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ABSTRACT

Reverse total shoulder arthroplasty was developed to restore range of motion 

(ROM) and joint stability to patients with pre-operative conditions that are not addressed 

by conventional replacements. Although reverse total shoulder arthroplasty is the current 

gold standard for treating a range of indications, the effects of varying its design on 

functional outcomes of the procedure are still not well understood.  

To that end, it is not yet clear which configurations, in terms of both design and 

surgical placement parameters, maximize range of motion and stability of the joint. It was 

hypothesized that there is trade-off between the two. These types of relationships may be 

elucidated using multi-objective design optimization to generate a Pareto front. Pareto 

optimal points represent those where neither performance metric can be further improved 

without detriment to the other. 

Multi-objective optimization requires 1) metrics to characterize the objectives to be 

optimized and 2) an automated computational framework capable of assessing the metrics 

for any candidate implant design. As such, the pre-cursory goals to performing multi-

objective optimization involved the development, validation, and automation of 

computational tools to predict the performance of reverse should designs with respect to 

range of motion and joint stability. 

Characterization of the Pareto front with multi-objective optimization confirmed 

that there is in fact a trade-off between range of motion and stability. Designs that maximize 

one functional outcome differ from those that maximize the other. Designs that resulted in 



 

 

vii 

 

intermediate performance in terms of both objectives were variable. This indicates that 

functional factors other than range of motion and stability, such as mechanical implant 

stability (fixation) and avoidance of inferior impingement, could serve as deciding factors 

between implant configurations that achieve similar range of motion and stability results.  
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Chapter 1. Introduction

1.1 Motivation 

The number of primary shoulder replacement procedures, of which there are several 

types, performed in the United States rose by an estimated 169% between 2002 and 2011, 

from 24,677 to 66,4851. Of those performed in 2011, 33% were a type of shoulder 

replacement known as reverse total shoulder arthroplasty (rTSA)1,2, which was developed 

to address pre-operative conditions that contributed to poor outcomes with the use of 

conventional total shoulder arthroplasty (TSA) and hemiarthroplasty (HA). 

The ball-and-socket joint between the humeral head and glenoid on the scapula has 

the largest range of motion (ROM) of any joint in the body, owing to the lack of osseous 

constraint provided by a shallow socket depth. As such, both motion and stability of the 

joint are provided mainly by soft tissues spanning the joint. A group of four muscles, 

known collectively as the rotator cuff, is responsible for stabilizing the joint in the presence 

of torque-generating forces via what is known as the concavity-compression mechanism3–

5. Forces resulting from muscle action to initiate motion, that would otherwise dislocate 

the joint, are opposed by forces of the rotator cuff, providing a fixed fulcrum for joint 

rotation. Rotator cuff deficiency presents a challenge in replacing the shoulder with TSA 

or HA, as the pre-operative disruption of the concavity-compression mechanism, leading 

to instability of the joint, is not inherently addressed by using components that replicate 

natural anatomy. Thus, the concept of reversing joint anatomy with rTSA was developed 
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in the late 1980’s by Paul Grammont to address the need for an implant that could be used 

to treat indications involving rotator cuff deficiencies, which gained FDA approval in 

20031,6–9. 

The leading indication for shoulder replacement is osteoarthritis (OA), which 

involves degeneration of the articular cartilage, causing pain during joint motion. Of all 

primary shoulder replacements performed in 2011, 71% were indicated by OA2. There are 

several indications involving rotator cuff deficiencies that are specific to rTSA. The loss of 

a fixed fulcrum results in migration of the humeral head within the glenoid during motion, 

which eventually leads to a condition known as cuff tear arthropathy (CTA). CTA is a type 

of arthritis that involves the abnormal wear of articular cartilage due to altered joint 

biomechanics in the presence of the rotator cuff deficiency. As such, the main indications 

for rTSA are massive, irreparable cuff tears, with and without OA, and CTA. Together, 

they accounted for 82.3% of procedures performed in 2010 and 201110.  

As with any other joint replacement, two of the primary goals of rTSA are to relieve 

pain and restore ROM to the joint. The functional success of rTSA is partially gauged using 

the Constant-Murley score, a 100 point scale comprised of subdivisions related to pain, 

ability to perform activities of daily living (ADL), strength, and ROM. Pain and ability to 

perform ADL are patient reported outcome measures, while strength and ROM are assessed 

clinically. Favard et al.11 reported a significant improvement in Constant-Murley scores 

after rTSA for 148 shoulders with average pre- and post-operative scores of 23.9 ± 9.9 and 

61.5 ± 16.9, respectively, where the minimum follow-up was five years. The relative 

improvements in terms of functional category in the order of most improved to least were: 

pain, ADL, ROM, and strength. This was the largest multi-center study as of 201212. 
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Another study reported that improvements in the Constant-Murley score may be related to 

indication, where average improvements were 41 and 49.8 points in groups presenting with 

CTA and irreparable rotator cuff tears (without arthritis), respectively13. The reported 

increases in Constant-Murley score following rTSA are indicative of the efficacy of the 

procedure, especially in relieving pain. However, further improvements in categories such 

as ROM and strength could contribute to higher success and patient satisfaction rates. 

Due to the nature of the most common indications, rTSA may also be required to 

mitigate the lack of pre-operative joint stability, a factor that is not accounted for in the 

assessment of the Constant-Murley score. According to a study that reviewed 782 rTSAs, 

persistent instability following the procedure was the most common complication requiring 

revision of the prosthesis, with a rate of 4.7%, followed by infection and aseptic loosening 

of implant components from the bone14. A review by Cheung et al.15 reported instability 

rates between 2.4% and 31%, citing that the causes are both directly and indirectly related 

to implant design. 

The selection of implant design and surgical placement parameters of rTSA play a 

key role in the performance of rTSA as it relates to functional outcomes, namely ROM and 

stability of the joint. The ROM that can be restored is a function of both passive and active 

factors. Passively, impingement between the humeral and scapular sides of the joint, 

whether implant-bone or bone-bone, can limit ROM. Actively, the ROM depends on 

biomechanical changes affecting muscle action, which are imparted by reversing the 

anatomy of the joint. Muscle action is also related to the stability of the joint, as it can result 

in joint contact forces (JCFs) that dislocate the joint or provide little resistance to external 

forces with the potential to initiate dislocation. The amount of force required to initiate 
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dislocation is partially dependent on the intrinsic stability provided by the geometry of the 

implant. Many studies have elucidated relationships between implant design, surgical 

parameters, and factors that affect functional outcomes of rTSA, however, the common 

limitations of these studies include: discrete sets of implant parameters, analysis of a subset 

of factors affecting functional outcomes, and analysis of a subset of motions, neglecting 

the broad ROM of the shoulder. It is likely that there exists a trade-off between ROM and 

stability of rTSA. Increasing constraint of the joint can be achieved by altering parameters 

such as humeral cup depth (Figure 1.1). However, it is likely that this comes at the cost of 

decreasing ROM, as the impingement-free range is decreased16. This trade-off has yet to 

be characterized, and the combinations of implant and surgical parameters that maximize 

ROM and stability, evaluated based on passive and active factors, following rTSA has yet 

to be determined.  

 
Figure 1.1. Functional outcomes of rTSA, such as stability, can be improved via the 

selection of implant design parameters, for example, increased humeral cup depth, but this 

likely comes at the cost of comprising other functional outcomes like ROM. Note: left 

image adapted from [17] and right image adapted from Journal of Shoulder and Elbow 

Surgery, 14(1 Suppl), Boileau P, Watkinson DJ, Hatzidakis AM, Balg F, Grammont 

reverse prosthesis: design, rationale, and biomechanics, 147S-161S, © 2005, with 

permission from Elsevier. 
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Given the efficacy of rTSA in treating conditions for which no other options are yet 

available, the expansion of the list of indications for the procedure, and the rise in the 

number of rTSAs implanted per year, an increased understanding of the effect of implant 

design and surgical placement on the functional outcomes of the procedure could serve as 

a basis for improved success rates and patient-satisfaction. 

1.2 Objective 

The objective of this research is to characterize trade-offs between ROM and stability 

of rTSA using multi-objective design optimization to define a Pareto curve, where moving 

along the curve to improve one outcome comes at a detriment to the other. Multi-objective 

optimization (MOO) requires objective functions to characterize the outcomes that are to 

be optimized in the context of selected design parameters. In the case of optimizing ROM 

and stability of rTSA, this necessitates 1) the development of metrics representing the 

performance of a given implant configuration and 2) the development and validation of 

computational (numerical) methods capable of evaluating the metrics, as they cannot be 

determined by direct, analytical evaluation. As such, several research objectives serve as 

predecessors to the final goal of MOO: 

1. Development and validation of computational methods capable of evaluating 

factors affecting ROM and stability of rTSA 

2. Development of a single, comprehensive metric to characterize ROM 

a. Implementation of computational methods to evaluate ROM in calculation 

of developed metric 
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b. Small-scale sensitivity analysis investigating the effects of varying a subset 

of implant parameters on the developed metric 

3. Single objective optimization of ROM 

a. Selection and parameterization of included design and surgical parameters 

b. Compilation of computational tools for evaluating ROM into an automated 

pipeline capable of evaluating developed ROM metric given an implant 

configuration 

c. Optimization of ROM of rTSA for different motion envelopes 

(comprehensive ROM vs those most commonly performed in ADL) 

4. MOO considering ROM and stability 

a. Development of an additional metric to characterize functional stability of 

rTSA 

b. Quantification of trade-offs between ROM and stability 

1.3 Hypotheses 

 Based on the existing body of work relating to the effect of implant design and 

placement on ROM and stability of rTSA, it is hypothesized that there exists a trade-off 

between the two functional outcomes. Increasing ROM likely depends on sacrificing 

stability of the joint, and vice versa.  

 Additionally, it is hypothesized that there exists a trade-off between maximizing 

certain envelopes (i.e. forward or backward reaching motions) versus the comprehensive 

ROM. In other words, the implant configuration that maximizes the comprehensive ROM 

versus those motions most likely to be performed in ADL are not one in the same. 
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1.4 Contribution 

To the best of the author’s knowledge, this research is the first to utilize MOO 

techniques to maximize functional outcomes of rTSA (ROM and stability) and characterize 

trade-offs between the two. Furthermore, the effects of multiple passive and active factors 

throughout the comprehensive ROM of the joint have not been considered simultaneously 

before. Understanding the effects of implant design and surgical parameters as they relate 

to the trade-off between ROM and stability could play a vital role in informing clinical 

decisions related to maximizing one, or both, outcomes of the surgery. Due to the complex 

and variable nature of indications of rTSA, patient-specific needs are consequently also 

variable. Some patients may require rTSA to provide stability in lieu of ROM, while others 

may benefit from a design that provides a balance of both. Access to information regarding 

functional trade-offs could provide surgeons with necessary insight into which implant 

configurations would best suit their patients’ needs. Additionally, values of design 

parameters of optimized designs could help determine whether or not commercially 

available implant systems are providing enough configuration options to allow 

maximization of surgical outcomes. 

Single objective optimization of various envelopes of motion will aid in elucidating 

whether or not there are trade-offs between maximizing certain post-operative motions of 

the shoulder. rTSA has been shown to restore limited amounts of certain motions8,18–21, and 

this research will help to characterize whether addressing the restoration of these motions 

will come at the cost of sacrificing ranges of other motions that may or may not be 

performed more frequently. 
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Additionally, in developing the computational tools and framework to perform 

MOO of rTSA, a major challenge relevant to musculoskeletal modeling and the assessment 

internal (i.e. muscle) forces of the musculoskeletal system, is addressed. Specifically 

related to joints with complex ROM and bony anatomy, determining anatomically feasible 

muscle paths with current, computationally efficient methodologies is difficult, especially 

in an automated manner required by MOO. Therefore, a computational model developed 

to address this concern is not only applicable to the shoulder and rTSA, but other joints and 

scenarios that require a reliable method of producing anatomically feasible muscle paths 

based on variable joint geometry. 

 The potential future applications of the computational tools presented here are 

numerous. They could easily be adapted to investigate the effects of variable pre-operative 

scenarios that could affect the outcomes of the procedure. Namely, the effects of patient-

specific bony geometry, muscle strength, and degree of rotator cuff deficiency on the 

designs that optimize ROM and stability could be characterized with minimal adjustment 

of the computational framework. Thus, a robust basis is provided for future investigations.
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Chapter 2. Background

2.1 Shoulder Anatomy and Motions 

The articulation of the shoulder (glenohumeral joint) occurs between the humeral 

head and the glenoid on the scapula (Figure 2.1); these are the portions of the bones 

replaced by rTSA components. 

 
Figure 2.1. Relevant parts of the humerus and scapula 

The anatomic planes and relative directional descriptions of the body are shown in 

Figure 2.2. For the purposes of describing shoulder motion in this document, the neutral 

position of the arm will be considered as that where the long axis of the humerus lies in the 

coronal plane, perpendicular to ground, and the palm of the hand faces medially. 
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Figure 2.2. The anatomic planes and directions. Note: image adapted from [22]. 

 The shoulder joint has three rotational degrees of freedom with a center of rotation 

positioned roughly at the center of the humeral head in natural anatomy. Consequently, any 

position of the arm can be described using spherical coordinates23,24. Elevation of the arm 

correlates to lifting the arm away from the neutral position, from which the elevation angle 

is measured (Figure 2.3A). Elevation results from rotation of the humerus with respect to 

the scapula, known as glenohumeral motion, in addition to rotation of the scapula with 

respect to the thorax, known as scapulothoracic motion. The relative contribution of each 

type of rotation to elevation is quantified by the scapulothoracic rhythm, which is the ratio 

of glenohumeral to scapulothoracic motion required to accomplish a degree of elevation. 

In the healthy shoulder, the scapulothoracic rhythm is generally accepted to be 2:1, 

meaning that for 90° of arm elevation, 60° and 30° are contributed by glenohumeral and 

scapulothoracic rotations, respectively. 
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Figure 2.3. The coordinates that describe a given position of the arm are elevation angle(A), 

elevation plane angle (B), and axial rotation angle (C), otherwise known as 

internal/external (IE) rotation angle. 

 The direction (plane) in which elevation occurs is described as the elevation plane. 

From a viewpoint perpendicular to the transverse plane, elevation plane angle is measured 

from the coronal plane (Figure 2.3B). Common names for specific elevation motions of 

the arm are based on the elevation plane in which they occur. Abduction, scaption, flexion, 

and extension occur in elevation planes with angles of 0°, 30°, 90°, and -90°, respectively. 

An additional rotational degree of freedom, known as axial rotation, corresponds to the 

rotation of the humerus about its long axis (Figure 2.3C). 

Shoulder motions are driven by nine musculotendon units that cross the joint 

(Figure 2.4), which are also responsible for stability. Muscles are connected to bone at 

locations known as the origin and insertion sites via tendons. Origins and insertions 

correspond to the proximal and distal sites (Figure 2.2), respectively.  
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Figure 2.4. The nine musculotendon units that cross the shoulder drive motion of the joint 

[25]. Note: the subscapularis, which is underneath the anterior deltoid and pectoralis major, 

is not shown. 

The deltoid is the primary driver of arm elevation and is commonly described using 

three sections due to the breadth of its origin footprint which wraps from the clavicle 

(anterior section) around the acromion (middle section) to the scapular spine (posterior 

section). The anterior, middle, and posterior sections contribute to flexion, abduction, and 

extension, respectively. The anterior and posterior sections also aid in internal and external 

rotation, respectively. The supraspinatus, infraspinatus, subscapularis, and teres minor 

comprise the rotator cuff. Each contributes to different motions. The supraspinatus aids in 

elevation, more specifically abduction. While the subscapularis, infraspinatus, and teres 

minor contribute to elevation, they also provide forces conducive to axial rotation. The 

subscapularis serves as an internal rotator, while the infraspinatus and teres minor act as 

external rotators.  

Perhaps the most important role of the rotator cuff as a unit relates to joint stability. 

During motion initiation, the deltoid produces superiorly-directed forces, which could 

potentially dislocate the joint (Figure 2.5). Simultaneous contraction of the muscles 

comprising the rotator cuff provides a net force that is medially-directed, to oppose the 
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deltoid forces and keep the humeral head seated in the glenoid during motion, termed the 

concavity-compression mechanism.  

 
Figure 2.5. As motion of the arm is initiated, the deltoid produces superiorly-directed 

forces. Without sufficient opposition from the medially-directed forces imparted by the 

rotator cuff muscles, the shoulder can become unstable. Note: figure adapted from [26]. 

Rotator cuff deficiencies can lead to several conditions, notably CTA, a specific 

arthritic pattern resulting from superior migration of the humeral head due to the disruption 

of the concavity-compression mechanism. In situations where replacement of the joint is 

required, conventional TSA or HA has performed poorly, because the underlying 

biomechanical factors that lead to pre-operative joint instability are not addressed. Thus, 

post-operative instability and migration of the humeral head within the joint are likely to 

persist. As a result, repeated eccentric loading on the glenoid component (Figure 2.6) may 

cause premature failure of the implant via the “rocking horse effect,” which initiates 

premature loosening of the implant from the bone. 
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Figure 2.6. The mechanism responsible for the rocking horse effect. 

2.2 rTSA 

2.2.1 Biomechanics of rTSA 

The concept of reversing the anatomy of the joint was developed specifically to 

address limited pre-operative ROM and joint stability in the presence of a rotator cuff 

deficiency. Several early reverse shoulder designs were developed beginning in the early 

1970’s starting with the Mark I reverse prosthesis developed by Charles Neer6,7,27. It 

included spherical and concave components fixed to the glenoid and humeral head, 

respectively.  

The concept of reversing the anatomy was intended to restore range of motion and 

stability to the joint by preventing superior migration of the humeral head via constraint 

inherent to the conformity of implant components27. Several iterations of the design were 

developed to address issues including limited range of motion restoration and persistent 

joint instability. The glenoid component was designed in a manner that placed the joint 

center of rotation (COR) close to where it would have been naturally. Consequently, ROM 

restoration was based on rotator cuff function, because there were no significant 
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biomechanical changes that would mitigate weakness caused by a cuff deficiency. 

However, the worst results involved consistent implant failure via aseptic loosening of the 

glenoid component. Loosening occurred because a joint COR lateral to the bone-implant 

interface of the glenoid component caused joint contact forces, which pass through the joint 

COR, to introduce torque at the bone-implant interface. This torque resulted in 

micromotions of the implant exceeding the levels that allow for stable fixation. Although 

various glenoid fixation strategies were utilized, Neer’s designs as well as a multitude of 

others developed by various groups, were subject to implant failure via loosening. Those 

that were not plagued by loosening issues permitted unsatisfactory improvements in 

functional outcomes of the procedure due to their dependence on rotator cuff function, and 

thus all early designs were eventually abandoned by 198027.  

Reversing joint anatomy was reintroduced by Paul Grammont in 1985, with a 

reverse shoulder design relying on several innovative concepts to restore ROM and provide 

stability to the joint while avoiding catastrophic failures due to implant loosening. 

Grammont’s initial design consisted of only two components, both which were cemented 

(Figure 2.7). 
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Figure 2.7. Paul Grammont’s original reverse shoulder design. Reprinted from Journal of 

Shoulder and Elbow Surgery, 14(1 Suppl), Boileau P, Watkinson DJ, Hatzidakis AM, Balg 

F, Grammont reverse prosthesis: design, rationale, and biomechanics, 147S-161S, © 2005, 

with permission from Elsevier. 

The glenosphere, two-thirds of a sphere made of cobalt-chrome, was designed to 

fit over the glenoid. The humeral component was made entirely of polyethylene and the 

depth was one-third of the glenosphere diameter. As with earlier designs, Grammont relied 

on implant constraint to provide joint stability, but introduced the idea of altering joint 

anatomy in a manner that allowed for the deltoid to compensate for the deficient rotator 

cuff in terms of motion restoration. With the glenosphere design and placement, the COR 

of the joint was medialized and distalized with respect to natural anatomy. Functionally, 

this has several effects. Specifically related to medialization, the moment arm of the deltoid 

is increased, thereby reducing necessary force production to generate levels of torque 

necessary to initiate motion, as well as achieve and maintain arm positions. Additionally, 

more deltoid fibers can be recruited for elevation. Distalizing the COR and using a non-

anatomical neck-shaft angle for the humeral component effectively lowers the humerus, 

which tensions the deltoid to aid in force production. In combination, these factors 
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essentially allow the deltoid to perform more efficiently than in natural anatomy, which 

compensates for missing motion-driving torques that would have been contributed by the 

rotator cuff. 

Grammont reported results on his initial design for 8 patients in 1987 with 

functional results exceeding any of the early designs; however, he was still concerned with 

glenoid-side fixation. Since COR was medialized with respect to natural anatomy, torque 

at the bone-implant interface was reduced in comparison to previous designs, but was not 

eliminated since using two-thirds of a sphere still placed the COR lateral to the interface. 

Grammont altered his initial design by introducing a new fixation strategy, which involved 

two components on the glenoid-side. The spherical component, now half of a sphere, was 

screwed onto the peripheral edge of a cylindrical plate that was impacted into the glenoid 

and supported further by divergent screws pointing superiorly and inferiorly. Using half of 

a sphere placed the COR directly on the bone-implant interface, thereby eliminating torque 

introduced by JCFs, and provided more rigid fixation as opposed to the first cemented 

version. This design, called the DELTA III prosthesis, was the first reverse shoulder 

reaching the market in 1991. Improvements were made over the span of several years to 

address fixation issues and maximize functional outcomes. The third generation of the 

DELTA III prosthesis (Figure 2.8) became available in 1994 and is still in use today. 
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Figure 2.8. The design of Grammont’s Delta III prosthesis. Reprinted from Journal of 

Shoulder and Elbow Surgery, 14(1 Suppl), Boileau P, Watkinson DJ, Hatzidakis AM, Balg 

F, Grammont reverse prosthesis: design, rationale, and biomechanics, 147S-161S, © 2005, 

with permission from Elsevier. 

Grammont’s DELTA III design, although still available, has served as the basis for 

the development of the many other reverse shoulder systems most of which have the same 

basic components pictured in Figure 2.8. Among different the more than 29 commercially 

available rTSA designs29, the general principle of leveraging muscles for motion 

differently than in natural anatomy and providing inherent stability via implant design in 

place of what would be provided by a fully functional rotator cuff is consistent. However, 

as a result of increased understanding pertaining to the effects of implant design and 

surgical placement parameters on functional outcomes of the procedure since the inception 

of Grammont’s design, variations in implant configuration have become available. 

2.3 Factors Affecting Functional Outcomes of rTSA 

As with any joint replacement, there has been a significant amount of research 

dedicated to investigating the effects of varying implant design and surgical placement 

parameters on the outcome of rTSA. Evaluating functional outcomes of the procedure is 
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particularly complex in the case of rTSA, as the effects of reversing the anatomy of the 

joint are multi-faceted, and the ROM of the shoulder is complicated.  

There are three basic requirements for any arm position within the potential ROM 

of the shoulder to be attainable after rTSA, including 1) there must not be impingement 

between the humeral and scapular sides of the joint, whether bone-bone or bone-implant, 

2) the viable musculature spanning the joint must be capable of generating sufficient forces 

to maintain the position, and 3) JCFs developed as a result of muscle action must not 

dislocate the joint. Dislocation in the context of muscle forces, and therefore JCFs, 

developed to overcome gravity in the maintenance of a static arm position plays a role in 

limiting ROM. In other words, any arm position where the joint will dislocate as a result 

of achieving the position is not considered a part of the ROM. Functional stability, which 

will be considered as a performance metric to maximize in MOO, relates to the ability of 

the implant to resist dislocation in the presence of external forces on the joint resulting 

from interaction with the environment.  

In the following sections, relevant implant design and surgical parameters (i.e. those 

investigated in this body of work) will be introduced, and their effects on the various factors 

relating to ROM and stability will be discussed. It should be noted that in general, studies 

characterize the effects of varying implant design parameters on specific motions, 

including: abduction/adduction, scaption, flexion/extension, and internal/external rotation 

(Figure 2.9). Therefore, the effect of implant design will be discussed in the context of 

these motions. 
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Figure 2.9. Motions commonly included in the study of the effect of rTSA on ROM include 

A) abduction/adduction B) flexion/extension C) scaption and D) internal/external rotation. 

2.3.1 The Effect of Varying Implant Parameters on Impingement-free ROM 

Perhaps the most studied aspect of the relationships between implant design and 

the functional outcome of rTSA is the effect of varying implant parameters on 

impingement-free passive ROM. Several studies, both experimental and computational, 

have elucidated relationships between implant parameters and resulting passive ROM. 

They have provided some insight into which implant configurations have the potential to 

maximize ROM. 

There is agreement across several studies that inferior placement of the glenosphere 

(Figure 2.10) increases ROM. Computational studies by Roche et al.16 and Kontaxis and 

Johnson30 concluded that inferior offset of the glenosphere increases overall ROM in 

scaption. A cadaveric study performed by Nyffeler et al.31 also confirmed that, of four 

different glenosphere positions, the only configuration with an inferior overhang of the 

glenosphere with respect to the glenoid allowed the greatest ROM in scaption. Similar 

findings have been reported for abduction using computational models, where increasing 

inferior offset of the glenosphere increases the magnitude of the range between inferior and 

superior impingement points30,32–35. 
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Figure 2.10. A depiction of inferior placement of the glenosphere, which has been reported 

to increase ROM. 

Neck-shaft (NS) angle of the humeral stem (Figure 2.11) has also been shown to 

have an effect on ROM, such that decreasing NS angle increases ROM in abduction, 

adduction and scaption32–39. Virani et al.35 concluded that NS angle was the most predictive 

parameter in terms of increasing abduction. Gutiérrez et al.32,33 reported that NS angle had 

the greatest effect of other parameters studied on increasing adduction ROM, while de 

Wilde et al.36 reported that it had the least effect. Interestingly, Virani et al.35 found that 

while decreasing NS angle improved abduction ROM, it also decreased ROM in both 

flexion/extension and internal/external rotation. In contrast, Oh et al.37 found that NS angle 

did not affect internal/external rotation ROM. 
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Figure 2.11. A depiction of the definition of NS angle as it relates to rTSA design. 

Several studies suggest that lateralizing the COR with respect to a fully medialized 

location on the bone-interface (Figure 2.12) increases abduction, flexion/extension, and 

internal/external rotation32,33,35,38–40. Others have concluded that lateralization significantly 

increases adduction ROM, and may be a viable option for avoiding inferior 

impingement30,33. De Wilde et al.36 reported that lateralization increased adduction ROM 

before impingement, but the effect was negligible when the glenosphere was placed 

inferiorly. It should be noted that present techniques for COR lateralization, which involve 

spacers behind the glenosphere (Figure 2.12), or glenospheres that comprise more than half 

of a sphere, do not lateralize the COR to the same levels as early reverse shoulder designs; 

this decreases the risk of loosening due to torque at the bone-implant interface, however it 

is still a concern. 
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Figure 2.12. A depiction of lateralizing the COR of rTSA from the bone-implant interface. 

2.3.2 The Effect of Varying Implant Parameters on Joint Stability 

In addition to the ROM allowed by an implant, another important factor is the amount 

of joint stability that can be provided by the implant. As with ROM, stability depends on 

both passive and active factors that relate to the geometry of the implant, as well as 

contributions of the musculature surrounding the joint. Clouthier et al.41 (2013) found that 

of the factors studied, including loading direction, elevation angle, elevation plane angle, 

humeral cup depth, glenosphere diameter, and inferior placement of the glenosphere, that 

the largest increase in force to dislocation was due to abduction angle. Higher abduction 

angles increased the force to dislocate the joint. At higher elevations the ratio of shear to 

compressive JCF is lower42, because the resultant lines of action of muscle forces, 

especially the deltoid, point more medially as opposed to superiorly, illustrated in Figure 
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2.13 for the anatomic shoulder. Supporting this notion, Gutiérrez et al.43 found that 

increasing compressive force had the greatest effect on increasing stability.  

 
Figure 2.13. Increasing abduction angle lowers the shear to compressive JCF ratio, 

leading to a more stable joint, as the lines of action of the muscles are directed more 

medially exemplified by the middle deltoid at neutral arm position (left) and 90° of 

abduction (right). 

Clouthier et al.41 also concluded that inferior placement of the glenosphere increased 

inherent stability of the joint. A study by Kontaxis and Johnson30, in which a 

musculoskeletal model was employed, found that glenosphere placement did not affect the 

ratio of shear to compressive joint contact forces developed during different motions. 

Together, these findings highlight the necessity to consider not only the inherent stability 

of the implant in terms of resistance to dislocation forces, but also how it performs in the 

context of the JCFs resulting from muscle action, which are a function of joint angles (arm 

position) as well.  

2.4 Musculoskeletal Modeling 

Musculoskeletal modeling is a valuable tool that is seeing increased use in order to 

evaluate internal forces in the neuromuscular system, such as muscle forces and JCFs 

(Figure 2.14). These forces are difficult to determine experimentally. With the ability to 
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determine internal forces through simulation, as opposed to experimentally, it becomes 

easier to identify cause-effect relationships of various conditions (i.e. what is causing a 

pathological gait abnormality versus what the gait abnormality is causing) as well as 

evaluate the efficacy of different treatments. 

 
Figure 2.14. A musculoskeletal model of the upper limb developed and validated by 

Holzbaur et al.24. 

In the case of rTSA, where the premise behind the success of the procedure relies 

partially on how muscles are leveraged differently than in normal anatomy, 

musculoskeletal modeling is an available option for evaluating the effect of the implant 

design on functional outcomes in the context of muscle capability and joint stability. This 

necessitates a discussion of the general principles underlying musculoskeletal modeling 

and how they allow for calculations related to forces internal to the musculoskeletal system 

(i.e. muscle forces and JCFs). 
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2.4.1 Joints and Motion Definitions in Musculoskeletal Models 

In musculoskeletal models, bones are modeled as rigid bodies that are connected 

by joints. Joints are defined using generalized coordinates. That is, for every degree of 

freedom at a joint, one ordinary differential equation is necessary. It is formulated to allow 

motion only in the desired direction(s). In this manner, algebraic constraints are 

unnecessary and solving for motions at joints is much less computationally costly than 

solving a system of differential-algebraic equations. Traditionally, for a one degree of 

freedom joint, a system of 11 equations would be solved simultaneously: one differential 

equation for each degree of freedom and five algebraic constraints on the degrees of 

freedom that are not desired. A one degree of freedom joint is defined by one ordinary 

differential equation corresponding to the generalized coordinate that has been prescribed. 

Coordinate coupler constraints can also be used to parameterize coordinates relative to 

another by some function. Using generalized positions (defined by the coordinates), 

velocities, and accelerations, as well as user-defined inertial properties, the equations of 

motion can be solved in order to obtain unknown generalized forces on a joint. This is 

known as an inverse dynamics analysis, where the motion of the system is known and the 

forces resulting from the motion are calculated. Forward dynamics allows for the 

calculation of generalized positions, velocities, and accelerations by solving the equations 

of motion with a known set of generalized forces to predicting what motion will result. 

2.4.2 Calculating Muscle Forces with Musculoskeletal Models 

Musculotendon units are force-producing actuators that span joints. 

Physiologically, bundles of fibers comprise the body of a muscle, each end of which is 

attached to a bone by a tendon at locations known as the origin and insertion. 
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Neuromuscular excitations lead to activation of muscle fibers, causing them to contract and 

generate force, which is transmitted through the tendons and manifests as torques that drive 

motion of a joint. The generalized torque on a joint resulting from muscle action is given 

by: 

  𝜏𝐽 = ∑ 𝐹𝑚𝑟𝑚
𝑛
𝑚=1  Eq. ( 2.1 ) 

where n is the number of muscles crossing the joint, Fm is muscle force, and rm is muscle 

moment arm. As such, joint torque resulting from muscle action is based on muscle path, 

from which the muscle moment arm is determined as the perpendicular distance to the joint 

COR, and muscle force. Muscle forces required to generate a set of generalized joint 

torques to produce a specific joint motion or position generally cannot be determined 

analytically due to a problem known as muscle force redundancy. Unless a highly 

simplified model is used, the number of muscles spanning any joint exceeds the number of 

equations available to solve based on the DOF of the joint, resulting in an indeterminate 

system. This necessitates the use of numerical methods, which involve the optimization 

techniques to determine a set of muscle forces required to produce a given motion or sustain 

a joint position.  

There are two types of optimization: dynamic and static. Dynamic optimization is 

a forward dynamics approach which incorporates time-dependence of both muscle force 

and performance criteria into the calculation of muscle force configurations. In contrast, 

static optimization is a time-independent, inverse dynamics approach. Dynamic 

optimization is computationally costly and has been shown to produce results similar to 

static optimization44,45. In static optimization, kinematics of a joint and external forces 

serve as inputs to an inverse dynamics analysis, from which generalized joint torques 
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required to maintain static joint positions (equilibrium) are extracted. Information about 

the muscle moment arms and physiological relationships pertaining to force production in 

muscles is used to find a configuration of muscle forces that produces the required 

generalized torque by minimizing a neurophysiologically relevant performance criterion. 

Countless configurations of muscle forces could produce the same generalized joint 

torques, but it is likely that the nervous system selects configurations based on minimizing 

some expenditure required to do so, such as: energy consumption, muscle stress, muscle 

fatigue, etc. One such performance criterion to minimize during static optimization is given 

by: 

 𝑓(𝐹𝑚) =  ∑ 𝑎𝑚
𝑝𝑛

𝑚=1  Eq. ( 2.2 ) 

where am is the activation of a muscle and p is a user-defined constant. Although a 

multitude of performance criteria have been proposed, several studies have concluded that 

results are not highly sensitive to this selection, provided the order of the function is greater 

than one46–50. Van Bolhuis and Gielen46 investigated the effect of performance criterion on 

muscle force prediction. They included performance criteria involving total muscle force, 

total muscle stress, total muscle activation, and metabolic energy consumption. 

Additionally, the order of each equation was varied. Of the criteria studied, any involving 

muscle force and metabolic energy were rejected, as they did not provide muscle activation 

patterns consistent with electromyographic (EMG) results. The best over-all fit to 

experimental data was observed using quadratic equations for performance criteria (p=2 in 

Eq. 2.2). In the case of isometric muscle contractions, where the joint angle and muscle 

lengths, are constant (as is the case in static optimization), muscle stress is essentially a 

measure of muscle activation. As such, performance criteria involving either factor produce 

similar muscle activation and force distribution patterns46. 
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 The minimization of a selected performance criterion must involve constraints that 

reflect physiologic relationships between muscle parameters and possible force production. 

Physiologically, the forces developed in a muscle are dictated by: activation level, length 

of muscle fibers, velocity of contraction or stretching of the muscle fibers, physiologic 

cross-sectional area (PSCA) of the whole muscle (i.e. how many fibers make up a muscle), 

and pennation angle, which defines the orientation of muscle fibers with respect to the 

tendon that connects it to a bone. These characteristics are measured experimentally and 

serve as inputs to analytical functions which capture musculotendon dynamics and force-

generating behavior. Musculotendon units are modeled as 1-dimensional line segment 

entities, the dynamics and force-generation of which are represented by lumped parameter 

solids, known as Hill-type muscle models (Figure 2.15). 

 
Figure 2.15. A lumped parameter muscle model. 

 Tendons are lumped to one side of the muscle and represented as a passive spring 

force. The muscle is modeled by an “active” contractile element, representing the ability 

of the muscle fibers to actively generate force, in parallel with a passive spring element, 

representing the elastic properties of the fibers. Within the contractile element is a spring 

and dashpot in parallel, representing the dependence of muscle force on velocity. The 
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behavior of each element in the lumped parameter model is dictated by either a state 

equation or a parameterless curve scaled based on experimentally determined values 

(Figure 2.16). 

 
Figure 2.16. The relationships between normalized force and a) normalized length of both 

the active and passive components of a muscle, b) normalized velocity of a muscle, and c) 

tendon strain, which is a function of its length. Note: a = activation, which can range from 

0 to 1.  

  Force is normalized to the maximum isometric force that a muscle can produce. 

This is determined by measuring PCSA and multiplying by specific tension. The length is 

normalized by optimal fiber length, which is the fiber length at which the maximum force 

is produced. Velocity is normalized to the maximum contraction velocity of a muscle fiber. 

Tendon strain is calculated using instantaneous tendon length and tendon slack length, or 

the length at which a tendon begins producing force if it is stretched further. PSCA, optimal 

fiber length, maximum contraction velocity, and tendon slack length are the experimentally 

determined values used to scale the parameterless curves to represent different muscles. 

Additionally, pennation angle is measured experimentally to enforce the relationships 

between the length of muscle fibers in relation to the length of the entire musculotendon 

unit. The differential equation representing the musculotendon dynamics, assuming the 

muscle and tendon are massless and that all force generated in the muscle is transmitted 

through the tendon, is as follows: 
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 𝑓𝑖𝑠𝑜 (𝑎(𝑢, 𝑡) ∗  𝑓𝐶𝐸(𝑙𝑀) ∗ 𝑓𝑣(𝑙
�̇�) + 𝑓𝑃𝐸(𝑙

𝑀)) cos 𝛼 − 𝑓𝑖𝑠𝑜𝑓𝑆(𝑙
𝑇) = 0 Eq. ( 2.3) 

where fiso represents the isometric force in a muscle, fCE and fv represent the force-length 

and force-velocity relationships of the contractile element of the muscle, fPE represents the 

force-length relationship relating to passive elasticity of the muscle, fS represents the force-

strain relationship of the tendon, and a(u,t) is the activation dynamics as a function of 

excitation (u) and time (t). The equation is solved for fv(l̇
M), after which the force-velocity 

relationship is inverted, such that integration can be performed to determine 

musculotendon dynamics. The dynamics of a musculotendon unit dictate the relative 

proportions of the entire length that are accounted for by the lengths of the muscle fibers 

and the tendons separately. During static optimization, musculotendon dynamics are 

determined in order to enforce force-length and force-velocity relationships, as they affect 

possible force generation. In other words, a muscle can only produce its maximum force if 

the length of the fibers and their rate of contraction/stretching is ideal, which is generally 

not the case for any given joint position; static optimization can only produce realistic 

forces based on these factors by using them as constraints. Consequently, the static 

optimization objective function (Eq. 2.2) is minimized subject to: 

 𝜏𝐽 = ∑ [𝑎𝑚𝑓(𝑓𝑖𝑠𝑜, 𝑙
𝑀, 𝑙�̇�)] 𝑟𝑚

𝑛
𝑚=1  Eq. ( 2.4 ) 

2.4.3 Musculoskeletal Model of the Upper Limb 

The National Center for Simulation in Rehabilitation Research has developed an 

open-source musculoskeletal modeling software called OpenSim51,52, which was used in 

conjunction with an adapted version of a validated a musculoskeletal model of the upper 

limb that is freely available24 (Figure 2.14). Three generalized coordinates are used to 

describe the position of the arm at any given time: elevation plane angle, elevation angle, 
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and internal/external rotation angle (Figure 2.3). The scapulothoracic rhythm is defined 

using coordinate coupler constraints, where the rotations of the scapula and clavicle with 

respect to the thorax are determined based on the elevation angle of the glenohumeral joint. 

Simplified scapulothoracic motion is included in a 2:1 rhythm. The axes for the various 

rotations permitted at the glenohumeral joint, as well as the regression equations used to 

define scapulothoracic motion, were taken from a study by de Groot and Brand53 and are 

in accordance with recommendations by the International Society of Biomechanics for 

describing motion of the shoulder54. The information pertaining to the body segments 

required to solve the equations of motion (i.e. mass, mass center location, and inertial 

properties) was based on anthropometric data of a 50th percentile male. 

All nine muscles that cross the joint are represented. The deltoid, pectoralis major, 

and latissimus dorsi are each represented by three distinct bundles due to their broad origin 

footprints. The deltoid has anterior, middle, and posterior sections, while the pectoralis 

major and latissimus dorsi have superior, middle, and inferior sections. The remaining 

muscles (supraspinatus, infraspinatus, subscapularis, teres minor, teres major, and 

coracobrachialis) are represented by one bundle each. The locations for the origins and 

insertions of each muscle bundle were determined based on digitized images of the bones 

that were represented in the model. 

Muscle paths, as a function of joint position, were determined using a combination 

of via points and wrapping geometry. Via points, through which the path of a muscle is 

constrained to pass, can be fixed or moving based on prescribed coordinate change 

functions within the coordinate frame of a bone. Examples of fixed via points include all 

insertion sites, the locations of which are constant within the humeral coordinate frame. 
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Moving via points are sometimes utilized in order to maintain anatomic feasibility of 

muscle paths that would not be possible using fixed via points. In addition to via points, 

rudimentary wrapping geometry, around which the shortest geodesic paths are calculated, 

are used to represent bony anatomy. The geometries, including spheres, ellipses, cylinders, 

and tori are fixed within the respective coordinate frame of the bone to which they are 

attached and sections of muscle bundles between via points wrap over them to simulate the 

anatomic dependence of muscle paths on bone geometry. Holzbaur et al.24 determined 

locations of fixed via points, functions for moving via points, and placement of wrapping 

geometries that resulted in muscle paths with moment arms that coincided with 

experimentally available values from literature in order to best capture force-generating 

capabilities. Other parameters affecting muscle force-generation, including optimal fiber 

length, maximum isometric force, tendon slack length, and pennation angle were taken 

directly, or derived from, previous experimental studies24. 

2.5 Surrogate Models 

2.5.1 Response Surface Method 

Inherent to the process of design optimization is computational efficiency of 

evaluating the objective function(s). The task of evaluating ROM and stability of rTSA 

within broad motion limits rendered use of the actual model(s) to evaluate the objective 

functions infeasible in terms of required computational time. In cases where the objective 

function is based on a finite set of experimental results, or the computational cost of 

evaluating the values and gradients of objective function numerically for a potentially large 

number of designs is too great, surrogate, or meta-models, have been used. In terms of 

design optimization, surrogate models are based on generating an explicit representation 
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of the objective function in terms of the design variables by fitting an equation to results 

from a set of pre-determined sample designs. The response surface method (RSM) is one 

that is used to generate linear or quadratic equations representing the objective function. 

Quadratic equations including linear, perfect square, and cross-product terms are most 

commonly used, as they capture curvature of the objective function (provided the sample 

points are chosen in a manner that allows this) and interactions between variables, and the 

general form is given by55: 

 𝐽(�⃗⃗� ) =  𝑎0 + ∑ 𝑎𝑖𝑥𝑖
𝑘
𝑖=1 + ∑ 𝑎𝑖𝑖𝑥𝑖

2𝑘
𝑖=1 + ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗

𝑘
1 ≤𝑖 ≤𝑗 +  𝜀  Eq. ( 2.5 ) 

where 𝑎0 is a constant, 𝑥𝑖 and 𝑥𝑗 are design variables, k is the number of design variables 

and 𝑎𝑖, 𝑎𝑖𝑖, and 𝑎𝑖𝑗 represent the coefficients of the linear, quadratic, and cross-product 

(interaction) terms, respectively. 𝜀 is the residual, or error associated with the surrogate 

model approximation of the actual function. In the RSM, where the value of the function 

is evaluated with the real model at a given number of designs (�⃗⃗� ), the unknowns are the 

coefficient matrices, determined by minimizing the sum of the squares of the residual using 

a regression technique known as the least squares method, which is well established. In the 

context of this research, the RSM was used to generate surrogate models for the objective 

functions representing ROM and stability of rTSA in order to greatly decrease the 

computational cost of single and multi-objective optimization. 

2.5.2 Sample Point Selection for Response Surface Method 

In using the RSM, consideration must be given to the number and distribution of sample 

designs throughout the design space which are used for fitting the response surface. In 

general, choosing sample points involves a design of experiments (DoE). Various strategies 

exist for generating a DoE which contains a minimal number of meaningful sample points 
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for use in the RSM, which is advantageous in balancing computational or experimental 

cost of evaluating an objective function with accuracy of the resulting surrogate model. 

Other strategies involve full factorial designs, where all possible combinations of chosen 

design variable values are evaluated. The number of values for each design variable is 

referred to as the number of levels (L). Generally, the minimum and maximum value of 

each design variable are identified, and the ranges are discretized into L evenly spaced 

points, resulting in an Lk full factorial design (where k is the number of design variables). 

Each design variable must have at least three levels in order for the curvature of the 

objective function to be captured in the surrogate model. Problems where the number of 

design variables exceeds five are generally approached with strategies other than full 

factorial DoEs56. Additionally, the number of model evaluations or experiments required 

can quickly become too costly when the number of levels exceeds four. Therefore, a 

common full factorial design is 3k, where k is less than five.
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Chapter 3. Development and Validation of 

Computational Methods for Evaluating Factors 

Affecting ROM of rTSA

 

The ROM allowed by any given rTSA configuration depends on impingement, muscle 

capability, and stability. Optimizing the ROM while considering all three factors requires 

the development and validation of computational methods for evaluating each. Each of the 

following sections will outline the computational or analytical methods involved in 

evaluating the three ROM-limiting factors, as well as the validation procedures and 

validation results for the methods. 

3.1 Impingement 

3.1.1 Methods 

3.1.1.a Computational Model Development 

A computational model implanted with a representative rTSA configuration was 

developed and subsequently validated experimentally. Polygonal descriptions of a scapula 

and humerus were processed from the Holzbaur et al.24 musculoskeletal model into 

stereolithographic (STL) surface files using an open-source program, Paraview57,58. The 

implant configuration was a traditional Grammont-style implant: a 36 mm diameter 
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hemispherical glenosphere with the COR lying directly on the bone-implant interface and 

a NS angle of 155°. The bones were virtually implanted based on a surgical technique 

guide59 and verified for accuracy by two orthopaedic shoulder surgeons (Dr. George S. 

Athwal and Dr. Joseph Choi). 

 The glenoid was reamed with a retroversion of 35°, determined by a plane 

perpendicular to the ground and passing through points on the anterior and posterior rims 

of the glenoid. The center of the 36 mm ream was determined by fitting a 25 mm diameter 

circle, representing the size of the baseplate, to the inferior rim of the anatomic glenoid in 

the aforementioned plane that was used to determine version. The ream depth measured 3 

mm from the inferior glenoid rim, which was the minimum depth to create a flat surface 

on which the glenosphere was placed with the COR coincident with the ream (and 

baseplate) center. The humerus was reamed with a retroversion of 35° and the NS angle 

measured from the long axis of the humeral shaft to a depth dictated by the inflection point 

created by the junction of the humeral head and the greater tubercle. The humeral cup, with 

a depth of 6 mm and overall height of 10 mm, was placed at the center of a circle fit to the 

edge created by the ream on the humerus. All reams and implantations were accomplished 

using either subtractive or additive Boolean operations, such that each portion of the joint 

was a monobloc including the bone and respective implant component (Figure 3.1). 

 The implanted shoulder was incremented through various motions using custom 

MATLAB scripts, which implemented the motion definitions from the Holzbaur et al.24 

musculoskeletal model. The arm was first axially rotated from the neutral position to -30°, 

0°, or 30°, where negative and positive angles represent external and internal rotation, 

respectively. Following axial rotation, the arm was elevated in planes with angles ranging 
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from -90° to 120° by increments of 30°. The scapulothoracic rhythm was removed for ease 

of model replication during experiments. At 10° increments of elevation, custom python 

scripts written for the open-source program Blender checked for impingement between the 

humeral and scapular sides of the joint by performing intersection Boolean operations 

(Figure 3.1). 

 
Figure 3.1. Impingement, whether bone-implant (left) or bone-bone (right) was detected 

by performing Boolean operations between the humeral and scapular sides of the joint, 

which each consisted of bone and respective implant components treated as monoblocs. 

3.1.1.b Experimental Validation Procedure 

The technique for predicting impingement computationally was experimentally 

verified using a VIVO six degree-of-freedom joint motion simulator (Advanced 

Mechanical Technology, Inc., Watertown, MA). The humerus and scapula were 3D printed 

as monoblocs out of ABS plastic with their respective implant components, as well as 

custom fixtures for attachment to the joint simulator (Figure 3.2), using a uPrint SE 

(Stratasys Ltd., Eden Prairie, MN).  
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Figure 3.2. The bones/implants/attachment fixtures were 3D printed as monoblocs such 

that the elevation axis was pre-aligned with a rotational axis on the VIVO (left). Elevation 

plane angle and axial rotation angle were varied manually through the use of a series of 

grooved and toothed discs (right). 

Manually rotating the fixtures on the machine varied elevation plane angle (rotation 

of humerus and scapula) and axial rotation angle (rotation of humerus only) by 

corresponding increments using series of grooved and toothed discs designed to rotate the 

components by the desired amount (Figure 3.2). The fixtures were designed such that the 

axis for elevation in the computational model was pre-aligned with a rotational axis on the 

VIVO. The same motions applied to the computational model were repeated 

experimentally using displacement control of the joint simulator with a 15 N compressive 

force on the joint. The point of first impingement was detected as a sudden change in the 

elevation moment measured by the VIVO and was confirmed via visual inspection. The 

elevation angle at which impingement first occurred was recorded for comparison with 

computational results. 
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3.1.2 Validation Results and Discussion 

Table 3.1 compares impingement position predictions of the experimental and 

computational models for the same implant design. Note that experimental results are 

continuous, whereas the computer model detects impingement in discrete 10° elevation 

increments. Experimental and computational results showed agreement in in 54% of the 

cases investigated (i.e. the experimentally measured impingement angle fell within the 10° 

uncertainty interval of the model-predicted impingement angle 54.2% of the time). 

However, in roughly one third of the cases where disagreement was observed (4/11), the 

experimental prediction fell on the upper limit of the computational range in which 

impingement was detected. Additionally, the experimental prediction fell outside of the 

computational uncertainty interval by greater than 3° in only 8.3% of cases. Discrepancies 

are likely due to slight misalignment of motion axes as a result of error introduced by 

tolerances in the additive manufacturing techniques (± 0.2 mm)  used to fabricate the 

components. 

Table 3.1. Computational and experimental predictions for elevation angles at which 

impingement was first detected in a subset of motions studied. Note: impingement was 

checked at 10° increments computationally, and the corresponding ranges in which 

impingement was first detected are presented, where β represents elevation angle. 

Elevation 

plane 

angle 

Rotation angle 

-30° 0° 30° 

Comp. Exp. Comp. Exp. Comp. Exp. 

-90° 0° ≤ β < 10° 10° 10° ≤ β < 20° 19° 10° ≤ β < 20° 23° 

-60° 0° ≤ β < 10° 16° 20° ≤ β < 30° 36° 30° ≤ β < 40° 39° 

-30° 80° ≤ β < 90° 90° 100° ≤ β < 110° 104° 120° ≤ β < 130° 124° 

0° 80° ≤ β < 90° 85° 80° ≤ β < 90° 89° 90° ≤ β < 100° 101° 

30° 80° ≤ β < 90° 90° 80° ≤ β < 90° 84° 80° ≤ β < 90° 90° 

60° 100° ≤ β < 110° 96° 80° ≤ β < 90° 78° 60° ≤ β < 70° 63° 

90° 80° ≤ β < 90° 84° 60° ≤ β < 70° 67° 30° ≤ β < 40° 37° 

120° 70° ≤ β < 80° 68° 50° ≤ β < 60° 52° 30° ≤ β < 40 34° 
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3.2 Muscle Capability 

3.2.1 Background 

Evaluating the viability of the muscles to produce a distribution of forces sufficient 

to maintain any given static arm position relies on the use of a musculoskeletal model and 

the static optimization tool in OpenSim. As outlined in section 2.4.2, the force-generating 

capability of any muscle is dependent on its moment arm and musculotendon dynamics, 

both of which are partly a function of the path a musculotendon unit takes from origin to 

insertion. Paths in the Holzbaur et al.24 musculoskeletal model are determined using a 

combination of prescribed via points and rudimentary wrapping geometry. These were 

selected based on validating moment arms within the limits of the motion coordinates 

prescribed in the model, which were -90° to 130° for elevation plane angle, 0° to 180° for 

elevation angle, and -90° (external) to 20° (internal) for axial rotation angle.  

Although the model performs well within these limits for the anatomic shoulder, 

evaluating the effect of rTSA design on muscle action presents several challenges related 

to capturing the effect of implantation on muscle paths. As a result of implanting rTSA, 

not only are there additional geometries for the muscles to wrap over, but the position of 

the humerus is shifted. Simply adding wrapping geometries to represent the implant and 

moving the via points and existing wrapping geometries associated with the humerus by 

the corresponding transformation does not guarantee anatomical muscle paths within the 

same limits of motion as the anatomic shoulder. For example, the muscles may wrap the 

incorrect way around the humeral shaft, or wrapping geometries representing the implant 

components may be ignored entirely if intersected by a via point. These types of 

occurrences would be impossible to regulate, especially given the automated nature of 
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design optimization. Additionally, in evaluating ROM of rTSA, internal rotation angles of 

greater than 20° should be analyzed. 

These factors necessitated the development of a more reliable method of 

determining muscle paths throughout the comprehensive ROM resulting from implantation 

of variable rTSA designs without sacrificing computational efficiency such that design 

optimization (even using a surrogate model) became impossible. Therefore, an FE model 

capable of predicting muscle paths throughout the ROM in the presence of variable implant 

geometry was developed for use in evaluating muscle capability using static optimization 

in OpenSim. The model was validated based on experimental and computational moment 

arm data available in the literature first for the anatomic shoulder and then for one 

implanted with a representative rTSA configuration. 

3.2.2 Methods 

3.2.2.a Computational Model Development for the Anatomic Shoulder 

The STL surface files from of the clavicle, scapula, and humerus used in the 

development of the impingement model were converted into solid geometries using 

SolidWorks 2014 (Dassault Systèmes, Waltham, MA). Each bone was treated as a rigid 

body and meshed with quadratic tetrahedral elements (C3D10M) with an average element 

edge length of 2.5 mm using the commercially available finite element analysis pre-

processor software Abaqus/CAE 6.14 (Dassault Systèmes, Waltham, MA). The coordinate 

systems, initial positions and orientations of the bones, and locations of musculotendon 

origin and insertion points were defined as those given in the Holzbaur et al.24 

musculoskeletal model. Four muscles of the rotator cuff (supraspinatus, infraspinatus, 

subscapularis, and teres minor) and three deltoid bundles (anterior, middle, and posterior) 
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were modeled using a “string-of-pearls” representation. Each muscle consisted of a series 

of 15 rigid spheres, each 10 mm in diameter and meshed with quadratic tetrahedral 

elements (C3D10M) with an element edge length of 3 mm. Sphere centers along each 

muscle bundle were initially separated by 3 mm and connected by 1-D point-to-point 

linearly elastic springs (Figure 3.3). Each muscle bundle was pinned at its origin on the 

scapula (clavicle for the anterior deltoid) by constraining all translational degrees of 

freedom (DOF). Wrapping patterns were calculated using an explicit solver 

(Abaqus/Explicit). Initially, the muscle bundles were oriented in space in a manner that 

minimized contact between the spheres (other than the one representing the origin) and 

bone, and avoided contact between distinct muscle bundles. During the initial wrapping 

step, the free (distal) ends of each muscle were pulled to their respective insertion sites on 

the humerus using one-DOF translational connectors (Figure 3.3).  

 
Figure 3.3. The sequence of the initial wrapping step, where “string-of-pearls” muscle 

representations initially attached at their origins (left) were connected at their centers by 

springs and pulled to their insertions by 1 degree of freedom translational connectors 

(middle), resulting in paths dictated by wrapping over bony geometry (right). Note: for 

clarity, not all modeled muscle bundles are shown. 

The Abaqus default “hard” pressure-overclosure relationship for normal contact 

and frictional tangential contact was modeled at all sphere-bone interfaces, such that the 
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muscle bundles wrapped over bony geometry as their free ends were pulled to the insertion 

sites. To reduce computational cost, sphere-sphere contact was not considered. Variable 

model parameters included material properties, the spring constant of the springs 

connecting the contact spheres, and friction coefficient. Material properties of all bones 

and contact spheres were defined as that of cortical bone with a density of 2.5 mg/mm3, an 

elastic modulus of 17 GPa, and Poisson’s ratio of 0.3. Each spring was assigned a spring 

constant of 1 N/mm and the coefficient of friction between the spheres and bones was 0.15.  

3.2.2.b Motions 

Following the initial wrapping step, motions were applied to the FE model, the 

definitions of which are the same as those used in the Holzbaur et al.24 musculoskeletal 

model and the computational impingement model. The sequence of motions applied to the 

FE model (as with the impingement model) was always in the order of axial rotation first, 

followed by elevation within a given elevation plane. As the shoulder was manipulated 

through the prescribed motions, the simulated muscle bundles continued to wrap and glide 

across the surfaces of the bones while spanning from origin to insertion. Elevation moment 

arm data was available in the literature for continuous abduction and flexion24,60,61, as well 

as discrete positions of 30° and 60° of scaption62,63, all with the arm in neutral rotation. 

Axial rotation moment arms were available for the arm at neutral elevation24,60,62,64 and 

30°, 60°, 90°, and 120° of abduction and flexion65. As such, these motions were applied to 

the bones in the anatomic FE model to allow for comparison. 

3.2.2.c Muscle Wrapping After rTSA 

The bones in the FE model were then implanted with the same representative rTSA 

configuration used in the impingement model (a glenosphere diameter of 36 mm and NS 
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angle of 155°). The muscle wrapping step was repeated as previously described for the 

anatomic case, and motions for which moment arm data was available after rTSA in the 

literature were applied. The motions included abduction and flexion66, as well as axial 

rotation with the arm at neutral64 and 30°, 60°, 90°, and 120° of abduction and flexion67.  

3.2.2.d Data Analysis: Determination of Muscle Moment Arms from FE Model Results 

A custom algorithm in MATLAB 2014b was used to query FE results at a series of 

static positions throughout continuous motions. For any given position, the global 

coordinates of the center of any sphere in contact with a bone were processed into the 

coordinate systems of the bone with which they were in contact. The locally defined 

coordinates of contact spheres were used to define the locations of via points in an adapted 

version of the Holzbaur et al.24 musculoskeletal model in OpenSim 3.3, which was used to 

calculate moment arms. For clarity, wrapping patterns were simulated in the FE model 

throughout continuous motions, and muscle moment arms at discrete instances within that 

motion were calculated in OpenSim. Abduction, flexion, and scaption were applied directly 

(i.e. accomplished with a single simulation), while axial rotation at varying levels of 

abduction and flexion was not applied directly as a continuous motion, but as a combination 

of motions within which the desired positions were included. In other words, the arm was 

first incrementally axially rotated, after which it was abducted or flexed, and the results 

were processed at the desired elevation levels (as opposed to elevating to the desired level 

and then axially rotating). 

3.2.2.e Validation Approach 

Moment arms computed by the current FE model-based technique were compared 

with previous experimental and simulation results to assess model validity. Moment arm 
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data that was presented graphically in previously published work was manually digitized 

using an open-source program (PlotDigitizer, University of Southern Alabama). 

Qualitative assessments were performed using graphical representations of previous and 

current moment arm data. 

Quantitative assessments were performed between the FE model moment arm data 

generated using the musculoskeletal model by Holzbaur et al.24, as well as a subset of 

experimental studies, namely those that provided data before and after rTSA66,67. Average 

root-mean-square (RMS) error between moment arms predicted by the current FE model 

and the musculoskeletal model by Holzbaur et al.24 were calculated for the anatomic 

shoulder throughout abduction and flexion. An analysis of moment arm trends in the 

anatomic shoulder was conducted by calculating Pearson correlation coefficient values for 

each muscle throughout abduction and flexion between moment arms from studies by 

Ackland et al.61 and moment arms from both the current FE model as well as the 

musculoskeletal model by Holzbaur et al.24. Additionally, Pearson correlation coefficient 

values were calculated to compare data from the current FE model to that from studies by 

Ackland et al.66,67 before and after rTSA for abduction, flexion, and axial rotation at 30°, 

60°, 90°, and 120° of abduction and flexion. For axial rotation at varying levels of 

abduction and flexion, the data comparison was consolidated by calculating a single 

Pearson correlation coefficient value for each muscle with the different combinations of 

elevation plane and pre- or post-operative status. For example, for one muscle, a total of 

four Pearson correlation coefficient values were calculated: anatomic abduction, anatomic 

flexion, implanted abduction, and implanted flexion, where all levels of elevation in each 

plane were included.  
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It should be noted that data was not available for all muscles included in the FE 

model for all studies. Conversely, in several studies data was reported for more than one 

portion of a muscle. If muscle bundles were identified, comparisons were made between 

whichever bundle was best represented by the present FE and musculoskeletal models. 

Bundles of the rotator cuff muscles represented by the current model were identified as the 

anterior supraspinatus, inferior infraspinatus, superior subscapularis, and inferior teres 

minor. 

3.2.3 Validation Results and Discussion 

The following sections will present and discuss the results of the FE model 

validation procedure and will proceed by motion type in the order of scaption, abduction, 

flexion, and finally axial rotation neutral, as well as varying levels of abduction and flexion. 

If data after rTSA implantation was available for a specific motion, it will be presented and 

discussed following that available for the anatomic shoulder. Finally, model limitations 

and conclusions pertaining to model development and validation will be discussed. 

3.2.3.a Scaption 

Elevation moment arms calculated for the anatomic shoulder at 30° and 60° of 

glenohumeral (GH) scaption for four rotator cuff muscles are shown in Figure 3.4. For 

comparison, ranges of previously reported values from seven experimental studies and 

seven computational models (reported by Gatti et al.63 and Favre et al.62), as well as 

symbols representing each individual study are included. 
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Figure 3.4. Muscle moment arms of the rotator cuff muscles predicted by the present FE 

model in comparison to previously published experimental and computational results at 

30° (left) and 60° (right) of glenohumeral (GH) scaption. Note: each symbol represents a 

different study, some of which reported moment arms for multiple bundles of one muscle. 

The present FE model predicted muscle paths that resulted in moment arms of the 

rotator cuff muscles that generally fell within the ranges of both experimental and 

computational studies62,63. The exception is the supraspinatus, which fell only in the range 

of experimentally determined values for both positions. The broad ranges of computational 

moment arms for the subscapularis at both positions are likely a result of its broad 

attachment footprint on the anterior portion of the scapula and the selection of the modeled 

or measured portion(s) in each of the studies. 

3.2.3.b Abduction 

Elevation moment arms for all seven muscle bundles represented in the current 

(anatomic shoulder) model are compared to one experimental study (Ackland et al.61,66) 

and two computational models (Holzbaur et al.24 and Webb et al.60) in Figure 3.5 for 

abduction from 0° to 90°. Note that Webb et al.60 included volumetric, multi-fiber 

representations of muscles, and therefore the range of moment arms for all fibers 

composing each muscle is depicted.  
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Figure 3.5. Elevation moment arms of the seven muscle bundles represented by the present 

FE model in comparison to previously published results24,60,61,66 from 0° to 90° of 

abduction. 

Pearson correlation coefficient values between data by Ackland et al.66 and both the 

current FE model and the musculoskeletal model by Holzbaur et al.24 are shown in Table 
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3.2 for elevation moment arms throughout abduction. The average RMS errors between 

the FE model predicted moment arms and the moment arms generated using the 

musculoskeletal model by Holzbaur et al.24 are as follows: 2.2, 1.9, 1.2, 0.4, 0.2, 0.5, and 

0.1 cm for the anterior deltoid, middle deltoid, posterior deltoid, supraspinatus, 

infraspinatus, subscapularis, and teres minor, respectively. 

Table 3.2. Pearson correlation coefficient values comparing moment arms from Ackland 

et al.66 with the current FE model for abduction and flexion of the shoulder before and after 

rTSA implantation as well as moment arms from the musculoskeletal model by Holzbaur 

et al.24 for the anatomic shoulder through abduction and flexion. Note: ‘-‘ indicates that no 

data was available for the corresponding combination of muscle, motion, and implantation 

status. 

  
A. 

delt 

M. 

delt 

P. 

delt 
Supsp Infsp Subscap 

T 

min 

Anatomic 

abduction 

FE model 0.98 0.85 0.80 0.89 0.62 0.99 -0.62 

Holzbaur 

et al.24 
0.99 0.25 -0.86 0.98 -0.93 0.96 -0.80 

Anatomic 

flexion 

FE model -0.27 0.78 -0.98 -0.97 -0.62 -0.81 -0.94 

Holzbaur 

et al.24 
-0.55 0.68 0.84 -1.00 -0.80 -0.94 -0.80 

Implanted 

abduction 
FE model 0.95 0.97 0.60 - - 0.08 - 

Implanted 

flexion 
FE model 0.73 0.97 0.58 - - -0.72 - 

 

In general abduction moment arms for all muscle bundles in the anatomic shoulder 

fell within, or very close to, the range of moment arms determined by Webb et al.60, with 

the exception of the anterior deltoid (Figure 3.5). The present FE model predicted that the 

anterior deltoid was an adductor until roughly 80° of abduction. Experimental results from 

Ackland et al.61 and computational results from the model by Holzbaur et al.24 indicate that 

the anterior deltoid is either always an abductor, or transitions to one earlier in abduction. 

However, all results agree that the contribution of the anterior deltoid to abduction 

increases with abduction angle, evidenced by the Pearson correlation coefficient values 
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close to one in Table 3.2. Discrepancies in the moment arms of the anterior deltoid could 

be attributed to the complications in muscle wrapping imparted by the acromion on the 

scapula. In general, the changes in moment arms of the anatomic shoulder throughout 

abduction are captured well by the FE model when comparing to the experimental data by 

Ackland et al.61 (Table 3.2), except for teres minor. The model by Holzbaur et al.24 exhibits 

strong negative correlations for the posterior deltoid, infraspinatus, and teres minor. 

Ackland et al.66 reported abduction moment arms for three bundles of the deltoid 

and the subscapularis before and after rTSA implantation. Comparisons of these to the 

current model are shown in Figure 3.6. It should be noted that pre-operative data is the 

same as that presented in Figure 3.5. Pearson correlation coefficient values before and after 

implantation are shown in Table 3.2. Implantation of the shoulder with rTSA caused 

average moment arm increases of 1.2, 1.3, and 1.2 cm for the anterior, middle, and posterior 

deltoid, respectively in comparison to the anatomic shoulder using the current FE 

technique. 
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Figure 3.6. Elevation moment arms for the anterior deltoid (top left), middle deltoid (top 

right), posterior deltoid (bottom left), and subscapularis (bottom right) before (circles) and 

after rTSA implantation (triangles) during abduction. Black lines indicate predictions of 

the current model and grey lines represent experimental data from Ackland et al.66. 

The effects of rTSA on the abduction moment arms of the deltoid are in good 

agreement, where strong positive correlations and universal increases in the abduction 

moment arms are observed between 0°-120° of abduction (Table 3.2 and Figure 3.6). For 

the anterior and middle deltoid, Ackland et al.66 observed mean moment arm increases of 

1.1 and 1.6 cm, respectively, across eight cadaveric specimens after rTSA versus 1.2 and 

1.3 cm increases, respectively, in the present model. These findings agree with the 

biomechanical premise of rTSA, where medializing the COR of the joint is meant to 
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increase the abduction moment arms of the deltoid, thereby reducing the required force 

generation. 

3.2.3.c Flexion 

Pearson correlation coefficient values are shown for all muscles in Table 3.2 

comparing elevation moment arms during flexion from Ackland et al.61,65 to moment arms 

generated using the current FE model and the musculoskeletal model by Holzbaur et al.24 

for the anatomic shoulder. Average RMS errors between the moment arms from the two 

computational models were 2.2, 1.3, 0.9, 0.8, 0.4, 0.2, and 0.1 cm for the anterior deltoid, 

middle deltoid, posterior deltoid, supraspinatus, infraspinatus, subscapularis, and teres 

minor, respectively. 

Ackland et. al66,67 also reported elevation moment arms of the deltoid bundles and 

subscapularis after rTSA implantation, for which comparisons are shown in Table 3.2 and 

Figure 3.7. The current model predicted average increases of 1.3, 1.2, and 0.9 cm in the 

flexion moment arms of the anterior, middle, and posterior deltoid, respectively, following 

implantation of rTSA. 
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Figure 3.7. Elevation moment arms for the anterior deltoid (top left), middle deltoid (top 

right), posterior deltoid (bottom left), and subscapularis (bottom right) before (circles) and 

after rTSA implantation (triangles) during flexion. Black lines indicate predictions of the 

current model and grey lines represent experimental data from Ackland et al.66. 

Although some negative correlations were observed for flexion of the anatomic 

shoulder between Ackland et al.61 and both the FE model and the musculoskeletal model 

by Holzbaur et al.24, the RMS errors between the FE and musculoskeletal model showed 

reasonable agreement. Additionally, moment arm trends in flexion following rTSA were 

in good agreement with Ackland et al.66 (Table 3.2). Mean increases of the middle deltoid 

moment arm were 1.4 and 1.2 cm in the study by Ackland et al.66 and the present model, 

respectively, after rTSA. The present model indicates that there is increased contribution 

of the anterior deltoid to flexion throughout the motion after rTSA, whereas Ackland et 
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al.66 predicts more contribution of the anterior deltoid in natural anatomy after about 60°. 

Both experimental and computational results indicate decreased contribution of the 

posterior deltoid to extension following rTSA implantation. 

3.2.3.d Axial Rotation at Neutral Elevation 

Axial rotation moment arms predicted by the FE model in comparison to moment 

arms predicted by four other computational models24,60,62,64 are shown in Figure 3.8. 
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Figure 3.8. Axial rotation moment arms of the seven muscle bundles represented by the 

present FE model in comparison to previously published results24,60,62,64 rom 45° internal 

rotation to 45° external rotation with the arm at neutral elevation. Negative joint angles and 

moment arms indicate internal rotation. 
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Hamilton et al.64 reported axial rotation moment arms of the external rotators, 

namely the posterior deltoid, infraspinatus, and teres minor, before and after implantation 

of several different configurations of rTSA. The implant configuration that best matched 

the one used in this study was chosen for comparison. Moment arms before and after 

implantation are shown in Figure 3.9. 
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Figure 3.9. Rotation moment arms for the posterior deltoid (top), infraspinatus (middle), 

and teres minor (bottom) before (circles) and after rTSA implantation (triangles). Black 

lines indicate predictions of the current model and grey lines represent experimental data 

from Hamilton et al.64. Positive joint angles and moment arm values represent external 

rotation. 

Similarly to abduction, axial rotation moment arms with the arm at neutral elevation 

of all seven muscle bundles represented by the present FE model fell within, or close to the 

range of moment arms presented by Webb et al.60 (Figure 3.8). The FE model by Favre et 

al.62 predicts greater changes in moment arms of the middle and posterior deltoid with 
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changes in joint angle than either the present model or the model by Holzbaur et al.24. In 

contrast, the Holzbaur et al.24 model shows greater variation in the moment arm of the 

anterior deltoid with changes in joint angle than do the present model and that by Favre et 

al.62, which both agree with findings by Webb et al.60. 

Good agreement for the infraspinatus, subscapularis, and teres minor is observed 

between the present model and all other models used for comparison, where the 

infraspinatus and teres minor are the dominant external rotators of the rotator cuff, while 

the subscapularis is the dominant internal rotator. All models also show that the 

supraspinatus transitions from an internal to external rotator between 45° of internal to 

external rotation, although there is disagreement regarding the position at which this 

happens. 

A model by Hamilton et al.64, in which muscle paths were determined by 

identifying contact points between muscles and bones, was used to determine rotation 

moment arms of the external rotators before and after rTSA implantation (Figure 3.9). The 

effects of rTSA on the external rotation moment arms of the posterior deltoid are small in 

comparison to the infraspinatus and teres minor. In both the present model and the model 

by Hamilton et al.64, the contributions of the infraspinatus and teres minor to external 

rotation after rTSA surpass those in natural anatomy with increasing external rotation 

angle. However, the current model indicates that this occurs before neutral axial rotation 

when moving from internal to external rotation. This indicates that the efficacy of rTSA in 

maintaining or restoring external rotation may depend specifically on the condition the 

infraspinatus and teres minor, as restoration of external rotation with rTSA is a known 

problem15. This would be dependent on post-operative muscle lengths and whether they 
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fall within the operating range of the force-length curves, as rTSA may slacken remaining 

rotator cuff muscles by medializing the COR. 

3.2.3.e Axial Rotation at Varying Levels of Abduction and Flexion 

Pearson correlation coefficient values are shown in Table 3.3 for FE model 

predicted moment arms versus those reported by Ackland et al.66,67 in experimental studies 

reporting axial rotation moment arms at varying levels of abduction and flexion before and 

after implantation of rTSA. 

Table 3.3. Pearson correlation coefficient values comparing FE model and 

experimental66,67 rotation moment arms from 45° internal rotation to 90° external rotation 

at elevation angles of 30°, 60°, 90°, and 120° of flexion and abduction for anatomic and 

implanted configurations. Note: for consolidation, rotation moment arms at all degrees of 

elevation in the respective elevation planes were concatenated and then analyzed. 

  
A. 

delt 

M. 

delt 

P. 

delt 
Supsp Infsp Subsc 

T 

min 

Anatomic 
Abd -0.28 0.64 0.73 0.30 0.63 -0.21 -0.38 

Flex 0.53 -0.35 0.47 0.89 0.90 0.52 0.90 

Implanted 

 

Abd 0.35 0.77 0.09 0.86 0.28 0.77 0.22 

Flex 0.45 0.07 0.81 0.62 0.69 0.83 0.45 

 

As shown in Table 3.3, the present model shows good correlation with results 

presented by Ackland et al.65,67 regarding axial rotation moment arms of the shoulder 

muscles before and after rTSA with the arm at varying levels of abduction and flexion. 

Differing trends, represented by negative Pearson correlation coefficient values, were 

observed in the anterior deltoid, subscapularis, and teres minor during abduction, as well 

as the middle deltoid during flexion in the anatomic shoulder. In all other cases, positive 

correlations were observed for both the anatomic and implanted conditions, indicating that 

the present model was producing changes in moment arms consistent with the experimental 

data during axial rotation at varying degrees of abduction and flexion. 
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3.2.4 Validation Conclusions 

Two possible sources for discrepancies in moment arms across the studies used for 

validation include size and shape variation of bony geometry. The model by Holzbaur et 

al.24, from which the bone geometry for the present model was taken, used bones 

representative of a subject with the height of a 50th percentile male, or roughly 170 cm. 

Studies that used bony geometry from a cohort of subjects in which this specific 

demographic was not well represented may have determined resulted in different moment 

arm values. The present technique could easily be adapted to use bone geometries 

representing other subject populations to determine differences in muscle paths and 

moment arms resulting from both variable bone geometry and implantation. 

The limitations of this model are inherent to using a line segment representation of 

muscle bundles, where it is not possible to capture variable contributions of an entire 

muscle. The rotator cuff muscles were represented by single bundles, because modeling 

multiple bundles per muscle would greatly decrease the computational efficiency of the 

model. However, given that the intended use of this technique is directly related to rTSA, 

the muscle of highest importance is the deltoid, which was represented by three bundles. 

Although muscle-bone interactions of individual fibers are likely close to frictionless, 

support that would be provided by surrounding fibers was simulated using frictional 

contact in order to constrain unrestricted slipping of muscle bundles over bony surfaces 

during motion, however large changes in moment arms were observed with small changes 

in joint angle in a limited number of scenarios where a muscle bundle first lost contact with 

a bone during a motion (i.e. the middle deltoid in Figure 3.5). In the interest of 

computational efficiency, interactions between different muscle fibers was not modeled, 
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when in reality, muscle paths may be affected (i.e. the deltoid must wrap over top of the 

rotator cuff). In the future, the effects of including these interactions should be studied. 

The presented FE model provides a viable solution to predicting muscle paths 

throughout the complex motion of the shoulder in both the anatomic shoulder and one 

implanted with a reverse shoulder. The model shows acceptable agreement with results 

available in the literature for muscle moment arms of an anatomic and implanted shoulder 

and is easily adapted to incorporate varying bone and implant geometries. In the context of 

the objectives of this research, a tool was developed to allow for the evaluation of muscle 

capability in the context of ROM. 

3.3 Stability 

3.3.1 Background 

In addition to the impingement model and the FE model from which muscle paths 

can be used in static optimization to determine the capability of the muscles, a tool to 

characterize the stability of the implant in the context of the JCFs resulting from muscle 

action was necessary. An analytical model to predict the amount of shear force required to 

dislocate a ball-and-socket geometry was validated both experimentally and with and FE 

model in order to ensure that it could be applied to the evaluation of joint stability in the 

context of physiologic muscle forces.  

3.3.2 Methods 

3.3.2.a Analytical Model 

 The analytical model, which is a modified version of one originally developed to 

assess stability of conventional TSA43,68, relates shear force to dislocation (FTD) to 
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geometric parameters of ball-and-socket geometries (Figure 3.10), friction coefficient, and 

compressive force and is given by:  

 𝐹𝑇𝐷 = 𝐹𝑁 ∗
tan(𝜃)+µ

1−µ∗tan(𝜃)
 Eq. ( 3.1 ) 

where FN is the compressive force, θ is the incidence angle between the ball and the socket, 

and µ is the coefficient of friction between the materials. The incidence angle is given by: 

 𝜃 = atan (
√2𝑑

𝑅
 − (

𝑑

𝑅
)
2

(1 −
𝑑

𝑅
 )

) Eq. ( 3.2) 

where d is the depth of the socket, and R is the matching radius of the ball and socket. 

 
Figure 3.10. The parameters used in the analytical model to calculate the shear force require 

to dislocate the joint (FS) as a function of compressive force and implant geometry. 

3.3.2.b Validation Approach 

 Although the analytical model was validated by Gutiérrez et al.43 for compressive 

loads up to 200 N, several studies have since found that compressive JCFs after rTSA may 

exceed this level, especially when lateralizing the joint COR69-70. Therefore, experimental 

and FE model validation was performed to ensure the validity of the mathematical model 

in the presence of compressive loads up to 600 N. Experimentally, a 38.1 mm diameter 
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stainless steel ball was mounted to a threaded rod, the protruding end of which was used 

for attachment to the VIVO. UHMWPE sockets with depths of 6, 9, and 12 mm were 

machined to match the curvature of the ball and attached to the VIVO using a custom 

fixture. Compressive loads ranging from 50-200 N in 50 N increments, as well as a 600 N 

load, were applied using deionized water to lubricate bearing surfaces. At each 

compressive loading level, pure shear displacements were applied to the socket in four 

orthogonal directions (Figure 3.11). Maximum shear force measured by the load cells on 

the VIVO was recorded. The shear FTD was taken as the average of the maximum shear 

forces across the four trials. 

 
Figure 3.11. The experimental setup where varying levels of compressive force were 

applied and the socket was displaced in four orthogonal, pure shear directions. 

 An FE model replicating the experimental set-up was developed in Abaqus 6.14, 

where geometries were meshed with quadratic tetrahedral elements (C3D10M) with an 

average element edge length of 3 mm. Material properties of the ball were assigned as that 
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of 304 stainless steel: an elastic modulus of 200 GPa and Poisson’s ratio of 0.2971. The 

UHMWPE cup was assigned an elastic modulus of 830 MPA and Poisson’s ratio of 0.472. 

The Abaqus “hard” normal pressure-overclosure and frictional contact with a coefficient 

of 0.05, that between polished stainless steel and UHMWPE lubricated with water73, were 

used. The varying levels of compressive loads applied experimentally were simulated as a 

pressure applied to the flat surface of the socket opposite the articulating surface directed 

toward the ball. The socket was displaced in a pure shear direction and shear FTD was 

taken as the sum of nodal reaction forces in that direction. 

 The analytical equation was used to calculate shear FTD for the various geometrical 

configurations and loading levels and results were compared across all methods by 

calculating intra-class correlation (ICC) coefficients using a two-way mixed model 

checking for absolute agreement in SPSS 25 and percent differences. 

3.3.3 Validation Results and Discussion 

 Results from all methods are shown in Figure 3.12. Average measures ICC 

coefficients were 0.94, 0.987, 0.981 and between the analytical and experimental, 

analytical and FE model, experimental and FE model results, respectively. Analyzing all 

three methods concurrently yielded an ICC coefficient of 0.98. The average percent 

differences in shear FTD across all loading levels between the analytical predictions and 

experimental results were 15.0 ± 10.7%, 18.0 ± 13.1%, and 23.5 ± 18.9% for 6, 9, and 12 

mm socket depths, respectively. Similarly, average percent differences between 

experimental results and FE model predictions were 5.9 ± 4.9%, 9.4 ± 6.9%, and 11.8 ± 

10.3% for 6, 9, and 12 mm socket depths, respectively. 
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Figure 3.12. Shear FTDs predicted by the analytical and FE models and measured in the 

experiment at various compressive loading levels for sockets with depths of 6 mm (left), 9 

mm (middle), and 12 mm (right). 

Analytically predicted shear FTDs showed strong correlations with experimental 

and FE model results at all socket depths, with an ICC coefficient of 0.98 when analyzing 

all three methods concurrently. With a 6 mm socket depth, which was used for the implants 

investigated in this study, average differences of 15.0 ± 10.7% were observed across all 

compressive loading levels between mathematical and experimental results. FE model 

results were nearly always bounded by the alternate methods of shear FTD prediction 

(Figure 3.12), indicating that the mathematical model may not account for the effect of 

localized elastic deformation of the UHMWPE socket at the contact site, which is 

exacerbated at higher compressive loading levels.
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Chapter 4. Development and Implementation of a 

Novel Metric for Characterizing Implant 

Performance Related to ROM

  

Subsequent to the development and validation of computational methods capable of 

analyzing impingement, muscle capability, and implant stability at variable arm positions, 

a metric to characterize ROM of any given implant configuration was developed. After 

conceptual development of the metric and implementation of the validated computational 

methods in its evaluation, it was calculated for a subset of variable implant parameters. 

This was to ensure that the metric (as well as the computational pipeline used in its 

determination) was sensitive to changes in implant design, such that it could be 

implemented in design optimization as the objective function. 

4.1 Methods 

4.1.1 ROM Metric 

4.1.1.a Conceptual Development 

The ROM of any given implant configuration is based on articulating the implanted 

bones through a set of continuous motions comprising the ROM of an anatomic shoulder 

and determining which portions of the motion envelope are eliminated by impingement, 

muscle incapability, or instability. The humerus is first axially rotated to angles between 
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90° internal and 90° external by increments of 15° at neutral elevation. At each rotation 

angle, the humerus is then elevated in planes with angles ranging from -90° (extension) to 

120° by increments of 30°. Feasibility of static positions at 10° increments of elevation in 

each plane and rotation angle is determined based on each of the three arm position 

feasibility criteria. 

For a given internal/external (IE) rotation angle, a map of the ROM can be 

generated on a unit sphere by plotting binary data indicative of feasibility at spherical 

coordinates corresponding to arm positions, where longitude represents elevation plane 

angle and latitude represents elevation angle23. Points at which the arm positions are 

feasible are connected to form regions, illustrated with an anatomic shoulder in Figure 4.1. 

The percent surface area of the sphere covered by the feasible region is calculated.  

 
Figure 4.1. Maps of feasible ROM at different IE rotation angles are generated by 

connecting coordinates of feasible arm positions to form regions on the surface of a sphere, 

represented by green. 
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The percent surface area of the sphere covered by the feasible region is calculated. 

The same procedure is repeated at all IE rotation angles. Global circumduction ROM (GC-

ROM) of an implant configuration is defined as the average feasible ROM across all 

rotation angles (Figure 4.2). 

 
Figure 4.2. Global circumduction ROM (GC-ROM) is calculated as the average surface 

area covered by feasible regions, represented in green, across all IE rotation angles (90° 

internal and 90° external by increments of 15°). 

For any implant configuration, a baseline ROM, that of the anatomic shoulder, is 

first narrowed by positions where impingement occurs. Within the maximum 

impingement-free limits, positions are then evaluated based on muscle capability and 

subsequently, stability. In other words, positions where impingement occurs are not 

evaluated based on any other criteria, and positions where the muscles are incapable of 

generating sufficient forces are not evaluated for stability. The general workflow for 

determining the ROM is shown in Figure 4.3. 
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Figure 4.3. A flow chart outlining the progression through the various analyses 

implemented to determine ROM of any given implant configuration. 

4.1.1.b Implementation of Validated Computational Methods in Determination of Arm 

Position Feasibility 

The impingement criterion is evaluated via a straightforward implementation of the 

model described in section 3.1.1, where intersection Boolean operations are performed at 

each static position to check for interference.  

Muscle capability is evaluated using the FE-to-musculoskeletal model technique 

described in section 3.2.1 to determine muscle paths at any given arm position. Once 

muscle paths from the FE model are implemented in an adapted version of the Holzbaur et 

al. musculoskeletal model, muscle forces are evaluated using the static optimization tool 

in OpenSim 3.3. 

It should be noted that the muscle model implemented in the original Holzbaur et 

al.24 model was the Schutte 1993 model74, which does not account for force-velocity 

relationships. Therefore, the Millard 2012 Equilibrium muscle model75, which offers 

improved formulations of force-length-velocity relationships, was substituted, but 
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physiologic scaling parameters (i.e. max isometric force, etc.) were consistent with the 

Holzbaur et al.24 model. 

Reserve actuators were used on each motion coordinate (elevation plane angle, 

elevation angle, and rotation angle) during static optimization. Reserve actuators are 

capable of producing torque, in addition to that from muscle action, in order to mitigate 

possible model “weaknesses” and torque imbalances at a joint that result from using line-

segment representations of volumetric muscles. The muscle capability criterion is based on 

distinguishing which positions require excessive extra torque contribution in addition to 

what the muscles are able to provide. Any given arm position is considered infeasible if: 

the elevation angle reserve actuator contributes more than 5% of the total elevation joint 

torque, or either the elevation plane angle or axial rotation reserve actuators individually 

contribute more than 10% of the total elevation joint torque. 

 Joint stability of a given arm position is determined using Eq. 3.1 and Eq. 3.2 

outlined in section 3.3.1. The sufficient muscle force configurations are used in conjunction 

with tools in OpenSim to conduct a JCF analysis. The JCFs are resolved into shear and 

compressive components in relation to the implant geometry/position. Using the 

compressive force, implant geometry parameters, and a coefficient of friction of 0.05 

(UHMWPE on cobalt-chrome), the shear FTD is calculated. If the actual shear force 

component is greater than the calculated shear force required to initiate dislocation, then 

the corresponding arm position in considered infeasible. 

4.2 Results: ROM metric for a subset of implant configurations 

 GC-ROM of nine candidate implant configurations was evaluated. The implant 

configurations consisted of combinations of three glenoid lateralizations (GLat) of 0, 5, 
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and 10 mm and three neck-shaft (NS) angles of 135°, 145°, and 155°, shown in Figure 4.4. 

GC-ROM was then calculated for each configuration based on the order in which the 

criteria were evaluated, i.e. impingement only, impingement and muscle capability, and 

impingement, muscle capability, and stability. As rTSA is most commonly performed to 

mitigate issues caused by a cuff tear, the subscapularis was the only rotator cuff muscle 

simulated when analyzing the active criteria, meaning that all other rotator cuff muscles 

had maximum isometric forces of zero in the musculoskeletal model. Fiber lengths and 

maximum forces of the middle deltoid and subscapularis were calculated with the arm in 

the neutral position, the purpose of which was two-fold: ensure the sensitivity of the 

computational pipeline for determining muscle forces to changes in implant design and to 

aid in assessing validity of trends in GC-ROM results. ROM in abduction and flexion 

through all rotations angles was plotted for one implant configuration (0 mm GLat, 155° 

NS angle) based on each limiting factor to illustrate the effect of rotation angle in a single 

elevation plane. 
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Figure 4.4. Nine implant configurations consisting of combinations of three glenoid 

lateralizations (top row) and three neck-shaft angles (bottom) row were evaluated for post-

operative ROM. 

Normalized fiber lengths and maximum possible forces for middle deltoid and 

subscapularis with the arm in the neutral position are shown in Table 4.1, as a function of 

implant configuration. Increasing GLat by 5 mm caused average increases of 9 N and 116 

N in the maximum possible forces of the middle deltoid and subscapularis, respectively. 

Similarly, increasing NS angle by 5° caused an average increase of 13 N and decrease of 

57 N for the maximum middle deltoid and subscapularis forces, respectively. 

Table 4.1. Normalized fiber lengths and maximum possible force of the middle deltoid and 

subscapularis with the arm in the neutral position for the various implant configurations. 

  

The effect of the successive addition of ROM criteria on GC-ROM is shown in 

Figure 4.5. GC-ROM values were averaged across all IE rotation angles (13) that were 

simulated, and as such, the corresponding standard deviations were also calculated. GC-
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ROM based on impingement ranged from 36.6 ± 13.1% to 43.8 ± 11.3%. Increasing GLat 

from 0 to 5 mm and 5 to 10 mm caused average increases in GC-ROM of 4.2% and 2.5%, 

respectively. There were no universal effects of varying NS angle on impingement-free 

ROM that were independent of GLat; in other words, the effect of NS angle was dependent 

on the value of GLat. However, including muscle capability and stability as ROM criteria 

results in distinguishable effects of varying NS angle, independent of GLat, and variable 

effects of GLat depending on NS angle. When all three criteria were considered 

simultaneously, GC-ROMs ranged from 5.1 ± 3.7% to 11.9 ± 5.5% with an average 

increase of 2.3% when increasing the NS angle by 10°. Increasing GLat from 0 to 5 mm 

resulted in an average GC-ROM increase of 2.0%. The effect of increasing GLat from 5 to 

10 mm was dependent on NS angle, where a decrease in GC-ROM was observed in 

combination with a NS angle of 145°. 
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Figure 4.5. Average GC-ROM values and standard deviations across all rotation angles of 

the various implant configurations based on the successive addition of arm position 

feasibility criteria. 

The effect of axial rotation angle within representative single-plane motions 

(abduction and flexion) is illustrated in Figure 4.6 for a representative implant 

configuration (GLat = 0 mm, NS angle = 155°), where arm positions are represented as 

boxes comprising a grid; infeasible positions are shaded based on which ROM criterion 

was the limiting factor. It should be noted that positions where impingement occurred were 

not evaluated for either of the other criteria, and positions where muscles were insufficient 

were not evaluated based on stability. For abduction and flexion, respectively, 71% and 
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45% of arm positions were feasible. Of the allowable positions, 45% and 53% fell between 

30° of internal and external rotation for abduction and flexion, respectively. 

 
Figure 4.6. ROM in abduction (left) and flexion (right) at all rotation angles of the implant 

configuration having a GLat of zero mm and NS angle of 155° based on the different 

feasibility criteria. Negative rotation angles indicate external rotation. Note: any position 

where impingement occurred was not evaluated for any other criterion, and positions where 

muscles were incapable were not evaluated for stability. 

4.3 Discussion 

The concept of GC-ROM was developed to provide a single metric representative 

of post-operative implant performance encompassing passive and active factors that are 

considered within the comprehensive ROM of the joint. The basis of GC-ROM is similar 

to the “globe system” described by Doorenbosch et al.23, where elevation plane angle and 

elevation angle are represented by spherical coordinates on a globe with its center 

corresponding to the COR of the shoulder; this is analogous to the convention adopted for 

joint angle descriptions in the Holzbaur et al.24 musculoskeletal model. The concept has 

been adapted to represent GC-ROM, where there can be a different globe for each axial 

rotation angle, and allowable ROM at each axial rotation angle is represented by surface 
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regions on the globe representing feasible arm positions, the areas of which can be 

calculated for a quantitative description of ROM. Averaging the values for allowable ROM 

across all rotation angles thus provides a single metric characterizing shoulder mobility, 

which for the purposes of this research is determined specifically for investigating 

candidate rTSA designs, but is not limited to only this application. Previous studies related 

to ROM of rTSA generally characterize ranges of motions that are contained within single 

paths (i.e. abduction, flexion, axial rotation), where the most common metrics are the limits 

of the motions studied. However, conclusions pertaining to implant performance drawn 

from a subset of investigated motions may be misleading: trade-offs between increasing 

ranges of certain motions (abduction/adduction, and scaption), while decreasing ranges of 

others (flexion/extension and IE rotation) have been reported32–37,40. GC-ROM, which 

condenses the analysis of a broader range of motion, provides a single, generalized 

performance metric by which candidate rTSA designs are easily compared. 

 Considering impingement only, increasing lateralization increases GC-ROM 

(Figure 4.5), which is in agreement with previous studies that have reported increases in 

abduction/adduction, flexion/extension, and IE rotation ROM32,33,35,36,38,69. Although the 

impact of NS angle was much less than that of varying GLat, variable relationships between 

NS angle and GC-ROM appear to depend on the level of GLat. Configurations with NS 

angles of 155° were the best and worst performing designs at GLat levels of 0 mm and 10 

mm, respectively, highlighting the importance of considering the combined effects of 

multiple implant parameters simultaneously throughout the comprehensive joint ROM. 

This is supported by Virani et al.35, who showed that different implant designs maximized 

the impingement-free range of different motions. 
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 Upon including muscle capability as a criterion along with impingement, the effect 

of varying GLat remains: increasing GLat increases GC-ROM (Figure 4.4). GLat did not 

appear to have a substantial effect on middle deltoid length or maximum possible force 

with the arm in neutral position (Table 4.1), where increasing Glat by 5 mm increased 

maximum possible force production by an average of only 9 N. Several studies have 

reported increases in JCFs with increasing GLat, which can be attributed to higher deltoid 

force production required to compensate for decreases in elevation muscle moment 

arms69,70,76–78. Together, these factors indicate that increases related to elevation are not 

likely a cause for the increases in GC-ROM. 

Increasing GLat by 5 mm results in an average increase of 116 N in force capacity 

of the subscapularis due to muscle lengthening, which may increase GC-ROM due to 

effects on axial rotation capacity. Similar relationships between GLat and muscle length 

have been reported for the external rotators, the infraspinatus and teres minor64,79,80, which 

could mean further increases in GC-ROM with increasing GLat, depending on the level of 

damage to these muscles. On the other hand, increasing NS angle, and therefore distalizing 

the humerus, could tension the deltoid in a manner that is advantageous in elevation. This 

may come at the cost of compromising IE rotation capacity of the rotator cuff muscles, 

which can be mitigated by increasing GLat (Table 4.1). 

Adding stability into the calculation of GC-ROM decreased the effect of increasing 

GLat, especially at lower NS angles, and amplified that of increasing NS angle (Figure 

4.5). Costantini et al.69 reported an increase in JCFs with increasing GLat, manifesting 

mostly as higher compressive forces on the glenosphere, with some increase in shear as 

well. The decomposition of these JCFs into compressive and shear dislocation forces 
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between the humeral cup and glenosphere is dependent on NS angle. Langohr et al.81 

concluded that contact patterns on the articular surface of the humeral cup were shifted 

from centrally to inferomedially located with increasing NS angle during abduction. This 

is indicative of a higher compressive/shear ratio with higher NS angles, which is related to 

a more stable joint, a relationship that would be predicted by the analytical equation used 

to assess the stability criterion in the calculation of GC-ROM. GC-ROM evaluates stability 

in all planes of motion included, where some motions may result in a generally lower 

compressive/shear ratio due to the resultant directions of JCFs, which are also affected by 

IE rotation angle37 (Figure 4.6) and implant design.  

The increases in GC-ROM as a result of increasing both GLat and NS angle can be 

understood based on the biomechanical changes resulting from varying the implant design, 

and are consistent with previous studies that have reported similar trends for subsets of 

motions. Additionally, while GC-ROM is indicative of average implant performance 

across all rotation angles, standard deviations (Figure 4.5) may provide insight into which 

implants may perform well at some rotation angles, but poorly at others. The standard 

deviations calculated in this study are essentially a measure of circumduction ROM 

variability at different IE rotation angles. A given implant configuration likely has a larger 

ROM at 0° of rotation than at 90° of external rotation (Figure 4.6), and standard deviations 

(Figure 4.5) are indicative of the magnitude of that difference. Considering all three 

feasibility criteria, implant configurations with a 155° NS angle have lower standard 

deviations than those with 135° and 145° NS angles at the corresponding GLat level. This 

indicates that the configurations with a 155° NS angle may have higher GC-ROM values 

due to more consistent performance across all rotation angles. In the future, the technique 
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of evaluating GC-ROM could be adapted to emphasize ROM within ranges that activities 

of daily living most frequently occur to determine if the effects of implant design are 

similar to those observed in this study for the comprehensive ROM. 

The limitations of this study are inherent to using computational modeling in the 

prediction of functional outcomes of rTSA. Firstly, due to the way in which motions of the 

shoulder were defined in the musculoskeletal and FE models with scapulothoracic motion 

based on humeral elevation, GC-ROM does not include an analysis of adduction from 

neutral arm position. Inferior impingement and scapular notching are known problems 

following rTSA8,11,82–84. However, the placement of the glenosphere in this study resulted 

in inferior overhang from the glenoid, which has been shown to decrease the occurrence of 

inferior impingement16,32,36. 

Another limitation is related to the method of determining muscle capability, which 

essentially seeks to distinguish potential physiologic muscle weakness from model 

weaknesses, which can result from modeling muscles as line-segment entities (a well-

established challenge in musculoskeletal modeling). Although this criterion was not 

validated, the OpenSim user manual recommends a maximum of 10% joint torque 

contribution by reserve actuators, which was the maximum threshold for determining 

muscle sufficiency in this study. The effect of implant parameters on factors such as muscle 

length are consistent with previous studies. Additionally, the method of determining arm 

position feasibility based on muscle capability is consistent across all scenarios, allowing 

the elucidation of the effect of implant design.  

Limitations in evaluation of stability relate to using an analytical equation to predict 

shear FTD. Although the FE model may provide a more accurate measure of shear FTD 
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(Figure 3.12), its computational inefficiency is outweighed by that fact that there are likely 

stabilizing contributions of other soft tissues, such as the ligaments and joint capsule which 

are not accounted for in the mathematical model and may lead to a more stable joint than 

predicted. As such, it is an acceptable method for determining joint stability in the context 

of comparing GC-ROM, and therefore implant performance, as the method is also 

consistent across all scenarios. 

 In conclusion, GC-ROM represents a metric that was developed to evaluate passive 

and active factors related to the ROM of rTSA within the comprehensive range of shoulder 

motion. It facilitates the comparison of variable implant configurations in terms of a 

functional outcome. It was shown using GC-ROM that increasing glenoid lateralization 

and neck-shaft angle both affect ROM to varying degrees, depending on the criteria 

included in the evaluation of arm position feasibility, and that trends between implant 

design variations and resulting ROM could be explained by the biomechanical changes 

they imparted. Although the potential applications of GC-ROM are numerous, for the 

purposes of this research it is considered only as a viable metric for implementation in 

design optimization to determine rTSA configurations that maximize post-operative 

functional ROM.
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Chapter 5. Maximizing Overall ROM vs. ROM 

for ADL

 

Chapters 3 and 4 focused on the development, validation, and implementation of 

computational methods and a metric, GC-ROM, to assess ROM of any given rTSA implant 

configuration. Chapter 5 continues the natural progression toward the end goal of MOO 

considering ROM and joint stability by leveraging GC-ROM in single-objective 

optimization to maximize overall ROM, as well as envelopes of motion within which ADL 

are most frequently performed. The following sections discuss methodologies related to: 

the general formulation of the optimization problem, the selection and parameterization of 

design variables, the use of surrogate modeling for objective function evaluation, and the 

modification of the objective function to optimize for different envelopes of motion. 

Finally, the designs that maximize the various ROM envelopes studied are presented and 

discussed. 

5.1 Methods 

5.1.1 Optimization Problem Formulation 

The optimization problem was formulated as follows: 

 Minimize: 𝐽(𝒙) = −𝐽𝐺𝐶−𝑅𝑂𝑀(𝒙)  Eq. ( 5.1 ) 

 Subject to: 𝒙𝑚𝑖𝑛  ≤ 𝒙 ≤  𝒙𝑚𝑎𝑥  Eq. ( 5.2 ) 
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where 𝒙 is a vector of selected implant and surgical parameters and 𝒙𝑚𝑎𝑥 and 𝒙𝑚𝑖𝑛 are 

vectors representing the upper and lower bounds of the design variables, respectively. 

Optimization was performed using the Optimization Toolbox in MATLAB, as was done 

by Willing and Kim85 to optimize knee implant kinematics, where the Sequential quadratic 

programming (SQP) algorithm was used in conjunction with fmincon, which finds the 

minimum of constrained, nonlinear, multivariate functions. GC-ROM was determined 

based on IE rotation angles of -90°, 0°, and 90°. The only rotator cuff muscle modeled was 

the subscapularis. The upper and lower bounds of the design parameters were determined 

such that the implant configurations generated by the optimization algorithm were 

physically realistic (i.e. a glenosphere that doesn’t contact the glenoid is not realistic). 

Additionally, the entire process of calculating GC-ROM was automated.  

5.1.2 Selection and Parameterization of Design Variables 

 Four variables were chosen: GLat, NS angle, inferior offset of the glenosphere 

(CORinf), and humeral lateralization (HLat), which are shown in Figure 5.1. Together, they 

represent of range of both design and surgical placement parameters. It should be noted 

that humeral lateralization was not introduced in Chapter 2, as its effects on functional 

outcomes are relatively less understood in comparison to the other design parameters. 
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Figure 5.1. The four design variables included in design optimization were A) glenoid 

lateralization (GLat), B) neck-shaft (NS) angle, C) inferior offset of the glenosphere 

(CORinf), and D) humeral lateralization (HLat). The classification of each variable in terms 

of implant design or surgical placement is shown.  

For all implant configurations, a hemispherical glenosphere with a diameter of 

36 mm was used in conjunction with a humeral cup depth of 6 mm. The following 

subsections outline the parameterization of the variables chosen for incorporation into the 

optimization problem. 

5.1.2.a Scapular Variables 

 The parameterization of GLat and CORinf were both dependent on a baseline COR. 

The baseline COR was determined by manually fitting a 25 mm diameter circle, 

representing the diameter of a baseplate, to the inferior rim of the anatomic glenoid in a 

plane defined by points on the anterior and posterior rims and reaming perpendicularly 
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toward the glenoid to the minimum depth creating a flat surface (Figure 5.2). The center of 

the circle projected onto this surface served as the baseline COR. 

 
Figure 5.2. The process by which the baseline COR was determined where a 25 mm 

diameter circle was fit to the inferior rim of the glenoid, after which the glenoid was 

virtually reamed to achieve a flat surface. 

Values of 0 mm for both GLat and CORinf result in a typical grammont-style rTSA 

configuration with no COR lateralization and inferior overhang. GLat was accomplished 

with spacers, as demonstrated previously in Chapter 4 (Figure 4.4). It should be noted that 

surgically, GLat may be measured from the anatomic glenoid, however, the convention for 

selecting the point from which to measure varies from surgeon to surgeon. To eliminate 

ambiguity, GLat was measured from the reamed surface and corresponded directly to 

spacer thickness. The lower and upper limits of GLat were selected as 4.8 mm and 16 mm, 

respectively (Figure 5.3). This was based on the assumption that at least some level of GLat 

would be beneficial, which has been concluded by numerous previous 

studies16,29,32,39,70,79,80,86–88.  
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Figure 5.3. The upper and lower bounds of GLat were 4.8 mm (left) and 16 mm (right), 

respectively. 

Inferior (or superior) offset of the glenosphere (CORinf) was also measured from 

the baseline COR in a direction defined by connecting the centers of 25 mm and 29 mm 

circles fit to the anatomic inferior rim. The 25 mm circle was the same used in the definition 

of the baseline COR, and 29 mm is another common baseplate size. With this method, the 

direction in which the glenosphere was offset was based on glenoid anatomy, rather than 

traditional anatomic directions (Figure 5.4). The upper and lower limits for CORinf were 4 

and -4 mm, respectively (Figure 5.5), such that fixation to the glenoid would still be 

feasible.  
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Figure 5.4. The method of defining the direction in which the glenosphere was translated 

to accomplish superior/inferior offset as advised by an orthopaedic shoulder surgeon. 

 

 
Figure 5.5. The upper and lower bounds for inferior offset of the COR were 4 mm (left) 

and -4 mm (right). 



 

 

88 

 

5.1.2.b Humeral Variables 

 NS angle was measured from the long axis of the humerus, which was taken as 

being perpendicular to ground with the arm at neutral elevation (as defined in the Holzbaur 

et al. musculoskeletal model). The version of the humeral component matched that of the 

glenoid component in magnitude, but was in the opposite direction (i.e. the glenoid 

component was anteverted and the humeral retroverted, as measured from anatomic planes 

with the arm in neutral position). The baseline ream depth for a given NS angle was 

determined by the inflection point at the junction between the humeral head and the greater 

tuberosity, as directed by an orthopaedic shoulder surgeon. The baseline position of the 

humeral cup was determined by centering it with a circle fit to the outer edge of the ream. 

The upper and lower limits of NS angle were selected as 130° and 170°, respectively, which 

in greater than the range of commercially available implants. 

Using a traditional Grammont-style onlay humeral cup (that which has been 

depicted thus far), the humerus could be lateralized along the direction dictated by NS 

angle. This would also involve distalizing the humerus and would affect muscle lengths, 

moment arms, and torque generation89. Since the same factors are affected by NS angle 

(Table 4.1), a method of lateralizing the humerus was adopted to eliminate as much 

interdependence of the variables as possible. The ream depth itself was adjusted to 

lateralize the humerus without affecting the superior/inferior offset of the humerus at 

neutral arm position. Measured from the baseline position of the humerus for a given NS 

angle, the upper and lower limits of HLat were selected as 3 and -3 mm, respectively, 

illustrated in Figure 5.6. For clarity, HLat is a measure of humeral translation. Positive 
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values indicate humerus lateralization (medialization of humeral cup on the ream) and 

negative values indicate humerus medialization (lateralization of humeral cup on the ream). 

 
Figure 5.6. The upper and lower bounds for HLat were 3 mm (left) and -3 mm (right), 

which was accomplished by adjusting the ream depth to account for the corresponding 

lateralization of the humerus. Recall increasing HLat moves the humerus away from the 

scapula, while decreasing moves it toward. 

5.1.3 Calculation of the Objective Function Using Surrogate Models 

5.1.3.a Surrogate Model Fitting for GC-ROM  

After selecting and parameterizing implant design variables for the optimization 

problem and the entire computational pipeline to calculate GC-ROM was automated, the 

calculation of GC-ROM using an Intel® Core™ i7-4790 @ 3.60 GHz processor took over 

two and a half hours for any given implant configuration. Due to the unpredictable nature 

of optimization in terms of the number of required function evaluations, computational 

efficiency was of high concern. For this reason, the RSM, outlined in section 2.5.1, was 
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used to generate analytical, quadratic representations of GC-ROM including all terms 

(linear, perfect-square, and interaction) for use in optimization. The sample points for 

fitting the surrogate model(s) were based on 34 full factorial design. The full computational 

pipeline was used to evaluate every rTSA design resulting from selecting one of three 

prescribed values (levels) for each of the four design variables, for total of 81 sample 

points. The levels for NS angle, CORinf, and HLat were selected based on the upper and 

lower bounds prescribed as part of the optimization problem formulation, as well as the 

midpoint (NS angle = 130°, 150°, 170°; CORinf = -4 mm, 0 mm, 4 mm; HLat = 3 mm, 0 

mm, -3 mm). GLat levels were selected as 4.8, 9.6, and 16 mm. Each variable was 

normalized to have values of -1, 0, and 1. Normalized variables and corresponding 

objective function values (GC-ROM) of each design were used in conjunction with the 

least squares method to solve for the coefficients of quadratic equation given by Eq. 2.5 in 

MATLAB, resulting in an analytical representation of GC-ROM. 

5.1.3.b GC-ROM Surrogate Model Assessment 

The efficacy of the surrogate model in predicting optimal rTSA designs was 

assessed in multiple ways. A surrogate model was fit to the GC-ROM values for a subset 

of sample points, namely the nine implant configurations generated by combinations of all 

three levels of GLat and NS angle with CORinf and HLat both equal to zero. The surface 

representation of the surrogate model was plotted in conjunction with design parameters 

and objective function values for the optimal design(s), as well as the sample points used 

for model fitting. This was to ensure that surrogate modeling is a suitable method in 

conjunction with numerical methods for determining optimum designs as they relate to 

maximizing outcomes of rTSA. 
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Additionally, the average absolute and root-mean-square (RMS) errors between 

surrogate model predictions and full model predictions were calculated when using all 81 

sample points to generate the response surface. Similarly, errors between surrogate and full 

model predictions were calculated for a group of 15 random test designs. More importantly 

for application in optimization, the trends in GC-ROM predicted by the surrogate model as 

a result of variations in rTSA design were evaluated using Pearson correlation coefficient 

values. 

5.1.4 Optimizing Overall ROM vs ROM for Activities of Daily Living  

GC-ROM represents the general, overall ROM, which includes IE rotation angle 

from 90° external to 90° internal, and elevation plane angles from -90° to 120°. The rTSA 

design which maximizes this may differ from one that maximizes motions that are 

performed more frequently in ADL. Therefore, the calculation of GC-ROM was modified 

to include varying envelopes within the comprehensive ROM and optimization was 

repeated to investigate the relationships between optimum design and type(s) of motion 

maximized. The different motion envelopes included combinations of negative and 

positive IE rotation and elevation plane angles, for a total of nine (Table 5.1). For example, 

calculating GC-ROM including only IE rotation and elevation plane angles greater than or 

equal to zero would result in an optimized design that maximizes forward/side reaching 

motions. 
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Table 5.1. The different motion envelopes that were maximized included various 

combinations of negative and positive IE rotation and elevation plane angles. 

 

In order to maximize different envelopes of motion, the calculation of GC-ROM 

was discretized by positive and negative IE rotation and elevation plane angles (Figure 5.7) 

for each sample point, and surrogate models were fit to each of the six sub-portions of the 

ROM. In this manner, the linear sum of the predictions of each surrogate model is equal to 

GC-ROM. Using this method, different motion envelopes were maximized by selecting 

different combinations of surrogate models used in the calculation of the objective function 

(Table 5.1).  
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Figure 5.7. The calculation of overall ROM (GC-ROM) can be discretized by both rotation 

angle, each represented by a different sphere, and ± elevation plane angles. In this manner 

variable portions of the ROM can be optimized based on the selection of which portions 

are included in the objective function calculation. 

For every motion envelope, optimization was performed using 100 random start 

points to increase the likelihood of finding the global optimum. Resulting optimum designs 

were compared by quantifying sacrifices in alternate portions of the ROM (those not 

included in the respective objective function). 
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5.2 Results 

5.2.1 Surrogate Model Assessment 

 The response surface generated based on varying a subset of design variables (GLat 

and NS angle) is shown in Figure 5.8. The equation for the response surface was employed 

as the objective function in optimization. The resulting optimum designs correspond to the 

local (pink dot) and global (green square) maxima within the design variable intervals. The 

design that produced the global maximum had a GLat of 16 mm and a NS angle of 145.4°.  

 
Figure 5.8. A plot showing a response surface fit to a set of nine sample points (3 GLat 

levels X 3 NS angles) and the optimal designs resulting from its implementation in 

optimization. Optimization solutions 1 and 2 are global and local maxima, respectively. 

Full model versus surrogate model predictions of GC-ROM for the full set of 81 

samples points are shown in Figure 5.9. The Pearson coefficient, or correlation, between 

the two prediction methods was 0.95 (p < 0.001). Error in the magnitude of predictions 

between the two models was quantified. Considering the sample points only, the mean 
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absolute and RMS errors were 0.4% and 0.7%, respectively, between the full and surrogate 

models. Similarly, in predicting GC-ROM of 15 sample points that were not used to train 

the model, absolute mean and RMS were 0.8% and 0.6%, respectively. 

 
Figure 5.9. A plot showing the GC-ROM predictions of the full and surrogate models for 

the 81 sample points used to fit the response surface. 

 

 

 

 

 

 

 

 

 



 

 

96 

 

5.2.2 Optimum rTSA designs for overall ROM vs ROM for ADL 

Table 5.2 shows the designs that optimized different portions of the ROM.  

Table 5.2 Optimal rTSA designs that maximize the overall ROM, as well as various motion 

envelopes within. Upper and lower bounds for each design variable were: 4.8 mm ≤ GLat 

≤ 16 mm; 130° ≤ NS angle ≤ 170 °; -4 mm ≤ CORinf ≤ 4 mm; -3 mm ≤ HLat ≤ 3 mm. 

 
 

In the case of maximizing variable envelopes within the overall ROM, the motions 

most commonly involved in ADL are those in the forward elevation planes, according to a 

study by Langhor et al.90, who reported that over 80% of time was spent in elevation planes 

with angles greater than -30° for patients with rTSA. As such, the two designs that 

optimized overall ROM and ROM in forward elevation planes (Figure 5.10), including all 

IE rotation angles, were compared for performance in all other motion envelopes studied. 

Additionally, they were analyzed with the full computational pipeline to ensure accuracy 

of the conclusions drawn using the surrogate models. The results are shown in Table 5.3. 



 

 

97 

 

 
Figure 5.10. The design that maximized overall ROM, including all elevation planes (left), 

versus that which maximized motion in forward elevation planes (right).  

 

Table 5.3. A comparison of the performance of designs maximizing overall ROM and 

ROM for ADL in the context of other motion envelopes. Note: performance metrics are 

presented as the raw sum of the percent surface area covered by the feasible ROM on each 

corresponding sphere (IE rotation angle). This is in opposition to averaging the percent 

surface area across all spheres, but allows for a more direct comparison of values in the 

context of variable elevation plane angles included in the calculation. 

 
 

5.3 Discussion 

5.3.1 Surrogate Model Assessment 

Although, the results from Figure 4.5 indicate that designs with NS angles of 155° 

should perform better than the optimum design resulting from employing a surrogate 

model, clear conclusions can still be drawn. In other words, surrogate models may sacrifice 

absolute accuracy of optimum designs, but their use is justified in terms of analyzing 
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trends. It is clear from Figure 5.8 that the extreme values of NS angle will not optimize the 

ROM; the same conclusion would be drawn without the aid of a visual representation. 

Additionally, the computational efficiency of surrogate modeling allows for 

comprehensive searches of the design space in terms of starting points for the optimization 

algorithm, thereby increasing the chance of finding the global minimum within the design 

variable limits. 

Pearson coefficient values close to 1 exemplify very strong positive relationships 

between data sets. In this context, a strong positive correlation is exemplary of the efficacy 

of the surrogate model in predicting changes in GC-ROM as a result of variable rTSA 

design configurations. A very low p-value rejects the null hypothesis that there is no 

correlation between the two data sets (prediction methods), i.e. there is statistically 

significant correlation. This supports that surrogate modeling is capable of being used in 

conjunction with numerical methods to find optimum designs of rTSA because it 1) 

captures trends in GC-ROM due to changes in implant design and 2) shows acceptable 

agreement in predicting magnitudes of the objective function. 

5.3.2 Optimum rTSA Designs for Variable Motion Envelopes  

Among all optimum designs for all motion envelopes maximized, there is universal 

agreement that maximizing inferior placement of the COR is beneficial. Increasing CORinf 

increases impingement-free ROM16,33,36 and may be advantageous in tensioning the deltoid 

for improved torque-generating capabilities. 

Lower levels of GLat and mid-range values for NS angle generally maximize ROM 

regardless of which IE rotation angles are included when 1) all elevation plane angles are 

included and 2) only negative elevation plane angles are included in the objective function 
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calculation. This follows Grammont’s original idea that medializing the COR of the joint 

to increase deltoid moment arms and using non-anatomic NS angles/inferiorly offsetting 

the COR to tension deltoid fibers allows rTSA to restore ROM to the joint8. It is interesting 

to note that the results appear contradictory to those presented in Figure 4.5, where 

increasing GLat increased ROM. This highlights the importance of considering the effects 

of multiple design parameters simultaneously, as their combined effects may differ than 

those of varying each individually. 

Maximizing motions within the forward elevation planes tends to require increasing 

GLat. This is likely a result of modeling the subscapularis as the only functioning rotator 

cuff muscle: it contributes mainly to internal rotation, but the superior portion can act as 

an elevator in forward planes as well, especially at higher elevation angles91. Since 

increasing GLat decreases moment arms of the deltoid, and increases necessary force 

production69,70,77,78,86, functioning rotator cuff muscles may aid the deltoid in elevation 

motions in corresponding planes. For example, the subscapularis may aid deltoid with 

elevation in forward planes. However, in order to do so they must be sufficiently tensioned, 

which can potentially be accomplished by increasing GLat79 (Table 4.1). Additionally, the 

higher levels of GLat are always in combination with higher NS angles, which tension the 

deltoid and increase possible force production (Table 4.1). 

Particularly interesting observations are related to the implant parameter involving 

lateralization of the humerus. All optimum designs involve shifting the humerus medially 

(i.e. decreasing HLat). Previous studies have concluded that increasing HLat increases 

deltoid moment arms, which decreases required deltoid force and JCFs39,70,91–93, which 

should effectively improve ROM. However, a medially offset humerus, which places the 
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cup on the superolateral portion of the humeral ream, may improve impingement-free 

ranges of elevation by avoiding contact between the greater tuberosity on the humerus and 

the inferior acromion.  

5.3.3 Optimum rTSA Designs for Overall ROM versus ROM for ADL 

While design optimization may not necessarily afford the elucidation of individual 

cause-effect relationships related to varying design parameters, the benefit lies in the ability 

to determine the optimum combination of design variable values. In the case of maximizing 

variable envelopes within the overall ROM, the motions most commonly involved in ADL 

are those in the forward elevation planes. This is according to a study by Langhor et al.90, 

who reported that over 80% of time was spent in elevation planes with angles greater than 

-30° for patients with rTSA. The design that maximizes overall ROM versus that which 

maximizes forward elevation motions (considering all IE rotation angles) differ in terms of 

GLat and NS angle (Figure 5.4), which begs the question, which design is the “best”? The 

answer is highly subjective based on a range of factors, but quantifying the relative 

sacrifices of a design within portions of the ROM other than that which was maximized 

may provide some insight. 

As hypothesized, maximizing the ranges of motions within the forward elevation 

planes comes at the cost of a sacrifice in terms of the backward elevation planes, which 

correlates to worse “overall” performance of the design to maximize ROM for ADL. 

Analogous conclusions can be drawn from the data generated using both the surrogate and 

full models. Optimizing for overall ROM requires less of a sacrifice in forward elevation 

planes as compared to the sacrifice in backward elevation planes necessary to maximize 

ROM for ADL (forward planes). However, the clinical significance of these relative 
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sacrifices is unknown and it is possible that the “optimal” design could be chosen based on 

factors that are not considered as functional outcomes within the calculation of ROM. For 

example, increasing GLat results in increased torque and micromotion at the bone-implant 

interface94–96, a topic which we have recently studied and published results for94. In the 

case of increased micromotion, fixation and long-term survivorship of the implant are a 

concern. Therefore, increasing the likelihood of implant survivorship may outweigh the 

gains in ROM for ADL afforded by lateralized designs. These are the types of relationships 

that should be considered in choosing rTSA configurations that maximize ROM (i.e. if 

stability is not a concern).
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Chapter 6. Multi-objective Design Optimization 

of rTSA

 

The final objective of this research was to quantify trade-offs between competing 

functional outcomes of rTSA, namely ROM and stability. Thus far, stability has been 

considered as a ROM limiting criterion; for any given arm position to be considered 

feasible, JCFs resulting from muscle action alone could not dislocate the joint. In this 

manner, stability was essentially a constraint built into the assessment of the objective 

function used to maximize ROM. Stability should also be considered in the context of the 

efficacy of implant designs in resisting dislocation when subjected to additional JCFs, 

which could result from interaction with the environment. For example, additional shear 

forces on the joint could result from lifting an object from the ground. This type of 

functional stability should be maximized, but may come at the cost of sacrificing ROM, 

the trade-offs between which are characterized by the Pareto front resulting from MOO. 

The following sections will discuss the objective function used to characterize stability, 

formulate the general problem for MOO, and finally MOO results will be presented and 

discussed. 
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6.1 Methods 

6.1.1 Development of an Objective Function to Characterize Stability of rTSA 

 As previously mentioned, the stability of rTSA in the context of potentially 

increased JCFs, relative to those resulting from muscle action alone, should be maximized. 

Along those lines, at any given arm position, the worst-case scenario in terms of potential 

joint instability would be the addition of a pure shear force in the same direction as the 

shear component of the JCF resulting from muscle action. Elucidating an average measure 

of additional shear force required to dislocate the joint within the ROM is inherently 

coupled with the size of the feasible ROM envelope, which is not ideal for optimization 

objective functions. The measure of stability for a given implant configuration was 

characterized by the percentage of its ROM that was lost when an additional shear force 

was included in the calculation of the ROM. Feasible positions within the ROM were 

reevaluated and subsequently eliminated if the shear JCF plus an additional shear force (the 

magnitude of which will be discussed next), was greater than the shear FTD calculated 

using Eq. 3.1. GC-ROM was then recalculated and percent difference with respect to the 

original value (not including the extra shear force) represented a metric for stability that 

was uncoupled from the objective representing ROM. A response surface was fit in order 

to predict the value of the stability objective function for any given design in the same 

manner as described for the ROM objective in Chapter 5.  

 The magnitude of extra shear force (Fshear) was chosen to be 100 N. This was based 

on the results of a sensitivity analysis relating the percent ROM lost as a function of extra 

shear force magnitude for randomly selected designs within the set of 81 sample points 

used to train the surrogate model (Figure 6.1).  
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Figure 6.1. The percent ROM lost as a function of increasing additional shear JCF for 

randomly selected designs within the 81 surrogate model training points. Each line 

represents results for a different rTSA configuration. 

 

 The goal was to choose the magnitude of Fshear such that differences in the ROM 

lost as a result were distinguishable among variable implant designs. Too high of an 

additional shear force would cause all implant designs to lose 100% ROM, while a 

magnitude too low would suffer from the opposite. A Fshear of 100 was chosen; Figure 6.1 

shows that at this level of additional shear force, even five random designs display variation 

in terms of the stability metric (% ROM lost). In this regard, maximizing stability would 

equate to minimizing the metric in MOO.  

6.1.2 Optimization Problem Formulation 

 Any bi-objective MOO problem can be formulated as a single objective 

optimization problem by using the weighted sum technique. The general formulation for 

MOO considering ROM and stability is as follows: 
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 Minimize: 𝐽(𝒙, 𝑤) = 𝑤 ∗ −𝐽𝑅𝑂𝑀(𝒙) + (1 − 𝑤) ∗ 𝐽𝑆𝑡𝑎𝑏(𝒙)  Eq. ( 6.1 ) 

 Subject to: 𝒙𝑚𝑖𝑛  ≤ 𝒙 ≤  𝒙𝑚𝑎𝑥  Eq. ( 6.2 ) 

where 𝐽𝑅𝑂𝑀 and 𝐽𝑆𝑡𝑎𝑏 characterize the performance of a given design, 𝒙. The design 

variables, their respective parameterizations, as well as upper and lower bounds 

(𝒙𝑚𝑖𝑛 & 𝒙𝑚𝑎𝑥) remained consistent with the previous chapter. 𝐽𝑅𝑂𝑀was calculated for any 

given implant configuration as described in Chapters 4 and 5 using all IE rotation and 

elevation plane angles (i.e. generalized, overall ROM was considered in MOO).  

 By performing optimization with variable values of the weighting factor (w), which 

is indicative of the relative “importance” of each objective, the trade-offs between the two 

objectives was characterized using a Pareto front. When w is equal to zero, the resulting 

optimum design maximizes stability without considering ROM. Similarly, when w is equal 

to one, the resulting optimum design maximizes ROM without regard for stability. These 

two designs represent the anchor points on the Pareto front and were used to scale each 

function output between zero and one, such that neither dominated the calculation of Eq. 

6.1. Points between the anchor points were characterized by the performance of optimum 

designs resulting from varying the value of w between zero and one by increments of 0.05. 

At each level of weighting factor, the algorithm was initialized using 100 random designs 

as start points, increasing the likelihood of arriving at Pareto optimal designs (i.e. finding 

global optimums along the design variable intervals).  

6.2 MOO Results and Discussion 

 Figure 6.2 shows the Pareto curve resulting from MOO considering ROM and 

stability. Since the goal is to maximize the ROM metric and minimize the stability metric, 

the ROM objective was plotted to represent sacrificing ROM moving from left to right 

along the x-axis. This resulted in a more typical Pareto curve that would be representative 
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of minimizing both objectives. The utopia point, at which both functional outcomes could 

be simultaneously maximized (virtually unachievable if the objective functions are 

competing), would be at the origin. Dominated designs, those that can be improved in terms 

of at least one objective without detriment to the other, have performances above or to the 

right of the Pareto front. 

 As was hypothesized, the depicted Pareto front represents a clear trade-off between 

maximizing either ROM or stability. It is worth investigating which designs resulted in 

some of the key points along the front (Figure 6.2). The designs maximizing ROM without 

regard for stability, and vice versa, are at opposite ends of the spectrum in terms of both 

GLat and CORinf. Both minimize HLat and have NS angles in the upper half of the range. 

To maximize stability or ROM separately, the values of GLat and NS angle should be 

increased (maximizes stability) or decreased (maximizes ROM) simultaneously. Moving 

from maximizing stability to maximizing ROM involves moving the glenosphere from a 

superiorly to inferiorly located position; all except one of the non-dominated points on the 

Pareto front with stability objective function values below 10 (i.e. less than 10% of the 

ROM is sacrificed with the addition of extra shear force) maximized superior placement of 

the glenosphere. Similarly, all but one point with ROM objective function values above 

8% maximized inferior placement of the glenosphere. This could be a result of the fact that 

unstable positions are not part of the ROM to begin with when a superiorly place 

glenosphere is used, and are consequently not lost when additional shear JCFs are 

considered. 
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Figure 6.2. The Pareto front with the dominated designs removed and showing design 

configuration details for the anchor points, which maximize each objective separately. 

Design configuration details for points enclosed within the dashed circle are shown in 

Table 6.1. 

The design configurations that resulted in intermediate performance of both 

objectives (represented by the dashed circle in Figure 6.2) are shown in Table 6.1. All 

designs have maximum CORinf and mid-range NS angles. Interestingly, GLat is either 

maximized or minimized and values of HLat span from the upper to lower bounds of the 

variable. In both designs where GLat is minimized, HLat is also minimized, but designs 

where GLat was maximized, performance was insensitive to HLat (i.e. similar performance 

for various values of HLat).  
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Table 6.1. Design configurations that result in intermediate performance for both objectives 

(those whose performance is represented by the points on the Pareto front within the dashed 

circle shown in Figure 6.2) 

 
 

As was the case with single objective optimization, it is difficult to elucidate cause-

effect relationships of individual design variables in MOO; this is compounded by the 

multi-faceted nature of GC-ROM, where both passive and active ROM criteria are 

included. However, general conclusions can be drawn from the results in terms of insight 

into which combinations of design variables maximize the functional outcomes of rTSA. 

To maximize stability or ROM separately, the values of GLat and NS angle should be 

increased or decreased simultaneously. When it comes to central performance in terms of 

both objectives, it is possible that surgeons are able to choose from multiple implant 

configurations that are likely to maximize factors such as implant fixation and durability 

(wear) without sacrificing performance in terms of ROM or stability. It should be noted 

that factors such as fixation and (wear) were not considered in the present analyses and 

future work  characterizing the effect of implant design on these factors could further 

inform surgeons’ decisions regarding implant  selection.
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Chapter 7.  Summary and Conclusions

 

In pursuit of the final goal of MOO of rTSA to characterize trade-offs between 

functional outcomes of the procedure, several precursory objectives were completed, each 

of which have contributions of their own. 

7.1 Development and Validation of Computational Methods Capable of 

Evaluating Factors Affecting ROM of rTSA 

7.1.1 Impingement 

Since ROM and stability of rTSA are affected by both passive and active factors, 

computational methods capable of assessing each were developed and/or validated. The 

computational model to predict impingement-free ROM was based on performing 

intersection Boolean operations between the humeral and scapular sides of the joint at any 

given arm position. Impingement-free ranges predicted by the computational model were 

experimentally validated for a subset of motions using 3D printed components mounted on 

a VIVO joint motion simulator. 

7.1.2 Muscle Capability 

This is the most impactful portion of this objective, as it addresses a limitation in 

the field of musculoskeletal modeling. Evaluating active factors related to muscle action 

required the development of an FE model capable of accurately predicting anatomically 

feasible muscle paths as a function of joint (implant) geometry. Currently, a common 
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method of determining muscle paths involves calculating the shortest path around 

rudimentary wrapping geometries representing bony anatomy (i.e. cylinders, spheres, 

etc.)97–100. Although this previous method is more computationally efficient than the 

presented FE model, using it in an automated setting would be unreliable, where resulting 

muscle paths may not necessarily always be anatomical feasible within the broad ROM of 

the shoulder. This is a major drawback related to using this method in conjunction with 

techniques such as design optimization. 

Therefore, the FE model was developed and validated for both an anatomic 

shoulder and one implanted with rTSA across a range of motions for which data was 

available in the literature. This ensured that the method was applicable in situations where 

wrapping geometry is variable and the ranges of motion are broad. Although the method 

was specifically developed for the purposes of evaluating muscle forces in variable rTSA 

configurations, it could be applied to analyze other joints/procedures as well. The method 

may be preferable for situations in which motions/wrapping geometries are complicated 

and consequently not conducive to using simple wrapping geometries reliably.  

7.1.3 Dislocation 

The analytical equation adopted for use in evaluating stability of rTSA relates 

implant geometry, friction coefficient, and compressive force to the shear force required to 

dislocate the joint. It was previously validated for compressive loading levels of to 200 N. 

As JCFs in the shoulder have been reported to be higher, the analytical predictions were 

validated using experimental and FE methods at higher loading levels.  
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7.2 Development and Implementation of a Novel Metric for 

Characterizing Implant Performance Related to ROM 

Previous methods of characterizing ROM of rTSA have generally relied on the 

inclusion of motions along a subset of specified paths, for example abduction or flexion, 

in the context of a single factor passive or active factor. In order to optimize the ROM, a 

comprehensive metric, GC-ROM, was developed to compare the performance of variable 

implant configurations in the context of all three limiting factors (impingement, muscle 

insufficiency, and dislocation) throughout a broad range of motions.  

As elevation plane angle and elevation angle are represented by spherical 

coordinates, binary data representing the feasibility of each position investigated is easily 

mapped to a sphere. The previously developed computational methods to evaluate each 

ROM limiting criteria were implemented to determine feasibility of arm positions. The 

feasible positions were connected to form regions, and GC-ROM was calculated as the 

average percent surface area of these regions across all included IE rotation angles, each 

of which was represented by a different sphere. 

To ensure the sensitivity of the metric to changes in implant design, GC-ROM was 

calculated for a subset of implant configurations resulting from combinations of three NS 

angles and three levels of GLat. Trends in GC-ROM resulting from the successive addition 

of ROM feasibility criteria were consistent with previous literature, where increasing GLat 

and NS ultimately increases ROM. It was concluded that a novel, comprehensive metric to 

characterize implant performance in the context of ROM was developed. 
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7.3 Maximizing Overall ROM vs ROM for ADL 

The natural progression toward MOO was to perform single optimization to 

maximize ROM of rTSA using the developed computational methods and metric. The 

selected design variables, GLat, NS angle, CORinf and HLat, were parameterized. 

Subsequently, the computational pipeline for calculating GC-ROM for a candidate implant 

design was automated. 

Following automation of the pipeline, a single evaluation of the objective function 

took over two and a half hours, limiting the use of the entire pipeline in optimization. To 

increase computational efficiency, a surrogate model based on 81 sample designs evaluated 

using the full model was fit using the response surface method. 

In order to characterize potential trade-offs between maximizing different types of 

motion, the calculation of GC-ROM was broken into six portions, each representing a 

different motion envelope, and separate surrogate models were fit for each. In this manner, 

the sum of model predictions was equal to overall GC-ROM (i.e. including all IE rotation 

and elevation plane angles), but the selection of different combinations of models for use 

in the optimization problem elucidated designs that maximized different portions of the 

ROM. It was concluded that similar designs maximized ROM when all elevation plane 

angles and only negative elevation plane angles were included, regardless of IE rotation 

angle inclusion.  

However, a generally different design maximized motions in forward elevation 

planes, and required more sacrifices in other envelopes of the overall ROM. This highlights 

the potential differences in using ROM along certain paths, as the majority of previous 

studies have done, versus a metric representative of the comprehensive ROM to evaluate 
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and optimize functional outcomes of rTSA. Different optimum solutions would result from 

variable methods of characterizing ROM, which should be a consideration in future work. 

7.4 Multi-objective Optimization of rTSA 

Subsequent to the completion of research objectives 1-3, the only missing piece 

required to perform MOO was an objective function to characterize stability. Functional 

stability was defined as the ability of the implant to resist dislocation in the presence of 

shear JCFs additional to those developed as a result of muscle action. This was defined by 

calculating the percent of the ROM lost with the inclusion of an extra shear JCF. 

The Pareto front was generated using the weighted sum method, varying the 

weights between 0 and 1 by increments of 0.05, and repeating optimization with 100 

random start points at each weight. This resulted in a Pareto front that clearly demonstrated 

a trade-off between ROM and stability of rTSA, which was hypothesized to exist. Designs 

maximizing either one of the objectives without regard for the other were similar with 

regard to two of the design variables, and at opposite ends of the spectrum for the remaining 

two. Interestingly, the designs which resulted in intermediate performance with respect to 

both objectives were also variable.  

7.5 Limitations and Future Work 

7.5.1 Validation of Computational Methods used to Evaluate ROM 

Using computational methodologies to assess the ROM of rTSA inherently requires 

assumptions and simplifications, especially when computationally efficiency is a concern. 

In the cases related impingement and dislocation resistance (ROM limiting stability), 

computational models were developed and validated experimentally. Error between the 

analytical equation, FE model, and experimental predictions of force to dislocation was 
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amplified at higher compressive loading levels. It appears that the analytical equation leads 

to an overstated prediction of required force to dislocate a joint. However, given that the 

method was kept consistent across all scenarios, and additional stabilizing forces would be 

provided by soft-tissues such as the joint capsule and ligaments, the method was deemed 

acceptable in terms of analyzing trends in ROM as a function of varying implant design. 

The FE model was developed to aid in the prediction of muscle forces by determining 

muscle paths. The model was validated against available experimental and computational 

muscle moment arm data for both magnitude and trends as a result of changing joint angle. 

Although small-scale sensitivity analyses were performed pertaining to selection of model 

parameters during development, more rigorous investigations of the effect of these 

selections are warranted. Selections, such as the number and size of the contact spheres, 

were loosely based on findings in previous work101,102, but in order to ensure better 

accuracy of the model, especially in terms of moment arm magnitudes, the effect of such 

parameters should be studied further. 

7.5.2 The Use of Surrogate Models in Objective Function Prediction 

The computational cost of evaluating the objective function for ROM of a single 

candidate rTSA design was too great to implement the full computational pipeline in 

optimization. Hence, surrogate models were fit to the results from a selection of sample 

designs representative of the range of each design variable to greatly increase 

computational efficiency of evaluating the objective function. Using surrogate models in 

optimization, in lieu of more computationally expensive evaluations, has both benefits and 

drawbacks. Clearly, the accuracy of the prediction of the real objective function using 

surrogate models is of concern. A surrogate model was fit to a subset of two implant 
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parameters and implemented in optimization. Similar analyses should be performed 

including different combinations of design parameters. Additionally, more sample points 

could be used to train the model. 

The benefit of using surrogate models is that the computational efficiency allows 

for a comprehensive search of the design space in terms of starting designs for the 

optimization algorithm. It would be possible to implement the full model in optimization, 

however it would more difficult to guarantee that globally optimum designs within the 

ranges of the variables are found in a reasonable timeframe. 

7.5.3 Clinical Significance of Objective Functions 

 The objective functions for characterizing ROM and stability of the joint allowed 

for the elucidation of trade-offs between the two functional outcomes, but the objective 

function for stability was highly simplified. Additionally, the clinical significance of 

differences in performance of varying designs is unclear. However, Simovitch et al.103 

concluded that patients receiving rTSA require less improvement in functional outcomes 

in order for the procedure to be considered a success, as opposed to those receiving 

conventional replacements. Future work is warranted in developing a characterization for 

stability that is more easily interpreted, as well as assess the clinical significance of changes 

in the objective functions. 

7.5.4 Considerations Related to Generalizations Drawn from Results 

There are several factors that could affect application of the results presented in this 

body of work regarding overgeneralized recommendations for optimum rTSA designs. 

Only a single shoulder was used within the computational pipeline and there is variability 

in bony anatomy, particularly for the scapula, across different patients104–106. Anatomical 
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variations could have several effects. Smaller scapulae may require the selection of smaller 

implant components, e.g. the glenosphere, which has been shown to decrease ROM in both 

abduction and IE rotation33,107. Additionally, variations in anatomic measurements such as 

the tilt of the acromion with respect to the glenoid would likely affect impingent-free 

motion. It is possible that differences of these sorts may affect the optimum implant design 

for ROM. 

There is also variability in terms of the degree of deficiency in the rotator cuff 

among different patients, where tears may be full or partial thickness of one or more of the 

tendons108. The remaining functionality of the rotator cuff affects the performance of rTSA, 

and could potentially influence the relationships between implant design and functional 

outcomes29,64,79. Along the same lines, variable plastic deformation of soft tissues, such as 

the joint capsule and ligaments, was not accounted for and may affect performance of 

rTSA, specifically joint stability. The mechanics of the joint, related to the scapulothoracic 

rhythm, are altered after rTSA109,110. The contribution of scapulothoracic motion to arm 

elevation is increased, and smaller glenohumeral articulations have been observed in 

comparison to natural anatomy or conventional TSA. However, the underlying 

mechanisms are not yet well understood. Altered joint mechanics would likely affect the 

ROM, and potentially stability, of the joint. It is unclear whether this would affect the 

relative performance of different implant configurations, or the optimum design(s). 

Additionally, only a subset of design and surgical parameters were considered. 

Future work should focus on 1) classifying the effects of variable patient bone geometry 

and degrees of rotator cuff variability on trade-offs between functional outcomes, 2) 

investigating the effect of abnormal joint mechanics, and 3) incorporating more design 
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variables to increase the chances of finding the true optimum design(s). It should be noted 

however, that the presented computational framework could be adapted to incorporate the 

effects of the aforementioned uncertainties.  

7.6 Conclusions 

This work is the first to apply MOO techniques to characterize the trade-offs between 

functional outcomes of rTSA using a Pareto curve. It was confirmed that there is in fact a 

previously unconfirmed competing relationship between ROM and stability, such that 

moving along designs where performance of one metric cannot be improved without 

detriment to the other. 

In order to perform MOO, several sub-objectives were completed, each of which 

addressed relevant challenges and has future implications. The development of the FE 

muscle wrapping model allows for prediction of muscle paths and moment arms in the 

presence of variable joint geometry throughout a broad, complex ROM. It mitigates the 

unreliably and insensitivity of the most commonly used method of determining muscle 

path as the shortest geodesic path around simple wrapping geometries. The methodology 

employed in the FE is widely applicable and could be used to answer a range of clinical 

questions for which the answers rely partially on muscle paths, moment arms, and forces. 

GC-ROM represents a comprehensive metric to characterize performance of rTSA. 

It allows for the evaluation of rTSA designs throughout the comprehensive ROM 

considering multiple limiting factors, whereas previous studies have generally 

characterized implant performance based on single paths of motion in the context of one, 

sometimes two, of limiting criteria. The use of GC-ROM in maximizing the ranges of 

various motion envelopes showed that different optimal designs exist based on the desired 
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motions to be maximized. In other words, the design that maximizes motions most 

frequently performed in ADL differs from that which maximizes the general, overall ROM. 

The computational methodologies and pipeline that were developed to achieve the 

end goal of MOO may be easily adapted to accommodate 1) variable bone geometries, 2) 

varying degrees of pre-operative rotator cuff deficiencies, and 3) an expanded list of 

included implant design and surgical parameters. Thus, a robust basis for future 

investigations pertaining to rTSA designs that maximize functional outcomes of the 

procedure in the presence of a wide variety of scenarios is provided.
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