed circuit board assemblies, including the 

electronic components that they are populated with. Selecting a suitable conformal coating 

product has a significant impact on the nature of ruggedization that can be achieved. A 

variety of materials and application processes can be used during conformal coating. These 

materials and processes have an impact on the repeatability of the process and the reliability 

that can be expected. 

Manual spray conformal coating is a method that is widely used. Polyurethanes, a class of 

organics, is a conformal coating option that provides high degrees of abrasive, temperature 

and chemical resistance while protecting against the formation of tin whiskers. At the same 

time, due to its chemical resistance,  it is hard to rework the same.  

In order to minimize the need for rework and create an efficient, repeatable and 

reproducible process, the automation of conformal coat spray application may be 

considered. This research addresses a means of a robust and automated conformal coating 

spray application on SODIMM type memory modules using a two-component 

polyurethane based conformal coating material. A variety of methods can be used for 

conformal coating application which involves spraying, dipping, brushing, and chemical 

vapor deposition. However, regarding suitability, affordability, and efficiency, automated 
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conformal coating spray deposition appears to be the appropriate method for the 

application of the conformal coating on SODIMMs.  

Published research on conformal coating process setup is restricted to manual methods of 

conformal coat spray application. This research aims to improve process quality by 

observing improvement in yields while preventing observed defects and providing 

repeatable and consistent output for printed circuit board assemblies that are populated with 

SODIMMs. This is implemented using a variety of designed experiments to validate 

optimal input configurations for every sub-process of the overall conformal coating spray 

process. These optimal configurations are then used across the process for the execution of 

a controlled lot which is then inspected for visual defects and thickness to analyze process 

effectiveness. 

The sub-processes for the conformal coating process include board wash, ionograph test, 

masking, plasma cleaning, conformal coating spray, and cure. The board wash sub-process 

was qualified using three different temperature and time durations as inputs. The wash was 

conducted for combinations of 25, 35, 45 minutes at 100, 125 and 150 F. The wash solution 

concentration percentages were kept constant at 20%. When examined under a microscope, 

white residue was observed for lower temperature configurations. Next, the ionograph tests 

were conducted to verify ionic contamination levels on the surface of the SODIMM 

products, and it was observed that all samples passed. 

 

The plasma cleaning process tests involved various gas chemistries, and the effectiveness 

was verified using contact angles produced by distilled water over on BGA surfaces. It was 

observed that an oxygen-based plasma cleaning process provided the minimum contact 
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angles of 8° or below. Argon, by itself, performed equally well. The mixture of the two 

gasses resulted in an angle greater than 8°. Hence, oxygen was decided to be the gas 

chemistry of choice. 

The spray process was experimented with using three different programs. It was observed 

that the metalized surfaces of the components exhibited thinner deposits of coating than 

the other areas on board. The final program was modified to accommodate for cross-

directional passes and an air tack time of an hour to resolve the observed issue which turned 

out to be successful as a fix. 

The controlled lots processed and five samples were inspected for coating thickness ten 

times each provided with an average thickness of 84.84 microns with lies within the 

specification of IPC-CC-610 and customer requirements. No additional defects were 

observed, and hence the process setup is considered successful. This research has also 

helped in identifying potential opportunities for improvement which are discussed in the 

final chapter of this report.  
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            Introduction 

1.1  Introduction to conformal coating 

Conformal coating is a protective film applied on surfaces to protect them from 

environmental damage and degradation. According to IPC-CC-830B, “Conformal coating 

is used herein when referring to a type of protective coating for use on printed wiring (or 

circuit) assemblies. The conformal coating is intended to provide protection from moisture 

and contamination and provide electrical insulation; not as a sole source of mechanical 

support” [1].  

In the context of this research, the term ‘conformal coating’ would be used about Printed 

Circuit Board Assemblies (PCBAs). The film thickness is typically from 25-75 μm 

(�� � ������) [2] and ‘conforms’ [3] to the board topography, architecture, and 

components, covering and protecting solder joints, the leads of electronic components, 

exposed traces, and other metalized areas from corrosion. Most of the board traces are 

covered by solder mask. The purpose of cothe nformal coating is to cover all other 

metalized surfaces, except gold fingers, not covered by solder mask. Conformal coating 

provides protection against mold growth and electrical failures, allowing for smaller track 

sizes and greater voltage thresholds. Additionally, it provides significant levels of 

protection agains tin (Sn) whiskers [4]. 
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Most applications that currently make use of conformal coatings belong to the military, 

marine, aerospace, automotive, lighting and green energy sectors. As a natural evolution 

of this form of environmental PCBA protection, healthcare, and consumer electronics 

industries are accepting conformal coating as it provides significant advantages regarding 

reliability and miniaturization. 

1.2  Types of conformal coating 

The type of conformal coating [5] used for an application process is crucial to the product 

type and requirements for ruggedization. However, it is important to consider additional 

factors such as demand, supply, process cost (setup and operational), rework capabilities 

and time to coat. If a suitable match is found for the same, it can be used as a coating of 

choice for the conformal coat deposition process. Below are some of the common types of 

conformal coatings. 

  Acrylic (type AR) 

The moisture resistance of acrylics is comparable to that of silicone and polyurethane, but 

they have reduced resistance to petroleum solvents and alcohols. The dielectric strength of 

acrylic coating is approximately 1500 volts/mil (1 mil = 0.001 in = 	
��� � ����� ) and 

the temperature range for acrylic coatings is approximate -59ºC to 132ºC. Acrylic 

conformal coatings are relatively easy to repair and have a low curing time. Good 

electromechanical properties and a long pot life with little to no shrinkage or heat 

dissipation during cure are some of the advantages of acrylic conformal coatings. On the 

other hand, acrylic conformal coatings can be particularly sensitive to solvents (e.g., repair 

solvents or stripping agents containing chlorine) [4, 6, 7, 8]. 
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 Silicone (Type SR) 

Silicone coatings tend to have excellent shock resistance. They are easy to apply. 

Mechanical spot repairs are possible, but overall removal can be difficult due to the solvent 

and heat resistance of the material. Dielectric strength is approximately 1100 volts/mil (1 

volts/mil = 39370.1 volts/m), which is somewhat less than other coatings, but the flexibility 

of silicone allows for the application of thicker coatings. The temperature range of silicones 

is about -65ºC to 200ºC. Advantages include higher temperature applications up to 200ºC 

(392ºF), excellent humidity and corrosion resistance, and excellent thermal endurance, 

which is suitable for high thermal dissipating components (e.g., power resistors). 

Disadvantages include limited pot life, high Coefficient of Thermal Expansion (CTE) and 

difficulty during rework due to solvent and heat resistance [4, 6, 7, 8]. 

 Polyurethane (Type UR) 

Polyurethane coatings are rigid and durable, exhibiting high moisture resistance. The 

relative hardness of polyurethane coatings and cure shrinkage may stress components. 

Rework of polyurethane coatings in localized regions can be done by thermally softening 

the material, but the removal of this type of coating from large areas is challenging. The 

temperature range of polyurethane coatings is approximate -59ºC to 132ºC. Polyurethanes 

have a dielectric range in between 1500-2500 volts/mil. Polyurethane coatings are 

available as both one and two-part systems, have excellent humidity and chemical 

resistance while exhibiting good dielectric properties over time. Disadvantages include 

difficulty with rework and repair due to chemical resistance. Even selective rework requires 

heating. Humidity can cause blistering which may lead to electrical failure [4, 6, 7, 8]. 
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 Epoxy (Type ER) 

Epoxies are thermosetting systems usually containing two parts. They follow the same 

temperature ranges as polyurethanes. Localized repair is only possible by burning through 

particular epoxy areas. Removal over large areas is nearly impossible. Advantages include 

high abrasion and humidity resistance. Disadvantages include short pot-life, repair 

difficulty and stress on components due to the shrinkage associated with curing [4, 6, 7, 8].

 Parylenes (Type XY) 

 Parylene coatings [7] (poly-para-xylene) require Chemical Vapor Deposition (CVD) to 

deposit on small polymer segments called dimers that are then broken down into monomers 

as they travel down in the form of vapor through the chamber that contains the assembly 

to be coated. A parylene coating is used to produce relatively thin coats as opposed to other 

coatings. The monomer makes contact with the surface and sticks to it uniformly. There 

are various types of parylene coatings (Parylene N, C, and D), with varying chemical 

structures and properties. Advantages of parylenes include exceptional environmental, 

chemical, and corrosion protection, and excellent dielectric strength (5500 - 7000 

volts/mil). Parylenes also have to ability to adhere and conform to most surfaces and 

provide uniform coating levels. These properties help prevent thin-outs, pinholes, run-offs 

and sagging. Disadvantages include inconvenient technique, the requirement of specialized 

equipment (vacuum chamber for parylene deposition), complicated rework and operational 

costs. (require the use of plasma abrasion or micro blast cleaning) [10, 11]. 
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 Others 

Other conformal coatings include nano-coatings and hybrids. They range from medium to 

high costs regarding the operation. Hybrids can provide unique solutions such as security, 

RF shielding/immunity or selective conductivity but are extremely expensive. Nano-

coatings are thin coatings that are very sensitive to abrasion and require a long cure time. 

Nano-coatings properties vary across industries due to their recent adoption in the market. 

Both types can be deposited using spraying or dipping. Additionally, nano-coatings allow 

for low-pressure deposition while hybrids allow for application via dipping and printing 

(Figure 1.1). 

1.3 Conformal coating application methods 

Following the choice of the appropriate conformal coating material, it is essential to decide 

on the method of application of the conformal coating. Based on process and product 

requirements and complexity, a coat application method is required to achieve a high yield 

and minimum defects per the requirements. The defects can be defined based on the 

customer requirements in addition to industrial standards. The variables that will decide 

the type of process implemented for conformal coat application will be based on the PCB 

thickness, components on the PCBA, thickness requirements, coverage, and restricted 

areas on the board. 
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 Spraying 

Spraying can be conducted in conjunction with silicone, acrylic, nano-coatings and 

polyurethane applications. It is the most popular implementation of conformal coating and 

one of the most affordable options. The coating quality obtained at the end requires less 

material than other application methods. Acrylic, polyurethanes, silicones, parylene, nano 

coats, and hybrids are categories that are capable of being applied using spray coating.  

 

Spray application may be conducted manually or using an automated setup (Figure 1.1). 

The factors that make manual spraying useful is the low cost of setup, process simplicity 

and the ability to coat complex board designs. However, it can be hard to prevent overspray,  

which can lead to excessive waste of material and harmful emissions. It is also difficult to 

regulate coating thickness using this method. The method requires multiple coating cycles.  

Automated spray methods are utilized to avoid the shortcomings of manual spray 

application methods. They provide material savings, reduced masking requirement and 

Figure 1.1: Conformal coat spray application a) Automatic b) manual [11] 
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medium to high throughput. This approach is very efficient. However, it is costly and 

requires regular machine programming and maintenance.  

 Dipping 

Figure 1.2:  Dipping method of conformal coating application [11] 

This process is suitable for low volume, high complexity jobs and provides for excellent 

coverage on complex components, shapes, and parts within the assembly. It requires 

efficient masking and prepping. Otherwise, the components, substrates or areas of the 

assemblies may sustain damage. The dipping baths require high degrees of cleanliness, and 

the temperature and humidity conditions need to be carefully regulated. (Figure. 1.2). 

 Brushing 

This technique is suitable for all applications other than parylene based conformal coatings. 

The advantages include low investment, no masking, efficient touch-up and rework for low 
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volume jobs. The disadvantages include inconsistent thickness and high variability in 

coatings. It is difficult to control voids and bubbles, and it is dependent on operator 

technique. (Figure 1.3) 

 Chemical vapor deposition (CVD) 

Graphite, silicone or parylenes based conformal coatings are usually deposited through the 

implementation of CVD. Polymers are vaporized into small segments called dimers that 

 are broken down into monomeric species. The monomers are then deposited on the surface 

of the substrate via adsorption (Figure 1.4).  

1.4 Introduction to SODIMMs 

SODIMMs are miniaturized memory modules containing QFNs, passives, resistor packs, 

BGA devices (flash, EEPROMs) and gold fingers. They are a form of PCBA (Figure 1.5). 

Figure 1.3:  Brushing method of conformal coat application [11] 
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Standard SODIMMs range from 100-pins to 260-pins, varying in dimensions and position 

of notches on the board.  

The reader should observe a variety of conformal coating types and their methods of 

application. For this research, there is a need to focus on polyurethane based conformal 

coating deposited by an automatic spray method. This process should aim to optimize costs, 

quality, speed, and efficiency while meeting demands from the customer. 

1.5 Risks associated with conformal coating 

During the process setup and production phase, it is possible for defects to occur. 

According to the available literature, the following causes are attributed to most failures as 

a result of the conformal coating process. 

Figure 1.4: Chemical vapor deposition process [23] 
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Figure 1.5: Defects sorted by frequency of occurrence 
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 Mechanical damage to electrical assemblies  

During handling of coated modules, it is possible that the conformal coat or the coated 

components get damaged. Few of such scenarios include flipping or handling of partially 

cured or uncured boards. It can result in dewetting, damaged coating and other defects.  

Another situation occurs during the de-masking of areas on the PCBA. De-masking may 

cause damage to smaller components such as passives, which may be broken or chipped 

while de-masking [17]. 

 Electrical failures due to stresses induced by coating on solder joints 

After curing, the conformal coating shrinks and hence may affect the solder joint integrity, 

causing stresses due to mismatch of Coefficient of Thermal Expansion (CTE). Parylenes 

are especially susceptible to such issues. This problem is magnified with an increase in 

thickness in coating and damage to components. [18] 

Figure 1.7: Defects observed at supplier end 
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1.6 Problem and Research Objective 

There are numerous issues associated with the conformal coating process at production 

facilities. Most companies utilize manual spray methods in conformal coat modules. There 

is inadequate data to provide guidelines for polyurethane conformal coating process, 

especially for SODIMM type memory modules. This calls for research for an automated 

atomized polyurethane conformal coating spray application process for SODIMM based 

memory modules that is repeatable and reproducible with minimum lead time, cycle time 

and increased yields and minimum defects. 

The research objective was to develop a robust polyurethane conformal coating application 

process using the automated spray application method. The process will be utilized to coat 

Small Outline Dual Inline Memory Modules (SODIMM) to protect against moisture, mold, 

Figure 1.8: SODIMM conformal coating process outline flowchart 
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chemical exposure, and mechanical damage. The primary coating material is Humiseal 

1A33 used alongside Thinner 521 AU. 

The conformal coating process contains various steps post PCB assembly in the following 

order: These include board wash, ionograph testing for surface contamination, masking of  

gold fingers to prevent damage during plasma cleaning, plasma cleaning for increasing 

surface energy, contact angle measurement using an optical tensiometer, automated 

conformal coat spraying, conformal coat curing and contactless measurement of conformal 

coating thicknesses (Figure 1.8). 

The qualification of the process was based on equipment design, installation, and 

operations, as reflected by the product’s quality and functionality. The optimization of the 

wash process required optimized wash time and concentration levels for board washing. 

The plasma cleaning process was qualified based on the optimized gas mixture 

concentration and cleaning time. Thinner to the material ratio of the mix, atomization 

levels, dispense height, dispense width, amount of material dispensed and dispense speed 

was collectively optimized to obtain a repeatable and reproducible spray process. 

1.7 Summary 

The chapter begins with a definition of conformal coating. It then moves on to the purpose 

of conformal coating. Subsequently, an overview of various types of conformal coating 

and dispense methods is provided along with a discussion of the respective advantages and 

disadvantages of the same. Based on the requirement from the conformal coating and the 

options available, a decision can be made on the suitable type of material. The chapter then 

details methods that are used to apply the conformal coating and their specialized 
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implementations based on product type and design, process complexity, masking, 

thickness requirements, cost and time required to coat. It then moves forward to discuss 

SODIMMs, the PCBA manufacturing process and how conformal coating fits into it. The 

chapter then provides a brief description of the history of supplier issues observed during 

the conformal coating process. The problem statement reflects on the issues exhibited by 

manual spray methods and highlights the importance of an automated conformal coating 

spray application process for ruggedizing SODIMMs.  
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            Literature Review 

2.1 Introduction 

It is essential to understand the different components associated with the conformal coating 

process too understand the dynamics of conformal coatings with SODIMMs.  This chapter 

aims to cover existing studies conducted in the field of conformal coatings specific to the 

PCBA manufacturing process. It talks about conformal coating after PCBA the 

manufacturing process. The contents of this chapter describe various research initiatives 

embarked upon in the field of PCBA conformal coating and the outcomes of associated 

research identifying potential gaps and highlighting the need for process design, setup and 

qualification study for the same. 

2.2 PCBA conformal coating 

Conformal coatings are utilized for ruggedizing electronic assemblies to prevent damage 

or failures in hostile environments. Some of the examples would include the military, 

automobile, aerospace and medical applications [16]. The various advantages of conformal 

coatings include the development of an insulated organic barrier that protects against 

moisture exposure, potential pollution (electrical leakage), mechanical damage, and mold 

growth. The level of moisture protection is evaluated using the level of moisture 
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absorption-desorption kinetics. The level of kinetics can be regulated by altering the 

thickness of the layers. 

Additionally, according to Salman [15], conformal coatings can provide chemical 

protection. The research describes protection for their experimentation on the PCB-based 

multisensor array to determine the levels of protection provided by the coating. The study 

also mentions the salt spray resistance test as a means of assessing the reliability of a 

PCBA. It is difficult for a PCBA to pass the test without coating assistance as salt solutions 

would accelerate corrosion on copper tracks in conventional cases. 

The study [16] addresses conformal coatings that reduce lead-free solder-alloy related 

problems by mitigating tin (Sn) based whiskers and improving fatigue strength. It is 

described that these metallic growths can compromise component terminations when it 

comes to tin that is electroplated. Tin whiskers can compromise the circuits by causing 

shorts and hence device failure. In this case, the implementation of the conformal coating 

can reduce product failures on the first plug or infancy. In addition to conformal coating, 

it is advised to improve tin chemistries and component thermal treatments. Tin whiskers 

are represented in Figure 2.1 [16]. 

Figure 2.1: Tin whisker growth [22] 

Kaldesch [20] experimented with Uralane 5750 conformal coating on tin whisker growth 

and reported that tin whisker growth is not terminated by using a conformal coating. 

However, it is significantly reduced. The experimentation included: implementing a 
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delayed onset for tin whiskers, influencing the growth of tin whiskers, affecting their 

density, preventing tin whiskers from growing through the coating. In their study, a tin 

whisker managed to grow through a 0.00635 mm thick coating. They also observed that 

after two years, numerous tin nodules were found growing below the conformal coating. It 

is stated that tin whiskers are sensitive to electrostatic forces and may result in shorts 

regardless of conformal coating. Hence, conformal coating by itself may not be able to 

avoid failures caused due to tin whiskers. 

Woodrow et al. [21] presented their continued research for tin whisker mitigation for 

PCBAs. The results of the experimentation say that conformal coatings can suppress the 

formations of whiskers and eruptions. With 401 days of exposure to the ambient conditions, 

tin whisker breakout was contained. However, during high humidity conditions, the effect 

of conformal coatings was overcome, and the whiskers and growth were able to pass 

through the conformal coating regardless of the coating thickness which contradicts their 

previous study of 50℃/50% RH where whisker growth and eruptions were temperature 

dependent. Auger analysis was conducted that concluded that the surface of the crust was 

a mixture of tin, tin oxide and zinc oxide for the eruptions. 

Dou [19] presented their research on reliability to ensure high insulation impedances of 

conformally coated assemblies. The cause for this is attributed to be moisture as it 

combines with solder flux residue on the surface of PCBAs. The ionic or organic 

contaminants increase the Surface Insulation Resistance (SIR). SIR is defined as the 

electrical resistance between two conductive materials generated due to the presence of a 

dielectric material [19]. This research focused on finding relationships between moisture 

and SIR for conformally coated PCBs by measuring leakage currents on passives in 
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environmental testing chambers while adhering to IPC standards for non-component 

loaded boards. It was found that damp heat insulation resistance measurements following 

a procedure similar to IPC standard SIR testing for non-component full boards have been 

carried out on capacitor loaded PCBs reflowed with a low-solids solder paste and 

encapsulated with a two-part silicone-based conformal coating. The boards were cleaned 

to varying levels to allow for the investigation of surface contamination impact on the 

effectiveness of the conformal coating. The differences were observed despite ionic 

contamination tests yielding similar or identical levels. Qualitative analysis for the 

presence of organic resin residues from soldering was found to be a better predictor of the 

behavior in the damp heat test. Discoloration of solder on comb structures was seen on 

encapsulated boards after the wet heat tests but not on exposed boards. 

When it comes to mechanical fatigue in harsh environments, it is essential to reduce the 

impact of vibrations, abrasion, and high temperature [18]. The stress produced due to these 

two factors may contribute to failures. Conformal coatings exhibit improvement in solder 

joint reliability for BGA and SMT components [19]. It also provides adequate protection 

against arcing and haloing of the electric discharge. Electrical factors like dielectric 

strength, resistivity and dissipation factors need to be considered before selecting the 

suitable conformal coating material. 

Han [22] attempted to examine the effectiveness of conformal coating on actual assembled 

hardware. Six conformally coated samples were analyzed for their effectiveness against tin 

whiskers when applied to gull-wing specimens and quad flat pack specimens. Gullwing 

leads show non-uniform coverage of conformal coating. Scanning Electron Microscopy 

(SEM) was used in backscattered electron mode to aid in quantifying coating coverage. 
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Tests for tin whiskers were conducted again after specimens were subjected to sequential 

temperature cycling and increased temperature and humidity conditions as well as 

corrosive gasses. It was observed that Parylene C was the only coating that was able to 

survive the effects of the harsh environment and effectively suppress tin whiskers. It was 

also found that corrosive gas exposure proportional to tin whisker density but not growth, 

spray processed conformal coatings were found to have minimum coverage in comparison 

to coatings that were deposited using Chemical Vapor Deposition (CVD). Thinly coated 

corners showed more susceptibility to whisker growth in comparison to the ones exhibiting 

greater thickness. 

2.3 Conformal coating processes development 

Conformal coatings vary by chemical and physical properties, application, removal or 

rework methods. Curing durations are also different depending on the material and 

deposition processes [13]. An ideal conformal coating must not crack, exhibit dewetting, 

low-shrinkage, proper adhesion and environmental friendliness. The conformal coating 

dispense mechanisms depend on the type of conformal coating being used. Two-

component mixtures require maintenance of ratios and vigilance when it comes to 

concentrations [11]. They also need to be used within a specified time interval of mixing. 

Inconsistencies observed at this stage of the process may cause quality issues such as 

dewetting, thin coating, bubbling. Examples of such conformal coating materials are 

epoxies and urethanes. One component systems, such as acrylics, do not produce this issue 

as the same batch can be continually used for a longer course of time. 
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Another important factor while selecting a conformal coating is the ease of rework. There 

might arise a need to conduct rework for components or the coating itself. This process 

must not damage the components. The rework on these modules can be done using 

dissolution in specific compounds, application of heat or shearing. The research, however, 

does not mention the requirement of ease of rework for smaller assemblies. Two-

component systems usually beat other options in these scenarios. 

 The coatings also vary by cure mechanisms. Curing may be conducted via the exposure of 

specific coatings to a higher temperature, low humidity or applying normal temperatures 

would require several hours for the coatings to cure. UV light-cured coatings may get cured 

as fast as a few minutes. 

The coatings are classified in the following significant groups by composition epoxy (ER), 

acrylic (AR), urethane (UR) and silicone (SR), and poly-para-xylenes (XR). There are 

however more categories that include composites used for specialized applications. 

Depending on the type of conformal coating selected, the optimal deposition process may 

be chosen. It involves either manual deposition processes such as manual spray, dip or 

brushing or automated dip or spray. Ideally, dipping is considered to be the more reliable 

method. However, in cases that cosmetic quality is taken into consideration, spraying 

provides a relatively consistent deposition and avoids run marks and material wastage. 

Despite the advantages, sprayed PCBAs are more prone to surface defects such as 

dewetting, fisheyes and bubbling. See Tables 2.1, 2.2. Symbols ‘+’ and ‘-‘ indicate the 

favorability of coating associated with the respective factors.  
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Table 2.1 Properties of conformal coatings for QFN components [14] 

 

Table 2.2  Comparison of dispense process performance [14] 

 

2.4 Conformal coating process flow 

The start of the research requires an overview of conformal coating process steps. These 

steps include PCBA wash, ionograph testing, baking, masking, plasma cleaning, optical 

tensiometry test, conformal coat application, conformal coat curing, conformal coat 

thickness measurement, and conformal coat visual inspection. The modules also required 

to be tested for functionality post visual quality inspection. One of the first prominent 

studies conducted in the conformal coating process looked at the ‘Analysis and 
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Improvements of an Acrylic Conformal Coating Process’ [2]. This research employed the 

use of masking boots as a replacement for masking tapes and flex masks regarding cost 

savings. However, it was found that there were no significant differences in cost savings 

or quality.  

Other significant tests conducted include the weight loss tests, optimum air cure and oven 

times. The research also aimed to study if the cure time can be reduced from 2 hours to a 

smaller number. The study looked at various types of masking tapes with inconclusive 

results regarding which masking tape met all the requirements. The study suggests the use 

of Zahn cup #2 and #3 viscometers determine the amount of error, and it was discovered 

that Zahn cup #2 shows acceptable readings. Other variables that were analyzed included 

the operator bias, coating to thinner ratios and alternative flex masks all indicating little to 

no difference in quality. This study was however only able to look at the two-part (coating 

and thinner) [2] acrylic conformal coating process specific to a particular 

instance/application. The flowchart for the method is shown in Figure 2.3. 
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Figure 2.2: Acrylic conformal coating process map [2] 

Dymax [2] refers to the epoxy that was cured using UV light to hold wired components to 

make sure they did not get loose.  The use of Dynmax is not required in the existing process. 

This paper also addresses ionograph testing, drying, masking,  and curing. The process will 

remain same until this point. The air cure before the oven cure is eliminated in this research 

as existing conformal coatings are capable of receiving accelerated temperature curing 

using a suitable oven. The partially sprayed boards can be handled safely as physical 

contact with the boards is prevented. A specialized fixture has been designed for the 

specific purpose of providing handling flexibility. The coating strip process would also be 

different from the one described in the study as there are customized materials used to do 

the strip in-case rework is required. The research paper also discussed spray (manual), 
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manual dip and auto dip processes for conformal coating. However, this research follows 

the automatic spray process for dispensing and coating. The study advocates the use of 

dipping to be the more efficient process of dispensing as it is much faster. On the other 

hand, inefficient masking may pose the risk of bleeding of the conformal coating into areas 

that need to be avoided while coating. Spraying avoids this issue and provides better 

aesthetic quality and hence would be used for this research as the method of choice [2]. 

The experiments for the research [14] involved the standardization actions for work 

benches, masking tapes, coating to thinner ratio, viscosity tests, and oven temperature 

standardization for a cure. The equation for the solvent evaporation rate was presented as 

follows. ‘W’ was described as the weight of the coupon, hook, and coating at a given time. 

‘Wb’ and ‘We’ were the respective weights measured after removing the coupon from the 

oven for the first time and at the end of ten days respectively. 

The humidity temperature and humidity of the room was also measured before conformal 

coating application 

% solvent evaporation = (W - Wb)/(We - Wb)                               (1) 

The research was able to obtain relationships between the evaporation between curing rate 

vs. curing temperature. It was also described that masking tapes must not contain silicone, 

as they leave residues after demasking, lose adhesion when heated, exhibit porosity, tear 

easily. At the same time, it should be anti-static, self-sticking, easy to remove and clean 

and must leave a clear, smooth line at the boundaries of the masked areas. The study 

advocates the use of 3M tapes which would be adhered to during this research. The 

measurements for viscosity were conducted using the Zahn cup viscosimeter gauge 

experiments that showed clear operator bias. The suggested coating to thinner ratio was 
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42% pure coating to 58% thinner for dipping per 1000 mL of the mix. The future scope of 

this study was to look for weight loss tests to be run at standardized temperatures. 

Opportunities to look for the improvement of cycle time and throughput, monitoring of the 

scenarios where the most amount of touch-ups were required and doing a cause analysis of 

the same. 

To understand more about dispense mechanisms, Szuch [13] presented an exhaustive 

literature survey that covered issues faced by various contract and equipment 

manufacturers when it comes to shielding electronics from damage caused by harsh 

environments. The paper discusses multiple dispensing technologies and their properties 

along with the issues encountered while dispensing them. The dispensing methods 

described are spraying, dipping, brushing, and needle-dispensing. The paper also talks 

about automated means of dispensing using robots. The literature review proposes a high 

flow-rate, tri-mode applicator technology offering wide varieties of automized spray 

patterns, spot and line modes and coaxial air-assisted monofilament modes. Two such 

configurations were compared for repeatability, selectivity, and accuracy. As an example, 

0805 jet capacitors were described. 

In more recent research conducted on the conformal coating dispense processes, newer 

materials are emerging. These are a mix of acrylic and urethane chemistry [16]. These 

chemistries are solvent-free one component systems with UV curing properties despite 

thermal curing to reduce lead time and cycle time for the coating process. It is stated that a 

couple of days are required at least to achieve full cure and full adhesive functionality. 

Layer thickness would depend on humidity and diffusion control. Techniques such as 

brushing, atomization, and curtain coating (high control over thickness as well as width) 
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offer high flexibility and control over coating thickness but require extensive and careful 

masking. The automated spray is better regarding the ventilation requirement because of 

atomization. The spray/curtain coating, when automated, provided much better control 

over the coat thickness and consistency. Additionally, selective coating, such as automated 

dipping, improves uniformity and provides higher thickness control. The process becomes 

much more repeatable and reproducible as a result with little to no masking requirement 

(Ref. Table 2.2). 

The behavior of the liquid drops can be described by equations 1-4 below [14],  

Bond Number,                                �� � � ���
�

                                                                    (1) 

Reynold number,                            �� � � ���
�

                                                                    (2) 

Weber number,                              �� � ���
��
�

                                                                  (3) 

Ohnesorge number, �� � � �

����
                                                                 (4) 

Here,  �  is Density (kg/m3), d: characteristic linear dimension, typically drop diameter 

(m), � : superficial tension (in N/m), v: velocity of the fluid with respect to the object (m/s) 

 �: Dynamic viscosity (in Pa.s). Bond number (Bo) is the ratio of gravity force to capillary 

force.  

When Bo <<1, gravitational forces can be neglected, and only capillary forces and inertial 

forces for mechanical collision need to be considered, i.e., jetting is possible at the top and 

the bottom of the circuit simultaneously. Reynold number (Re) is the ratio of inertial forces 

to viscous forces and is useful for predicting the transition from laminar to turbulent flow 

and Re <2000 is usually the limit to laminar flow targeted. Weber number (We) is the ratio 

of inertial forces to capillary forces and defines jetting capability, representing the 
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minimum energy needed to pass the nozzle barrier. We >>4 is a representative jetting limit. 

At the same time, minimum nozzle size can be set for a given material. Ohnesorge number 

(Oh) is the ratio of viscous forces to inertial and capillary forces. In inkjet printing, the 

Ohnesorge number is useful when setting the range for the acceptable process between 

satellite droplet – excluding primary drop (small Ohnesorge number) - and non-ejection of 

fluid due to viscous dissipation (high Ohnesorge number). 

The conclusions of the research [14] show that the selective deposits can be made with 

stabilized dot volume and reduced numbers of satellite droplets. The results look promising 

for HDI interconnect boards [14]. However, potential improvements appear to be required 

from the material point of view regarding Ohnesorge number. Solventless chemistry with 

UV curing offers shorter lead and cycle times and immediate protection. The masking 

process is also eliminated, which further reduced the time. Other than the study utilizing 

DROP-ON-DEMAND dispensing technologies such as piezzo inkjet dispense, aerosol jet 

printing, jetting by mechanical collision and screen printing for conformal coating as 

opposed to conventional methods, much insight can be gathered and scaled to implement 

a polyurethane automated spray coating process for SODIMM type conformal coating 

modules. 

One of the earliest published applications of conformal coatings on SODIMMs is described 

in the form of a datasheet by GE Systems [12] for VMIVME -7851 (Intel® Pentium® 4 

Processor – M Dual Slot VME Single Board Computer) by GE in the year 2000. The 

architecture for the same is described in Figure 2.4. The datasheet provides the product 

description as well as an option to conformally coat the motherboard at the customer’s 
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request. There is specific literature available on the conformal coating of SODIMM type 

memory modules. Hence the significance of this research. 

 

Figure 2.3: Architecture for VMIVME – 7851 [12] 

2.5 Summary 

Based on the literature discussed above, gaps can be observed in the existing research. Two 

of the many prominent gaps include the following: 

1. The rework requirements for SODIMM conformal coating modules. 

SODIMM modules are smaller than most electronic memory systems. 

Therefore, it is essential to conduct a conformal coating process evaluation and 

qualification study specific to SODIMM modules. 
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2. Studies were not found specific to polyurethane conformal coating spray 

process development, analysis, and improvement.   

These research gaps set the foundation for the research methodology adopted in this 

research endeavor, which will be discussed in the next chapter.
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           Research Methodology  

3.1 Introduction 

This research focuses on developing a robust and repeatable process for conformally 

coating SODIMM electronic memory modules using an automated spray application. The 

material utilized for this purpose was a two-component polyurethane system. The sequence 

of this research was categorized into three parts namely process setup, process 

qualification, and process improvement. Figure 3.1 describes the flow of the research 

methodology. 

3.2 Phase 1: Sub-process setup 

The first phase involves initial purchase and installation for the equipment. The equipment 

used for the research includes the automatic board wash system, ionograph, plasma 

cleaning system, optical tensiometer, automated spray coating system and curing oven for 

conformal coating.  

The sub-process setup was examined for visual and non-visual attributes of the equipment 

in comparison to operational, maintenance and configuration guidelines for the equipment  
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Figure 3.1: Research flowchart 
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and material, as provided by the vendor. The overall integrity of the system and package 

was inspected before receiving. Equipment installation support was provided through field 

service engineers. Once the internal and external physical inspection for the same was 

complete, equipment was inspected for power and operation related failures. Any issues 

encountered were immediately reported to the supplier. Checks for setup and functionality 

include visual examination, power-up, power-down, valves, piping, wiring, 

electromagnetic components, fuse and electrical ratings. Alarm setup was also verified for 

functionality due to its importance vis-à-vis quality and safety. Records for machine 

hardware initial calibration and certification per industrial standards and customer 

requirements were obtained for all equipment including but not limited to, health, safety, 

federal and industrial quality specifications. After procurement of all associated standards 

and confidence on the integrity of the equipment, equipment training and certification was 

obtained from the manufacturer and a record for the same was maintained.  

Experiments for the individual sub-processes were conducted using input configurations 

based on existing processes and literature. The SODIMMs are exposed to treatments 

defined by the experimentation, and their respective outputs decide the optimum 

configurations. These configurations would minimize overall process cost while 

maximizing sub-process quality regarding yields and defects. Response from the optimal 



33 

 

response was directed as input to the next sub-process element, and this cycle was repeated 

for every sub-process. Figure 3.2 and 3.3 provide a visual representation of the system.  

 

S

U

B

-

P

R

O

C 

E 

S 

S 

 

1 

Response n 

Response 1 

Response 2 

. 

. 

. 

Optimum response 

Inputs 

Response 1 

Response 2 

Response n 

. 

. 

. 

S

U

B

-

P

R

O

C 

E 

S 

S 

 

2 

S

U

B

-

P

R

O

C 

E 

S 

S 

 

N 

Figure 3.3: Representation of a sub-process visualized as a system 

Figure 3.2: Optimum response conversion to input for the following system 
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 Board wash system experiments 

The input factors for board washing system include wash temperature, dry temperatures, 

the concentration of wash solution, wash time, dry time, number of rinse and dry cycles. 

The objective for this sub-process was to obtain modules with minimum ionic 

contamination and no flux residue. 

The initial run for an automated board wash system was tested for wash cycles with no 

assemblies loaded for the cycles. This introductory testing and priming involve monitoring 

of the sump and chamber temperatures. This was to investigate the abnormal increase in 

temperatures of the setup compared to the operational and safety limits specified by the 

supplier.  

A 23 factorial experiment was conducted to evaluate the effectiveness against ionic 

contamination and flux residue levels of the SODIMMs, where all variables other than the 

wash time and wash temperature were kept as constant. Levels for wash temperature are 

100, 125, 150 F and the levels for wash time are 25, 35, and 45 minutes. The treatments 

contain all unique combinations of levels from both factors. These nine treatments were 

applied to nine batches containing five SODIMMs each. The hypothesis to test the 

treatments was the absence of flux residue and ionic contaminants. 

Next, a customized fixture was constructed using Semitron ESD 225 material with the 

capacity of 50 SODIMMs. Five devices were selectively loaded in the middle rows of the 

fixture. Wash cycles exhibited BGA shadowing effects on the board, and specific tests 

were conducted to identify root-causes. It was found that lower temperatures exhibit greater 

shadowing. 



35 

 

The inspection for the SODIMMs was conducted visually and using an ionograph. The 

goal was to obtain a configuration that provides ionic contamination levels ≤ ten !g/in2 

without traces of flux residue on the surface with minimum factor levels for wash time and 

washes temperature. The ionic contamination levels are measured using an ionograph 

containing a mixture of 2-propyl-alcohol with water such that the specific gravity was set 

to 0.085.  

The SODIMM lot that meets the requirements above will be replicated using their input 

configurations. These SODIMMs will be blow dried, baked and masked. The samples will 

then be moved to dry storage until they are ready for further experimentation. 

Figure 3.4: Board wash sub-process 

Figure 3.5: Masking-Demasking sub-process 
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 Plasma cleaning experiment 

The plasma cleaning experiment involves essential experimentation that helped to provide 

an understanding of the dynamics of a plasma clean process on PCBA and component 

surfaces in order to enhance wettability. Fifteen samples were divided into three lots, each 

containing five samples. Each lot was exposed to three different gas chemistries (oxygen, 

argon, oxygen, and argon in 1:4 ratio respectively) while all other variables were kept 

constant. From every lot, a sample was inspected using an optical tensiometer for 

wettability. The minimum contact angle was selected as the configuration of choice for the 

experiments to follow. 

The next experiment with regards to plasma cleaning was conducted with a single 

aluminum mountable fixture with ten SODIMMs installed on the board, to verify the 

improvement of cleaning quality observed as a result of a customized fixture on the quality 

of clean. It was found that the contact angle measured on the BGA device was 

Figure 3.5: Plasma cleaning  sub-process 
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approximately four degrees with signs of immediate wetting on both sides of the SODIMM 

module. All input configurations for the plasma cleaning process remained the same as the 

previous implementations of the process. The Radio Frequency (RF) power in between the 

ground and power plates was set to 200W. The CDA (Clean Dry Air) pressure was set to 

160 sccm (standard cubic centimeter per minute) while the oxygen input was set to 200 

sccm.  It was observed that a full load (fifty SODIMMs, five fixtures) requires additional 

power to achieve the same clean angle as an approximate contact angle of 10 degrees was 

observed for the same things. This issue, however, was resolved by increasing the RF 

power by 100 Watts which provided us with a sample contact angle of four degrees. 

 Conformal coating spray experiments 

The conformal coating spray machine involves the input of material, an aluminum fixture 

with a capacity of 10 modules, atomizing air and the SODIMMs. The material volume, 

material concentration ratios, tank pressure, dispense height are controlled factors set at 

constant levels, 450 microns and 1:4 (1-part solvent and 4-parts polyurethane material). 

There were three different programs that tracked the trajectory and dispense rate. The idea 

was to increase or decrease the deposition by lowering or speeding-up the dispense speed, 

respectively. The first program used constant speeds for all three passes for the spray. The 

first step was to work on the edges adjacent to the gold fingers of the SODIMM modules 

by depositing a layer to cover the areas with potential fixture related shadowing. The next 

part of the program was to coat along the shorter edge of the fixtures across the area that 

requires coating with dwell times in between. This was done thrice. The atomizing pressure 

was kept greater than 3.5 psi. Taking a value higher than 3.5 resulted in rapid evaporation 
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of volatiles from the coating material. Atomizing pressure less than 3.5 increases droplet 

size which results in an irregular pattern. The material storage tank pressure was locked in 

at about 40 psi. 

The objective was to obtain a configuration that exhibits minimum defects before as well 

as after cure and damask. The defects include visual and functional issues directly related 

to conformal coating. 

 Post-cure experiments 

The lots obtained are set to cure at 190.4 F for 20 hours and are inspected post cure for any 

visual defects. The ten thickness measurements are taken on BGA surfaces to find the 

average for every sample from the lot. The SODIMMs are then demasked and inspected 

for symptoms of physical damage, peelability, edge cleanliness, conformal coating tape 

residue using visual inspection. All samples that pass visual inspection are sent for 

functionality testing and are reworked if required. 

Figure 3.6: Conformal coating spray sub-process 
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The configuration that performs consistently in all situations both before and after curing 

was selected as the optimal configuration specification throughout the process. Phase 2 

qualification involves analysis and testing using the optimal settings for all subprocesses 

throughout the process cycle.  

3.3 Phase 2: Process analysis 

The process was regarded to be a single unit for the process analysis phase. The unique and 

common cause variation of outputs from one sub-process to another was assumed to be 

zero, and the sub-processes are considered to be configured optimally to achieve high 

overall process yield. The SODIMM samples are tested for all assembly and functionality 

level defects before starting with the process runs for the same. The sample size for this 

step involves five lots of 30 SODIMMs per lot. All lots are exposed to the same 

configurations and control mechanisms and are subjected to 100% inspection. At the end 

Figure 3.7: Curing sub-system 
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of the process, the overall process run data was collected for defects, yields by defect type 

and frequency. 

3.4 Phase 3: Process improvement and control 

Based on the data obtained in the previous phase, descriptive statistics and control charts 

and gage results are generated. The analysis includes hypothesis, capability and normality 

tests for the overall quality and control of the process. The inferences drawn are evaluated 

from different tools such as Process Failure Modes and Effects Analysis (PFMEA), Risk 

Assessment, Cause and Effect Analysis and Brainstorming to come up with updated targets 

acceptable limits, process indicators, risks, operating procedures and guidelines, control 

plans, maintenance plans and reaction plans. Phase three concludes with a process audit to 

assure, qualify and quantify process improvement against the former implementations of 

the process 

3.5 Summary 

This chapter aims at developing a robust process exhibiting increased process yields as 

compared to its former implementations. The focus was on individual process sub-systems 

as it was on the overall process behavior. This was hypothesized to provide optimal 

conditions and configurations of the expected process response through step-by-step 

quality improvement measures and the reduction of process variability along with an 

increase in yields. The next objective would be to implement procedures, control plans, 

reaction plans and maintenance plans based on assessed and observed risks and failure 

modes.
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          Sub-process qualification experiment results 

4.1 Introduction 

Based on the experiments designed in the previous section, the observations for the process 

setup are discussed in this chapter. This chapter also encompasses the rationale behind 

deciding optimal input factors for every subsequent sub-process. Control lots are processed 

after the overall process qualification and results and inferences are discussed. Observed 

process indicators and issues are recorded and investigated for possible causes using 

supplementary analysis if required. Maintenance, containment, operation, quality control, 

safety and reaction plans are discussed based on the inferences drawn from the research. 

4.2 Sub-process setup  

 

Figure 4.1: Phase 1: Sub-process setup 
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 Equipment setup qualification 

As a novel process setup for on-site conformal coating, the process required the purchase 

of new or transferred equipment. All equipment except the despatch curing oven arrived 

before the setup of the project. The first step was to verify the integrity of the equipment 

before installation, testing, and operation. Incoming quality control verified the package 

dimensions, weight, pick-list, packing material, safety indicators, and markers. Any signs 

of damage or incongruity were required to be reported. This process highlighted damage 

Figure 4.2: Damage on package flagged by Incoming quality assurance 
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on the package for the Nordson-March AP-1000 Plasma Cleaning System and issues were 

reported to the vendor immediately. The package contents, however, were found to be 

intact. All other equipment was received in proper conditions per new and transferred 

equipment checklists.  

All equipment packages contained a complete set of calibration and maintenance tools, 

operating manuals and supporting documents. The power-up and down tests for all 

electronic equipment were successfully performed.   

  Board wash system experiment results 

Table 4.1: Board wash experiment results 

 

The ionograph test results were conducted for the settings mentioned above. The input 

factors considered for the sake of this experiment are wash time, concentration, wash 

temperature and dry time. For the sake of this experiment, per supplier recommendation as 

well as factor sensitivity, the concentrations for all the washes were kept the same. All 

modules were mounted into a fixture of Semitron ESD 225 material and loaded for variable  

wash times and wash temperatures (See Table 4.1). 

Batch Wash 
Time  
(min) 

Conc. 
(%) 

Dry 
Time  
(min) 

Wash 
Temp  
(°C) 

Visual inspection samples Ionograph 
results #1 #2 #3 #4 #5 

1 25 20 15 38 Fail Pass Pass Fail Pass Pass 
2 35 20 15 38 Pass Pass Pass Pass Pass Pass 
3 45 20 15 38 Pass Pass Pass Fail Pass Pass 
4 25 20 15 52 Pass Pass Pass Pass Pass Pass 
5 35 20 15 52 Pass Pass Pass Pass Pass Pass 
6 45 20 15 52 Pass Pass Pass Pass Pass Pass 
7 25 20 15 66 Pass Pass Pass Pass Pass Pass 
8 35 20 15 66 Pass Pass Pass Pass Pass Pass 
9 45 20 15 66 Pass Pass Pass Pass Pass Pass 
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It was observed on Batch 1, 3 location number 4, that samples failed for the visual test as 

the white residue was observed in minor amounts on the surface of the SODIMMs. It was 

also observed that the accumulation of flux residue occurred in specific locations at the 

lowest temperature. To understand the potential causes of this defect, a separate study for 

BGA device shadowing was conducted. It was hypothesized that due to the BGA devices, 

adjacent surfaces and components were shielded from exposure to the wash solution. The 

test was conducted on overall maximum, and minimum configurations of both input factors 

and it were found that the defects occurred in locations where wash temperature was low 

(i.e., 25 °C). Higher temperature caused complete flux shell removal. It was also concluded 

Rows: 5 

Columns: 10 

Occupied slots 

Figure 4.3: Semitron ESD board wash fixture for SODIMMs 
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that the effect of BGA device shadowing is magnified depending on the operating 

temperature. This observation was made while conducting a visual inspection of the 

modules. It was found that sample 4 from batch 1 and sample 2 from batch 2 failed the test 

 (See Table 4.2). 

Table 4.2: BGA device shadowing experiment results 

  

After completion of the wash process and visual inspection, one module out of each batch 

was tested for ionic contamination using an Aqueous Zero-Ion ionograph. Before testing, 

the specific gravity of the IPA and distilled water solution was calibrated and set to 

0.855g/L. The alcohol concentration in the mixture was 75. Solution regeneration caused 

the test flow to range from 1.340 GPM to 1.433 GPM (gallons per minute). The temperature 

variation was found to be 72F to 73F. The border area was fixed to 3.2 square inches for 

trials. The results for all sample modules were passed as in all cases, the level of 

contamination was found out to be less than ten μg/L. The optimum input for the next sub-

process was decided to be a wash solution with 20% concentration, 35 minute wash time 

and a temperature of 52°C. At this configuration, all modules passed a visual inspection 

and ionograph tests. The maximum wash chamber temperature, as recommended by the 

vendor,   was 66°C. It was observed that operating at this temperature setting caused high 

variability and overheating of equipment. The modules were blow-dried using an ionized 

air gun, baked and masked on gold fingers using 3M-851 masking adhesive tape. 

Batch Wash 
Time  
(min) 

Conc  
(%) 

Dry 
Time  
(min) 

Wash 
Temp  
(°C) 

Visual inspection samples Ionograph 
results #1 #2 #3 #4 #5 

1 25 20 15 38 Pass Pass Pass Fail Pass Pass 
2 45 20 15 38 Pass Fail Pass Pass Fail Pass 
3 25 20 15 66 Pass Pass Pass Pass Pass Pass 
4 45 20 15 66 Pass Pass Pass Pass Pass Pass 
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 Plasma cleaning experiment results 

The first set of plasma cleaning experiments was conducted using SODIMM washed and 

tested SODIMM products placed in an aluminum basket as they are exposed to the 

respective gas chemistries. The bottom side of the module required elevation to allow the 

gas mixture to travel below the fixture and clean both surfaces. 

The equipment RF cycle voltage was set to 300 W with the upper plate being the cathode 

while the lower is the ground. The gas input setting was set to 200 sccm (standard cubic 

centimeter per minute) and the RF exposure time was set to 5 minutes. The tests were 

conducted for three different batches each having their unique gas chemistries. The surface 

energy was measured for one module out of each batch using contact angles formed by 

dispensing distilled water over BGA surfaces on both sides of the module observed using 

an optical tensiometer. A higher value for contact angle was found to be an indicator of 

higher surface energy. To achieve maximum surface energy, a minimum contact angle was 

required. Regarding minimum contact angles, both argon and oxygen achieved minimum 

contact angles. However, a mixture of the two gases provided a higher contact angle 

indicating higher surface energy (See Table 4.3). 

Table 4.3: Plasma cleaning experiments for BGA contact angle based on gas chemistries 

Recipe Top-side contact angle  Bottom-side contact angle 

Pure "# 8° 8° 

"# $ %& (80%-20%) 8° 12° 

Pure Ar 8° 8° 
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Another experiment conducted was to observe the cleaning efficiency of oxygen plasma 

on metalized interfaces that include surfaces such as copper, aluminum, and solder. In the 

case of experiments with aluminum, the observed contact angles before and after plasma 

cleaning were found to be 63° and 60° respectively. This experiment indicated that 

interaction with oxygen plasma has a more significant impact on the surface energy levels 

for organics in comparison to inorganic interfaces.  

Based on the relative immunity against the plasma cleaning process, a new fixture was 

developed for uniform exposure to plasma during the cleaning process. The fixture has the 

capability of holding ten modules at a time by the ends of masked gold fingers. The fixture 

revision was able to reduce the contact angle to 6° on both sides of the SODIMM for the 

same recipe for oxygen-based plasma cleaning which indicated improvement on the 

existing process. 

 

Figure 4.4: Plasma cleaning configuration for initial controlled lots 
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 Conformal coating spray experiment results  

 

The same aluminum fixtures with oxygen plasma cleaned and masked modules were then 

subjected to a spray application of a two-component polyurethane system. The mixing ratio 

of the two components was decided to be 20% thinner and 80% of Humiseal 1A33 

polyurethane material which was kept constant throughout experimentation. The 

micrometer setting for the amount of volume dispensed per second was kept at 450 

microns. The atomizing air pressure was kept at a constant of 3.5 PSI while the tank 

pressure was kept at a constant of 40 psi. 

Figure 4.5: Wet spray results for Program 1, 2, and 3 respectively 
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Once these fixed factors were locked, it was observed using preliminary experiments that 

multiple primer coats are required before a spray of thicker coats to improve spray 

deposition. This process is also known as a dry coat. However, higher speeds caused the 

material to dry up much faster than usual and hence it was understood that variable speeds 

were required for multiple coats. 

It was also seen that due to the design of the existing fixture, there were observable 

shadowing effects adjacent to components and solder mask near gold fingers that prevented 

uniform deposition and wetting in the respective areas. Introducing cycles in the program 

that specifically focus on spraying the edges before filling in the area of the SODIMMs 

resolved the issue and no irregular wetting patterns were observed since their introduction. 

It was also observed that metallic-polyurethane interfaces wet out significantly less as 

compared to organic-polyurethane interfaces. Such areas include edges of passive 

components, exposed BGA pads and solder joints for resistor packages. 

To improve on the existing issues observed as stated above, two configurations were tested: 

1. Multiple thinner coats with an increased tack time in between spray passes 

2. Suggested prolonged air tack instead of accelerated thermal tack 

Figure 4.6: Spray valve trajectory for program 1 
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 Post-cure experiment results  

The post-cure experiments involved measurement of a 3 mm thick aluminum coupon 

induced inside the fixture and cured to measure for thickness and solved using this issue. 

Once the cure at 87' was complete, the coupon and the modules were inspected for the 

obtained thickness and visual quality of coating respectively. The results for program 1, 2 

and 3 is as follows. Program 1 overshot the specifications for the coating while Program 2, 

3 had lower average thicknesses. 

Figure 4.7: Spray valve trajectory for program 2 

Figure 4.8: Spray valve trajectory for program 3 
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Table 4.4: Average SODIMM coating thickness for Program 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.5: Average SODIMM coating thickness for Program 2 

 

 

 

Program 1 

Reading Sample 1 
(μm) 

Sample 2 
(μm) 

Sample 3 
(μm) 

Sample 4 
(μm) 

Sample 5 
(μm) 

1 124 120 128 108 158 
2 168 150 128 112 116 
3 222 114 122 118 126 
4 154 144 134 92 116 
5 152 128 138 108 150 
6 200 200 198 142 192 
7 238 198 216 132 212 
8 226 214 178 290 226 
9 244 212 188 176 178 

10 194 176 202 180 222 
Average 

(μm) 192.2 165.6 163.2 145.8 169.6 

Average 
of 

Averages 
(μm) 

167.28 

Program 2 

Reading Sample 1 
(μm) 

Sample 2 
(μm) 

Sample 3 
(μm) 

Sample 4 
(μm) 

Sample 5 
(μm) 

1 64 58 47 60 74 
2 72 36 68 39 39 
3 90 78 64 60 52 
4 50 82 96 78 78 
5 64 74 58 88 34 
6 124 78 48 98 60 
7 72 68 54 96 62 
8 52 90 82 74 62 
9 64 74 32 76 52 

10 80 90 130 72 70 
Average 

(μm) 73.2 72.8 67.9 74.1 58.3 

Average 
of 

Averages 
(μm) 

69.26 
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Table 4.6: Average SODIMM coating thickness for Program 3 

 

 

 

 

 

 

 

 

 

 

 Sub-process analysis results 

The observations of the spray and cure process show that the amount of material 

fluorescing at metalized areas such as the exposed BGA pads and metallization or edges of 

Program 3 

Reading Sample 1 
(μm) 

Sample 2 
(μm) 

Sample 3 
(μm) 

Sample 4 
(μm) 

Sample 5 
(μm) 

1 98 100 52 45 43 
2 48 36 86 54 49 
3 66 76 70 54 118 
4 52 84 88 114 82 
5 120 116 62 45 49 
6 58 112 82 108 92 
7 88 72 52 90 62 
8 86 98 126 54 44 
9 104 64 52 68 104 

10 114 68 82 56 70 
Average 

(μm) 83.4 82.6 75.2 68.8 71.3 

Average 
of 

Averages 
(μm) 

76.26 

Figure 4.7: Exposed BGA pads (high, low magnification) 
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passives of resistor packs appeared to be inadequate. Upon further inspection, it was found 

that the issue appeared only as a result of reflection of light as shown in Figure 4.11, yet 

the coating at metalized edges was thin, and this issue required resolution before the control 

lot run. No other defects were observed in the process. The effect was confirmed by 

conducting open-short contact testing using an electronic multimeter. The result showed 

no electrical contact until the coating was scraped using a sharp object. Visual inspection 

of cured samples was conducted under UV light, and the results are shown below. 

The module plasma clean duration was reduced to 2 minutes. By maximizing atomizing 

pressure to 5 psi and reducing the tank pressure to 30 psi, this issue was significantly 

minimized. A new program was created with a cross-linking pattern with each area fill 

containing seven independent passes. Every cross-directional trajectory pair of the area 

pattern was followed by a 15 second dwell time. At the end of all coats, an edge coat was 

applied for the peripheral shadowing of the components as a result of the fixture. 

Additionally, the fixtures were allowed to have a 60-minute air tack before cure. This 

configuration resolved the cosmetic quality issues observe. 

Figure 4.8: Resistor pack edges with thin coating 
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4.3 Summary 

This chapter describes the variety of inputs used to execute each step in the process. The 

optimal sub-process output converts to the input of the following sub-process. The wash 

experiments provide us with a suitable configuration to completely remove flux residue, 

the results for which can be monitored using the ionograph and microscope. The process 

reflects ionic contamination levels to be within specification limits for all configurations. 

The optimal configuration (20% concentration, 52°C, 35 minutes) was used as the optimum 

input for the plasma cleaning experiments. The plasma cleaning experiments involved 

experimentation with three gas chemistries at same RF power wattages and gas pressures. 

It was found that oxygen and argon performed equally well individually and obtained the 

same contact angles. However, when mixed, the mixture yields a contact angle of about 

12°. As a result, the optimum gas chemistry input for the spray and post cure experiments 

is selected to be oxygen only. 

The conformal coating spray experiments were inspected for three different valve 

trajectories at variable speeds. The tank pressure was fixed at 40 psi, the atomizing pressure 

was fixed at 3.5 psi, and the thinner to coating ratio was fixed at 4:1 respectively.  

Upon inspection after cure, it was observed that Program 1 showed greater average 

thickness to be above specification limits while Programs 2, 3 were within the required 

range of 30-130 microns. A cosmetic issue was observed post cure that involved seemingly 

exposed edges for metalized regions of the coated SODIMM. Upon closer inspection, it 

was found that the issue was visual and that coating can be scraped off. Regardless, to 



55 

 

resolve the issue, cross-linked pairs of trajectory passes were executed with 15-second 

dwell in-between passes that resolved the issue. 

It was observed that to obtain a uniform and consistent coat; the passes need to be 

multidirectional, at variable speeds. Intermediate dwell is required, and an air tack before 

curing the modules is also crucial to allow the coating to set properly in harder to reach 

areas.
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          Overall process qualification experiment results 

5.1 Introduction 

Based on the identified optimal parameters in the previous phase of the experimentation, 

controlled lots are processed using the optimal sub-process parameters identified in the 

previous chapter. A total of 75 SODIMM modules were sprayed, and the final yields were 

inspected for the visual defects. Ten samples were investigated for thickness, and the 

results are described in figure 5.2. 

5.2 Coating thickness measurement 

The experimental results show that the measured thickness for the samples is within the 

specification of 30-130 microns. The control limits were set to 50-110 microns. The results 

for the inspection of five samples from the lot is described further.  

5.3 Defects and yields 

The observations made in regards to the process efficiency in term of inspected yields: 

Figure 5.1: Phase 2: Overall process qualification 
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1. There were no visual defects observed other than the presence of few instances of 

foreign particulates deposited on the surface of the coating 

2. An increased one hour tack after the complete spray program allowed the coating 

to stabilize before curing. This additional step improved coverage on the edges for 

the conformal coating.  

3. No instances of dewetting, chipping, fish-eyes and other common conformal 

coating defects were observed. 

4. For complicated assemblies, fixture design may result in an issue, and hence it is 

important to consider design improvements in fixtures that would allow for 

improved clamping mechanisms. 

Table 5.1: Thickness measurements of samples from a final controlled lot 

 

 

 

 

 

 

 

 

 

 

Controlled lot thickness observations 

Reading Sample 
1 (μm) 

Sample 
2 (μm) 

Sample 
3 (μm) 

Sample 
4 (μm) 

Sample 
5 (μm) 

1 47 88 78 72 50 
2 86 124 118 114 96 
3 66 45 98 82 130 
4 72 86 94 128 128 
5 82 43 58 84 86 
6 100 45 60 104 100 
7 64 78 86 88 96 
8 78 52 62 116 106 
9 40 56 104 124 74 

10 98 72 52 124 108 
Average 

(μm) 73.3 68.9 81 103.6 97.4 

Average 
of 

Averages 
(μm) 

84.84 
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5. The aluminum coupon induced in the fixtures during the spray process provided us 

with a similar trend concerning the controlled lot. Hence, it proves to be a good 

option for first article inspection in production environments. 

5.4 Conclusions 

The results described throughout this chapter show that the new process setup for 

automated spray application provides higher yields and smaller defects. Is is also 

important, however, to understand the opportunities for improvement and the requirements 

of shorter lead times to provide increased throughput and reliability.  

5.5 Summary 

This chapter described the results of overall process qualification. The optimal parameters 

obtained from analysis in the previous chapter were used as inputs to the sub-processes. 

The addition of multiple cross-linking passes and an extended air tack of 1 hour resolved 

Figure 5.2: Images of samples from the controlled lot exhibiting improved coverage on BGA pads and 
resistor packs 
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the coverage issues be observed in the last phase of the sub-process experiments as seen in 

figure 5.2. As we can see, the coverage on unused BGA pads and resistor packs was 

significantly improved the process can meet required quality specifications per internal 

documents and IPC-CC-610. The time required for spraying ten modules is 1 hour and 20 

minutes before they can be transferred to the oven and cured. This turns the final process 

in the cycle into a bottleneck that needs to be resolved to achieve high throughput. This 

leaves some opportunities for improvement which will be discussed in the next chapter. 
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           Scope for future work 

6.1 Introduction 

This chapter talks about the opportunities for improvement in the process based on findings 

observed in chapters 4 and 5. This chapter will aim to identify and discuss gaps in existing 

process based on issues observed. These opportunities for improvement have been 

identified using tools FMEA.  

6.2 Opportunities for process improvement 

1. The spray process can produce high degrees of thickness variations from one face 

to the fixture to the other. An adaptive program, or a set of programs, are required 

to reduce the variation. 

2. Multiple programs may be required for spray coats depending on the complexity 

and density of the product. Greater diversity in movements, pressure, and speeds 

may increase programming time but will result in the reduction of spray time and 

air tack time which in turn may lead to increase throughput 

3. Premixed two-phase systems supplied from the vendor may be considered for 

future studies in order to avoid variability in concentration ratios and downtime 

required to mix a fresh batch of conformal coating and measure viscosities before 

spray. 
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4. Preventive maintenance and periodic purge durations need to be studied to avoid 

deposition of conformal coating material on the insides of the atomizing spray valve 

and the input hose attached to the same. This is to avoid any effects of conformal 

coating deposition on the insides of the spray valve which can lead to an increase 

in thickness of conformal coating during multiple spray cycles in a production 

build. 

5. Atomizing pressure exhibits variability and tolerances need to be decided on an 

allowed variation on the optimal value or mechanisms to lock in the required value 

6. Wet film thickness gauges may be considered for a correlation of wet thickness 

with a thickness measured after curing the modules can be studied to use post cure 

inspection time  

7. Binding effects of coupling agents on solder interfaces with conformal coating can 

be experimented with to improve wetting of polyurethane based conformal coatings 

on metalized surfaces 

6.3 Safety and environmental concerns 

A two-phase conformal coating system may contain toxic substances such as toluene which 

need to be disposed of cautiously. It was necessary to install extraction units and HEPA air 

filters to mitigate this issue. It is essential to make the process completely self-sufficient to 

establish minimum contact with such substances. In the case of emergencies, a control or 

reaction plan would be required to help with this issue based on the findings of the FMEA. 
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In the interim, operators will be trained to use proper safety gear to protect them from 

exposure to such chemicals. It is suggested that programs should be created offline to aid 

this issue further. The mixing and Zahn cup tests are to be conducted. 

6.4 Documentation of procedures, control plans, and reaction plans 

The operators in-charge of the process will be trained on the final documented process. 

Control plans would include raising an alert when the dry film thickness is below 30 

microns or above 130 microns. Upon the study of the correlation between the wet film and 

dry film thickness, the wet film thickness observation on the first article inspection can be 

utilized to provide a quicker response if a process malfunction is observed. 

The control plan for the process output, for now, includes SPC capability on the contactless 

dry film thickness device (Deflesko Positector 2000). Other conditions for establishing 

process control are as follows: 

1. Periodic concentration check for wash solution on the defluxing unit to 20% 

2. Periodic specific gravity calibration on the ionograph to 0.855 SG   

3. The periodic purge of the spray system 

4. Periodic concentration ratio and viscosity check 

5. Periodic preventive maintenance for the following: 

a. Ionic calibration and cleaning for Ionograph 

b. Plasma chamber cleaning 

c. Board wash machine inspection and cleaning 

d. Conformal coating spray valve oiling and cleaning and inspection 
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6. FMEA meetings will be held on a quarterly basis unless significant issues/process 

revisions occur 

6.5  Summary 

Based on the observations in the chapter and the document it can be established that the 

process is successfully set-up and can be used for a conformal coating process. There are 

however specific considerations that require to be addressed when it comes to safety and 

repeatability that were identified during the analysis and setup. The process can be safely 

released to production after verification and implementation of suggested process 

improvements, release documents and resolved safety concerns. 
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Appendix 

Ionograph test reports 
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Spray program 1 

CommandPositionOnOffSpeedOther 

mm 

DOE case 1 

atm = 3.5 psi, tnk = 40 psi, 450 micron 

MOVE138.33,12.18,-1.8 XY then Z 

MOVE93.33,13.78,-1.795 XY then Z 

LINE(2D)93.33,13.77,-1.78(1) W .08D 5.00075.000 

93.33,386.565,-1.78 

MOVE93.33,386.565,-1.78 XY then Z 

MOVE131.63,386.565,-1.78 XY then Z 

LINE(2D)131.63,386.565,-1.78(1) W .08D 5.00075.000 

131.63,17.28,-1.78 

MOVE93.33,13.78,-1.795 XY then Z 

LINE(2D)93.33,13.77,-1.78(1) W .08D 5.00075.000 

93.33,386.565,-1.78 

MOVE93.33,386.565,-1.78 XY then Z 

MOVE131.63,386.565,-1.78 XY then Z 

LINE(2D)131.63,386.565,-1.78(1) W .08D 5.00075.000 

131.63,17.28,-1.78 

MOVE138.33,12.18,-1.8 XY then Z 

AREA147.145,12.180,-1.800 (1) W .03D 3.00075.00012.000,0 

84.995,12.180,-1.800 

84.995,391.995,-1.800 

DWELLW 15 

AREA147.145,12.180,-1.800 (1) W .03D 3.00050.00012.000,0 

84.995,12.180,-1.800 

84.995,391.995,-1.800 

DWELLW 60 

AREA147.145,12.180,-1.800 (1) W .03D 3.00050.00012.000,0 

84.995,12.180,-1.800 

84.995,391.995,-1.800 

DWELLW 60 

AREA147.145,12.180,-1.800 (1) W .03D 3.00050.00012.000,0 

84.995,12.180,-1.800 

84.995,391.995,-1.800 

MOVE138.33,12.18,-1.8 XY then Z 

 

Spray program 2 

CommandPositionOnOffSpeedOther 

mm 

DOE case 2 
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Tnk 40 psi, atm 3.5 psi, mmeter  45 

MOVE138.33,12.18,-1.8 XY then Z 

MOVE93.33,13.78,-1.795 XY then Z 

LINE(2D)93.33,13.77,-1.78(1) W .08D 5.000100.000 

93.33,386.565,-1.78 

MOVE93.33,386.565,-1.78 XY then Z 

MOVE131.63,386.565,-1.78 XY then Z 

LINE(2D)131.63,386.565,-1.78(1) W .08D 5.000100.000 

131.63,17.28,-1.78 

MOVE93.33,13.78,-1.795 XY then Z 

LINE(2D)93.33,13.77,-1.78(1) W .08D 5.000100.000 

93.33,386.565,-1.78 

MOVE93.33,386.565,-1.78 XY then Z 

MOVE131.63,386.565,-1.78 XY then Z 

LINE(2D)131.63,386.565,-1.78(1) W .08D 5.000100.000 

131.63,17.28,-1.78 

MOVE138.33,12.18,-1.8 XY then Z 

AREA147.145,12.180,-1.800 (1) W .03D 3.000100.00012.000,0 

84.995,12.180,-1.800 

84.995,391.995,-1.800 

DWELLW 15 

AREA147.145,12.180,-1.800 (1) W .03D 3.00080.00012.000,0 

84.995,12.180,-1.800 

84.995,391.995,-1.800 

DWELLW 60 

AREA147.145,12.180,-1.800 (1) W .03D 3.00070.00012.000,0 

84.995,12.180,-1.800 

84.995,391.995,-1.800 

MOVE138.33,12.18,1.2XY then Z 

 

Spray program 3 

CommandPositionOnOffSpeedOther 

mm 

DOE case 3 

All external settings are the same, seco 

MOVE138.33,12.18,-1.8 XY then Z 

MOVE93.33,13.78,-1.795 XY then Z 

LINE(2D)93.33,13.77,-1.78(1) W .08D 5.000100.000 

93.33,386.565,-1.78 

MOVE93.33,386.565,-1.78 XY then Z 

MOVE131.63,386.565,-1.78 XY then Z 

LINE(2D)131.63,386.565,-1.78(1) W .08D 5.000100.000 
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131.63,17.28,-1.78 

MOVE93.33,13.78,-1.795 XY then Z 

LINE(2D)93.33,13.77,-1.78(1) W .08D 5.000100.000 

93.33,386.565,-1.78 

MOVE93.33,386.565,-1.78 XY then Z 

MOVE131.63,386.565,-1.78 XY then Z 

LINE(2D)131.63,386.565,-1.78(1) W .08D 5.000100.000 

131.63,17.28,-1.78 

MOVE138.33,12.18,-1.8 XY then Z 

AREA147.145,12.180,-1.800 (1) W .03D 3.000100.00012.000,0 

84.995,12.180,-1.800 

84.995,391.995,-1.800 

DWELLW 15 

AREA140.640,20.405,1.250(1) W 0.3W 0.3 80.00012.000,0 

91.760,20.585,1.250 

91.760,380.835,1.250 

DWELLW 60 

AREA147.145,12.180,-1.800 (1) W .03D 3.00070.00012.000,0 

84.995,12.180,-1.800 

84.995,391.995,-1.800 

MOVE138.33,12.18,1.2XY then Z 

 

Spray program 4 

CommandPositionOnOffSpeedOther 

mm 

PROGRAM9 

PROGRAM DESCRIPTION9 

COMMENT 

MOVE138.33,12.18,-1.8 XY then Z 

AREA144.355,389.425,-2.100 (1) W .03D 3.000250.00012.000,0 

82.540,389.425,-2.100 

82.540,12.065,-2.100 

AREA84.920,13.780,-1.795 (1) W .03D 3.00250.0003.0,0 

84.920,389.300,-1.795 

144.325,389.300,-1.795 

DWELLW 15 

AREA144.355,389.425,-2.100 (1) W .03D 3.000250.00012.000,0 

82.540,389.425,-2.100 

82.540,12.065,-2.100 

AREA84.920,13.780,-1.795 (1) W .03D 3.00250.0003.0,0 

84.920,389.300,-1.795 

144.325,389.300,-1.795 
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DWELLW 15 

AREA144.355,389.425,-2.100 (1) W .03D 3.000250.00012.000,0 

82.540,389.425,-2.100 

82.540,12.065,-2.100 

AREA84.920,13.780,-1.795 (1) W .03D 3.00250.0003.0,0 

84.920,389.300,-1.795 

144.325,389.300,-1.795 

DWELLW 15 

AREA144.355,389.425,-2.100 (1) W .03D 3.000180.00012.000,0 

82.540,389.425,-2.100 

82.540,12.065,-2.100 

AREA84.920,13.780,-1.795 (1) W .03D 3.00180.0003.0,0 

84.920,389.300,-1.795 

144.325,389.300,-1.795 

DWELLW 15 

AREA144.355,389.425,-2.100 (1) W .03D 3.000180.00012.000,0 

82.540,389.425,-2.100 

82.540,12.065,-2.100 

AREA84.920,13.780,-1.795 (1) W .03D 3.00180.0003.0,0 

84.920,389.300,-1.795 

144.325,389.300,-1.795 

DWELLW 15 

AREA144.355,389.425,-2.100 (1) W .03D 3.00040.00012.000,0 

82.540,389.425,-2.100 

82.540,12.065,-2.100 

AREA84.920,13.780,-1.795 (1) W .03D 3.0040.0003.0,0 

84.920,389.300,-1.795 

144.325,389.300,-1.795 

DWELLW 15 

AREA144.355,389.425,-2.100 (1) W .03D 3.00040.00012.000,0 

82.540,389.425,-2.100 

82.540,12.065,-2.100 

LINE(2D)93.33,13.77,-1.78(1) W .08D 5.000150.000 

93.33,386.565,-1.78 

MOVE131.63,386.565,-1.78 XY then Z 

LINE(2D)131.63,386.565,-1.78(1) W .08D 5.000150.000 

131.63,17.28,-1.78 

DWELLW 120 

MOVE93.33,13.78,-1.795 XY then Z 

LINE(2D)93.33,13.77,-1.78(1) W .08D 5.000150.000 

93.33,386.565,-1.78 

MOVE93.33,386.565,-1.78 XY then Z 

MOVE131.63,386.565,-1.78 XY then Z 

LINE(2D)131.63,386.565,-1.78(1) W .08D 5.000150.000 

131.63,17.28,-1.78 
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DWELLW 120 

AREA144.355,389.425,-2.100 (1) W .03D 3.00040.00012.000,0 

82.540,389.425,-2.100 

82.540,12.065,-2.100 

DWELLW 15 

AREA84.920,13.780,-1.795 (1) W .03D 3.0020.0003.0,0 

84.920,389.300,-1.795 

144.325,389.300,-1.795 

AREA84.920,13.780,-1.795 (1) W .03D 3.0020.0003.0,0 

84.920,389.300,-1.795 

144.325,389.300,-1.795 
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