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Abstract 

 

Our society has made significant advancements in technology as it continues to 

grow in size which in turn has led to an accumulating amount of toxic threats. Some 

types of harmful pollution our society is currently facing include industrial waste such as 

organic dyes, pharmaceutical pollution and chemical warfare agents (CWAs).  To date 

the nerve agent, O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate), also 

known as VX, is the world’s most lethal chemical substance. Some of these deadly nerve 

agents have been employed in various conflict and terrorist attacks. Currently available 

CWA degradation techniques include incineration and water hydrolysis followed by 

biotreatment with enzymes. Drawbacks to these techniques include the selectivity of the 

analyte, degradation of the enzyme over extended treatment time, and lack of robustness 

for practical applications. A more effective approach may be achieved by heterogeneous 

catalysis employing nanostructured materials. Solid catalysts including titania have 

demonstrated a means to effectively destroy CWAs.  

TiO2 is regarded as an efficient photocatalyst for degradation of organic toxins 

due to its strong oxidative power, high stability, low cost, and environmental friendliness. 

TiO2 nanofibers represent an alternative materials approach to conventional nanoparticle 

composites for use in photocatalytic degradation. Nanofibers were fabricated using a sol 

gel synthesis and electrospinning; a non-mechanical, electrostatic process using 

electrically driven jets producing fiberous matt that is followed by a thermal treatment 

resulting in TiO2.  Further modification of TiO2 with metal nanoparticles introduces the 
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area of study known as plasmonics. Materials possess unique optical characteristics that 

can further enhance the destruction of toxic threats. 

The synthesized fibers were used directly in photocatalytic degradations of 2-

chloro ethyl ethylsulfide (CEES) and dimethyl methylphosphonate (DMMP) and were 

found to exhibit enhanced rates of degradation. It was seen that saturation of the TiO2 

nanofibers with water prior to exposure with CEES showed an overall increased the 

degradation under UV irradiation. Photocatalytic degradations of DMMP were designed 

to demonstrate the role of surface area in the degradation process. The comparison of 

nanofibers vs. nanoparticles supports a conclusion that surface area is not a critical factor 

in the degradation of target species. 

Electrospun nanofibers of polymethyl methacrylate (PMMA) and titanium 

triisopropoxide (TTiP) were found to possess catalytic properties when introduced to 

methyl paraoxon, a simulated chemical warfare agent (SCWA). In addition to the 

photocatalytic advantages of these fibers, increased flexibility and durability were 

observed compared to electrospun TiO2 nanofibers.  The resulting fibers would also be 

better compatible with low temperature processing of multifunctional materials including 

metal-organic frameworks (MOFs) and sensors. It is shown that the presence of TTiP 

within the polymer/MOF composite increased percent conversion and lowered the half-

life of the reaction. Results acquired are the best to date according to literature. It has 

been hypothesized there are multiple competing degradation mechanisms that are 

dependent on the source of irradiation used to drive the degradation reaction. 

Plasmonics have inspired a significant amount of interest in various research 

communities for applications in nanophotonics, optics, catalysis, and energy conversion. 
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Materials possessing surface plasmon resonances (SPR), such as silver nanoparticles, 

have been studied and are known to exhibit appealing optical characteristics. Ag 

nanoparticles were deposited on the surface of the TiO2 fiber through a polyol synthesis 

with silver nitrate. The hypothesis is the emission lifetime of Ag-TiO2 will have a smaller 

intensity then that of TiO2, this in turn would mean the recombination rate of electron 

hole pair in Ag-TiO2 is slower than that of TiO2. Degradations of methyl paraoxon with 

TiO2 and Ag-TiO2 did show that the metal deposited TiO2 had an enhancement in the 

percent conversion to the nitrophenoxide product of methyl paraoxon. 

In this work, it is shown there are many factors involved in optimizing the 

photocatalytic performance of TiO2/ polymer composite nanofibers. The combination of 

novel nanotechnology with advancements in photocatalysis will provide new benefits and 

improvements with filtration, and self-decontaminating textiles and paints.  The diversity 

of applications these materials can be incorporated in has the ability to be life changing 

for civilians and warfighters who are in constant threat of toxic agents.  As research in 

this field continues to progress, degradation rates will only continue to increase in 

attempts to achieve airborne decontamination on a time-scale of milliseconds and liquid 

decontamination in seconds. 
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CHAPTER 1: Introduction to Heterogeneous Photocatalysis  
 

1.1 Toxic Threats and Photocatalysis 

 

Remediation of toxic threats continues to be the focus of research with new 

advancements in science that improve on the degradation of organic pollutants.  Some 

types of harmful pollution our society is currently facing include but are not limited to 

industrial waste such as organic dyes, pharmaceutical pollution and chemical warfare 

agents. The challenge is to degrade these harmful compounds in a way that produces 

nontoxic products that pose no threat to humans or the environment.  The goal of our 

work has been to achieve this by complete hydrolysis into non-hazardous compounds 

using heterogeneous catalysts including photocatalysts. 

1.1.1 Environmental Pollution 

 

 Pollution continues to be a topic of interest in the research community as our 

society grows in size and advances in technology. There are numerous products of non-

renewable energy sources and industrial processes causing a vast amount of pollution.  

Industrial waste and pharmaceutical waste have been known to accumulate in waste and 

ground water, resulting in chronic and aesthetic pollution to the surrounding 

environment.
1
 Pharmaceutical waste is not solely acquired from biomedical companies 

but research laboratories, health clinics, hospitals and home use. In a Chemical & 

Engineering News (vol 93, iss 31) article covering pharmaceutical pollution it was stated 
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that approximately 25% of the world’s rivers and lakes are contaminated with 

pharmaceuticals at varying concentrations ranging from nanograms to micrograms per 

liter.  

 Pesticides are a toxic threat worldwide and continue to jeopardize our 

environmental sustainability.  In a U.S Geological survey it was determined that 99% of 

all major urban streams in the United States were contaminated with at least one pesticide 

and of those, 70% were affected by 5 or more pesticides.
2
 There are six major classes of 

pesticides that include, metallic and organo-metallic pesticides, organochlorines, 

organophosphates, carbamates, and pyrethroids.
3
 Organophosphates have been used since 

1937 but grew in usage when organochlorine compounds were banned in the 1970’s and 

1980’s.
4
 There are many incidents on record of organophosphate poisoning causing many 

neurological and immunotoxcity related symptoms.   The fate of organophosphates in the 

environment is affected by transport as well as chemical and biological processes.
5
 

Literature has mainly focused on the persistence and rate or sorption in contaminated 

soils and degradation by using sediments. 
6
 Current research needs to move toward 

degradation of the organophosphates in both solid and liquid media into less toxic and 

non-harmful byproducts. 

1.1.2 Chemical Warfare Agents: Background 

 

 The use of chemical warfare agents (CWA’s) are designed toxins that can persist 

and represent another significant challenge to the modern world.  CWA’s are not new to 

human kind but began centuries ago in early Greek and Roman times.  The first 

documented use of chemical warfare was during World War I in Ypres, Belgium where 



3 
 

chlorine gas was used by the Germans.
7
 This led Germany’s industrialization and major 

production of blistering agents also known as vesicants, in particular sulfur mustard 

(HD).  It was not until the 1930s that highly toxic organophosphates were discovered by 

the Germans while studying pesticides.  The G-Agents are nerve agents that are non-

persistent and include, Tabun (GA), Sarin (GB) and Soman (GD).   

 

 

Figure 1-6 Molecular structures of a) Tabun, GA b) Sarin , GB and c) Soman, GD 

 

Nerve agents are found to interrupt the breakdown of acetlychlolinesterease by 

binding with acetylcholine enzymes, resulting in asphyxiation and death.
8
 It was not until 

after WWI that G-series nerve agents were mass produced.  In the early 1950 V-type 

nerve agents were discovered in the United Kingdom.  To date, O-ethyl S-[2-

(diisopropylamino)ethyl] methylphosphonothioate) also known as VX is the world’s 

most lethal chemical substance. Unfortunately it is known that some of these deadly 

nerve agents have been employed in various conflict and terrorist attacks. Some of these 

events include Iraq and Iran in the 1980s, the use of Sarin in 1995 in Tokyo and, more 

recently, the United Nations believes Sarin was used in an attack against Syrian civilians 

in 2015.
9
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Destruction of these chemical warfare agents (CWAs) is imperative as stockpiles 

of these chemicals have grown to a large amount as well as environmental intervention 

post attack. Currently available CWA degradation techniques include incineration, water 

hydrolysis followed by biotreatment and water hydrolysis followed by supercritical water 

oxidation.
10,11 

 Drawbacks to these techniques include the selectivity of the analyte, 

degradation of the enzyme over extended treatment time and lack of robustness for 

practical applications. 

1.2 Introduction to TiO2 as a Photocatalyst 

1.2.1 General Introduction 

 

 TiO2 represents a relatively new approach to toxin degradation and removal. It 

has become widely utilized in commercial items used on a daily basis, including 

sunscreen, toothpaste, and even candy. In the early 1960s people began studying photo-

induced phenomena in semiconductor solids.  In 1972 titania (TiO2) was found to possess 

photocatalytic properties, which has been referred to as the “Honda-Fujishima effect”.
12

 

It was not until the work of Frank and Brad in 1977 that TiO2 was found to be useful for 

the photocatalytic oxidation of cyanide and sulfite in aqueous solution.
13

 The interest and 

expansion of research into TiO2 as a photocatalyst  for the degradation and removal of 

organic toxins has grown markedly. 

 TiO2 possesses three crystal structures: anatase, rutile and brookite. They are built 

through the connection of TiO6 octahedra, as shown in Figure 1-2 below. The brookite 

phase exhibits both corner- and edge- sharing configuration resulting in an 

orthorhomobic structure. Rutile also shares in the corner- and edge configurations, 
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whereas anatase consists of solely edge sharing; however both result in a tetragonal 

structure.
14

 

 

Figure 1-7 Crystalline structures of TiO2 (Adapted from Dambournet, et. al. Chem. 

Mater. 2010, 22, 1173–1179 1173) 

 

 The anatase and rutile crystal phases of TiO2 can easily be formed in an aqueous 

medium.
15

  Brookite is much more challenging and there is little literature regarding the 

successful synthesis of pure brookite TiO2. Two methods that have been useful in the 

formation of brookite include a thermolysis reaction
16

 of TiCl4 and the oxidation
17

 of 

TiCl3 with urea. Rutile is the most thermally stable of the three crystal structures as a 

macrostructure, but as the size of the particle decreases the anatase phase then becomes 

the most thermally stable.
18

  The transition from anatase to rutile does not occur 

kinetically at room temperature.  Physically, the conversion temperature and rate of 

transformation is dependent on how fast the primary particles in the anatase phase sinter 

together to reach a critical size.  Both the anatase and rutile phases will grow in size as 

the temperature is increased until a critical size is reached for anatase, and will then 
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remained unchanged whereas rutile particles will continue to grow as the temperature 

increases.  

 Determination of the crystal structure and the different phases requires the use of 

analytical instrumentation for accurate characterization. X-ray diffraction (XRD) is a 

technique widely used to analyze the crystal diffraction pattern. The grain size and rutile 

fraction can be calculated by the Scherrer equation.
19

  By knowing the intensities of the 

characteristic peaks of the crystal phase the peak intensity can be substituted into the 

following equation.  

𝑅𝑢𝑡𝑖𝑙𝑒 𝑤𝑡% =  
𝐼R×100

𝐼R+(0.8)𝐼A
…………………………..………(1)  

IR and IA represent the linear intensities of the main peaks in anatase and rutile.
20,21

 

Anatase has representative peaks at Ɵ = 12.65°, 18.9° and 24.1°, while the rutile phase 

has peaks at Ɵ = 13.75°, 18.1° and 27.2° and the brookite peaks are at Ɵ = 12.65°, 

12.85°, 15.4°, 18.1°, where Ɵ represents the XRD angle. 

 There are a considerable number of structural forms and morphologies of titania 

that can be synthetically fabricated. The use of nanoparticles in photocatalytic 

degradation has been the conventional approach seen in the literature. It has been shown 

that nanoparticles with a small percentage of rutile phase crystal fraction show enhanced 

photocatalytic activity due to the efficient electron and hole separation between the rutile 

and anatase crystal phases. 
22,23

 TiO2 nanofibers represent an alternative approach to 

conventional nanoparticle composites for use in photocatalytic degradation. The one-

dimensional morphology of TiO2 nanofibers is desired compared to spherical TiO2 

nanoparticles owing to excellent mobility of charge carriers, high surface area ensuring 
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high dispersion, and the existence of pores.
24, 25

  TiO2 is very versatile, allowing for 

surface functionalization as well as enhancing the accessibility of electrodes to the hole-

transporting materials, and hence enhanced charge collection and transport.
26

  

1.2.2 Dark vs. Light Irradiation 

 

 Upon irradiation with the appropriate energy an electron is excited from the 

conduction band in TiO2 an electron-hole pair is formed. This pair is created near the 

surface of the semiconductor due to the small UV penetration depth of ~160 nm.
27

 

Generally, the resulting holes can be trapped by a bridging O2
-
 on the surface, or there is 

the possibly for the hole to migrate and bind with surface bound OH
-
 anions; this would 

result in radical species such as ·O
-
 or ·OH. In the conduction band the excited electrons 

are forced to move from the surface into the bulk due to the band bending phenomenon, 

where the electron can be delocalized over different Ti ions. Subsequent studies have 

been performed showing that the photogenerated electron can also exist at the surface 

participation in formation of radical species.  

In any bulk semiconductor the interface between the surface and a molecule will 

encounter many restrictions stemming from the charge transfer process; this phenomenon 

is better known as band bending.
28

 Band bending is the difference in energy between the 

Fermi level of a semiconductor and the flat band potential occurring at the Schottky 

interface.  TiO2 is often found to have a large number of surface defects, resulting in 

oxygen vacancies.  Diebold determined that these vacancies found in TiO2 would act like 

donor states, resulting in an accumulation of electrons at the surface causing a downward 

band bend.
29
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 All processes that occur at the surface of semiconductors are driven to achieve 

equilibrium between the potential of the Fermi level and the chemical potential of the 

adsorbates. 
30

 This work subsequently lead to the discovery made by Martinez et. al that 

depending upon the oxidation state at the surface and the redox potential of the adsorbate 

electrons can easily flow from one to another, producing negatively or positively charged 

species at the surface.
31

 

1.2.3 Fabrication Methods 

 

 Different synthetic approaches can be taken to prepare materials with various 

shapes, crystal phases and porous structures such as fibers, particles, aerogels and rods. 

These methods include, but are not limited to, sol-gel synthesis as a means to form fibers, 

films and particles, direct oxidation in which the source of Ti comes from the oxidation 

of a metal plate, and other methods such as microwave or aerogels which combine the sol 

gel process with supercritical drying.  Here we describe several preparation methods 

which are suitable for the production of TiO2 and allow for tuneability in both chemical 

and physical properties.    

1.2.3.1 Sol-Gel Method  

 

 The sol-gel method is commonly used as a synthetic technique to fabricate TiO2. 

It is prepared through the formation of a colloidal suspension or a sol from the hydrolysis 

and polymerization reactions of the precursors.
32

  In the case of titania, an inorganic 

metal salt or metal organic compounds is used in the synthetic process. The titanium 

precursor generally undergoes hydrolysis; acid catalyzed hydrolysis of titanium (IV) 

alkoxide followed by condensation is frequently seen in the literature.
33

 The formation of 
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the Ti-O-Ti bonds via hydrolysis is highly dependent on the amount of water exposure.  

In low water conditions close packing of three-dimensional polymeric skeletons will 

occur.  However in higher water condition the formation of Ti(OH)4 occurs. There are 

several other parameters that greatly affect the formation of TiO2.  It was found the 

morphology of the titania is highly dependent upon the pH, and even the most subtle pH 

changes can have a drastic effect on the morphology and shape of the nanoparticle.
34

 

Thermal treatments of the titania post hydrolysis have been found to affect the crystalline 

phase and size.  Depending on the temperature and duration to which the titania is 

exposed one could obtain a mix of rutile and anatase phases as well as varying 

diameters.
35,36,24

 Sols can be used in range of TiO2 formations including, but limited to, 

thin film deposition, nanoparticles, nanorod and nanotube arrays as well as nanofiborous 

mats.  

1.2.3.2 Direct Oxidation Method  

 

 Titania-based materials can be fabricated through the oxidation of titanium metal 

using oxidant or under anodization.
32

 Crystalline TiO2 nanorods have been synthesized 

by direct oxidation of a titanium metal plate using hydrogen peroxide.
37

  The source of 

oxygen does play a pivotal role in this process, as there is a competition between the 

oxygen and the titanium.  The rate of diffusion largely controls many physical and 

chemical properties including the surface morphology of the titania.  It was found that at 

high temperatures acetone is a good source of oxygen in the preparation of TiO2 nanorods 

during the oxidation of a Ti plate.
38
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1.2.3.3 Other Methods 

 

 There are many different synthetic approaches to fabricating TiO2 in all different 

shapes, sizes and, morphologies. Two innovative ways to manufacture TiO2 are in the 

form of aerogels and by microwaves.  TiO2 aerogels combine the sol-gel process with 

supercritical drying.  This method has the advantages of acquiring desirable 

morphologies and chemical properties that are otherwise difficult to obtain by other more 

standard synthetic approaches.  Campbell et. al were able to prepare TiO2 by a sol gel 

synthesis using the Ti precursor titanium n-butoxide in methanol followed by a solvent 

removal using supercritical carbon dioxide.
39

 

 High-frequency electromagnetic waves are another method of producing 

dielectric materials, and have been documented to prepare a variety of TiO2 materials. 

The frequencies that are commonly used in microwave heating are between 900 and 2450 

MHz. At low frequencies the energy from the microwave field can transfer to the 

material due the movement within the ionic components.  At higher frequencies the 

energy is primarily absorbed by the molecules that possess a permanent dipole.  Under 

the electric field of the microwave these dipoles will tend to re-orientate.  Titania 

colloidal nanoparticles have been prepared through this method on the timescale of 5 min 

to 1 h, compared to a more standard forced hydrolysis which on average can take up to 32 

h.
40

 Microwave fabrication of titania is very appealing not only because of faster 

preparation but it is also attractive to industrial processing. 
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1.3 TiO2 Working Mechanism 

 

 Photocatalytic degradation can include a variety of reactions including organic 

synthesis, photoreduction, hydrogen transfer, water detoxification and gaseous pollutant 

removal.
41

 For TiO2 to be a working photocatalyst, energy from incident light is required. 

It is well know that electon-hole pairs are generated when TiO2 is irradiated by UV 

photons with an energy that is greater than or equal to the band gap energy. The band gap 

energies of anatase, rutile and brookite vary from 3.20 through 3.03, to 3.10 eV, 

respectively.
42

  

 

 

Figure 1-8 Charge transfer mechanism of TiO2 when exposed to UV irradiation. 
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The electrons are excited from the valence band to the conduction band leaving 

behind a positive hole. These photoinduced charge carriers can then react with surface 

adsorbed species to form oxidizing and reducing species, as well as hydroxyl and super 

oxide radicals.  Once formed, these photochemical products can degrade chemicals that 

are adsorbed on the surface of the TiO2 or diffuse to the surface during the lifetime of the 

reactive intermediate. Only molecules that are in direct contact with the catalytic surface 

will undergo photocatalytic degradation.
43

  Once in contact with the surface both 

oxidation and reduction will occur simultaneously.  Recombination will occur unless 

there is a scavenger available to produce subsequent radicals that will successively 

degrade the targeted pollutant at the surface. This mechanism can be seen in Figure 1-3. 

 The majority of reports in the literature agree on the model of TiO2 describing the 

mode of activation and the general degradation pathway.  What is still being debated is 

whether the detailed mechanism includes the adsorption and desorption kinetics at the 

surface of the catalyst, as well as the diffusion to the surface of the catalyst. The quantum 

yield of the photocatalysis process was found to be difficult to calculate correctly due to 

the observation that TiO2 is incapable of absorbing all of the incident irradiation due to 

refraction
.44,45

  The efficiency of the photocatalytic process was found to be better 

calculated by evaluation the photonic efficiency, ζ, which is the rate of formation of the 

reaction product divided by the incident photon flow.  Hoffman et. al. discovered that 

approximately 90% of photo-generated electron-hole pairs recombine rapidly after 

excitation, resulting in a ζ equal to 10%.
46

 Figure 1-4 provides an overview of the 

potential photo-induced processes both inside and on the surface of TiO2.
28
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Figure 1-9. The sequence of photo-induced reactions in TiO2 photocatalysis and the 

corresponding time scales are shown. (Adapted from Schneider et. al. Chem. Rev. 2014, 

114, 9919-9986) 

 

 Time resolved absorption spectroscopy is a technique widely used to the study the 

formation, relaxation, recombination and transfer processes in charge carriers such as 

titanium dioxide.  This technique acquires measurements on the femtoseconds (fs) scale 

allowing for a better interpretation of the kinetics at the surface or in the bulk of TiO2. 

Work done by Skinner et. al. showed electron trapping occurred at 180±10 fs using 

ultrafast transient absorption data.
47

 Subsequent work done by Serpone et. al. determined 

approximately 90% of photo-generated holes recombine within 10 ns which is consistent 

with the work done by Hoffmann.
48

 The fast rates of recombination are due to shallow 

trapped charge carriers that arise from defects that occur on the surface of TiO2. To 
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reduce these defects a more efficient charge transfer process is necessary to allow for 

longer separation of the photo-generated electron-hole pairs.  

1.4 Surface Modification of TiO2 

1.4.1 General Introduction 

 

 TiO2 has been shown to be an acceptable catalyst for the degradation of organic 

pollutants via photocatalysis. However, limitations arise when looking to improve the 

overall efficiency.  TiO2 is limited to only use 5% of the total irradiation from natural 

sunlight to cause effective photosensitization. The limitations are due to the fact that 

thebwide band gap for bulk TiO2 lies within the ultraviolet region of the solar spectrum, 

with band gap energies ranging from 3.0 eV for rutile and 3.2 eV for anatase as depicted 

in Figure 1-5.
49

 

 

Figure 1-10. Solar spectrum at the surface of the Earth (Adapted from Linsebiger, A. L.; 

Lu, G.; Yates, J. T. Chem. Rev. 1995, 95, 735.) 
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Surface modification can be used to overcome many of the limiting factors 

identified for photocatalyts. This is possible through introduction of transition metals 

including but not limited to, Pt, Pd, Au and, Ag. Heterogeneous composites such as CdS, 

SiO2 and Al2O3 also are used to create a change in the band gap energy level due to their 

smaller inherent band gaps which in turn play a significant role in the charge transfer 

process. Dye anchoring is another way to mediate these limiting factors by sensitizing the 

photocatalyst to improve on its optical properties, bringing the energy required for 

excitation into the visible region of the electromagnetic spectrum.  The optical response 

of TiO2 is also largely dependent on its electronic structure; by deliberately introducing 

non-metal dopants such as nitrogen such that the electronic structure will change while 

maintaining the crystal structure.  
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Figure 1-6.  Potential routes to overcome the band gap and electron-hole pair limitations 

of TiO2 for use as a visible light induced photocatalyst. 

 

Surface adsorbates and hybrids with nanomaterials such as phosphates and metal-

organic frameworks have been investigated as a means to mediate the limitations of TiO2. 

Hybrid composites with nanomaterials can include carbon materials, such as graphene, 

graphite or fullerenes, which can be applied to enhance photocatalysis due to their unique 

advantages.  Carbon possesses chemical inertness, and thermal stability as well as high 

electron conductivity. Figure 1-6 covers some potential routes to resolve these 

limitations; some of these will be explored in the subsequent chapters.  
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1.4.2 Metal Organic Frameworks 

 

 Another approach to heterogeneous catalysis which could potentially be relevant 

to the removal and degradation of toxins is metal-organic frameworks (MOFs). The 

earliest reported demonstration  by Hoskins and Robson in 1990 with their synthetic 

design of a new class of scaffolding like material [N(CH3)4][CuIZnII(CN)4] and 

CuI[4,4',4'',4'''tetracyanotetraphenylmethane]BF4·XC6H5NO2 ,which is comprised of 

infinite polymeric chains.
50

 Metal-organic frameworks have been compared to zeolites, 

and although they may not approach the same stability they do encompass some of the 

catalytically relevant features.  The research continues to be promising as new MOFs are 

being fabricated. The thermal and water stability of these compounds that was once a 

primary concern has now since been solved.
51,52 

 
New research has been devoted to exploring the possibility of employing MOFs 

as platforms for the integration of different molecular components such as 

semiconductors, with the intention of achieving visible light induced catalysis for the 

improvement of various photocatalytic reactions. 
53,54

 There are numerous advantages, 

one example being the infinite amount of molecular combinations between the metal-oxo 

clusters and the bridging organic linkers.  These allow for increasing selectivity and 

sensitivity towards targeted pollutants as well as tuning the capabilities for 

photocatalysis. 
28

 Recent work has included incorporating a Ti atom into MOFs and to 

functionalize the organic linker with amine groups as a way to drive visible light 

photocatalysis.
55,56 
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1.4.3 Metal and Nonmetal Deposition  

 

 Doping an element into a semiconductor photocatalyst with a large band gap 

energy may allow for creation of an acceptor level in the forbidden band gap for visible 

induced photocatalysis.
57

 TiO2 is highly dependent on its electronic structure to perform 

photocatalytic reactions.  By the introduction of a metal or non-metal ion to the chemical 

structure, the electronic configuration may be modified while the crystal structure of the 

semiconductor is maintained. Depending on careful selection of the modifier introduced, 

the band gap may be adjusted causing a shift in absorbance from the UV region of the 

electromagnetic spectrum into the visible, Figure 1-7.  

 

 

Figure 1-7.  Mechanism for photo-generated electron-holes pairs; TiO2(red) metal-doped 

TiO2 (blue) and non-metal doped TiO2 (green) 
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Metal- loaded TiO2 can enhance the photo-generation of electron-hole pairs 

necessary for catalysis.  This is done by describing the surface plasmon resonance (SPR) 

of the metal. The SPR will cause the local electromagnetic field to be increased upon 

irradiation. SPR is the resonant oscillation of electrons at the interface between a negative 

and positive material stimulated by incident light. Within the SPR, electrons are excited 

from energies that will exceed the band bending potential; charge carriers are created 

near the surface and then can easily reach the reactive sites of the semiconductor. The 

result is a separation between the oxidation reaction from the semiconductor and the 

reduction reaction from the metal. The interface between the metal and the 

semiconductor is better known as the Schottky barrier. In any bulk semiconductor the 

interface between the surface and a metal will encounter many restrictions stemming 

from the charge transfer process; this phenomenon is better known as band bending.
28

,
58

 

Band bending is the difference between the Fermi level of a semiconductor and the flat 

band potential which is the amount of band bending occurring at the Schottky interface.  

TiO2 is often found to have a large number of surface defects resulting in oxygen 

vacancies.  Diebold determined that these vacancies found in TiO2 would act like donor 

states, resulting in an accumulation of electrons at the surface causing a downward band 

bend.
29

  

Some potential drawbacks to metal deposition on TiO2 are: the potential electron 

trapping by metal centers, creation of electron-hole recombination centers, and thermal 

instability. Research is currently ongoing into minimizing these drawbacks. Different 

transition metals have been doped onto TiO2 nanomaterials, such as  Au
59

, Pt
26

, Pd
25

, 

Ru
60

, Ag, and Fe. Rare earth metals have also been found to be deposited on TiO2 such as 

https://en.wikipedia.org/wiki/Conduction_band
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La, Ce, Er, Pr, Gd, Nb and, Sm, which resulted in higher absorption and a red shift 

preventing electron-hole pair recombination by decreasing the band gap energy and 

bringing the energy required for photoexcitation into the visible region.
61

  

 Non-metal doping of TiO2 was documented in 1986 by Sato et. al. where nitrogen 

doped TiO2 (N-TiO2) was fabricated from commercial titanium hydroxide by thermal 

treatment in static air.
62

 The use of nitrogen doping as an enhancement to visible light 

absorption and photocatalytic activity what shown by Yates et. al. Yates showed the 

successful treatments of TiO2 with nitrogen by using NH3 gas and thermal treatment.  

When introduced to Rhodamine B, an organic dye, an enhancement in visible 

photodegradation was seen.
49

 Fluorine doping has also become of interest but has yet to 

show any enhancement to photoreactivity in the visible region.
63

 

1.4.4 Dye Sensitization 

 

 The use of organic dyes has been found to improve on the optical properties of 

TiO2.
64

 By sensitization with a dye, a fast electron transfer from visible light excited 

chromophores of the dye to the conduction band of the semiconductor can occur.  This 

phenomenon is also known as metal to ligand charge transfer (MLCT). Common dyes 

used in sensitization are transition metal complexes incorporating such metal species as 

(Ru
2+

, Zn
2+

, Mg
2+

, Fe
2+

, and Al
3+

).  
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Figure 1-8. Molecular structure of N3: (cis-bis(iso-thiocyanato) bis(2,2-bipyridyl-4,4-di-

carboxylato) ruthenium(II) 

 

There are several different mechanisms through which the dye can be attached to 

the surface of the semiconductors.  Some methods include covalent bonding, electrostatic 

interactions, hydrogen bonding and van der Waals forces. In the case of TiO2 and the 

ruthenium-based dye shown in Figure 1-8 the linkage occurs between the carboxyl group 

and the surface hydroxyls. The advantage to MLCT is the electron transfer process can 

persist and, therefore, electron hole recombination is not a concern as long as the dye 

possesses a lowest unoccupied molecular orbital (LUMO) excited state higher than the 

conduction band of the semiconductor. TiO2 electrospun nanofibers that have been 

sensitized with N3 dye, also known as (cis-bis(iso-thiocyanato) bis(2,2-bipyridyl-4,4-di-

carboxylato) ruthenium(II), and this has recently been documented in the visible light 

stimulated photodegradation of phenazopyridine, a biopharmaceutical.  
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1.5 Dissertation Overview  

 

 The Jones group has made considerable advances in the field of photocatalysis 

with its use of electrospun TiO2 nanofibers.  These fibers have been implemented in 

many different degradation reactions with a variety of target pollutants.  Some of these 

pollutants include industrial organic dyes, biopharmaceuticals and most recently, 

simulated chemical warfare agents.  This dissertation will expand on the research that has 

been performed by past group members, and work towards ways to functionalize and 

optimize the catalyst to further enhance the efficiency and rate of degradation.  

 Chapter 2 will demonstrate the fabrication of TiO2 nanofibers from a sol-gel 

solution followed by electrospinning and finishing with a thermal treatment in 

atmospheric conditions.  Synthesized fibers will be characterized and implemented in 

photocatalytic degradation experiments with CEES and DMMP, simulated chemical 

warfare agents. This chapter will cover the importance of a nucleophilic solvent to the 

hydrolysis of CEES as well as the influence of surface area to the efficiency of 

degradation by examining DMMP. 

 The third chapter reports the use of polymer composite nanofibers that have been 

further functionalized with metal-organic frameworks and their enhancement on the 

degradation of methyl paraoxon.  The successful fabrication of polymer composite 

nanofibers containing 5 wt% UiO-66 and UiO-66 NH2 is demonstrated.  Synthesized 

fibers then undergo equivalent characterization as aforementioned. MOF/polymer 

composite fibers are then exposed to methyl paraoxon in both dark and UV conditions 

where the formation of degradation product is analyzed by using UV-Vis spectroscopy.  

This chapter will introduce the theory of multiple mechanistic pathways for the 
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degradation of methyl paraoxon as well as demonstrate highest percent conversions and 

lowest half-lives to date. 

 The fourth chapter includes preliminary results on the use of Ag-TiO2 nanofibers 

for enhancing degradation. Overall objectives include the use of surface plasmon 

resonant metals deposited on TiO2 and coated with a J-aggregate dye to create a plasmon-

exciton coupling nanocomposite that will enhance charge transfer to the surface of the 

semiconductor and enhance catalysis.  This chapter will cover the fabrication of Ag-TiO2 

nanofibers via a polyol synthesis with silver nitrate, the characterization of these fibers 

and, preliminary degradation results when exposed to methyl paraoxon. Coating the 

surface of the metal deposited fibers with a J-aggregate dye and further experiments are 

discussed in the fifth chapter.  
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CHAPTER 2: Electrospun TiO2 Nanofibers vs. P25 Nanoparticles: The 

role of Surface Area in the Photocatalytic Degradation of Simulated 

Chemical Warfare Agents 

 

2.1 Introduction 

 

There is a broad array of needs for protection against chemical warfare agents 

(CWAs) and biological environmental toxins in the environment and around the world.  

Nanotechnology has provided novel systems for rapid decontamination and protection 

through a self-cleaning mechanism
1
.  The potential applications are endless.  One 

example currently being employed is self-cleaning glass in which TiO2 switches from 

hydrophobic in the dark to both hydrophobic and hydrophilic during the day with UV 

irradiation, allowing adsorbed surface contaminants to be photomineralized and washed 

away by water.
2
 TiO2 is a suitable photocatalyst that meets the necessary requirements for 

mitigation of threatening toxins. The use of nanotubular titania against CWAs has been 

documented in the literature, with success in decontamination of agents such as HD, VX 

and GD.
3,4,5 Electrospun TiO2 nanofibers will be explored as an alternative to other 

configurations of titania and will be compared to more commonly used P25 

nanoparticles.  The use of titania nanofibers could further enhance the hydrolysis and aid 

in the decontamination of toxic agents. 

O-Pinacolyl methyl phosphonofluoridate, better known as GD or sarin is one of a 

number of deadly nerve agents of concern to warfighters on the modern battlefield.  In 
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the past sulfur mustard, bis-2-chloroethyl sulfide (HD) was a potent vesicant used on the 

battle field seen in WWI. Due to the toxicity of CWAs, simulants are used as an 

alternative to study. Dimethyl methylphosphonate is one SCWA for sarin and is 

commonly used in the laboratory to assess degradation.
6
 2-Chloroethyl ethyl sulfide 

(CEES) is a surrogate for the more toxic HD offering similar structural features allowing 

for the same reaction mechanism and similar physical properties.
7
 Molecular structures of 

DMMP and CEES can be seen in Figure 2-1. 

 

 

Figure 2-1. Molecular structures of simulants DMMP and CEES 

 

 

 

The success of TiO2 as a photocatalyst has been well documented in the 

literature.
8
 Photocatalysts possess the ability to absorb incident irradiation in the UV or 

visible region of the spectrum to excite an electron from the valence band (leaving behind 

a positive hole) to the conduction band of a semiconductor. These photoinduced charge 

carriers can react with surface adsorbed species to form oxidizing and reducing species, 

as well as reactive radicals, such as hydroxyl and super oxide radicals.  Once formed, 

these photochemical products can degrade chemicals that are adsorbed on the surface of 
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the TiO2 or diffuse to the surface during the lifetime of the reactive intermediate, Figure 

2-2.  
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Figure 2-2. Mechanism of formation of the reactive species formed on the surface of 

TiO2 due to photo excitation. 
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It has been documented that nanoparticles with a small percentage of rutile phase 

crystal fraction show enhanced photocatalytic activity, due to the efficient electron and 

hole separation between the rutile and anatase crystal phases.
9,10

  TiO2 nanofibers 

represent an alternative materials approach to conventional nanoparticle composites for 

use in photocatalytic degradation.
11,12,13

 The one-dimensional morphology of TiO2 

nanofibers is preferred compared to spherical TiO2 nanoparticles due to the excellent 

mobility of charge carriers, high surface area, the existence of pores enhancing the 

accessibility of electrodes to the hole transporting materials, and hence enhanced charge 

collection and transport.
14

  Further, they provide a more environmentally friendly 

platform as their length makes them safer relative to pure nanoparticles.
15

 

 Electrospinning is a common technique used in the fabrication of nanofibers. It is 

safe, easy to operate and suitable for scaling-up compared to other methods of 

fabrication. TiO2 nanofibers can be prepared by electrospinning a polymeric sol-gel 

solution followed by a thermal treatment. A variety of polymers could be used for this 

process, including but not limited to, polymethyl methacrylate (PMMA)
11

, 

polyvinylpyrrolidone (PVP)
16

, polyethylene (PEO),
17

 and polyvinyl alcohol (PVA)
18

. 

Altering the polymer subsequently will change the formation of TiO2. Electrospinning is 

a non-mechanical, electrostatic process that can produce fibers in the nanometer to 

micrometer range using electrically driven jets of polymer solution.
19,20

 In this process, a 

highly charged electric field is created between the sol gel solution and an electrically 

grounded collector. A thin jet is formed from a polymer solution with a volatile organic 

solvent when the electrical field overcomes the surface tension allowing it to be drawn 

from the syringe and pulled to the grounded collector.
21,22
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In this chapter the focus will be the preparation of TiO2 nanofibers to be used as a 

photocatalyst by electrospinning. The hydrolysis mechanisms of CEES and DMMP in the 

presence of these photocatalysts will be explored as well as the degradations of the 

SCWAs in non-nucleophilic solvents and solventless reactions. The degradation of 

DMMP will be analyzed and directly compared with commercially available 

nanoparticles structures demonstrating improved efficiency of degradation and the role of 

surface area.  

2.2 Experimental 

2.2.1 Materials  

 

 Polymethylmethacrylate (PMMA) (Mw960,000), titanium (IV) isopropoxide 

(TTiP), N,N-dimethylformamide (DMF), chloroform, Degussa P25 titania nanoparticles, 

dimethyl methylphosphonate (DMMP), 2-chloroethyl ethyl sulfide (CEES), acetone, 

acetonitrile, toluene, dimethylsulfoxide (DMSO), acetonitrile-d3, and acetone-d6 were 

purchased from Sigma Aldrich and used without further purification. 

2.2.2 Synthesis of TiO2 Nanofibers 

 

 TiO2 nanofibers were fabricated using a sol gel synthesis and electrospinning 

followed by a thermal treatment.  A sol gel solution in a 1:2 ratio of PMMA to TTiP was 

prepared in a 1:1 ratio of chloroform and N,N-dimethylformamide.  320 mg of PMMA 

was dissolved in 2 mL of chloroform and allowed to stir until polymer was dissolved.  

0.67 mL of TTiP was added dropwise to the polymer solution and allowed to stir for an 

additional 30 min.  At this point 2 mL of DMF was added to the solution to increase the 

dielectric constant and stirred for a further 2 h prior to electrospinning.   
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Figure 2-3. Schematic figure of electrospinning apparatus used to fabricate TiO2 

nanofibers. 

 

A Spellman SL 30 generator is used to apply 25kV/cm across the sol gel polymer 

solution resulting in the deposition of nanofibers on the electrically charged collector. A 

schematic of the electrospinning apparatus can be seen in Figure 2-3.  The resulting 

polymer composite nanofibers are given approximately 12 h to stand at room temperature 

under ambient conditions.  This allows for complete the hydrolysis of TTiP to Ti(OH)4 

and then further condensation to amorphous TiO2 prior to thermal treatment.
23

  The fibers 

are then collected and calcined in a Thermo Scientific Lindberg Blue M Mini-Mite Tube 

Furnace, 16-Pt; 120V tube furnace at 400°C for 4 h under atmospheric conditions.   
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2.2.3 Photodegradation Procedure for 2-Chloroethyl ethyl sulfide  

2.2.3.1 Degradation of 2-Chloroethyl ethyl sulfide without Catalyst 

 

 

 

 

 

 

 

 

Figure 2-4. Reaction set-up for degradation of CEES with non-nucleophilic solvents. 
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 A 0.1 M solution of CEES was prepared using several different non- nucleophilic 

solvents in attempt to prevent the hydrolysis of CEES both with and without the presence 

of TiO2. 0.105 mL of CEES was added to 8.89 mL of solvent (acetone, acetonitrile, 

toluene, DMSO) in a 50 mL glass beaker. A 0.4 mL aliquot was extracted immediately 

and diluted with 0.1 mL of acetone-d6 and analyzed via Bruker Advance III 600 MHz 

NMR. The reaction set up can be seen in Figure 2-4. Upon extraction of the initial 

aliquot the solution was then irradiated with UV light for 2 h using an Oriel 66001 UV 

lamp with Oriel 68805 40-200 Watt universal Arc lamp power supply, which covers the 

100- 400 nm range. The distance between the center of the solution container and the UV 

lamp was controlled at 9 cm. A 0.4 mL aliquot was extracted at t=1, 2 h of irradiation and 

diluted with 0.1 mL acetone- d6. 
13

C and 
1
H NMR spectra were collected for all aliquots 

extracted during the course of the experiment.  
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2.2.3.2 Solventless Degradation of 2-Chloroethyl ethyl sulfide with TiO2 Nanofibers 

 

 

 

Figure 2-5. Reaction set-up for solventless degradation of CEES with TiO2 nanofibers 

 

 Three quartz vials were prepared for the degradation of CEES with TiO2 

nanofibers. Each vial contained 10 mg of TiO2 nanofibers that were exposed 0.5 mL of 

deionized water for 1 hour prior to addition of CEES. The reaction set up can be seen in 

Figure 2-5. This allowed for the saturation of catalyst since absorbed water is responsible 

for the formation of hydroxyl radicals. 0.1 M of CEES was added dropwise directly to the 

nanofibers in each of the vials at which time UV irradiation began. Samples were 

analyzed via Bruker Advance III 600 MHz NMR every 6 h for 14 h.  Extraction was done 
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using 1 mL of acetonitrile-d3.  Sample was centrifuged and remaining solution was used 

for 
13

C and 
1
H NMR. Experiments were also performed in the dark as a comparison to 

determine the role of UV irradiation to the degradation of CEES. 

2.2.4 Photodegradation Procedure for Dimethyl methylphosphonate 

 

 Photocatalytic degradation experiments were carried out under ambient conditions 

within a fume hood. A solid sample of TiO2 nanofibers and P25 nanoparticles (50 mg) 

was added to 10 mL of a 100 μM solution of DMMP in a quartz reaction vial. The 

suspension was stirred vigorously over a 2 h period in the presence of UV irradiation 

using an Oriel 66001 UV lamp with Oriel 68805 40-200 Watt universal Arc lamp power 

supply, which covered the 100- 400 nm range.  The distance between the center of the 

solution container and the UV lamp was controlled at 9 cm.  A 1.0 mL aliquot of the 

solution was extracted at t= 0, 1, and 2 h for analysis via Bruker Advance III 600 MHz 

NMR.  Aliquots were then centrifuged for 3 min to separate the catalyst and solution.  0.8 

mL of the centrifuged solution was diluted with 0.2 mL of acetonitrile-d3.   The prepared 

sample was characterized by 
31

P NMR. Sample analyses for photodegradations were 

performed in deionized water unless otherwise noted. 

2.2.5 Characterization Methods 

 

A Spellman SL 30 HV generator was used to apply a high voltage across the 

copper wire to create a high electrical potential attaching to the collector. Thermal 

treatment was done using a Thermo Scientific Lindberg Blue M Mini-Mite Tube 

Furnace, 16-Pt; 120V tube furnace heated to 400°C for 4 h under atmospheric conditions.  

Photodegradations used an Oriel 66001 UV lamp with Oriel 68805 40-200 Watt universal 
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Arc lamp power supply, which covered the entire ultra-violet, 100- 400 nm range. The 

morphological and structural characteristics of the nanofibers and nanoparticles were 

measured by field emission scanning electron microscopy (FESEM, Supra 55 VP from 

Zeiss equipped with an EDAX energy dispersive X-ray spectroscopy detector), and X-ray 

diffraction (XRD, PANalytical's X'Pert PRO Materials Research Diffractometer with Cu 

Kα radiation (λ = 1.5418 Å)), respectively. Transmission electron microscopy (TEM) 

images were obtained from JEOL 2010 FETEM instrument. The TEM samples were 

dispersed in ethanol by sonication and the resulting solution were placed on a lacey 

carbon grid, which was left in air to evaporate the solvent. Nitrogen adsorption isotherms 

were measured for post-calcined TiO2 nanofibers using a Micromeritics TriStar 3000 

analyzer at 77 K. Prior to analysis, each material was off-gassed overnight at 250°C 

under a flow of dry nitrogen. Brunauer-Emmett-Teller (BET) modeling was performed to 

obtain the specific surface areas (m
2
/g).  

2.3 Results and Discussion  

2.3.1 Characterization of TiO2 Nanofibers  

 

A sol gel solution in a 1:2 ratio of PMMA to TTiP was prepared in a 1:1 ratio of 

chloroform and N,N-dimethylformamide. A high voltage power supply was used to apply 

25kV/cm across the sol gel polymer solution resulting in the deposition of nanofibers on 

the electrically charged collector. Approximately twelve hours is allowed for fibers to 

stand at room temperature and under atmospheric conditions to promote hydrolysis. The 

fibers were then collected and calcined at 400°C for 4 h under atmospheric conditions. 

The resulting TiO2 nanofibers where characterized using SEM, TEM, XRD and BET to 
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compare to the characteristics P25 nanoparticles prior the degradation experiments with 

CEES and DMMP. 

2.3.1.1 Scanning Electron Microscopy and Transmission Electron Microscopy 

 

 

Figure 2-6. SEM image of PMMA/TTiP pre-calcined fiber. 

 The electrospun pre-calcined polymer fibers were investigated by SEM as shown 

in Figure 2-6. The image shows the fibers possess a folded and wrinkled surface 

morphology, with diameters consistent throughout the sample of approximately 900 nm. 

The diameter of the fibers is inconsistent throughout, varying from a few hundred 

nanometers to a few microns.  The fibers vary in length from a <2 μm to >5 μm.  The 

variation in lengths of the fibers could be attributed to the electrospinning process where 

there is a break in the circuit of the continuous electrified jet being collected, resulting in 

different lengths of fibers  or during the sample preparation for imaging which would 

lead one to conclude that the fibers are brittle in nature.  
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Figure 2-7. SEM (right) and TEM (left) imaging of TiO2 nanofibers  

After 400 °C thermal treatment, TiO2 nanofibers exhibited diameters that varied 

slightly within the sample, but averaged approximately 300 ± 50 nm.   It can also be seen 

that the calcined nanofibers retain the folded and wrinkled surface morphology seen in 

the pre-calcined fibers, Figure 2-7.  The resulting nanofibers became even smaller in 

length after the thermal treatment and preparation for imaging.  This confirmed 

suspicions on the fragile nature of the fibers that by simply placing them into a crucible 

for calcination and mounting to an aluminum SEM stub results in breaking. There is no 

indication the length of the nanofiber will play a critical role in degradation, however, it 

is hypothesized that this surface morphology of the nanofiber may increase the surface 

interface between the targeted toxins and the catalyst. 
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Figure 2-8. TEM image of P25 nanoparticles  

 Degussa P25 nanoparticles were commercially bought from Sigma Aldrich and 

used without any further treatment.  TEM imaging was done to confirm the 21 nm 

diameter particles per description of the company, Figure 2-8.  Imaging showed some 

variation in diameters of the particles with some being well below 21 nm and others 

being well above.  Results concluded the average diameter of the nanoparticles was 27 

nm ± 9 nm. 
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2.3.1.3 X-Ray Diffraction and Brunauer-Emmett-Teller Nitrogen Isotherm 

 

 

 

 

Figure 2-9. XRD Pattern of TiO2 nanofibers and P25 nanoparticles 
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The XRD pattern of post-calcined TiO2 nanofibers at 400°C under atmospheric 

conditions is shown in Figure 2-9. Well defined diffraction peaks show the presence of 

both anatase and rutile phases. This adds further evidence to the origin of the fluctuating 

diameter during the calcination process where grains are produced.  For the anatase 

phase, the major peaks were obtained at 2θ values of 25.5, 37.9, and 48.2° representing 

the Miller indices of (101), (004), and (200) planes, respectively. For the rutile phase, 

peaks were observed at 2θ values of 27.6, 36.1, 41.2, and 54.3°, respectively, 

representing the Miller indices of (110), (101), (111), and (211) planes, respectively. The 

weight fraction of rutile phase is calculated to be 48 wt% from the equation of 

WR=1/[1+0.8(IA/IR)], where IA is the X-ray integrated intensities of the (101) reflection of 

anatase at 2θ of 25.5° and IR is that of the (110) reflection of rutile at 2θ of 27.6°. The 

rutile weight fraction was calculated under the same conditions and resulted in a 19% 

rutile fraction.  This is consistent with the literature which states P25 possesses an anatase 

rutile fraction of 80/20.
24

 Values can be seen in Table 2-1. 

Sample % Anatase/ %Rutile Surface Area (m
2
/g) 

P25 Nanoparticles 81/19 52 

TiO2 Nanofibers  52/48 51 

Table 2-1. Table of BET surface area measurements and respective percentages of antase 

and rutile  
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BET analysis shows that the electrospun anatase/rutile nanofibers with a 52/48 

ratio are almost identical to the surface area of the P25 nanoparticles. This data can be 

seen directly in Table 2-1. Degussa P25 nanoparticles are well known throughout the 

literature to possess small diameters (21nm) and high surface areas (35-65m
2
/g). The 

surface area and rutile fraction correlated with values provided by the supplier Sigma 

Aldrich.  The folded and wrinkled surface morphology of the nanofiber seen in the SEM 

and TEM images contributed to the increase in surface area making it comparable to the 

surface area of P25 nanoparticles.   

2.3.2 Photocatalytic Degradation of 2-Chloroethyl ethyl sulfide 

2.3.2.1 Hydrolysis mechanism of 2-Chloroethyl ethyl sulfide 

 

 Mechanistic pathways of the hydrolysis degradation of CEES have been 

documented in the literature.
25

  The formation of sulfonium salt as byproducts to the 

hydrolysis to CEES can result from multiple product pathways that are dependent on 

concentration. Higher concentrations will lead to different equilibrium rates and 

formations of multiple salts as seen in Figure 2-10.  
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Figure 2-10. Proposed mechanistic pathways of the hydrolysis of CEES. Adapted from 

Bae, S.Y. and Winemiller, M.D. J. Org. Chem. 2013, 78, 6457-6470 
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To examine the aforementioned hydrolysis mechanism, a study was performed 

and verified using 
13

C NMR. A 1.4 M aqueous solution of CEES was prepared for 
13

C 

NMR analysis of the hydrolysis over 120 min. Over the course of the experiment the 

solution was stirred in the dark. The solubility of CEES is low and required vigorous 

stirring to allow CEES to go in to solution. An aliquot was extracted from the solution at 

t= 0 min for a baseline comparison.  Aliquots were then extracted again at t= 60 min and 

t= 120 min and analyzed via 
13

C NMR. 

 

Figure 2-11. 
13

C NMR of hydrolysis of CEES over 120 minutes. 
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  The resulting 
13

C NMR displayed in Figure 2-11 shows that after 120 min 

exposure of the target pollutant to water, the four singlets corresponding to CEES had 

disappeared.  The resulting formation of peaks in Figure 2-11 green is indicative of the 

products shown in the aforementioned hydrolysis mechanism.  Sulfonium salt 1 has a 

doublet at 41 ppm, sulfonium salt 2 has a singlet at 32 ppm which can faintly be seen 

after 120 min. Sulfonium salt 3 has a strong singlet at 56 ppm.  The conclusion can be 

drawn that all three products are present in solution after the hydrolysis of CEES. 

2.3.2.2 Non-nucleophilic Solvent Photodegradation of 2-Chloroethyl ethyl sulfide  

 

 After gaining a better understanding for the hydrolysis reaction of CEES, the 

effect of non-nucleophilic solvents on CEES was examined.  With the addition of a 

catalyst to promote decontamination without relying on the presence of a nucleophilic 

solvent such as water. 0.105 mL of CEES was added to 8.89 mL of several different 

solvents.  First was acetonitrile, the solution was stirred in the dark for 60 min, allowing 

CEES to go into solution at which time the solution was irradiated with UV light for the 

remaining 60 min.  Aliquots were extracted periodically and analyzed via 
13

C NMR. In 

the case of acetonitrile there was no decrease in intensity over the 120 min experiments.  

The experiment was again repeated under the same conditions with toluene, DMSO and 

acetone.  The results can be seen in Figures 2-12 to 2-15 respectively.  
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Figure 2-12. 
13

C NMR- Degradation of CEES in acetonitrile with no catalyst.  First 60 

min in the dark, final 60 min the sample was exposed to UV irradiation. 

 

Figure 2-13. 
13

C NMR- Degradation of CEES in toluene with no catalyst. First 60 min in 

the dark, final 60 min the sample was exposed to UV irradiation. 



58 
 

 

Figure 2-14. 
13

C NMR- Degradation of CEES in DMSO with no catalyst. First 60 min in 

the dark, final 60 min the sample was exposed to UV irradiation. 

 

Figure 2-15. 
13

C NMR- Degradation of CEES in acetone with no catalyst. First 60 min 

was in the dark, final 60 min the sample was exposed to UV irradiation. 
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 The results were consistent when using non-nucleophlic solvents to degrade 

CEES.  There was little to no change over the course of 120 min. The results from the 

experiments with CEES and no catalyst led to the same experiments being repeated but in 

the presence of photocatalyst.  50 mg of TiO2 was added to the CEES solution and 

allowed to stir for 1 h prior to UV irradiation. The solution was then irradiated and 

aliquots were extracted periodically and analyzed via 
13

C NMR.  Results can be seen in 

Figures 2-16 to 2-19, respectively.  

 

Figure 2-16. 
13

C NMR- Degradation of CEES with TiO2 nanofibers in acetone.  First 60 

min was in the dark, final 60 min the sample was exposed to UV irradiation. 
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Figure 2-17. 
13

C NMR- Degradation of CEES with TiO2 nanofibers in acetonitrile. First 

60 min was in the dark, final 60 min was exposed to UV irradiation. 

 

Figure 2-18. 
13

C NMR- Degradation of CEES with TiO2 nanofibers in toluene. First 60 

min was in the ark, final 60 min the sample was exposed to UV irradiation. 
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Figure 2-19. 
13

C NMR- Degradation of CEES with TiO2 nanofibers in DMSO.  First 60 

min was in the dark, the final 60 min was exposed to UV irradiation. 

 

Analysis of the NMR spectra showed that even in the presence of UV light and a 

photocatalyst,  no degradation occurred over the course of 120 min. The results of the 

experiments both with and without the catalyst lead to the conclusion that a polar solvent 

is a necessary for the degradation mechanism of CEES. 

2.3.2.3 Solventless Photodegradation of 2-Chloroethyl ethyl sulfide 

 

 It is imperative for TiO2 to photocatalytically degrade a pollutant that both water 

and UV irradiation are present during the degradation process.  In the case of non-

nucleophilic solvents, the lack of absorbed water would not promote the formation of a 

hydroxyl radical. The absence of UV irradiation for the catalyst could also prevent 

degradation.  The reactions were being performed in a Pyrex vial.  As seen in Figure 2-
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20, this vial will absorb the majority of the UV light. Therefore, the incident radiation is 

not able to reach the catalyst and generate the electron-hole pairs required for 

photocatalytic degradation. 

 

Figure 2-20. UV-Vis spectrum of glass reaction vial. 

 

Because the reaction vial employed to date in degradation reactions absorbed the 

UV light necessary to create the radical species imperative for degradation, modifications 

were made to the procedure. The reaction vial used subsequently was made from quartz.  

To further analyze the photocatalytic ability of TiO2 vs. CEES the catalyst was soaked 

prior to CEES and UV exposure to guarantee water is adsorbed in the surface and will 

result in radical production.  10 mg of TiO2 nanofibers were soaked in 0.5 mL of 

deionized water for 1 h.  Any excess water that was not absorbed by the catalyst was 

removed prior to addition of CEES. 0.105 mL of CEES was added to the top of the 

catalyst and immediately exposed to UV light or kept in the dark.  Both light and dark 
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experiments were carried out to compare the importance of UV irradiation to the 

degradation process.  

 

Figure 2-21. 
13

C NMR- Solventless degradation of CEES with TiO2 nanofibers in the 

dark 

 

As shown in Figure 2-21, it was observed that even after 24 h of CEES exposure 

to TiO2 the four characteristic singlets remain and possess approximately the same 

amount of intensity throughout.  The experiment was then repeated under identical 

conditions, except in the presence if UV light.  The premise was that the UV light would 

excite an electron from the valence band to the conduction band of the TiO2, and 

atmospheric oxygen would react with the electron in the conduction band producing 

superoxide radicals, while the absorbed water would react the positive hole in the valence 

band resulting in hydroxyl radicals.  The radicals are very reactive and responsible for the 

photodegradation of organic pollutants.  
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Figure 2-22. 
13

C NMR- Solventless degradation of CEES with water saturated TiO2 

nanofibers under UV irradiation. 

 

 The catalyst was saturated with a small amount of water prior to addition of 

CEES.  The absorbed water of the surface of the catalyst would produce hydroxyl 

radicals in the presence of UV irradiation, which in turn would promote the degradation 

of CEES. After 12 h in the CEES photodegradation with UV light, a small decrease in the 

intensity of the peaks is evident as well as the small formation of product peaks that were 

earlier described in the hydrolysis of CEES.  After 24 h, the four characteristic singlets 

have disappeared and the product peaks are beginning to increase in intensity; Figure 2-

22.  The comparison of these degradation experiments in both light and dark conditions 

lead to the conclusion that of UV irradiation was necessary to initiate the photocatalytic 
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ability of TiO2. We were able to theorize from the results that the catalyst is aiding in the 

hydrolysis degradation reaction of CEES over 24 hours. 
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2.3.3 Photocatalytic Degradation of Dimethyl methylphosphonate 

2.3.3.1 Hydrolysis study of Dimethyl methylphosphonate 

 

 

Figure 2-23. 31P NMR- Hydrolysis study of DMMP over 72 h. 

 

 DMMP is highly water stable, as can be seen by 
31

P NMR analysis over a 72 h 

exposure to water as a control experiment. A 1 M aqueous solution of DMMP was 

prepared and stirred vigorously over the course of 72 h.  At specific time intervals 
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aliquots were extracted and analyzed via 
31

P NMR. Over the duration of the experiment, 

the characteristic singlet at 37.7 ppm did not decrease in intensity, Figure 2-23. The 

results correlate well with literature reports regarding the hydrolysis of GD occurring at a 

slow rate under neutral conditions.
26

 

2.3.3.2 Photodegradation of Dimethyl methylphosphonante with P25 Nanoparticles 

under UV Irradiation  

 

 

Figure 2-24. 
31

P NMR- Photodegradation of DMMP with Degussa P25 Nanoparticles. 

 

A 100 μM aqueous solution of DMMP was prepared, and 50 mg of P25 

nanoparticles was added to the solution at which time the UV lamp was turned on.  This 

solution was exposed to UV irradiation for 2 h, during which time aliquots were extracted 

and analyzed via 
31

P NMR, Figure 2-24.  Results are based on the intensity of the 

signature phosphorus peak at 37.7 ppm. It is evident that even after 2 h of irradiation, the 
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presence of the singlet at 37.7 ppm remains; however the intensity of that peak has 

decreased over time.  This signifies that some degradation has occurred, but DMMP is 

still present in solution even after the catalyst has had sufficient exposure to the 

irradiation to promote degradation. 

2.3.3.3 Photodegradation of Dimethyl methylphosphonate with TiO2 Nanofibers 

under UV Irradiation 

 

 

Figure 2-25.
31

P NMR- Photodegradation of DMMP with TiO2 nanofibers 

 

 P25 nanofibers were seen to have little effect on DMMP under UV irradiation.  

The electrospun nanofibers were introduced to DMMP under identical reaction 

conditions to examine the influence of the nanofibers to degradation compared to 

nanoparticles. A 100 μM solution of DMMP was prepared and 50 mg of TiO2 nanofibers 

was added to the solution, at which time the UV lamp was turned on. The solution was 
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stirred continuously over the course of the experiment. After 2 h of exposure to UV 

irradiation in the presence of the TiO2 nanofibers, the characteristic phosphorus peak at 

37 ppm was no longer detectable, Figure 2-25. The disappearance of the phosphorus 

resonance is indicative of degradation of DMMP.  The phosphorus atom is hypothesized 

to be bound to the catalyst, and then explains for the absence of peaks in the 
31

P NMR.   

 

Figure 2-26. Raman spectrum of TiO2 nanofibers before and after the photodegradation 

of DMMP. 

 

Raman spectroscopy was utilized to attempt to determine the location of the 

phosphorus after the degradation of DMMP.  Literature reports suggest that GD is 

reacting with Ti and can form titanophonates (Ti-O-Ti or Ti-O-P), due to the side 

reaction with water.
3,4

 The resulting peak at 2325 cm
-1 

indicated a possible binding 
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interaction between the phosphorus and titanium centers, Figure 2-26. Further analysis 

needs to be done to confirm this hypothesis. 

2.3.3.4 Comparison of Photocatalytic Performance of Nanofibers v. Nanoparticles: 

The Role of Surface Area  

 

 

Figure 2-27. Bar graph depicting normalized signal ratio vs. time of DMMP degradation 

with both TiO2 nanofibers and P25 nanoparticles 

 

Surface area is thought to play a significant role in the decontamination process 

because the larger the surface area, the greater the opportunity for hydroxyl radicals to be 

formed, which is critical to decontamination. Alternatively, the highly porous nanofibers 

may allow for a larger interface between the pollutant and catalyst, as well as other 

contributing factors such as the crystal structure and charge transfer. For a given mass of 

catalyst, the nanofibers may present greater contact. Due to the disappearance of the 

phosphorus peak associated with degradation, it is suggested that the degraded 

phosphorus product is retained on the surface of TiO2 or within the nanofiber. This result 
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is crucial in proving the surface area of the catalyst is not a primary cause for 

degradation. The comparison of DMMP 
31

P signal ratio of nanofibers and nanoparticles 

is shown in Figure 2-27. 

2.4 Conclusions 

 

 TiO2 nanofibers were successfully fabricated from a sol-gel solution, followed by 

electrospinning and annealing/calcination with a thermal treatment under atmospheric 

conditions. Nanofiborous TiO2 possesses a variety of valuable attributes as stated above 

in the mitigation of SCWAs.  The synthesized fibers were used directly in photocatalytic 

degradation of CEES and DMMP, and were found to promote enhanced rates of 

degradation.  

Photocatalytic and hydrolytic degradations of CEES were found to enhance the 

rate of hydrolysis of SCWAs.  A better understanding was gained in studying the 

hydrolysis of CEES using 
13

C NMR.  It was concluded that the presence of a 

nucleophilic, polar solvent was necessary to enhance the degradation process. This was 

proven by the saturation of the TiO2 nanofibers with water prior to exposure to the target 

pollutant, and results showed an overall increased the degradation of CEES under UV 

irradiation. 

Photocatalytic degradations of DMMP were designed to demonstrate the role of 

surface area in the degradation process. The comparison of nanofibers vs nanoparticles 

supports the conclusion that surface area is a less critical factor in the degradation of 

SCWAs than is surface area, which has been previously examined. This could be 

attributed to the folded porous morphology of the nanofibers, which allows for more 
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points of contact between the catalyst, TiO2, and the pollutant being examined, which in 

this case was DMMP. Further possible explanations as to why the nanofibers have an 

enhanced performance over the nanoparticles include an increase in the total number of 

active sites promoting a kinetic path, or the nanofibers have different energy in the active 

sites compared to the nanoparticles resulting in a thermodynamic path. 
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CHAPTER 3: Composite Nanofiber Blends: The Introduction of Metal-

Organic Frameworks to Enhance Degradation 

 

3.1 Introduction 

 

 The use of TiO2 as a catalyst for degradation of organic toxins has been well 

documented in the literature.
1
 Commonly titania is seen as spherical nanoparticles, new 

advances in catalytic performance have led to altering the shape and surface morphology 

of the catalyst. TiO2 nanofibers represent an alternative materials approach to 

conventional nanoparticle composites for use in photocatalytic degradation.
2
 The one-

dimensional morphology of TiO2 nanofibers is preferred, as they exhibit excellent 

mobility of charge carriers, high surface area, and the existence of pores leading to 

enhanced accessibility.
3
 The use of nanotubular titania against CWAs has been 

documented in the literature with success in decontamination of agents such as HD, VX 

and GD.
4,5 ,6

 

Electrospinning, a non-mechanical electrostatic process, produces nanometer to 

micrometer width fiber using an electrostatically driven jet of polymer solution.
7,8,9

 

Electrospun metal oxide nanofibers have been used in a variety of applications including 

photocatalysis
10

, sensing
11

, and solar cells.
12

  Recent results have demonstrated that 

composite polymer precursor materials used in the fabrication of electrospun TiO2 

nanofibers have catalytic ability in the degradation of simulated chemical warfare agents 

(SWCAs).  
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Electrospun nanofibers of polymethyl methacrylate (PMMA) and titanium 

triisopropoxide (TTiP) were found to possess catalytic properties when introduced to 

methyl paraoxon, a SCWA. In addition to the photocatalytic advantages of these fibers, 

increased flexibility and durability were observed compared to electrospun TiO2 

nanofibers.  The resulting fibers would also be more compatible with low temperature 

processing of multifunctional materials, including MOFs and sensors. 

 MOFs are hybrid compounds consisting of an inorganic metal node coordinated 

to an organic ligand. The inorganic and organic components can be altered and 

functionalized leading to a variety of chemical structures, all potentially tunable to a 

specific application including catalysis
13

, gas storage
14

, separation
15

 and molecular 

sensing.
16

 Modification of the secondary building unit (SBU) consisting of a polydentate 

organic ligand can result in better reactivity and selectivity of the MOF to CWAs. Further 

engineering could lead to the fabrication of MOFs into nano-powdered or nanofibrous 

forms for application in textiles, filtration, and coatings. 

 Originally MOFs were constructed with the intent to be used as a heterogeneous 

catalyst.
17

  The UiO-family of MOFs became increasingly significant to catalysis 

applications due to its chemical and physical stability.
18,19

 MOFs are excellent candidates 

for the destruction of chemical warfare agents which has been demonstrated in the 

literature. Their properties of exceptionally large surface area, porosity, pore size and 

variety of functionality
20

 as well as their robustness are well suited for the harsh 

conditions caused by CWAs.
21

  UiO-66 is a zirconium based MOF comprised of Zr6O6 

SBU connected to a 12 bidendate terephthalic acid ligand. A reaction scheme of UiO-66 

can be seen in Figure 3-1. The Zr6O6 SBU provides catalytic ability and increased 
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chemical stability compared to other MOFs, as well as the versatility of Zr based MOFs 

with CWAs.
22

 

 

Figure 3-1. Reaction scheme of the formation of UiO-66. 

 

 Multiple Zr-OH-Zr moieties found in UiO-66 can mimic the Lewis acid active 

sites found in G-agents, leading to binding followed by hydrolysis.
1 

UiO-66 has shown 

the capability to carry out catalytic hydrolysis which has been seen in the degradation of 

a phosphate containing simulated chemical warfare agents demonstrating impressive 

half-lives.
23

  The UiO-66 series has been found to behave as a semiconductor when 

exposed to light.  This in turn makes them a unique and novel material for light 

harvesting and photo-induced catalysis.
24

  The addition of an amino group to the UiO-66 

produces multiple advantages including increased functionality
25

and increased absorption 

capacity.
20

 The amino group can shift the photo-absorption of the UiO-66 from the UV to 

the visible region, making it an excellent candidate for solar induced photocatalysis.
26

 A 

reaction scheme for the formation of UiO-66 NH2 can be seen in Figure 3-2. 
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Figure 3-2. Reaction scheme for the formation of UiO-66 NH2 

 

  Organophosphates are among the world’s most deadly toxins. Currently 

employed as chemical warfare agents, phosphate esters have the ability to rapidly inhibit 

acetylcholinesterase, a critical enzyme for nerve synapses to function properly which 

ultimately leads to death.
27

 Destruction of these CWAs is imperative.  Heterogeneous 

catalysis by nanostructured materials has proven to be suitable method for degradation of 

biopharmaceutical toxic organic pollutants
28

 and may also be viable for degradation of 

CWAs. Curently available CWA degradation techniques include incineration, water 

hydrolysis followed by biotreatment, and water hydrolysis followed by supercritical 

water oxidation.
29,30 

 Drawbacks to these techniques include the selectivity of the analyte, 

degradation of the enzyme over extended treatment time and lack of robustness for 

practical applications. Transitioning to a more effective approach using heterogeneous 

catalysis by nanostructured materials, solid catalysts including titania and MOFs have 

demonstrated a means to effectively destroy CWAs.
4
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Figure 3-3. Hydrolysis mechanism of methyl paraoxon. 

 

 In this chapter, the synthesis and fabrication of UiO-66 and UiO-66 NH2 polymer 

fiber composites and their characterization are discussed. This focus includes the 

encouraging results of blended electrospun UiO-66 in a PMMA/TTiP fibrous matrix 

producing conversions and half-lives commensurate with those previously observed for 

the hydrolysis of methyl paraoxon (Figure 3-3), by MOF powders.
23,31,32

 The results are 

compared directly with varying compositions of nanofibers, both with and without UiO-

66, to demonstrate the need for the fibrous matrix.  Degradation reactions are then 

repeated with composite polymer fibers both with and without UiO-66 NH2. Samples 

were subjected to dark, ultraviolet and visible light conditions.  The results are compared 

with materials containing UiO-66 to determine if the addition of a functional group to the 

MOF will enhance the efficiency. 

3.2 Experimental 

3.2.1 Materials  

 

Polymethylmethacrylate (PMMA) (Mw960,000), titanium (IV) isopropoxide 

(TTiP), N,N-dimethylformamide (DMF), chloroform and O-(4-nitrophenyl) phosphate 

(methyl paraoxon, DMNP) (Mw247.14) 4-ethylmorpholine (Mw115.17),was purchased 

from Sigma Aldrich and used without any further purification.  UiO-66 (Zr) and UiO-66 

NH2 were provided by Edgewood Chemical Biological Center. 
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3.2.2 Synthesis of Metal-Organic Framework 

3.2.2.1 Synthesis of UiO-66 and UiO-66 NH2 

 

An equal molar mixture of ZrCl4 (19 mmol, 4.42 g) and terephthalic acid (UiO-

66, 19 mmol, 3.15 g) or 2-amino terephthalic acid (UiO-66-NH2, 19 mmol, 3.44 g) were 

mixed at room temperature in approximately 700 mL of DMF.  The mixture was split 

into two 500 mL jars and heated at 120 °C for 24 h.  Each solution was cooled to room 

temperate, the solvent was decanted, the resulting MOFs were washed with DMF (3 X 50 

mL), and the MOFs from the two jars were combined.  The resulting MOFs were rinsed 

with 50 mL of methanol 4 times over 3 days and then activated under vacuum at 

150 °C.
33

 

3.2.3 Electrospinning of Composite Polymer Fibers 

 

 MOF/polymer composite fibers were fabricated using a sol gel synthesis and 

electrospinning. A sol gel solution in a 1:2 ratio of PMMA to TTiP was prepared in a 1:1 

ratio of chloroform and N,N-dimethylformamide. Here 320 mg of PMMA was dissolved 

in 2 mL of chloroform and allowed to stir until the polymer was fully dissolved.  0.67 mL 

of TTiP was added dropwise to the polymer solution and allowed to stir for an additional 

30 min, at which time 2 mL of DMF was added to the solution to increase the dielectric 

constant and stirred for an additional 2 h.  30 min prior to electrospinning, 5 wt% of UiO-

66 or UiO-66 NH2 was added and dispersed in the sol gel solution.  
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Figure 3-4. Schematic figure of electrospinning apparatus used to fabricate 

PMMA/TTiP/MOF composite fibers. 
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A Spellman SL 30 generator was used to apply 25kV/cm across the sol gel 

polymer solution, resulting in the deposition of nanofibers on the electrically charged 

collector. A schematic of the electrospinning apparatus can be seen in Figure 3-4.  The 

composite nanofibers are left in ambient conditions to allow for hydrolysis of the TTiP to 

Ti(OH)4, and then further condensation over time to amorphous TiO2.
34

 

3.2.4 Characterization Methods 

 

A Spellman SL 30 generator was used to apply a high voltage across the copper 

wire to create a high electrical potential attaching to the collector. Photodegradations 

used an Oriel 66001 UV lamp with Oriel 68805 40-200 Watt universal Arc lamp power 

supply, which covers the entire ultra-violet, 100- 400 nm range. UV-Visible analysis of 

the aliquot was performed on an 8452A Hewlett Packard Diode Array spectrophotometer 

with the wavelength from 190 to 820 nm to characterize the absorption spectrum of each 

aliquot to determine the concentration of the product formation.  The morphological and 

structural characteristics of the nanofibers and nanoparticles were measured by field 

emission scanning electron microscopy (FESEM, Supra 55 VP from Zeiss equipped with 

an EDAX energy dispersive X-ray spectroscopy detector), and X-ray diffraction (XRD, 

PANalytical's X'Pert PRO Materials Research Diffractometer with Cu Kα radiation 

(λ = 1.5418 Å)), respectively. Transmission electron microscopy (TEM) images were 

obtained using a JEOL 2010 FETEM instrument. The TEM samples were dispersed in 

EtOH by sonication and the resulting solution were placed on a lacey carbon grid, which 

was left in air to evaporate the solvent. Nitrogen adsorption isotherms were measured for 

MOF/poylmer nanofibers using a Micromeritics TriStar 3000 analyzer at 77 K. Prior to 

analysis, each material was out gassed overnight at 50 °C under a flow of dry nitrogen. 
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Brunauer-Emmett-Teller (BET) modeling was performed to obtain the specific surface 

areas (m
2
/g). ATR-FTIR measurements were done on a Bruker Tensor 27 FTIR with a 

Bruker Platinum ATR accessory equipped with a single reflection diamond crystal. 
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3.2.5 Degradation Procedure 

3.2.5.1 Methyl Paraoxon Testing 

 

 

 

Figure 3-5. Reaction set-up for degradation of methyl paraoxon with MOF/polymer 

composite fibers. 

 

All degradation experiments were carried out at room temperature.  A 3 mg solid 

sample containing 5 wt% MOF/polymer composite fibers were introduced to an aqueous 

solution of N-ethyl morpholine (1 mL).  The mixture was continuously stirred over the 

course of the experiment (2 h).  To the dispersed suspension, 4 μL of methyl paraoxon 

(5.2 mg, 0.021 mmol) was introduced to the solution.  Reactions were performed both 

with and without UV irradiation for comparison.  At this point 10 μL aliquots were 

extracted at over 120 min.  Aliquots were diluted to 5 mL with 0.45 M aqueous N-
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ethylmorpholine and measured using UV-Vis spectroscopy. P- nitrophenoxide was 

monitored via UV-Vis due to its absorbance at 407 nm.  Standard control reactions were 

performed under the same conditions. 

3.3 Results and Discussion  

3.3.1 Characterization of MOF/polymer Catalyst 

 

MOF/polymer composite fibers were fabricated using a sol gel synthesis and 

electrospinning as aforementioned. A sol gel solution in a 1:2 ratio of PMMA to TTiP 

was prepared in a 1:1 ratio of chloroform and N,N-dimethylformamide and 5wt% of 

MOF was added to the solution just prior to electrospinning. A high voltage was applied 

to the sol gel solution, creating a high electrical potential attaching to the collector where 

a fiborous mat was produced. 

3.3.1.1 Polymer Composite Fibers Containing UiO-66 

3.3.1.1.1 Scanning Electron Microscopy and Tunneling Electron Microscopy 

 

 Electrospun nanofibers were analyzed by Scanning Electron Microscopy (SEM) it 

can be seen in Figure 3-6 the PMMA/TTiP nanofibers (Figure 3-6 a) have a 

folded/wrinkled surface morphology with consistent lengths and diameters throughout 

the sample. Addition of UiO-66 to the nanofiber led the diameter of the fiber to decrease 

drastically as well as a visible transformation in the surface morphology of the fibers.  

PMMA/TTiP/UiO-66 is shown from SEM (Figure 3-6 b) to have an average diameter of 

750 nm. Samples containing only PMMA and UiO-66 also possessed a large variation in 

diameter throughout the sample.  The fibers still retained a folded surface morphology 

without TTiP however the fibers seem more random and agglomerated as well as smaller 
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in diameter.  The PMMA/UiO-66 fibers bore an average diameter was determined to be 

approximately 625 nm. The fibers became wiry in nature with agglomerates of what were 

determined to be UiO-66.  
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Figure 3-6. Scanning electron microscopy imaging of (a) PMMA/TTiP composite fibers 

and (b) PMMA/TTiP/UiO-66 composite fibers (c) PMMA/UiO-66 
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Further investigation of the fibers by TEM as shown in Figure 3-7 reveals that 

UiO-66 is not decorated solely on the surface of the nanofiber, but in fact a small layer of 

PMMA/TTiP wraps around the MOF, embedding it within the fiber itself.  It is clear the 

MOF alone is cube shaped (b) and upon electrospinning the precursors, PMMA and TTiP 

the structural morphology of the MOF is maintained (a). 

 

Figure 3-7. Transmission electron microscopy imaging (a) PMMA/TTiP/UiO-66 

composite fibers and (b) UiO-66.  
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3.3.1.1.2 X-Ray Diffraction and Attenuated Total Reflectance Infrared Spectroscopy 

 

UiO-66 displays many characteristic XRD peaks, but two are indicative of UiO-

66 at  2ϴ value of 7.34° and 8.48° , which are still present upon electrospinning UiO-66 

with PMMA and TTiP seen in Figure 3-8.
35

  Both prior to the addition of the sol gel and 

after electrospinning the intensity of those characteristic peaks remained constant. 

 

 

Figure 3-8. XRD pattern of UiO-66 (black) and PMMA/TTiP/UiO-66 (red) composite 

fibers. 

 

 

 



92 
 

 Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy 

was used to characterize the functional groups of the polymer seen in Figure 3-9.  

PMMA contains characteristic peaks below 2000 cm
-1

 with a C=O ester stretch at 1720 

cm
-1

 and a C-O-C mode between 1200 and 1100 cm
-1

.  UiO-66 did display a 

characteristic peak not commonly shared with PMMA seen at 1550 cm
-1

. Upon analysis 

of the composite fibers containing both PMMA and UiO-66, the strong C=O ester stretch 

is visible as well as the stretch for UiO-66.  

 

Figure 3-9. ATR-FTIR spectra of UiO-66 (black), PMMA/TTiP (red) and 

PMMA/TTiP/UiO-66 (green) 
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Completion of analysis by SEM, TEM, XRD and ATR-FTIR confirmed the integrity of 

the UiO-66 and the polymer composite fibers remained intact after the electrospinning 

process. 

3.3.1.2 Polymer Composite Fibers Containing UiO-66 NH2 

3.3.1.2.1 Scanning Electron Microscopy and Tunneling Electron Microscopy 

 

 Composite polymer fibers containing UiO-66 NH2 were analyzed by SEM and 

TEM. Figure 3-10 represents PMMA fibers containing both UiO-66 NH2 and TTiP.  

PMMA/TTiP/UiO-66 NH2 retained the same folded surface morphology as the fibers 

seen in Figure 3-6.  The diameters of these fibers were also consistent with the 

PMMA/TTiP/UiO-66 composite fibers with diameters averaging approximately 795 nm. 

When TTiP is not included as a precursor to the composite fiber the morphology changes 

to a more amorphous surface.  However the UiO-66 NH2 looks to be incorporated within 

the fiber consistent with all other composite fibers. The diameter averaged approximately 

425 nm and was very consistent throughout the sample, with little deviation.  
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Figure 3-10. SEM imaging of (a), (a-1) PMMA/UiO-66 NH2 and (b), (b-1) 

PMMA/TTiP/UiO-66 NH2 
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TEM imaging was necessary to investigate the size and shape of the UiO-66 NH2 

MOF is more defined, as seen in Figure 3-11. The cubic shape is consistent with that of 

UiO-66 which is expected since the only variable change was the addition of an amine 

group.  The diameter of the MOF was uniform, with small variations averaging 

approximately 75 nm. 

 

Figure 3-11. TEM imaging of UiO-66 NH2 
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3.3.1.2.2 X-Ray Diffraction  

 

UiO-66 NH2 displays many of the same characteristic XRD peaks as UiO-66 

including the two diffraction lines that are indicative of UiO-66 series at a 2ϴ of 7.34° 

and 8.48°. 

 

Figure 3-12. XRD pattern of UiO-66 NH2 (black) and PMMA/TTiP/UiO-66 NH2 (red) 

 

 The resulting XRD diffraction pattern is shown in Figure 3-12, with the 

characteristic diffraction lines remaining both prior to and post electrospinning.  There 

are no other peaks present or shifting in the post electrospun sample (red) that would 

suggest the formation of amorphous or any other form of TiO2. 
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3.3.1.3 Electrospun TiO2/ UiO-66 Nanofibers 

3.3.1.3.1 Scanning Electron Microscopy and X-Ray Diffraction  

 

Fabrication of TiO2/UiO-66 nanofibers was achieved by adding 5 wt % UiO-66 to 

the sol gel prior to electrospinning and calcining the nanofibers at 285°C for 4 hours.  

SEM analysis showed the fibers possess an average diameter of 388nm, Figure 3-13.   

 

 

Figure 3-13. SEM images of 5 wt% UiO66/TiO2 nanofibers post 285°C calcination. 
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UiO-66 was also seen within the fibers and not solely on the surface. In analysis of the 

SEM images UiO-66 appears to have maintained it cubic shape.  Some of the TiO2 has 

changed in morphology from folded and wrinkled to what seems to be cracked and 

fractured. XRD was carried out to confirm that the structural integrity of the MOF stayed 

intact by examining the diffraction pattern. 

 

Figure 3-14. XRD comparison of UiO-66 to TiO2/ UiO-66 nanofibers.  

 

The XRD of the TiO2/UiO-66 was compared to pure UiO-66.  There is a strong 

characteristic peak of UiO-66 located at 25 °. It can be seen that even after 4 h of thermal 

treatment at 285 °C the diffraction line remains as well as the intensity, Figure 3-14. 
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3.3.2 Degradation of Methyl Paraoxon with UiO-66 Composite Fibers  

3.3.2.1 Light versus Dark 

 

Fabricated electrospun PMMA/TTiP/UiO-66 composite fibers were used to 

degrade methyl paraoxon demonstrating exceptionally fast kinetics and high conversion 

to nitrophenoxide. 5 wt% UiO-66 blended with PMMA and TTIP nanofibers were 

introduced to an aqueous solution of N-ethyl morpholine used as a pH 10 buffer.  Methyl 

paraoxon was introduced to the solution and aliquots were extracted at pre-determined 

times and concentration was measured using UV-Vis spectroscopy, Figure 3-15. 

 

Figure 3-15. UV-Vis spectra of the degradation of methyl paraoxon with 

PMMA/TTiP/UiO-66 without UV irradiation. 
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Within the first 5 min of contact between the fibers and methyl paraoxon, a 

drastic decrease in the reactant peak was observed, at which time the nitro phenoxide 

product peak absorbance at 407 nm started to increase. The hypothesis is this is a 

heterogeneous binding event where pre-adsorption is occurs.  There is considerable 

complexity to the kinetics of the overall reaction.  By 120 min, 94 % of the methyl 

paraoxon was fully converted to 4-nitrophenoxide and dimethyl phosphate with a 

calculated half-life of 29 min and first order initial rate constant of 0.023 M·minute.  The 

resulting solution showed a visible yellow color due to the presence of 4-nitrophenoxide.  

 

Figure 3-16. Comparison of catalyst with varying compositions. Percent conversions are 

shown as a function of time in minutes. 
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A series of experiments were performed both with and without the catalyst as well 

as catalyst both with and without TTiP and UiO-66. In Figure 3-16, the catalyst without 

TTiP on PMMA and 5wt% UiO-66 still had a considerable degradation response to 

methyl paraoxon, while PMMA/TTiP without the UiO-66 exhibited an even slower 

degradation rate.  Both the TTiP and UiO-66 can be acting as a Lewis acid to promote a 

base catalyzed reaction. This would result in the fast half-life and high percent conversion 

to nitrophenoxide.  

MOF/polymer composite fiber blends and their behavior in both dark and light 

conditions have been investigated.  What has been observed is a drastic variation in half-

life and percent conversion when methyl paraoxon is degraded in the dark vs. light. 

PMMA/TTiP/UiO-66 composite fibers were used to degrade methyl paraoxon 

demonstrating exceptionally fast kinetics and high percent conversion after 120 min of 

exposure, Figure 3-17. 
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Figure 3-17. UV-Vis spectra of the degradation of methyl paraoxon with 

PMMA/TTiP/UiO-66 with UV irradiation. 

 

 In the presence of UV irradiation a very different outcome is observed.  The 

decrease of the parent peak is a slower process, and there is very little change in 

absorbance of the nitrophenoxide product after 120 min. Only 22.9 % of methyl paraoxon 

was converted to product, with a half- life of 6.79 hours and a first- order initial rate 

constant of 0.002 M·min. Light and dark experiments were compared for samples with 

varying concentration, Table 3-1.  

 

 

 



103 
 

 

Sample 

Dark UV Light 

t½  min % Conversion t½ min % Conversion 

PMMA/TTiP/UiO-66 29.6  94.8 407 22.9 

PMMA/UiO-66 71.5  71.8 256 39.4 

PMMA/TTiP 495 18.5 768 14.1 

UiO66 *45  *85 106 69.9 

No Catalyst 2310 8.69 990 11.4 

Table 3-1. Table comparing light v. dark degradations of methyl paraoxon.  Table shows 

the trend of half-life and % conversion for each sample. *Degradation results of UiO-66 

in the dark were obtained from Northwestern and reported in Angewandte Chemie 

International Edition 2014, 53 (2), 497-501. 

 

The hypothesis is that there are different mechanistic reactions occurring in the 

dark vs, the light. Literature reports have established that the dark reactions are the result 

of base-catalyzed hydrolysis, and will result in a species with an absorbance in the visible 

region.  Therefore, the growth of the product peak can be monitored and the half-lives 

and percent conversions can be calculated assuming these samples have first-order 

kinetics. Further analysis was conducted into the kinetics of these degradation 

experiments and results can be seen in Section 3.3.2.2. When the reaction was performed 

in the light long half-lives and low conversions were observed.  There was also no clear 

trend in results when the degradation was performed in the light, as there was in the dark 

reactions.  
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Figure 3-18. Proposed mechanistic reaction of methyl paroxon degradation in the dark v. 

the light. 

 

Initially it was hypothesized that the light introduced to the reaction was 

decreasing the rate of degradation somehow, but that may not be the case.  However, it is 

possible that different mechanisms are occurring in the light that do not produce species 

that absorbs UV or visible light, therefore making it difficult to monitor the degradation 

process using UV Vis spectroscopy, Figure 3-18.  It is known that photocatalysts use 

radical degradation with the aid of irradiation to produce reactive radical species, which 

in turn degrade the target pollutant.  This has led to the hypothesis that the composite 

fibers containing TTiP have hydrolyzed and produced a small amount of amorphous 

TiO2.  Therefore, upon irradiation with UV light, electron-hole pairs are formed and will 

react with any absorbed water and oxygen, producing hydroxyl and peroxide radicals 

promoting degradation of the methyl paroxon but producing a non UV-Vis absorbing 

product.  In previous experiments with other simulants seen in Chapter 2, NMR was used 
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as a technique to observe and track degradation. NMR methods could be used to examine 

the radical degradation of methyl paraoxon in the light to confirm our hypothesis.  

3.3.2.2 Statistical and Kinetic Data 

 

 Multiple trials of these experiments were needed to obtain statistical bases for 

assessment and more accurate kinetic data. Testing began with the PMMA/TTiP/UiO-66 

sample described in Table 3-2.  The degradation procedure and catalyst remained 

unchanged to ensure accurate results. The experiments were done over the course of 3 

months and the results were unexpected.  

 

Sample 

 

Date 

 

t ½  

% 

Conversion 

Rate 

Order 

Rate 

Constant 

(M·min) 

PMMA/TTiP/UiO-66 7/28/15 29.6 min 94.8 1
st
 0.0230 

PMMA/TTiP/UiO-66 10/15/15 42.5 min 87.5 1
st
 0.0163 

PMMA/TTiP/UiO-66 10/22/15 N/A 74.5 2
nd

 0.0237 

Table 3-2. PMMA/TTiP/UiO-66 degradation with methyl paraoxon was repeated on 

three different dates ranging over 3 months. The table shows a decrease in percent 

conversion as time elapses. 

 

It was seen that each time the experiment was performed, the half-life and percent 

conversion became longer and lower respectively. Current hypotheses are that the TTiP is 

hydrolyzing and forming some type of amorphous TiO2 that is possibly aggregating, and 

the longer the catalyst is exposed to atmospheric conditions the more TiO2 is formed that 

will aggregate. Due to the previous results and hypothesis aforementioned the longer 

half-life and lower percent conversion would make sense for the reason that another 
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degradation mechanism resulting from TiO2 would be competing with the hydrolysis 

mechanism of the methyl paraoxon.  

 After seeing a sizeable variation in percent conversions and rate constants in 

Table 3-3, a new sample of PMMA/TTiP/UiO-66 was fabricated under the same 

parameters for testing.  These fibers underwent four degradation experiments with methyl 

paraoxon to gather statistical data and grasp a better understanding kinetically what is 

occurring. 

Sample 

PMMA/TTiP/UiO-66 

% 

Conversion 

Rate Order Rate Constant 

(M·min) 

t ½  

Trial 1 58.7 2
nd

  0.0111 N/A 

Trial 2 54.1 2
nd

  0.0095 N/A 

Trial 3 73.4 2
nd

  0.0225 N/A 

Trail 4 66.8 2
nd

  0.0167 N/A  

Table 3-3. PMMA/TTiP/UiO-66 trial data. This table depicts percent conversion, rate 

order, rate constant and half-life. 

 

During this series of testing all of the rates were second order, making it nearby 

impossible to calculate the half-lives of these reactions due to the fact the concentration 

varies over the course of the 120 min degradation.  Second-order kinetics are dependent 

upon the initial concentration and because there are two separate species being monitored 

and used to determine rate constant and percent conversion, it becomes impossible to say 

with certainty the projected half-life. However, what is seen in Table 3-3 is consistent; as 

the percent conversion increases so does the rate of the reaction.   
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All four trials were combined in a graph to display the error between experiments, Figure 

3-19. As the duration of time increases through the experiment, the error bars increase.  It 

is uncertain what would be the cause of such a large possible variation at the later time of 

the experiment.  

 

Figure 3-19. Graph depicting time vs. 1/[A] and the error bars associated with the four 

trials run with the sample originating from the same batch. 

 

Experiments are still ongoing to determine the cause of variation in the rate and percent 

conversion of methyl paraoxon.  Theories have been drawn but it is still too early to come 

to any definitive conclusions.  

During the course of the experiments a dip in the absorbance of the reactant 

became noticeable.  It was uncertain what this decreased absorbance was attributed too 
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and it only seemed to effect the last aliquot at 120 min, Figure 3-20.  Hypotheses include 

that the N-ethyl morpholine buffer in which the degradation experiments are carried out 

might be the cause of this negative absorbance.   

Figure 3-20. UV-Vis spectra from trial 3 with UiO66/PMMA/TTiP degradation of 

methyl paraoxon. The spectra show the dip in concentration of the parent peak after 120 

minutes of exposure during the degradation.  

 

To confirm this hypothesis a UV Vis spectrum was obtained of the buffer solution both 

before the experiment began and at the completion of 120 min.  What was seen was 

validation that the decreased absorbance at around 285 nm was due to the N-ethyl 

morpholine absorption as well as baseline interference from the instrument.  
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Figure 3-21. UV-Vis spectra of N-ethyl morpholine before and after 120 minute 

degradation with methyl paraoxon.  The sample was extracted from stock solution prior 

to and post degradation. 

 

In Figure 3-21, the absorbance spectrum matches before and after the experiment with 

the exception of around 280 nm.  This change in absorbance over time led to the 

decreased absorbance seen in Figure 3-18. This will need to be taken into consideration 

in future degradation experiments.  In forthcoming experiments the disappearance of the 

parent peak of methyl paraoxon will also be studied to determine its kinetics. 

The statistical trials proved to have a best fit to second-order kinetics and an 

hypothesis was formed about competing mechanistic reactions.  Preliminary analysis 

indicated the loss of the reactant favors a second-order reaction in the sample showing a 

conversion of 94.3%. The formation of the product peaks shows a clear preference to a 
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first-order reaction, which was seen during the initial analysis of the data, Figure 3-22 

and 3-23.   

 

Figure 3-22. PMMA/TTiP/UiO-66 nanofibers with 94.3 % conversion, first-order 

analysis. 



111 
 

 

Figure 3-23. PMMA/TTiP/UiO-66 nanofibers with 94.3 % conversion, second-order 

analysis. 

 

When examining the result acquired from Trial 3 of the statistical data there was a 

distinct preference for second-order kinetics for the formation of the nitrophenoxide 

product. In the initial examination of the reactant, second-order process is also observed 

which is comparable to the sample in Figure 3-24 and 3-25.   
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Figure 3-24. PMMA/TTiP/UiO-66 nanofibers with 73.4 % conversion, first-order 

analysis.  
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Figure 3-25. PMMA/TTiP/UiO-66 nanofibers with 73.4 % conversion, second-order 

analysis.  
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Most of the complexity of the observed kinetics lies within the first 5 min of the 

reaction.  The forming hypothesis is this is a heterogeneous binding event in the first 5 

min, where pre adsorption is occurring.  There is considerable complexity to the kinetics 

of the overall reaction, and further analysis into the understanding of this process is 

ongoing.  

3.3.3 Degradation of Methyl Paraoxon with UiO-66 NH2 Composite Fibers  

3.3.3.1 Light vs. Dark  

 

Electrospun PMMA/TTiP/UiO-66 NH2 composite fibers were fabricated under 

the same conditions aforementioned with UiO-66.  5 wt% UiO-66 NH2 blended with 

PMMA and TTIP nanofibers were introduced to an aqueous solution of N-ethyl 

morpholine used as a pH 10 buffer.  Methyl paraoxon was introduced to the solution and 

aliquots were extracted at pre-determined times and the concentration was measured 

using UV-Vis spectroscopy. 
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Figure 3-26. UV-Vis spectra of the degradation of methyl paraoxon with 

PMMA/TTiP/UiO-66 NH2 without UV irradiation. 

 

The nitrophenoxide product peak grew over the course of 120 min.  After about 

10 min, an absorbance maximum was visible for the product at 407 nm.  Methyl 

paraoxon in the presence on PMMA/TTiP/UiO-66 NH2 showed a 76.1 % conversion to 

product. The resulting percent conversion is considerably lower than the seen for polymer 

composite fibers containing UiO-66 at 94.3 % conversion without the presence of UV 

irradiation, Figure 3-26.   

 



116 
 

 

Figure 3-27. Comparison of catalyst with varying compositions. Conversions as a 

function of time. 

 

 When comparing different composition samples it can be seen that UiO-66 NH2 

alone has the highest conversion, and the composite fibers containing the MOF have 

significantly lower in values, Figure 3-27.  It was also observed that there was a higher 

rate of conversion within the first 30 min in the sample containing just the MOF then 

seen in any of the other samples that were analyzed.  This has led to possible theories that 

the amine functional group from the MOF could be playing a role in hindering the 

degradation process.  This could arise from other potential binding interactions between 

the UiO-66 NH2 and the PMMA/TTiP not seen in samples containing solely UiO-66. 
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Figure 3-28. UV-Vis spectra of the degradation of methyl paraoxon with 

PMMA/TTiP/UiO-66 NH2 with UV irradiation. 

 

 The sample was then exposed to UV irradiation under consistent experiment 

parameters. The conversion of PMMA/TTiP/UiO-66 NH2 in the presence of UV 

irradiation was 71.8 %, which is comparable and likely with the margin of error as the 

same sample in dark conditions, Figure 3-28. However, there was a larger increase in 

absorbance within the first 5-10 min of irradiation.  
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Sample 

Dark UV Light 

% Conversion % Conversion 

PMMA/TTiP/UiO-66 NH2 76.1 71.8 

PMMA/UiO-66 NH2 66.7 52.9 

PMMA/TTiP 18.5 14.1 

UiO-66 NH2 88.8 47.1 

No Catalyst 8.69 11.4 

Table 3-4. Table comparing light v. dark degradations of methyl paraoxon.  Table shows 

the trend of % conversion for each sample 

 

There is no visible trend in the conversions of the samples in both the dark and 

under UV irradiation, in contrast to the samples containing UiO-66. It seems as though 

the TTiP is not promoting the base catalyzed reaction of the UiO-66 NH2, and in this case 

the MOF alone produces the highest percent conversion of methyl paraoxon to 

nitrophenoxide in 120 min. In the dark the UiO-66 NH2 is the most effective, where as in 

the presence of UV light the polymer composite containing the MOF has the high 

conversion.  It should also be noted that the polymer composite sample containing the 

MOF was not affected by the source of irradiation. It again is proposed that there are 

potentially two competing mechanisms in the light and the dark, as well as the polymer 

composite fibers containing UiO-66 NH2 produce a product other than nitrophenoxide.  

In the light the dominant product does not absorb in the UV-Vis region, and therefore is 

untraceable via UV-Vis spectroscopy. This would explain the low conversions seen for 

the polymer composite fibers in Table 3-4. 

The catalyst PMMA/TTiP/UiO-66 NH2 was introduced to the same reaction 

conditions used in degradations in the dark and UV irradiation.  Instead of using a quartz 
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vial to ensure the penetration of the UV light into the catalyst a pyrex glass vial was used.  

This will filter out the UV region of the irradiation result in only visible light reaching to 

the catalyst.  

 

Figure 3-29. UV-Vis spectra of the degradation of methyl paraoxon with 

PMMA/TTiP/UiO-66 NH2 with Visible irradiation. 

 

What was seen was unexpected; the conversion from methyl paraoxon to nitro phenoxide 

was only 31.8 %, compared to 71.8 % with UV irradiation, Figure 3-29.  In addition, a 

blue shift in maximum absorbance was observed, to 400 nm from of 407 nm typically 

seen in previous degradations with methyl paraoxon. Further analysis is necessary to 

determine the kinetics and the order of the reaction and to draw any definitive 

conclusions.  
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3.3.3.2 Kinetic Data 

 

 Due to the observations seen with differing of rate orders in the dark and light 

with samples containing UiO-66, the same approach was taken to calculated the rate 

order and initial rate constant of the samples containing UiO-66 NH2 that were exposed to 

light and in the dark. 

 

Sample 

Dark UV Light 

Rate 

Order 

Initial Rate 

Constant 

Rate 

Order 

Initial Rate 

Constant 

PMMA/TTiP/UiO-66 NH2 2
nd

 0.0264 2
nd

 0.0198 

PMMA/UiO-66 NH2 2
nd

 0.0163 2
nd

 0.0079 

UiO-66 NH2 2
nd

 0.0682 2
nd

  0.0053 

Table 3-5. Table comparing rate order and initial rate constant of methyl paraoxon 

degradation reactions in the dark and in UV light with polymer composite samples 

containing UiO-66 NH2 

 

Polymer composite samples containing UiO-66 NH2 showed a second-order rate in both 

the dark and when exposed to UV irradiation. The rate constant of these samples is 

consistent with the percent conversion.  The reaction using only MOF had the fastest 

reaction rate compared to the polymer composites. However, when the same samples are 

subjected to UV light their rate order remains the same but the rate constant 

approximately halves.  The resulting data can be seen in Table 3-5.  This again is 

consistent with the theory of competing mechanisms that are producing reaction products 

that do not absorb in the UV-visible region of the electromagnetic spectrum.  

 Literature reports state that the presence of the amine functional group can shift 

the absorbance of the MOF into the visible region being useful for visible initiated 
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photocatalysis. PMMA/TTiP/UiO-66 NH2 visible light and UV light degradation results 

were compared and results can be seen in Table 3-6.  

 

Sample 

Visible Light UV Light 

Rate 

Order 

Initial Rate 

Constant 

Rate 

Order 

Initial Rate 

Constant 

PMMA/TTiP/UiO-66 NH2 2
nd

  0.0032 2
nd

  0.0198 

Table 3-6. Table comparing rate order and initial rate constant of methyl paraoxon 

degradation reactions in visible and in UV light with PMMA/TTiP/UiO-66 NH2 

 

The same UV lamp source was used in the experiments with visible irradiation.  The 

reaction was carried out in a Pyrex glass therefore, filtering out the UV and only allowing 

visible light to penetrate the sample.  There are several reasons for why the rate constant 

and conversion are drastically different.  The initial hypothesis was that there should be 

no change in the rate constant and conversion by just changing the reaction vessel.  This 

is because if the polymer/MOF catalyst is activated by visible light, this was reaching the 

sample regardless of the vial composition.  Results proved this hypothesis to be false.  

There was a six-fold decrease in reaction rate with visible light compared to the UV.   
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Figure 3-30. Rate plot of methyl paraoxon degradation with PMMA/TTiP/UiO-66 NH2  

with visible irradiation (black) and UV irradiation (red) 

 

When analyzing the second-order rate plot for the samples in the visible and the UV it is 

seen in Figure 3-30 that the sample subjected to UV light has a better fit to the linear 

trend,  whereas the visible sample seems to possess a more logarithmic fit. This again 

supports the conclusion that different potential mechanisms that are dependent on the 

wavelength of irradiation.  

3.3.3 Degradation of Methyl Paraoxon with TiO2/UiO-66 Fibers  

3.3.3.1 Light vs. Dark 

 

Fabricated and characterized nanofibers were used in a series of methyl paraoxon 

degradations.  Fibers were exposed to both light and dark conditions under the Jones 
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group parameters for degradation as previously described. The resulting data was 

evaluated and shown in Table 3-7 and Figure 3-31.  

 Dark Light 

% Conversion 45.9 24.6 

Rate Order 1
st
 2

nd
 

Rate Constant 0.0049 M·min 0.0024 M·min 

t½   2.35 h N/A 

Table 3-7. Degradation of methyl paraoxon with TiO2/UiO-66 nanofibers.  Comparison 

of light vs. dark degradation and the percent conversion, rate order, rate constant and 

half-life deduced.  

 

In the dark the conversion and half-life are low and longer, respectively, then 

what we have seen in the past with other methyl paraoxon degradations.  When the data 

acquired in the light was analyzed we see that the conversion is half of what is seen in the 

dark. Further calculations led to the determination of a second-order reaction in the light. 
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Figure 3-31. Time v. % Conversion of light v. dark degradation of methyl paraoxon with 

TiO2 /UiO-66 nanofibers. 

The results further support the theory of multiple reaction mechanism and explain 

the variations in conversion and the order of the reaction.  As mentioned in earlier 

Chapter 2, TiO2 exploits reactive radical species to initiate the degradation process. In 

Figure 3-31 it is seen the conversion is almost halved in the presence of UV irradiation.  

The radical species produced are potentially forming non UV-Visible absorbing species, 

and therefore cannot be detected by UV-Vis spectroscopy.  

3.4 Conclusions  

 

 Electrospun polymer composite fibers containing UiO-66 and UiO-66 NH2 were 

successfully fabricated from a sol-gel solution. Synthesized fibers were characterized 

using an assortment of analytical techniques, and the structural integrity of the MOF was 

maintained during the electrospinning process.  The resulting composite fibers were used 

in the successful degradation of methyl paraoxon showing enhanced efficiency.  
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 Photocatalytic degradations of methyl paraoxon with UiO-66 incorporated into 

PMMA/TTiP fibers aimed to demonstrate whether addition of a MOF to a polymer 

composite matrix of fibers would increase the degradation efficiency.  It was concluded 

that the presence of the TTiP and UiO-66 increased conversion and lowered the half-life 

of the reaction. Results acquired are the best to date in comparison with literature values. 

Composite fibers containing MOF were also exposed to UV irradiation. Results showed 

lower conversions and longer half-lives. This led to the conclusion of multiple 

degradation mechanisms dependent on the irradiation used to drive the reaction.  The 

dark reaction is base catalyzed and undergoes a hydrolysis mechanism.  However, in the 

light, UV radiation produces photo-induced electron hole pairs, which in turn produce 

reactive radical species and will degrade the targeted pollutant resulting in products that 

do not possess an absorbance in the UV-Vis region of the electromagnetic spectrum.  

 UiO-66 NH2 was incorporated into PMMA/TTiP fibers with the aim of 

determining whether the functionalization of the UiO-66 would further enhance the 

degradation efficiency seen in the polymer composite fibers containing UiO-66.   It was 

concluded that the presence of the amine functional group did not enhance the rate of 

degradation.  Degradations of various composites both with and without MOF were 

conducted in the dark, UV, and visible light, results showed no consistent trend in 

conversions.  However, depending on light source, there were drastic variations in 

percent conversion and rate.  This strengthened the conclusion of multiple mechanistic 

degradation pathways. The kinetics of the degradations of methyl paraoxon with 

polymer/MOF composite fibers are complicated and require additional analyses before 

further conclusions can be made. 
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CHAPTER 4: Ag Deposition on Electrospun TiO2 Nanofibers for 

Visible Plasmon-Exciton Coupling in Nanocomposite Catalysts. 

 

4.1 Introduction  

 

In the past decade, plasmonics have inspired a significant amount of interest in 

various research communities for applications in nanophotonics, optics, catalysis, and 

energy conversion. Materials possessing surface plasmon resonances (SPR) such as silver 

nanoparticles have been studied and are known to exhibit appealing optical 

characteristics.
1
 SPR can be described as the resonance between collective oscillations of 

conductive electrons at or near the surface of metallic nanostructures (often noble 

metals), and an incident electromagnetic field. The size and shape of the metallic 

nanoparticles dictates the magnitude and wavelength at which the resonance occurs.  

These resonances have been exploited for applications such as catalysis, sensors, and 

optical devices.
2
  

Cyanine dyes are another class of materials that possesses photo sensitization 

properties useful in enhancing energy conversion. When introduced to certain conditions 

in solutions the dye monomer will aggregate producing a more narrow absorption band 

that is bathochromically shifted compared to the absorption of the monomer, these are 

known as J-aggregates.
3
 Within these aggregates systems is an exciton that forms when a 

photon is absorbed.  The resulting excited state may be described by the Frenkel exciton 

theory which describes an excited state electron-hole pair that is localized to one 
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atom/molecule within a crystal lattice.  The exciton can propagate by hopping through the 

lattice; however the electron-hole remains tightly bound.  

The coupling of plasmonic resonance with excitonic resonance has been shown to 

produce unique optical properties such as Fano resonance, induced transparency, and 

enhanced fluorescence.
4
 Through coupling of the excitonic J- aggregate dye and 

plasmonic NPs an overlapping of resonance occurs which in turn generates an induced 

transparency. These transparencies may be light scattering based phenomenon in which 

the background and scattered light interferes and produces a “dip” in the spectra. This 

phenomenon is often termed a Fano resonance, Figure 4-1.  
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Figure 4-1. Absorption spectra of plasmon-exciton coupling is adapted from DeLacy, B., 

et. al,Nano Letters 2015, 15 (4), 2588-2593 (right) The blue curve is Ag nanoplatelets in 

water and the red curve is the J-aggregate coated nanoplatelets.  An induced transparency 

is observed in the red curve. 

 

Alternatively, the transparencies may be an absorption based phenomenon in 

which the transparency dip is attributed to the overlap of two absorption dominant 

resonances, which lead to the generation of two new energy states. A transparency, or 

diminished absorption, is observed between these two energy states.  In both scenarios, 

the overlap of plasmon and exciton resonance have been shown to significantly enhance 

the near electromagnetic field.
4,5

 Recent work done by Norlander, Halas et al. showed an 

enhancement in fluorescence using nanomatryoshkas (another Fano resonant structure) 

composed of Au and SiO2 layers.
6
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Photocatalytic semiconductors such as TiO2  have been well documented in the 

literature.
7
 Photocatalysts possess the ability to absorb incident irradiation in the UV or 

visible region of the spectrum promoting an electron from the valence band to the 

conduction band of a semiconductor creating an electron hole pair. These photoinduced 

charge carriers can react with surface adsorbed species to form oxidizing and reducing 

species, as well as reactive radicals; i.e, hydroxyl and superoxide radicals.  Once formed, 

these photochemical products can degrade chemicals that are adsorbed on the surface of 

the TiO2 or diffuse to catalytically active sites at the semiconductor/ liquid interface 

during the lifetime of the exciton. 

 TiO2 is an appealing semiconductor photocatalyst; however it has limited use in 

solar applications due to the fact that only the UV region of the solar spectrum (about 

5%) is absorbed owing to its large band gap energy. A number of efforts on surface 

modification have been made to improve visible light driven photocatalysis. Through the 

doping of a metal into an active photocatalyst such as TiO2 with large band gap energies, 

the metal will create a donor or acceptor level within the conduction band and valence 

band of the semiconductor, by developing a new photocatalyst.
8
 Various metal 

nanoparticles, such as Cr, Sb
8
, Au

9
, Ag, Pt

10
; and rare earth metals including La, Ce, Er, 

Pr, Gd, Nb, and Sm
11

, have been employed in visible-light driven photocatalysis. Ag  has 

been coupled with TiO2 to utilize the benefits of the silvers SPR, which is the collective 

free electron charge oscillation in the metallic nanoparticles that are excited by visible 

light.
12

 

Through coupling plasmonic and excitonic structures there can be a further 

enhancement of the charge injection from a J-aggregate dye to a semiconductor than seen 
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with one or the other alone.  The impact of plasmon-exciton coupling on the catalysis of 

the titania will subsequently be determined. These nanocomposites are unique in that they 

effectively couple both light harvesting and catalytic functions in one material. The 

charge transfer process is highly dependent on the structure of the material, dynamics and 

chemical properties of the interfacial region, surface coverage, and bonding. For charge 

injection to occur it is imperative that the plexciton has an excited state energy level that 

is higher than the -4.2 eV level of the TiO2 conduction band. In addition, by ensuring that 

the plasmonic absorption is lower in energy than the 3.2 eV band gap of the TiO2, the 

process will effectively occur in the visible region of the electromagnetic spectrum, 

Figure 4-2. 

 

Figure 4-2. Proposed mechanism of electron injection from the plexcitonic material into 

the TiO2 conduction band. 
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In this Chapter, the deposition of Ag nanoparticles on the surface of electrospun 

TiO2 nanofibers is discussed, and preliminary degradation results are presented for 

methyl paraoxon with the metal/semiconductor fibrous material in the light and dark.  

4.2 Experimental  

4.2.1 Materials  

 

Polymethylmethacrylate (PMMA) (Mw960,000), titanium (IV) isopropoxide 

(TTiP), N,N-dimethylformamide (DMF), chloroform and O-(4-nitrophenyl) phosphate 

(methyl paraoxon, DMNP) (Mw247.14) 4-ethylmorpholine (Mw115.17), Silver nitrate 

(AgNO3), acetone, ethylene glycol (EG), polyvinyl pyrrolidone (PVP) were purchased 

from Sigma Aldrich and used without further purification.   

4.2.2 Synthesis of TiO2 Nanofibers  

 

TiO2 nanofibers were fabricated by electrospinning a sol-gel precursor solution 

followed by a thermal treatment.  A sol gel solution in a 1:2 ratio of PMMA to TTiP was 

prepared in a 1:1 ratio of chloroform and N,N-dimethylformamide. Where 320 mg of 

PMMA was dissolved in 2 mL of chloroform and allowed to stir until all polymer was 

dissolved. An aliquot of 0.67 mL of TTiP was added dropwise to the polymer solution 

and allowed to stir for an additional 30 min.  Subsequently, 2 mL of DMF was added to 

the solution to increase the dielectric constant and stirred for an additional 2 h prior to 

electrospinning.  A Spellman SL 30 generator was used to apply 25kV/cm across the sol 

gel polymer solution resulting in the deposition of nanofibers on the electrically charged 

collector. A schematic of the electrospinning apparatus can be seen in Figure 2-2.  The 

resulting polymer composite nanofibers were left to stand for 12 h at room temperature 
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under ambient conditions.  This allowed for complete  hydrolysis of TTiP to Ti(OH)4 and 

then further condensation to amorphous TiO2 prior to thermal treatment.
13

  The fibers 

were then collected and calcined in a Thermo Scientific Lindberg Blue M Mini-Mite 

Tube Furnace, 16-Pt; 120V tube furnace at 400 °C for 4 h under atmospheric conditions.   

4.2.3 Metal Deposition, Polyol Synthesis  

 

To deposit Ag nanoparticles on the surface of TiO2 nanofibers, 100 mg of 

electrospun TiO2 nanofibers and 20 mL EG were initially added into a 3-neck flask (fitted 

with a reflux condenser and a Teflon-coated stir bar) and heated at 160 °C. After 30 min 

of stirring at 160 °C, 5 mL of AgNO3 solution which consisted of 10 mg of Ag NO3 in 5 

mL of ethylene glycol (EG), and 5 mL of polyvinyl pyrrolidone (PVP) solution which 

consisted of 100 mg of PVP in 5mL of EG were dripped (simultaneously) into the 3-

necked flask over a period of 10 min. The mixture was continuously heated to 160 °C for 

an additional 20 min. The resulting solution was then centrifuged and decanted to remove 

the excess solution. The Ag-TiO2 was washed thoroughly acetone to remove EG and 

excess PVP before further use. The fibers were allowed to dry at room temperature 

before use. 

4.2.4 Methyl Paraoxon Degradation Procedure  

 

All degradation experiments were carried out at room temperature.  A 3 mg 

sample of Ag-TiO2 was introduced to an aqueous solution of N-ethyl morpholine (1 mL).  

The mixture was continuously stirred over the course of the experiment (2 h).  To the 

dispersed suspension 4 μL of methyl paraoxon (5.2 mg, 0.021 mmol) was introduced to 

the solution.  Reactions were performed both with and without UV irradiation for 
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comparison.  At this point 10 μL aliquots were extracted at over 120 min.  Aliquots were 

diluted to 5 mL with 0.45 M aqueous N-ethylmorpholine and measured using UV-Vis 

spectroscopy. P- nitrophenoxide was monitored via UV-Visible spectrometry due to its 

absorbance at 407 nm.  Standard control reactions were performed under the same 

conditions, including the degradation of methyl paraoxon in the presence of TiO2 

nanofibers without Ag. 

4.2.5 Characterization Methods 

 

A Spellman SL 30 generator was used to apply a high voltage across the copper 

wire to create a high electrical potential attaching to the collector. Thermal treatment was 

carried out using a Thermo Scientific Lindberg Blue M Mini-Mite Tube Furnace, 16-Pt; 

120V tube furnace heated to 400 °C for 4 h under atmospheric conditions.  

Photodegradations used an Oriel 66001 UV lamp with Oriel 68805 40-200 Watt universal 

Arc lamp power supply, which covers the entire ultra-violet, (100- 400 nm) range. UV-

Visible spectrometric analysis of the aliquot was performed using an 8452A Hewlett 

Packard Diode Array spectrophotometer instrument with a wavelength from 190 to 820 

nm, to characterize the absorption spectrum of each aliquot to determine the 

concentration of the product formation.  The morphological and structural characteristics 

of the nanofibers and nanoparticles were measured by field emission scanning electron 

microscopy (FESEM, Supra 55 VP from Zeiss equipped with an EDAX energy 

dispersive X-ray spectroscopy detector), and X-ray diffraction (XRD, PANalytical's 

X'Pert PRO Materials Research Diffractometer with Cu Kα radiation (λ = 1.5418 Å)), 

respectively. Transmission electron microscopy (TEM) images were obtained using a 

JEOL 2010 FETEM instrument. The TEM samples were dispersed in EtOH by sonication 
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and the resulting solution were placed on a lacey carbon grid, which was left in air to 

evaporate the solvent. Fluorescence and PL measurements were done with a Lumex Ltd. 

Fluorat-02 spectrometer with excitation wavelength of 300 nm for TiO2 and excitation 

wavelengths of 239 and 314 nm for Ag-TiO2 nanofibers. 

4.3 Results and Discussion  

4.3.1 Characterization of Ag Deposited TiO2 Nanofibers 

4.3.1.1 Scanning Electron Microscopy and Transmission Electron Microscopy  

 

 Electrospun nanofibers nanofibers were investigated by SEM and TEM shown in 

Figure 4-3. SEM image of TiO2 nanofibers (a) that had been calcined at 400 °C were 

shown to have an average diameter of approximately 678 nm.  The fibers possess a 

folded and wrinkled surface morphology that was consistent with the  TiO2 nanofibers 

observed in Chapter 2. TEM imaging (a-1) shows the fibers are made up of small grains 

and there is no evidence of anything else on the surface of within the fiber. SEM images 

of the TiO2 fibers that have undergone a polyol synthesis to deposit Ag on the surface are 

consistent with the folded and wrinkled surface morphology.  However, it is clear the Ag 

nanoparticle deposition was successful, with evidence of agglomerates that are located on 

the surface of the fiber.   
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Figure 4-3.  SEM image of a) TiO2 nanofibers calcined at 400°C and b) Ag-TiO2 

nanofibers. TEM images of a-1) TiO2 and b-1) Ag-TiO2 

 

 TEM analysis showed the appearance of spherical nanoparticles on the surface of 

the fiber after polyol synthesis, with an average diameter of approximately 153 nm, 

Figure 4-3. The Ag-TiO2 nanofibers retained an average dimeter of approximately 502 

nm.  There was a change in the diameter of the fibers pre and post polyol synthesis. The 

diameter decreases upon deposition of Ag to the nanofiber.  It was possible that the long 

exposure at 160 °C during the polyol synthesis caused the crystal structure to change.  

According to the literature as the temperature is increased the rutile crystal structure is 

favored and the diameter of the nanofibers decrease as the rutile fraction is increased.
14
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Therefore, the smaller diameter would be consistent with an increase in rutile fraction.   

XRD was carried out to confirm this hypothesis, with the results detailed below. EDX 

was also used in conjunction with SEM to determine the percentage of Ag on the surface 

of the titania fibers. Results concluded there was a 15:1 ratio of Ti to Ag meaning the 

sample contains approximately 2% Ag.   

4.3.1.2 X-Ray Diffraction  

 

The XRD pattern of post-calcined TiO2 nanofibers at 400 °C under a ambient 

atmosphere that have not been deposited with Ag nanoparticles is shown in Figure 4-4. 

Well defined diffraction peaks showed the presence of both anatase and rutile phases.  

For the anatase phase, the major peaks were obtained at 2θ values of 25.33, 37.93, and 

48.07°, corresponding to (101), (004), and (200) planes, respectively. For the rutile phase, 

peaks were observed at 2θ values of 27.44, 36.12, 41.35, and 54.30°, respectively, 

representing the Miller indices of (110), (101), (111), and (211) planes, respectively. The  

fraction of rutile phase was calculated to be 28 wt% from the equation of 

WR=1/[1+0.8(IA/IR)], where IA is the X-ray integrated intensities of the (101) reflection of 

anatase at 2θ of 25.33° and IR was that of the (110) reflection of rutile at 2θ of 27.44°.  
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Figure 4-4. XRD diffraction pattern of TiO2 nanofibers (black) and Ag-TiO2 nanofibers 

(red) 

 

The diffraction pattern of Ag-TiO2 (Figure 4-4, red) shows four sharp and well 

defined diffraction lines at 2θ = 38.13°, 44.36°, 64.39° and 77.39°, which can be assigned 

to the (111), (200), (220) and (311) reflections of the face centered cubic (fcc) structure 

of metallic silver, respectively.
15

 The 2θ peak seen at 38.13° is also present in the sample 

of TiO2, the addition of silver enhanced the intensity of this diffraction line. The fractions 

of the rutile phase were calculated using of WR=1/[1+0.8(IA/IR)], Ag-TiO2 nanofibers 

resulted in a rutile content of 37%.  This increased from the rutile percent prior to the 

polyol synthesis. This change confirms the hypothesis of the heating process during the 

synthesis affecting the crystal structure of the fibers; regardless of the low temperature 

the long exposure clearly had an effect on the crystal structure causing the rutile 
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percentage to increase.  Evidence of this is clear in the XRD pattern and is consistent 

with the decrease in diameter of the fibers seen in the SEM images. 

Raman spectroscopy was performed to further confirm the structure of TiO2 was 

not changed in the presence of Ag nanoparticles. Literature reports clearly state that the 

deposition of Ag nanoparticles to the surface of TiO2 in low weight percentages will have 

no effect on the Raman peaks.
16,17

 Analysis of the sample fabricated for this study 

showed the opposite of what was expected.  The TiO2 containing Ag caused the Raman 

peaks to either shift or broaden slightly, or new peaks appeared and disappeared. The 

hypothesis drawn is potential binding of Ag to the TiO2 structure which in turn would 

results in different spectra, Figure 4-5. 

 

Figure 4-5. Raman spectra of TiO2 (black) and Ag-TiO2(red) 
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4.3.1.3 Spectroscopy Studies  

 

 To investigate the photocatalytic activity of Ag-TiO2, solid state UV-Visible, and 

emission fluorescence experiments were completed. It is presumed that the Ag 

nanoparticles will act as an electron reservoir and will drew electrons from the 

conduction band of the TiO2 via the Mott-Schottky interface.  In analysis of the solid 

state UV-Visible spectra in Figure 4-6, the maximum absorbance of Ag-TiO2 red shifts 

in comparison to TiO2. From this, one would conclude that the band gap of the Ag-TiO2 

decreases because of the higher wavelength and lower energy.  

 

Figure 4-6. Solid state UV-Vis spectra of TiO2 (black) and Ag-TiO2 (red) 

 

The fluorescence emission spectra of the nanofibers both with and without Ag 

were excited at the same wavelength to investigate if there is a change in emission 
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between the samples.  In the case of Ag-TiO2, the broad emission peak seen in the TiO2 

sample (black) between 330 and 430nm disappears.  This signifies that the exciting 

wavelength has changed, as it is no longer receiving emission from the TiO2.  The energy 

has become too high and it is outside the excitation range limit of the TiO2, Figure 4-7. 

 

Figure 4-7. Fluorescence emission spectra of TiO2 (black) and Ag-TiO2 (red) 
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 Photoluminescence experiments were attempted for both TiO2 and Ag-TiO2 

nanofibers. The PL emission intensity is related to the recombination of the excited 

electron-hole pairs.  Therefore the lower emission intensity is indicative of a decrease in 

the rate of recombination.
18,19

  Unfortunately, resolved emission was unsuccessful with 

the streak camera that was utilized, as single-photon counting is necessary.  

4.3.2 Photodegradation of Methyl Paraoxon with TiO2 and Ag-TiO2 

4.3.2.1 Degradation of Methyl Paraoxon in the Dark and with UV Irradiation 

 

 TiO2 and Ag-TiO2 nanofibers were used to degrade methyl paraoxon in dark and 

light conditions. TiO2 nanofibers by themselves showed only a 12-13% conversion in the 

course of 120 min, regardless of whether it was in the dark or irradiated with UV light.  

When Ag-TiO2 was exposed to methyl paraoxon in standard Jones group degradation 

procedure conditions, a 34.9 % conversion was seen over the course of 120 min.  The 

notable feature here was the minimal change in the parent peak of methyl paraoxon.  

After 120 min, approximately 65% of the methyl paraoxon remained in solution and the 

resulting UV spectrum can be seen in Figure 4-8.  
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Figure 4-8. UV-Vis spectra of the degradation of methyl paraoxon with Ag-TiO2 in the 

dark 

 

 When Ag-TiO2 was exposed to light similar results were seen, with a minimal 

change in the parent peak and only 23.8% conversion to the nitrophenoxide product. 

However, in the case of Ag-TiO2 exposed to light in the last aliquot drawn at 120 min, 

there is a clear broadening and red shift in the parent peak of methyl paraoxon. It is 

possible that this could be caused by another product absorbing in the same region as the 

parent peak. As discussed in pervious Chapters 2 and 3, it is again believed that there 

could be multiple competing mechanisms which in turn could explain the red shift and 

peak broadening at 120 min, or it is possible there is a new peak absorbance at 300 nm 

due to the formation of a new product at absorbs in the UV region,Figure 4-9.  
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Figure 4-9. UV-Vis spectra of the degradation of methyl paraoxon with Ag-TiO2 in UV 

light 

 

 Comparison of the nanofiborous samples with and without Ag present results in a 

fast 7 to 10 % conversion within the first 5 min of exposure to methyl paraoxon.  

Following the initial 5 min in trials with TiO2 without Ag, conversion levels off and 

remains constant regardless of the dark or light conditions.  In contrast, the sample trails 

containing Ag do increase the conversion as time elapses. Ag-TiO2 without UV 

irradiation continues to increase in percent conversion throughout the course of the 

degradation, whereas trails exposed to visible light seems to increase conversion at a 

much slower rate, Figure 4-10.  
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Figure 4-10. Comparison of the TiO2 and Ag-TiO2 in the light and dark.  Percent 

conversions are shown as a function of time in minutes. 
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4.3.2.2 Kinetic Study 

 

 Due to previous observations regarding the kinetics in degradation with methyl 

paraoxon and the growing likelihood supporting a hypothesis of multiple mechanism 

reactions, the same approach was taken to calculate the rate order and initial rate constant 

of TiO2 and Ag-TiO2.  

 

Sample 

Light Dark 

% 

Conversion 

Rate 

Order 

Initial 

Rate 

Constant 

% 

Conversion 

Rate 

Order 

Initial 

Rate 

Constant 

TiO2 12.5 1
st
 or 2

nd
 0.0007 11.9 1

st
or2

nd
 0.0006 

Ag-TiO2 23.8 1
st
  0.0016 34.9 2

nd
  0.0039 

Table 4-1.  Table comparing percent conversion, rate order and, initial rate constant of 

methyl paraoxon degradation reactions in the light and dark with TiO2 and Ag-TiO2. 

  

 TiO2 showed minimal fluctuation in conversion when comparing the light and the 

dark.  Upon analysis of the rate order and initial rate constant, there was minimal 

difference and it did not favor one over the other.  When Ag-TiO2 was kept in the dark 

there was a clear indication it of a first-order degradation compared to the second-order 

fit with an initial rate constant double the standard TiO2 in the dark.  Figure 4-11 shows 

the rate plot of first-order degradation with Ag-TiO2 in the light.  The trend of data points 

is a poor linear fit and seems more logarithmic.  
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Figure 4-11. First-order rate plot for the degradation of methyl paraoxon with Ag-TiO2 

with UV Irradiation 

 

 In analysis of Ag-TiO2 in the dark there is an almost perfect linear fit for a 

second-order degradation, Figure 4-12. The Ag-TiO2 reaction in the dark has the fastest 

initial rate and produced the highest conversions and fastest kinetics of the four 

degradation experiments.  The comparison can be seen in Table 4-1. 
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Figure 4-12. 2
nd

 order rate plot for the degradation of methyl paraoxon with Ag-TiO2 in 

the dark 

 

 There continues to be a high level of kinetic complexity within the first 5 min of 

the reaction that could potentially be result of heterogeneous binding, or in the case of 

metal deposited TiO2, a slow charge transfer into the semiconductor. The observations are 

encouraging due to the enhancement seen in the degradation of methyl paraoxon when 

Ag is deposited on TiO2. The complexity of the kinetics in the overall degradation 

reaction with methyl paraoxon requires further analysis. Degradations should also be 

repeated with a different simulant such as DMMP where 
31

P NMR can be used to analyze 

the degradation and allow the conclusion to be drawn about multiple mechanisms, 

resulting in different degradation product formation.  
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4.4 Conclusions  

 

 TiO2 nanofibers were fabricated using a sol-gel precursors, PMMA and TTiP, 

followed by electrospinning and a thermal treatment.  Ag nanoparticles were deposited 

on the surface of the TiO2 fiber through a polyol synthesis with silver nitrate.  Metal 

deposited fibers were characterized by XRD, SEM, TEM and EDX demonstrating the 

presence of 153 nm Ag nanoparticles on the surface of the fiber.   

 Solid state UV-Vis and emission fluorescence spectroscopy were used to 

determine the potential band gap variation upon addition of Ag to the nanofibers.  Results 

of the UV Vis showed a red shift in maximum absorbance by the wavelength increasing 

and energy increasing, leading to the conclusion that the band gap energy decreased.  The 

anticipated results are that the emission lifetime of Ag-TiO2 will have a smaller intensity 

then that of TiO2; this in turn would mean the recombination rate of electron hole pair in 

Ag-TiO2 is slower than that of TiO2.  

 Results of the methyl paraoxon degradation with TiO2 and Ag-TiO2 showed that 

the metal deposited TiO2 had an enhancement in the conversion to the nitrophenoxide 

product.  However, the rate order was inconsistent between the samples allowing for no 

definitive conclusion of the rate of reaction.  The complexity of the overall kinetics in the 

degradation of methyl paraoxon continues to complicate determinations of the favored 

degradation mechanism.  The theory of competing mechanisms is still relevant and 

analysis is ongoing into assessing this hypothesis.  This is further discussed in the 

subsequent Chapter, along with the introduction of a J-aggregate dye to promote the 

charge transfer into the semiconductor to aid in the degradation of methyl paraoxon.  
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Chapter 5: Summary and Future Work  

 

 TiO2-MOF/ polymer composites and, SPR deposited catalysts were investigated 

to enhance catalysis and the degradation of organic toxins. The toxic pollutants used were 

simulated chemical warfare agents and it was seen that the extent of enhancement of 

degradation was selective to the type of agent (blistering or nerve) being scrutinized. We 

have shown considerable advancements in developing an adequate methodology for the 

degradation of SCWAs as well as fabricating a suitable catalyst by electrospinning to 

assist in successful mitigation. 

 In Chapter 2 we showed the successful fabrication of TiO2 nanofibers from a sol-

gel solution followed by electrospinning and finishing with a thermal treatment in 

atmospheric conditions.  Chapter 2 also shows that a nucleophilic solvent is necessary in 

the hydrolysis of CEES and that upon water saturation of TiO2 the rate of degradation is 

increased compared to dry catalyst. The degradation of DMMP was also examined 

against both nanofibers and nanoparticles with similar surface areas.  Results indicated 

that the nanofibers were more efficient in the degradation of DMMP over P25 

nanoparticles, proving that the surface area of the catalyst does not play a pivotal role in 

efficiency of degradation.  

 Current challenges in examining the degradation of CEES using NMR are the fast 

rates of hydrolysis. The existing NMR procedure consumes valuable time from aliquot 

extraction to data analysis, in which hydrolysis continues to occur and therefore is not a 

suitable means to determine the kinetics of the reaction. To better understand the 
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hydrolysis and rate of the CEES degradation with TiO2, the use of MAS-NMR coupled 

with a UV irradiation source probe is necessary where the catalyst is in direct contact 

with the simulant and in situ measurements can be taken over the course of the 

experiment. In situ measurements will also allow for more accurate kinetic data to be 

acquired. Experiments using solid-state NMR should also be conducted for DMMP to 

better analyze the efficiency and rate of degradation.  Catalysts possessing controlled 

varying surface areas should be used to gain a better understanding of the role surface 

area plays in the degradation of simulated chemical warfare agents.  Varying the rutile 

and anatase proportions of TiO2 should be examined to determine the influence of the 

crystal phase. The size of the grains that compose the nanofibers should be studied due to 

the potential impact on efficiency and rate of degradation  

 In Chapter 3, we showed the successful fabrication of polymer composite 

nanofibers containing 5 wt% UiO-66 and UiO-66 NH2.  The composites were 

characterized by several analytical techniques and it was concluded that the structural 

integrity of the MOF was maintained throughout the electrospinning process. Polymer 

composite nanofibers were introduced to methyl paraoxon in order to assess the 

degradation of this simulant. It was concluded that the presence of the TTiP and UiO-66 

increased percent conversion and lowered the half-life of the reaction. The results 

acquired are the best to date according to literature with UiO-66. Degradation 

experiments in the presence of UV light led to the hypothesis of a slowly occurring base 

catalyzed reaction, as well as creating photo-induced electron-hole pairs which produced 

reactive radicals species, degrading the methyl paraoxon to a product lacking absorbance 

in the UV-Visible region of the electromagnetic spectrum.  
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Polymer composite fibers containing UiO-66 NH2 underwent parallel degradation 

experiments. Results led to the conclusion that the addition of the amine functional group 

did not enhance the base catalyzed reaction of methyl paraoxon.  The hypothesis of 

multiple mechanisms can again be applied to the degradation containing UiO-66 NH2. 

Following completion of degradation experiments the kinetics were analyzed via first- 

and second-order rate laws. It was determined the kinetics are complicated and there is a 

potential heterogeneous binding event which occurred early in the reaction adding 

consider complexity to the kinetics. 

 In order to gain a better understanding into the role the MOF and polymer 

composite play in the degradation of simulated chemical warfare agents.  Several options 

should be explored including varying the weight percent on the MOF in the polymer 

composite fibers.  This would in turn help determine the critical amount of MOF 

necessary to efficiently enhance the degradation. This thesis focused on the use of Zr-

based MOFs due to their exceptional water and thermal stability.  However, it would be 

useful to analyze newly developed MOFs taking advantage of recent research.  NU1000 

has displayed extraordinary half-lives and percent conversions in the degradation of 

methyl paraoxon, Figure 5-1.  
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Figure 5-1. Structure of NU 1000, Courtesy of Northwestern University. 
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Other MOFs including Ti based MOFs could be used to exploit their 

photocatalytic properties and further promote visible photo-induced catalysis. Further 

investigation should be undertaken into the kinetics of the reactions.  Reaction products 

can easily be determined by NMR or GCMS.  Results would help prove the theory of 

photo-induced radical reaction occurring when the catalyst is exposed to irradiation. Base 

catalyzed reactions of methyl paraoxon were deemed successful, but to increase in the 

efficiency and rate the addition of a base to the composite polymer fiber mat via 

electrospinning should be explored.  This is turn would aid in the transition from 

degradations being carried out in a pH 10 buffer to a more neutral medium. It also is 

extremely important that these materials be tested against actual agents.  It is known that 

the simulant is as close to a chemical analog as can be reasonably explored in a 

conventional academic laboratory, however the agent itself may react differently when 

exposed to ultimate target materials. For these materials to be used in battlefield 

technology it is imperative that they have successful results demonstrated against actual 

CWAs. 

 In Chapter 4, the successful fabrication of Ag-TiO2 nanofibers via a polyol 

synthesis with silver nitrate was reported.  Fibers were characterized and it was 

concluded that the deposition of silver was successful.  UV-Visible and fluorescence 

spectroscopy led to the determination the band gap of the TiO2 had decreased upon 

addition of silver. Degradation with methyl paraoxon showed the addition of silver to the 

TiO2 was successful in increasing the percent conversion of methyl paraoxon to 



163 
 

nitrophenoxide. Yet again, the competing degradation mechanisms reoccurred as well as 

the awareness of the complexity into the kinetics of the overall reaction.  

 It is hypothesized that charge transfer will further enhance photocatalysis in 

plexicitonic materials. To further develop the research in visible-light photocatalysis, 

plexicitonic materials can theoretically be excited by visible irradiation to enhance the 

charge transfer process to the semiconductor, which in turn will improve the rate of 

catalysis. Appropriate new materials and particle structures should be fabricated for use 

in photocatalytic reactions. The shape and size of silver particles should be explored to 

determine to affect the metal SPR will play in the charge transfer process.  The post 

synthesized silver should be deposited to the surface with different deposition procedures 

as well as varying amounts of SPR to ensure the maximum efficiency of charge transfer.  

It is propose that silver-deposited fibers should then be electrostatically coated with a J-

aggregate dye to create the desired photogenerated Fano resonance that has been deemed 

necessary for charge transfer.  Plexcitonic nanocomposites should be thoroughly 

characterized prior to photocatalytic degradations, including XPS to confirm energy of 

the Fermi levels in the nanoparticles relative to TiO2. Plexcitonic materials could promote 

visible-induced photocatalysis by subsequently enhancing the number of electrons that 

are injected into the titania semiconductor. 

 


	Binghamton University
	The Open Repository @ Binghamton (The ORB)
	2016

	Fabrication of Electrospun TiO2/Polymer Composite Nanofibers For Photocatalysis and Degradation of Toxins
	Danielle L. Mccarthy
	Recommended Citation


	tmp.1496769450.pdf.38Xf1

