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Abstract

The prevalence of triboelectricity as a transduction mechanism has in-

creased rapidly in recent years. We will discuss two uses for triboelectric

generators. One design is a tunable wideband energy harvester. An ax-

ial force and amplitude limiter work together to create an energy harvester

that can accommodate various frequency sources and have a large operat-

ing bandwidth. The addition of the compressive axial force also softens the

system, which allows for higher voltage outputs. A proof of concept of a

threshold shock sensor is proposed that incorporates bi-stability along with

the triboelectric effect. A clamped-clamped buckled beam will switch stable

states when a threshold shock amplitude is experienced and a voltage peak

will occur during this switching of states. Levels of input acceleration can be

related to voltage output, which increases the value of the concept. Thorough

continuous electro-mechanical models will be produced for each design and

the validity of these models will be tested.
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1 Introduction

1.1 Triboelectric Generators

Energy harvesting at a very basic level is the transfer of energy from an energy

source by a transduction mechanism to be used to power devices. An area of

interest for researchers is the transfer of mechanical energy to electrical energy.

The goal is to use the many sources of ambient vibration that naturally occur to

provide power to battery and sensor networks, or to relate a mechanical motion to

an electrical output. Some common transduction mechanisms consist of piezoelec-

tricity, electrostatics, electromagnetism, and triboelectricity. We will be focusing

on triboelectricity as a transduction mechanism in this discussion. Triboelectric-

ity has many qualities that are more desirable compared to other transduction

mechanisms, such as low manufacturing and fabrication costs, high energy den-

sities, and flexibility [1]. When using triboelectric transduction, the system has

the capability to be self-sufficient because of the triboelectric effect. The tribo-

electric effect is the generation of charges due to the contact and separation of

certain materials. These triboelectric charges can be retained on the materials for

extended periods of time which is useful because many vibration sources are not

continuously vibrating all of the time. If the triboelectric materials are attached

to metals (electrodes) and a load resistance is inserted between the electrodes, the

continuous contact and separation of the triboelectric materials will generate an

alternating current through the load. Current will only be generated when there

is relative motion between the triboelectric materials, which makes triboelectric

transduction a great sensing tool. The following sections will briefly describe the

basics of wideband energy harvesting and threshold shock sensing.
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1.2 Wideband Energy Harvesting

Traditionally, many energy harvesters can can only be used at a certain frequency

and suffer low operating bandwidths. Tunable harvesters are advantageous be-

cause for many harvesters, any deviation from the natural frequency dramatically

decreases the power output. If the natural frequency of the device can be tuned,

then the system can match the source frequency to maximize the power output.

Some tunable harvesters can dynamically change, but in doing so, they consume

large amounts of power so an external power source is needed. So although it

may not be as efficient, being able to statically tune the harvester can result in

a system that consumes less power. A common way of statically tuning energy

harvesters is by including an axial force to change the natural frequency of the

system. This is the method that will be used in this discussion. The inclusion of

a compressive axial force will allow the natural frequency to decrease to match a

variety of excitation frequencies.

Another drawback to many traditional vibration energy harvesters is that they

have low operating bandwidths. Similar to what was previously discussed, a slight

change in the source frequency results in a significant drop in power output. There-

fore, ways to increase the operating bandwidth of vibration energy harvesters have

been explored. Some of the common methods for accomplishing this goal are in-

cluding a nonlinearity in the system and by using amplitude limiters. The inclusion

of a nonlinearity will usually result in a hardening or softening frequency response

with larger bandwidths. Common ways to introduce a nonlinearity to a system

are by using magnetic forces, geometric nonlinearities such as large deflections

of clamped-clamped beams, and nonlinear materials. Another way of increasing

operating bandwidths is by limiting the displacement amplitude of the system in

some way. Usually the impact that occurs because of the amplitude limiter is

related to the power output, so if impacts can occur at frequencies far away from

the natural frequency, larger power bandwidths can be experienced.

To have the ability to tune the system and to increase the operating band-
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width, we will propose a tunable wideband energy harvester using triboelectric

transduction. The system will be tuned by adding a compressive axial force which

will allow the system to accommodate different low frequency sources. The addi-

tion of the axial force will also soften the system which will result in higher voltage

and power outputs. We will be using the inherent impact that occurs due to the

triboelectric effect to increase the operating bandwidth. As the impact results

in larger voltage outputs, we will be using the impact as an amplitude limiter to

extend the bandwidth.

1.3 Threshold Shock Sensor

Many threshold sensor designs are mechanical and require the system to be phys-

ically checked to determine if the device was triggered. There is usually only an

indication that the device was triggered (the threshold acceleration was met), but

the actual magnitude of the acceleration is not known. Many systems that combine

mechanical and electrical action use electrostatics. The drawback to electrostat-

ics is that the threshold sensors usually rely on the pull in voltage and therefore

require a bias voltage, so these sensors cannot be self powered. To avoid using

bias voltages, the use of bi-stability is a common approach to designing threshold

sensors. This is because in a bi-stable system, there are two stable states. So

depending how the bi-stability is incorporated into the system, when the system

moves from one stable state to another, it is known that the device was triggered.

Buckled clamped-clamped beams are a natural candidate for threshold sensors

due to the two stable states that they have.

We will be combining bi-stability with triboelectric transduction to propose

a proof of concept of a threshold shock sensor. A triboelectric material will be

placed at the midspan of the beam and another triboelectric material will be

placed near the lower stable position so that when the beam is in the upper

stable position, there is no relative motion between the materials and they are

not in contact with each other. When the device senses an acceleration above the

3



threshold acceleration, the beam will change states and the triboelectric materials

will impact each other which will result in a voltage spike. As the level of impact

is correlated to the magnitude of the voltage spike, the system will behave like

an accelerometer in the region past the threshold acceleration. Combining all of

these factors together results in a proof of concept for a self powered threshold

sensor.
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2 Tunable Wideband Energy Harvester

2.1 Introduction

The major source for powering small electronics is through batteries. However,

the limited lifespan, detrimental environmental effects, and high replacement costs

are the major drawbacks. Mechanical vibration is considered the most widespread

source for harvesting energy that can be found in transportation vehicles and the

environment. The need to power small electronics and sensors through harvesting

energy from ambient vibrations has driven many research efforts in the recent years

[2–4]. To maximize the amount of energy transferred from ambient vibrations to

the devices, the natural frequency of these devices should match the excitation

frequency from the ambient source. Because of the lower bandwidth of the linear

harvesters compared to the higher bandwidth of the ambient vibrations, linear

energy harvesters are considered inefficient. To overcome this limitation, several

studies have demonstrated the benefits of nonlinearities to improve the bandwidth

of the harvesters compared to the linear harvesters [5]. Introducing nonlinearities

in the design of energy harvesters are considered promising to broaden the fre-

quency bandwidth. The most common types of nonlinearities for energy harvest-

ing consist of magnetic [6, 7], mechanical forces [8, 9], internal resonances [10, 11],

and mechanical stoppers or impacts [12–14].

When the fundamental frequency of the energy harvesters mismatch the excitation

frequency even with a small deviation, the amount of energy harvested decreases

and the efficiency of the harvester drops. Accordingly, the need for new energy

harvester designs with the capability to tune the resonant frequency has become

an important topic. Different research studies addressed this point through closed-

loop techniques [15, 16], and external power sources [7, 17]. One of the most used
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approaches for frequency tuning is the addition of an axial load, where an axial

static load can be applied to the harvester structure to change its natural fre-

quency [18, 19]. It was found by Lesieutre and Davis [20] that compressive axial

preloads can increase the coupling coefficient of an electrically driven piezoelectric

bimorph for a higher output. Leland and Wright [18] were able to tune the natural

frequencies of a piezoelectric bimorph simply supported beam with center mass

energy harvester through applying a compressive axial preload to soften the beam.

The natural frequencies were reduced by 20%. Roundy and Zhang [15] examined

the use of electrical feedback to tune the resonance frequency of a piezoelectric

bimorph. A continuous actuation is needed to adjust the device periodically to

tune its resonance frequency. Other ways to tune the bimorph frequency includes

changing the beam length or the attached mass to control the beam stiffness.

Masana and Daqaq [8] developed and experimentally validated a nonlinear elec-

tromechanical model of a clamped-clamped tunable piezoelectric energy harvester

subjected to transversal excitations and static axial loading. With the axial load,

they were able to achieve 65% change in the natural frequency. Increasing the

axial force resulted in higher output energy and bandwidth due to the increase in

the electrical damping, oscillation amplitudes, and structural nonlinearity.

Energy that is converted from a mechanical form into an electrical form use

different types of transduction mechanisms such as electromagnetic, electrostatic,

and piezoelectric [21–23]. Though piezoelectric generators have been very popu-

lar for energy harvesting, their charge density falls behind triboelectric generators

[24, 25]. Triboelectric transduction generates power from the periodic contact and

separation between two materials with different tendencies to lose and gain elec-

trons. Compared to piezoelectric energy harvesters, triboelectric energy harvesters

have the advantages of low manufacturing and fabrication costs, high energy den-

sities, and flexibility [1]. Because of the inherent contact and separation property

of triboelectric generators, they have been used for energy harvesting from im-

6



pact [12, 13]. With a piecewise impact model and experimental validation, they

reported higher bandwidths as well as output voltages.

To create tunability and to increase output, we introduce the compressive load

to our previously presented impact harvester [12]. The axial force allows the sys-

tem to be tuned to accommodate various vibration sources. A wider frequency

bandwidth is experienced using impact between triboelectric layers. The result is

an energy harvester with widened frequency bandwidth spread at low frequencies,

which enhances the energy harvesting conversion efficiency because often ambi-

ent vibrations have a wide spectrum at low frequencies. To capture a reasonable

approximation of the dynamic response of the harvester as well as output, we

present a linear continuous model of the electromechanical system. To derive the

equations of motion, we use the Extended Hamilton’s Principle for linear Euler-

Bernoulli beams and Galerkin’s decomposition. The model provides a platform for

designing high-performance energy harvesters with wide tunable frequency ranges

spread at low frequencies.

The outline of this chapter is as follows. The principle of operation will be

discussed and a continuous model with be derived in great detail. Then numerical

simulations will be performed with the addition of the axial force to determine how

the system responds to different axial forces, electrode gaps, and load resistances.

The chapter will end with concluding remarks.
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2.2 Nomenclature

Table 1: Nomenclature for Chapter 2

Parameter Description

Aamp Excitation amplitude

Ap Cross-sectional area of polymer beam

bm Width of center mass and upper electrode

Bi, si Constants for mode shape analysis

c, ci Damping, impact damping

d0 Initial total electrode gap

D1 Damping term from ROM

Da, Db Axial stiffness term, flexural rigidity for second beam span

D(x) Function for flexural rigidity along the beam

E,Ea, Ep Modulus of elasticity in general, for aluminum, for polymer

Eair, EPDMS Electric field in the air gap, PDMS layer

F (x) Function for axial stiffness term along the beam

Fi, Fd Impact stiffness and damping forces

g Acceleration due to gravity

h, hm Thickness of the polymer beam, center mass and upper
electrode

I Current through load resistance

Ip Moment of inertia of polymer beam

ki, KL, KC Impact, linear, and cubic stiffness coefficients

L Length of beam

L1 Location of midspan

LL Beginning position of center mass and upper electrode

LR Ending position of center mass and upper electrode

m(x) Function for mass per unit length along the beam

M1,MZ Mass coefficient, base acceleration coefficient

p Compressive axial force

P Power

q(t) Charge transferred through the load resistance

Continued on next page
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Table 1 – Continued from previous page

Parameter Description

R Load resistance

S Contact area

T Kinetic energy

TPDMS Thickness of PDMS layer

u(x, t) Longitudinal deflection of the beam

U Potential energy

V Voltage across the load resistance

w(x, t) Absolute transverse deflection of the beam

Wnc Work done by nonconservative forces

y(x, t) Relative transverse deflection of the beam

yc Coordinate for the y-axis

z(t) Base motion

zc Coordinate for the transverse direction

αa,b, βa,b Constants for mode shape analysis

α1,2 Electromechanical coupling terms

γi(t), η(t) Arbitrary functions of time

δ Penetration distance

ε, ε0, εr Permittivity, vacuum permittivity, relative permittivity

εt, εs Total mechanical strain, strain due to mid-plane stretching

ρp, ρa Density of polymer beam, aluminum

ρA Mass per unit length of second span of beam

σ Surface charge density

σt Mechanical stress

φ(x) Mode shape

ω,Ω Natural frequency, excitation frequency
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2.3 Principle of Operation

A solid model and a schematic of the system is shown in Fig. 1. The compressive

axial force at the ends of the beam will be tuned to change the system’s response

and dynamics. Although we are using a compressive axial force in this system, we

will be controlling the axial force to be less than the critical axial load. Therefore,

the beam will not buckle, but instead the axial force provides a softening effect on

the system.

Concerning the principle of operation of the triboelectric generator, we have

an aluminum mold (upper electrode) and a PDMS layer attached to an aluminum

mass (lower electrode). The two electrodes are connected with a load resistance,

and the voltage across the load will be measured. When the upper electrode and

PDMS layer are initially brought in contact with each other, they will generate

triboelectric charges on their surfaces due to the triboelectric effect. When there

is relative motion between the electrodes, an electric potential difference will be

established and charges will be transferred between the electrodes that results

in a generated current. When the upper electrode is at its maximum absolute

displacement, there will be an equilibrium of charge, and the electric potential

difference will be zero.

The system will be subjected to a harmonic base excitation, which will allow

the upper and lower electrodes to periodically impact each other at certain fre-

quencies. At frequencies where an impact does not occur, the upper and lower

electrodes will effectively behave as a variable capacitor system. We add an addi-

tional mass to the midspan of the beam to increase the inertial force, which will

result in a higher velocity and impact force for the upper electrode and a higher

voltage output.

2.4 Mathematical Modeling

To improve the accuracy over the lumped parameter system that was done previ-

ously [12], a continuous model will be produced for the electromechanical governing

10



(a) (b)

Figure 1: 3D model and schematic of the system. Some dimensions are exaggerated in order to create a better
visual understanding of the system. (a) A 3D model of the system. (b) A schematic of the system.

equations using linear Euler-Bernoulli beam theory. The higher degree of accuracy

and the addition of the compressive axial force make it advantageous to develop a

continuous model. As we will be limiting the gap between the upper electrode and

the PDMS layer to relatively small distances, we will be neglecting any nonlinear

effects that would have arisen from mid-plane stretching.

In order to develop our equations of motion we first describe our system. We

will be modeling our system as a three span beam, with the first and third spans

being the polymer beam, and the second span being a three layer beam consisting

of two aluminum layers and a polymer layer. We initially represent the system in

terms of the absolute defection of the beam and the base motion.

2.4.1 Deriving Equations of Motion

The equations of motion are derived using the Extended Hamilton’s Principle. Its

kinetic and potential energy terms are written as

T =
1

2
ρpAp

∫ LL

0

ẇ2
1dx+

1

2
ρA

∫ LR

LL

ẇ2
2dx+

1

2
ρpAp

∫ L

LR

ẇ2
3dx (1)

where ρA = ρabmhm + ρpAp + ρabmhm. The potential energy of the system is
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U =
1

2

∫
V

εsσsdV– +
ε0
2

∫
V

E2
airdV– +

ε0εr
2

∫
V

E2
PDMSdV– (2)

where

εti = u′
i +

1

2
w′2

i − zcw
′′
i

= εsi − zcw
′′
i

σti = Eεti

Eair =
(−q + σS)

ε0S

EPDMS = − q

ε0εrS

(3)

Expanding the potential energy expression using Eq. (3), results in
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U =
1

2
Ep

∫ b/2

−b/2

dyc

∫ h/2

−h/2

dzc

∫ LL

0

ε2s1dx+
1

2
Ep

∫ b/2

−b/2

dyc

∫ h/2

−h/2

z2cdzc

∫ LL

0

w′′2
1 dx

− Ep

∫ b/2

−b/2

dyc

∫ h/2

−h/2

zcdzc

∫ LL

0

εs1w
′′
1dx

+
1

2
Ep

∫ b/2

−b/2

dyc

∫ h/2

−h/2

dzc

∫ LR

LL

ε2s2dx+
1

2
Ep

∫ b/2

−b/2

dyc

∫ h/2

−h/2

z2cdzc

∫ LR

LL

w′′2
2 dx

− Ep

∫ b/2

−b/2

dyc

∫ h/2

−h/2

zcdzc

∫ LR

LL

εs2w
′′
2dx

+
1

2
Ea

∫ bm/2

−bm/2

dyc

∫ −h/2

−hm−h/2

dzc

∫ LR

LL

ε2s2dx

+
1

2
Ea

∫ bm/2

−bm/2

dyc

∫ −h/2

−hm−h/2

z2cdzc

∫ LR

LL

w′′2
2 dx

− Ea

∫ bm/2

−bm/2

dyc

∫ −h/2

−hm−h/2

zcdzc

∫ LR

LL

εs2w
′′
2dx

+
1

2
Ea

∫ bm/2

−bm/2

dyc

∫ hm+h/2

h/2

dzc

∫ LR

LL

ε2s2dx

+
1

2
Ea

∫ bm/2

−bm/2

dyc

∫ hm+h/2

h/2

z2cdzc

∫ LR

LL

w′′2
2 dx

− Ea

∫ bm/2

−bm/2

dyc

∫ hm+h/2

h/2

zcdzc

∫ LR

LL

εs2w
′′
2dx

+
1

2
Ep

∫ b/2

−b/2

dyc

∫ h/2

−h/2

dzc

∫ L

LR

ε2s3dx+
1

2
Ep

∫ b/2

−b/2

dyc

∫ h/2

−h/2

z2cdzc

∫ L

LR

w′′2
3 dx

− Ep

∫ b/2

−b/2

dyc

∫ h/2

−h/2

zcdzc

∫ L

LR

εs3w
′′
3dx

+
ε0εr
2

∫ bm/2

−bm/2

dyc

∫ LR

LL

dx

∫ d0

d0−TPDMS

q2

ε20ε
2
rS

2
dzc

+
ε0
2

∫ bm/2

−bm/2

dyc

∫ LR

LL

dx

∫ d0

w2(L1)−z(t)

( q2

ε20S
2
+

σ2

ε20
− 2qσ

ε20S

)
dzc

(4)

Because we are assuming the neutral axis of the beam is the centerline of the

beam the integrals (
∫
zcdzc) will drop out of Eq. (4). We further simplify Eq. (4)

to get
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U =
1

2
EpAp

∫ LL

0

ε2s1dx+
1

2
EpIp

∫ LL

0

w′′2
1 dx+

1

2
Da

∫ LR

LL

ε2s2dx

+
1

2
Db

∫ LR

LL

w′′2
2 dx+

1

2
EpAp

∫ L

LR

ε2s3dx+
1

2
EpIp

∫ L

LR

w′′2
3 dx

+
TPDMS

2ε0εrS
q2 +

d0 − w2(L1) + z(t)

2ε0S
q2 −

σ
(
d0 − w2(L1) + z(t)

)
ε0

q

+
σ2S

(
d0 − w2(L1) + z(t)

)
2ε0

(5)

where

Da = Eahmbm + EpAp + Eahmbm

Db = Eabm

(h3
m

3
+

hh2
m

2
+

h2hm

4

)
+ EpIp + Eabm

(h3
m

3
+

hh2
m

2
+

h2hm

4

) (6)

The variation of the work due to the nonconservative forces is

δWnc = −c
∫ LL

0

ẇ1δw1dx−c

∫ LR

LL

ẇ2δw2dx−c

∫ L

LR

ẇ3δw3dx−Rq̇δq−pδw3(L) (7)

Let wi(x, t) = yi(x, t) + z(t), derive the variations of the kinetic and potential

energies.

δT = ρpAp

∫ LL

0

ẇ1δẇ1dx+ ρA

∫ LR

LL

ẇ2δẇ2dx+ ρpAp

∫ L

LR

ẇ3δẇ3dx (8)
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δU = EpAp

∫ LL

0

εs1δu
′
1dx+ EpAp

∫ LL

0

εs1w
′
1δw

′
1dx+ EpIp

∫ LL

0

w′′
1δw

′′
1dx

+Da

∫ LR

LL

εs2δu
′
2dx+Da

∫ LR

LL

εs2w
′
2δw

′
2dx+Db

∫ LR

LL

w′′
2δw

′′
2dx

+ EpAp

∫ L

LR

εs3δu
′
3dx+ EpAp

∫ L

LR

εs3w
′
3δw

′
3dx+ EpIp

∫ L

LR

w′′
3δw

′′
3dx

+
TPDMS

ε0εrS
qδq +

d0 − y2(L1)

ε0S
qδq − q2

2ε0S
δy2(L1)−

σ
(
d0 − y2(L1)

)
ε0

δq

+
σq

ε0
δy2(L1)− σ2S

2ε0
δy2(L1)

(9)

The Extended Hamilton’s Principle is now used,
∫ t2
t1
(δT − δU + δWnc)dt = 0.

∫ t2

t1

δTdt =

∫ LL

0

[
ρpAp

(
ẏ1 + ż

)
δy1

∣∣∣t2
t1
−

∫ t2

t1

ρpAp

(
ÿ1 + z̈

)
δy1dt

]
dx

+

∫ LR

LL

[
ρA

(
ẏ2 + ż

)
δy2

∣∣∣t2
t1
−

∫ t2

t1

ρA
(
ÿ2 + z̈

)
δy2dt

]
dx

+

∫ L

LR

[
ρpAp

(
ẏ3 + ż

)
δy3

∣∣∣t2
t1
−

∫ t2

t1

ρpAp

(
ÿ3 + z̈

)
δy3dt

]
dx

(10)

By using the definition of virtual work, we simplify Eq. (10).

∫ t2

t1

δTdt =

∫ t2

t1

[
−

∫ LL

0

ρpAp

(
ÿ1 + z̈

)
δy1dx−

∫ LR

LL

ρA
(
ÿ2 + z̈

)
δy2dx

−
∫ L

LR

ρpAp

(
ÿ3 + z̈

)
δy3dx

]
dt

(11)

Moving on to the next part, we have
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∫ t2

t1

δUdt =

∫ t2

t1

[
EpIpy

′′
1δy

′
1

∣∣∣LL

0
− EpIpy

′′′
1 δy1

∣∣∣LL

0
+ EpIp

∫ LL

0

y′′′′1 δy1dx

+Dby
′′
2δy

′
2

∣∣∣LR

LL

−Dby
′′′
2 δy2

∣∣∣LR

LL

+Db

∫ LR

LL

y′′′′2 δy2dx

+ EpIpy
′′
3δy

′
3

∣∣∣L
LR

− EpIpy
′′′
3 δy3

∣∣∣L
LR

+ EpIp

∫ L

LR

y′′′′3 δy3dx

+ EpApεs1δu1

∣∣∣LL

0
− EpAp

∫ LL

0

ε′s1δu1dx

+ EpApεs1y
′
1δy1

∣∣∣LL

0
− EpAp

∫ LL

0

[
εs1y

′
1

]′
δy1dx

+Daεs2δu2

∣∣∣LR

LL

−Da

∫ LR

LL

ε′s2δu2dx

+Daεs2y
′
2δy2

∣∣∣LR

LL

−Da

∫ LR

LL

[
εs2y

′
2

]′
δy2dx

+ EpApεs3δu3

∣∣∣L
LR

− EpAp

∫ L

LR

ε′s3δu3dx

+ EpApεs3y
′
3δy3

∣∣∣L
LR

− EpAp

∫ L

LR

[
εs3y

′
3

]′
δy3dx

+
TPDMS

ε0εrS
qδq +

d0 − y2(L1)

ε0S
qδq − q2

2ε0S
δy2(L1)−

σ
(
d0 − y2(L1)

)
ε0

δq

+
σq

ε0
δy2(L1)− σ2S

2ε0
δy2(L1)

]
dt

(12)

The governing equations and boundary conditions for the transverse direction,

longitudinal direction, and charge are determined. The equations for the longitu-

dinal and transverse directions are first considered.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EpApε
′
s1
= 0 0 ≤ x ≤ LL

EpIpy
′′′′
1 + ρpApÿ1 + ρpApz̈ + cẏ1 − EpAp(εs1y

′
1)

′ = 0 0 ≤ x ≤ LL

Daε
′
s2
= 0 LL ≤ x ≤ LR

Dby
′′′′
2 + ρAÿ2 + ρAz̈ + cẏ2 −Da(εs2y

′
2)

′ = 0 LL ≤ x ≤ LR

EpApε
′
s3
= 0 LR ≤ x ≤ L

EpIpy
′′′′
3 + ρpApÿ3 + ρpApz̈ + cẏ3 − EpAp(εs3y

′
3)

′ = 0 LR ≤ x ≤ L

(13)

As the mechanical strain is mostly in the longitudinal direction due to limited

transverse deflections, we will be making the approximation that εsi ≈ u′
i. We

now attempt to decouple the longitudinal and transverse equations of motion.

The equations of motion and boundary conditions will be

u1(x) = γ1(t)x+ γ2(t)

u2(x) = γ3(t)(x− LL) + γ4(t)

u3(x) = γ5(t)(x− LR) + γ6(t)

u1(0) = 0

u1(LL) = u2(LL)

u2(LR) = u3(LR)

u1(LL) = − pLL

EpAp

u2(LR) =
pLL

Da

− pLL

EpAp

− pLR

Da

u3(L) = − pL

EpAp

+
pLL

Da

− pLL

EpAp

− pLR

Da

+
pLR

EpAp

(14)

It can be shown that
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εs1 = εs3 = γ1(t) = γ5(t) = − p

EpAp

εs2 = γ3(t) = − p

Da

(15)

We have now successfully decoupled the longitudinal and transverse equations

of motion. We can now fully represent the transverse equations of motion along

with the corresponding boundary conditions. The physical boundary conditions

are determined from the clamped edges. We use the fact that since we effectively

have a large plate in the center of the beam, the position at x = LL, x = L1,

and x = LR is the same, and the slope is zero at x = LL and x = LR. The

remaining boundary condition is determined from Hamilton’s Principle, as well as

the governing equation for the charge.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EpIpy
′′′′
1 + ρpApÿ1 + ρpApz̈ + cẏ1 + py′′1 = 0 0 ≤ x ≤ LL

Dby
′′′′
2 + ρAÿ2 + ρAz̈ + cẏ2 + py′′2 = 0 LL ≤ x ≤ LR

EpIpy
′′′′
3 + ρpApÿ3 + ρpApz̈ + cẏ3 + py′′3 = 0 LR ≤ x ≤ L

q̇ = −q
ε0RS

[
TPDMS

εr
+ d0 − y2(L1)

]
+ σ(d0−y2(L1))

ε0R

y1(0, t) = 0

y′1(0, t) = 0

y3(L, t) = 0

y′3(L, t) = 0

y1(LL, t) = y2(LL, t)

y2(LR, t) = y3(LR, t)

y2(LL, t) = y2(LR, t)

y′1(LL, t) = 0

y′2(LL, t) = 0

y′2(LR, t) = 0

y′3(LR, t) = 0

EpIpy
′′′
1 (LL, t) +Dby

′′′′
2 (LR, t)−Dby

′′′′
2 (LL, t)

−EpIpy
′′′
3 (LR, t) +

q2

2ε0S
− σq

ε0
+ σ2S

2ε0
= 0

(16)

2.4.2 Determine Mode Shapes

We will now determine the mode shape and natural frequency of the system around

the static configuration. The static configuration will be the trivial solution as we

let the transverse motion be perpendicular to the force of gravity. Therefore there

will be negligible gravitational effect on the static configuration. Since we are

concerned with the vibrations around the trivial static configuration, we let
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yi(x, t) = φi(x)e
jωt (17)

The i subscript for the mode shape denotes the span, not the mode number, as we

will only be considering a first mode approximation. Substituting Eq. (17) into

Eq. (16) and neglecting the damping, forcing, and electrical terms yield

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ρpApω
2φ1 + EpIpφ

′′′′
1 + pφ′′

1 = 0 0 ≤ x ≤ LL

−ρAω2φ2 +Dbφ
′′′′
2 + pφ′′

2 = 0 LL ≤ x ≤ LR

−ρpApω
2φ3 + EpIpφ

′′′′
3 + pφ′′

3 = 0 LR ≤ x ≤ L

(18)

Let αa = p
EpIp

, βa = ρpApω2

EpIp
, αb =

p
Db
, and βb =

ρAω2

Db
and assume trial functions

φi(x) are

φ1,3(x) = B1 cosh(s1x) + B2 sinh(s1x) + B3 cos(s2x) + B4 sin(s2x)

φ2(x) = B1 cosh(s3x) + B2 sinh(s3x) + B3 cos(s4x) + B4 sin(s4x)

(19)

where s1,2 =

√
∓αa+

√
α2
a+4βa

2
and s3,4 =

√
∓αb+

√
α2
b+4βb

2
. As we can see from Fig. 2,

the mode shape provides a reasonable approximation to the physical system that

we have, with the polymer beam for the first and third spans and the stiff three

layer beam for the second span.
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Figure 2: Mode shape of the three span beam with no compressive axial force.
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Figure 3: Effect of axial force on the fundamental natural frequency of the system.

The effect of the compressive axial force on the natural frequency is shown

in Fig. 3. Before the critical buckling load is reached, the fundamental natural

frequency of the system decreases with an increase of axial force. The natural

frequency will theoretically approach zero as the axial force approaches the critical

buckling axial load. The critical axial load for this system, as observed from Fig. 3,

is approximately 52N .

2.5 Reduced Order Model

To study the dynamics of the system, we develop a Reduced Order Model. Now

that the mode shape of the system has been determined, we will be denoting the

first mode shape of the system as φ(x) and will not be including the span notation

anymore. Therefore we define the mass per unit length, flexural rigidity, and axial
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stiffness terms of the system as functions of the longitudinal coordinate.

m(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρpAp 0 ≤ x ≤ LL

ρA LL ≤ x ≤ LR

ρpAp LR ≤ x ≤ L

D(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

EpIp 0 ≤ x ≤ LL

Db LL ≤ x ≤ LR

EpIp LR ≤ x ≤ L

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

EpAp 0 ≤ x ≤ LL

Da LL ≤ x ≤ LR

EpAp LR ≤ x ≤ L

(20)

We determine the Lagrangian of the system (L = T − U), and use Lagrange’s

Equations to determine the equations for the Reduced Order Model. We will again

be using εs = − p
F (x)

+ y′
2

2
in order to determine the Reduced Order Model, but

we will be neglecting the cubic terms due to small deformations in the transverse

direction of motion. The Lagrangian is defined by

L =
1

2
m(x)

∫ L

0

(ẏ + ż)2dx− 1

2
D(x)

∫ L

0

y′′
2

dx

− 1

2
F (x)

∫ L

0

[
− p

F (x)
+

1

2
y′

2
]2
dx− TPDMS

2ε0εrS
q2

− d0 − y(L1)

2ε0S
q2 +

σ(d0 − y(L1))

ε0
q − σ2S(d0 − y(L1))

2ε0

(21)

To approximate the dynamic deflection of the beam about its trivial static config-

uration, we use a one mode approximation and let

y(x, t) = φ(x)η(t) (22)
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We substitute Eq. (22) into Eq. (21) and perform Lagrange’s Equation for the

variables η(t) and q(t).

d

dt

∂L
∂η̇

= m(x)

∫ L

0

(
φ(x)η̈ + z̈

)
φ(x)dx (23)

∂L
∂η

= −D(x)

∫ L

0

φ′′(x)ηφ′′(x)dx+ p

∫ L

0

φ′(x)ηφ′(x)dx

+
φ(L1)

2ε0S
q2 − σφ(L1)

ε0
q +

σ2Sφ(L1)

2ε0

(24)

d

dt

∂L
∂q̇

= 0 (25)

∂L
∂q

= −TPDMS

ε0εrS
q − d0 − φ(L1)η

ε0S
q +

σ
(
d0 − φ(L1)η

)
ε0

(26)

Using Lagrange’s Equation

d

dt

∂L
∂η̇
− ∂L

∂η
= −c

∫ L

0

φ2(x)η̇dx

d

dt

∂L
∂q̇
− ∂L

∂q
= −Rq̇

(27)

where the terms on the RHS of Eq. (27) are the generalized forces for η(t) and q(t).

Removing the static term give the dynamic coupled electro-mechanical equations

M1η̈ +MZ z̈ +D1η̇ +KLη + α1q
2 + α2q = 0

q̇ = − q

ε0SR

[TPDMS

εr
+ d0 − φ(L1)η

]
+

σ(d0 − φ(L1)η)

ε0R

(28)
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where

M1 = m(x)

∫ L

0

φ(x)2dx

MZ = m(x)

∫ L

0

φ(x)dx

D1 = c

∫ L

0

φ(x)2dx

KL = D(x)

∫ L

0

φ′′2(x)dx− p

∫ L

0

φ′2(x)dx

α1 = −φ(L1)

2ε0S

α2 =
σφ(L1)

ε0

z̈ = Aamp cosΩt

(29)

By examining the parameters in Eq. (29), we see that as the compressive axial

force is increased, the natural frequency will decrease due to the decreasing of

the system’s stiffness. The reduction of the stiffness in the system causes a soft-

ening effect on the system. Therefore increased axial forces will generate larger

responses.

2.6 Impact Model

As there is an impact that occurs in this system, a separate equation of motion

must be implemented for the case when the impact occurs. When the impact

occurs, the upper electrode will penetrate into the PDMS layer, with the maximum

penetration distance being δ such that d0 = gi+δ. The impact forces and damping

terms are shown with [13, 26]

Fi = kiη + (KL − ki)gi

Fd = ciη̇

(30)
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Once Eq. (30) are substituted into Eq. (28), we arrive at full piecewise governing

equations. Our governing equations for our complete system are shown below.

The mechanical equation is represented as a piecewise function, with the condition

being whether the upper electrode is in the air gap between itself and the PDMS

layer or impacting the PDMS layer.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M1η̈ +MZAamp cosΩt+D1η̇ +KLη + α1q
2 + α2q = 0 y(L1, t) < gi

M1η̈ +MZAamp cosΩt+ (D1 + ci)η̇ + (KL + ki)η − kigi

+α1q
2 + α2q = 0 y(L1, t) ≥ gi

q̇ = − q

ε0SR

[TPDMS

εr
+ d0 − φ(L1)η

]
+

σ(d0 − φ(L1)η)

ε0R

(31)

2.7 Results and Discussions

Using the coupled reduced order equations, Eq. (31), we implement the Shooting

Method to numerically solve for the frequency response of the system. The Shoot-

ing Method is a computationally efficient alternative to Long Time Integration as

the response is iteratively calculated until the correct initial conditions are deter-

mined [27]. We now attempt to validate our model using previously performed

experimental data as seen in [12], Fig. 4. We assume that the asymmetry of the

added mass and upper electrode have no effect on the dynamics. We justify this

because FEA simulations were performed for a asymmetric case and a symmetric

case and the natural frequency did not change. Therefore the thickness of the

center mass and upper electrode will be distributed such that we have symmetry.

Numerical parameters are defined in Table 2. Although the length of the beam

from [12] is 10cm, we used an effective length of 11cm to account for imperfect

boundary conditions concerning the clamped edges in the mode shape analysis.

Results show a close agreement between the model and the experiment. The

deviations could be from estimation of the charge density or the electrical model
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Table 2: Experimental parameters

Parameter Value
(L x b x t) (11 x 3.7 x 0.1)cm

(Lm x bm x tm) (3.7 x 5.2 x 0.45)cm

c 52 Ns/m

d0 260 μm

δ1 10 μm

gi 250 μm

E 2.344GPa

R 2MΩ

TPDMS 500 μm

εr 2.5

ρ 1220 kg/m3

σ variable

ki 2000 N/m

ci 5000 Ns/m

for the estimate for the charge. We believe developing an accurate electrical model

requires further investigation.
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Figure 4: Experimental and simulated voltage frequency response curves using the continuous model: (a)
Aamp = 0.5g, σ = 3.2C/m2, (b) Aamp = 0.6g, σ = 5.2C/m2, and (c) Aamp = 0.7g, σ = 7.7C/m2

2.8 Free Vibration

As we have now determined that the continuous model is a viable model to predict

the experimental data, we look at cases in which we include a compressive axial

force in the system. The following sections include simulations of the system in-

cluding the axial force to observe the characteristics of the system. Before we look

at the impact dynamics with the axial force, we first explore the free vibration case
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to gain insight to the systems response. Therefore we will be removing the ampli-

tude limiter so there will be no impact and will be monitoring the displacement

response. As the critical axial load is approximately 52N , we will be limiting the

axial force to be less than this value. We see in Fig. 5 that as we increase the axial

force on the system, the natural frequency is shifted to the left and higher dis-

placement responses are attained. This is consistent with our finding in Eq. (29)

with the variable KL. As the axial force increases, the parameter KL decreases,

which effectively softens the system. This softening behavior allows the system

to respond at higher amplitudes than the no axial force case. The addition of

the axial force is very useful because the system can be tuned to various natural

frequencies and higher voltage responses can be attained. As the free vibration

displacement responses are larger, we expect the maximum velocity to increase as

well. And since we have an amplitude limiter (lower electrode), the axial force will

allow for a harder impact due to the increased velocity for cases with the same

gap. In addition to the higher voltage amplitudes, we expect a larger operating

bandwidth. Again this is attributed to the amplitude limiter in the system, which

will allow the electrodes to contact each other over a broader frequency range.
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Figure 5: Free vibration of the system with no impact.

2.9 Numerical Simulations

Now that we have gained insight concerning the response of the system with the

addition of a compressive axial force, we perform simulations to show what the

characteristic response curves of the system could be under different axial forces,
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initial gaps, and load resistances. The acceleration amplitude that was used for

this numerical section is Aamp = 0.5g, see Figs. 6 to 8. In Figs. 6 to 8, the

surface charge density is increased with larger axial forces. This is consistent with

increasing the surface charge density with higher acceleration amplitudes because

in both of these cases, whether we have an axial force or a higher acceleration

amplitude, we have a harder impact and a larger penetration [12].
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Figure 6: Simulated voltage frequency response curves for an excitation amplitude of 0.5g, a variable gap, and:
(a) p = 0N , (b) p = 10N , (c) p = 15N , (d) p = 20N

Fig. 6 illustrates that regardless of the value of the axial force, the bandwidth

increases as the initial gap decreases as expected. With smaller initial gaps, wider

frequency bandwidths are obtained.

Keeping the gap constant and increasing the axial force widens the frequency

bandwidth, see Fig. 7. We also see that with the increased axial force, we have

a larger voltage output regardless of the gap. Results indicate that as the axial

force increase, the impact on the harvester and thus more charge and voltage are

generated because of the larger penetration in the PDMS layer. From Figs. 6

and 7, we realize that depending on the application, the system can be tuned to

accommodate the frequency range of interest. Some applications might require a
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Figure 7: Simulated voltage frequency response curves for an excitation amplitude of 0.5g, a variable axial force,
and: (a) d0 = 125μm, (b) d0 = 150μm, (c) d0 = 175μm, (d) d0 = 200μm

larger bandwidth even with the smaller voltage amplitudes, or higher amplitudes

with smaller bandwidths might be desired. And of course, the ability to tune the

frequency to different values is advantageous in applications where the system can

dynamically change.

As the power output of an energy harvester is one of the characteristics that

determine its effectiveness, we will briefly explore how varying the load resistance

changes the power output. Derived from Ohm’s Law, we know that P = V 2

R
,

where V = IR. We notice that there will be a limit at which increasing the load

resistance will not increase the power output any further as the current depends

on the resistance as well. We seek to determine the optimal load resistance for

the system, and to determine whether or not the compressive axial force will im-

pact the optimal load resistance. We consider cases where we have p = 0N and

p = 10N . With the addition of the axial force, we see that the optimal resis-

tance of the system is approximately 60MΩ and 70MΩ for p = 0N and p = 10N

respectively. Therefore, we see that the optimal load resistance of the system is

dependent on the compressive axial force and that it does not remain constant.
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That means if the axial force is changed to accommodate the frequency range of

interest, the load resistance must be changed accordingly because of the coupling

nature of the electro-mechanical system. The presented model described the in-

teractions of mechanical and electrical components and can be used as an effective

design tool for high performance triboelectric energy harvesters with tunable wide

bandwidths.
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Figure 8: Determining maximum power output for an excitation amplitude of 0.5g, initial gap of 200μm, and
different axial forces

2.10 Experimental Setup and Results

To experimentally test the concept of the wideband energy harvester, the system

was placed on an electrodynamic shaker. A figure of the experimental setup is

shown in Fig. 9. The input signal to the shaker was controlled in a closed loop

with Matlab. The signal was sent to a data acquisition device (NI USB-6251),

then though a power amplifier (Techron 5530 Power Supply Amplifier), and then

to the shaker. An accelerometer (PCB Piezotronics 352A24) was placed on the

base of the shaker and the accelerometer signal was used in the feedback control

loop. The accelerometer signal was sent through an amplifier (Kistler Dual Mode

Amplifier) and was then sent to the DAQ. The voltage was recorded using an

oscilloscope (Tektronix MDO3034). The axial force was controlled by adjusting

a screw that was fixed to the setup, and the axial force was measured using a

FlexiForce Sensor. The power amplifier that powers the electrodynamic shaker is

not pictured.

Using different parameters than the simulation, we explored some preliminary
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Figure 9: Picture of the experimental setup

experimental trials. We included multiple axial force cases with various excitation

amplitudes. As we from Figs. 10 and 11, as the axial force is increased, the

natural frequency decreases and higher voltage responses are attained. Larger

bandwidths are also obtained. In the region where the impact occurs, we see a

dramatic increase in the voltage response, which we did not observe in the model.

The experimental results look promising, and the fit to the simulations has the

same characteristic shape.
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Figure 10: Frequency response curves for various excitation amplitudes and natural frequencies
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Figure 11: Frequency response curves for various excitation amplitudes and natural frequencies
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2.11 Conclusions

A design for a tunable wideband energy harvester using triboelectric transduction

was proposed. This research intends to take advantage of impact vibration that

naturally occurs in triboelectric generators and combine it with the effect of a

compressive force to make a tunable energy harvester. A full continuous model

was derived using linear Euler-Bernoulli beam theory. The modeling of the beam

accounted for the large paddle-like mass located at the midspan, reflected in the

mode shape. The continuous coupled electromechanical model was then validated

partially with previously obtained experimental data [12]. The addition of the ax-

ial force softened the system, which would allow the system to attain greater free

vibration displacement amplitudes. Because of the stopper, the addition of the

axial force will result in harder impacts and higher voltage response amplitudes.

We saw that for a constant initial electrode gap, the addition of the increased ax-

ial force lowered the frequency range and generated a larger operating bandwidth.

Keeping the axial force constant and decreasing the gap results in larger band-

widths at lower amplitudes. The optimal load resistance where the peak power

can be extracted was found to be a function of the axial load. In summary, with

the increased axial force, we were able to see higher voltage responses over larger

operating bandwidths. The axial force also allowed the system to be tuned to

a wide range of natural frequencies to accommodate different frequency sources.

Due to the addition of the triboelectric transduction mechanism, the system has

the potential to be self-powered, which is advantageous for the powering of wireless

batteries and sensors for health monitoring applications.
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3 Bi-stable Triboelectric Shock Sensor

3.1 Introduction

Shock sensors have a wide application in the auto-industry [28], recycle systems

in aerospace [29], fuse systems [30], earthquake detection [31] airbag systems [32–

34], weapons arming and disarming [35, 36], and senior fall detection [37]. Fast

response, high sensitivity, and reliability are considered major requirements for

shock sensors. Different actuation mechanisms have been investigated: mechan-

ical [38, 39], electrostatic [40–43], electrothermal [44–46], piezoelectric [47–52],

optical actuation [53] and electromagnetic [54, 55]. Among all previous mecha-

nisms, electrostatic actuators are the most common. However, they often require

a voltage multiplier because of the large operating voltages. Electromagnetic ac-

tuators continually consume large amounts of power (in the mW range). To avoid

the requirement of continuous powering, mechanical buckling offers two stable,

switchable states [45, 56]. The simplest mechanical structures for buckling are

bi-stable buckled beams or shallow arches that can achieve high displacements at

low actuation. They are ideal for systems that require on and off or open and

closed positions because of their high speed and tunability. Harmonic excitation

can switch the beam between the two stable positions [57, 58] . A critical amount

of energy introduced to the actuator activates the transition of the system between

those stable points [59, 60].

Many studies have been conducted on threshold acceleration sensors, which are

also referred to as g-sensors in the literature. The concept of a threshold sensor

is that the sensor will switch stable states when the acceleration level exceeds a

threshold value and will remain stationary while the acceleration level is below

the threshold. Acceleration sensors can be designed based on cantilever beams

[61–63], clamped-clamped beams [29], and other features [33, 64].
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When sufficient force is applied, the structure moves from one stable point

to another by snap-through motion. This snap-through motion will usually open

or close a circuit or send a signal using a transducer to indicate that the de-

vice has switched states. Triboelectric transducers are emerging as a conversion

mechanism because of their great energy density and easy, low-cost fabrication

[12, 65]. Their requirement of contact and separation makes them useful for shock

(impact) sensing. Many current designs cannot distinguish when the shock gets

past a limit. Building triboelectric transducers with a bi-stable structure enables

making threshold sensors that activate beyond a shock limit and provide more

information about the magnitude of the shock.

This work will demonstrate the feasibility of a threshold sensor that uses tri-

boelectric transduction. It uses the bi-stable mechanism of a buckled clamped-

clamped beam with an aluminum layer, a triboelectric material, attached at the

center of the beam. Initially, a static axial compressive load buckles the straight

beam to its stable, upper position. When the excitation acceleration exceeds a

threshold, the buckled beam will snap to its lower stable position, and the alu-

minum layer strikes the lower PDMS layer, another triboelectric material as seen

in Fig. 12. During this transition, there will be a rapid change in potential energy

of the structure that is converted to a voltage spike in the triboelectric transducer.

The threshold shock can be tuned using the initial compressive load. In addition,

because the voltage spike is a function of the impact, the threshold sensor acts as

an accelerometer beyond the threshold shock. The result is a tunable triboelec-

tric threshold sensor with greater performance and enhanced functionality than

existing sensors. To accurately simulate the sensor behavior, a continuous electro-

mechanical model based on the nonlinear Euler-Bernoulli beam theory was devel-

oped to capture the dynamical responses. This effort on the macro-prototype of

the shock sensor provides a fundamental understanding of the electro-mechanical

system response and a design platform for its future miniature development.

The organization of this chapter is as follows. The principle of operation of the

34



sensor will be described. Then a continuous model will be introduced, deriving the

static configuration, mode shape, and reduced order model. The impact model will

be described and the experimental setup will be displayed in detail. Comparisons

between theoretical and experimental trials will be shown to prove the validity of

the model. The discussion ends with a conclusion.

3.2 Nomenclature

Table 3: Nomenclature for Chapter 3

Parameter Description

A Cross-sectional area of beam

b, bm Width of beam, width of center mass and upper electrode

B Arbitrary constant

c, ci Damping term, impact damping term

d0 Initial total gap with no compressive axial load

D1 Damping coefficient

E Young’s Modulus

Eair, EPDMS Electric field in air gap, PDMS layer

Fd, Fs Impact damping force, impact stiffness force

gi Initial gap between upper electrode and PDMS

I Moment of inertia

J Jacobian

KL, KQ, KC , ki Linear, quadratic, cubic, impact stiffness coefficients

L,Lm Length of beam, length of center mass and upper electrode

L1 Midspan location and location of concentrated mass

M Concentrated mass consisting of center mass and upper
electrode

M1,Mz Mass coefficient, base excitation mass coefficient

p Compressive axial force

q(t) Charge transferred

Continued on next page
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Table 3 – Continued from previous page

Parameter Description

R Load resistance

s Constant for mode shape analysis

S Contact area

t, tm Thickness of beam, thickness of center mass and upper electrode

T Kinetic Energy

TPMDS Thickness of PDMS layer

u(x, t) Longitudinal deflection of the beam

U Potential Energy

v(x, t) Dynamic deflection about buckled configuration

V Volume

w(x, t) Absolute transverse deflection of the beam

Wnc Work done by the nonconservative forces

y(x, t) Relative transverse deflection of the beam

z(t) Base excitation

zc Transverse coordinate direction

α, β Constants for mode shape analysis

α1,2,3 Electrical constants

γi(t) Time dependent function

δ1 Penetration distance

ε, ε0, εr Permittivity, vacuum permittivity, relative permittivity

εs Mechanical strain

η(t) Arbitrary time dependent function

λ, λ1 Eigenvalues

ρ Density of polymer beam

σ Surface charge density

σs Mechanical stress

φ(x) Mode shape

ψ(x) Buckled/Static configuration

ω Natural frequency
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3.3 Principle of Operation

The principle of operation of the shock sensor is shown in Figs. 12a and 12b. The

figures show the upper and lower stable configurations of the threshold sensor. We

increase the axial force on an initially straight beam until the buckling phenomenon

occurs (Fig. 12). In the initial configuration, when the upper and lower electrodes

are separated, there is a charge equilibrium, so there is no voltage across the

load. Once the device is triggered, the upper electrode travels towards the lower

electrode and as the gap changes, the electrical potential difference also changes.

Two factors that affect the voltage potential difference are added mass at the

midspan of the beam and the velocity of the upper electrode. With a larger center

mass, the inertial force will be greater that will result in a higher velocity of

the upper electrode. With this higher velocity, there will be a larger change in

potential difference. Once the upper and lower electrodes come in contact with

each other, the voltage potential difference quickly drops to zero. The voltage

potential will remain at zero while the device remains at the lower configuration.

Next, the mathematical model of the coupled electro-mechanical system will be

developed to shed light on the system behavior.

(a) (b)

Figure 12: The working principle of the threshold shock sensor when the base experiences a shock input: (a)
the initial buckled position held stable by the axial load; (b) the triggered position when the force from a shock
exceeds a threshold and switches stable positions. The figure is not to scale.
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Figure 13: Schematic of shock sensor. Some features are exaggerated to help the reader visualize the system.

3.4 Mathematical Modeling

Because this system includes large deformations of the beam, a large mass located

at the center of the beam, and an axial force, we will develop a continuous model

to accurately describe its behavior, Fig. 13. The continuous model is chosen

because: (i) it is more accurate than a lumped parameter model; (ii) the effect

of the mid-plane stretching will not have to be determined experimentally; and

(iii) the axial force can be easily incorporated into the model. To reduce the

complexity of the continuous system, we will assume that the added center mass

and the upper aluminum layer at the midpoint is a concentrated mass. Because

buckling occurs, we include the effect of the mid-plane stretching that introduces

a geometric nonlinearity into the system. To develop our equations of motion we

first describe our system. Because we are considering our system to be a beam

with a concentrated mass located at the midspan, our model will split the beam

into two spans.

We note that although the transverse direction is in the same direction as the

gravitational force, we will neglect the effect of the gravitational force in the model

because the static configurations of the system are dominated by the buckling

phenomenon and not by gravity. The one parameter that would be changed by

including the effect of gravity in the model is the threshold acceleration. As this

study is only a proof of concept and a learning tool for the dynamics and physics of

the system, we are only concerned with whether a switching event occurs. Finding

the exact threshold acceleration is not the driving factor for this study. At this

point, we are only concerned with demonstrating the feasibility of a triboelectric

threshold shock sensor.
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3.4.1 Deriving Equations of Motion

The equations of motion of this system will be derived using the Extended Hamil-

ton’s Principle and we start by representing the system in terms of the absolute

deflection of the beam and the base motion. If we assume the longitudinal inertia

to be negligible, the kinetic energy of the system can be written as

T =
1

2
ρA

∫ L1

0

ẇ2
1dx+

1

2
ρA

∫ L

L1

ẇ2
2dx+

1

2
Mẇ2

1(L1) (32)

The potential energy is expressed as

U =
1

2

∫
V

εsσsdV +
ε0
2

∫
V

E2
airdV +

ε0εr
2

∫
V

E2
PDMSdV (33)

where

εs = u′
i +

1

2
w′2

i − zcw
′′
i

σs = Eεs

Eair =
(−q + σS)

ε0S

EPDMS = − q

ε0εrS

(34)

Expanding Eq. (33) we get
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U =
1

2
E

∫ b/2

−b/2

dyc

∫ h/2

−h/2

dzc
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1 )
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2
E
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− E
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+
1

2
E
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dyc
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− E

∫ b/2

−b/2
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−h/2
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∫ L
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(u′
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1

2
w′2

2 )w
′′
2dx

+
ε0εr
2

∫ bm/2

−bm/2

dyc

∫ L1+Lm/2
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∫ −d0+TPDMS

−d0

q2

ε20ε
2
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+
ε0
2
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∫ w1(L1)−z(t)

−d0

( q2

ε20S
2
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σ2

ε20
− 2qσ
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dzc

(35)

We simplify Eq. (35) are represent the potential energy as

U =
1

2
EI

∫ L1

0

w′′2
1 dx+

1

2
EI

∫ L

L1

w′′2
2 dx+

EA

2
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0

(
u′
1 +

1

2
w′2

1

)2

dx

+
EA

2

∫ L

L1

(
u′
2 +

1

2
w′2

2

)2

dx+
TPDMS

2ε0εrS
q2 +

d0 + w1(L1)− z(t)

2ε0S
q2

− σ(d0 + w1(L1)− z(t))

ε0
q +

σ2S(d0 + w1(L1)− z(t))

2ε0

(36)

The variation of the work due to the nonconservative forces is

δWnc =− c

∫ L1

0

ẇ1δw1dx− c

∫ L

L1

ẇ2δw2dx−Rq̇δq + pu1(0)− pu2(L) (37)

Now that the system has been fully represented in terms of the absolute deflection,

we now represent Eqs. (32), (36) and (37) in terms of the relative motion, yi(x, t),

such that: wi(x, t) = yi(x, t) + z(t). The variation of the kinetic and potential

energies are now derived.

40



δT = ρA

∫ L1

0

(ẏ1 + ż)δẏ1dx+ ρA

∫ L

L1

(ẏ2 + ż)δẏ2dx+M(ẏ21(L1) + z(t))δẏ1(L1)

(38)

δU =EI

∫ L1

0

y′′1δy
′′
1dx+ EI

∫ L

L1

y′′2δy
′′
2dx+ EA

∫ L1

0

(
u′
1 +

1

2
y′

2

1

)
(δu′

1 + y′1δy
′
1)dx

+ EA

∫ L

L1

(
u′
2 +

1

2
y′

2

2

)
(δu′

2 + y′2δy
′
2)dx+

TPDMS

ε0εrS
qδq +

d0 + y1(L1)

ε0S
qδq

+
q2

2ε0S
δy1(L1)−

σ
(
d0 + y1(L1)

)
ε0

δq − σq

ε0
δy1(L1) +

σ2S

2ε0
δy1(L1)

(39)

The Extended Hamilton’s Principle,
∫ t2
t1
(δT − δU + δWnc)dt = 0 is now per-

formed. We break the Extended Hamilton’s Principle into three parts.

∫ t2

t1

δTdt =

∫ L1

0

[
ρA(ẏ1 + ż)δy1

∣∣∣t2
t1
−

∫ t2

t1

ρA(ÿ1 + z̈)δy1dt
]
dx

+

∫ L

L1

[
ρA(ẏ2 + ż)δy2

∣∣∣t2
t1
−

∫ t2

t1

ρA(ÿ2 + z̈)δy2dt
]
dx

+M(ẏ1(L1) + ż)δy1(L1)
∣∣∣t2
t1
−

∫ t2

t1

M(ÿ1(L1) + z̈)δy1(L1)dt

(40)

Using the definition of virtual work, we simplify Eq. (40)

∫ t2

t1

δTdt =

∫ t2

t1

[
−

∫ L1

0

ρA(ÿ1 + z̈)δy1dx−
∫ L

L1

ρA(ÿ2 + z̈)δy2dx

−M(ÿ1(L1) + z̈)δy1(L1)

]
dt

(41)

We now consider Hamilton’s Principle for the potential energy.
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∫ t2

t1

δUdt =

∫ t2

t1

[
EIy′′1δy

′
1

∣∣∣L1

0
− EIy′′′1 δy1

∣∣∣L1

0
+ EI

∫ L1

0

y′′′′1 δy1dx

+ EIy′′2δy
′
2

∣∣∣L
L1

− EIy′′′2 δy2
∣∣∣L
L1

+ EI

∫ L

L1

y′′′′2 δy2dx

+ EA
(
u′
1 +

1

2
y′

2

1

)
δu1

∣∣∣L1

0
− EA

∫ L1

0

(
u′
1 +

1

2
y′

2

1

)′
δu1dx

+ EA
(
u′
1 +

1

2
y′

2

1

)
y′1δy1

∣∣∣L1

0
− EA

∫ L1

0

[(
u′
1 +

1

2
y′

2

1

)
y′1
]′
δy1dx

+ EA
(
u′
2 +

1

2
y′

2

2

)
δu2

∣∣∣L
L1

− EA

∫ L

L1

(
u′
2 +

1

2
y′

2

2

)′
δu2dx

+ EA
(
u′
2 +

1

2
y′

2

2

)
y′2δy2

∣∣∣L
L1

− EA

∫ L

L1

[(
u′
2 +

1

2
y′

2

2

)
y′2
]′
δy2dx

+
TPDMS

ε0εrS
qδq +

d0 + y1(L1)

ε0S
qδq +

q2

2ε0S
δy1(L1)

−
σ
(
d0 + y1(L1)

)
ε0

δq − σq

ε0
δy1(L1) +

σ2S

2ε0
δy1(L1)

]
dt

(42)

Performing Hamilton’s Principle on the work due to nonconservative forces,

∫ t2

t1

δWncdt =

∫ t2

t1

[
− c

∫ L1

0

ẏ1δy1dx− c

∫ L

L1

ẏ2δy2dx−Rq̇δq + pu1(0)− pu2(L)

]
dt

(43)

By now considering all of the terms of the Extended Hamilton’s Principle, we

obtain the governing equations for the transverse motion, the longitudinal motion,

and the charge.
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⎧⎪⎪⎨
⎪⎪⎩
ρAÿ1 + ρAz̈ + cẏ1 + EIy′′′′1 − EA

[
(u′

1 +
1
2
y′

2

1 )y
′
1

]′
= 0 0 ≤ x ≤ L1

ρAÿ2 + ρAz̈ + cẏ2 + EIy′′′′2 − EA
[
(u′

2 +
1
2
y′

2

2 )y
′
2

]′
= 0 L1 ≤ x ≤ L⎧⎪⎪⎨

⎪⎪⎩
EA

[
u′
1 +

1
2
y′

2

1

]′
= 0 0 ≤ x ≤ L1

EA
[
u′
2 +

1
2
y′

2

2

]′
= 0 L1 ≤ x ≤ L

q̇ =
−q

ε0RS

[TPDMS

εr
+ d0 + y1(L1)

]
+

σ(d0 + y1(L1))

ε0R

(44)

To decouple the transverse and longitudinal equations of motion, we first con-

sider the longitudinal equations of motion. Using Eq. (44) and neglecting the

longitudinal inertia, we develop the governing equations for the longitudinal direc-

tion, as well as the boundary conditions from the Extended Hamilton’s Principle

and simple axial displacement calculations.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(x) = γ1(t)x+ γ2(t)−
∫ x

0
1
2
y′

2

1 dx

u2(x) = γ3(t)(x− L1) + γ4(t)−
∫ x

L1

1
2
y′

2

2 dx

u1(0) =
pL1

EA

u2(L) = −p(L−L1)
EA

u1(L1) = u2(L1)

EA
[
u′
1(L1) +

1
2
y′

2

1 (L1)
]
= EA

[
u′
2(L1) +

1
2
y′

2

2 (L1)
]

(45)

From the third part of Eq. (45) we have

u1(0) = γ2(t) =
pL1

EA
(46)

From the fourth part of Eq. (45) we have
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u2(L) = γ3(t)(L− L1) + γ4(t)−
∫ L

L1

1

2
y′

2

2 dx = −p(L− L1)

EA
(47)

Using the continuity equation at x = L1 and Eqs. (46) and (47), we have

u1(L1) = u2(L1) = γ1(t)L1 +
pL1

EA
−

∫ L1

0

1

2
y′

2

1 dx = −p(L− L1)

EA
− γ3(t)(L− L1)

+

∫ L

L1

1

2
y′

2

2 dx

(48)

To further simplify, we note that while expanding the governing equations for the

longitudinal direction, we determined that

u′
1(x) +

1

2
y′

2

1 (x) = γ1(t)

u′
2(x) +

1

2
y′

2

2 (x) = γ3(t)

(49)

From the last part of Eq. (45) we see that at x = L1, that u′
1(L1) +

1
2
y′

2

1 (L1) =

u′
2(L1) +

1
2
y′

2

2 (L1). Using this information along with Eq. (49), we conclude that

γ1(t) = γ3(t). Now simplifying Eq. (48), we conclude that

γ1(t) = γ3(t) = − p

EA
+

1

2L

∫ L1

0

y′
2

1 dx+
1

2L

∫ L

L1

y′
2

2 dx (50)

Substituting Eq. (50) into the transverse equation of motion in Eq. (44), we get
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨
⎪⎪⎩
ρAÿ1 + ρAz̈ + cẏ1 + EIy′′′′1 + py′′1 − EA

2L
y′′1
[ ∫ L1

0
y′

2

1 dx+
∫ L

L1
y′

2

2 dx
]
= 0 0 ≤ x ≤ L1

ρAÿ2 + ρAz̈ + cẏ2 + EIy′′′′2 + py′′2 − EA
2L

y′′2
[ ∫ L1

0
y′

2

1 dx+
∫ L

L1
y′

2

2 dx
]
= 0 L1 ≤ x ≤ L

q̇ = −q
ε0RS

[
TPDMS

εr
+ d0 + y1(L1)

]
+ σ(d0+y1(L1))

ε0R

y1(0) = 0

y2(L) = 0

y′1(0) = 0

y′2(L) = 0

y1(L1) = y2(L1)

y′1(L1) = y′2(L1)

y′′1(L1) = y′′2(L1)

−Mÿ1(L1) + EIy′′′1 − EIy′′′2 + q2

2ε0S
+ σ2S

2ε0
− σq

ε0
= 0

(51)

3.4.2 Static Buckled Configuration

To determine the static solution of the system, we set the time dependent variables

in Eq. (51) to zero. We neglect all electrical terms because the static configuration

is dependent only on the mechanical system. We note that the static configuration

of the system will be the trivial solution unless the compressive axial load is greater

than the first critical axial load. In determining the static configuration and the

mode shapes, we will be following similar procedures from [66]. Letting the static

solution be yi(x, t) = ψi(x) results in the static equilibrium equation and boundary

conditions of
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

EIψ′′′′
1 + pψ′′

1 − EA
2L

ψ′′
1

[ ∫ L1

0
ψ′2
1 dx+

∫ L

L1
ψ′2
2 dx

]
= 0 0 ≤ x ≤ L1

EIψ′′′′
2 + pψ′′

2 − EA
2L

ψ′′
2

[ ∫ L1

0
ψ′2
1 dx+

∫ L

L1
ψ′2
2 dx

]
= 0 L1 ≤ x ≤ L

(52)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1(0) = 0

ψ′
1(0) = 0

ψ2(L) = 0

ψ′
2(L) = 0

ψ1(L1) = ψ2(L1)

ψ′
1(L1) = ψ′

2(L1)

ψ′′
1(L1) = ψ′′

2(L1)

ψ′′′
1 (L1) = ψ′′′

2 (L1)

(53)

This is an eigenvalue problem with eigenvalues

λ2 =
p

EI
− A

2IL

[ ∫ L1

0

ψ′2
1 dx+

∫ L

L1

ψ′2
2 dx

]
(54)

Therefore, the solution takes the form of

ψ1(x) = B1 +B2x+B3 cosλx+B4 sinλx

ψ2(x) = B5 +B6x+B7 cosλx+B8 sinλx

(55)

By using Eq. (55) with the associated boundary conditions, a coefficient matrix

is found. The first eigenvalue is obtained by equating the determinant of the
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coefficient matrix to zero. As we have nine unknowns and eight of them have been

determined by using all but one of the boundary conditions, we still have one

unknown constant. After an axial force (that is beyond the critical axial load) has

been chosen, we use the last constraint, Eq. (54) to determine the last unknown

constant to fully determine the static buckled configuration.

3.4.3 Determine Mode Shapes

The mode shapes and natural frequencies of the system around the buckled con-

figuration are determined next. Because we are concerned with the vibrations

around the buckled configuration, we let

yi(x, t) = ψi(x) + vi(x, t) (56)

Eq. (56) is then substituted into the beam equations of motion in Eq. (51) and

the forcing and damping terms are neglected.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρAv̈1 + EIψ′′′′
1 + EIv′′′′1 + pψ′′

1 + pv′′1 − EA
2L

ψ′′
1

[ ∫ L1

0
(ψ′

1 + v′1)
2dx

+
∫ L

L1
(ψ′

2 + v′2)
2dx

]
− EA

2L
v′′1
[ ∫ L1

0
(ψ′

1 + v′1)
2dx+

∫ L

L1
(ψ′

2 + v′2)
2dx

]
= 0 0 ≤ x ≤ L1

ρAv̈2 + EIψ′′′′
2 + EIv′′′′2 + pψ′′

2 + pv′′2 − EA
2L

ψ′′
2

[ ∫ L1

0
(ψ′

1 + v′1)
2dx

+
∫ L

L1
(ψ′

2 + v′2)
2dx

]
− EA

2L
v′′2
[ ∫ L1

0
(ψ′

1 + v′1)
2dx+

∫ L

L1
(ψ′

2 + v′2)
2dx

]
= 0 L1 ≤ x ≤ L

(57)

It is further simplified by using the static equations of motion in Eq. (52) and

by only retaining the linear terms in vi(x, t):
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρA
EI

v̈1 + v′′′′1 + λ2v′′1 − A
2IL

ψ′′
1

[ ∫ L1

0
ψ′
1v

′
1dx+

∫ L

L1
ψ′
2v

′
2dx

]
= 0 0 ≤ x ≤ L1

ρA
EI

v̈2 + v′′′′2 + λ2v′′2 − A
2IL

ψ′′
2

[ ∫ L1

0
ψ′
1v

′
1dx+

∫ L

L1
ψ′
2v

′
2dx

]
= 0 L1 ≤ x ≤ L

(58)

Let vi(x, t) = φi(x)e
jωt, α = λ2, and β = ρAω2

EI
. Based on Eq. (58), the mode shape

will be represented by a homogeneous solution and a particular solution, with the

entire mode shape taking the form of

φi(x) = B1 sinh s1x+B2 cosh s1x+B3 sin s2x+B4 cos s2x+B5ψ
′′
i (x) (59)

where s1,2 =

√
∓α+

√
α2+4β

2
.

3.4.4 Reduced Order Model

Now that the mode shape about the buckled configuration has been obtained, we

can convert our set of partial differential equations into a set of ordinary differential

equations. We start by defining the Lagrangian (L = T − U) of the system. We

will simplify our notation to denote the static buckled configuration as ψ(x) and

the first mode shape as φ(x) and will not continue the analysis using the two span

approach as the buckled configuration and mode shape are now determined.

L =
1

2
ρA

∫ L

0

(ẏ + ż)2dx+
1

2
M(ẏ(L1) + ż)2 − 1

2
EI

∫ L

0

y′′
2

dx

− EAL

2

[
− p

EA
+

1

2L

∫ L

0

y′
2

dx
]2
− TPDMS

2ε0εrS
q2

− d0 + y(L1)

2ε0S
q2 +

σ(d0 + y(L1))

ε0
q − σ2S(d0 + y(L1))

2ε0

(60)

As we are only interested in modeling the first buckling mode, a one-mode ap-

proximation for the Galerkin discretization is used. To approximate the dynamic
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motion about the first buckled configuration, let

y(x, t) = ψ(x) + φ(x)η(t) (61)

where φ(x) is the first buckling mode shape. We now substitute Eq. (61) into

Eq. (60) and perform Lagrange’s Equation for the variables η(t) and q(t).

d

dt

∂L
∂η̇

= ρA

∫ L

0

(
φ(x)η̈ + z̈

)
φ(x)dx+M

(
φ(L1)η̈ + z̈

)
φ(L1) (62)

∂L
∂η

= −EI

∫ L

0

(
ψ′′(x) + φ′′(x)η

)
φ′′(x)dx+ p

∫ L

0

(
ψ′(x) + φ′(x)η

)
φ′(x)dx

− EA

2L

∫ L

0

(
ψ′ + φ′η

)2

dx

∫ L

0

(
ψ′(x) + φ′(x)η

)
φ′(x)dx

− φ(L1)

2ε0S
q2 +

σφ(L1)

ε0
q − σ2Sφ(L1)

2ε0

(63)

d

dt

∂L
∂q̇

= 0 (64)

∂L
∂q

= −TPDMS

ε0εrS
q − d0 + ψ(L1) + φ(L1)η

ε0S
q +

σ
(
d0 + ψ(L1) + φ(L1)η

)
ε0

(65)

We now perform Lagrange’s Equations for each variable

d

dt

∂L
∂η̇
− ∂L

∂η
= −c

∫ L

0

φ2(x)η̇dx

d

dt

∂L
∂q̇
− ∂L

∂q
= −Rq̇

(66)
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where the terms on the RHS of Eq. (66) are the generalized forces for η and q and

represent the mechanical and electrical damping respectively.

Substituting Eqs. (62) to (65) into Eq. (66), we arrive at a coupled set of

differential equations with respect to η(t) and q(t).

M1η̈ +MZ z̈ +D1η̇ +KLη +KQη
2 +KCη

3 +N + α1q
2 + α2q + α3 = 0

q̇ = − q

ε0SR

[TPDMS

εr
+ d0 + ψ(L1) + φ(L1)η

]
+

σ
(
d0 + ψ(L1) + φ(L1)η

)
ε0R

(67)

where

M1 = ρA

∫ L

0

φ2(x)dx+Mφ2(L1)

MZ = ρA

∫ L

0

φ(x)dx+Mφ(L1)

D1 = c

∫ L

0

φ2(x)dx

KL = EI

∫ L

0

φ′′2(x)dx− p

∫ L

0

φ′2(x)dx+
EA

L

(∫ L

0

ψ′(x)φ′(x)dx
)2

+
EA

2L

∫ L

0

ψ′2(x)dx
∫ L

0

φ′2(x)dx

KQ =
3EA

2L

∫ L

0

φ′2(x)dx
∫ L

0

ψ′(x)φ′(x)dx

KC =
EA

2L

(∫ L

0

φ′2(x)dx
)2

N = EI

∫ L

0

ψ′′(x)φ′′dx− p

∫ L

0

ψ′(x)φ′dx

+
EA

2L

∫ L

0

ψ′2dx
∫ L

0

ψ′φ′dx

α1 =
φ(L1)

2ε0S

α2 = −σφ(L1)

ε0

α3 =
σ2Sφ(L1)

2ε0

(68)

After dropping the static terms in the mechanical equation, we arrive at the dy-
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namic coupled equations.

M1η̈ +MZ z̈ +D1η̇ +KLη +KQη
2 +KCη

3 + α1q
2 + α2q = 0

q̇ = − q

ε0SR

[TPDMS

εr
+ d0 + ψ(L1) + φ(L1)η

]
+

σ
(
d0 + ψ(L1) + φ(L1)η

)
ε0R

(69)

As we can see from Eqs. (68) and (69), we have a coupled set of differential

equations that describe our dynamic system about the buckled configuration. The

coupling arises from α1q
2 and α2q in the mechanical equation, and the terms that

contain η in the electrical equation.

3.5 Stability Analysis

Before the full impact model is considered and the dynamics of the sensor are

investigated, the stability of the system is analyzed. Intuitively, we expect to see

that this system has three equilibrium positions, with two of those being stable

and one being unstable showing a pitchfork bifurcation. As the stability of this

system is only dependent on the mechanical terms, we will neglect the electrical

terms, and the electrical differential equation. After removing the forcing and

damping terms, we arrive at the Jacobian of the system.

J =

⎡
⎢⎣ −λ1 1

−KL

M1
− 2KQ

M1
ηeq − 3KC

M1
η2eq −λ1

⎤
⎥⎦ (70)

where the ηeq terms are determined by finding the equilibrium points from the

mechanical equilibrium equation (KLηeq + KQη
2
eq + KCη

3
eq = 0). By analyzing

the Jacobian, one can see two stable solutions and one unstable solutions. We

now compare the approximated equilibrium profiles of the beam with the exact

solution obtained from Section 3.4.2, see Fig. 14a. As deduced from this figure,

the approximate solution using one mode is close to the exact solution, but has

small deviations in predicting the unstable solution.
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Figure 14: (a) Comparison between exact equilibrium beam profiles and the approximated one from the one-
mode Galerkin Decomposition, (b) Bifurcation diagram for the threshold sensor. Saddle node bifurcation is result
of only considering one mode in the Galerkin Decomposition

If we repeat this procedure with different axial forces, we can create a bifur-

cation diagram for the system, with the axial force being the tuning parameter.

From the bifurcation diagram, Fig. 14b, one sees that in addition to the pitchfork

bifurcation, there is a saddle node bifurcation where the middle and bottom so-

lutions will eventually collide and destroy each other. Ideally, there should only

be a pitchfork bifurcation, but because we are only considering one mode, we are

limiting the accuracy of the dynamic system [67]. However, if the axial force is

not too large, the one mode solution will be a good approximation.

3.6 Impact Model

Before the full dynamics of the system can be explored, the impact model has to

be considered. Using impact equations from [13, 26] and adding the quadratic and

cubic stiffness terms, we have

Fs = kiη + kigi +KQg
2
i +KCgi

3 (71a)

Fd = ciη (71b)

We can now represent the full dynamic equations of motion for the free motion

and the impact by using a piecewise function, with the condition being whether
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the upper electrode is contacting the PDMS layer.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M1η̈ +MZ z̈ +D1η̇ +KLη +KQη
2 +KCη

3 + α1q
2 + α2q = 0 y(L1, t) > −gi

M1η̈ +MZ z̈ + (D1 + ci)η̇ + (KL + ki)η + kigi +KQg
2
i

+KCg
3
i + α1q

2 + α2q = 0 y(L1, t) ≤ −gi
(72)

where gi is the gap between the upper electrode and the PDMS layer. It is noted

that the total initial gap, d0, is the summation of gi, and the penetration distance

δ1.

3.7 Experimental Setup

To experimentally test the concept of the shock sensor, the system was placed

on an electrodynamic shaker. A figure of the experimental setup and the block

diagram is shown in Fig. 15. The input signal to the shaker was controlled in a

closed loop with PUMA Spectral Dynamics. Once the signal was generated, the

signal was sent through a power amplifier (Techron 5530 Power Supply Amplifier)

and then to the shaker. For the excited base to produce a half-sine pulse, the

signal to the electrodynamic shaker requires pre and post compensation pulses,

Fig. 16a. These compensation pulses can be seen in Fig. 16a as the low amplitude

acceleration pulses that occur before and after the main half-sine pulse. The

compensation pulses allow the shaker to use more of its stroke and to produce a

decent approximation to a drop table test. The input to the shaker was a half-sine

wave with a frequency of 38Hz. An accelerometer (PCB Piezotronics 352A24)

was placed on the base of the shaker and the accelerometer signal was used in the

feedback control loop. The accelerometer signal was read by a data acquisition

device. The voltage was recorded using an oscilloscope (Tektronix MDO3034).

The axial force was controlled by adjusting a screw that was fixed to the setup,

53



and the axial force was measured using a FlexiForce Sensor. The power amplifier

that powers the electrodynamic shaker and the PUMA Spectral Dynamics system

are not pictured. The system parameters are listed in Table 4.

(a) (b)

Figure 15: (a) Picture of the experimental setup, (b) Block diagram of the experimental setup.

3.8 Results and Discussions

Shock simulations were conducted to demonstrate the sensor response when the

shock goes beyond the threshold as well as the relationship between the magnitude

of the shock signal to the sensed voltage. The results are compared with the data

obtained from experiments. We first present a case at an acceleration just below

the threshold for this system. The input acceleration measured by an external

accelerometer is shown in Fig. 16a. We note that the previously mentioned com-

pensation pulses are not large enough to trigger the switching motion, so these

pulses do not affect the system dynamics. We also note that although it looks like

the base acceleration pulse and the voltage reading occur at different times, they

were recorded at the same time. The difference in time comes from triggering

of the oscilloscope. Figs. 16a to 16c show the base acceleration, the simulated

voltage output, and the measured voltage output for the low acceleration case.

As the threshold acceleration was not reached, the system did not switch states,

which is displayed by the lack of a voltage spike. Although it may be obvious, any

acceleration amplitudes lower than this low acceleration case will not trigger the

system. This design concept regarding bi-stability has the potential to be very
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Table 4: Experimental parameters

Parameter Value

(L x b x t) (14 x 3.7 x 0.1)cm
(Lm x bm x tm) (3.7 x 5.2 x 0.45)cm
c 95 Ns/m
d0 1.3683mm
δ1 46.40 μm
gi 1.3219mm
E 2.344GPa
p 35N
R 10MΩ
TPDMS 320 μm
εr 2.5
ρ 1220 kg/m3

σ variable
ki 30000 N/m
ci 3000 Ns/m

reliable because the switching of states can only occur when the threshold acceler-

ation is experienced. Furthermore, even if the sensor experiences an acceleration

amplitude greater than the threshold value, but the direction is not in the correct

orientation, the device will still not trigger. A sensor that monitors in only one

plane at a time could be a drawback in some instances but very useful for systems

in which the incoming shock direction is known.
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Figure 16: (a) Experimental results for the input acceleration pulse at 2.95g, (b) Simulation of voltage response

with shock amplitude of 2.95g and σ = 4.2μC
m2 , (c) Experimental voltage results for shock amplitude of 2.95g

At the threshold acceleration, Fig. 17, there is a significant voltage spike when

the sensor experiences input shock. As the upper electrode is switching stable

states and moving toward the lower electrode, we see a negative voltage spike.

If we compare this threshold case to the previous case in Fig. 16, we see a very
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pronounced difference in the voltage outputs. This is one of the main advantages

of this specific design, as there is a large signal-to-noise ratio when the device is

triggered.
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Figure 17: (a) Experimental results for the input acceleration pulse at 3.26g, (b) Simulation of voltage response

with shock amplitude of 3.26g and σ = 4.2μC
m2 , (c) Experimental voltage results for shock amplitude of 3.26g

After the initial negative voltage spike, we see a positive voltage spike and

then another negative voltage spike. This positive spike is due to an imperfect

collision between the upper and lower electrodes. Ideally, when the electrodes

come in contact with each other, the velocity of the upper electrode would imme-

diately drop to zero and would remain at a constant zero velocity. But in reality,

the upper electrode will start to rebound off of the lower electrode and impact

again, which is why we see the positive spike followed by another negative spike.

When we discuss the voltage peak for the experimental data we will be referring

to the negative voltage peak, as this peak is the first to occur and has the greatest

magnitude. To further illustrate the relationship between the mechanical motion

and the electrical output, we present Fig. 18a, which displays the displacement

and velocity of the upper electrode (beam midspan) once the shock pulse is felt.

Fig. 18b displays the charge transferred between the electrodes and the voltage

across the load when the shock pulse is felt. Figs. 18a and 18b are performed un-

der an acceleration amplitude of 4.56g. From Fig. 18a, when the upper electrode

is crossing through the unstable equilibrium point, the maximum velocity occurs.

As the upper electrode moves toward the lower electrode and the velocity changes

rapidly, the charge changes quickly. This change in charge results in the negative

voltage spike. Once the impact occurs, the velocity dramatically decreases in mag-

nitude and the upper electrode rebounds slightly apart from the lower electrode
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and then impacts again. This small deviation is what causes the positive and

second negative peak. After these three voltage peaks have occurred, the system

settles into a state of equilibrium between all of these quantities.
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(b)

Figure 18: (a) Position and velocity of beam midspan for acceleration amplitude of 4.56g. The green line
represents the position of the PDMS layer on the lower electrode, (b) Charge transferred and voltage output for
acceleration amplitude of 4.56g

Next, we increase the input shock amplitude to magnitudes larger than the

threshold amplitude. This is to display the characteristic of the shock sensor as

an accelerometer beyond the threshold. We not only see a voltage spike that

indicates that the threshold acceleration has been reached, but we see a voltage

peak that is related to the magnitude of the input shock signal. As we expect

to see, as the input shock amplitude increases, we see a larger negative voltage

peak. These results are displayed in Figs. 19 and 20. We see that there is a close

agreement in the simulation and experimental results on the negative voltage spike

that occurs from switching between the two stable states. It is noted that the the

surface charge density used in simulations is identified from experiments, which

shows its increase from increasing the shock level. The reason is the stronger

impact causes larger penetration into the PDMS layer [12], hence, more charges

are generated on the contact surfaces resulting in larger surface charge density.

At last, the relationship between the input acceleration magnitude and the

output voltage peak is demonstrated, see Fig. 21. Again, for the output voltage

signal, we are just considering the magnitude of the negative voltage spike, as

that is the voltage associated with the input shock signal. It is deduced that

the sensor has zero output below the threshold shock of 3.26g, and its voltage
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(c)

Figure 19: (a) Experimental results for the input acceleration pulse at 3.88g, (b) Simulation of voltage response

with shock amplitude of 3.88g and σ = 10.5μC
m2 , (c) Experimental voltage results for shock amplitude of 3.88g
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(c)

Figure 20: (a) Experimental results for the input acceleration pulse at 4.56g, (b) Simulation of voltage response

with shock amplitude of 4.56g and σ = 12.5μC
m2 , (c) Experimental voltage results for shock amplitude of 4.56g

output is fairly linearly proportional to the acceleration beyond the threshold as

seen in Fig. 21. Although some of these voltage peaks are not monotonically

increasing with the acceleration amplitude, Fig. 21 still shows that there is a

general linear trend between input acceleration and voltage. As this idea is only

a proof of concept, future work will be done to address the slight variations in

the voltage amplitude. The results indicate the addition of a buckling mechanism

to the triboelectric generator enables a threshold shock sensor that responds to

accelerations beyond a threshold. In addition, the proportionality of the output

voltage to the acceleration beyond the threshold reveals that a threshold sensor

can effectively be used as an accelerometer. This characterization effort is an

important part of the sensor development that can be completed by adding an

electrical readout.

3.9 Conclusions

A proposed design and proof of concept of a bi-stable threshold sensor using tri-

boelectric transduction was investigated. A continuous model using nonlinear
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Figure 21: Experimental output voltages of the sensor as a function of shock accelerations. A simple linear fit
is used to characterize the linearity of the relationship between voltage and shock amplitude.

Euler-Bernoulli beam theory was derived to accurately describe the system be-

havior. The model proved to accurately capture the system dynamics as well as

output voltages observed experimentally. This presented sensor was not only able

to display a significant voltage reading when the acceleration meets or exceeds a

threshold, but it was also able to relate the amplitude of the input shock signal

to the output voltage amplitude. This is advantageous as the user would be able

to know how much of a shock the device experienced during the triggering and

not just that the device was triggered. This device also can be tuned by adjusting

the axial force that will determine the buckling level of the beam. Increasing the

axial force enhances the sensor robustness and increases the threshold shock it

can detect. This capability enables a tunable shock sensor. For the parameters

that were used this study, we were able to trigger the device at fairly low g-levels

(3.26g), which can be very useful for low shock level applications. Although this

specific sensor is not on the micro-scale, the fundamental understanding of the

system behavior and its characterization are useful for the future development of

a miniature counterpart.
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4 Conclusion

Two uses for triboelectric generators were presented. The tunable wideband en-

ergy harvester displayed its advantages compared to linear harvesters. The tun-

ability was implemented by including a compressive axial force in the system.

This allowed the harvester to accommodate different frequency sources. Although

the system had to be statically tuned, the harvester was still self powered. The

operating bandwidth was increased by adding an amplitude limiter to the system.

The amplitude limiter made use of the constant contact and separation that is

characteristic of the triboelectric effect. Because of the amplitude limiter, the im-

pact between triboelectric materials was able to occur at frequencies that were far

away from the natural frequency. Since the impact results in higher voltages than

in the free vibration case, the impact over a large range of frequencies resulted in

a large operating bandwidth for the system. The axial force was not only able to

shift the natural frequency, but was also able to allow for higher voltage outputs

due to the softening effect that the axial force had on the system.

A proof of concept for a bi-stable threshold sensor using triboelectric trans-

duction was proposed. This system was completely self powered and was able to

reliably generate a voltage signal when the threshold acceleration was met. The

reliability of this device is due to the buckling phenomenon. Since the clamped-

clamped beam is buckled, the system will only switch states when at least the

threshold acceleration is experienced. At acceleration magnitudes lower than the

threshold, the system will stay in the upper stable position and there will be no

voltage signal. Once the threshold acceleration is felt, the strength of the impact

and therefore the voltage magnitude is related to the level of the shock accelera-

tion. This is valuable because many threshold sensors do not give any information

except that the threshold has been reached. In this way, after the threshold accel-
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eration has been met, the system acts like an accelerometer. This proof of concept

is ideal for systems in which the direction of the shock input is known. This is

because the system will only trigger at the threshold if the entire shock input is

in the same direction as the transverse motion.

Future work will be done to validate the wideband harvester model with the

addition of the axial force. The preliminary experimental data had the same

characteristics to the model, but the fit was not close enough to validate the

model. Concerning the threshold sensor, the effect of gravity could be accounted

for in the dynamics. The variations in the output voltage in Fig. 21 could also

be addressed to create a more consistent characterization between output voltage

and input shock amplitude.
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5 Appendix

5.1 Mathematica Codes

5.1.1 Wideband Energy Harvester Code

Wideband Energy Harvester

Define Parameter for the System

ClearAll["Global‘*"];

b = 3.7*^-2;

h = 1*^-3;

L = 11*^-2;

bm = 0.052;

Lm = 0.037;

rhomass = 2700;

rho = 1220;

L1 = L/2;

LL = (L - Lm)/2;

LR = LL + Lm;

EEp = 2.344*^9;

EEa = 69*^9;

Ap = b h;

Aa = bm hm;

IIp = (b h^3)/12;

hm1 = 0.00475;

hm2 = 0.00475;

Db = EEa bm (hm1^3/3 + (h hm1^2)/2 + (h^2 hm1)/4) + EEp IIp +

EEa bm (hm2^3/3 + (h hm2^2)/2 + (h^2 hm2)/4);

rhoA = rho Ap + rhomass bm hm1 + rhomass bm hm2;

ep0 = 8.85*^-12;

S = bm Lm;

Tpdms = 500*^-6;

epr = 2.5;

d0 = 260*^-6;
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g = 9.81;

Amp = 0.5*g;

R = 2*^6;

gi = d0 - 10*^-6;

Mode Shape Analysis

Define the Axial Force Here:

p = 0;

pvec = {p};

wvec = Range[1, 2000, 1];

vec = ConstantArray[0, Length[wvec]];

For[jj = 1, jj <= Length[wvec], jj++,

ww = wvec[[jj]];

beta1 = ((rho Ap ww^2)/(EEp IIp));

beta1a = p/(EEp IIp);

beta2 = ((rhoA ww^2)/Db);

beta2a = p/Db;

r11 = Sqrt[(-beta1a + Sqrt[beta1a^2 + 4 beta1])/2] // N;

r12 = Sqrt[(beta1a + Sqrt[beta1a^2 + 4 beta1])/2] // N;

r21 = Sqrt[(-beta2a + Sqrt[beta2a^2 + 4 beta2])/2] // N;

r22 = Sqrt[(beta2a + Sqrt[beta2a^2 + 4 beta2])/2] // N;

phi1[x_] =

A1 (Cosh[r11 x] - Cos[r12 x]) + B1 (Sinh[r11 x] - r11/r12 Sin[r12 x]) // N;

phi2[x_] =

A2 Cosh[r21 x] + B2 Sinh[r21 x] + C2 Cos[r22 x] + D2 Sin[r22 x] // N;

phi3[x_] =

A3 Cosh[r11 x] + B3 Sinh[r11 x] + C3 Cos[r12 x] + D3 Sin[r12 x] // N;

eqn3 = phi1[LL] - phi2[LL] == 0 // N;

eqn4 = phi1’[LL] == 0 // N;

eqn5 = phi2’[LL] == 0 // N;

eqn6 = phi2’[LR] == 0 // N;

eqn7 = phi2[LR] - phi3[LR] == 0 // N;

eqn8 = phi3’[LR] == 0 // N;

eqn9 = phi2[LL] - phi2[LR] == 0 // N;

eqn10 = EEp IIp phi1’’’[LL] + Db phi2’’’[LR] - Db phi2’’’[LL] -

EEp IIp phi3’’’[LR] == 0 // N;

eqn11 = phi3[L] == 0 // N;

eqn12 = phi3’[L] == 0 // N;

eqnvec = {eqn3, eqn4, eqn5, eqn6, eqn7, eqn8, eqn9, eqn10, eqn11, eqn12};

mat = CoefficientArrays[eqnvec, {A1, B1, A2, B2, C2, D2, A3, B3, C3, D3}][[

2]] // N;

vec[[jj]] = Det[mat];

];

index = {};

For[ii = 1, ii < Length[vec], ii++,

If[Sign[vec[[ii]]*vec[[ii + 1]]] == -1, {index = Append[index, ii]}]

];

index = index[[1]];

wvec1 = Range[index, index + 1, 0.001];

vec1 = ConstantArray[0, Length[wvec1]];

For[jj = 1, jj <= Length[wvec1], jj++,
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ww = wvec1[[jj]];

beta1 = ((rho Ap ww^2)/(EEp IIp));

beta1a = p/(EEp IIp);

beta2 = ((rhoA ww^2)/Db);

beta2a = p/Db;

r11 = Sqrt[(-beta1a + Sqrt[beta1a^2 + 4 beta1])/2] // N;

r12 = Sqrt[(beta1a + Sqrt[beta1a^2 + 4 beta1])/2] // N;

r21 = Sqrt[(-beta2a + Sqrt[beta2a^2 + 4 beta2])/2] // N;

r22 = Sqrt[(beta2a + Sqrt[beta2a^2 + 4 beta2])/2] // N;

phi1[x_] =

A1 (Cosh[r11 x] - Cos[r12 x]) + B1 (Sinh[r11 x] - r11/r12 Sin[r12 x]) // N;

phi2[x_] =

A2 Cosh[r21 x] + B2 Sinh[r21 x] + C2 Cos[r22 x] + D2 Sin[r22 x] // N;

phi3[x_] =

A3 Cosh[r11 x] + B3 Sinh[r11 x] + C3 Cos[r12 x] + D3 Sin[r12 x] // N;

eqn3 = phi1[LL] - phi2[LL] == 0 // N;

eqn4 = phi1’[LL] == 0 // N;

eqn5 = phi2’[LL] == 0 // N;

eqn6 = phi2’[LR] == 0 // N;

eqn7 = phi2[LR] - phi3[LR] == 0 // N;

eqn8 = phi3’[LR] == 0 // N;

eqn9 = phi2[LL] - phi2[LR] == 0 // N;

eqn10 = EEp IIp phi1’’’[LL] + Db phi2’’’[LR] - Db phi2’’’[LL] -

EEp IIp phi3’’’[LR] == 0 // N;

eqn11 = phi3[L] == 0 // N;

eqn12 = phi3’[L] == 0 // N;

eqnvec = {eqn3, eqn4, eqn5, eqn6, eqn7, eqn8, eqn9, eqn10, eqn11, eqn12};

mat = CoefficientArrays[eqnvec, {A1, B1, A2, B2, C2, D2, A3, B3, C3, D3}][[

2]] // N;

vec1[[jj]] = Det[mat];

];

zerosapprox = {};

index1 = {};

For[ii = 1, ii < Length[vec1], ii++,

If[Sign[vec1[[ii]]*vec1[[ii + 1]]] == -1, {zerosapprox =

Append[zerosapprox, (vec1[[ii]] + vec1[[ii + 1]])/2],

index1 = Append[index1, ii]}]

] // Quiet;

index1 = index1[[1]];

w1 = wvec1[[index1]]

f1 = w1/2/Pi

Clear[ww];

beta1 = ((rho Ap ww^2)/(EEp IIp)) /. ww -> w1;

beta1a = p/(EEp IIp);

beta2 = ((rhoA ww^2)/Db) /. ww -> w1;

beta2a = p/Db;

r11 = Sqrt[(-beta1a + Sqrt[beta1a^2 + 4 beta1])/2] // N;

r12 = Sqrt[(beta1a + Sqrt[beta1a^2 + 4 beta1])/2] // N;

r21 = Sqrt[(-beta2a + Sqrt[beta2a^2 + 4 beta2])/2] // N;

r22 = Sqrt[(beta2a + Sqrt[beta2a^2 + 4 beta2])/2] // N;

phi1[x_] =

A1 (Cosh[r11 x] - Cos[r12 x]) + B1 (Sinh[r11 x] - r11/r12 Sin[r12 x]) // N;

phi2[x_] =

A2 Cosh[r21 x] + B2 Sinh[r21 x] + C2 Cos[r22 x] + D2 Sin[r22 x] // N;

phi3[x_] =

A3 Cosh[r11 x] + B3 Sinh[r11 x] + C3 Cos[r12 x] + D3 Sin[r12 x] // N;
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eqn3 = phi1[LL] - phi2[LL] == 0 // N;

eqn4 = phi1’[LL] == 0 // N;

eqn5 = phi2’[LL] == 0 // N;

eqn6 = phi2’[LR] == 0 // N;

eqn7 = phi2[LR] - phi3[LR] == 0 // N;

eqn8 = phi3’[LR] == 0 // N;

eqn9 = phi2[LL] - phi2[LR] == 0 // N;

eqn10 = EEp IIp phi1’’’[LL] + Db phi2’’’[LR] - Db phi2’’’[LL] -

EEp IIp phi3’’’[LR] == 0 // N;

eqn11 = phi3[L] == 0 // N;

eqn12 = phi3’[L] == 0 // N;

eqnvec = {eqn3, eqn4, eqn5, eqn6, eqn7, eqn8, eqn9, eqn10, eqn11, eqn12};

mat = CoefficientArrays[eqnvec, {A1, B1, A2, B2, C2, D2, A3, B3, C3, D3}][[

2]] // N;

matrank = mat;

mateqn = {matrank[[1, All]]};

mattrial = mateqn;

count = 0;

For[ii = 2, ii <= Dimensions[matrank][[1]], ii++,

mattrial = Join[mattrial, {matrank[[ii, All]]}];

If[MatrixRank[mattrial] + count == ii,

mateqn = Join[mateqn, {matrank[[ii, All]]}], {count = count + 1,

mateqn = mateqn}];

]

eqnfrommat = mateqn.{A1, B1, A2, B2, C2, D2, A3, B3, C3, D3};

eqns1 = {eqnfrommat[[1]] == 0, eqnfrommat[[2]] == 0, eqnfrommat[[3]] == 0,

eqnfrommat[[4]] == 0, eqnfrommat[[5]] == 0, eqnfrommat[[6]] == 0,

eqnfrommat[[7]] == 0, eqnfrommat[[8]] == 0, eqnfrommat[[9]] == 0};

sol = Flatten[Solve[eqns1, {B1, A2, B2, C2, D2, A3, B3, C3, D3}]];

coeffB1 = B1 /. sol[[1]];

coeffA2 = A2 /. sol[[2]];

coeffB2 = B2 /. sol[[3]];

coeffC2 = C2 /. sol[[4]];

coeffD2 = D2 /. sol[[5]];

coeffA3 = A3 /. sol[[6]];

coeffB3 = B3 /. sol[[7]];

coeffC3 = C3 /. sol[[8]];

coeffD3 = D3 /. sol[[9]];

phi1[x_] =

phi1[x] /. {B1 -> coeffB1, A2 -> coeffA2, B2 -> coeffB2, C2 -> coeffC2,

D2 -> coeffD2, A3 -> coeffA3, B3 -> coeffB3, C3 -> coeffC3, D3 -> coeffD3};

phi2[x_] =

phi2[x] /. {B1 -> coeffB1, A2 -> coeffA2, B2 -> coeffB2, C2 -> coeffC2,

D2 -> coeffD2, A3 -> coeffA3, B3 -> coeffB3, C3 -> coeffC3, D3 -> coeffD3};

phi3[x_] =

phi3[x] /. {B1 -> coeffB1, A2 -> coeffA2, B2 -> coeffB2, C2 -> coeffC2,

D2 -> coeffD2, A3 -> coeffA3, B3 -> coeffB3, C3 -> coeffC3, D3 -> coeffD3};

phitot[x_] = If[x <= LL, phi1[x], If[x > LL && x <= LR, phi2[x], phi3[x]]];

coeffA1 = A1 /.

Solve[Integrate[rho Ap phitot[x]^2, {x, 0, LL}] +

Integrate[rhoA phitot[x]^2, {x, LL, LR}] +

Integrate[rho Ap phitot[x]^2, {x, LR, L}] == 1, A1][[2]];

(*coeffA1=1;*)

phi1[x_] = phi1[x] /. {A1 -> coeffA1};

phi2[x_] = phi2[x] /. {A1 -> coeffA1};

phi3[x_] = phi3[x] /. {A1 -> coeffA1};

phitot[x_] = phitot[x];
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Plot[phitot[x], {x, 0, L}, Frame -> True,

FrameLabel -> {"Position (m)", "Modeshape"}, ImageSize -> Large,

PlotRange -> All, BaseStyle -> {FontWeight -> "Bold", FontSize -> 20},

PlotStyle -> {Black, Thick}, FrameStyle -> Directive[Thick, Black, Bold],

FrameTicksStyle -> Black, GridLines -> Automatic]

Print["The first natural frequency with the center mass and no axial force \

is: ", f1, " Hz"];

Reduced Order Model and Impact Coefficients

M1 = rho Ap NIntegrate[phi1[x]^2, {x, 0, LL}] +

rhoA NIntegrate[phi2[x]^2, {x, LL, LR}] +

rho Ap NIntegrate[phi3[x]^2, {x, LR, L}];

MZ = rho Ap NIntegrate[phi1[x], {x, 0, LL}] +

rhoA NIntegrate[phi2[x], {x, LL, LR}] +

rho Ap NIntegrate[phi3[x], {x, LR, L}];

KL = EEp IIp NIntegrate[phi1’’[x]^2, {x, 0, LL}] +

Db NIntegrate[phi2’’[x]^2, {x, LL, LR}] +

EEp IIp NIntegrate[phi3’’[x]^2, {x, LR, L}] -

p NIntegrate[phi1’[x]^2, {x, 0, LL}] -

p NIntegrate[phi2’[x]^2, {x, LL, LR}] -

p NIntegrate[phi3’[x]^2, {x, LR, L}];

Define Damping Constant

c = 52;

D1 = c NIntegrate[phi1[x]^2, {x, 0, LL}] +

c NIntegrate[phi2[x]^2, {x, LL, LR}] + c NIntegrate[phi3[x]^2, {x, LR, L}];

sigma = 3.2*^-6;

alpha1 = -phitot[L1]/(2 ep0 S);

alpha2 = (sigma phitot[L1])/ep0;

ci = 5000;

ki = 2000;

define values

freqL = 10*2*\[Pi];

freqH = 60*2*\[Pi];

npoints = (freqH - freqL)/(2 Pi)*1;

stepsize = (freqH - freqL)/npoints;

freq = Range[freqL, freqH, stepsize];

period = (2 \[Pi])/freq;

\[Eta]1 = 0;

\[Eta]2 = 0;

\[Eta]3 = 0;

xx1 = ConstantArray[0, 1000];

xx2 = ConstantArray[0, 1000];

xx3 = ConstantArray[0, 1000];

xx4 = ConstantArray[0, 1000];

xx5 = ConstantArray[0, 1000];

xx6 = ConstantArray[0, 1000];

66



xx7 = ConstantArray[0, 1000];

xx8 = ConstantArray[0, 1000];

xx9 = ConstantArray[0, 1000];

xx10 = ConstantArray[0, 1000];

xx11 = ConstantArray[0, 1000];

xx12 = ConstantArray[0, 1000];

DDq = ConstantArray[0, 1000];

DDxx2 = ConstantArray[0, 1000];

e1 = 1;

e2 = 1;

e3 = 1;

tol1 = 1*^-8;

tol2 = 1*^-6;

tol3 = 1*^-13;

ifbreak = 0;

stable = ConstantArray[Null, {Length[freq], 2}];

unstable = ConstantArray[Null, {Length[freq], 2}];

frequency response

timebeg = AbsoluteTime[];

For[kk = 1, kk <= 1, kk++,

(*kk = 1 is a forward sweep, kk = 2 is a backward sweep*)

If[kk == 1, freq = Range[freqL, freqH, stepsize],

freq = Range[freqH, freqL, -stepsize]];

period = (2 \[Pi])/freq;

For[ii = 1, ii <= Length[freq], ii++,

ifbreak = 0;

If[ii ==

1, {\[Eta]1 = 0, \[Eta]2 = 0, \[Eta]3 =

0}, {\[Eta]1 = \[Eta]1, \[Eta]2 = \[Eta]2, \[Eta]3 = \[Eta]3}];

Print[freq[[ii]]/( 2 \[Pi]) // N];

e1 = 1;

e2 = 1;

e3 = 1;

check1 = 1;

check2 = 1;

check3 = 1;

jj = 1;

While[check1 + check2 + check3 > 0,

Off[General::stop];

eqns = {x1’[t] == x2[t],

x2’[t] ==

Piecewise[{{-1/

M1 (MZ Amp Cos[freq[[ii]] t] + D1 x2[t] + KL x1[t] +

alpha1 x3[t]^2 + alpha2 x3[t]),

x1[t] phitot[L1] < gi}, {-1/

M1 (MZ Amp Cos[freq[[ii]] t] + D1 x2[t] + ci x2[t] + KL x1[t] +
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ki x1[t] - ki gi + alpha1 x3[t]^2 + alpha2 x3[t]),

x1[t] phitot[L1] >= gi}}],

x3’[t] == -x3[t]/(ep0 S R) (Tpdms/epr + d0 - phitot[L1] x1[t]) + (

sigma (d0 - phitot[L1] x1[t]))/(ep0 R),

x4’[t] == x7[t],

x5’[t] == x8[t],

x6’[t] == x9[t],

x7’[t] ==

Piecewise[{{-1/

M1 (D1 x7[t] + KL x4[t] + 2 alpha1 x10[t] x3[t] + alpha2 x10[t]),

x1[t] phitot[L1] < gi}, {-1/

M1 (D1 x7[t] + ci x7[t] + KL x4[t] + ki x4[t] +

2 alpha1 x10[t] x3[t] + alpha2 x10[t]), x1[t] phitot[L1] >= gi}}],

x8’[t] ==

Piecewise[{{-1/

M1 (D1 x8[t] + KL x5[t] + 2 alpha1 x11[t] x3[t] + alpha2 x11[t]),

x1[t] phitot[L1] < gi}, {-1/

M1 (D1 x8[t] + ci x8[t] + KL x5[t] + ki x5[t] +

2 alpha1 x11[t] x3[t] + alpha2 x11[t]), x1[t] phitot[L1] >= gi}}],

x9’[t] ==

Piecewise[{{-1/

M1 (D1 x9[t] + KL x6[t] + 2 alpha1 x12[t] x3[t] + alpha2 x12[t]),

x1[t] phitot[L1] < gi}, {-1/

M1 (D1 x9[t] + ci x9[t] + KL x6[t] + ki x6[t] +

2 alpha1 x12[t] x3[t] + alpha2 x12[t]), x1[t] phitot[L1] >= gi}}],

x10’[t] == (-x10[t] Tpdms)/(ep0 S R epr) - (x10[t] d0)/(ep0 S R) + (

x3[t] phitot[L1] x4[t])/(ep0 S R) + (x10[t] phitot[L1] x1[t])/(

ep0 S R) - (sigma phitot[L1] x4[t])/(ep0 R),

x11’[t] == (-x11[t] Tpdms)/(ep0 S R epr) - (x11[t] d0)/(ep0 S R) + (

x3[t] phitot[L1] x5[t])/(ep0 S R) + (x11[t] phitot[L1] x1[t])/(

ep0 S R) - (sigma phitot[L1] x5[t])/(ep0 R),

x12’[t] == (-x12[t] Tpdms)/(ep0 S R epr) - (x12[t] d0)/(ep0 S R) + (

x3[t] phitot[L1] x6[t])/(ep0 S R) + (x12[t] phitot[L1] x1[t])/(

ep0 S R) - (sigma phitot[L1] x6[t])/(ep0 R)

};

init = {x1[0] == \[Eta]1, x2[0] == \[Eta]2, x3[0] == \[Eta]3, x4[0] == 1,

x5[0] == 0, x6[0] == 0, x7[0] == 0, x8[0] == 1, x9[0] == 0, x10[0] == 0,

x11[0] == 0, x12[0] == 1};

sol = Flatten[

NDSolve[{eqns, init}, {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11,

x12}, {t, period[[ii]]},

Method -> {"DiscontinuityProcessing" -> False}, MaxSteps -> Infinity]];

{tstart, tstop} = Flatten[x1["Domain"] /. sol] // N;

periodcheck = period[[ii]] // N;

If[Not[

periodcheck ===

tstop], {\[Eta]1 = \[Eta]1/4, \[Eta]2 = \[Eta]2/4, \[Eta]3 = \[Eta]3/4,

ifbreak = 1}];

If[ifbreak == 1, Break[]];

X1[t_] = x1[t] /. sol;

X2[t_] = x2[t] /. sol;

X3[t_] = x3[t] /. sol;

X4[t_] = x4[t] /. sol;

X5[t_] = x5[t] /. sol;

X6[t_] = x6[t] /. sol;
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X7[t_] = x7[t] /. sol;

X8[t_] = x8[t] /. sol;

X9[t_] = x9[t] /. sol;

X10[t_] = x10[t] /. sol;

X11[t_] = x11[t] /. sol;

X12[t_] = x12[t] /. sol;

Dq[t_] = D[X3[t], t];

Dxx2[t_] = D[X2[t], t];

For[gg = 1, gg <= 1000, gg++,

xx1[[gg]] = X1[gg/1000 period[[ii]]];

xx2[[gg]] = X2[gg/1000 period[[ii]]];

xx3[[gg]] = X3[gg/1000 period[[ii]]];

xx4[[gg]] = X4[gg/1000 period[[ii]]];

xx5[[gg]] = X5[gg/1000 period[[ii]]];

xx6[[gg]] = X6[gg/1000 period[[ii]]];

xx7[[gg]] = X7[gg/1000 period[[ii]]];

xx8[[gg]] = X8[gg/1000 period[[ii]]];

xx9[[gg]] = X9[gg/1000 period[[ii]]];

xx10[[gg]] = X10[gg/1000 period[[ii]]];

xx11[[gg]] = X11[gg/1000 period[[ii]]];

xx12[[gg]] = X12[gg/1000 period[[ii]]];

DDq[[gg]] = Dq[gg/1000 period[[ii]]];

DDxx2[[gg]] = Dxx2[gg/1000 period[[ii]]];

];

mat1 = ( {

{Last[xx4], Last[xx5], Last[xx6]},

{Last[xx7], Last[xx8], Last[xx9]},

{Last[xx10], Last[xx11], Last[xx12]}

} ) - IdentityMatrix[3];

mat2 = ( {

{\[Eta]1 - Last[xx1]},

{\[Eta]2 - Last[xx2]},

{\[Eta]3 - Last[xx3]}

} );

dev = LinearSolve[mat1, mat2];

e1 = dev[[1, 1]];

e2 = dev[[2, 1]];

e3 = dev[[3, 1]];

If[Abs[e1] > tol1, check1 = 1, check1 = 0];

If[Abs[e2] > tol2, check2 = 1, check2 = 0];

If[Abs[e3] > tol3, check3 = 1, check3 = 0];

\[Eta]1 = \[Eta]1/1 + e1/4;

\[Eta]2 = \[Eta]2/1 + e2/4;

\[Eta]3 = \[Eta]3/1 + e3/4;

jj = jj + 1;

If[jj >= 50, {check1 = 0, check2 = 0, check3 = 0}]

];

If[ifbreak == 0, {

maxval = 0;
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For[qq = 1, qq <= Length[DDq], qq++,

If[R*DDq[[qq]] >= maxval, {maxval = R* DDq[[qq]], tpos = qq}];

];

mandmatrix = ( {

{Last[xx4], Last[xx5], Last[xx6]},

{Last[xx7], Last[xx8], Last[xx9]},

{Last[xx10], Last[xx11], Last[xx12]}

} );

eigs = Abs[Eigenvalues[mandmatrix]];

eig1 = eigs[[1]];

eig2 = eigs[[2]];

eig3 = eigs[[3]];

If[eig1 < 1 && eig2 < 1 && eig3 < 1, stable[[ii, kk]] = maxval,

unstable[[ii, kk]] = maxval];}];

];

If[kk == 1, {stabledata1 = Transpose[{freq/(2 \[Pi]), stable[[All, 1]]}],

unstabledata1 =

Transpose[{freq/(2 \[Pi]), unstable[[All, 1]]}]}, {stabledata2 =

Transpose[{freq/(2 \[Pi]), stable[[All, 2]]}],

unstabledata2 = Transpose[{freq/(2 \[Pi]), unstable[[All, 2]]}]}];

];

(AbsoluteTime[] - timebeg)/60

pforward =

ListLinePlot[{stabledata1},

PlotRange -> {{freqL/(2 \[Pi]), freqH/(2 \[Pi])}, All}, Frame -> True,

FrameLabel -> {"Frequency (Hz)", "Voltage Generated (V)"},

ImageSize -> Large, PlotStyle -> Blue,

FrameStyle -> Directive[Thick, Black, Bold], FrameTicksStyle -> Black,

LabelStyle -> Directive[Bold, Black, FontSize -> 20],

GridLines -> Automatic,

PlotLegends ->

Placed[LineLegend[{Style["simulation", 16]}, Spacings -> 0.15], {0.15,

0.90}]]
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5.1.2 Threshold Shock Sensor Code

Two Part Beam

Buckling Configuration

ClearAll["Global‘*"];

b = 3.7*^-2;

h = 1*^-3;

L = 14*^-2;

L1 = L/2;

rho = 1220;

EE = 2.344*^9;

A = b h;

II = (b h^3)/12;

bm = 0.052;

Lm = 0.037;

hm = 0.0045;

volmass = bm Lm hm;

rhomass = 2700;

M = rhomass volmass*2;

g = 9.81;

psi1[x_] = c1a + c2a x + c3a Cos[\[Lambda] x] + c4a Sin[\[Lambda] x];

psi2[x_] = c1b + c2b x + c3b Cos[\[Lambda] x] + c4b Sin[\[Lambda] x];

eqn1 = psi1[0] == 0;

eqn2 = psi1’[0] == 0;

eqn3 = psi2[L] == 0;

eqn4 = psi2’[L] == 0;

eqn5 = psi1[L1] == psi2[L1];

eqn6 = psi1’[L1] == psi2’[L1];

eqn8 = psi1’’[L1] == psi2’’[L1];

eqn7 = EE II psi1’’’[L1] - EE II psi2’’’[L1] == 0;

mat = CoefficientArrays[{eqn1, eqn2, eqn3, eqn4, eqn5, eqn6, eqn7,

eqn8}, {c1a, c2a, c3a, c4a, c1b, c2b, c3b, c4b}][[2]] // N;

Plot[Det[mat], {\[Lambda], 0, 100}, PlotRange -> {All, {-100, 100}},

ImageSize -> Small]

\[Lambda]zero1 = \[Lambda] /. FindRoot[Det[mat] == 0, {\[Lambda], 50}]

\[Lambda] = \[Lambda]zero1;

matrank = mat;

mateqn = {matrank[[1, All]]};

mattrial = mateqn;

count = 0;

MatrixRank[mat];

For[ii = 2, ii <= Dimensions[matrank][[1]], ii++,

mattrial = Join[mattrial, {matrank[[ii, All]]}];
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If[MatrixRank[mattrial] + count == ii,

mateqn = Join[mateqn, {matrank[[ii, All]]}], {count = count + 1,

mateqn = mateqn}];

]

eqnfrommat = mateqn.{c1a, c2a, c3a, c4a, c1b, c2b, c3b, c4b};

eqns1 = {eqnfrommat[[1]] == 0, eqnfrommat[[2]] == 0, eqnfrommat[[3]] == 0,

eqnfrommat[[4]] == 0, eqnfrommat[[5]] == 0, eqnfrommat[[6]] == 0,

eqnfrommat[[7]] == 0};

sol = Flatten[Solve[eqns1, {c2a, c3a, c4a, c1b, c2b, c3b, c4b}]] // Chop;

C2a = c2a /. sol;

C3a = c3a /. sol;

C4a = c4a /. sol;

C1b = c1b /. sol;

C2b = c2b /. sol;

C3b = c3b /. sol;

C4b = c4b /. sol;

psi1[x_] =

psi1[x] /. {c2a -> C2a, c3a -> C3a, c4a -> C4a, c1b -> C1b, c2b -> C2b,

c3b -> C3b, c4b -> C4b};

psi2[x_] =

psi2[x] /. {c2a -> C2a, c3a -> C3a, c4a -> C4a, c1b -> C1b, c2b -> C2b,

c3b -> C3b, c4b -> C4b};

psi1keep[x_] = psi1[x];

psi2keep[x_] = psi2[x];

psitot[x_] = If[x <= L1, psi1[x], psi2[x]];

pcrit = 4 Pi^2 EE II 1/L^2;

pvecnum = 1;

pvec = ConstantArray[0, pvecnum];

wvec = ConstantArray[0, pvecnum];

bottomvec = {};

middlevec = {};

topvec = {};

stableequil = ConstantArray[Null, {3, Length[pvec]}];

unstableequil = ConstantArray[Null, {3, Length[pvec]}];

stableconfig = stableequil;

unstableconfig = unstableequil;

Define axial force

p = pcrit*1.25;

p = 50;

p = 35;

jj = 1;
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Clear[w];

psi1[x_] = psi1keep[x];

psi2[x_] = psi2keep[x];

C1a = c1a /.

Solve[\[Sqrt](p/(EE II) - A/(2 L II) Integrate[psi1’[x]^2, {x, 0, L1}] -

A/(2 L II) Integrate[psi2’[x]^2, {x, L1, L}]) == \[Lambda]zero1,

c1a][[2]];

psi1[x_] = psi1[x] /. {c1a -> C1a};

psi2[x_] = psi2[x] /. {c1a -> C1a};

psitot[x_] = If[x <= L1, psi1[x], psi2[x]];

Plot[psitot[x], {x, 0, L}];

alpha = \[Lambda]zero1^2;

beta = (rho A w^2)/(EE II);

s1 = Sqrt[(-alpha + Sqrt[alpha^2 + 4 beta])/2];

s2 = Sqrt[(alpha + Sqrt[alpha^2 + 4 beta])/2];

phi1[x_] =

A11 Sinh[s1 x] + B11 Cosh[s1 x] + C11 Sin[s2 x] + D11 Cos[s2 x] +

E11 psi1’’[x];

phi2[x_] =

A22 Sinh[s1 x] + B22 Cosh[s1 x] + C22 Sin[s2 x] + D22 Cos[s2 x] +

E22 psi2’’[x];

meqn1 = phi1[0] == 0;

meqn2 = phi1’[0] == 0;

meqn3 = phi2[L] == 0;

meqn4 = phi2’[L] == 0;

meqn5 = phi1[L1] == phi2[L1];

meqn6 = phi1’[L1] == phi2’[L1];

meqn7 = phi1’’[L1] == phi2’’[L1];

meqn8 = -w^2 M phi1[L1] - EE II phi1’’’[L1] + EE II phi2’’’[L1] == 0;

meqn9 = E11 (beta + A/(L II) Integrate[psi1’[x]*psi1’’’[x], {x, 0, L1}]) +

E22 A/(L II) Integrate[psi2’[x]*psi2’’’[x], {x, L1, L}] +

A/(L II) Integrate[

psi1’[x]*D[

A11 Sinh[s1 x] + B11 Cosh[s1 x] + C11 Sin[s2 x] + D11 Cos[s2 x], {x,

1}], {x, 0, L1}] +

A/(L II) Integrate[

psi2’[x]*D[

A22 Sinh[s1 x] + B22 Cosh[s1 x] + C22 Sin[s2 x] + D22 Cos[s2 x], {x,

1}], {x, L1, L}] == 0;

meqn10 = E22 (beta + A/(L II) Integrate[psi2’[x]*psi2’’’[x], {x, L1, L}]) +

E11 A/(L II) Integrate[psi1’[x]*psi1’’’[x], {x, 0, L1}] +

A/(L II) Integrate[

psi1’[x]*D[

A11 Sinh[s1 x] + B11 Cosh[s1 x] + C11 Sin[s2 x] + D11 Cos[s2 x], {x,

1}], {x, 0, L1}] +

A/(L II) Integrate[

psi2’[x]*D[

A22 Sinh[s1 x] + B22 Cosh[s1 x] + C22 Sin[s2 x] + D22 Cos[s2 x], {x,

1}], {x, L1, L}] == 0;

mat = CoefficientArrays[{meqn1, meqn2, meqn3, meqn4, meqn5, meqn6, meqn7,

meqn8, meqn9, meqn10}, {A11, B11, C11, D11, E11, A22, B22, C22, D22,

E22}][[2]];
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limititeration = 3;

numpts = 1000;

numptsbase = 1000;

For[iii = 1, iii <= limititeration, iii++,

If[iii == 1,

matdisc = ConstantArray[0, numpts];

wvecdisc = ConstantArray[0, numpts];

For[qq = 1, qq <= Length[matdisc], qq++,

matdisc[[qq]] = Det[Normal[mat] /. w -> ((300 qq)/numpts)];

If[matdisc[[qq]] > 0, matdisc[[qq]] = 1, matdisc[[qq]] = -1];

wvecdisc[[qq]] = (300 qq)/numpts;

];

index = {};

For[kk = 1, kk < Length[matdisc], kk++,

If[Sign[matdisc[[kk]]*matdisc[[kk + 1]]] == -1, {index =

Append[index, kk]}]

];

wapprox = wvecdisc[[index]][[1]] // N;

,

numpts = numpts + numptsbase;

matdisc = ConstantArray[0, numpts];

wvecdisc = ConstantArray[0, numpts];

For[qq = 1, qq <= Length[matdisc], qq++,

matdisc[[qq]] =

Det[Normal[mat] /. w -> ((wapprox*0.05 qq)/numpts) + wapprox*0.975];

If[matdisc[[qq]] > 0, matdisc[[qq]] = 1, matdisc[[qq]] = -1];

wvecdisc[[qq]] = ((wapprox*0.05 qq)/numpts) + wapprox*0.975;

];

index = {};

For[kk = 1, kk < Length[matdisc], kk++,

If[Sign[matdisc[[kk]]*matdisc[[kk + 1]]] == -1, {index =

Append[index, kk]}]

];

wapprox = wvecdisc[[index]][[1]];

];

];

wactual = wapprox;

Print["wactual: ", wactual];

wvec[[jj]] = wactual;
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w = wactual;

alpha = \[Lambda]zero1^2;

beta = (rho A w^2)/(EE II);

s1 = Sqrt[(-alpha + Sqrt[alpha^2 + 4 beta])/2];

s2 = Sqrt[(alpha + Sqrt[alpha^2 + 4 beta])/2];

phi1[x_] =

A11 Sinh[s1 x] + B11 Cosh[s1 x] + C11 Sin[s2 x] + D11 Cos[s2 x] +

E11 psi1’’[x];

phi2[x_] =

A22 Sinh[s1 x] + B22 Cosh[s1 x] + C22 Sin[s2 x] + D22 Cos[s2 x] +

E22 psi2’’[x];

meqn1 = phi1[0] == 0;

meqn2 = phi1’[0] == 0;

meqn3 = phi2[L] == 0;

meqn4 = phi2’[L] == 0;

meqn5 = phi1[L1] == phi2[L1];

meqn6 = phi1’[L1] == phi2’[L1];

meqn7 = phi1’’[L1] == phi2’’[L1];

meqn8 = -w^2 M phi1[L1] - EE II phi1’’’[L1] + EE II phi2’’’[L1] == 0;

meqn9 = E11 (beta + A/(L II) Integrate[psi1’[x]*psi1’’’[x], {x, 0, L1}]) +

E22 A/(L II) Integrate[psi2’[x]*psi2’’’[x], {x, L1, L}] +

A/(L II) Integrate[

psi1’[x]*D[

A11 Sinh[s1 x] + B11 Cosh[s1 x] + C11 Sin[s2 x] + D11 Cos[s2 x], {x,

1}], {x, 0, L1}] +

A/(L II) Integrate[

psi2’[x]*D[

A22 Sinh[s1 x] + B22 Cosh[s1 x] + C22 Sin[s2 x] + D22 Cos[s2 x], {x,

1}], {x, L1, L}] == 0;

meqn10 = E22 (beta + A/(L II) Integrate[psi2’[x]*psi2’’’[x], {x, L1, L}]) +

E11 A/(L II) Integrate[psi1’[x]*psi1’’’[x], {x, 0, L1}] +

A/(L II) Integrate[

psi1’[x]*

D[A11 Sinh[s1 x] + B11 Cosh[s1 x] + C11 Sin[s2 x] + D11 Cos[s2 x], {x,

1}], {x, 0, L1}] +

A/(L II) Integrate[

psi2’[x]*D[

A22 Sinh[s1 x] + B22 Cosh[s1 x] + C22 Sin[s2 x] + D22 Cos[s2 x], {x,

1}], {x, L1, L}] == 0;

mat = CoefficientArrays[{meqn1, meqn2, meqn3, meqn4, meqn5, meqn6, meqn7,

meqn8, meqn9, meqn10}, {A11, B11, C11, D11, E11, A22, B22, C22, D22,

E22}][[2]];

MatrixRank[mat];

matrank = mat;

mateqn = {matrank[[1, All]]};

mattrial = mateqn;

count = 0;

For[ii = 2, ii <= Dimensions[matrank][[1]], ii++,

mattrial = Join[mattrial, {matrank[[ii, All]]}];

If[MatrixRank[mattrial] + count == ii,

mateqn = Join[mateqn, {matrank[[ii, All]]}], {count = count + 1,

mateqn = mateqn}];

];

eqnfrommat = mateqn.{A11, B11, C11, D11, E11, A22, B22, C22, D22, E22};

eqns1 = {eqnfrommat[[1]] == 0, eqnfrommat[[2]] == 0, eqnfrommat[[3]] == 0,

eqnfrommat[[4]] == 0, eqnfrommat[[5]] == 0, eqnfrommat[[6]] == 0,

eqnfrommat[[7]] == 0, eqnfrommat[[8]], eqnfrommat[[9]]};

sol = Flatten[NSolve[eqns1, {B11, C11, D11, E11, A22, B22, C22, D22, E22}]] //
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Chop;

B11a = B11 /. sol;

C11a = C11 /. sol;

D11a = D11 /. sol;

E11a = E11 /. sol;

A22a = A22 /. sol;

B22a = B22 /. sol;

C22a = C22 /. sol;

D22a = D22 /. sol;

E22a = E22 /. sol;

phi1[x_] =

phi1[x] /. {B11 -> B11a, C11 -> C11a, D11 -> D11a, E11 -> E11a, A22 -> A22a,

B22 -> B22a, C22 -> C22a, D22 -> D22a, E22 -> E22a};

phi2[x_] =

phi2[x] /. {B11 -> B11a, C11 -> C11a, D11 -> D11a, E11 -> E11a, A22 -> A22a,

B22 -> B22a, C22 -> C22a, D22 -> D22a, E22 -> E22a};

phitot[x_] = If[x <= L1, phi1[x], phi2[x]];

A11a = -1;

phi1[x_] = phi1[x] /. A11 -> A11a;

phi2[x_] = phi2[x] /. A11 -> A11a;

phitot[x_] = If[x <= L1, phi1[x], phi2[x]];

Plot[phitot[x], {x, 0, L}];

M1 = rho A NIntegrate[phi1[x]^2, {x, 0, L1}] +

rho A NIntegrate[phi2[x]^2, {x, L1, L}] + M phi1[L1]^2;

MZ = rho A NIntegrate[phi1[x], {x, 0, L1}] +

rho A NIntegrate[phi2[x], {x, L1, L}] + M phi1[L1];

KL = EE II NIntegrate[phitot’’[x]^2, {x, 0, L}] -

p NIntegrate[phitot’[x]^2, {x, 0, L}] +

(EE A)/L NIntegrate[psitot’[x] phitot’[x], {x, 0, L}] NIntegrate[

psitot’[x] phitot’[x], {x, 0, L}] +

(EE A)/(2 L)

NIntegrate[psitot’[x]^2, {x, 0, L}] NIntegrate[

phitot’[x] phitot’[x], {x, 0, L}];

KQ = (EE A)/(2 L)

NIntegrate[phitot’[x] phitot’[x], {x, 0, L}] NIntegrate[

psitot’[x] phitot’[x], {x, 0, L}] + (EE A)/

L NIntegrate[psitot’[x] phitot’[x], {x, 0, L}] NIntegrate[

phitot’[x] phitot’[x], {x, 0, L}];

KQ1 = (3 EE A)/(2 L)

NIntegrate[phitot’[x] phitot’[x], {x, 0, L}] NIntegrate[

psitot’[x] phitot’[x], {x, 0, L}];

KC = (EE A)/(2 L)

NIntegrate[phitot’[x] phitot’[x], {x, 0, L}] NIntegrate[
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phitot’[x] phitot’[x], {x, 0, L}];

solequil = Flatten[NSolve[KL x + KQ x^2 + KC x^3 == 0, x]];

botsol = x /. solequil[[1]] // Chop;

midsol = x /. solequil[[2]] // Chop;

topsol = x /. solequil[[3]] // Chop;

bottom = psitot[L1] + phitot[L1]*botsol;

middle = psitot[L1] + phitot[L1]*midsol;

top = psitot[L1] + phitot[L1]*topsol;

Print["bottom: ", bottom];

Print["middle: ", middle];

Print["top: ", top];

AppendTo[bottomvec, bottom];

AppendTo[middlevec, middle];

AppendTo[topvec, top];

equilvec = {botsol, midsol, topsol};

soljacobianvec = ConstantArray[0, Length[solequil]];

For[iii = 1, iii <= Length[solequil], iii++,

jacobian = ( {

{-\[Lambda]1, 1},

{-KL/M1 - (2 KQ)/M1 xx1 - (3 KC)/M1 xx1^2, -\[Lambda]1}

} ) /. xx1 -> equilvec[[iii]];

soljacobian = Flatten[Solve[Det[jacobian] == 0, \[Lambda]1]] // Simplify;

soljacobianvec[[iii]] = Flatten[soljacobian];

lambdavec = {};

For[jjj = 1, jjj <= Length[soljacobianvec[[iii]]], jjj++,

AppendTo[lambdavec, \[Lambda]1 /. soljacobianvec[[iii, jjj]]];

];

stablecheck = 0;

For[jjj = 1, jjj <= Length[lambdavec], jjj++,

If[Im[lambdavec[[jjj]]] != 0, stablecheck = stablecheck + 1];

];

If[stablecheck == 2, {stableequil[[iii, jj]] = equilvec[[iii]],

stableconfig[[iii, jj]] =

psitot[L1] + phitot[L1]*stableequil[[iii, jj]]}, {unstableequil[[iii,

jj]] = equilvec[[iii]],

unstableconfig[[iii, jj]] =

psitot[L1] + phitot[L1]*unstableequil[[iii, jj]]}];

];

botapprox[x_] = psitot[x] + phitot[x] * botsol;

midapprox[x_] = psitot[x] + phitot[x] * midsol;

topapprox[x_] = psitot[x] + phitot[x] * topsol;

Plot[{botapprox[x], midapprox[x], topapprox[x], -psitot[x], 0, psitot[x]}, {x,

0, L}, PlotStyle -> {{Blue, Dashed}, {Red, Dashed}, {Green, Dashed}, Blue,

Red, Green}, ImageSize -> Large, Frame -> True,
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FrameStyle -> Directive[Thick, Black, Bold], GridLines -> Automatic,

FrameTicksStyle -> Black, FrameLabel -> {"Position (m)", "Beam Profile (m)"},

LabelStyle -> Directive[Bold, Black, FontSize -> 18],

PlotLegends ->

Placed[LineLegend[{Style["bot approx", 11], Style["mid approx", 11],

Style["top approx", 11], Style["bot exact", 11], Style["mid exact", 11],

Style["top exact", 11]}, Spacings -> 0.15], {0.13, 0.83}]]

g = 9.81;

amp = 4.56;

f = 38;

tbeg = 0.78;

tfinal = 1;

c = 95;

D1 = c NIntegrate[phi1[x]^2, {x, 0, L1}] + c NIntegrate[phi2[x]^2, {x, L1, L}];

ep0 = 8.85*^-12;

epr = 2.5;

S = Lm*bm;

sigma = 125*^-7;

R = 10*^6;

di = psitot[L1];

T = 320*^-6;

gi = botapprox[L1] - 10*^-6;

ki = 30000;

ci = 3000;

base[t_] =

Piecewise[{{0, t > 0 && t < tbeg}, {amp*g*Sin[f 2 Pi (t - tbeg)],

t >= tbeg && t <= tbeg + 1/f 1/2}, {0, t > tbeg + 1/f 1/2}}];

diffeq = M1 u’’[t] + MZ base[t] + KL u[t] + KQ u[t]^2 + KC u[t]^3 + D1 u’[t] +

phi1[L1]/(2 ep0 S) q[t]^2 - (sigma phi1[L1])/ep0 q[t];

diffeqimpact =

M1 u’’[t] + MZ base[t] + ci u’[t] + ki u[t] + ki gi + KQ gi^2 + KC gi^3 +

phi1[L1]/(2 ep0 S) q[t]^2 - (sigma phi1[L1])/ep0 q[t];

diffeqelectrical =

q’[t] + 1/(ep0 R S) (T/epr + di + psitot[L1] + phi1[L1] u[t]) q[t] - (

sigma (di + psitot[L1] + phi1[L1] u[t]))/(ep0 R) == 0;

diffeqtotal =
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Piecewise[{{diffeq, psi1[L1] + phi1[L1] u[t] > gi}, {diffeqimpact,

psi1[L1] + phi1[L1] u[t] <= gi}}] == 0;

ndsol = Flatten[

NDSolve[{diffeqtotal, diffeqelectrical, u[0] == 0, u’[0] == 0,

q[0] == 0.0000}, {u[t], q[t]}, {t, 0, tfinal},

InterpolationOrder -> All]];

U[t_] = u[t] /. ndsol;

Q[t_] = q[t] /. ndsol;

Plot[{U[t]*phi1[L1] + psi1[L1], botapprox[L1]*1}, {t, 0, tfinal},

PlotRange -> {{0, tfinal}, {botapprox[L1]*1.1, topapprox[L1]*1.1}},

ImageSize -> Large, Frame -> True,

FrameStyle -> Directive[Thick, Black, Bold], FrameTicksStyle -> Black,

FrameLabel -> {"Time (s)", "Beam Midspan Deflection (m)"},

PlotLabel -> "Buckled Beam Under Shock",

LabelStyle -> Directive[Bold, Black, FontSize -> 14]]

Plot[U’[t]*phi1[L1], {t, 0, tfinal}, PlotRange -> {{0, tfinal}, All},

ImageSize -> Large, Frame -> True,

FrameStyle -> Directive[Thick, Black, Bold], FrameTicksStyle -> Black,

FrameLabel -> {"Time (s)", "Beam Midspan Velocity (m/s)"},

PlotLabel -> "Buckled Beam Under Shock",

LabelStyle -> Directive[Bold, Black, FontSize -> 14]]

Plot[Q’[t] R, {t, 0, tfinal}, PlotRange -> {{0, tfinal}, {-50, 50}},

ImageSize -> Large, Frame -> True,

FrameStyle -> Directive[Thick, Black, Bold], FrameTicksStyle -> Black,

FrameLabel -> {"Time (s)", "Voltage Generated (V)"},

PlotLabel -> "Buckled Beam Under Shock",

LabelStyle -> Directive[Bold, Black, FontSize -> 14], GridLines -> Automatic]

(*voltdata=Import["tek0016.mat"];

voltdata=Import["tek0014.mat"];

voltdata=Import["tek0024.mat"];

voltdata=Import["tek0032.mat"];*)

SetDirectory[NotebookDirectory[]]

voltdata = Import["tek0032.mat"];

timevolt = voltdata[[1, All, 1]];

volt = voltdata[[2, All, 1]];

plotexpvoltg2 =

ListLinePlot[Transpose[{timevolt, volt}], PlotRange -> {All, {-50, 50}},

PlotStyle -> Red, ImageSize -> Large, Frame -> True,

FrameStyle -> Directive[Thick, Black, Bold], FrameTicksStyle -> Black,

FrameLabel -> {"Time (s)", "Voltage Generated (V)"},

LabelStyle -> Directive[Bold, Black, FontSize -> 20],

GridLines -> Automatic]
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(*acceldata=Import["accel2p95.mat"];

acceldata=Import["accel3p26.mat"];

acceldata=Import["accel3p88.mat"];

acceldata=Import["accel4p56.mat"];*)

acceldata = Import["accel4p56.mat"];

timeaccel = acceldata[[2, All, 1]];

accel = acceldata[[1, All, 1]];

plotaccel =

ListLinePlot[Transpose[{timeaccel, accel}], PlotRange -> {All, {-8, 8}},

PlotStyle -> Red, ImageSize -> Large, Frame -> True,

FrameStyle -> Directive[Thick, Black, Bold], FrameTicksStyle -> Black,

FrameLabel -> {"Time (s)", "Base Acceleration (g)"},

LabelStyle -> Directive[Bold, Black, FontSize -> 20],

GridLines -> Automatic]

plotsimvoltg2 =

Plot[Q’[t] R, {t, 0, tfinal}, PlotRange -> {{0, tfinal}, {-50, 50}},

ImageSize -> Large, Frame -> True,

FrameStyle -> Directive[Thick, Black, Bold], FrameTicksStyle -> Black,

FrameLabel -> {"Time (s)", "Voltage Generated (V)"},

LabelStyle -> Directive[Bold, Black, FontSize -> 20], PlotStyle -> Blue,

GridLines -> Automatic]

Show[plotsimvoltg2, plotexpvoltg2]

accelvsvolt = Import["accelvsvolt.mat"];

accelvoltdata =

Transpose[{accelvsvolt[[1, 1, All]], accelvsvolt[[2, 1, All]]}];

ListPlot[accelvoltdata, PlotRange -> {All, All}, PlotStyle -> Black,

ImageSize -> Large, Frame -> True,

FrameStyle -> Directive[Thick, Black, Bold], FrameTicksStyle -> Black,

FrameLabel -> {"Base Acceleration (g)", "Voltage Generated (V)"},

LabelStyle -> Directive[Bold, Black, FontSize -> 18], GridLines -> Automatic,

PlotMarkers -> {Automatic, 15}]

posZoomIn =

Plot[{(U[t]*phi1[L1] + psi1[L1])*1000, botapprox[L1]*1000}, {t, 0, tfinal},

PlotRange -> {{0.7, 0.9}, {-2, 2}}, ImageSize -> Large,

Frame -> {True, True, True, False},

FrameStyle -> {{Thick, Automatic}, {Thick, Blue}, {Thick,

Automatic}, {Thick, Automatic}},

FrameLabel -> {"Time (s)", "Beam Midspan Deflection (mm)"},

LabelStyle -> Directive[Bold, Black, FontSize -> 18], ImagePadding -> 70,

PlotStyle -> {Blue, Green}, GridLines -> Automatic];

velZoomIn =

Plot[{(U’[t]*phi1[L1] + psi1[L1])*1000}, {t, 0, tfinal},

PlotRange -> {{0.7, 0.9}, All}, ImageSize -> Large,

Frame -> {False, False, False, True},

FrameTicks -> {{None, All}, {None, None}},

FrameStyle -> {{Thick, Automatic}, {Thick, Automatic}, {Thick,

Automatic}, {Thick, Red}},

FrameLabel -> {{None, "Beam Midspan Velocity (mm/s)"}, {None, None}},

LabelStyle -> Directive[Bold, Black, FontSize -> 18], ImagePadding -> 70,

PlotStyle -> {Red}, Axes -> True, GridLines -> Automatic];

Overlay[{posZoomIn, velZoomIn}]
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SetDirectory[NotebookDirectory[]]

(*Export["pos_vel_zoom_in.eps",Overlay[{posZoomIn,velZoomIn}]]*)

chargeZoomIn =

Plot[{Q[t]*1*^9}, {t, 0, tfinal}, PlotRange -> {{0.75, 0.85}, All},

ImageSize -> Large, Frame -> {True, True, True, False},

FrameStyle -> {{Thick, Automatic}, {Thick, Blue}, {Thick,

Automatic}, {Thick, Automatic}},

FrameLabel -> {"Time (s)", "Charge transferred (GC)"},

LabelStyle -> Directive[Bold, Black, FontSize -> 18], ImagePadding -> 70,

PlotStyle -> {Blue}, GridLines -> Automatic];

voltZoomIn =

Plot[{Q’[t] R}, {t, 0, tfinal}, PlotRange -> {{0.75, 0.85}, {-50, 20}},

ImageSize -> Large, Frame -> {False, False, False, True},

FrameTicks -> {{None, All}, {None, None}},

FrameStyle -> {{Thick, Automatic}, {Thick, Automatic}, {Thick,

Automatic}, {Thick, Red}},

FrameLabel -> {{None, "Voltage (V)"}, {None, None}},

LabelStyle -> Directive[Bold, Black, FontSize -> 18], ImagePadding -> 70,

PlotStyle -> {Red}, Axes -> True, GridLines -> Automatic];

Overlay[{chargeZoomIn, voltZoomIn}]

(*Export["charge_volt_zoom_in.eps",Overlay[{chargeZoomIn,voltZoomIn}]]*)
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