
Binghamton University
The Open Repository @ Binghamton (The ORB)
Systems Science and Industrial Engineering Student
Scholarship Systems Science and Industrial Engineering

9-2010

A Software Application For The Selection Of
Temperature Measuring Sensors Using The
Analytic Hierarchy Process (AHP)
Shadi Mohammad AL-B'ool
Binghamton University--SUNY, salbool1@binghamton.edu

Follow this and additional works at: https://orb.binghamton.edu/systems_students

Part of the Industrial Engineering Commons

This Other is brought to you for free and open access by the Systems Science and Industrial Engineering at The Open Repository @ Binghamton (The
ORB). It has been accepted for inclusion in Systems Science and Industrial Engineering Student Scholarship by an authorized administrator of The
Open Repository @ Binghamton (The ORB). For more information, please contact ORB@binghamton.edu.

Recommended Citation
AL-B'ool, Shadi Mohammad, "A Software Application For The Selection Of Temperature Measuring Sensors Using The Analytic
Hierarchy Process (AHP)" (2010). Systems Science and Industrial Engineering Student Scholarship. 3.
https://orb.binghamton.edu/systems_students/3

https://orb.binghamton.edu?utm_source=orb.binghamton.edu%2Fsystems_students%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://orb.binghamton.edu/systems_students?utm_source=orb.binghamton.edu%2Fsystems_students%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://orb.binghamton.edu/systems_students?utm_source=orb.binghamton.edu%2Fsystems_students%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://orb.binghamton.edu/systems?utm_source=orb.binghamton.edu%2Fsystems_students%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://orb.binghamton.edu/systems_students?utm_source=orb.binghamton.edu%2Fsystems_students%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=orb.binghamton.edu%2Fsystems_students%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://orb.binghamton.edu/systems_students/3?utm_source=orb.binghamton.edu%2Fsystems_students%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ORB@binghamton.edu

A SOFTWARE APPLICATION FOR THE SELECTION OF

TEMPERATURE MEASURING SENSORS USING THE

ANALYTIC HIERARCHY PROCESS (AHP)

A SOFTWARE APPLICATION FOR THE SELECTION OF

TEMPERATURE MEASURING SENSORS USING THE

ANALYTIC HIERARCHY PROCESS (AHP)

by

Shadi Mohammad AL-B’ool

Advisor

Dr. Tarek H. Al-Hawari

Co-Advisor

Dr. Amer M. Momani

Thesis submitted in partial fulfillment of the requirements for the degree of

M.Sc. in Industrial Engineering

At

The Faculty of Graduate Studies

Jordan University of Science and Technology

 September, 2010

A SOFTWARE APPLICATION FOR THE SELECTION OF

TEMPERATURE MEASURING SENSORS USING THE

ANALYTIC HIERARCHY PROCESS (AHP)

by

Shadi Mohammad AL-B’ool

Signature of Author ……………………….

Committee Member Signature and Date

Dr. Tarek H. Hawari (Chairman) .………………………

Dr. Amer M. Momani (Co-Advisor) ………………………..

Dr. Samer K. Khurais (Member)

Dr. Rami H. Hadeethy (External Examiner)

 September, 2010

 iv

DEDICATION

This thesis is honorably dedicated to my precious mother, my dear father, and my

brothers and sisters without whom I would have not achieved this success. It is also

dedicated to my best friends Bassem Hassoun and Amer Momani for their continual

assistance and encouragement without which this work has not come to the fore.

 v

ACKNOWLEDGMENTS

It is a great pleasure for me to recognize the valuable help and assistance I have

received from my supervisor, Dr. Tarek Al-Hawari and co-advisor Dr. Amer

Momani. They really were my reliable tutors and mentors who led me through the

way to fulfill this work.

 vi

TABLE OF CONTENTS

DEDICATION IV

ACKNOWLEDGMENTS ... V

TABLE OF CONTENTS .. VI

LIST OF FIGURES ... IX

LIST OF TABLES…………………………………………………………………………….X

CHAPTER ONE INTRODUCTION .. 1

1.1 Motivation for Process Measurement .. 1

1.2 Temperature Measurement .. 3

1.3 Definitions .. 3

1.3.1 Temperature ... 3

1.3.2 The International Practical Temperature Scale (IPTS) 4

1.3.3 Thermal Expansion .. 5

1.3.4 Radiation .. 5

1.3.5 Sensor Accuracy .. 5

1.3.6 Sensor Resolution .. 5

1.3.7 Sensor Stability... 5

1.3.8 Sensor Repeatability Performance... 6

1.3.9 Sensor’s Drift .. 6

1.3.10 Sensor’s Sensitivity .. 6

1.3.11 Sensor Hysteresis .. 6

1.3.12 Nonlinearity Behavior of Sensor ... 6

1.3.13 Sensor’s Operating Range ... 7

1.3.14 Noise .. 7

1.3.15 Sensor’s Response Time ... 7

1.3.16 Self-Heating of Sensor ... 7

1.3.17 Environmental Parameters ... 8

1.4 Thesis Objective ... 8

1.5 Significance of the Work .. 8

1.6 Organization of the Thesis ... 9

CHAPTER TWO TEMPERATURE MEASUREMENT SENSORS USED IN

THESIS…………………………………………………………………………………………..10

2.1 List of Different Sensor Categories Used in Thesis 10

2.1.1 Liquid-in-Glass Thermometers ... 10
2.1.1.1 Mercury-in-Glass Thermometers ... 10
2.1.1.2 Mercury-in-Glass Thermometers for Measuring High Temperatures 12

2.1.2 Bimetal Strip Thermometer .. 12

 vii

2.1.3 Platinum Resistance Thermometers (PRTDs) ... 12

2.1.4 Thermister Thermometers .. 15

2.1.5 Thermocouple Thermometers .. 16
2.1.5.1 Thermocouple Materials .. 17

2.1.6 CD Semiconductor Thermometer... 18

2.1.7 Optical Disappearing Filament Thermometers (Pyrometers) 18

2.2 Selection of Temperature Sensors .. 19

2.2.1 Important Criteria for the Selection of Temperature Sensors 19

2.2.2 Relative Merits for Each Category.. 20

2.2.3 Application-Related Issues ... 21
2.2.3.1 Contact or Non-contact Sensing? .. 21
2.2.3.2 What is the Temperature Range? .. 22
2.2.3.3 What is the Rate of Temperature Change?.. 22
2.2.3.4 Tolerance ... 22
2.2.3.5 Cost ... 22

CHAPTER THREE THEORETICAL BACKGROUND FOR THE ANALYTIC
HIERARCHY PROCESS (AHP) METHOD 24

3.1 Introduction ... 24

3.2 Description of the Method .. 25

3.3 Strengths and Weaknesses of AHP ... 30

3.3.1 Strengths .. 30

3.3.2 Weaknesses ... 31

CHAPTER FOUR A SOFTWARE APPLICATION FOR THE SELECTION

OF TEMPERATURE SENSORS USING THE ANALYTIC HIERARCHY
PROCESS (AHP)……………………………………………………………….............32

4.1 Literature Review .. 32

4.2 Computer Software Description .. 35

4.3 AHP Application and Results from the Computer Software 36

4.3.1 Starting the Program .. 37

4.3.2 The Evaluative Criteria and Sub-criteria .. 40

4.3.3 The Hierarchal Structure .. 41

4.3.4 Components Weights ... 43

4.3.5 Components Weights Interpretation (Automotives) 43
4.3.5.1 Alternatives Weights Interpretation for Selected Sub-criteria 44
4.3.5.2 Sub-criteria Weights Interpretation ... 63
4.3.5.3 Criteria Weights Interpretation ... 75
4.3.5.4 Variations in Components Weights for the Three Applications 77

4.3.6 Components Weights Calculation .. 87

4.3.7 Performing the Consistency Test ... 88

4.3.8 Displaying the Final Results ... 88

CHAPTER FIVE CASE STUDY .. 90

5.1 Case Study Description .. 90

5.2 Automotive Catalytic Converter Description ... 90

 viii

5.3 Application Operating Conditions .. 92

5.4 Applying the Software to the Case Study .. 93

5.5 Software Results ... 94

5.6 Sensitivity Analysis .. 97

5.6.1 Case 1: Alternative Weights Variation .. 97

5.6.2 Case 2: Sub-criterion Relative Weights Variation .. 98

5.6.3 Case 3: Dynamic Criterion Relative Weights Variation 99

5.6.4 Case 4: Changing the Application .. 100

5.6.5 Case 5: Increasing Number of Sensors ... 100

CHAPTER SIX DISCUSSION OF RESULTS 102

6.1 Chapter Four Discussion ... 102

6.1.1 Alternatives Weights Discussion .. 102

6.1.2 Sub-criteria Weights Discussion... 104

6.1.3 Criteria Weights Discussion ... 105

6.1.4 Alternatives Final Scores Discussion ... 106

6.1.5 Chemical Process Weights Discussion .. 107

6.1.6 HVAC Weights Discussion ... 109

6.2 Sensitivity Analysis Discussion ... 110

6.2.1 Case 1 Discussion .. 110

6.2.2 Case 2 Discussion .. 110

6.2.3 Case 3 Discussion .. 111

6.2.4 Case 4 Discussion .. 111

6.2.5 Case 5 Discussion .. 112

6.3 Conclusions ... 112

FUTURE WORK…………………………………………………………………………….115

REFERENCES……………………………………………………………………………….116

APPENDIX Ι: THERMOCOUPLES TO BRITISH STANDARDS 121

APPENDIX II………………………………………………………………………………..122

APPENDIX III……………………………………………………………………………….123

APPENDIX IV……………………………………………………………………………….138

APPENDIX V………………………………………………………………………………..140

APPENDIX VI: PROGRAMMING CODE FOR THE SOFTWARE 141

APPENDIX VII……………………………………………………………………………..189

ABSTRACT IN ARABIC ... 194

 ix

LIST OF FIGURES

Figure 1.1: Process measurement is crucial to plant operation and profitability.
 ... 2

Figure 2.1: Simple thermocouple. ... 17
Figure 4.1: The main application window. ... 37
Figure 4.2: Visualizing Solution Explorer tab. ... 38
Figure 4.3: The two-tab page GUI main window. ... 39
Figure 4.4: Alternative sensors in the second tab in the application main

window. .. 40
Figure 4.5: AHP Structure for Sensors Selection Problem ... 42
Figure 4.6: Values of sub-criteria in both Automotives and Chemical Process

applications. .. 81
Figure 4.7: Values of sub-criteria in both Automotives and HVAC applications.

 .. 85
Figure 4.8: Values of criteria weights in the Automotives, the Chemical Process

and the HVAC applications. ... 86
Figure 4.9: Values of sensors’ final scores in the Automotives, the Chemical

Process and the HVAC applications. .. 87
Figure 5.1: A commercial catalytic converter with the parts and chemical

reactions that occur within the converter. .. 92
Figure 5.2: Choices on the first tab for the case study. .. 93
Figure 5.3: Checked in sensors on the second tab. .. 94
Figure 5.4: Case 1 Sensitivity Analysis results. ... 98
Figure 5.5: Case 2 Sensitivity Analysis results. ... 99
Figure 5.6: Case 3 Sensitivity Analysis results. ...100
Figure 5.7: Case 5 Sensitivity Analysis results. ...101

 x

LIST OF TABLES

Table 1-1: Temperature Range, Sensors, and Interpolation Equations for the
International Practical Temperature Scale .. 4

Table 2-1: General specifications of the sensors used in thesis for temperature
Measurement. ... 10

Table 2-2: Characteristics of different classes RTDs. ... 15
Table 2-3: Thermal Properties of Thermisters with Metallized Surface

Electrodes. ... 16
Table 3-1: The pair-wise comparison scale (Saaty, 1980) ... 26
Table 3-2: Random Index Values ... 28
Table 4-1: Criteria and sub-criteria factors used as basis for comparison

between alternative sensors. ... 41
Table 4-2: Weights of the three alternatives against the Maximum Operating

Temperature sub-criterion as they appear in the software results 48
Table 4-3: Weights of the three alternatives against the Temperature Curve

sub-criterion. .. 51
Table 4-4: The three alternatives case study weights for the Sensitivity sub-

criterion .. 53
Table 4-5: The results for the Self Heating sub-criterion ... 55
Table 4-6: The software results for the Typical Small Size sub-criterion 56
Table 4-7: The software results for the Typical Fast Thermal Time Constant

sub-criterion. .. 58
Table 4-8: The software results for the Long Term Stability and Accuracy sub-

criterion .. 59
Table 4-9: The software results for the Corrosion Resistance sub-criterion 61
Table 4-10 The software results for the Cost sub-criterion 63
Table 4-11: The ranks for the 23 Sub-criteria with respect to the overall goal. 65
Table 4-12: Static Sub-criteria Weights ... 69
Table 4-13 Dynamic sub-criteria weights. .. 71
Table 4-14: Environmental sub-criteria weights. .. 73
Table 4-15 Others sub-criteria weights. .. 75
Table 4-16: Criteria weights for the Automotives application. 76
Table 4-17 Scores for the thermocouple, the thermister, and the RTD for the

Automotives application. ... 77
Table 4-18: Criteria weights for the Chemical Process application. 80
Table 4-19: New sub-criteria weights for the Chemical Process application

versus old values for the Automotives application and % increase in
weights. ... 81

Table 4-20: Scores for the three sensor case study in the Chemical Process
application ... 82

Table 4-21: Criteria weights for the HVAC application. .. 84
Table 4-22: New sub-criteria weights for the HVAC application versus old

values for the Automotives application. .. 85
Table 4-23: Scores for the three sensor case study in the HVAC application. 86
Table 5-1: Weights of alternatives, sub-criteria, criteria and synthesis values for

sub-criteria and the alternatives... 95

 xi

Table 5-2: Criteria and sub-criteria factors used as basis for comparison
between alternative sensors. ... 96

Table 5-3: The software final results: the three sensors scores............................... 96
Table 5-4: Case 1 Sensitivity Analysis Results. ... 98
Table 5-5: Case 2 Sensitivity Analysis Results. ... 99
Table 5-6: Case 3 Sensitivity Analysis Results. ... 99
Table 5-7: Scores of the three sensors in the three applications.100
Table 5-8: Case 5 Sensitivity Analysis Results. ...101

 xii

ABSTRACT

A SOFTWARE APPLICATION FOR THE SELECTION OF

TEMPERATURE MEASURING SENSORS USING THE

ANALYTIC HIERARCHY PROCESS (AHP)

by

Shadi Mohammad AL-B’ool

This study presents a computer program that applies analytic hierarchy process

(AHP) method to objectively select the best temperature sensors for various

applications from multiple nominated alternatives. The underlying decision method

based on AHP methodology, ranks temperature sensors with different features with a

score resulting from the synthesis of relative preferences of each alternative to the

others at different levels considering independent evaluation criteria. At each level,

relative preferences of each candidate alternative with respect to the upper

immediate level are calculated from pair-wise comparisons among the candidate

alternative sensors based on the specifications of sensors with respect to a selected

application. These pair-wise relative comparison weights are embedded in the

computer software and are retrieved whenever the user specifies the application, the

restrictions, and the available alternative sensors that meet these restrictions. AHP

method proves to provide a quantitative and rational alternative performance

evaluation method; it permits simpler, easier and more organized decision making

process than subjective opinions that are subject to erroneous judgments. In this

study, the application of AHP method in selecting the best temperature sensor for a

particular application is embedded via the use of a computer program built using C#

programming language to help perform the selection process in an easy graphical

user interface GUI, ready-to-use, and computerized way and thus provides aid to

those working in industry and in need of such a software tool.

The proposed computer program is versatile and applicable to multitude of

temperature sensors selection situations. A case study from the automotive industry

which is the catalytic convertor application is presented. This application demands

the use of temperature sensors capable of monitoring high temperatures in the order

of 500°C-750°C, with a maximum temperature of ~870°C [1]. The selection process

is conducted from among three alternative sensor categories, these are:

thermocouples, thermisters, and RTD thermometers. The computer program is

 xiii

robust and applicable to a wider range of temperature sensors selection situations

with a variety of applications and different arrays of candidate sensors.

1

Chapter One Introduction

1.1 Motivation for Process Measurement

The ultimate goal of any industrial company is to make profit. Companies that in the long

run continue to provide an adequate return on stockholder investment tend to survive;

those that fail to do so eventually disappear. This underscores the importance of profitable

manufacturing operations, and it is ultimately the need to maximize profit that provides the

motivation for a company to buy process measurement and control systems. The

uniformity and quality of the product in any industrial process depend on the ability to

maintain the correct operating conditions and parameters within a certain range. Process

sensors are devices that measure these parameters, and the resulting data is used to control

the process. In addition, such measurements enable better process understanding, which

often drives process improvement. The connection between profit and process

measurement is illustrated in Figure 1.1.

Product quality and uniformity have a large impact on market demand and share of any

industrial company, especially if similar products are offered by competitors. Apart from

machine malfunction or operator error, defects are usually caused by variability in the feed

stock or excursions in the operating conditions. Process feedback gained from process

sensors enables active process control, which can respond to such variations in feedstock

and excursions in operating conditions as they arise. By automatically adapting the process

to changing feedstock with a strong connection with the process measurement system, the

process controller improves product uniformity and minimizes the amount of defective

2

product. The result is a top-quality product that will consistently meet customers’

expectations.

Figure 1.1: Process measurement is crucial to plant operation and profitability.

Process efficiency also has a major impact on profitability. By minimizing defective

product, process control also minimizes the associated waste in raw material, effort, and

energy. Automation of various operations within the process leads to lower labor costs.

Finally, process measurement and control can reduce energy costs by running mills,

mixers, and other energy-intensive devices. It is not uncommon to realize savings of more

than 15% in energy and maintenance costs on such equipment. The resulting increase in

asset productivity is also important when the plant is running near capacity. By running an

efficient process, the company can maximize its profit margin on the product [2].

Since most processes operate entirely within closed metal vessels, the operator relies on

sensor data for knowledge about the state of the process. It would therefore be impossible

to run most plants without sensors.

Maximize Profit

Improve Demand via

Product Quality

Improve Margin

Via Process Efficiency

 Make Uniform

 Product

Minimize

 Defects

Minimize

 Waste

 Minimize

 Energy Use

Automate

 Process

 Process Control

 Process

 Measurement

 Process

 Improvement

3

1.2 Temperature Measurement

Temperature is one of the most frequently used process measurements. Almost all

chemical processes and reactions are temperature-dependent. Frequently in chemical plant,

temperature is the only indication of the progress of the process. A considerable loss of

product may result from incorrect temperatures. In some cases, loss of control of

temperature can result in catastrophic plant failure with the attendant damage and possibly

loss of life. There are many areas of industry where temperature measurement is essential.

Such applications include steam raising and electricity generation, metallurgical industries,

typically steel and aluminum alloys, moulding and plastics manufacturing, food industries

and many different others.

1.3 Definitions

For the understanding of temperature measurement it is essential to have an appreciation of

the concepts of temperature and other heat-related phenomena.

1.3.1 Temperature

The temperature of a medium is an expression of its content of thermodynamic energy.

The thermodynamic energy represents the average velocity of the unarranged molecular

movement in the material. To measure the temperature by a temperature sensor, then the

measurement medium and temperature sensor both must reach thermal equilibrium such

that both assume the same temperature. To achieve this, the following 3 conditions must be

fulfilled:

1- The bodies must not exchange heat with external or internal sources.

2- The bodies must be in mutual balance.

3- The bodies have had thermal contact through sufficiently long time [3].

4

Temperature is therefore related to the kinetic energy of the molecules at a localized region

in a body; however, these kinetic energies cannot be measured directly and the temperature

inferred. To circumvent this difficulty, the International Practical Temperature Scale

(IPTS) has been defined in terms of the behavior of a number of materials at

thermodynamic fixed points [4].

1.3.2 The International Practical Temperature Scale (IPTS)

The international Practical Temperature Scale (IPTS) is based on six primary fixed points

that cover the temperature range from -183 °C(-297 °F) to 1065°C (1949°F) and other

secondary fixed points each of which corresponds to an equilibrium state during a phase

transformation of a particular material. Between the fixed points (both primary and

secondary), the temperature is defined by the response of specified temperature sensors

and interpolation equations. The scale is divided into four ranges with the sensors, fixed

points, and temperature span as indicated in Table1-1 [4].

Table 1-1: Temperature Range, Sensors, and Interpolation Equations for the
International Practical Temperature Scale

 Temperature Sensor Fixed Point Equation

 range (°C)

-190 to 0 Platinum thermometer Oxygen, ice, steam, sulfur Reference equation

0 to 660 Platinum thermometer Ice, steam, sulfur Parabola

660 to 1063 10% rhodium platinum Antimony, silver, gold Parabola thermocouple

Above 1063 Optical pyrometer Planck’s Law

5

1.3.3 Thermal Expansion

Themal expansion of solids is defined in terms of the coefficient of linear expansion α

which is defined as the increase in length per unit length when the temperature is raised by

1 K:

 lt = l0+ l0.αt (1.1)

where l0 = the initial length at temperature 0 °C

 lt = the length when the temperature is raised to t °C

1.3.4 Radiation

Radiation is the direct transfer of heat (or other form of energy) across space. Thermal

radiation is electromagnetic radiation and comes within the infrared, visible and ultraviolet

regions of the electromagnetic spectrum. In this thesis, the temperature measurement

instrument that has to do with radiation heat transfer is the optical pyrometer.

1.3.5 Sensor Accuracy

A measure of how closely the sensor output approximates the true value of the measured

variable, the temperature in this case [5].

1.3.6 Sensor Resolution

The smallest increment in the value of the measured variable (temperature) that results in

detectable increment in the output [5].

1.3.7 Sensor Stability

Sensor stability is the ability of the sensor to maintain and reproduce its specific resistance-

temperature characteristic for long periods of time within its specified temperature range of

operation. The degree of thermometer stability is expressed in terms of drift, or more

6

simply sensor stability is the ability of the sensor to maintain R vs. T over time as a result

of thermal exposure [6].

1.3.8 Sensor Repeatability Performance

Repeatability performance is closely related to stability. Repeatability is defined as the

conformity of consecutive temperature measurements for an individual test thermometer at

selected temperatures within its specified temperature range of operation, or more simply

sensor repeatability is the ability of the sensor to maintain R vs. T under the same

conditions after experiencing thermal cycling throughout a specified temperature range [6].

1.3.9 Sensor’s Drift

It is an undesirable change in resistance over a period of time which is unrelated to the

actual operating temperature. Usually, maximum drift is experienced by the sensor at high

temperatures [6].

1.3.10 Sensor’s Sensitivity

Is the incremental ratio of the sensor’s output (y) to the input temperature (x):

 S = Δy/Δx (1.2)

1.3.11 Sensor Hysteresis

Difference in the output of the sensor for a given input value of the measured temperature

when the measured temperature is reached from two opposite directions, i.e. during heating

and during cooling you do not reach the same value of temperature.

1.3.12 Nonlinearity Behavior of Sensor

A measure of deviation from linearity of the sensor output.

7

1.3.13 Sensor’s Operating Range

The range of input variable (temperature) that produces a meaningful sensor output.

1.3.14 Noise

Random fluctuation in the value of the measured temperature that causes random

fluctuation in the output. Noise at the sensor output is due to either internal noise sources,

such as resistors at finite temperatures, or externally generated mechanical and

electromagnetic fluctuations. The external noise will become more important as the

transducer size is made progressively smaller.

1.3.15 Sensor’s Response Time

Response time for a sensor is normally measured by the thermal time constant τ. Thermal

time constant is the 63.2% response to a step-function change in the sensor temperature

when the power dissipated in the sensor is negligible [7]. A temperature sensor’s response

time is a function of the following characteristics:

1- Dimension of sensor or its size

2- Sensor’s construction and encapsulation

3- Heat transfer ability between sensor and medium. Heat transfer between sensor and

liquid medium is much easier than with gaseous medium and hence response time

is faster.

4- Static or dynamic medium

5- Production method of sensor

1.3.16 Self-Heating of Sensor

The current that measures sensor resistance in RTD and thermister thermometers also heats

the sensor. This is known as Joule heating effect. Because of this effect, the sensor’s

8

indicated temperature is somewhat higher than the actual temperature. This inconsistency

is called self-heating error. Self-heating errors, which are dependent on the application, can

range from negligible values to 1°C. The greatest heating errors occur because of poor heat

transfer between the sensing element and application, or excessive current used in

measuring resistance.

1.3.17 Environmental Parameters

By environmental parameters we mean all the external variables such as pressure,

humidity, and vibration that affect the performance of the sensor. It should be emphasized

that a parameter is considered as an environmental parameter only if it is not the one to be

sensed.

1.4 Thesis Objective

The objective of this thesis is to apply the AHP method in selecting the appropriate

temperature sensor from among several alternative sensors for a particular industrial

application. It provides the underlying mathematical work and a computerized tool for the

selection process. This study can be considered a new addition to the multitude of AHP

applications and opens the door to similar studies conducted in the field of sensors

selection.

1.5 Significance of the Work

On one hand, no single study was found upon literature survey in the field of sensor

selection using AHP methodology, and here comes to the fore the significance of this work

of applying principles of AHP methodology in the sensor selection process. Furthermore,

the computer software proposed by the thesis is laying a helping hand for those interested

9

in selecting between different temperature sensors. The software is versatile and contains

seven sensor categories. It also comprises three industrial applications and numerous

selection cases are possible by means of the software. Moreover, results easily obtained by

the software can be utilized in further analysis such as conducting sensitivity analyses.

1.6 Organization of the Thesis

This thesis consists of six chapters. The first chapter is an introduction chapter, defining

the abstract of the thesis in addition to the objective of the study and some definitions

relevant to sensors science and essential for the well understanding of sensors features and

characteristics. Chapter 2 tackles the different sensor categories that are used in the

computer software in addition to listing main advantages and disadvantages of each

category that make it more suitable or unsuitable for use in a particular industrial

application . It should be noted that temperature sensors employed in industry and

referenced in books are much more than the ones presented here. Nevertheless, the

software is easily expandable to other sensors and applications. Chapter 3 narrates the

basic Analytical Hierarchy Process (AHP) method theoretical background. Chapter 4 is a

description of the proposed computer software and how the AHP method is implemented

in the software. Chapter 5 is a practical implementation of a three sensors: the

thermocouple, the thermister, and the RTD case study to the computer software in the

automotive catalytic converter application in addition to Sensitivity Analysis employed to

the software to test its solidity and ruggedness towards variations in system inputs. And

finally, chapter 6 presents discussion of the results in chapters 4 and 5 in addition to

concluding remarks and future work .

10

Chapter Two Temperature Measurement Sensors Used in

Thesis

2.1 List of Different Sensor Categories Used in Thesis

Techniques for temperature measurement are very varied. Table 2-1[8] is a summary of the

used measuring sensors in this thesis in the range quoted.

Table 2-1: General specifications of the sensors used in thesis for temperature
Measurement.

Range (K) Technique Application Resolution (K)

20-2700 Thermocouple General-purpose 1.0
73-1123 K-type thermocouple General-purpose 1.0

 (Nickel-Chromium versus constantan)

4-1300 Thermister Laboratory 0.001

 Industrial 0.1

15-1150 Platinum resistance thermometer Standard 0.00001

 Industrial 0.1

130-950 Liquid-in-glass General-purpose 0.1

130-700 Bimetal Industrial 1-2

950-3300 Optical (Disappearing filament) Pyrometer Industrial 0.1

200-950 LCD thermometer Industrial 0.001

2.1.1 Liquid-in-Glass Thermometers

Although several liquids are employed in the liquid-in-glass type thermometers, the one

tackled in this thesis is mercury-in-glass thermometer.

2.1.1.1 Mercury-in-Glass Thermometers

This thermometer consists simply of stem of glass tubing having a very small uniform

bore. At the bottom of the stem there is a thin-walled glass bulb. The bulb may be

cylindrical or spherical in shape, and has a capacity many times larger than that of the bore

of the stem. The bulb and bore are completely filled with mercury, and the open end of the

11

bore is sealed off either at high temperatures or under vacuum, so that no air is included in

the system.

Drawbacks of mercury-in-glass thermometer

1- It has a fairly large thermal capacity, with glass being not a very good conductor of

heat. Therefore, this class of temperature sensors have definite thermal lag, i.e., it

will require a definite time to reach the temperature of its surroundings. This time

should be allowed for before any reading is taken. In this regard, if the sensed

temperature is varying rapidly, then the thermometer may never indicate the

temperature accurately, particularly if the tested medium is gas.

2- Glass thermometers used in industry are usually protected by metal sheaths. These

metal sheaths may conduct heat to or from the neighborhood of the bulb and cause

the thermometer to read either higher or lower according to the actual conditions

prevailing.

3- For particularly cheap mercury-in-glass thermometers, large errors may be

introduced by changes in the size of the bulb due to aging. This occurs during

manufacture of the thermometer when glass is heated to high temperatures, and

upon cooling does not contract to its original size. Thus a long time after it has been

made it contracts very slowly so that the original zero mark is too low on the stem,

and thus the thermometer reads higher than the actual temperature. In order to

minimize error introduced in this case, thermometers are annealed during

manufacturing by baking them for several days at temperatures above that which

they will be required to measure, and then cooled slowly over a period of several

days [8].

12

2.1.1.2 Mercury-in-Glass Thermometers for Measuring High Temperatures

Mercury boils at 357 °C at atmospheric pressure. To extend this range, the top of the

thermometer bore is enlarged into a bulb having a capacity 20 times that of the bore of the

stem. This bulb, together with the bore above mercury, are then filled with nitrogen or

carbon dioxide at sufficiently high pressure to prevent mercury boiling. A pressure of 20

bars is required to extend the range to 550 °C [8].

2.1.2 Bimetal Strip Thermometer

Bimetal strips are fabricated from two strips of different metals with different coefficients

of thermal expansion bonded together to form, in the simplest case, a cantilever. Typical

metals are brass and Invar. As the temperature rises the brass side of the strip expands

more than the Invar side, resulting in the strip curling. The compound strip is formed by

riveting or welding two layers of metals, chosen so as to have very different values of

coefficient of linear expansion.

2.1.3 Platinum Resistance Thermometers (PRTDs)

One common way to measure temperature is by using Resistive Temperature Detectors

(RTDs). These electrical temperature instruments provide highly accurate temperature

readings: simple industrial RTDs used within a manufacturing process are accurate to ±

0.1°C, while Standard Platinum Resistance Thermometers (SPRTs) are accurate to ±

0.0001°C. [7]

All metals are electrical conductors that show resistance to the passage of electric current.

The proportional relationship of electrical current and potential difference is given by

Ohm’s law:

 R = E / I (2.1)

Where R = the electrical resistance in ohms

13

 E = potential difference in volts

 I = current in amperes

The resistance of a conductor is proportional to its length and inversely proportional to its

cross-sectional area, i.e.

 R = ρ. L/A (2.2)

Where R = the resistance of the conductor

 ρ = resistivity of the material

 L = the length of the conductor

 A = cross-sectional area of the conductor

Units of ρ are ohms. meter. The resistivity of a conductor is temperature dependent and

changes in a known and predictable manner, depending on the rise or fall in temperature.

As temperature rises, the electric resistance of the metal increases. As temperature drops,

electric resistance decreases. RTDs use this characteristic as a basis for measuring

temperature. The sensitive portion of an RTD, called an element, is a coil of small-

diameter, high-purity wire, usually constructed of platinum, copper, or nickel. This type of

configuration is called a wire-wound element. Another configuration; thin-film element,

with thin-film of platinum deposited on a ceramic substrate is also present [7].

The temperature coefficient of resistivity α is positive for metals, that is, resistance

increases with temperature, and for semiconductors the temperature coefficient is negative.

The temperature coefficient α is a measure of the sensitivity of the resistance thermometer.

It is also an expression of the mean value for the relative change in resistance per °C

between 0 and 100°C. As a general guide at normal ambient temperatures the coefficient of

resistivity of moat elemental metals lies in the region of 0.35 per cent to 0.7 per cent per

Kelvin [8]. Table 2.5 shows the resistivity and temperature coefficients for a number of

common metals: both elements and alloys.

14

 This study was concerned with Platinum resistance thermometer. Platinum, a noble metal,

is the best metal for RTD elements for three reasons:

1- It follows a very linear-to-temperature relationship

2- It follows its resistance-to-temperature relationship in a highly repeatable manner

over its temperature range.

3- It has the most stable resistance-to-temperature relationship over the largest

temperature range -184.44 °C to 648.88°C, although Platinum thermometers can be

used for temperatures up to 800 °C and down to -253 °C. Platinum is not the most

sensitive metal; however, it is the metal that offers the best long term stability and

repeatability, RTDs can be removed from service and recalibrated for verifiable

accuracy and checked for any possible drift. The accuracy of an RTD is

significantly better than that of a thermocouple within RTD’s normal temperature

range of -184.44 °C to 648.88°C [7].

In operation, the measuring instrument applies a constant current through the RTD. As the

temperature changes, the resistance changes and the corresponding change in voltage is

measured. There are three main classes of Platinum Resistance Thermometers (PRTs):

1- Standard Platinum Resistance Thermometers (SPRTs).

2- Secondary Standard Platinum Resistance Thermometers (Secondary SPRTs).

3- Industrial Platinum Resistance Thermometers (IPRTs). Table 2-2 [7] presents

information about each.

15

Table 2-2: Characteristics of different classes RTDs.

Probe Basic application Temperature (°C) Cost Probe style
a
 Handling

SPRT calibration of -200 to 1000 $ 5000 I Very fragile

 secondary SPRT

Secondary SPRT Lab use -200 to 500 $ 700 I, A Fragile

Wirewound IPRT Industrial field use -200 to 648 $ 60-$ 180 I, S, A Rugged

Thin-film IPRT Industrial field use -50 to 260 $ 40-$ 140 I, S, A Rugged

a
I = immersion; A = air; S = surface.

2.1.4 Thermister Thermometers

A themister is a thermally sensitive resistor whose primary function is to exhibit a change

in electric resistance with a change in body temperature. a thermister is a ceramic

semiconductor. Depending on the type of material used, a thermister can have either a

large positive temperature coefficient of resistance (PTC device) or a large negative

temperature coefficient of resistance (NTC device). The focus in this thesis is on NTC

thermistors.

NTC thermisters consist of metal oxides such as the oxides of chromium, cobalt, copper,

iron, manganese, nickel, and titanium. Such units exhibit a decrease in electric resistance

with an increase in temperature. The resistance–temperature characteristics of NTC

thermisters are nonlinear.

Because of its nonlinear resistance–temperature characteristic, the temperature coefficient

of resistance of an NTC thermister changes with temperature. Depending on the material

used, the temperature coefficient at 25C typically is in the range of –3 to –5% C
-1

[7].

The thermal time constant τ is the 63.2 % response to a step-function change in the

thermister temperature when the power dissipated in the thermister is negligible.

Two major categories of NTC thermisters exist. Bead-type thermisters have platinum alloy

lead wires sintered into the body of the ceramic. Chip, disk, surface-mount, flake, and rod-

16

type thermisters have metallized surface electrodes. Table 2-3 shows thermal properties for

some thermister types [7].

Table 2-3: Thermal Properties of Thermisters with Metallized Surface Electrodes.

Style Diameter Dissipation constant Time constant

 (mm) (mW C
-1

) (s)

Chip or disk in glass diode package 2 2-3 7-8

Interchangeable epoxy coated chip or disk 2.4 1 10

Disk with radial or axial leads 2.5 3-4 8-15

Disk with radial or axial leads 5.1 4-8 13-50

Disk with radial or axial leads 7.6 7-9 35-85

Rod with radial or axial leads 1.8 4-10 35-90

Rod with radial or axial leads 4.4 8-24 80-125

It should be noticed, however, that these values of thermal properties of these units depend

on the environment and the measurement medium in which the sensor will be used.

2.1.5 Thermocouple Thermometers

Thermocouple thermometers are self-generating sensors, i.e. they do not need external

source of power to drive them. They remain the most generally used sensors for

thermometry because of their versatility, simplicity, and ease of use. Any pair of

electrically conducting and thermoelectrically dissimilar materials coupled at an interface

is a thermocouple. The legs are thermoelements. The Seebeck effect produces a voltage in

all such thermoelements when they are not at a uniform temperature. Any electric interface

between dissimilar electric conductors is a thermoelectric junction.

The Seebeck effect happens when a closed circuit is formed of two metals, and the two

junctions of the metals are at different temperatures, then an electric current will flow

round the circuit, as shown in Figure 2.1, which shows a wire of two different metals such

17

as iron and copper. If one junction remains at room temperature, while the other is heated

to a higher temperature, a current is produced which flows from copper to iron at the hot

junction, and from iron to copper at the cold one.

 Cold

 Copper Iron

 Hot

Figure 2.1: Simple thermocouple.

The most commonly used industrial thermocouples are identified for convenience by type

letters. The main types, together with the relevant British Standard specification and

permitted tolerance on accuracy, are shown in Appendix Ι [8]. Also shown are their output

e.m.f.s with the cold junction at 0 C.

2.1.5.1 Thermocouple Materials

Broadly, thermocouple materials divide into two arbitrary groups based upon cost of the

materials, namely, base metal thermocouples and precious metal thermocouples.

Base Metal Thermocouples

The commonly used base metal thermocouples are types E, J, K, and T. Of these J and K

are probably the most usual ones. They have a high e.m.f. output and type K is reasonably

resistant to corrosion. Type T has a slight advantage, where the temperature measurement

points are very remote from the instrumentation, because one conductor is copper the

overall resistance of the circuit can be lower than for other types. A comprehensive list of

the industrially available thermocouples alongside their designations and color codes can

be found in Appendix II [3].

18

Precious Metal Thermocouples

Thermocouples types B, R, and S clearly carry a considerable cost penalty and normally

are only used when essential for their temperature range or their relatively high resistance

to chemical attack. Their temperature top limit is 1500 C for continuous use or 1650 C

for intermittent, spot reading, applications. This compares with 1100 C continuous and

1300 C intermittent for type K.

Errors in type R and S thermocouple readouts result from strain, contamination and

rhodium drift. The effect of strain is to reduce the e.m.f. resulting in low readings.

Noble metal thermocouples may be used for measuring cryogenic temperatures. Iron-

gold/nickel-chromium may be used for temperatures from 1 K to 300 K. For high

temperature work special thermocouples have been developed, tungsten 5 per cent

rhenium/tungsten 20 per cent rhenium for use in hydrogen, vacuum and inert gas

atmospheres up to 2320 C [8].

2.1.6 CD Semiconductor Thermometer

This thermometer chosen in this thesis is basically a wire wound platinum resistance

temperature sensor, but with higher level of accuracy than normal RTDs due to the use of a

calibration algorithm embedded in the instrument. It is an LCD display temperature sensor

a resolution of 0.001C. It is perfect for metrology applications where extreme accuracy is

required and as a calibration reference thermometer.

2.1.7 Optical Disappearing Filament Thermometers (Pyrometers)

Optical pyrometers are one type of radiation thermometers and are considered to be the

most accurate radiation thermometers for temperature range 700C to 3000C [7]. The

operating principle of optical pyrometer is based on Planck’s law which states that

19

intensity and color of a surface changes with temperature. This type of thermometers is

suitable for non-contact measurement of medium temperature. The idea behind the design

of the pyrometer instrument is to balance the radiation from an object (tungsten filament)

having a known temperature against unknown temperature from a target. The pyrometer

has a lens through which the operator views the target when an image of a tungsten

filament is superimposed on the image of the target. The filament is warmed up by an

electric current to glow. The operator views the target through the eyepiece and manually

adjusts the heating current to the level when an image of the glowing filament visible in the

foreground disappears — that is, when both the target and the filament have the same

brightness and color.

The measurement accuracy of an optical pyrometer is typically ±5K between 800C and

1300C and ±10K between 1300C and 2000C [8]. Modern industrial pyrometers are

accurate to ± 0.1C and this figure was adopted in the computer software proposed by the

thesis.

2.2 Selection of Temperature Sensors

2.2.1 Important Criteria for the Selection of Temperature Sensors

Selection of sensors in practice should be based on a total evaluation, in which the

following parameters are considered (see Appendix II):

1- Temperature range

2- Accuracy

3- Response time

4- Sensitivity

5- Corrosion conditions and resistance

20

6- Breaking down due to wear and tear

7- Interchangeability

8- Variations in temperature – temperature shock

9- Pressure conditions

2.2.2 Relative Merits for Each Category

1- Thermistors provide high resolution, have the widest range of applications, are the

most sensitive, and are low cost, but are nonlinear and have limited temperature

range.

2- Thermocouples have the highest temperature range and are durable for high

vibration and high shock applications, but require special extension wire of the

same material as the thermocouple itself.

3- RTDs are the most linear and are highly accurate and stable, but they are large size

and expensive.

4- Advantages and Disadvantages of Bimetal Strip thermometers

Advantages

a- Direct interface with application for fast response

b- No additional circuitry/components required

c- High current carrying capacity

d- Wide operating temperature range: 130 K to 700 K

Disadvantages

a- Less accurate than most electronic-based systems

b- Larger size than electronic-based systems

c- Creepage-type device cannot interface with electronic components

d- Can fail “closed” at end of life

e- Advantages and disadvantages of optical pyrometer thermometer

21

Advantages

a- Allows for non-contact measurement of moving objects or hazardous materials.

b- Can be used in conjunction with fiber optics for remote sensing

c- Typical temperature range 270 K to 5000 K

d- Accuracy is typically ±5K between 800C and 1300C and ±10K

between 1300C and 2000C.

Disadvantages

a- Accuracy can be affected by surface finish

b- Field of view must be matched to target size

c- Ambient temperature can affect readings

d- Wavelength filter must be matched to the application

e- Higher cost ($200+) can be even higher if control circuitry is required

f- Calibration can be difficult and costly

g- Dust, gas, or other vapors in the environment can affect the accuracy

 of the system.

2.2.3 Application-Related Issues

The following are application-related issues that have to be taken into mind in selecting

temperature sensors.

2.2.3.1 Contact or Non-contact Sensing?

 Does the application need contact or non-contact sensing? If the application is moving or

if physical contact is not practical due to contamination or hazardous material issues,

Optical Pyrometry is the technology of choice.

22

2.2.3.2 What is the Temperature Range?

What is the temperature range the sensor is required to measure or control? Thermocouples

have the broadest temperature range, 20 K to 2700 K. Depending on design and material,

thermsisters have a usable range of 4 K to 500 K and this range can be extended to 800 K.

Bi-metal thermostats can handle temperatures from 130 K to 700 K. For cryogenic

temperatures, RTDs are capable of approaching absolute zero (0K). Maximum temperature

is 1000 K. For non-contact Pyrometers, temperatures above 973K (700°C) and up to 5000

K are attainable.

2.2.3.3 What is the Rate of Temperature Change?

What is the rate of temperature change of the application? For applications where the rate

of temperature change is rapid (>1.0°C/minute), the mass of the sensor may become an

issue. For extremely rapid changes, sensor mass should be kept to a minimum to allow it to

more accurately track the change of the application.

2.2.3.4 Tolerance

How tightly do you need to control or monitor the temperature? For certain processes

applications involving chemical reactions, tolerances of ±0.1°C or less may be required.

For any application requiring tolerances of less than ±1.7°C, an electronic system will be

required. Silicon, RTD, thermocouple or thermister-based systems can all be designed to

maintain these extremely tight tolerances. Typically RTDs will provide the greatest overall

accuracy.

2.2.3.5 Cost

How important is total system cost in the selection of the sensor? In high-end applications

costing thousands of dollars like, say, automotives and chemical reactions applications the

cost of the temperature sensor is typically insignificant. For this reason, the selection is

23

based on required system accuracy. An accuracy of ±0.1°C or less will require a

sophisticated (and expensive) alternative.

24

Chapter Three Theoretical Background for the Analytic

Hierarchy Process (AHP) Method

3.1 Introduction

The analytic hierarchy process is a multi-attribute decision-making tool mostly used when

a decision maker is faced with a problem involving multiple objectives. It can also be used

to handle problems involving uncertainty. The method, which was developed by Thomas

Saaty has been very widely applied to decision making problems in areas like: planning,

economics, energy policies, material handling and purchasing, trading strategies, project

and businesses selection, budget allocations and forecasting. Alongside the analytical

procedure of the method, a user-friendly computer package, EXPERT CHOICE has been

developed to support the method.

In a typical decision making problem, the decision maker will have an objective or

multiple objectives that he wants to fulfill and a group of candidate alternatives that are to

be assessed in terms of the best alternative that meets that objective. These alternatives will

have certain attributes and sub-attributes (criteria and sub-criteria) qualifying these

alternatives. The alternatives, criteria and sub-criteria, and the objective are linked in a

hierarchal structure and each forms a hierarchal level. Each component at a particular level

is relatively pair-wise compared with its sister components with respect to the immediate

upper level and weights of all components are determined and aggregated for upper levels.

The final outcome of the method is a fractional score for each alternative representing its

relative preference towards the objective.

The method widespread use may be considered as an evidence of the method power and

reliability among decision makers in dealing with different decision problems. However,

25

critics have questioned its axiomatic basis and the degree it can lead to a reliable and true

representation of the decision maker’s preferences [9].

3.2 Description of the Method

Once the decision maker has identified the objective of his problem, the alternatives that

have to be compared towards the goal and the criteria and sub-criteria governing the

comparison process between the alternatives, then the application of the method becomes

easy and can be described in terms of these steps:

Step 1: Set up the decision hierarchy. The decision hierarchy will be made of the objective

level, the criteria level, the sub-criteria level, and finally the alternatives level.

Step 2: Perform the pair-wise comparisons of the alternatives, sub-criteria, and criteria.

This is done to determine the relative importance of the criteria and sub-criteria and also to

determine how well the alternatives score on each sub-criteria and criteria. This is done

starting from the alternative level and hierarchically through sub-criteria level and criteria

level up to reach the objective level.

Starting from the alternative level, the relative importance of one alternative over the other

with respect to the same sub-criteria in the decision hierarchy can be determined using

Saaty’s scale [10] (Table 3-1). According to Saaty, the relative weight of alternative i

compared to alternative j with respect to the same sub-criteria can be obtained from a 9-

point scale and assigned to the (i , j)th position of the pair-wise comparison matrix or

judgment matrix.

26

Table 3-1: The pair-wise comparison scale (Saaty, 1980)

 Intensity of importance Definition

 1 Equally important

 3 Weakly more important

 5 strongly more important

 7 very strongly more important

 9 extremely more important

 2, 4, 6, 8 Intermediate values between two adjacent

 judgments

In a more general form, let A1, A2, … , An be the set of stimuli (these stimuli can be the

alternatives, the sub-criteria , or he criteria), were n refers to the number of these stimuli.

The quantified judgments on pairs of stimuli Ai, Aj are represented by the judgment matrix

A :

 A= [aij], i, j = 1,2, … , n. (3.1)

The comparison of any two criteria Ci and Cj is made using the questions of the type: of

the two criteria Ci and Cj which is more important and by how much. Saaty’s scale is used

to transform verbal judgments of relative preference of one alternative to the other into

numerical quantities representing the values of aij. The entries aij are governed by the

following rules:

 aij > 0 , aji = 1/ aij , aii = 1 for all i. (3.2)

Thus, the reciprocal of the assigned value is automatically assigned to the (j, i)th position

in the judgment matrix.

Step 3: Transform the comparisons set in the previous step into weights corresponding to

the different criteria, sub-criteria and alternatives and check the consistency in decision

maker’s comparisons in terms of consistency index and consistency ratio.

27

After the pair-wise comparison matrices (As) have been numerically established , the next

step is to recover the weights of the different alternatives from these comparison matrices.

This can be done by solving for the eigenvectors of the pair-wise comparison matrices. Let

(W1, W2, … , Wn) be weights of the alternatives relating to a certain sub-criteria. Consider

the following equation:

 a11 a12 … a1n W1 / W1 W1 / W2 … W1 / Wn

 a21 a22 … a2n W2 / W1 W2 / W2 … W2 / Wn

 A = . . … . = . . … .

 . . … . . . … .

 an1 an2 … ann Wn / W1 Wn / W2 … Wn / Wn (3.3)

for a perfectly consistent decision maker, and the following equation:

 a11 a12 … a1n W1 / W1 W1 / W2 … W1 / Wn

 a21 a22 … a2n W2 / W1 W2 / W2 … W2 / Wn

 A = . . … . ≈ . . … .

 . . … . . . … .

 an1 an2 … ann Wn / W1 Wn / W2 … Wn / Wn (3.4)

for not perfectly consistent decision maker. Let us multiply both sides of the equation (3)

with the weights vector W = (W1, W2, … , Wn), then we have:

 AW
 T

= ΔW
 T

 (3.5)

This is a system of homogenous linear equations, where Δ is an unknown number and W
 T

is an unknown n-dimensional column vector [11], for any number Δ, equation (5) always

has the trivial solution W= (0, 0, ..., 0). It can be shown that if A is the pair-wise

comparison matrix of a perfectly consistent decision maker, i.e. equation (3) applies, and

we do not allow Δ = 0, then the only nontrivial solution to (5) is Δ = n and W = (W1, W2,

28

… , Wn). However, if the decision maker is not perfectly consistent, i.e. equation (4)

applies in this case, then let Δ max be the largest number for which (5) has a nontrivial

solution (call it Wmax) . Saaty verified that if the decision maker’s comparisons do not

deviate very much from perfect consistency, then Δ max is close to n and Wmax is close to

W. Saaty’s method computes W as the principal right eigenvector of the matrix A. Saaty

also proposed measuring the decision maker’s consistency by looking how close Δ max is

to n. Δ max is called the maximum eigenvalue of matrix A.

Consistency index (CI) is a measure of how consistent and rational the decision maker is in

his pair-wise comparisons. According to Saaty CI is defined as:

 CI = (Δ max - n) / (n - 1) (3.6)

Consistency ratio (CR) is defined in terms of consistency index (CI) and random index (RI)

as:

 CR = CI / RI (3.7)

Where the random index (RI) represents the average consistency index value taken over

numerous random entries of the same order matrices as matrix A. Values of RI for the

appropriate value of n are given in Table 3-2 [11].

Table 3-2: Random Index Values

 n RI n RI

 2 0.0 7 1.32

 3 0.58 8 1.41

 4 0.90 9 1.45

 5 1.12 10 1.51

 6 1.24

29

An index of zero value refers to perfect consistency, while an index of more than zero

refers to inconsistency in decision maker’s comparisons. For example, suppose the decision

maker’s response imply that alternative 1 is twice as important as alternative 2, while

alternative 2 is judged to be three times as important as alternative 3. To be perfectly

consistent the decision maker should judge that alternative 1 is six times more important

than alternative 3. Any other response will lead to an index greater than zero. Saaty

recommends that inconsistency should only be a concern if the index exceeds 0.1, in which

case the comparisons should be reexamined. But he stresses that minimizing inconsistency

should not be the main goal of the analysis since a set of erroneous judgments about

importance and preference may be perfectly consistent, but they will not lead to the ‘best’

decision.

A simple method [11] is used to approximate Δ max , W max , CI and CR which comprises

the following steps:

1- Find the normalized matrix Anorm. This can be done by dividing each entry for each

of A’s columns by the sum of all entries in the same column.

2- An approximate estimate of the weights vector W is by estimating each entry Wi as

the average of the entries in row i of Anorm.

3- An approximate estimate of Δ max is:

 𝜟 𝒎𝒂𝒙 =

ni

i
T

T

Winentryith

AWinentryith

1

 (3.8)

4- The consistency index,

CI = (result in step 3 - n) / (n - 1) (3.9)

5- The consistency ratio, CR = CI / RI (3.10)

The consistency ratio will enable the decision maker to examine how consistent he is with

his pair-wise comparisons and to examine how robust the provisional decision in the

previous step is to changes in the ratings of importance and preference.

30

Step 4: aggregate these weights up to obtain scores for the different alternatives towards

the final objective and make a provisional decision.

Step 5: Perform the sensitivity analysis. Sensitivity analysis is important to examine how

sensitive the preferred alternative is to changes in the judgments made by the decision

maker. The decision maker may provide rough judgments or he may be unsure exactly

what judgments to provide. Sensitivity analysis can provide for the extent of change that

can be made to the criteria or sub-criteria weights before the preferred alternative changes

in favor of another alternative. EXPERT CHOICE is fitted with such a tool and it will be

utilized for this purpose as will be shown in the next chapter.

3.3 Strengths and Weaknesses of AHP

3.3.1 Strengths [9]

1- Formal structuring of the problem. This allows complex decision problems to be

broken down into sets of simpler judgments that can be more easily assessed.

2- The pair-wise comparisons are simple, which simplifies the task for the decision

maker by concentrating on each small part of the problem when comparing two

entities at a time. Also the method, aided with Saaty scale of relative importance

fits well for verbal comparisons most likely preferred by decision makers who

might have difficulty in expressing their preferences numerically.

3- Redundant assessment of the relative importance of multiple criteria allows the

decision maker to check consistency in his judgments. for example, if a decision

maker states that criteria A is as twice important as B, and B, in turn, is as three

times as important as C, then it can be deduced that A is six times more important

than C. however, by also asking the decision maker separately to compare A to C it

is possible to check consistency of the judgments.

31

4- Versatility. The wide range of applications of the AHP is evidence of its versatility.

3.3.2 Weaknesses [9]

1- Conversion from verbal to numeric scale. The correspondence between the verbal

and numeric scales is based on untested assumptions.

2- The 1 to 9 scale imposes inconsistencies. In some cases of comparisons the scale is

bound in such away it enforces inconsistencies in comparisons. For example, if A is

6 times more important than B, and B is 5 important than C. then the consistent

comparison of A to C is that A 30 times more important than C which is

impossible.

3- New alternatives introduced into the problem can reverse the rank of existing

alternatives. For example, suppose that AHP is used to choose a site for a new

company, and suppose the site alternatives are: X, Y, and Z and after the use of

AHP the order of preference is: 1-Y, 2-X, 3-Z. However, it was discovered that a

new site W is worth considering, when introduced into the problem and AHP

reused on the basis of four alternatives the order of preference can very likely

become: 1-X, 2-Y, 3-W, 4-Z showing reversal between Y, X alternatives though

relative importance of criteria is left unchanged.

4- Number of comparisons required becomes large to handle as number of alternatives

increases.

5- The axioms of the method are not founded on testable descriptions of rational

behavior, as argues Dyer [12].

32

Chapter Four A Software Application for the Selection of

Temperature Sensors Using the Analytic Hierarchy

Process (AHP)

4.1 Literature Review

Previous literature indicates the massive use of AHP methodology as a multi-criteria

decision making tool in selecting from among nominated alternatives in many industrial

fields. However the literature survey has not revealed any research conducted specifically

on the selection of temperature sensors using AHP method, and here comes to the fore the

importance of this study. Vaidya and Kumar [13] conducted a research that overviewed

different applications of Analytic Hierarchy Process method. In their paper, they presented

a literature review of various applications of Analytic Hierarchy Process (AHP), they

referred to a total of 150 application papers, of which 27 were critically analyzed. In their

work, they analyzed the applications papers according to three main groups: (a)

applications based on a theme, (b) specific applications, and (c) applications combined with

some other methodology, with all application papers in a specific group given distribution

in the form of a pie-chart. Some theme-specific applications which were mentioned in the

paper used AHP in: selection, evaluation, benefit-cost analysis, resource allocation,

decision making, forecasting, medicine, and QFD. Some application area-specific papers

were in: social, political, manufacturing, engineering, education, industry, government, and

others. And finally, the distribution of reviewed papers over the years was investigated in

the form of a pie-chart. Yurdakul [14] applied AHP method as a strategic decision-making

tool to justify machine tool, namely machining centers, selection. He tested AHP approach

in his research based on a three-machining centre case study for Dizayn Machinery

33

Manufacturing and Engineering Inc., in which case the company opted to purchase new

machine tools in order to reduce lead times without compromising quality and cost of its

products. Analytic Hierarchy Process (AHP) method was used to combine different types

of evaluation criteria in a multi-level decision structure to obtain a single score for each

alternative machine tool to rank the alternatives. Analytic Network Process (ANP) method

was used in the same paper to account for the calculation of the weights of criteria due to

interdependencies and interrelationships that exist among the evaluation criteria. Yurdakul

stated that the company management found the application and results satisfactory and

implementable in their machine tool selection decisions. Pi-Fang et al [15] presented an

AHP method in objectively selecting medical waste disposal firms in Taiwan based on the

results of interviews with experts in the field. In their study, an appropriate weight criterion

based on AHP was derived to assess the effectiveness of medical waste disposal firms. The

proposed AHP-based method in the paper offered a more efficient and precise means of

selecting medical waste firms than subjective assessment methods did, thus reducing the

potential risks for hospitals. Che-Wei et al [16] studied and developed a manufacturing

quality yield model for forecasting 12 in. silicon wafer slicing machine based on AHP

framework. In their work, Exponentially weighted Moving Average EWMA control chart

was presented to demonstrate and verify the feasibility and effectiveness of the proposed

AHP-based algorithm, and selective analysis was performed to test the stability of the

priority ranking. Okada et al [17] applied AHP to irrigation project improvement. In his

study, Okada divided his work into two parts. In the first part, a questionnaire survey was

distributed among irrigation professionals to determine the evaluation factors they see the

most important in evaluating an irrigation project, the answers to the survey were processed

by the AHP method. A hierarchy was formed with the objective of Quality of the internal

process of the irrigation project and criteria of: 1- serviceability of water delivery, 2-

34

suitability of hardware, and 3- managing entities, and alternatives divided into two groups.

Group 1 comprises: actual water delivery services at the most downstream point, actual

water delivery services at the point to the individual ownership units and actual water

delivery services at the point from the primary canals to the secondary canals. Group 2

comprises: primary canals and secondary canals. After applying the AHP to the answers,

local weights of evaluation factors were obtained. These local weights were statistically

analyzed and modeled by probability density functions. Results of the study indicated that

professionals give the first priority to water delivery services and that they consider the

irrigation infrastructure (hardware) of primary canals is more important than that for

secondary canals.

Despite the fact that the literature survey reveals a wide array of papers applied in AHP for

different applications, the survey does not reveal its use in evaluating temperature sensors

alternatives, rather, research on temperature sensors was primarily concerned about

proposing new temperature sensors designs that satisfy certain special demands and

requirements. Vavra et al [18] proposed the use of Fe/Cr magnetoresisitive sensors at

temperatures below 2 K in the milliKelvin temperature range. Hoa et al [19] studied

electrical resistance drift of molybdenum disilicide (MoSi2) thin film temperature sensors

to study their thermoresistance, i.e. resistance vs. temperature (R-T) characteristics.

Bianchi et al [20] discussed the properties, characteristics, applications and sensing

principles of most of present-day integrated smart temperature sensors. A CMOS process-

compatible temperature sensor developed for low-cost high-volume integrated

Microsystems for a wide range of fields (such as automotive, space, oil prospecting, and

biomedical applications) was also described. Han & Kim [21] developed a diode

temperature sensor array (DTSA) for measuring the temperature distribution on a small

surface with high resolution. The DTSA consisted of an array of 32x32 diodes (1024) for

35

temperature detection in an 8mmx8mm surface area and was fabricated using the very

large scale integration (VLSI) technique.

This study presents a computer program built using C# programming language to perform

the selection process of the best temperature sensor for a particular application from

among available alternative sensors that meet the restrictions set by the program and

chosen by the user, this is done by embedding the AHP method in a ready-to-use and in an

easy graphical-user-interface computerized way. The proposed computer program is

versatile and applicable to a multitude of temperature sensors selection situations, but it

should be noted that as an example of the proposed program, the work in this paper

presents a single case study in which an application is considered in the automotives

industry in which three temperature sensors are being assessed and compared, these are:

thermocouple, thermister and RTD thermometer. Nonetheless, the computer program is

expandable and applicable to a wider range of temperature sensors selection situations

with different applications and different arrays of candidate sensors.

4.2 Computer Software Description

In this thesis, the computer program that is used for the selection process of the best sensor

from among different alternatives was built using Microsoft Visual Studio.NET. Starting

from a C# Windows application template, a base -code project was created in which a

two-page form was designed to show sensor selection based on AHP principles.

The first page in the form is used to select the application from three predefined

applications: HVAC, Automotives, and Chemical Processes. In the first page also lie

restrictions applicable to the mentioned applications that the user should specify such as:

Temperature Range, Resolution, and Response time. Upon user’s selection of the

application required and restrictions pertaining to the application in the first page, the

36

second page tab can be pressed to list the available alternative candidate sensors which can

be used in the selected application and that the user can further choose from. These

available alternative sensors would appear in activated checkboxes, while those sensors

that do not conform to the restrictions set and chosen by the user in the first page will

automatically be shown by the system in an inactivated- checkbox mode in the second

page, and thus the user cannot choose from.

In practice, the user selects the application in page one and depending on the restrictions

selected some sensors will be enabled while others will be disabled on page two. The user

then presses the selection button in the second page which would initiate the selection

process. The results of the calculations that are automatically based on AHP method will

be displayed and the final scores of the checked-in sensors will be shown from top to

bottom in the same arrangement and number that the checked sensors appear on the

second tab of the program. Of course the best sensor will be the one with the largest final

weight while the worst choice for the application will be the one with the smallest weight.

Relevant calculations of weights of sub-criteria, weights of criteria, consistency ratio,

consistency index and final scores of the alternative sensors are all shown on the console

provided on the second page.

4.3 AHP Application and Results from the Computer Software

In order to select the best temperature sensor from among different candidate sensors

using the proposed software, five steps are performed by the user in order to achieve this.

First, the user has to start up the computer program. Second, the user specifies the

application on the first tab in which the sensors are to be used. Third, he or she specifies

the restrictions pertaining to the application on the first tab in terms of temperature range,

resolution, and the response time. Fourth, the user checks in the available candidate

37

sensors that the software suggests on the second tab. Fifth, the user presses the Select

button on the second tab and then views the results.

The software uses the AHP method to assess the preferences of the checked sensors. The

different weights in the hierarchal structure that are needed to perform the necessary

calculations in the AHP method are assessed and built into the software. It is worth noting

here; however, that the user can access the program and change the weights values

according to his assessment of the weights or according to new expert opinions. The

weights values are then used and being aggregated by the software to obtain the weight of

the components in the immediate upper levels. The software then calculates the weights

for the all components in the hierarchal structure, synthesizes the contribution of the

components for the whole hierarchy and for all levels and displays the overall ranking

scores for the different alternatives on the software console.

The software performs the consistency test in terms of consistency index and consistency

ratio which can be regarded as a measure of consistency in the decision maker’s

comparisons and displays these indices on the same console.

4.3.1 Starting the Program

When the user opens the application, a window will open up as shown in Figure 4.1.

Figure 4.1: The main application window.

38

The Solution Explorer tab may not be visible. If so, the user presses the Solution Explorer

icon at the top right of the main window to make it visible as shown in Figure 4.2

Figure 4.2: Visualizing Solution Explorer tab.

For visualizing the GUI main window from which the selection process of the best sensor

will be launched, the user will first need to double click the C# file named Form1.cs in the

Solution Explorer tab at the far left side of the application window and the design form of

the application window will appear as shown in Figure 4.3. The user then runs the

program to start it.

39

Figure 4.3: The two-tab page GUI main window.

In the GUI main window appears the two-tab page from which the user can choose the

application under concern as well as the restrictions pertaining to that application in terms

of Temperature Range, Resolution, and Response Time. All this can be done from the first

tab. Upon completion of the first tab, the user can proceed to the next tab where the

available candidate alternative sensors that meet the restrictions set in the first tab for the

application under concern are listed in an activated checkbox mode, and those alternative

sensors that do not conform to restrictions are disabled and shown in an inactivated mode.

Figure 4.4 shows the components of the second tab.

40

Figure 4.4: Alternative sensors in the second tab in the application main window.

4.3.2 The Evaluative Criteria and Sub-criteria

Upon literature survey in the field of sensors and sensors selection, four broad criteria

were settled on, within each criterion lie multiple sub-criteria. These parent criteria and

sub-criteria form the basis for the comparison between alternative sensors. Table 4-1

shows these criteria and sub-criteria which are incorporated inside the software.

41

Table 4-1: Criteria and sub-criteria factors used as basis for comparison between
alternative sensors.

Criteria Sub-Criteria

Static Criteria (C1) Maximum Operating Temperature (CS1)

 Minimum Operating Temperature (CS2)

 Temperature Curve (CS3)

 Sensitivity (CS4)

 Self-Heating Issues (CS5)

 Long Term Stability and Accuracy (CS6)

 Typical Temperature Coefficient (CS7)

 Extension Wires (CS8)

 Long Wire runs from Sensor (CS9)

 Measurement Parameter (CS10)

 Temperature Measurement (CS11)

Dynamic Characteristics (C2) Stimulation Electronics required (CS12)

 Existence of Maximum Sensitivity Region (CS13)

 Typical Fast Thermal Time Constant (CS14)

Environmental Parameters (C3) Typical Small Size (CS15)

 Noise Immunity (CS16)

 Fragility-Durability Characteristics (CS17)

 High Thermal Gradient Environment (CS18)

 Corrosion Resistance (CS19)

Other Criteria (or Simply Others) (C4) Point or Area Measurement (CS20)

 Manufacturing Variances (CS21)

 NIST Standards exist (CS22)

 Cost (CS23)

Static criterion category refers to the inherent technical characteristics or qualities of the

sensor that are not time related. Dynamic category, on the other hand, refers mainly to the

transient time-related characteristics of the sensor. Environmental category refers to

characteristics of the sensor that are environment-related. Others category refers to other

miscellaneous characteristics.

4.3.3 The Hierarchal Structure

The best temperature sensor can then be selected and evaluated by the software based on

four evaluation criteria, twenty –three evaluation sub-criteria. Figure 4.5 shows the

hierarchal structure for the temperature sensor selection problem. The software is

42

programmed to automatically perform calculations based on the hierarchal structure shown

in Figure 4.5.

Figure 4.5: AHP Structure for Sensors Selection Problem

Level 1: Goal Level 2: Criteria Level 3: Sub-criteria Level 4: Alternatives

Thermistor

Thermocouple

Maximum Operating Temperature

Minimum Operating Temperature

Temperature Curve

Sensitivity

Self-Heating Issues

Long Term Stability and Accuracy

Typical Temperature Coefficient

Extension Wires

Long Wire runs from Sensor

Measurement Parameter

Temperature Measurement

Stimulation Electronics required

Existence of maximum sensitivity

Typical Fast Thermal Time Cons.

Typical Small Size

Noise Immunity

Fragility-Durability Characteristics

High Thermal Gradient Env.

Corrosion Resistance

Point or Area Measurement

Manufacturing Variances

NIST Standards Exist

Static Criteria

Others

Environmental
Parameters

Dynamic
Characteristics

Selection of
 Best

Temperature
Sensor

Resistance
Temperature
Detector RTD

Cost

43

4.3.4 Components Weights

Appendix ΙΙI shows a complete list of all component weights including weights of

alternatives with respect to the 23 sub-criteria, the weights of the 23 sub-criteria with

respect to each criterion, and the weight of the 4 criteria with respect to the goal for the

three applications: HVAC, Automotives, and Chemical Process applications. Note that

these weights are listed in the Alternatives weight vectors, Sub-criteria weight vectors,

and Criteria weight vectors rows in the Appendix, respectively.

4.3.5 Components Weights Interpretation (Automotives)

The relative preference of one alternative sensor with respect to another alternative sensor

against certain sub-criterion can be assessed by asking a question of the type: of the two

alternative sensors, which scores more on a certain sub-criterion and by how much? Saaty

scale is used to give a numerical value for the comparison as in Table 3.1. For the 7

sensors alternatives, the 23 sub-criteria, and the 4 criteria, entries for 23 matrices of the

dimension 7X7 representing relative weights of the 7 sensors against the 23 sub-criteria ,

and entries for an 11X 11 matrix, 3X3 matrix, 5X5 matrix, and 4X4 matrix representing

relative weights of the Static, Dynamic, Environmental and Others sub-criteria towards

their corresponding parent criteria, respectively, and entries for a 4X4 matrix representing

the relative weights of the four criteria towards the final goal are introduced and

incorporated in the software. This work is separately repeated for the three applications:

the HVAC, the Automotives, and the Chemical Process. These relative weights for the

three different applications are listed in Appendix ΙΙI. These weights were based on the

view of experts in the sensor field including professors from the Mechanical Engineering

Department in Jordan University of Science and Technology and from external experts

working for National Paints, Inc., Amman, Jordan. Also, these weights were based on

44

sensors literature taken from sensors text books and from catalogues from the Web

containing different sensor products from different universal manufacturing companies.

The Interpretation of the components relative weights presented in the coming sections

applies to the Automotives application.

4.3.5.1 Alternatives Weights Interpretation for Selected Sub-criteria

Maximum Operating Temperature Sub-criterion: according to experts views and

based on the review of sensors literature and technical data material, the fitness of a

particular sensor with respect to the temperature range sub-criterion, and hence to the

maximum and minimum operating temperatures is based on the closeness of the operating

temperature range for the sensor to the operating temperature range of the requested

application, in other words the suitability, and hence the preference of a proposed sensor

towards the maximum and minimum operating temperatures of the application is

governed by how close the maximum and minimum operating temperatures of the

proposed sensor are to the maximum and minimum operating temperatures of the

application respectively. The maximum operating temperature for the catalytic convertor

application case study is, for example, 1023 Kelvin, while the minimum operating

temperature for the application is 773 Kelvin. Moreover, the proposed sensor should

ideally be able to measure the maximum malfunctioning temperature condition upon

which melting of the packing material (substrate material of the catalytic converter)

occurs, this is a temperature of 1143 K. To facilitate the evaluation of one alternative

sensor with respect to another against the maximum operating temperature sub-criterion,

each sensor was relatively ranked with respect to the rest sensors in terms of its preference

towards the sub-criterion, then the relative weights were determined by taking all

combinations of relative preferences (ranks) of one alternative sensor to another for all

45

seven sensors. The following are considerations of the characteristics for the seven

sensors that relate to the maximum operating temperature sub-criterion:

Thermocouple: according to Table 2.1, K-type thermocouple (which has Nickel-

Chromium as the positive conductor and Constantan as the negative conductor) has a

maximum operating temperature of 1123 Kelvin. By comparing the closeness of the

maximum operating temperature for all seven sensors with the maximum operating

temperature for the application, and putting in mind that the compared sensors should be

capable of measuring the melting point of the packing, thermocouple was found the

closest and thus relatively ranked among the seven sensors the first, i.e. has rank (1).

Thermister: has a maximum operating temperature of 1300 Kelvin, with a difference

from the value 1123 K by almost 170 K, though it satisfies measurement of the melting

point, ranked among the seven sensors (2).

RTD: has a maximum operating temperature of 1150 K, satisfies measurement of the

melting point, ranked (1).

Bimetallic: has a maximum operating temperature of 700 K, doesn’t measure the

maximum operating temperature of the application at all, theoretically, has a rank (5),

practically in the software, it is excluded on the first tab, when the user chooses the

temperature range for the application.

Note: in the cases where the alternative does not match the minimum required constraints

of an application, or subsequently, the minimum requirements of the sub-criteria related to

that application, the pair-wise comparisons (weights) for the two alternatives are

theoretically evaluated and set into the 23 comparison matrices even though the system

takes care of the problem in advance in the filtering stage (constraint stage) on tab one of

the application program when the user chooses the nearest temperature range to the

application from the list in the Temperature Range list box which is in this case 700-1150

46

K. Those alternatives on the second tab that fail to meet temperature range constraint on

the first tab are rejected (excluded) on the second tab and appear in an inactivated-check

box mode. Moreover, if a certain alternative passes the temperature range constraint for

the application, but fails to satisfy the next constraint, the resolution, or the third

constraint for the application, the response time, it will be filtered out on either cases, and

will not be further considered for comparison on the second tab, yet its relative weight is

fictitiously set in all the 7X7 sub-criteria matrices but it is not actually taken into account

in the comparison process.

Thermometer: has a maximum operating temperature of 950 K. Upon consulting the

experts and upon literature review, its maximum temperature span can be customized

through special advanced manufacturing techniques and enlarged to entail the maximum

operating temperature of the application (1023). It is ranked (3).

Pyrometer: has a maximum operating temperature of 3300 K, well above the required

operating temperature for the application, so minimizing its relative preference among

other sensors, ranked (4).

LCD: has a maximum operating temperature of 950 K. The same analogy of the

thermometer applies to the LCD semiconductor thermometer, so it is ranked (3).

According to above characteristics, the following 7X7 judgment matrix representing the

relative weights for the seven alternatives against the first sub-criterion, the Maximum

Operating Temperature, as it appears in Appendix ΙΙI, , is set in the program:

47

 1.0 3.0 1. 0 9.0 4.0 6.0 4.0

 0.3333 1.0 0.3333 6.0 2.0 5.0 2.0

 1.0 3.0 1.0 9.0 4.0 6.0 4.0

 Amax temp = [aij] = 0.1111 0.1667 0.1111 1.0 0.1667 0.3333 0.1667

 0.25 0.5 0.25 6.0 1.0 4.0 1.0

 0.1667 0.2 0.1667 3.0 0.25 1.0 0.25

 0.25 0.5 0.25 6.0 1.0 4.0 1.0

Based on the aforementioned descriptions of the maximum operating temperature

characteristics for each sensor alternative, the evaluation of the relative weights of each

alternative sensor with respect to the other sensors against the maximum operating

temperature sub-criterion, i.e. entries in the above matrix, is an easy task now. Let’s

interpret, for example, the evaluation of the first row of the above matrix. Since the

relative rank of the thermocouple among the seven sensor is (1), i.e. thermocouple is the

best, and since the thermister is the second preferred choice and has a relative rank (2),

then the thermocouple can be evaluated as being weakly more important than the

thermister and thus given a relative weight of 3.0 according to Saaty scale. This value

corresponds to entry a12 in the above matrix. Because the RTD has the same preference as

the thermocouple (rank 1), so there is no relative preference of the thermocouple with

respect to the RTD, i.e. both alternatives are equally important. Thus entry a13 is given a

value 1.0. And since the bimetallic strip thermometer comes fifth rank when relatively

compared to the rest of the seven sensors (the worst choice among the other choices with

respect to the maximum operating temperature sub-criterion), then the thermocouple is

extremely more important than the bimetal owing to a relative weight (entry a14) of 9.0.

And because the mercury-in-glass thermometer comes rank (3) in the above designation,

then the relative importance (entry a15) of the thermocouple with respect to the

thermometer comes according to Saaty scale mid way between weakly more important

and strongly more important with a value set to 4.0. And as the optical disappearing

48

filament pyrometer comes rank (4) in the above designation, then the relative importance

(entry a16)of the thermocouple with respect to the pyrometer according to Saaty scale is

mid way between strongly more important and very strongly more important, and thus

given a value of 6.0. And finally, since the LCD semiconductor thermometer is rank (3),

just the same as the thermometer’s, then the relative importance (entry a17) of the

thermocouple with respect to the pyrometer according to Saaty scale is mid way between

weakly more important and strongly more important, and thus given a value of 4.0, just,

the same value for the relative weight between thermocouple and thermometer. The same

discussion can be elaborated to interpret all the remaining rows of the above matrix.

After running the software, and if we assume that the user checks in the boxes of only

thermocouple, thermister, and RTD sensors, then the software extracts automatically a

3X3 matrix from the 7X7 matrix presented above representing values that correspond to

these three sensors, and the software calculates the weights of the three sensors with

respect to the maximum operating temperature sub-criteria, in addition to this, the

software calculates the consistency index and consistency ratio for this 3X3 matrix. The

software results in terms of the three sensors: the thermocouple, the thermister, and the

RTD weights against the Maximum Operating Temperature sub-criterion in the case study

are shown in Table 4-2.

Table 4-2: Weights of the three alternatives against the Maximum Operating
Temperature sub-criterion as they appear in the software results

Maximum Operating Temperature matrix:

 1 3 1

 0.3333 1 0.3333

 1 3 1

 Thermocouple Thermister RTD

Alternatives Weight Vector = 0.42858 0.14285 0.42858

Consistency Index = 0

Consistency Ratio = 0

49

 As can be seen from Table 4.2 the weights of the three sensors: thermocouple, thermister,

and RTD against maximum operating temperature sub-criterion are: 0.42858, 0.14285,

and 0.42858 respectively, indicating that the RTD and the Thermocouple score equally

the best against maximum operating temperature sub-criterion while the thermister scores

the worst. Table 4.2 also shows the consistency index for this 3X3 case study matrix to be

0 and consistency ratio to be 0 indicating that decision maker’s judgments are completely

consistent.

Temperature Curve Sub-criterion

Appendix ΙV [6, 23] lists descriptions for the performance of the thermocouple, the

thermister, and the RTD alternative sensors against the 23 sub-criteria. Information in this

appendix was utilized for the evaluation of the relative weights for these three sensors in

this section and the many subsequent sections.

The following considerations of linearity or nonlinearity of the seven sensors were taken

in assessing relative weights of this sub-criterion and in ranking the sensors accordingly:

Thermocouple: fair linearity, to facilitate estimating the relative weights in the 7X7

matrix, the thermocouple was relatively ranked among the seven sensors in rank (2).

Thermister: nonlinear, ranked among the seven sensors (3).

RTD: the most linear, or the best, ranked among the seven sensors (1).

Bimetallic: nonlinear due to nonlinearity of characteristic equation, ranked (6).

Thermometer: nonlinear due to nonlinearity of coefficient of linear expansion of both

liquid and the glass, but ranked (5) since coefficient of linear expansion of glass is smaller

than that for any metal.

Pyrometer: nonlinear due to nonlinearity of governing equations of radiation

phenomena (Stefan-Boltzmann law of total power of radiant flux), ranked (4).

50

LCD: nearly linear since it is mainly a silicon based semiconductor sensor, ranked nearly

(2) like the thermocouple, but thermocouple is two folds better.

It is an advantage for any temperature measurement system to have a linear response of

the sensor, since little or no electronic circuits are needed to correct for nonlinearity in

addition the sensor is more electronically compatible and easily connected to transmitters

and signal conditioning circuits and the total system error becomes smaller. Based on the

previous considerations, the following matrix represents the relative weights of the seven

sensors against Temperature Curve sub-criterion as it appears in the software:

 1.0 3.0 0.3333 5.0 5.0 4.0 2.0

 0.3333 1.0 0.1667 2.0 2.0 1.0 0.3333

 3.0 6.0 1.0 6.0 6.0 6.0 4.0

 Atemp curve = [aij] = 0.2 0.5 0.1667 1.0 1.0 0.3333 0.25

 0.2 0.5 0.1667 1.0 1.0 0.3333 0.25

 0.25 1.0 0.1667 3.0 3.0 1.0 0.5

 0.5 3.0 0.25 4.0 4.0 2.0 1.0

An example of the relative weight estimation in the above matrix is the relative weight

of the thermocouple with respect to the thermister, entry a12 in the above matrix, this

weight is set 3, because thermocouple is weakly more preferred than thermister with

respect to Temperature Curve sub-criterion, while that of an RTD with respect to the

bimetallic is 6 because RTD relative weight lies mid way between being strongly more

important and very strongly more important than bimetallic with respect to the

Temperature Curve sub-criteria. The same analogy applies to the rest of the entries in the

matrix.

51

The software results in terms of the three sensors: the thermocouple, the thermister, and

the RTD weights against the Temperature Curve sub-criterion in the case study are shown

in Table 4-3.

Table 4-3: Weights of the three alternatives against the Temperature Curve sub-
criterion.

 Temperature Curve matrix:

 0.3333 3 1

 0.1667 1 0.3333

 1 6 3

 Thermocouple Thermister RTD

Alternatives Weight Vector = 0.25099 0.09602 0.65299

Consistency Index = 0.00918

Consistency Ratio = 0.01583

Sensitivity Sub-criterion: values of the incremental ratio of the sensor’s output to the

input temperature (the sensitivity) for the seven sensors [7] are as follows:

Thermocouple: low sensitivity on the order of 20-80 μV/°C, to facilitate estimating the

relative weights in the 7X7 matrix, the thermocouple was relatively ranked among the

sensors in rank (4).

Thermister: very high sensitivity, negative temperature coefficient (NTC) thermisters

can have sensitivities on the order of 4.0 % Ω/Ω/C, the most sensitive of all sensors,

ranked among the seven sensors (1).

RTD: medium sensitivity on the order of 0.39 % Ω/Ω/C, (~4milli /C) ranked among the

seven sensors (2).

Bimetallic: low sensitivity on the order of 20 ppm (mm/mm/C), ranked (5).

Thermometer: low sensitivity on the order of 8.5 ppm (mm/mm/C), ranked (7).

Pyrometer: low sensitivity on the order of 10 ppmC
-1

, ranked (6).

LCD: medium sensitivity on the order of 0.19 % Ω/Ω/C [7], (~1.9 milli /C),

52

ranked (3).

Based on the above technical data, the judgment matrix of the relative weights for the

Sensitivity sub-criterion for the seven sensors as it appears in Appendix ΙΙI is:

 1.0 0.1111 0.2 2.0 2.0 2.0 0.3333

 9.0 1.0 4.0 9.0 9.0 6.0 4.0

 5.0 0.25 1.0 4.0 5.0 4.0 2.0

 Asensitivity = [aij] = 0.5 0.1111 0.25 1.0 2.0 2.0 0.25

 0.5 0.1111 0.2 0.5 1.0 1.0 0.25

 0.5 0.1667 0.25 0.5 1.0 1.0 0.25

 3.0 0.25 0.5 4.0 4.0 4.0 1.0

The relative weights of the sensors in the above matrix were based on the values of

sensitivities for these sensors. For example, the thermister relative weight with respect to

the thermocouple, entry a21 is 9 since sensitivity of the thermister is the highest among all

sensors and thermocouple sensitivity is low on the order of ppm (parts per million or

microns). Another example is the relative weight of the RTD with respect to the bimetallic

strip thermometer, entry a34, is 4 since the RTD’s sensitivity is moderate on the order of 4

milli per Celsius while that of the bimetallic is very low on the order of 20 ppm. The same

analogy is used for the rest of the weights (entries). The software uses these preset values

to calculate weights of the seven sensors with respect to the Sensitivity sub-criterion.

Results of the software in terms of sensors weights for the Sensitivity sub-criterion for the

three sensors case study are shown in Table 4-4.

53

Table 4-4: The three alternatives case study weights for the Sensitivity sub-criterion

 Sensitivity matrix:

0.2 0.1111 1

 4 1 9

 1 0.25 5

 Thermocouple Thermister RTD

Alternatives Weight Vector = 0.06225 0.70131 0.23644

Consistency Index = 0.03611

Consistency Ratio = 0.06226

Self Heating Sub-criterion: below are the judgments relating to the seven sensors with

respect to Self Heating sub-criterion that will be used in determining the relative weights

of the judgment matrix.

Thermocouple: experiences no self heating, one among the best sensors, ranked (1).

Thermister: experiences high level of self heating, the worst sensor of all, ranked (7).

RTD: experiences very low to low level of self heating, ranked (4).

Bimetallic: experiences no self heating, but can fail ‘closed’ (short-circuited) at end of

life, ranked (2).

Thermometer: experiences no self heating, one among the best sensors, ranked (1).

Pyrometer: experiences no self heating, one among the best sensors, ranked (1).

LCD: experiences very low to low level of self heating, ranked (3).

Based on the upper judgments, the judgment matrix of the relative weights for the Self

Heating sub-criterion is

54

 1.0 8.0 3. 0 3.0 1.0 1.0 2.0

 0.125 1.0 0.2 0.25 0.2 0.1667 0.25

 0.3333 5.0 1.0 0.5 0.5 0.3333 1.0

 Aself heating = [aij] = 0.3333 4.0 2.0 1.0 1.0 0.5 1.0

 1.0 5.0 2.0 1.0 1.0 1.0 2.0

 1.0 6.0 3.0 2.0 1.0 1.0 1.0

 0.5 4.0 1.0 1.0 0.5 1.0 1.0

The values of the relative weights in the above matrix are based on the judgments stated

before. For example, since the thermocouple experiences no self heating problem at all, it

is considered superior to the thermister which experiences high level of self heating, so

the relative weight of the thermocouple with respect to the thermister, the a12 entry in the

above matrix, is set mid way on Saaty’s scale between very strongly more important and

extremely more important and given a value of 8. Another example is the relative weight

of the RTD with respect to the bimetallic, the a34 entry. Since the RTD experiences very

low to low self heating and is ranked relative to the rest of the sensors (4) and the

bimetallic ranked (2), and since self heating is not common in bimetallic, i.e. we don’t, in

general, talk about bimetallic self heating characteristic, then the relative importance of

the bimetallic with respect to the RTD is no more than a factor of 2. The same analogy

applies to the rest of the entries in the matrix. Table 4-5 shows the results of the software

in terms of sensors weights for the Self Heating sub-criterion for the three sensors case

study.

55

Table 4-5: The results for the Self Heating sub-criterion

 Self-Heating Issues matrix:

 3 8 1

0.2 1 0.125

 1 5 0.3333

 Thermocouple Thermsiter RTD

Alternatives Weight Vector = 0.65715 0.06825 0.27459

Consistency Index = 0.02218

Consistency Ratio = 0.03824

Typical Small Size Sub-criterion: below are the judgments [7] relating to the seven

sensors with respect to the Typical Small Size sub-criterion and that will be used in

determining the relative weights of the judgment matrix.

Thermocouple: the smallest sensor, sizes down to 0.025 mm of the thermocouple wire

diameter are present in industry. Typical size is 0.25 mm diameter, ranked relative to rest

alternatives (1).

Thermister: the next smaller sensor, typical sizes for bead-type thermisters diameters

range from 0.4 mm to 2.5 mm with a typical probe length 3-12.7 mm, ranked (2).

RTD: the second next smaller sensor, with an RTD diameter ranging from 1.6 mm to 6.35

mm and an RTD probe length ranging from 1.6 mm to 101.6 mm, ranked (3).

Bimetallic: has a typical strip length of 3 inches (76.2 mm), ranked (4).

Thermometer: has a typical length of 8 inches (203.2 mm), ranked (5).

Pyrometer: commercial pyrometer has a size of 54 mm X 54 mm X 147 mm, ranked (6).

LCD: commercial LCD has dimensions of 20 cm X 6.35 cm, ranked (5).

Based on the upper judgments, and based on the notion that as the size of the sensor

becomes smaller it is considered better due to its faster response time and increased

fitness to be installed in any place within process, then the judgment matrix of the relative

weights for the Typical Small Size sub-criterion is:

56

 1.0 2.0 3.0 4.0 5.0 6.0 5.0

 0.5 1.0 2.0 3.0 4.0 5.0 4.0

 0.3333 0.5 1.0 2.0 4.0 6.0 4.0

 Asize = [aij] = 0.25 0.3333 0.5 1.0 2.0 3.0 2.0

 0.2 0.25 0.25 0.5 1.0 3.0 1.0

 0.1667 0.2 0.1667 0.3333 0.3333 1.0 0.5

 0.2 0.25 0.25 0.5 1.0 2.0 1.0

The values of the relative weights in the above matrix are based on the information stated

above. For example, since the thermocouple is the smallest sensor and the pyrometer is

the largest the relative weight of the thermocouple with respect to the pyrometer, i.e. the

a16 entry in the above matrix, is set mid way on Saaty’s scale between strongly more

important and very strongly more important and given a value of 6. Another example is

the relative weight of the pyrometer with respect to the thermometer, the a65 entry. Since

the pyrometer is a 3-D device and the thermometer is only approximately one dimension

(length), then the relative weight is set to 0.3333 indicating that pyrometer is weakly less

important than the liquid-in-glass thermometer. The same analogy applies to the rest of

the entries in the matrix. Table 4-6 shows the results of the software in terms of sensor

weights for the Typical Small Size sub-criterion for the three sensors case study.

Table 4-6: The software results for the Typical Small Size sub-criterion

Typical Small Size matrix:

1 2 3

0.5 1 2

0.3333 0.5 1

 Thermocouple Thermister RTD

Alternatives Weight Vector = 0.53896 0.29725 0.16377

Consistency Index = 0.00458

Consistency Ratio = 0.00791

57

Typical Fast Thermal Time Constant Sub-criterion: below are values of the average

response time for the seven sensors. These values will be used in determining the relative

weights of the judgment matrix.

Thermocouple: 0.01 seconds (see Appendix ΙV), among the fastest sensors, ranked

relative to rest alternatives (1).

Thermister: typical response time 2 seconds [7], ranked (2).

RTD: 5 seconds [7] , ranked (4).

Bimetallic: 20 seconds [24], the slowest of all sensors, ranked (6).

Thermometer: 10 seconds [25], ranked (5).

Pyrometer: 0.01 seconds [26], among the fastest sensors, ranked (1).

LCD: 3 seconds [27], ranked (3).

Based on the upper judgments, and based on the notion that it is an advantage for the

sensor in a process to have smaller response time then the judgment matrix of the relative

weights for the Fast Thermal Time Constant sub-criterion is:

 1.0 3.0 4.0 6.0 5.0 1.0 3.0

 0.3333 1.0 2.0 4.0 3.0 0.3333 1.0

 0.25 0.5 1.0 2.0 2.0 0.25 1.0

Afast th time cons = [aij] = 0.1667 0.25 0.5 1.0 0.5 0.1667 0.3333

 0.2 0.3333 0.5 2.0 1.0 0.2 0.3333

 1.0 3.0 4.0 6.0 5.0 1.0 3.0

 0.3333 1.0 1.0 3.0 3.0 0.3333 1.0

The values of the relative weights in the above matrix were based on the response time

values for the seven sensors stated above. For example, since the thermocouple and the

pyrometer are the fastest sensors and the bimetallic strip is the slowest, then entries a14

and a64 are set midway on Saaty’s scale between strongly more important and very

strongly more important and given a value of 6. Another example is the relative weight of

58

the LCD with respect to the pyrometer. The response time of an LCD is 3 seconds and

that of pyrometer is 0.01 seconds, then the pyrometer is relatively weakly more important

than the LCD and the entry a67 is given a value of 3. The same analogy applies to the rest

of the entries in the matrix. Table 4-7 shows the results of the software for the Typical

Fast Thermal Time Constant sub-criterion for the three sensors case study.

Table 4-7: The software results for the Typical Fast Thermal Time Constant sub-
criterion.

Typical Fast Thermal Time Constant matrix:

 1 3 4

 0.3333 1 2

 0.25 0.5 1

 Thermocouple Thermister RTD

Alternatives Weight Vector = 0.62323 0.23948 0.13728

Consistency Index = 0.00915

Consistency Ratio = 0.01578

Long Term Stability and Accuracy Sub-criterion: below are descriptions of the long

term stability and accuracy behavior for the seven sensors.

Thermocouple: thermocouple long term stability and accuracy is okay (see Appendix

ΙV), it experiences drift and needs calibration. Its resolution is within ± 1.0 C. It is ranked

relative to rest alternatives (6).

Thermister: good stability and accuracy, its resolution ranges from ± 0.1 C to ± 0.001

C, ranked (2).

RTD: RTD is the most stable and accurate of all sensors, its resolution can reach ±

0.00001 C, ranked (1).

Bimetallic: bimetallic thermometer experiences drift, its resolution ranges from ± 1.0 C

to ± 2.0 C, ranked (7).

Thermometer: thermometer exhibits fair stability, accuracy of ± 0.1 C, ranked (4).

59

Pyrometer: pyrometer has good resolution ranging from ± 0.1 C to ± 1.0 C, ranked

(5).

LCD: LCD has good stability, resolution of 0.001-0.1 C, ranked (3).

Based on the upper judgments, and based on the notion that long term stability and

accuracy is an advantage for a sensor then the judgment matrix of the relative weights for

the Long Term Stability and Accuracy sub-criterion is:

 1.0 0.25 0.1667 2.0 0.3333 0.5 0.25

 4.0 1.0 0.3333 4.0 3.0 3.0 2.0

 6.0 3.0 1.0 8.0 4.0 5.0 3.0

Along term stability = [aij] = 0.5 0.25 0.125 1.0 0.3333 0.3333 0.25

 3.0 0.3333 0.25 3.0 1.0 2.0 0.5

 2.0 0.3333 0.2 3.0 0.5 1.0 0.3333

 4.0 0.5 0.3333 4.0 2.0 3.0 1.0

The values of the relative weights in the above matrix were based on the descriptions for

the seven sensors stated above. For example, since the RTD exhibits the best stability and

accuracy and the thermister exhibits good stability and accuracy, a relative weight of

0.3333 is given to the entry a23 in the above matrix. The same analogy applies to the rest

of the entries in the matrix. Table 4-8 shows the results of the software for the Long Term

Stability and Accuracy sub-criterion for the three sensors case study.

Table 4-8: The software results for the Long Term Stability and Accuracy sub-
criterion

Long Term Stability and Accuracy matrix:

1 0.25 0.1667

4 1 0.3333

6 3 1

 Thermocouple Thermister RTD

Alternatives Weight Vector = 0.08695 0.27371 0.63933

Consistency Index = 0.02704

Consistency Ratio = 0.04663

60

Corrosion Resistance Sub-criterion: below are descriptions of the corrosion

characteristics for the seven sensors.

Thermocouple: low corrosion resistance [7, 8]. It is ranked relative to rest alternatives

(4).

Thermister: good corrosion resistance, but corrodes in acidic, alkali media, ranked [23]

(2).

RTD: RTD has good corrosion resistance due to its highly inert platinum wire [7, 8],

ranked (1).

Bimetallic: experiences normal corrosion of component metals, ranked (3).

Thermometer: has good corrosion resistance due to its inert glass capillary tube,

ranked (1).

Pyrometer: pyrometer has no direct contact with the medium, so it is not exposed to

corrosion due to medium, ranked (1).

LCD: LCD has good corrosion resistance, relatively ranked [7] (2).

Based on the upper judgments, and based on the notion that corrosion resistance is an

advantage for a sensor then the judgment matrix of the relative weights for the Corrosion

Resistance sub-criterion is:

 1.0 0.25 0.1667 0.5 0.1667 0.1667 0.25

 4.0 1.0 0.3333 2.0 0.25 0.25 1.0

 6.0 3.0 1.0 4.0 1.0 1.0 4.0

Acorrosion resis. = [aij] = 2.0 0. 5 0.25 1.0 0.25 0.25 0.5

 6.0 4.0 1.0 4.0 1.0 1.0 3.0

 6.0 4.0 1.0 4.0 1.0 1.0 3.0

 4.0 1.0 0.25 2.0 0.3333 0.3333 1.0

61

The values of the relative weights in the above matrix were based on the descriptions for

the seven sensors stated above. For example, since the thermocouple exhibits the worst

corrosion resistance and the thermometer exhibits excellent corrosion resistance, the entry

a15 in the above matrix is given a value of 0.1667. The same analogy applies to the rest of

the entries in the matrix. Table 4-9 shows the results of the software for the Corrosion

Resistance sub-criterion for the three sensors case study.

Table 4-9: The software results for the Corrosion Resistance sub-criterion

Corrosion Resistance matrix:

 1 0.25 0.1667

 4 1 0.3333

 6 3 1

 Thermocouple Thermister RTD

Alternatives Weight Vector = 0.08695 0.27371 0.63933

Consistency Index = 0.02704

Consistency Ratio = 0.04663

Cost Sub-criterion: below is cost information for the seven sensors. Putting into mind

that cost minimization is a pursuit of any temperature measurement system then the

relative rank of the seven sensors would appear as indicated beside each.

Thermocouple: low –medium cost. Typical cost values depending on the thermocouple

type range from $5 for many thermocouples to $150 for some products of the high

temperature measuring K-type thermocouple. So it is one of the least expensive choices.

It is ranked relative to rest alternatives (1).

Thermister: low –medium cost. Typical cost values depend on the thermister features and

range from $0.6 to $28, relatively close cost to thermocouple’s, ranked (1).

RTD: high cost. High-accuracy wire-wound RTDs can be as costly as $5000, $700 is not

uncommon. See Table 2.2, ranked the worst alternative relative to the Cost sub-

criterion (3).

62

Bimetallic: medium cost, cost ranges from $10 to $53, ranked (2).

Thermometer: medium cost, typical cost values range from $15 to $67, ranked (2).

Pyrometer: very expensive, cost values for pyrometers can range from $200 up to more

than $3000, ranked (3).

LCD: medium cost, cost ranges from $10 to $50, relatively ranked (2).

Based on the upper judgments, the following is the relative weights judgment matrix for

the Cost sub-criterion.

 1.0 1.0 6.0 3.0 3.0 6.0 3.0

 1.0 1.0 6.0 3.0 3.0 6.0 3.0

 0.1667 0.1667 1.0 0.25 0.25 1.0 0.25

Acost = [aij] = 0.3333 0. 3333 4.0 1.0 1.0 4.0 1.0

 0.3333 0.3333 4.0 1.0 1.0 4.0 1.0

 0.1667 0.1667 1.0 0.25 0.25 1.0 0.25

 0.3333 0.3333 4.0 1.0 1.0 4.0 1.0

Evaluating the relative weights in the above matrix is based on comparing the relative

ranks given to the seven sensors against the cost sub-criterion. For example, since the

thermocouple and the thermister on average exhibit the least cost sensor choices, and come

rank 1 while the industrial thermometer exhibits a medium cost alternative with a rank 2,

then both the thermocouple and the thermsiter are equally weakly more important than the

thermometer and entries a15 and a25 are assigned value 3.0. On the other hand, since the

thermocouple is the most preferred alternative with respect to the Cost sub-criterion with

rank 1 and because the RTD and the pyrometer are the most expensive alternatives among

all alternatives having a rank 3 then the RTD and the pyrometer score badly relative to the

thermocouple. You can consider them as being mid way between strongly less important

and very strongly less important than the thermocouple and thus entries a31 and a61 are

63

given value 0.1667. Table 4-10 shows the results of the software for the Cost sub-criterion

for the three sensors case study.

Table 4-10 The software results for the Cost sub-criterion

Cost matrix:

 1 1 6

 1 1 6

 0.1667 0.1667 1

 Thermocouple Thermister RTD

Alternatives Weight Vector = 0.46153 0.46153 0.07693

Consistency Index = 0

Consistency Ratio = 0

4.3.5.2 Sub-criteria Weights Interpretation

The discussion in this section and the next section relates to the Automotives application.

Criteria and sub-criteria weights for the other two applications: the Chemical Process and

the HVAC applications will be interpreted and explained in section 4.3.5.4.

Static Sub-criteria Relative Weights: the 11 sub-criteria comprising the Static criterion

are relatively pair-wise compared using Saaty scale. Recall from section 2.2.1 the important

requirements for the selection of temperature sensors for a certain application. These

requirements are mentioned here again to remind of the relative importance for each:

1- Temperature range

2- Accuracy

3- Response time

4- Sensitivity

5- Corrosion conditions and resistance

6- Breaking down due to wear and tear

7- Interchangeability

8- Variations in temperature – temperature shock

64

9- Pressure conditions

The scheme for prioritizing the 23 sub-criteria-although not seen here- was first laid on

comparing the 23 sub-criteria as a whole, and as if they all belong to the same parent

criterion, which is in this case, the overall goal; the selection of the best sensor. In doing so,

the 23 sub-criteria are passed on and assimilated to one of the above requirements. The

requirements are followed here from top to bottom in a descending order of preference or

priority for evaluating the relative preferences of the 23 sub-criteria, i.e. starting from

temperature range requirement with the first priority, then passing on to accuracy

requirement with the second priority and so forth.

To elaborate, every single sub-criterion of the 23 sub-criteria is passed on the requirements

and assimilated to one of them. Throughout the work for this section, if multiple sub-

criteria of the 23 sub-criteria are related in different degrees to the same requirement of the

above, only the one with the closest relation to the requirement is passed on at one time and

the next with the second degree relationship is passed on after the rest of sub-criteria that

assimilate the next requirements are passed on. For example, the Long Term Stability and

Accuracy sub-criterion, the NIST Standards sub-criterion, the Point or Area Measurement

sub-criterion, the Self-Heating Issues sub-criterion , the Temperature Curve sub-criterion,

the Extension Wires sub-criterion, and the Temperature Measurement sub-criterion all are

related and assimilated to the accuracy requirement in different degrees of relationship.

However only one sub-criterion of the seven afore mentioned sub-criteria with the closest

similitude (degree of relationship) to the accuracy requirement, which is the Long Term

Stability and Accuracy sub-criterion in this case, is passed on at a time for purposes of

prioritization. The other six are periodically passed on one by one after the next

requirements are assimilated with the rest of the sub-criteria, i.e. after response time,

sensitivity,… etc. requirements have been assimilated with the remaining sub-criteria.

65

Based on this scheme the relative preference of the aforementioned seven sub-criteria from

the most important to the least important is: the Long Term Stability sub-criterion, the

NIST Standards sub-criterion, the Point or Area Measurement sub-criterion, the Self-

Heating Issues sub-criterion, the Temperature Curve sub-criterion, the Extension Wires

sub-criterion, and the Temperature Measurement sub-criterion, respectively. The outcome

of this prioritization scheme is 23 sub-criteria relatively ranked from (1) to (23). Table 4-11

depicts the ranks for the 23 sub-criteria under this prioritization scheme.

Table 4-11: The ranks for the 23 Sub-criteria with respect to the overall goal.

Criteria Sub-Criteria Rank

Static Criteria Maximum Operating Temperature 1

 Minimum Operating Temperature 1

 Temperature Curve 15

 Sensitivity 6

 Self-Heating Issues 13

 Long Term Stability and Accuracy 2

 Typical Temperature Coefficient 16

 Extension Wires 17

 Long Wire runs from Sensor 21

 Measurement Parameter 22

 Temperature Measurement 20

Dynamic Characteristics Stimulation Electronics required 5

 Existence of Maximum Sensitivity Region 18

 Typical Fast Thermal Time Constant 3

Environmental Parameters Typical Small Size 12

 Noise Immunity 14

 Fragility-Durability Characteristics 8

 High Thermal Gradient Environment 9

 Corrosion Resistance 7

Others Point or Area Measurement 11

 Manufacturing Variances 19

 NIST Standards exist 10

 Cost 4

The next step is to categorize these 23 sub-criteria into their 4 parent criteria, namely, into:

Static criteria, Dynamic criteria, Environmental criteria, and Others criteria categories. The

prioritization scheme will be utilized here to help prioritize different sub-criteria inside the

same parent criterion (see Table 4.11). Putting in mind that operating temperature range

66

comprises both minimum and maximum operating temperatures then the relative

preferences (ranks) that apply to the 11 sub-criteria comprising the Static criterion

alongside their interpretation become as follows:

Maximum Operating Temperature: is assimilated to temperature range requirement,

and since the temperature range requirement has requirement priority (1) to be satisfied,

then the Maximum Operating Temperature sub-criterion also has priority (1) among other

sub-criteria inside the Static criterion. So it is ranked (1).

Minimum Operating Temperature: is assimilated to temperature range requirement, it

has the same priority as the Maximum Operating Temperature sub-criterion and

ranked (1).

Temperature Curve: is realized in sensors and assimilated to accuracy requirement. A

linear response of a sensor provides for accurate sensor measurements while non-linear

responses add to sensor inaccuracy and error. Since it is prioritized in the second pass on

requirements while the more relevant sub-criterion to the accuracy requirement, which is

the Long Term Stability and Accuracy sub-criterion is prioritized in the first pass, so it is

ranked less important than the Long Term Stability and Accuracy sub-criterion in the Static

category and has a new rank (5).

Sensitivity: is assimilated to sensitivity requirement and ranked relatively inside Static

criterion (3).

Self-Heating Issues: assimilated to accuracy, ranked inside Static criterion (4).

Long Term Stability and Accuracy: assimilated to accuracy, ranked (2).

Typical Temperature Coefficient: assimilated to sensitivity, ranked (6).

Extension Wires: assimilated to accuracy, ranked (7).

Long Wire Runs from Sensor: assimilated to accuracy, ranked (9).

Measurement Parameter: assimilated to accuracy, ranked (10).

67

Temperature Measurement: assimilated to accuracy, ranked (8).

Having set the relative preferences for the 11 Static sub-criteria, the following judgment

matrix is established based on Saaty scale of relative importance:

 1.0 1.0 5.0 4.0 4.0 2.0 5.0 6.0 7.0 8.0 6.0

 1.0 1.0 5.0 4.0 4.0 2.0 5.0 6.0 7.0 8.0 6.0

 0.2 0.2 1.0 0.3333 0.3333 0.25 1.0 2.0 4.0 5.0 3.0

 0.25 0.25 3.0 1.0 2.0 0.5 3.0 3.0 5.0 6.0 4.0

 0.25 0.25 3.0 0.5 1.0 0.3333 3.0 5.0 6.0 8.0 4.0

 Asub-static = [aij] = 0.5 0.5 4.0 2.0 3.0 1.0 4.0 5.0 6.0 8.0 5.0

 0.2 0.2 1.0 0.3333 0.3333 0.25 1.0 1.0 4.0 6.0 3.0

 0.1667 0.1667 0.5 0.3333 0.2 0.2 1.0 1.0 3.0 4.0 1.0

 0.1429 0.1429 0.25 0.2 0.1667 0.1667 0.25 0.3333 1.0 2.0 0.3333

 0.125 0.125 0.2 0.1667 0.125 0.125 0.1667 0.25 0.5 1.0 0.25

 0.1667 0.1667 0.3333 0.25 0.25 0.2 0.3333 1.0 3.0 4.0 1.0

The interpretation of entries values for the above matrix is an easy task after the 11 sub-

criteria have been properly prioritized. For example, since Maximum and Minimum

Operating Temperature sub-criteria rank 1 while Temperature Curve sub-criterion ranks 5,

then both Maximum and Minimum Operating Temperature sub-criteria are strongly more

important than Temperature Curve sub-criterion and their relative weights according to

Saaty’s scale is given a value 5, so both entries a13 and a23 have a value 5. The self heating

is an important characteristic that plays decisive role in sensor’s accuracy, so the Self

heating Issues sub-criterion ranks 4 among the 11 sub-criteria. The Typical Temperature

Coefficient, on the other hand, is less important for a sensor- yet retains good importance-

than Self Heating Issue sub-criterion, so it ranks 6, if these considerations are taken into

mind, then the Self heating Issues sub-criterion can be considered weakly more important

than the Typical Temperature Coefficient sub-criterion with three folds and thus entry a57

has a value 3. The worst scoring sub-criterion among all 11 sub-criteria is the

Measurement Parameter sub-criterion (see Appendix IV for meaning of measurement

68

parameter), the reason behind is that whether you are measuring resistance or voltage by

your sensor, it makes a slight difference, both measurement parameters will eventually

give you a representation of the temperature measured. This gives rise to the relatively

low rank given to the Measurement Parameter sub-criteria which is (10). However,

Measurement Parameter sub-criterion still has a slight effect on the final goal in the sense

that because temperature measurement through voltage difference created via

thermoelectric effect in thermocouple, for example, is an inherent phenomenon that

happens whenever a thermo element conductor is exposed to a temperature difference. It

does not need an external power source to drive the sensor nor does it need software to

convert the thermo voltage to temperature. The thermo voltage has a direct relation to the

temperature difference, needs no signal conditioning, and can be directly looked up from

standard tables. Resistance temperature measurement, on the other hand, relies on passing

direct current through the sensor, the thermister, for example, then measuring the electric

resistance of the sensor then relating this resistance to the temperature being measured. It

normally needs computer software to convert these resistance values into a value of the

temperature according to the characteristic Temperature-Resistance equation for the

sensor. All these stages have their own contribution to the total error in the sensor’s

temperature reading, so thermo voltage parameter is generally better, however, this need

not prevent the use of passive devices- those that use direct current to drive them- and

thus the overall relative importance of Measurement Parameter sub-criterion is the lowest.

Because the Minimum Operating Temperature sub-criterion is the most important sub-

criterion among the 11 sub-criteria that a certain alternative sensor must fulfill with rank

(1) and because the Measurement Parameter is the least important (10), then the Minimum

Operating Temperature sub-criterion is midway between very strongly more important

69

and extremely more important than the Measurement Parameter sub-criterion and thus

entry a10 2 is a fraction 0.125.

The same analogy can be applied to the rest of entries. Having been set into the software,

this 11X 11 matrix is then used to calculate the weights of the individual sub-criteria that

comprise the Static criterion. Table 4.12 shows the sub-criteria weights calculated by the

software for the Static criterion.

Table 4-12: Static Sub-criteria Weights

Sub-Criteria Static matrix: List of Sub-criteria

1.0 1.0 5.0 4.0 4.0 2.0 5.0 6.0 7.0 8.0 6.0 (1) Maximum Operating Temperature

1.0 1.0 5.0 4.0 4.0 2.0 5.0 6.0 7.0 8.0 6.0 (2) Minimum Operating Temperature

0.2 0.2 1.0 0.3333 0.3333 0.25 1.0 2.0 4.0 5.0 3.0 (3) Temperature Curve

0.25 0.25 3.0 1.0 2.0 0.5 3.0 3.0 5.0 6.0 4.0 (4) Sensitivity

0.25 0.25 3.0 0.5 1.0 0.3333 3.0 5.0 6.0 8.0 4.0 (5) Self Heating

0.5 0.5 4.0 2.0 3.0 1.0 4.0 5.0 6.0 8.0 5.0 (6) Stability and Accuracy

0.2 0.2 1.0 0.3333 0.3333 0.25 1.0 1.0 4.0 6.0 3.0 (7) Temperature Coefficient

0.1667 0.1667 0.5 0.3333 0.2 0.2 1.0 1.0 3.0 4.0 1.0 (8) Extension Wires

0.1429 0.1429 0.25 0.2 0.1667 0.1667 0.25 0.3333 1.0 2.0 0.3333 (9) Long Wire Runs

0.125 0.125 0.2 0.1667 0.125 0.125 0.1667 0.25 0.5 1.0 0.25 (10) Measurement Parameter

0.1667 0.1667 0.3333 0.25 0.25 0.2 0.3333 1.0 3.0 4.0 1.0 (11) Temperature Measurement

 (1) (2) (3) (4) (5) (6) (7) (8)

Static sub-criteria Weight Vector = 0.22120 0.22120 0.05379 0.09837 0.09777 0.15040 0.05234 0.03704

 (9) (10) (11)

0.01983 0.01452 0.03355

Consistency Index = 0.08281

Consistency Ratio = 0.05209

Dynamic Sub-criteria Relative Weights: in this section, the three Dynamic sub-criteria

are also ranked after being assimilated to the requirements mentioned in the previous

section. These sub-criteria and their relative ranks are:

Stimulation Electronics Required: this sub-criterion refers to the extent a nominated

alternative sensor is in need to be driven by an external source of electrical power, namely,

70

direct current, or it is self-driven and the consequent need for the set of stimulation

electronics and/ or the need for signal conditioning circuits, interface circuits, analogue to

digital converter circuits, lead wires circuits, or signal amplification circuits. It is ranked

relative to the other two sub-criteria with respect to the Dynamic criterion (2).

Existence of Maximum Sensitivity Region: for certain sensors, the thermister for

example, there is a region in its resistance-temperature characteristic equation in which the

sensitivity-the slope of the curve- is abnormally maximum. This maximum sensitivity

region is considered a disadvantage in the sensor’s characteristics because the sensor’s

behavior is extremely non-linear and unpredictable [7] which adds up sharply to inaccurate

readings and difficulty of characterizing the resistance-temperature curve for that sensor. It

is ranked (3).

Typical Fast Thermal Time Constant: this sub-criterion refers to how fast the sensor

behaves in responding to a step change in the measured variable, the temperature in this

case. In any sensing system, fast time response is regarded as an advantage for the sensor.

This sub-criterion is assimilated to response time requirement and ranked inside Dynamic

criterion (1).

Based on the relative ranks for the Dynamic sub-criteria, the following judgment matrix is

established:

 1.0 2.0 0.1667

 A Sub dyn. = [aij] = 0.5 1. 0 0.1667

 6.0 6.0 1.0

Because the most important sub-criterion among the three Dynamic sub-criteria is the

Typical Fast Thermal Time Constant and the least important sub-criterion is the Existence

of Maximum Sensitivity Region sub-criterion, then it is fair to consider the Typical Fast

Thermal Time Constant sub-criterion mid way between strongly and very strongly more

important than the Existence of Maximum Sensitivity Region sub-criterion and thus entry

71

a16 is given a value 0.1667. After the above Dynamic sub-criteria judgment matrix has

been introduced into the software, the software can then calculate the weights for

individual Dynamic sub-criteria. Table 4-13 shows these weights.

Table 4-13 Dynamic sub-criteria weights.

Sub-Criteria Dynamic matrix:

 1 2 0.1667

 0.5 1 0.1667

 6 6 1

 Stimulation Electronics Maximum Sensitivity Time Constant

Dynamic sub-criteria Weight Vector = 0.16019 0.10093 0.73888

Consistency Index = 0.02722

Consistency Ratio = 0.04694

Environmental Sub-criteria Relative Weights: the Environmental sub-criteria

alongside their relative ranks are:

Typical Small Size: it is an advantage for a sensor to be small-sized for three reasons:

1- It becomes more similar to a point-measurement sensor. Point measurement sensors

measure temperature more accurately than area measurement sensors because of

their fastness in reaching thermal equilibrium with the sensed medium. Small-sized

sensors reach thermal equilibrium faster because of their small thermal mass. Area

measurement sensors, on the other hand, are slower in response and a temperature

gradient arises through the different parts (points) of the sensor, hence you can see

industrial products of area measurement sensors having temperature averaging

capabilities. In general, area measurement sensors add up to the total sensor error

because of the temperature gradient.

2- The small-sized sensor is faster in response.

3- The small-sized sensor fits better -in terms of size-in places of closed compartments

and or vessels, and can be more customized in varying industrial environments.

72

The above considerations suggest the relatively high importance of the small size sub-

criterion, but since corrosion resistance concerns us more-it appears frankly in the

requirements list and small size doesn’t- so it is comfortable to rank it among the five sub-

criteria that comprise the Dynamic criterion (3).

Noise Immunity: noise immunity is an advantage for a sensor. A sensor that is prone to

electrical and electromagnetic noise from neighboring electrical or electronic devices,

such as motors for example, is considered a bad alternative. Noise immunity at the final

end adds up to the total sensor’s accuracy. It is ranked relative to the rest four sub-criteria

(4).

Fragility-Durability Characteristics: it is an important sub-criterion that relates to the

sensor’s reliability. It is ranked (2).

High Thermal Gradient Environment: it is important for a sensor to withstand and

cope with high thermal gradients that may be encountered in harsh environments-like

chemical processes for example. Sensors that don’t withstand temperature and pressure

gradients often experience thermal cracks and the final damage of the sensor giving rise to

maintenance and replacement costs. It is given rank (5).

Corrosion Resistance: it is an exceptionally important sub-criterion among other

Environmental sub-criteria since it is frankly mentioned in the requirements list. It is

given rank (1).

The Environmental sub-criteria judgment matrix is:

 1.0 3.0 0.3333 4.0 0.25

 0.3333 1.0 0.25 3.0 0.2

 A Sub Env. = [aij] = 3.0 4.0 1.0 5.0 0.5

 0.25 0.3333 0.2 1.0 0.1667

 4.0 5.0 2.0 6.0 1.0

73

Fragility-Durability Characteristics sub-criterion ranks (2) while Typical Small Size sub-

criterion ranks (3), so it is safe to consider the Fragility-Durability Characteristics sub-

criterion weakly more important than the Typical Small Size sub-criterion and thus entry a31

has a value 3. But since the Corrosion Resistance sub-criterion ranks (1) while the

Fragility-Durability Characteristics sub-criterion and the High Thermal Gradient

Environment sub-criterion rank (2) and (5) respectively then entries a53 and a54 can have in

the above matrix values 2 and 6 respectively. After the Environmental sub-criteria

judgment matrix has been introduced into the software, the software calculates the weights

for the individual Environmental sub-criteria. Table 4-14 shows these weights.

Table 4-14: Environmental sub-criteria weights.

Sub-Criteria Environmental matrix:

 1 3 0.3333 4 0.25

 0.3333 1 0.25 3 0.2

 3 4 1 5 0.5

 0.25 0.3333 0.2 1 0.1667

 4 5 2 6 1

 Small Size Noise Immunity Fragility-Durability Thermal Gradient

Environmental sub-criteria Weight Vector = 0.15165 0.08646 0.28264 0.04767

 Corrosion Resistance

 0.43158

Consistency Index = 0.06347

Consistency Ratio = 0.05667

Others Sub-criteria Relative Weights: the Others sub-criteria alongside their relative

ranks are:

Point or Area Measurement: it is an advantage for a sensor to be similar to a point-

measurement sensor. Nonetheless, area measurement does not prevent use of area

measuring sensors for temperature measurement. In fact area measuring sensors are

widely industrially employed. This sub-criterion is ranked (3).

74

Manufacturing Variances: it is an advantage for a sensor to be homogenous and

invariant from batch to batch during manufacturing. It is ranked (4).

NIST Standards Exist: NIST is an American body that is concerned about different

standards for materials and manufacturing technologies, the abbreviation NIST stands for

National Institute of Standards and Technology. It is considered an advantage for a sensor

to be compliant with NIST standards, and this is what is sometimes referred to in

reference books as interchangeability. Compliance with NIST standards

(interchangeability) leads to a final better accuracy of the sensor. NIST standards sub-

criterion is ranked (2).

Cost: in many low -accuracy demanding sensor selection situations, the cost sub-criterion

has the preference to all other sensor’s sub-criteria. The same applies if a group of sensor

systems with large numbers of sensors are needed for a certain application, as is the case in

the HVAC application. In this respect, it is an advantage for a sensor to have low price.

However, cost should not be the final criterion that overbalances sensor’s choice. In fact,

for the long-run operability and reliability, other sub-criteria should not be overlooked or

sacrificed in favor of cost. Cost is given rank (1). The Others sub-criteria judgment matrix

is:

 1.0 3.0 0.5 0.25

A Sub Others. = [aij] = 0.3333 1.0 0.3333 0.2

 2.0 3.0 1.0 0.3333

 4.0 5.0 3.0 1.0

Because the NIST standards sub-criterion ranks (2) while the Manufacturing Variances

sub-criterion ranks (4) then it is safe to consider NIST standards sub-criterion weakly

more important than the Manufacturing Variances sub-criterion, and thus entry a32 can be

given a value 3. After The Others sub-criteria judgment matrix has been introduced into

75

the software, the software calculates the weights of the Others sub-criteria. Table 4.15

shows these weights.

Table 4-15 Others sub-criteria weights.

Sub-Criteria Others matrix:

 1 3 0.5 0.25

 0.3333 1 0.3333 0.2

 2 3 1 0.3333

 4 5 3 1

 Point Area Measurement Manufacturing Variances NIST Standards Cost

Others sub-criteria Weight Vector = 0.15750 0.07747 0.22913 0.53589

Consistency Index = 0.03752

Consistency Ratio = 0.04169

4.3.5.3 Criteria Weights Interpretation

In the prioritization scheme followed in this thesis, the 23 sub-criteria are prioritized as a

whole against the overall goal, then they are sorted out into their parent criteria and a new

prioritization scheme was followed inside each criterion yet making use of and depending

on the previous 23 sub-criteria prioritization scheme. Now, for estimating the relative

importance of one criterion relative to another with respect to the final goal, a third scheme

was adopted. This scheme simply comprises assigning relative scores (weights) to each

sub-criterion of the 23 sub-criteria after they have been ranked from (1) to (23) in the first

stage. These relative scores are then aggregated (simply summed up) for sub-criteria that

belong to the same parent criterion in order to obtain a total score for that criterion. By

doing this, a score for each criterion is obtained. The next step is to relate these scores to

each other-by simple division- of the four criteria aggregated score in order to obtain the

relative weights of the criteria which will be entered in the criteria judgment matrix. This

work was done separately, and the criteria judgment matrix for the Automotives application

is obtained as follows:

76

 1.0 4.0 3.0 4.0

 A criteria = [aij] = 0.25 1.0 0.5 1.0

 0.3333 2.0 1.0 2.0

 0.25 1.0 0.5 1.0

Looking at the above matrix, it is clear that the Static criterion is the most important

criterion among the four criteria, it has a relative weight with respect to the Dynamic,

Environmental, Others criteria of 4, 3, 4 (entries a12, a13, a14 in the matrix) respectively.

This can easily be figured out if we recall that the Static criterion contains 11 sub-criteria

among which lie the most important and the second most important of all 23 sub-criteria,

the Maximum , Minimum Operating Temperature and the Long Term Stability and

Accuracy sub-criteria. The second important criterion is evident to be the Environmental,

having a weight of 2 relative to both Dynamic and Others criteria (entries a32 and a34). The

Dynamic and Others criteria are equally important criteria, this can be deduced from their

relative weights with respect to each other (value 1 for entries a24 and a42). Having been

introduced into the software, the judgment matrix can then be used by the software to

calculate the weights for the criteria with respect to the final goal. Table 4-16 shows these

weights.

Table 4-16: Criteria weights for the Automotives application.

Criteria matrix:

 1 4 3 4

 0.25 1 0.5 1

 0.3333 2 1 2

 0.25 1 0.5 1

 Static Dynamic Environmental Others

Criteria Weight Vector = 0.53637 0.12159 0.22045 0.12159

Consistency Index = 0.00687

Consistency Ratio = 0.00763

77

Having introduced all the matrices representing relative weights of the alternatives with

respect to each sub-criterion, the relative weights of the sub-criteria with respect to the

criteria, and the relative weights of the criteria with respect to the goal for a certain

application in the software then the results of the software for any application case study

the user applies to the software in the form of alternatives scores can easily be obtained by

simply pressing the Select button on the second tab. Table 4-17 shows the results for the

three sensors: the thermocouple, the thermister, and the RTD case study for the automotive

catalytic converter application.

Table 4-17 Scores for the thermocouple, the thermister, and the RTD for the
Automotives application.

 Sensor Score Rank

 Thermocouple 0.37849 1

 Thermister 0.27560 3

 RTD 0.34589 2

4.3.5.4 Variations in Components Weights for the Three Applications

The interpretation of the components weights in the previous three sections applies only to

the Automotives application, which is set as the default application in the software as the

user opens it. New sets of weights are introduced into the software that take care of the

special requirements for the other two applications: the Chemical Process and the HVAC

(Heating, Ventilating and Air Conditioning) applications.

The Chemical Process Application

The following are considerations pertaining to the Chemical Process application that have

to be taken into account when varying the component weights of the Chemical

Process application:

1- Chemical processes are harsh environments in which the proposed sensor faces high

rates of corrosion, and in many cases high temperatures and pressures and high

78

temperature gradients. The proposed sensor is then to be exceptionally corrosion

with high thermal gradient resistance.

2- Normally, the rate of temperature change for the chemical medium in which the

proposed sensor is to be put is high (< 1.0
0
C/ min), and so the sensor should have

fast response time to cope with fast varying medium temperatures.

3- Chemical Process applications usually need accurate temperature measurement and

control because of the nature of the chemical reaction. Catastrophic loss of material,

energy, equipment and /or human lives can be possible if temperature measurement

and control were not maintained within narrow ranges of accuracy and precision.

4- Sensors used in chemical processes are normally enclosed into closed

compartments and/or closed vessels or reactors, distillation columns, mixers,

evaporators, heat exchangers…etc. hence the need for a small-sized sensor that fits

into these enclosures.

Based on these requirements for the Chemical Process application, the following scheme is

proposed to take care of these requirements and to create new weights for the Chemical

Process application:

1- To account for the corrosion resistance and other environment-related requirements,

the weight of the Environmental criterion entered in Table 4.16 for the Automotive

application is increased by a percentage of 60 %. This means that its relative

weights in the criteria judgment matrix for the Chemical Process application with

respect to the other three criteria will increase.

2- To account for the fast response time requirement of the sensor and other dynamic-

behavior related issues, the weight of the Dynamic criterion is increased by a

percentage of 35 %. This means that its relative weights in the criteria judgment

matrix with respect to the Static and Others criteria will increase.

79

Of course these increases to the Environmental and Dynamic criteria will be

charged to the other two remaining criteria, namely, the Static and Others criteria in

the same proportion that the Static criterion is more important than the Others

criterion, i.e. these increases will be charged in a proportion of 4:1.

3- The Long Term Stability and Accuracy sub-criterion relative weights inside the

11X 11 Static sub-criteria judgment matrix will be increased by a factor of 1

relative importance on Saaty’s scale relative to the rest of the eleven sub-criteria

while the Static criterion weight with respect to the goal will remain unchanged.

4- The Typical Fast Thermal Time Constant sub-criterion relative weights inside the

3X3 Dynamic sub-criteria judgment matrix will be increased by a factor of 1

relative importance on Saaty’s scale relative to the rest of the three sub-criteria.

5- The Typical small size, the Corrosion Resistance, and the High Thermal Gradient

Environment sub-criteria relative weights in the 5X5 Environmental Parameters

sub-criteria judgment matrix will be increased by a factor of 1 relative importance

on Saaty’s scale relative to the rest two sub-criteria but will not be increased one

against each other.

Based on these amendments, the new Criteria judgment matrix for the Chemical Process

application is as follows:

 1.0 2.0 1.0 4.0

A criteria = [aij] = 0.5 1.0 0.5 2.0

 1.0 2.0 1.0 4.0

 0.25 0.5 0.25 1.0

Note the essential change to the relative weights of the various components of the criteria

matrix before the amendments for the Automotives application and after the amendments

for the Chemical Process application. For example, the relative weight of the Static

criterion with respect to the Environmental criterion, entry a13, was 3.0 before the

80

amendments indicating weak importance of the Static criterion relative to the

Environmental criterion in the Automotives application. This weight drastically changed

to 1.0 after the amendments for the Chemical Process application indicating equal

importance of the two criteria with respect to the goal which makes sense in an application

where corrosion and other detrimental effects are to be minimized. The relative weight of

the Dynamic criterion with respect to the Static criterion, entry a21, was 0.25 before the

amendments indicating that Dynamic criterion is mid way between being weakly and

strongly less important than the Static criterion in the Automotives application. This weight

also changed remarkably to a value of 0.5 after the amendments indicating that the

Dynamic criterion became mid way between being equally and weakly less important than

the Static criterion in the Chemical Process application which makes sense for an

application in which fast response is needed. Having introduced the above matrix into the

software for the Chemical Process application, the new weights of the four criteria will be

calculated. Table 4.18 shows the software criteria new weights values for the Chemical

Process application versus their old values in the Automotives application for purposes of

comparison in addition to % increase or decrease in each criterion value before and after

the amendments.

Table 4-18: Criteria weights for the Chemical Process application.

Criteria Matrix (Chemical Process):

1 2 1 4

0.5 1 0.5 2

1 2 1 4

0.25 0.5 0.25 1

 Static Dynamic Environmental Others

Automotives Criteria Weight Vector = 0.53637 0.12159 0.22045 0.12159

Chemical Process Criteria Weight Vector = 0.36363 0.18181 0.36363 0.09090

% increase or decrease = - 32 + 49 + 65 - 25

Consistency Index (Chemical Process) = 0

Consistency Ratio (Chemical Process) = 0

81

The rest of the relative weights amendments other than amendments for the criteria matrix

are introduced into the software. Table 4-19 shows the new weights for the Long Term

Stability and Accuracy, Typical Fast Thermal Time Constant, Corrosion Resistance,

Typical Small Size, and High Thermal Gradient Environment sub-criteria in the Chemical

Process application versus their corresponding old values in the Automotives application in

addition to % increase in their values.

Table 4-19: New sub-criteria weights for the Chemical Process application versus old
values for the Automotives application and % increase in weights.

Sub-Criterion Old value New value % increase

Long Term Stability and Accuracy 0.15040 0.19869 32

Typical Fast Thermal Time Constant 0.73887 0.76708 4

Corrosion Resistance 0.43157 0.47902 5

Typical Small Size 0.15165 0.17142 13

High Thermal Gradient Environment 0.04767 0.05228 10

Figure 4.6 shows a 3D-column chart depicting values for these sub-criteria in both

Automotives and Chemical Process applications.

Figure 4.6: Values of sub-criteria in both Automotives and Chemical Process
applications.

Automotives

Chemical Process

82

Having introduced all these amendments into the software project in the Chemical Process

file, the results for the best alternative sensor among a set of nominated alternative sensors

can be obtained. Table 4-20 shows the new scores for the three alternative sensors: the

thermocouple, the thermister, and the RTD case study in the Chemical Process application.

It also shows the old scores for the same sensors in the Automotives application for

purposes of comparison.

Table 4-20: Scores for the three sensor case study in the Chemical Process application

Sensor Automotives Chemical Rank (Chemical)

Thermocouple 0.37849 0.38179 1

Thermister 0.27560 0.26806 3

RTD 0.34589 0.35013 2

The HVAC Application

The following are the basic HVAC applications sensor selection considerations (see

Appendix V [28]):

1- High accuracy because of the need to control the consumption of energy during

heating and cooling within narrow tolerances for cost consumption purposes. Low

accuracy sensors or sensor systems can be responsible for a large amount of energy

loss and thus lager sums of wasted money.

2- Reliability and quality of the proposed sensor or system of sensors.

3- Initial cost, maintenance and replacement costs. The cost issue is very important in

talking about the HVAC application because a group of sensors in large numbers

(automated system of sensors) are normally needed.

4- Lead wire characteristics are also enhanced in the HVAC applications because of

the electromagnetic noise peculiar to HVAC applications.

83

5- Consideration must be given to moisture, vibration, temperature extremes,

condensation, vandalism, and other aggressive environments but to a less degree

than in the case of Chemical Process application.

Based on these requirements, the following amendments are introduced into the

components weights:

1- Since a high level of accuracy is needed in the HVAC application and since Static

sub-criteria like: Temperature Curve, Self Heating, Long Term Stability and

Accuracy, Extension Wires, Long Wire Runs from Sensor and Temperature

Measurement all add to sensors accuracy then the scheme is to increase the Static

criterion weight in the Automotives application by 20 % and to increase the relative

weights of these six sub-criteria inside the 11X11 static sub-criteria matrix by a

factor of 1 relative importance on Saaty’s scale.

2- The relative weights of the Fragility and Durability, Noise Immunity, and Corrosion

resistance sub-criteria will be increased inside the Environmental 5X5 sub-criteria

judgment matrix by a factor of 2 relative importance on Saaty’s scale to account for

requirements of reliability, electromagnetic interference, and aggressive

environments, respectively, but without increasing the overall Environmental

criterion weight.

3- The Others criterion weight will be increased by a percentage of 40 % over its value

in the Automotives application. In addition to this, the cost sub-criterion relative

weights inside the 4X4 Others sub-criteria matrix with respect to the remaining

three sub-criteria will be increased by a factor of 2 relative importance on Saaty’s

scale.

The criteria judgment matrix after these amendments for the HVAC application is:

84

 1.0 9.0 6.0 4.0

A criteria = [aij] = 0.1111 1.0 0.5 0.3333

 0.1667 2.0 1.0 0.5

 0.25 3.0 2.0 1.0

Table 4-21 shows criteria weights as they appear in the software after the amendments have

been introduced for the HVAC application; it also shows their respective values in the

Automotives application for purposes of comparison in addition to % increase or decrease

in these sub-criteria values.

Table 4-21: Criteria weights for the HVAC application.

Criteria Matrix (HVAC):

 1 9 6 4

 0.1111 1 0.5 0.3333

 0.1667 2 1 0.5

 0.25 3 2 1

 Static Dynamic Environmental Others

Automotives Criteria Weight Vector = 0.53637 0.12159 0.22045 0.12159

HVAC Criteria Weight Vector = 0.64295 0.06228 0.10835 0.18639

% increase or decrease = + 20 - 49 - 51 + 53

Consistency Index = 0.00692

Consistency Ratio = 0.00769

The rest of the relative weights amendments other than amendments for the criteria matrix

are introduced into the software. Table 4-22 shows the new weights for the Temperature

Curve, the Self Heating Issues, the Long Term Stability and Accuracy, the Extension

Wires, the Long Wire Runs from Sensor, the Temperature Measurement, the Fragility-

Durability Characteristics, the Noise Immunity, the Corrosion Resistance, and the Cost

sub-criteria new weights in the HVAC application versus their corresponding old values in

the Automotives application in addition to percentage increase in these sub-criteria values.

85

Table 4-22: New sub-criteria weights for the HVAC application versus old values for
the Automotives application.

 Sub-Criterion Old value New value % Increase

Temperature Curve 0.05379 0.06348 18

Self-Heating Issues 0.09777 0.11344 16

Long Term Stability and Accuracy 0.15040 0.18940 26

Extension Wires 0.03704 0.04448 20

Long Wire Runs from Sensor 0.01983 0.02295 16

Temperature Measurement 0.03355 0.03764 12

Fragility-Durability Characteristics 0.28264 0.30877 9

Noise Immunity 0.08646 0.10695 24

Corrosion Resistance 0.43158 0.45559 6

Cost 0.53589 0.63425 18

Figure 4.7 shows a 3D-column chart depicting the values of these sub-criteria for the

HVAC and Automotives applications.

Figure 4.7: Values of sub-criteria in both Automotives and HVAC applications.

Having introduced all these amendments into the software project in the HVAC file, the

results for the best alternative sensor among a set of nominated alternative sensors can be

obtained. Table 4-23 shows the new scores for the three alternative sensors: the

Automotives

HVAC

86

thermocouple, the thermister, and the RTD case study in the HVAC application. It also

shows the old scores for the same sensors in the Automotives application for purposes of

comparison.

Table 4-23: Scores for the three sensor case study in the HVAC application.

Sensor Automotives HVAC Rank (HVAC)

Thermocouple 0.37849 0.35968 1

Thermister 0.27560 0.28670 3

RTD 0.34589 0.35362 2

Figure 4.8 shows a 3D-column chart depicting values of the Static, Dynamic,

Enironmental, and Others criteria weights in the Automtives, Chemical Process, and

HVAC applications for purposes of comparison.

Figure 4.8: Values of criteria weights in the Automotives, the Chemical Process and
the HVAC applications.

Figure 4.9 shows a 3D-column chart depicting final scores of the three sensors: the

thermocouple, the thermister, and the RTD case study in the Automtives, Chemical

Process, and HVAC applications.

Automotives

Chemical Process

HVAC

87

Figure 4.9: Values of sensors’ final scores in the Automotives, the Chemical Process
and the HVAC applications.

4.3.6 Components Weights Calculation

In this step, relative comparison weights of each checked alternative sensor against other

checked sensors are retrieved by the system from the input values, and weights of all

components in the hierarchal structure are consequently determined and calculated by the

software. Most of these sub-criteria and therefore parent criteria in addition to the

alternatives and the goal are separate and distinct entities and are therefore considered

independent components such that AHP method can be used. Interdependencies are

minimum between most criteria and can be assumed independent with minimum effects on

the final judgment.

After the system retrieves the weights of the alternatives in the lower level, it aggregates

them to obtain weights of upper immediate parent components in the immediate upper

levels. Specifically speaking, this step consists of the following three sub-steps:

Automotives

Chemical Process

HVAC

88

1- Starting from the twenty-three 7X7 matrices of relative weights of the alternatives,

the software calculates the score of each alternative against each sub-criterion as

was interpreted in the previous section.

2- Using the 11X11, 3X3, 5X5, 4X4 matrices of relative weights of the Static,

Dynamic, Environmental, and Others sub-criteria against their respective parent

criteria, and using the 4X4 matrix of relative weights of the four criteria against

the final goal, the software calculates the scores of the different components in the

hierarchy in the sub-criteria and criteria level.

3- Finally, the software, lumps scores of alternatives against sub-criteria from the

first step and scores of different components from the second step and integrates

them all to obtain the final contribution (score) of each alternative sensor against

the goal. This score is the final outcome of the AHP method and is the measure of

preference of the alternatives towards our final goal such that the alternative

sensor with the largest score is considered the best (most preferred) and the one

with the smallest score the worst (the least preferred) and values in between are

arranged in preference according to descending order of score value.

4.3.7 Performing the Consistency Test

The software then computes the consistency index and the consistency ratio based on

equations (3.8), (3.9), and (3.10).

4.3.8 Displaying the Final Results

After the user does the necessary selections of the intended application, the restrictions

and the sensors and presses the Select button, the software then displays the final results

on the software console. These results include:

89

1- The final scores of the selected sensors against the goal, these scores are shown

vertically from top to bottom in the same order the selected sensors appear in on

the second tab.

2- The list of all matrices representing the relative weights of the alternative sensors

with respect to sub-criteria, the relative weights of the sub-criteria with respect to

criteria, and the relative weights of criteria with respect to the goal

3- Values of consistency index and consistency ratio for the whole set of matrices.

The next chapter deals with applying the proposed software to the case study of choosing

the best alternative sensor from among the three sensors: the thermocouple, the thermister,

and the RTD in the automotive catalytic converter application.

After being introduced to the software, the user may want to look at the base code the

program was built-in. This code is shown for the three applications in Appendix VI.

90

Chapter Five Case Study

5.1 Case Study Description

The case study which will be applied here to the software is the selection between three

alternative sensors: the thermocouple, the thermister, and the RTD in the Automotives

catalytic converter application.

5.2 Automotive Catalytic Converter Description

A catalytic converter is a device which chemically converts harmful exhaust gases,

produced by the internal combustion engine as by-products of the fuel combustion process,

into harmless carbon dioxide, water vapor, and nitrogen gas. Essentially, the catalytic

converter is used to complete the oxidation process for hydrocarbons and carbon

monoxide, in addition to reducing oxides of nitrogen (NOx) back to simple nitrogen and

carbon dioxide.

The converter is constructed such that the converter shell contains a substrate material.

There are two types of converter substrates: Pelletized, which consists of many small-sized

ceramic pellets and Monolithic, which is a ceramic "honeycomb" material. The surface of

the substrate material is coated with a thin film of precious metals (rhodium, platinum /

palladium, and cerium) which acts as a chemical catalyst. Its function is to assist in the

chemical reactions that are required to lower the emission levels to be within acceptable

environmental regulations. As engine exhaust gases flow through the converter, they

contact the coated surface which initiates the catalytic process. As exhaust and catalyst

temperatures rise, the following reactions occur:

91

 Oxides of nitrogen (NOx) are reduced into simple nitrogen (N2) and carbon dioxide

(CO2).

 Hydrocarbons (HC) and carbon monoxide (CO) are oxidized to produce water and

carbon dioxide.

Figure 5.1 depicts a commercial converter and the various parts and chemical reactions that

occur within the converter.

Catalyst operating efficiency is greatly affected by two factors; operating temperature and

feed gas composition. The catalyst begins to operate at around 288
0
C; however, efficient

purification does not take place until the catalyst reaches at least 400
0
C. Also, the

converter feed gases (exhaust gases coming out of engine) must alternate rapidly between

high CO content, to reduce NOx emissions, and high O2 content, to oxidize HC and CO

emissions. To ensure that the catalytic converter has the feed gas composition it needs, a

closed loop control system is designed to rapidly alternate the air/fuel ratio slightly rich

(air-to-fuel mass ratio lower than 14.7: 1), then slightly lean (air-to-fuel mass ratio higher

than 14.7: 1) of stoichiometry. By doing this, the carbon monoxide and oxygen content of

the exhaust gas also alternates with the air/fuel ratio. Temperature sensors are used in the

catalytic converter to measure the temperature of the inlet and outlet gas for two purposes:

to indicate the maximum temperature the converter can tolerate before the substrate

material melts, and for loop control purposes of the air/fuel ratio.

92

Figure 5.1: A commercial catalytic converter with the parts and chemical reactions
that occur within the converter.

5.3 Application Operating Conditions

The Automotive catalytic converter application operates in the temperature range 500-750

0
C (773-1023 K). The maximum temperature could reach in cases of malfunctioning and

melting of the substrate material up to 870
0
C (1143 K). The resolution of industrial

sensors employed practically for the application is 1 % of the temperature range, i.e. (5-

7.5)
0
C. The response time is 5-10 seconds. Normally employed sensors for the

automotive application in industry are wide variety with wide range of customized

features including: the thermocouple, the thermister, the RTD, the infrared pyrometer, the

thermocouple pyrometer, the LCD pyrometer, the infrared laser sighting pyrometer …etc.

93

5.4 Applying the Software to the Case Study

After the application operating conditions have been determined, the user can now enter

them into the software and get the result of the best sensor. More specifically, on the first

tab the user chooses the application “Automotives”, he or she chooses the nearest

temperature range in the software to the application temperature range. The nearest

temperature range on the first tab is 700-1150 K. The user then chooses the software

nearest resolution to the application resolution, this is 1.0
0
C as per provided by the

software. Next, he or she specifies the response time, in this case it is chosen 5 seconds.

Figure 5.2 depicts these choices. After the user completes his choices on the first tab he

moves to the second tab where he checks in the intended sensors: the thermocouple, the

thermister, and the RTD. Figure 5.3 shows these checked sensors. The user then them

presses the Select button.

Figure 5.2: Choices on the first tab for the case study.

94

Figure 5.3: Checked in sensors on the second tab.

5.5 Software Results

Appendix VII shows the complete list of the software results for the three sensors: the

thermocouple, the thermister, and the RTD automotive catalytic converter case study.

Table 5-1summarizes the three alternatives weights (scores) with respect to the 23 sub-

criteria, the 4 criteria weights with respect to the goal, the synthesis weight (value) of the

23 sub-criteria towards the final goal, and the score of each alternative against each

criterion.

95

Table 5-1: Weights of alternatives, sub-criteria, criteria and synthesis values for sub-
criteria and the alternatives.

 Criteria Weights of Sub-criteria Weights of Synthesis Thermocouple Thermister RTD
 Criteria sub-criteria value

 C1 0.53637 CS1 0.22119 0.11863 0.42858 0.14283 0.42858
 CS2 0.22119 0.11863 0.5 0.25 0.25
 CS3 0.05379 0.02885 0.25099 0.09602 0.65299
 CS4 0.09836 0.05275 0.06225 0.70131 0.23644
 CS5 0.09777 0.05244 0.65715 0.06825 0.27460
 CS6 0.15040 0.08067 0.086955 0.27371 0.63933
 CS7 0.05233 0.02806 0.09602 0.65299 0.25099
 CS8 0.03038 0.01629 0.07693 0.46154 0.46154
 CS9 0.01983 0.01063 0.19999 0.60000 0.19999
 CS10 0.01452 0.00778 0.62322 0.13729 0.23948
 CS11 0.03355 0.01799 0.09642 0.28422 0.61936

 Score of each alternative against first criterion 0.17481 0.15043 0.20743

 C2 0.12159 CS12 0.16019 0.01947 0.62322 0.13728 0.23948
 CS13 0.10093 0.01227 0.46153 0.07693 0.46153
 CS14 0.73887 0.08983 0.62322 0.23948 0.13728

 Score of each alternative against second criterion 0.07378 0.02513 0.02268

 C3 0.22045 CS15 0.15164 0.03342 0.53896 0.29726 0.16378
 CS16 0.08645 0.01905 0.09339 0.68529 0.22132

 CS17 0.28264 0.06230 0.65299 0.09602 0.25099
 CS18 0.04767 0.01050 0.68064 0.20141 0.11794
 CS19 0.43157 0.09513 0.08696 0.27371 0.63933

 Score of each alternative against third criterion 0.07557 0.05767 0.08720

 C4 0.12159 CS20 0.15750 0.01915 0.53896 0.29726 0.16378
 CS21 0.07747 0.00941 0.09602 0.25099 0.65299
 CS22 0.22913 0.02786 0.44444 0.11111 0.44444
 CS23 0.53589 0.06519 0.46153 0.46153 0.07693

 Score of each alternative against second criterion 0.05369 0.04123 0.02667

Table 5-2 lists values of consistency index (CI) and consistency ratio (CR) for the matrices

of the different components in the hierarchal structure.

96

Table 5-2: Criteria and sub-criteria factors used as basis for comparison between
alternative sensors.

Criteria Sub-Criteria CI CR

Static Criterion Maximum Operating Temperature 0 0
 CI = 0.08281 Minimum Operating Temperature 0 0
 CR= 0.05208 Temperature Curve 0.00918 0.01583
 Sensitivity 0.03622 0.06225
 Self-Heating Issues 0.02218 0.03824
 Long Term Stability and Accuracy 0.02705 0.04663
 Typical Temperature Coefficient 0.00918 0.01583
 Extension Wires 0 0
 Long Wire runs from Sensor 0 0
 Measurement Parameter 0.00915 0.01578
 Temperature Measurement 0.04333 0.07471

Dynamic Characteristics Stimulation Electronics required 0.00915 0.01578

 CI = 0.02722 Existence of Maximum Sensitivity Region 0 0
 CR = 0.04694 Typical Fast Thermal Time Constant 0.00915 0.01578

Environmental Parameters Typical Small Size 0.00459 0.00791
 CI = 0.06346 Noise Immunity 0.02710 0.04672
 CR = 0.05666 Fragility-Durability Characteristics 0.00918 0.01583
 High Thermal Gradient Environment 0.01235 0.02129
 Corrosion Resistance 0.02705 0.04663

Others Point or Area Measurement 0.00459 0.00791
 CI = 0.03752 Manufacturing Variances 0.00918 0.01583
 CR = 0.04169 Standards exist 0 0
 Cost 0 0

The four-criteria matrix CI = 0.00687 CR = 0.00763

Table 5-3 shows the final scores for the three temperature sensors, the one with the largest

score is the best, the thermocouple, with a score of 0.37849 and rank 1, the second ranked

sensor is the RTD with a score of 0.34589, and the least preferred sensor is the thermister

with a score of 0.27560. Note that the scores are arranged from top to bottom in the same

order the checked alternative sensors appear in.

Table 5-3: The software final results: the three sensors scores.

 Sensor Score Rank

 Thermocouple 0.37849 1

 Thermister 0.27560 3

 RTD 0.34589 2

97

5.6 Sensitivity Analysis

This section tackles the Sensitivity Analysis applied to the case study using the software.

Sensitivity Analysis for any system of input and output dependent variables refers to

intended variations or perturbations in the input variables of the system for the purpose of

monitoring changes in the output dependent variables. In any system, Sensitivity Analysis

gives deeper understanding of the relationships that govern the system and allows for

developing and optimizing the system and avoiding critical conditions which make the

system unpredictable. In this thesis four variations were made and the results studied:

variations in the alternative relative weights with respect to the other alternatives in the 23

matrices, variations in the relative weight of the criteria and sub-criteria, variation in the

application, and variations in the number of alternatives that fit a certain application. All

these variations will be applied using the software, and to simplify the situation they will

be applied based on the case study described in the previous sections.

5.6.1 Case 1: Alternative Weights Variation

According to Table 5.3, the thermocouple alternative is the best alternative, having a score

of 0.37849 while the second preferred sensor is the RTD having a score of 0.34589 and the

worst choice is the thermister with a score of 0.27560. In this section the relative weight of

the RTD will be increased by 1 relative weight unit on Saaty’s scale. This means adding 1

to each entry in all the 23 matrices where the RTD appears, i.e. the addition would occur to

the third row of each of the 23 alternative matrices. Then the new scores of the alternatives

are monitored and discussed. This operation has been performed in the software, and the

new scores of the alternative sensors were as in Table 5-4.

98

Table 5-4: Case 1 Sensitivity Analysis Results.

 Sensor Old Score New score New Rank

 Thermocouple 0.37849 0.35457 2

 Thermister 0.27560 0.24957 3

 RTD 0.34589 0.39585 1

Figure 5.4 shows a 3D-column chart manifesting the old and new scores of the sensors.

Figure 5.4: Case 1 Sensitivity Analysis results.

5.6.2 Case 2: Sub-criterion Relative Weights Variation

In this case of Sensitivity Analysis the variation will be made to the Long Term Stability

and Accuracy sub-criterion inside the Static criterion and the scores monitored. The

relative weights of this sub-criterion among the 11 Static sub-criteria will be increased by a

factor of 1 on Saaty’s scale while the Static criterion overall score would remain

unchanged to ensure that the change in the results is due to this sub-criterion effect and not

from others. The procedure is merely to increase the whole values of the sixth row of the

11X11 Static sub-criteria matrix by one and the corresponding necessary changes in the

reciprocals. This was done in the software, although not shown here, and the new scores of

the three alternatives were as in Table 5-5.

old score

new score

99

Table 5-5: Case 2 Sensitivity Analysis Results.

 Sensor Old Score New score New Rank

 Thermocouple 0.37849 0.37016 1

 Thermister 0.27560 0.27616 3

 RTD 0.34589 0.35368 2

Figure 5.5 shows the 3D-column chart depicting these results.

Figure 5.5: Case 2 Sensitivity Analysis results.

5.6.3 Case 3: Dynamic Criterion Relative Weights Variation

In this case of Sensitivity Analysis the relative weight of the Dynamic criterion is increased

by a factor of 1 relative importance on Saaty’s scale while the remaining criteria weights

were kept unchanged. The results for this case were as in Table 5-6.

Table 5-6: Case 3 Sensitivity Analysis Results.

 Sensor Old Score New score New Rank

 Thermocouple 0.37849 0.39531 1

 Thermister 0.27560 0.27022 3

 RTD 0.34589 0.33446 2

old score

new score

100

Figure 5.6 shows the new scores.

Figure 5.6: Case 3 Sensitivity Analysis results.

5.6.4 Case 4: Changing the Application

The three sensors: the thermocouple, the thermister, and the RTD case study is applied to

the three different applications: Automotives, Chemical Process, and the HVAC

applications, and the variations in the alternatives scores monitored. Table 5-7 shows the

score of the three sensors against each application.

Table 5-7: Scores of the three sensors in the three applications.

Sensor Automotives Chemical Process HVAC

Thermocouple 0.37849 0.38179 0.35968

Thermister 0.27560 026806 0.28670

RTD 0.34589 0.35013 0.35362

5.6.5 Case 5: Increasing Number of Sensors

In this case, the results are monitored upon introducing a new viable alternative sensor. In

other words, scores for the three sensors case study are compared to those obtained when

the pyrometer for example, is introduced among the alternative sensors and results

old score

new score

101

discussed. The scores for the four sensors: the thermocouple, the thermister, the RTD, and

the pyrometer case are as in Table 5-8.

Table 5-8: Case 5 Sensitivity Analysis Results.

Sensor Old Score New score % decrease (score) New Rank

Thermocouple 0.37849 0.26910 29 1

Thermister 0.27560 0.20988 24 4

RTD 0.34589 0.26403 24 2

Pyrometer - 0.25697 - 3

Figure 5.7 shows the results for this case.

Figure 5.7: Case 5 Sensitivity Analysis results.

The next Chapter deals with the discussion part of the results presented in chapter 4, results

presented in the case study, and results presented in the Sensitivity Analysis section.

old score

new score

102

Chapter Six Discussion of Results

6.1 Chapter Four Discussion

6.1.1 Alternatives Weights Discussion

It can be seen from Table 4.2 that the best scoring sensors against the Maximum Operating

Temperature sub-criterion in the automotive catalytic converter application are the

thermocouple and the RTD while the worst scoring is the thermister. This is because the

first two sensors have the closest maximum operating temperature to the catalytic

converter operating temperature while the thermister has the farthest operating temperature

from that of the catalytic converter.

It can be seen from Table 4.3 that the best scoring sensor against the Temperature Curve

sub-criterion in the automotive catalytic converter application is the RTD with a weight of

0.65299 while the worst scoring is the thermister with a weight of 0.09602, and that the

thermocouple comes in between with a weight of 0.25099. This is because the RTD has the

most linear Temperature-resistance relationship while the thermister has the most non-

linear relationship and the thermocouple has good linearity relationship. The value of the

consistency ratio is 0.01583 lying within acceptable limits indicating coherence and

consistency in decision maker’s judgments of the alternatives relative weights.

It can be seen from Table 4.4 that the best scoring sensor against the Sensitivity sub-

criterion in the automotive catalytic converter application is the thermister with a weight of

0.70131 while the worst scoring is the thermocouple with a weight of 0.06225, and that the

RTD comes in between with a weight of 0.23644. This is easily understood if we see

sensitivity values for the three sensors and remember that the most sensitive of all three

103

sensors is the thermister and the least of the three is the thermocouple, and with RTD

sensitivity value in between.

It can be seen from Table 4.5 that the best scoring sensor against the Self Heating sub-

criterion in the automotive catalytic converter application is the thermocouple with a

weight of 0.65715 while the worst scoring is the thermister with a weight of 0.06825, and

that the RTD comes in between with a weight of 0.27459. This makes sense because the

thermocouple experiences the least amount of self-heating while the thermister experiences

much self-heating. The RTD, on the other hand, experiences moderate levels of self

heating issues. The consistency ratio for the Self Heating sub-criterion matrix is 0.03824

which falls within acceptable limits and indicates consistent decision maker judgments.

It can be seen from Table 4.6 that the best scoring sensor against the Small Size sub-

criterion in the automotive catalytic converter application is the thermocouple with a

weight of 0.53896 while the worst scoring is the RTD with a weight of 0.16377, and that

the thermister comes in between with a weight of 0.29725. This is understandable because

the thermocouple is the smallest-sized sensor while the RTD is largest. The thermister’s

size, on the other hand, lies in between.

It can be seen from Table 4.7 that the best scoring sensor against the Time Constant sub-

criterion in the automotive catalytic converter application is the thermocouple with a

weight of 0.62323 while the worst scoring is the RTD with a weight of 0.13729, and that

the Thermister comes in between with a weight of 0.23948. This makes sense because the

thermocouple is the fastest sensor among all three sensors while the RTD is the slowest

sensor. The thermister, on the other hand, has moderate value of response time.

It can be seen from Table 4.8 that the best scoring sensor against the Long Term Stability

and Accuracy sub-criterion in the automotive catalytic converter application is the RTD

with a weight of 0.63933 while the worst scoring is the thermocouple with a weight of

104

0.08695, and that the thermister comes in between with a weight of 0.27371. This can be

figured out since the thermocouple is the least accurate of the three sensors while the RTD

is the most accurate. The thermister, on the other hand, retains moderate levels of

accuracy.

The results presented in Table 4.9 in terms of sensors weights are the same value as those

presented in Table 4.8 and suggest the preference of the RTD amongst the three sensors

with respect to corrosion resistance capability.

The results presented in Table 4.10 concerning the sensors Cost sub-criterion are rational

in the sense that both the thermocouple and the thermister are relatively low cost

alternatives and thus their weights are 0.46153 while the RTD is a very expensive

alternative owing to a weight of only 0.07693.

6.1.2 Sub-criteria Weights Discussion

According to Table 4.12, the top most five important sub-criteria that make up the Static

criterion in a descending order of importance, except for the first two, are: the Maximum

Operating Temperature, the Minimum Operating Temperature, the Long Term Stability

and Accuracy, the Sensitivity, and the Self-Heating Issues sub-criteria having weights of:

0.22120, 0.22120, 0.15040, 0.09837, and 0.09777 respectively with a total sum importance

for the five sub-criteria with respect to the whole Static criterion of 0.78894. In fact, these

are the basic important sub-criteria that make up Static behavior a sensor. As is explicit in

the table, the consistency ratio is 0.05209 which is within acceptable limits and which

indicates coherent decision maker’s judgments on the Static sub-criteria relative weights.

According to Table 4.13, the most important sub-criterion that almost determines the

sensor’s dynamic behavior and accounts for 74 % of the total Dynamic criterion weight is

the Typical Fast Thermal Time Constant having a weight of 0.73888 with respect to the

Dynamic criterion.

105

According to Table 4.14, the top most two important sub-criteria that make up the

Environmental criterion are: the Corrosion Resistance and the Fragility-Durability

Characteristics sub-criteria having weights of: 0.43158 and 0.28264 respectively. These

two sub-criteria comprise together about 71 % of the total Environmental criterion weight.

In fact, these are the basic important sub-criteria that stand for sensor’s resistance to

environment. As can be noticed in the table, the consistency ratio is 0.05667 which is

within acceptable limits indicating consistent decision maker’s judgments on the

Environmental sub-criteria relative weights.

According to Table 4.15, the top most two important sub-criteria that make up the Others

criterion are: the Cost and the Existence of NIST Standards sub-criteria having weights of:

0.53589 and 0.22913 respectively. These two sub-criteria comprise together about 77 % of

the total Others criterion weight. As can be seen in the table, the consistency ratio is

0.04169 which is within acceptable limits indicating consistent decision maker’s

judgments on the Others sub-criteria relative weights.

6.1.3 Criteria Weights Discussion

As Table 4.16 shows, the most important criterion in the selection of any temperature

sensor in the Automotives application is the Static criterion with an overall score towards

the goal of 0.53637. Static criterion pertains to those static qualities that are inherent in the

sensor architecture and that relate to the basic technical characteristics that make a sensor.

In the light of this, the score makes sense. On the other hand, the score of the

Environmental criterion is 0.22045, suggesting a second-importance place of the criterion

after the Static criterion. This also makes sense and matches well with view of experts in

the field of sensors who state that the choice of any temperature sensor is dictated by the

technical qualities that the sensor has to meet on the first scale, and on the environmental

considerations, or alternatively, the medium characteristics that the sensor will be placed in

106

on the second scale. The relative weight (importance) of the Static criterion with respect to

the Environmental criterion can be obtained from the criteria judgment matrix or from

simply dividing the two scores. This is a factor of almost 2.43 which can be considered fair

value, it is not too high, ignoring the importance of the Environmental criterion nor is it too

small ignoring the more important Static criterion. Finally, the Dynamic and Others criteria

came last important informing that response time and other dynamic response behavior-

related characteristics are just third place in determining best temperature sensor with a

weight of almost 0.12159 for each against the Static criterion.

6.1.4 Alternatives Final Scores Discussion

The thermocouple alternative is the best choice (rank 1) for the automotive catalytic

converter application in the three sensors case study with an overall score of 0.37849 as

Table 4.17 suggests. The second preferred alternative according to the same table is the

RTD with an overall score of 0.34589 while the thermister comes last preference with an

overall score of 0.27560. These results can be matched generally with views of experts in

the field who state that almost the best sensor alternative for any application is just the

thermocouple. Thermocouple is the simplest to install, the least expensive, the smallest

size, the most durable and reliable, the fastest, the least interface electronic circuits-

demanding senor of all or even it does not electronic devices at all. It retains reasonable

accuracy and even good in many low accuracy-demanding applications, as is the case in

the automotive catalytic converter, in addition to it experiences no self heating. It is a point

measurement sensor with well-established traceable NIST standards. All in all, it is the

best. The second best choice, the RTD, retains many of the good qualities that the

thermocouple has, but it suffers from serious drawbacks such as: fragility, high cost,

relatively slow response time, very low to low self heating issues, large size, and because it

is an area measurement sensor it suffers from effects of high thermal environment

107

temperature gradients. Needless to say, that the thermister comes last because of the many

drawbacks it shares with the RTD besides the high level of self heating issues it

experiences, its non-standardized technical data owing to a larger amount of uncertainty in

its measurements, and the manufacturing variances that accompany their use.

It should, however, be stated here that the thermocouple and the RTD final scores are close

to each other (0.37849 is close to 0.34589) which poses a challenge in discriminating

between the relative preferences of the thermocouple to the RTD and a challenge to the

extent to which the thermocouple remains preferable to the RTD, i.e. if, for certain

temperature measurement application, input values to the software in terms of components

weights were revised then to what extent the thermocouple remains first preference and the

RTD the second. This challenge can be resolved by means of Sensitivity analysis which

reveals our system robustness and solidity, this work was done in the sensitivity section in

the previous chapter. In general, other decision making problems that employ AHP and

that contain alternatives scores well far apart from each other are more explicit and obvious

in denoting the preference of the alternatives. For example, the preference of the first

alternative in a certain decision problem having three alternative scores: 0.50, 0.30, and

0.20 is clearer and more obvious having a value 0.5 well far apart from the second

alternative score 0.3. Large amount of input variations will need to be passed before the

preference order between say the first and the second alternatives changes.

6.1.5 Chemical Process Weights Discussion

According to Table 4.18, the weights of the criteria components for the Chemical Process

application are: 0.36363, 0.18181, 0.36363, and 0.09090 for the Static, Dynamic,

Environmental, and Others criteria, respectively. We can glimpse the exceptional

importance of the Environmental and Dynamic criteria in the Chemical Process application

by noticing the drastic increase in their weights relative to their weights in the Automotives

108

application. The weight of the Environmental criterion has increased from 0.22045 to

0.36363 with a percentage increase of 65 % while the Dynamic criterion weight has

increased from 0.12159 to 0.18181 with a percentage increase of 49 %. Also notice the

dramatic increase in their relative weights with respect to the other two remaining criteria.

For example, in the Automotives application, the relative weight of the Environmental

criterion with respect to the Static criterion is 0.412 (the reciprocal of 2.43) indicating that

the Static criterion is more important than the Environmental criterion. Now, the relative

weight has changed to 1.0 indicating that the Environmental criterion became equal

importance in the Chemical Process application with the Static criterion. Moreover, the

relative weight of the Static criterion with respect to the Dynamic criterion was 4.41

(0.53637/0.12159) in the Automotives application. This relative weight has now changed

to 2.0 in the Chemical Process application.

Under these new weights for the Chemical Process application, the three sensors: the

thermocouple, the thermister, and the RTD would score differently against the overall goal.

The new scores for the three sensors case study presented in Table 4.20 reveal an increase

in the final thermocouple and RTD score and a decrease in the final score of the thermsiter.

This is because the thermocouple fits slightly better with respect to the other two sensors in

terms of response time, small size, and high thermal gradient environment resistance.

However, since these characteristics are relatively minor in determining sensor’s overall

performance, i.e. the rest of the 23 sub-criteria are far more important than them then the

increase in the thermocouple final score came small (the score changed only from 0.37849

to 0.38179). The increase in the RTD final score came also because of increased

suitability of the RTD in meeting the special requirements pertaining to the Chemical

Process application. This increased suitability is mainly attributed to sub-criteria like:

RTD’s excellent stability and accuracy and its corrosion resistance. The thermister

109

experienced a decrease in its final score because of its many drawbacks that force it to

retreat against these new requirements of the Chemical Process application. To nominate

some: thermister’s relatively slow response time, medium stability and accuracy, decreased

thermal gradient resistance, and non-existence of traceable standards.

6.1.6 HVAC Weights Discussion

According to Table 4.21, the weights of the criteria components for the Chemical Process

application are: 0.64295, 0.06228, 0.10835, and 0.18639 for the Static, Dynamic,

Environmental, and Others criteria, respectively. We can notice the increase in the

importance (weights) of the Static and the Others criteria in the HVAC application relative

to their corresponding weights in the Automotives application. For example, the Static

criterion weight has increased from 0.53637 to 0.64295 with an increase of about 20 %,

and the increase in the Others (mainly cost) criterion is 53 %. This increase came at the

expense of the Environmental criterion which has decreased from 0.22045 to 0.10835 with

a percentage decrease of 51 % and at the expense of the Dynamic criterion weight has

decreased from 0.12159 to 0.06228 with a percentage decrease of 49 %. The Static

criterion remained the most important but farther more important than the rest criteria-

except for the Others criteria. For example, it became more important than the Dynamic

criterion with relative importance (weight) 0.64295/0.06228 which is a value around 10.3,

a drastic change from its corresponding value in the Automotives 4.41 (0.53637/0.12159).

It also became more important than the Environmental criterion by a factor of around 6.0.

However, its importance against the Others criterion has decreased from 4.41

(0.53637/0.12159) in the Automotives application to 3.45 (0.64295/0.18639) in the

Chemical Process application.

The new scores for the three sensors case study in the HVAC application presented in

Table 4.23 reveal an increase in the final Thermister and RTD score and a decrease in the

110

final score of the thermocouple. This is because the thermocouple scores badly on issues

concerning Stability and Accuracy besides its bad corrosion resistant behavior. The RTD

score has increased, on the other hand, because of its excellent stability and accuracy

characteristics besides its good corrosion resistance performance. The thermister score has

also increased because of its relatively low cost, excellent noise immunity and good

corrosion resistance characteristics. Although the overall thermocouple score has

decreased, it remained the most preferred alternative with a final score 0.35968, however,

the RTD final score became very close to that of the thermocouple with a value 0.35362.

6.2 Sensitivity Analysis Discussion

6.2.1 Case 1 Discussion

It can be clearly seen from Table 5.4 that increasing the relative weights of the RTD

alternative in the 23 sub-criteria matrices by a factor of 1 relative importance on Saaty’s

scale resulted in dominance of the RTD alternative over the thermocouple alternative, i.e.

the thermocouple was the most preferred sensor choice before the increase while the RTD

became the most preferred after the increase was employed to the system. This reveals and

confirms the challenging decision situation when the scores of alternatives obtained by

AHP fall close to each other and slightly apart, in which case the decision maker cannot

decide sharply of the preference of one alternative to the other, rather, the close-scored

alternatives are almost the same preference.

6.2.2 Case 2 Discussion

It can clearly be seen from Table 5.5 that although increasing the relative weights of the

Long Term Stability and Accuracy sub-criterion by a factor of 1 on Saaty’s scale has

decreased the final score of the thermocouple alternative and has increased the final score

111

of the RTD alternative it did not change the preferences (ranks) of the three alternatives

and that the thermocouple remained the most preferred (rank 1).

6.2.3 Case 3 Discussion

It can be clearly seen from Table 5.6 that increasing the Dynamic criterion relative weight

by a factor of 1 relative importance on Saaty’s scale has increased the thermocouple final

score and decreased the thermister and the RTD final scores, this is because the

thermocouple scores the best on the response time sub-criterion. This change also made the

preference of the thermocouple to the RTD more distinct and sharp. Now the thermocouple

final score increased from 0.37849 to 0.39531 and the RTD score decreased from 0.34589

to 0.33446. The distance between the two alternatives before the change was 0.04403

(0.37849-0.33446) has enlarged to 0.06085 (0.39531-0.33446) indicating sharper decision

of the thermocouple preference to the RTD.

6.2.4 Case 4 Discussion

Results of Table 5.7 confirm the view of experts that not only does an alternative

temperature sensor selection depend on its inherent characteristics but also it depends on

the specific application and the peculiar environment (medium) the sensor is to be put in.

The table also evidently reveals the increased suitability of the RTD and the decreased

suitability of the thermocouple to the HVAC application temperature sensing. This is due

to the fact that the RTD is the best choice with regard to stability and accuracy

characteristics, while many factors gather to worsen the thermocouple choice in this

regard. The final score of the RTD in the HVAC application is 0.35362 became very close

and strong rival a value to the value of the final score of the thermocouple 0.35968,

suggesting both the thermocouple and the RTD are almost the most preferred sensors in the

HVAC application.

112

6.2.5 Case 5 Discussion

As table 5.8 shows the introduction of a new candidate sensor can totally change the scene.

When the pyrometer is introduced into the set of alternative sensors available for the

selection process, it came third place preferred with a strong score 0.25697 (this value is

comparable to those of the thermocouple’s and the RTD’s, 0.26910 and 0.26403

respectively), and the thermister choice retreated to a fourth place preference. All the

sensors’ scores: the hermocouple’s, the thermister’s, and the RTD’s have decreased, but

the decrease experienced by the thermocouple was the largest, about 29 %, this indicates

that the introduction of the pyrometer was at the expense of the thermocouple to a larger

degree than it was to the thermister and the RTD (decrease in their final score both was

only 24 %).

6.3 Conclusions

This study presents one new addition to the multitude of the Analytic Hierarchy Process

(AHP) applications and fields of use. The advantage of AHP method implementation in

selecting the optimum temperature sensor in a certain application is that the multi-criteria

decision making process is based on objective break down of the whole decision problem

into a hierarchy of multiple layers (levels) that can be further broken down into low-

leveled sub-layers each of which is being well defined and given an objective weight that

can be integrated through the whole hierarchy to obtain an objective evaluation of the

alternative candidate sensors under study rather than the decision problem is based upon

one level of assessment and is subject to subjective evaluation of the selection by decision

makers and expertise in the field. This study highlighted the evaluative criteria and sub-

criteria that relate to the selection of temperature sensors. Those criteria with high weights

through the hierarchy can be regarded as being the most important and critical in

113

evaluation of best candidate temperature sensors and can be lumped together in a bundle

and may be used as first assessment or screening stage for the selection process in other

situations. One more advantage of AHP method in the selection of temperature sensors is

that it has the capability to handle qualitative (verbal) as well as quantitative judgments of

the alternatives and reflect these judgments into measurable quantitative final scores when

ranking the alternatives. The outcome of the study in terms of alternatives final scores not

only gives a rank to the candidate alternative sensors, but also gives a quantitative

measure of the degree of dominance of one alternative over the others. This dominance or

preference, of say the best alternative sensor, the thermocouple in the case study presented

in this thesis, and inferiority of the least preferred alternative sensor, the thermister in this

case, was further tested by means of sensitivity analysis to investigate to what degree the

best alternative sensor remains dominant and the inferior sensor remains inferior. Inputs to

the sensitivity analysis problem were variations in criteria and sub-criteria weights and

variations in the expert’s evaluation of the relative weights for one alternative sensor

against the 23 sub-criteria in addition to variations in the application the nominated

sensors are to be used in and variations in the sensors final scores due to the introduction

of a new candidate sensor. The results showed the robustness of the proposed work and

software to the variations carried out in all cases Sensitivity Analysis except for the case

of revising the expert’s evaluation of the relative weights of one alternative sensor with

regard to other alternative sensors against the 23 sub-criteria. This challenge can be

circumvented if we notice the closeness of the most preferred sensor, the thermocouple,

final score to that of the second preferred alternative sensor, the RTD’s. This closeness in

final scores reveals the unique challenge that is inherent in the decision problem itself, the

best sensor, and not the proposed method nor the proposed computer program. The

selection of the best temperature sensor decision problem is confusing and problematic in

114

itself owing to the very contradicting features that are present in the different alternatives.

You may find the best durability, response time, small size, and cost in the thermocouple

alternative but you will be, on the other hand, frowned when you confront the several

defects of the same alternative, the thermocouple, exemplified in relatively low accuracy,

low corrosion resistance, extension wires problems, …etc. The same applies to the RTD,

you will find some merits you are looking for in the RTD but always you will find

multiple drawbacks that worsen the RTD’s alternative. The merits of the two sensors, the

thermocouple and the RTD seem to balance each other and the same applies to their

disadvantages. Under these circumstances, it becomes evident why scores of these two

sensors are close to each other and why the sensors decision making problem becomes

challenging. Anyway, in industrial environment, one should better treat the selection cases

one by one paying much attention to the application and environment under concern and

the specific technical characteristics of the alternative sensors that may be widely

customized and extremely variant and to match these specific characteristics with the 23

sub-criteria matrices introduced in this thesis and to revise the entries of these 23 matrices

for better matching to the real industrial-field selection case, or other new criteria that can

be added to the assessment process and have significant contribution, especially if area of

application differs, or old sensors that can be eliminated in favor to new generations of

sensors. New versions of fabricated sensors in industry in each of the sensors categories

that have superior features can also be compared. These new sensors with new features

may affect the degree of dominance of the alternative sensors when pair-wise compared.

115

Future Work

The study opens the door wide to apply AHP method in selecting other types of sensors in

many other areas, these devices may include: chemical composition sensors,

meteorological air pollution sensors, blood pressure and blood chemistry measurement

sensors, and many other applications and fields of study. In this sense, future work may

include AHP method implementation in one of these fields.

116

References

1. Nasser Y. El-Awar, David J. Geer, Theodore J. Krellner, Peter J. Straub, Keystone

Thermometrics (September 14, 1999), AUTOMOTIVE TEMPERATURE

SENSING. [online] [accessed May 2010]. Available from URL:

http://www.thermometrics.com/assets/images/autoapp.PDF..

2. David M. Scott. Industrial Process Sensors. Dupont Company, Experimental

Station, Wilmington, Delware, U.S.A. CRC Press, Taylor & Francis Group, LLC,

2008.

3. http://www.ametekcalibration.com/UK/Products/Temperature_calibrators.aspx

Temperature Calibrators-Product Selection Guide

P-CP-2003-US.pdf

4. J. W. Dally, W. F. Riley, and K. G. McConnell. Instrumentation for Engineering

Measurements. John Wiley & Sons, Inc; 1984.

5. W. Gopel, J. Hesse, J.N.Zemel. Sensors A Comprehensive Survey, volume 1,

Fundamentals and General Aspects. VCH Publishers Inc., New York; 1989.

6. D. M. Considine, G. D. Considine. Process Instruments and Controls Handbook, 3
rd

Ed. McGraw-Hill Book Company, Inc.; 1985.

7. R. J. Stephenson, A. M. Moulin, M. E. Welland, J. Burns, M. Sapoff, R. P. Reed, R.

Frank, J. Fraden, J. V. Nicholas, F. Pavese, J. Stasiek, T. Madaj, J. Mikielewics, and

B. Culshaw, 1999. Measurement, Instrumentation, and Sensors Handbook

CRCnetbase, CRC Press LLC.

8. C. Hagart-Alexander, 1985. Jones' Instrument Technology Volume 2, Measurement

of Temperature and Chemical Composition, 4
th

 ed., Butterworth & Co. (Publishers)

Ltd.

http://www.thermometrics.com/assets/images/autoapp.PDF
http://www.ametekcalibration.com/UK/Products/Temperature_calibrators.aspx

117

9. Paul Goodwin and George Wright. Decision Analysis for Management Judgment.

John Wiley & Sons Ltd; 1998.

10. Chang, C. W., Wu, C. R., Lin, C. T., & Chen, H. C. (2007). An Application of AHP

and sensitivity analysis for selecting the best slicing machine. Computers and

Industrial Engineering; 52: 296-307.

11. Winston, W. L., 1994. Operations Research. Applications and Algorithms, 3
rd

 ed.,

Duxbury Press. An Imprint of Wadsworth Publishing Company. Belmont,

California.

12. Dyer, J. S. (1990) Remarks on the Analytic Hierarchy Process, Management

Science, 36, 249-258.

13. Vaida, O. S., Kumar, S. (2006). Analytic hierarchy process: An overview of

applications. European Journal of Operational Research; 169: 1-29.

14. Yurdakul, M. (2004). AHP as a strategic decision-making tool to justify machine

tool selection. Journal of Materials Processing Technology, 146 (3) 365-376.

15. Hsu, P. F., Wu, C. R., & Li, Y. T. (2008). Selection of infectious medical waste

disposal firms by using the analytic hierarchy process and sensitivity analysis.

Waste Management; 28: 1386-1394.

16. Chang, C. W., Wu, C. R., Lin, C. T., & Chen, H. C. (2007). An Application of AHP

and sensitivity analysis for selecting the best slicing machine. Computers and

Industrial Engineering; 52: 296-307.

17. Okada, H., Styles, S.W., & Grismer, M.E. (2008). Application of the Analytic

Hierarchy Process to irrigationproject improvement. Part ΙΙ. How professionals

evaluate an irrigation project for its improvement. Agricultural Water Management;

95: 205-210.

118

18. Vavra, I., Bydzovsky, J., Falckbart, K., Tejada, J., Kopera, L., Kovakova, E., Temst,

K., & Bruynseraede, Y. (2001). Fe/Cr sensor for the milliKelvin temperature range.

Sensors and Actuators; 91: 177-179.

19. Hoa, C. H., Cha, Y. H. C., Prakasha, S., Potwina, G., Doerr, H. J., Deshpandey, C.

V., Bunshah, R. F., & Zellerb, M. (1995). Electrical resistance drift of molybdenum

silicide yhin film temperature sensors. Thin Solid Films; 260: 232-238.

20. Bianchi, R. A., Santos, F. V. D., Karam, J. M., Courtois, B., Pressecq, F., & Sifflet,

S. (1998). CMOS-compatible smart temperature sensors. Microelectronics Journal;

29: 627-636.

21. Han, Y., & Kim, S. J. (2008). Diode temperature sensor array for measuring micro-

scale surface temperatures with high resolution. Sensors and Actuators; 14: 52-

58.Altshuller GS. Creativity as an Exact Science. New York: Gordon and Breach

1984; 228.

22. Wyoming Department of Environmental Quality, (4/29/05), EXAMPLE

COMPLIANCE ASSURANCE MONITORING PLAN: CATALYTIC

CONVERTER FOR CONTROL OF NOx AND CO. [online] [accessed August

2010]. Available from URL:

http://deq.state.wy.us/aqd/downloads/OperPermits/CatConEx5n.pdf.

23. Watlow Electric Manufacturing Company, Single Iteration Division, 909 Horan Dr.

Fenton, MO 63026 (2010). How To Choose The Right Temperature Sensor, White

Paper WP05-001. [online] [accessed January 2010]. Available from URL:

http://www.singleiteration.com/library/document.cfm?id=51

24. Made-in-China.com China manufacturer directory China products China suppliers

China trade China company (2010). [online] [accessed August 2010]. Available

from URL: www.made-in-china.com/.../China-Bimetal-Thermometers-WSS-.html

http://deq.state.wy.us/aqd/downloads/OperPermits/CatConEx5n.pdf
http://www.made-in-china.com/.../China-Bimetal-Thermometers-WSS-.html

119

25. Volker Thomsen, Spectro Analytical Instruments, 160 Authority Dr., Fitchburg, MA

01420(1998). Response Time of a Thermometer. THE PHYSICS TEACHER,

Volume 36 (December), 540-541.

http://www.df.uba.ar/users/sgil/physics_paper_doc/papers_phys/termo/cooling2.pdf

(accessed August 2010)

26. WINTRONICS,INC. Wintronics Calbration Services & Infrared Thermometer

(2005) . [online] [accessed August 2010]. Available from URL:

www.wintron.com/infrared/irproducts.htm

27. Made-in-China.com China manufacturer directory China products China suppliers

China trade China company (2010). [online] [accessed August 2010]. Available

from URL:

http://www.made-in-china.com/showroom/corshare/product-

detailYbjnWswVAukQ/China-Mems-Semiconductor-Alcohol-Sensor-SAT178B-

.html

28. CURTIS J. KLAASSEN, PE, Iowa Energy Center (2001). Selecting and Specifying

Building Automation System Sensors Considerations for upgrading sensor

performance. HPAC Engineering, (July), 64-66.

http://www.df.uba.ar/users/sgil/physics_paper_doc/papers_phys/termo/cooling2.pdf

(accessed August 2010)

http://www.df.uba.ar/users/sgil/physics_paper_doc/papers_phys/termo/cooling2.pdf
http://www.wintron.com/infrared/irproducts.htm
http://www.made-in-china.com/showroom/corshare/product-detailYbjnWswVAukQ/China-Mems-Semiconductor-Alcohol-Sensor-SAT178B-.html
http://www.made-in-china.com/showroom/corshare/product-detailYbjnWswVAukQ/China-Mems-Semiconductor-Alcohol-Sensor-SAT178B-.html
http://www.made-in-china.com/showroom/corshare/product-detailYbjnWswVAukQ/China-Mems-Semiconductor-Alcohol-Sensor-SAT178B-.html
http://www.df.uba.ar/users/sgil/physics_paper_doc/papers_phys/termo/cooling2.pdf
http://www.df.uba.ar/users/sgil/physics_paper_doc/papers_phys/termo/cooling2.pdf

120

APPENDICES

121

Appendix Ι: Thermocouples to British Standards

Type Conductors (positive conductor first) BS 1041, Part 4: 1966 Output for indicated Service temperature.

 Tolerance on temperature temperature max intermittent

 cold junction at 0C service in bracket

B Platinum: 30% Rhodium 0 to 1100C± 3C 1.241 mV at 500C 0 to 1500C (1700C)

 Platinum: 6% Rhodium 1100 to 1550C±4C Better life expectancy

 at high temperature

 than types R&S

K Nickel: Chromium/Constantan 0 to 400C±3C 6.317 mV at 100C -200 to 850C (1100C)

 (Chromel/Constantan) resistant to oxidizing

 (Chromel/Advance) atmospheres

J Iron/Constantan 0 to 300C±3C 5.268 mV at 100C -200 to 850C (1100C)

 300 to 850C±1% low cost, suitable for

 general use

K Nickel: Chromium/ Nickel: Aluminium 0 to 400C±3C 4.095 mV at 100C -200 to 1100C (1300C)

 (Chromel/Alumel) 400 to 1100C±0.75% good general purpose,

 best in oxidizing

 atmosphere

R Platinum: 13%Rhodium/Platinum 0 to 1100C±1C 4.471 mV at 500C 0 to 1500C(1700C)

 1100 to 1400C±2C high temperature

 1400C±3C corrosion resistant

 S Platinum: 10%Rhodium/Platinum 0 to 1100C±1C 4.471 mV at 500C 0 to 1500C(1700C)

 1100 to 1400C±2C high temperature

 1400C±3C corrosion resistant

T Copper/Constantan; (Copper/Advance) 0 to 100C±1C 4.277 mV at 100C -250 to 400C(500C)

 100 to 400C±1% high resistance to

 corrosion by water

 Rhodium: Iridium/Rhodium composition and accuracy 6.4 mV at 1200C 0 to 2000C(2100C)

 to be agreed with manufacturer

 Tungsten: Rhenium 5% Tungsten: accuracy to be agreed with 8.890 mV at 500C 0 to 2300C(2600C)

 Rhenium 26% manufacturer

 Tungsten/Molybdenum composition and accuracy

 to be agreed with manufacturer - 1250 to 2600C

122

Appendix II: AMETEK CALIBRATION INSTRUMENT

Industrial Temperature Measurement Pages 1, 7-12, 18-23

(Omitted)

123

Appendix III: List of Matrices in the software for the seven

sensors the Three Applications: the Automotives, the

Chemical Process, and the HVAC

1- Automotives Application

 Maximum Opearting Temperature Matrix:

 {1.0,3.0,1.0,9.0,4.0,6.0,4.0},

 {0.3333,1.0,0.3333,6.0,2.0,5.0,2.0},

 {1.0,3.0,1.0,9.0,4.0,6.0,4.0},

 {0.1111,0.1667,0.1111,1.0,0.1667,0.3333,0.1667},

 {0.25,0.5,0.25,6.0,1.0,4.0,1.0},

 {0.1667,0.2,0.1667,3.0,0.25,1.0,0.25},

 {0.25,0.5,0.25,6.0,1.0,4.0,1.0}

 Minimum Operating Tempearture Matrix:

 {1.0,2.0,2.0,0.5,0.5,0.125,0.3333},

 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},

 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},

 {2.0,3.0,3.0,1.0,1.0,0.25,0.5},

 {2.0,3.0,3.0,1.0,1.0,0.25,0.5},

 {8.0,8.0,8.0,4.0,4.0,1.0,4.0},

 {3.0,4.0,4.0,2.0,2.0,0.25,1.0}

 Temperature Curve Matrix:

 {1.0,3.0,0.3333,5.0,5.0,4.0,2.0},

 {0.3333,1.0,0.1667,2.0,2.0,1.0,0.3333},

 {3.0,6.0,1.0,6.0,6.0,6.0,4.0},

 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25},

 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25},

 {0.25,1.0,0.1667,3.0,3.0,1.0,0.5},

 {0.5,3.0,0.25,4.0,4.0,2.0,1.0}

 Sensitivity Matrix:

 {1.0,0.1111,0.2,2.0,2.0,2.0,0.3333},

 {9.0,1.0,4.0,9.0,9.0,6.0,4.0},

 {5.0,0.25,1.0,4.0,5.0,4.0,2.0},

 {0.5,0.1111,0.25,1.0,2.0,2.0,0.25},

 {0.5,.1111,0.2,0.5,1.0,1.0,0.25},

 {0.5,0.1667,0.25,0.5,1.0,1.0,0.25},

 {3.0,0.25,0.5,4.0,4.0,4.0,1.0}

 Self Heating Issues Matrix:

 {1.0,8.0,3.0,3.0,1.0,1.0,2.0},

 {0.125,1.0,0.2,0.25,0.2,0.1667,0.25},

 {0.3333,5.0,1.0,0.5,0.5,0.3333,1.0},

 {0.3333,4.0,2.0,1.0,1.0,0.5,1.0},

124

 {1.0,5.0,2.0,1.0,1.0,1.0,2.0},

 {1.0,6.0,3.0,2.0,1.0,1.0,1.0},

 {0.5,4.0,1.0,1.0,0.5,1.0,1.0}

 Long Term Stability and Accuracy Matrix:

 {1.0,0.25,0.1667,2.0,0.3333,0.5,0.25},

 {4.0,1.0,0.3333,4.0,3.0,3.0,2.0},

 {6.0,3.0,1.0,8.0,4.0,5.0,3.0},

 {0.5,0.25,0.125,1.0,0.3333,0.3333,0.25},

 {3.0,0.3333,0.25,3.0,1.0,2.0,0.5},

 {2.0,0.3333,0.2,3.0,0.5,1.0,0.3333},

 {4.0,0.5,0.3333,4.0,2.0,3.0,1.0}

 Typical Temperature Coefficient Matrix:

 {1.0,0.1667,0.3333,4.0,4.0,4.0,0.5},

 {6.0,1.0,3.0,6.0,6.0,6.0,6.0},

 {3.0,0.3333,1.0,5.0,6.0,5.0,2.0},

 {0.25,0.1667,0.2,1.0,1.0,1.0,0.2},

 {0.25,0.1667,0.1667,1.0,1.0,1.0,0.2},

 {0.25,0.1667,0.2,1.0,1.0,1.0,0.3333},

 {2.0,0.1667,0.5,5.0,5.0,3.0,1.0}

 Extension Wires Matrix:

 {1.0,0.1667,0.16667,0.125,0.125,0.125,0.125},

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25},

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0}

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0}

 LongWireMatrix:

 {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667},

 {3.0,1.0,3.0,0.5,0.5,0.5,0.5},

 {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0}

 Measurement Parameter Matrix:

 {1.0,4.0,3.0,5.0,5.0,6.0,1.0},

 {0.25,1.0,0.5,4.0,4.0,5.0,0.3333},

 {0.3333,2.0,1.0,3.0,3.0,4.0,0.3333},

 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2},

 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2},

 {0.1667,0.2,0.25,0.3333,0.3333,1.0,0.1667},

 {1.0,3.0,3.0,5.0,5.0,6.0,1.0}

 Temperature Measurement Matrix:

 {1.0,0.25,0.2,0.3333,0.3333,0.5,0.1667},

 {4.0,1.0,0.3333,1.0,3.0,3.0,0.1667},

 {5.0,3.0,1.0,4.0,5.0,5.0,0.5},

125

 {3.0,1.0,0.25,1.0,2.0,2.0,0.25},

 {3.0,0.3333,0.2,0.5,1.0,1.0,0.1667},

 {2.0,0.3333,0.2,0.5,1.0,1.0,0.2},

 {6.0,6.0,2.0,4.0,6.0,5.0,1.0}

 Stimulation Electronics Matrix:

 {1.0,4.0,3.0,1.0,1.0,2.0,6.0},

 {0.25,1.0,0.5,0.2,0.2,0.25,3.0},

 {0.3333,2.0,1.0,0.25,0.25,0.5,3.0},

 {1.0,5.0,4.0,1.0,1.0,2.0,6.0},

 {1.0,5.0,4.0,1.0,1.0,3.0,6.0},

 {0.5,4.0,2.0,0.5,0.3333,1.0,4.0},

 {0.1667,0.3333,0.3333,0.1667,0.1667,0.25,1.0}

 Existence of Maximum Sensitivity Region Matrix:

 {1.0,6.0,1.0,4.0,1.0,2.0,1.0},

 {0.1667,1.0,0.1667,0.25,0.1667,0.2,0.125},

 {1.0,6.0,1.0,4.0,1.0,2.0,1.0},

 {0.25,4.0,0.25,1.0,0.25,0.3333,0.1667},

 {1.0,6.0,1.0,4.0,1.0,3.0,1.0},

 {0.5,5.0,0.5,3.0,0.3333,1.0,0.3333},

 {1.0,8.0,1.0,6.0,1.0,3.0,1.0}

 Typical Fast Thermal Time Constant Matrix:

 {1.0,3.0,4.0,6.0,5.0,1.0,3.0},

 {0.3333,1.0,2.0,4.0,3.0,0.3333,1.0},

 {0.25,0.5,1.0,2.0,2.0,0.25,1.0},

 {0.1667,0.25,0.5,1.0,0.5,0.1667,0.3333},

 {0.2,0.3333,0.5,2.0,1.0,0.2,0.3333},

 {1.0,3.0,4.0,6.0,5.0,1.0,3.0},

 {0.3333,1.0,1.0,3.0,3.0,0.3333,1.0}

 Typiacl Small Size Matrix:

 {1.0,2.0,3.0,4.0,5.0,6.0,5.0},

 {0.5,1.0,2.0,3.0,4.0,5.0,4.0},

 {0.3333,0.5,1.0,2.0,4.0,6.0,4.0},

 {0.25,0.3333,0.5,1.0,2.0,3.0,2.0},

 {0.2,0.25,0.25,0.5,1.0,3.0,1.0},

 {0.1667,0.2,0.1667,0.3333,0.3333,1.0,0.5},

 {0.2,0.25,0.25,0.5,1.0,2.0,1.0}

 Noise Immunity Matrix:

 {1.0,0.1667,0.3333,0.25,0.25,0.5,0.25},

 {6.0,1.0,4.0,3.0,3.0,5.0,3.0},

 {3.0,0.25,1.0,0.5,0.5,2.0,0.5},

 {4.0,0.3333,2.0,1.0,1.0,3.0,1.0},

 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0},

 {2.0,0.2,0.5,0.3333,0.25,1.0,0.25},

 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0}

 Fragility-Durability Characteristics Matrix:

 {1.0,6.0,3.0,6.0,8.0,3.0,4.0},

 {0.1667,1.0,0.3333,2.0,3.0,0.3333,0.5},

126

 {0.3333,3.0,1.0,3.0,4.0,2.0,3.0},

 {0.1667,0.5,0.3333,1.0,3.0,0.25,0.3333},

 {0.125,0.3333,0.25,0.3333,1.0,0.25,0.3333},

 {0.3333,3.0,0.5,4.0,4.0,1.0,3.0},

 {0.25,2.0,0.3333,3.0,3.0,0.3333,1.0}

 High Thermal Gradient Environment Matrix:

 {1.0,4.0,5.0,7.0,8.0,4.0,6.0},

 {0.25,1.0,2.0,5.0,6.0,2.0,4.0},

 {0.2,0.5,1.0,3.0,3.0,0.5,2.0},

 {0.1429,0.2,0.3333,1.0,1.0,0.25,0.5},

 {0.125,0.1667,0.3333,1.0,1.0,0.2,0.3333},

 {0.25,0.5,2.0,4.0,5.0,1.0,4.0},

 {0.1667,0.25,0.5,2.0,3.0,0.25,1.0}

 Corrosion Resistance Matrix:

 {1.0,0.25,0.1667,0.5,0.1667,0.1667,0.25},

 {4.0,1.0,0.3333,2.0,0.25,0.25,1.0},

 {6.0,3.0,1.0,4.0,1.0,1.0,4.0},

 {2.0,0.5,0.25,1.0,0.25,0.25,0.5},

 {6.0,4.0,1.0,4.0,1.0,1.0,3.0},

 {6.0,4.0,1.0,4.0,1.0,1.0,3.0},

 {4.0,1.0,0.25,2.0,0.3333,0.3333,1.0}

 Point or Area Measurement Matrix:

 {1.0,2.0,3.0,4.0,6.0,6.0,4.0},

 {0.5,1.0,2.0,3.0,4.0,4.0,3.0},

 {0.3333,0.5,1.0,2.0,3.0,4.0,2.0},

 {0.25,0.3333,0.5,1.0,2.0,2.0,0.5},

 {0.1667,0.25,0.3333,0.5,1.0,1.0,0.5},

 {0.1667,0.25,0.25,0.5,1.0,1.0,2.0},

 {0.25,0.5,0.3333,2.0,2.0,0.5,1.0}

 Manufacturing Variances Matrix:

 {1.0, 0.3333, 0.1667,0.25,0.5,0.2,0.25},

 {3.0, 1.0, 0.3333,0.5,2.0,0.25,0.5},

 {6.0, 3.0, 1.0,4.0,3.0,6.0,3.0},

 {4.0,2.0,0.25,1.0,4.0,0.3333,0.5},

 {2.0,0.5,0.3333,0.25,1.0,0.2,0.25},

 {5.0,4.0,0.1667,3.0,5.0,1.0,2.0},

 {4.0,2.0,0.3333,2.0,4.0,0.5,1.0}

 NIST Standards Matrix:

 {1.0 , 4.0, 1.0,1.0,1.0,4.0,5.0},

 {0.25, 1.0, 0.25,0.25,0.25,1.0,2.0},

 {1.0, 4.0, 1.0,1.0,1.0,4.0,5.0},

 {1.0,4.0,1.0,1.0,1.0,4.0,5.0},

 {1.0,4.0,1.0,1.0,1.0,4.0,5.0},

 {0.25,1.0,0.25,0.25,0.25,1.0,2.0},

 {0.2,0.5,0.2,0.2,0.2,0.5,1.0}

 Cost Matrix:

 {1.0,1.0,6.0,3.0,3.0,6.0,3.0},

127

 {1.0,1.0,6.0,3.0,3.0,6.0,3.0},

 {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25},

 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0},

 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0},

 {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25},

 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}

 Criteria Matrix:

 {1.0,4.0,3.0,4.0},

 {0.25,1.0,0.5,1.0},

 {0.3333,2.0,1.0,2.0},

 {0.25,1.0,0.5,1.0}

 Sub-criteria Static Matrix:

 {1.0,1.0,5.0,4.0,4.0,2.0,5.0,6.0,7.0,8.0,6.0},

 {1.0,1.0,5.0,4.0,4.0,2.0,5.0,6.0,7.0,8.0,6.0},

 {0.2,0.2,1.0,0.3333,0.3333,0.25,1.0,2.0,4.0,5.0,3.0},

 {0.25,0.25,3.0,1.0,2.0,0.5,3.0,3.0,5.0,6.0,4.0},

 {0.25,0.25,3.0,0.5,1.0,0.3333,3.0,5.0,6.0,8.0,4.0},

 {0.5,0.5,4.0,2.0,3.0,1.0,4.0,5.0,6.0,8.0,5.0},

 {0.2,0.2,1.0,0.3333,0.3333,0.25,1.0,1.0,4.0,6.0,3.0},

{0.1667,0.1667,0.5,0.3333,0.2,0.2,1.0,1.0,3.0,4.0,1.0},

{0.1429,0.1429,0.25,0.2,0.1667,0.1667,0.25,0.3333,1.0,2.0,0.3333},

{0.125,0.125,0.2,0.1667,0.125,0.125,0.1667,0.25,0.5,1.0,0.25},

{0.1667,0.1667,0.3333,0.25,0.25,0.2,0.3333,1.0,3.0,4.0,1.0}

 Sub-criteria Dynamic Matrix:

 {1.0,2.0,0.1667},

 {0.5,1.0,0.1667},

 {6.0,6.0,1.0}

 Sub-criteria Environmental Matrix:

 {1.0,3.0,0.3333,4.0,0.25},

 {0.3333,1.0,0.25,3.0,0.2},

 {3.0,4.0,1.0,5.0,0.5},

 {0.25,0.3333,0.2,1.0,0.1667},

 {4.0,5.0,2.0,6.0,1.0}

 Others Matrix:

 {1.0,3.0,0.5,0.25},

 {0.3333,1.0,0.3333,0.2},

 {2.0,3.0,1.0,0.3333},

 {4.0,5.0,3.0,1.0}

128

2- Chemical Process Application

 Maximum Opearting Temperature Matrix:

 {1.0,3.0,1.0,9.0,4.0,6.0,4.0},

 {0.3333,1.0,0.3333,6.0,2.0,5.0,2.0},

 {1.0,3.0,1.0,9.0,4.0,6.0,4.0},

 {0.1111,0.1667,0.1111,1.0,0.1667,0.3333,0.1667},

 {0.25,0.5,0.25,6.0,1.0,4.0,1.0},

 {0.1667,0.2,0.1667,3.0,0.25,1.0,0.25},

 {0.25,0.5,0.25,6.0,1.0,4.0,1.0}

 Minimum Operating Tempearture Matrix:

 {1.0,2.0,2.0,0.5,0.5,0.125,0.3333},

 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},

 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},

 {2.0,3.0,3.0,1.0,1.0,0.25,0.5},

 {2.0,3.0,3.0,1.0,1.0,0.25,0.5},

 {8.0,8.0,8.0,4.0,4.0,1.0,4.0},

 {3.0,4.0,4.0,2.0,2.0,0.25,1.0}

 Temperature Curve Matrix:

 {1.0,3.0,0.3333,5.0,5.0,4.0,2.0},

 {0.3333,1.0,0.1667,2.0,2.0,1.0,0.3333},

 {3.0,6.0,1.0,6.0,6.0,6.0,4.0},

 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25},

 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25},

 {0.25,1.0,0.1667,3.0,3.0,1.0,0.5},

 {0.5,3.0,0.25,4.0,4.0,2.0,1.0}

 Sensitivity Matrix:

 {1.0,0.1111,0.2,2.0,2.0,2.0,0.3333},

 {9.0,1.0,4.0,9.0,9.0,6.0,4.0},

 {5.0,0.25,1.0,4.0,5.0,4.0,2.0},

 {0.5,0.1111,0.25,1.0,2.0,2.0,0.25},

 {0.5,.1111,0.2,0.5,1.0,1.0,0.25},

 {0.5,0.1667,0.25,0.5,1.0,1.0,0.25},

 {3.0,0.25,0.5,4.0,4.0,4.0,1.0}

 Self Heating Issues Matrix:

 {1.0,8.0,3.0,3.0,1.0,1.0,2.0},

 {0.125,1.0,0.2,0.25,0.2,0.1667,0.25},

 {0.3333,5.0,1.0,0.5,0.5,0.3333,1.0},

 {0.3333,4.0,2.0,1.0,1.0,0.5,1.0},

 {1.0,5.0,2.0,1.0,1.0,1.0,2.0},

 {1.0,6.0,3.0,2.0,1.0,1.0,1.0},

 {0.5,4.0,1.0,1.0,0.5,1.0,1.0}

 Long Term Stability and Accuracy Matrix:

 {1.0,0.25,0.1667,2.0,0.3333,0.5,0.25},

 {4.0,1.0,0.3333,4.0,3.0,3.0,2.0},

 {6.0,3.0,1.0,8.0,4.0,5.0,3.0},

 {0.5,0.25,0.125,1.0,0.3333,0.3333,0.25},

 {3.0,0.3333,0.25,3.0,1.0,2.0,0.5},

129

 {2.0,0.3333,0.2,3.0,0.5,1.0,0.3333},

 {4.0,0.5,0.3333,4.0,2.0,3.0,1.0}

 Typical Temperature Coefficient Matrix:

 {1.0,0.1667,0.3333,4.0,4.0,4.0,0.5},

 {6.0,1.0,3.0,6.0,6.0,6.0,6.0},

 {3.0,0.3333,1.0,5.0,6.0,5.0,2.0},

 {0.25,0.1667,0.2,1.0,1.0,1.0,0.2},

 {0.25,0.1667,0.1667,1.0,1.0,1.0,0.2},

 {0.25,0.1667,0.2,1.0,1.0,1.0,0.3333},

 {2.0,0.1667,0.5,5.0,5.0,3.0,1.0}

 Extension Wires Matrix:

 {1.0,0.1667,0.16667,0.125,0.125,0.125,0.125},

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25},

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0}

 LongWireMatrix:

 {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667},

 {3.0,1.0,3.0,0.5,0.5,0.5,0.5},

 {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0}

 Measurement Parameter Matrix:

 {1.0,4.0,3.0,5.0,5.0,6.0,1.0},

 {0.25,1.0,0.5,4.0,4.0,5.0,0.3333},

 {0.3333,2.0,1.0,3.0,3.0,4.0,0.3333},

 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2},

 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2},

 {0.1667,0.2,0.25,0.3333,0.3333,1.0,0.1667},

 {1.0,3.0,3.0,5.0,5.0,6.0,1.0}

 Temperature Measurement Matrix:

 {1.0,0.25,0.2,0.3333,0.3333,0.5,0.1667},

 {4.0,1.0,0.3333,1.0,3.0,3.0,0.1667},

 {5.0,3.0,1.0,4.0,5.0,5.0,0.5},

 {3.0,1.0,0.25,1.0,2.0,2.0,0.25},

 {3.0,0.3333,0.2,0.5,1.0,1.0,0.1667},

 {2.0,0.3333,0.2,0.5,1.0,1.0,0.2},

 {6.0,6.0,2.0,4.0,6.0,5.0,1.0}

 Stimulation Electronics Matrix:

 {1.0,4.0,3.0,1.0,1.0,2.0,6.0},

 {0.25,1.0,0.5,0.2,0.2,0.25,3.0},

 {0.3333,2.0,1.0,0.25,0.25,0.5,3.0},

 {1.0,5.0,4.0,1.0,1.0,2.0,6.0},

 {1.0,5.0,4.0,1.0,1.0,3.0,6.0},

130

 {0.5,4.0,2.0,0.5,0.3333,1.0,4.0},

 {0.1667,0.3333,0.3333,0.1667,0.1667,0.25,1.0}

Existence of Maximum Sensitivity Region Matrix:

 {1.0,6.0,1.0,4.0,1.0,2.0,1.0},

 {0.1667,1.0,0.1667,0.25,0.1667,0.2,0.125},

 {1.0,6.0,1.0,4.0,1.0,2.0,1.0},

 {0.25,4.0,0.25,1.0,0.25,0.3333,0.1667},

 {1.0,6.0,1.0,4.0,1.0,3.0,1.0},

 {0.5,5.0,0.5,3.0,0.3333,1.0,0.3333},

 {1.0,8.0,1.0,6.0,1.0,3.0,1.0}

 Typical Fast Thermal Time Constant Matrix:

 {1.0,3.0,4.0,6.0,5.0,1.0,3.0},

 {0.3333,1.0,2.0,4.0,3.0,0.3333,1.0},

 {0.25,0.5,1.0,2.0,2.0,0.25,1.0},

 {0.1667,0.25,0.5,1.0,0.5,0.1667,0.3333},

 {0.2,0.3333,0.5,2.0,1.0,0.2,0.3333},

 {1.0,3.0,4.0,6.0,5.0,1.0,3.0},

 {0.3333,1.0,1.0,3.0,3.0,0.3333,1.0}

 Typiacl Small Size Matrix:

 {1.0,2.0,3.0,4.0,5.0,6.0,5.0},

 {0.5,1.0,2.0,3.0,4.0,5.0,4.0},

 {0.3333,0.5,1.0,2.0,4.0,6.0,4.0},

 {0.25,0.3333,0.5,1.0,2.0,3.0,2.0},

 {0.2,0.25,0.25,0.5,1.0,3.0,1.0},

 {0.1667,0.2,0.1667,0.3333,0.3333,1.0,0.5},

 {0.2,0.25,0.25,0.5,1.0,2.0,1.0}

 Noise Immunity Matrix:

 {1.0,0.1667,0.3333,0.25,0.25,0.5,0.25},

 {6.0,1.0,4.0,3.0,3.0,5.0,3.0},

 {3.0,0.25,1.0,0.5,0.5,2.0,0.5},

 {4.0,0.3333,2.0,1.0,1.0,3.0,1.0},

 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0},

 {2.0,0.2,0.5,0.3333,0.25,1.0,0.25},

 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0}

 Fragility-Durability Characteristics Matrix:

 {1.0,6.0,3.0,6.0,8.0,3.0,4.0},

 {0.1667,1.0,0.3333,2.0,3.0,0.3333,0.5},

 {0.3333,3.0,1.0,3.0,4.0,2.0,3.0},

 {0.1667,0.5,0.3333,1.0,3.0,0.25,0.3333},

 {0.125,0.3333,0.25,0.3333,1.0,0.25,0.3333},

 {0.3333,3.0,0.5,4.0,4.0,1.0,3.0},

 {0.25,2.0,0.3333,3.0,3.0,0.3333,1.0},

 High Thermal Gradient Environment Matrix:

 {1.0,4.0,5.0,7.0,8.0,4.0,6.0},

 {0.25,1.0,2.0,5.0,6.0,2.0,4.0},

 {0.2,0.5,1.0,3.0,3.0,0.5,2.0},

 {0.1429,0.2,0.3333,1.0,1.0,0.25,0.5},

 {0.125,0.1667,0.3333,1.0,1.0,0.2,0.3333},

131

 {0.25,0.5,2.0,4.0,5.0,1.0,4.0},

 {0.1667,0.25,0.5,2.0,3.0,0.25,1.0}

 Corrosion Resistance Matrix:

 {1.0,0.25,0.1667,0.5,0.1667,0.1667,0.25},

 {4.0,1.0,0.3333,2.0,0.25,0.25,1.0},

 {6.0,3.0,1.0,4.0,1.0,1.0,4.0},

 {2.0,0.5,0.25,1.0,0.25,0.25,0.5},

 {6.0,4.0,1.0,4.0,1.0,1.0,3.0},

 {6.0,4.0,1.0,4.0,1.0,1.0,3.0},

 {4.0,1.0,0.25,2.0,0.3333,0.3333,1.0}

 Point or Area Measurement Matrix:

 {1.0,2.0,3.0,4.0,6.0,6.0,4.0},

 {0.5,1.0,2.0,3.0,4.0,4.0,3.0},

 {0.3333,0.5,1.0,2.0,3.0,4.0,2.0},

 {0.25,0.3333,0.5,1.0,2.0,2.0,0.5},

 {0.1667,0.25,0.3333,0.5,1.0,1.0,0.5},

 {0.1667,0.25,0.25,0.5,1.0,1.0,2.0},

 {0.25,0.5,0.3333,2.0,2.0,0.5,1.0}

 Manufacturing Variances Matrix:

 {1.0, 0.3333, 0.1667,0.25,0.5,0.2,0.25},

 {3.0, 1.0, 0.3333,0.5,2.0,0.25,0.5},

 {6.0, 3.0, 1.0,4.0,3.0,6.0,3.0},

 {4.0,2.0,0.25,1.0,4.0,0.3333,0.5},

 {2.0,0.5,0.3333,0.25,1.0,0.2,0.25},

 {5.0,4.0,0.1667,3.0,5.0,1.0,2.0},

 {4.0,2.0,0.3333,2.0,4.0,0.5,1.0}

 NIST Standards Matrix:

 {1.0 , 4.0, 1.0,1.0,1.0,4.0,5.0},

 {0.25, 1.0, 0.25,0.25,0.25,1.0,2.0},

 {1.0, 4.0, 1.0,1.0,1.0,4.0,5.0},

 {1.0,4.0,1.0,1.0,1.0,4.0,5.0},

 {1.0,4.0,1.0,1.0,1.0,4.0,5.0},

 {0.25,1.0,0.25,0.25,0.25,1.0,2.0},

 {0.2,0.5,0.2,0.2,0.2,0.5,1.0}

 Cost Matrix:

 {1.0,1.0,6.0,3.0,3.0,6.0,3.0},

 {1.0,1.0,6.0,3.0,3.0,6.0,3.0},

 {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25},

 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0},

 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0},

 {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25},

 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}

 Criteria Matrix:

 {1.0,2.0,1.0,4.0},

 {0.5,1.0,0.5,2.0},

 {1.0,2.0,1.0,4.0},

 {0.25,0.5,0.25,1.0}

132

 Sub-criteria Static Matrix:

 {1.0,1.0,5.0,4.0,4.0,1.0,5.0,6.0,7.0,8.0,6.0},

 {1.0,1.0,5.0,4.0,4.0,1.0,5.0,6.0,7.0,8.0,6.0},

 {0.2,0.2,1.0,0.3333,0.3333,0.2,1.0,2.0,4.0,5.0,3.0},

 {0.25,0.25,3.0,1.0,2.0,0.3333,3.0,3.0,5.0,6.0,4.0},

 {0.25,0.25,3.0,0.5,1.0,0.25,3.0,5.0,6.0,8.0,4.0},

 {1.0,1.0,5.0,3.0,4.0,1.0,5.0,6.0,7.0,9.0,6.0},

 {0.2,0.2,1.0,0.3333,0.3333,0.2,1.0,1.0,4.0,6.0,3.0},

{0.1667,0.1667,0.5,0.3333,0.2,0.1667,1.0,1.0,3.0,4.0,1.0},

{0.1429,0.1429,0.25,0.2,0.1667,0.1429,0.25,0.3333,1.0,2.0,0.3333},

{0.125,0.125,0.2,0.1667,0.125,0.1111,0.1667,0.25,0.5,1.0,0.25},

{0.1667,0.1667,0.3333,0.25,0.25,0.1667,0.3333,1.0,3.0,4.0,1.0}

 Sub-criteria Dynamic Matrix:

 {1.0,2.0,0.1429},

 {0.5,1.0,0.1429},

 {7.0,7.0,1.0}

 Sub-criteria Environmental Matrix:

 {1.0,4.0,0.5,4.0,0.25},

 {0.25,1.0,0.25,2.0,0.1667},

 {2.0,4.0,1.0,4.0,0.3333},

 {0.25,0.5,0.25,1.0,0.1667},

 {4.0,6.0,3.0,6.0,1.0}

 Others Matrix:

 {1.0,3.0,0.5,0.25},

 {0.3333,1.0,0.3333,0.2},

 {2.0,3.0,1.0,0.3333},

 {4.0,5.0,3.0,1.0}

133

3- HVAC Application

 Maximum Opearting Temperature Matrix:

 {1.0,3.0,1.0,9.0,4.0,6.0,4.0},

 {0.3333,1.0,0.3333,6.0,2.0,5.0,2.0},

 {1.0,3.0,1.0,9.0,4.0,6.0,4.0},

 {0.1111,0.1667,0.1111,1.0,0.1667,0.3333,0.1667},

 {0.25,0.5,0.25,6.0,1.0,4.0,1.0},

 {0.1667,0.2,0.1667,3.0,0.25,1.0,0.25},

 {0.25,0.5,0.25,6.0,1.0,4.0,1.0}

 Minimum Operating Tempearture Matrix:

 {1.0,2.0,2.0,0.5,0.5,0.125,0.3333},

 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},

 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},

 {2.0,3.0,3.0,1.0,1.0,0.25,0.5},

 {2.0,3.0,3.0,1.0,1.0,0.25,0.5},

 {8.0,8.0,8.0,4.0,4.0,1.0,4.0},

 {3.0,4.0,4.0,2.0,2.0,0.25,1.0}

 Temperature Curve Matrix:

 {1.0,3.0,0.3333,5.0,5.0,4.0,2.0},

 {0.3333,1.0,0.1667,2.0,2.0,1.0,0.3333},

 {3.0,6.0,1.0,6.0,6.0,6.0,4.0},

 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25},

 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25},

 {0.25,1.0,0.1667,3.0,3.0,1.0,0.5},

 {0.5,3.0,0.25,4.0,4.0,2.0,1.0}

 Sensitivity Matrix:

 {1.0,0.1111,0.2,2.0,2.0,2.0,0.3333},

 {9.0,1.0,4.0,9.0,9.0,6.0,4.0},

 {5.0,0.25,1.0,4.0,5.0,4.0,2.0},

 {0.5,0.1111,0.25,1.0,2.0,2.0,0.25},

 {0.5,.1111,0.2,0.5,1.0,1.0,0.25},

 {0.5,0.1667,0.25,0.5,1.0,1.0,0.25},

 {3.0,0.25,0.5,4.0,4.0,4.0,1.0}

 Self Heating Issues Matrix:

 {1.0,8.0,3.0,3.0,1.0,1.0,2.0},

 {0.125,1.0,0.2,0.25,0.2,0.1667,0.25},

 {0.3333,5.0,1.0,0.5,0.5,0.3333,1.0},

 {0.3333,4.0,2.0,1.0,1.0,0.5,1.0},

 {1.0,5.0,2.0,1.0,1.0,1.0,2.0},

 {1.0,6.0,3.0,2.0,1.0,1.0,1.0},

 {0.5,4.0,1.0,1.0,0.5,1.0,1.0}

 Long Term Stability and Accuracy Matrix:

 {1.0,0.25,0.1667,2.0,0.3333,0.5,0.25},

 {4.0,1.0,0.3333,4.0,3.0,3.0,2.0},

 {6.0,3.0,1.0,8.0,4.0,5.0,3.0},

 {0.5,0.25,0.125,1.0,0.3333,0.3333,0.25},

 {3.0,0.3333,0.25,3.0,1.0,2.0,0.5},

134

 {2.0,0.3333,0.2,3.0,0.5,1.0,0.3333},

 {4.0,0.5,0.3333,4.0,2.0,3.0,1.0}

 Typical Temperature Coefficient Matrix:

 {1.0,0.1667,0.3333,4.0,4.0,4.0,0.5},

 {6.0,1.0,3.0,6.0,6.0,6.0,6.0},

 {3.0,0.3333,1.0,5.0,6.0,5.0,2.0},

 {0.25,0.1667,0.2,1.0,1.0,1.0,0.2},

 {0.25,0.1667,0.1667,1.0,1.0,1.0,0.2},

 {0.25,0.1667,0.2,1.0,1.0,1.0,0.3333},

 {2.0,0.1667,0.5,5.0,5.0,3.0,1.0}

 Extension Wires Matrix:

 {1.0,0.1667,0.16667,0.125,0.125,0.125,0.125},

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25},

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0}

 LongWireMatrix:

 {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667},

 {3.0,1.0,3.0,0.5,0.5,0.5,0.5},

 {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0}

 Measurement Parameter Matrix:

 {1.0,4.0,3.0,5.0,5.0,6.0,1.0},

 {0.25,1.0,0.5,4.0,4.0,5.0,0.3333},

 {0.3333,2.0,1.0,3.0,3.0,4.0,0.3333},

 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2},

 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2},

 {0.1667,0.2,0.25,0.3333,0.3333,1.0,0.1667},

 {1.0,3.0,3.0,5.0,5.0,6.0,1.0}

 Temperature Measurement Matrix:

 {1.0,0.25,0.2,0.3333,0.3333,0.5,0.1667},

 {4.0,1.0,0.3333,1.0,3.0,3.0,0.1667},

 {5.0,3.0,1.0,4.0,5.0,5.0,0.5},

 {3.0,1.0,0.25,1.0,2.0,2.0,0.25},

 {3.0,0.3333,0.2,0.5,1.0,1.0,0.1667},

 {2.0,0.3333,0.2,0.5,1.0,1.0,0.2},

 {6.0,6.0,2.0,4.0,6.0,5.0,1.0}

 Stimulation Electronics Matrix:

 {1.0,4.0,3.0,1.0,1.0,2.0,6.0},

 {0.25,1.0,0.5,0.2,0.2,0.25,3.0},

 {0.3333,2.0,1.0,0.25,0.25,0.5,3.0},

 {1.0,5.0,4.0,1.0,1.0,2.0,6.0},

 {1.0,5.0,4.0,1.0,1.0,3.0,6.0},

135

 {0.5,4.0,2.0,0.5,0.3333,1.0,4.0},

 {0.1667,0.3333,0.3333,0.1667,0.1667,0.25,1.0}

Existence of Maximum Sensitivity Region Matrix:

 {1.0,6.0,1.0,4.0,1.0,2.0,1.0},

 {0.1667,1.0,0.1667,0.25,0.1667,0.2,0.125},

 {1.0,6.0,1.0,4.0,1.0,2.0,1.0},

 {0.25,4.0,0.25,1.0,0.25,0.3333,0.1667},

 {1.0,6.0,1.0,4.0,1.0,3.0,1.0},

 {0.5,5.0,0.5,3.0,0.3333,1.0,0.3333},

 {1.0,8.0,1.0,6.0,1.0,3.0,1.0}

 Typical Fast Thermal Time Constant Matrix:

 {1.0,3.0,4.0,6.0,5.0,1.0,3.0},

 {0.3333,1.0,2.0,4.0,3.0,0.3333,1.0},

 {0.25,0.5,1.0,2.0,2.0,0.25,1.0},

 {0.1667,0.25,0.5,1.0,0.5,0.1667,0.3333},

 {0.2,0.3333,0.5,2.0,1.0,0.2,0.3333},

 {1.0,3.0,4.0,6.0,5.0,1.0,3.0},

 {0.3333,1.0,1.0,3.0,3.0,0.3333,1.0}

 Typiacl Small Size Matrix:

 {1.0,2.0,3.0,4.0,5.0,6.0,5.0},

 {0.5,1.0,2.0,3.0,4.0,5.0,4.0},

 {0.3333,0.5,1.0,2.0,4.0,6.0,4.0},

 {0.25,0.3333,0.5,1.0,2.0,3.0,2.0},

 {0.2,0.25,0.25,0.5,1.0,3.0,1.0},

 {0.1667,0.2,0.1667,0.3333,0.3333,1.0,0.5},

 {0.2,0.25,0.25,0.5,1.0,2.0,1.0}

 Noise Immunity Matrix:

 {1.0,0.1667,0.3333,0.25,0.25,0.5,0.25},

 {6.0,1.0,4.0,3.0,3.0,5.0,3.0},

 {3.0,0.25,1.0,0.5,0.5,2.0,0.5},

 {4.0,0.3333,2.0,1.0,1.0,3.0,1.0},

 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0},

 {2.0,0.2,0.5,0.3333,0.25,1.0,0.25},

 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0}

 Fragility-Durability Characteristics Matrix:

 {1.0,6.0,3.0,6.0,8.0,3.0,4.0},

 {0.1667,1.0,0.3333,2.0,3.0,0.3333,0.5},

 {0.3333,3.0,1.0,3.0,4.0,2.0,3.0},

 {0.1667,0.5,0.3333,1.0,3.0,0.25,0.3333},

 {0.125,0.3333,0.25,0.3333,1.0,0.25,0.3333},

 {0.3333,3.0,0.5,4.0,4.0,1.0,3.0},

 {0.25,2.0,0.3333,3.0,3.0,0.3333,1.0},

 High Thermal Gradient Environment Matrix:

 {1.0,4.0,5.0,7.0,8.0,4.0,6.0},

 {0.25,1.0,2.0,5.0,6.0,2.0,4.0},

 {0.2,0.5,1.0,3.0,3.0,0.5,2.0},

 {0.1429,0.2,0.3333,1.0,1.0,0.25,0.5},

 {0.125,0.1667,0.3333,1.0,1.0,0.2,0.3333},

136

 {0.25,0.5,2.0,4.0,5.0,1.0,4.0},

 {0.1667,0.25,0.5,2.0,3.0,0.25,1.0}

 Corrosion Resistance Matrix:

 {1.0,0.25,0.1667,0.5,0.1667,0.1667,0.25},

 {4.0,1.0,0.3333,2.0,0.25,0.25,1.0},

 {6.0,3.0,1.0,4.0,1.0,1.0,4.0},

 {2.0,0.5,0.25,1.0,0.25,0.25,0.5},

 {6.0,4.0,1.0,4.0,1.0,1.0,3.0},

 {6.0,4.0,1.0,4.0,1.0,1.0,3.0},

 {4.0,1.0,0.25,2.0,0.3333,0.3333,1.0}

 Point or Area Measurement Matrix:

 {1.0,2.0,3.0,4.0,6.0,6.0,4.0},

 {0.5,1.0,2.0,3.0,4.0,4.0,3.0},

 {0.3333,0.5,1.0,2.0,3.0,4.0,2.0},

 {0.25,0.3333,0.5,1.0,2.0,2.0,0.5},

 {0.1667,0.25,0.3333,0.5,1.0,1.0,0.5},

 {0.1667,0.25,0.25,0.5,1.0,1.0,2.0},

 {0.25,0.5,0.3333,2.0,2.0,0.5,1.0}

 Manufacturing Variances Matrix:

 {1.0, 0.3333, 0.1667,0.25,0.5,0.2,0.25},

 {3.0, 1.0, 0.3333,0.5,2.0,0.25,0.5},

 {6.0, 3.0, 1.0,4.0,3.0,6.0,3.0},

 {4.0,2.0,0.25,1.0,4.0,0.3333,0.5},

 {2.0,0.5,0.3333,0.25,1.0,0.2,0.25},

 {5.0,4.0,0.1667,3.0,5.0,1.0,2.0},

 {4.0,2.0,0.3333,2.0,4.0,0.5,1.0}

 NIST Standards Matrix:

 {1.0 , 4.0, 1.0,1.0,1.0,4.0,5.0},

 {0.25, 1.0, 0.25,0.25,0.25,1.0,2.0},

 {1.0, 4.0, 1.0,1.0,1.0,4.0,5.0},

 {1.0,4.0,1.0,1.0,1.0,4.0,5.0},

 {1.0,4.0,1.0,1.0,1.0,4.0,5.0},

 {0.25,1.0,0.25,0.25,0.25,1.0,2.0},

 {0.2,0.5,0.2,0.2,0.2,0.5,1.0}

 Cost Matrix:

 {1.0,1.0,6.0,3.0,3.0,6.0,3.0},

 {1.0,1.0,6.0,3.0,3.0,6.0,3.0},

 {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25},

 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0},

 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0},

 {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25},

 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}

 Criteria Matrix:

 {1.0,9.0,6.0,4.0},

 {0.1111,1.0,0.5,0.3333},

 {0.1667,2.0,1.0,0.5},

 {0.25,3.0,2.0,1.0}

137

 Sub-criteria Static Matrix:

 {1.0,1.0,4.0,4.0,3.0,1.0,5.0,5.0,6.0,8.0,5.0},

 {1.0,1.0,4.0,4.0,3.0,1.0,5.0,5.0,6.0,8.0,5.0},

 {0.25,0.25,1.0,0.5,0.3333,0.25,2.0,2.0,4.0,6.0,3.0},

 {0.25,0.25,2.0,1.0,1.0,0.3333,3.0,2.0,4.0,6.0,3.0},

 {0.3333,0.3333,3.0,1.0,1.0,0.3333,4.0,5.0,6.0,9.0,4.0},

 {1.0,1.0,4.0,3.0,3.0,1.0,5.0,5.0,6.0,9.0,5.0},

 {0.2,0.2,0.5,0.3333,0.25,0.2,1.0,0.5,3.0,6.0,3.0},

 {0.2,0.2,0.5,0.5,0.2,0.2,2.0,1.0,3.0,5.0,1.0},

{0.1667,0.1667,0.25,0.25,0.1667,0.1667,0.3333,0.3333,1.0,3.0,0.3333},

{0.125,0.125,0.1667,0.1667,0.1111,0.1111,0.1667,0.2,0.3333,1.0,0.2},

{0.2,0.2,0.3333,0.3333,0.25,0.2,0.3333,1.0,3.0,5.0,1.0}

 Sub-criteria Dynamic Matrix:

 {1.0,2.0,0.1667},

 {0.5,1.0,0.1667},

 {6.0,6.0,1.0}

 Sub-criteria Environmental Matrix:

 {1.0,1.0,0.2,4.0,0.1667},

 {1.0,1.0,0.25,5.0,0.2},

 {5.0,4.0,1.0,7.0,0.5},

 {0.25,0.2,0.1429,1.0,0.125},

 {6.0,5.0,2.0,8.0,1.0}

 Others Matrix:

 {1.0,3.0,0.5,0.1667},

 {0.3333,1.0,0.3333,0.1429},

 {2.0,3.0,1.0,0.2},

 {6.0,7.0,5.0,1.0}

138

Appendix IV [c.f. 6, 23]: Comparison between the

Thermocouple, the Thermister, and the RTD against the 23

Sub-criteria

Sub-criterion Thermocouple Thermistor RTD

Maximum Operating Temperature

(°C)

2300 1000 850

Minimum Operating Temperature

(°C)

-200 -100 -200

Temperature Curve Fair linearity
*
 Poor linearity

*
 Good Linearity

*

Point or Area measurement Point Area Area

 Sensitivity Low
*
 Very high

*
 Medium

*

Measurement Parameter Voltage Resistance Resistance

Temperature Measurement differential Absolute Absolute

Stimulation Electronics required None Yes Yes

Self-Heating Issues No self heating
*
 High

*
 Very low to low

*

Existence of Maximum Sensitivity

Region

No Yes No

 Standards Exist Yes No Yes

Manufacturing Variances Inhomogeniety Batch-to-batch Lowest

Typical Small Size

0.01″

Small to large
*

0.1′

Small to medium
*

0.1′

Large
*

Typical Fast Thermal Time Constant 0.01 sec 0.1 sec 0.1 sec

Long Term Stability and Accuracy OK

Poor to fair
*

Good

poor
*

Best

good
*

Noise immunity OK if shielded best Good

Fragility/Durability Best OK Good

139

High thermal gradient environment Best OK OK

Typical Temperature Coefficient + 0.4 % C
-1

 -3 to -5 % C
-1

 + 0.4 to + 0.5% C
-1

Corrosion resistance Low Good Good

Extension Wires Same alloy Any kind Any kind

Long Wire runs from Sensor No OK No

Cost Low-medium Low-medium High

*
 These comparisons were taken from reference [6].

140

Appendix V [28]: Selecting and Specifying Building

Automation System Sensors Considerations for Upgrading

Sensor Performance (Omitted)

141

Appendix VI: Programming Code for the Software

1. AHP.cs File

using System;

using System.Collections.Generic;

using System.Text;

namespace AhpCaseStudy1GUI

{
 class AHP

 {

 public static int APPLICATION_HVAC = 0;
 public static int APPLICATION_AUTOMOTIVES = 1;

 public static int APPLICATION_CHEMICAL_REACTIONS = 2;

 public static int SENSOR_THERMOCOUPLE = 0;

 public static int SENSOR_THERMISTER = 1;

 public static int SENSOR_RTD = 2;
 public static int SENSOR_BIMETALLIC = 3;

 public static int SENSOR_THERMOMETER = 4;

 public static int SENSOR_PYROMETER = 5;
 public static int SENSOR_LCD_DISPLAY = 6;

 public static int TEMP_RANGE_20_200 = 0;
 public static int TEMP_RANGE_200_700 = 1;

 public static int TEMP_RANGE_700_950 = 2;

 public static int TEMP_RANGE_950_1150 = 3;
 public static int TEMP_RANGE_1150_1300 = 4;

 public static int TEMP_RANGE_Minus_1300_2700 = 5;

 public static int TEMP_RANGE_Minus_2700_3300 = 6;
 public static int TEMP_RANGE_Minus_200_950 = 7;

 public static int TEMP_RANGE_Minus_700_1150 = 8;

 public static int ACURACY_1 = 0;

 public static int ACURACY_POINT_1 = 1;
 public static int ACURACY_POINT_O_1 = 2;

 public static int ACURACY_POINT_O_O_1 = 3;

 public static int ACURACY_POINT_O_O_O_O_1 = 4;

 public static int RESPONSE_TIME_POINT_O_1 = 0;

 public static int RESPONSE_TIME_POINT_2 = 1;
 public static int RESPONSE_TIME_POINT_3 = 2;

 public static int RESPONSE_TIME_1 = 3;

 public static int RESPONSE_TIME_10 = 4;
 public static int RESPONSE_TIME_20 = 5;

 }

}

142

2. AHPSubCriteria.cs File

using System;

using System.Collections.Generic;

using System.Text;

namespace AhpCaseStudy1GUI

{

 class AHPSubCriteria

 {

 public double[,] MaximumTempMatrix;

 public double[,] MinimumTempMatrix;
 public double[,] TempCurveMtrix;

 public double[,] MaxSensitivityMatrix;

 public double[,] SelfHeatingMatrix;
 public double[,] LongTermStabilityMatrix;

 public double[,] TypTempCoeffMatrix;

 public double[,] ExtWiresMatrix;
 public double[,] LongWireMatrix;

 public double[,] MeasureParaMatrix;

 public double[,] TempMeasureMatrix;
 public double[,] StimulationElecMatrix;

 public double[,] TypOutputLevelMatrix;

 public double[,] TypFastThertimeConsMatrix;
 public double[,] TypSmallSizMatrix;

 public double[,] NoiseImmunityMatrix;

 public double[,] FraDurMatrix;
 public double[,] HiThGrEnMatrix;

 public double[,] CorrResMatrix;
 public double[,] PointAreaMeasMatrix;

 public double[,] ManuVarMatrix;

 public double[,] NistStanMatrix;
 public double[,] CostMatrix;

 public void CreateSubMatrices(int size)
 {

 MaximumTempMatrix = new double[size, size];

 MinimumTempMatrix = new double[size, size];
 TempCurveMtrix = new double[size, size];

 MaxSensitivityMatrix = new double[size, size];

 SelfHeatingMatrix = new double[size, size];
 LongTermStabilityMatrix = new double[size, size];

 TypTempCoeffMatrix = new double[size, size];

 ExtWiresMatrix = new double[size, size];
 LongWireMatrix = new double[size, size];

 MeasureParaMatrix = new double[size, size];

 TempMeasureMatrix = new double[size, size];
 StimulationElecMatrix = new double[size, size];

 TypOutputLevelMatrix = new double[size, size];

 TypFastThertimeConsMatrix = new double[size, size];
 TypSmallSizMatrix = new double[size, size];

 NoiseImmunityMatrix = new double[size, size];

 FraDurMatrix = new double[size, size];
 HiThGrEnMatrix = new double[size, size];

 CorrResMatrix = new double[size, size];

 PointAreaMeasMatrix = new double[size, size];
 ManuVarMatrix = new double[size, size];

 NistStanMatrix = new double[size, size];

 CostMatrix = new double[size, size];
 }

 public void FillMatrices(int[] IndeciesArray)
 {

 CreateSubMatrices(IndeciesArray.Length);

 }
 }

}

143

3. Automotives.cs File

using System;

using System.Collections.Generic;

using System.Text;

namespace AhpCaseStudy1GUI

{
 class Automotives

 {

 public System.Windows.Forms.TextBox textBoxResults;

 void Print(double[,] mat, int nDimensionSize, string strTitle)

 {
 if (strTitle == "")

 strTitle = "Matrix";

 //System.Console.WriteLine(strTitle);

 textBoxResults.AppendText("\n");

 textBoxResults.AppendText(strTitle);
 textBoxResults.AppendText("\n");

 textBoxResults.AppendText("\n");

 for (int i = 0; i < nDimensionSize; i++)
 {

 for (int j = 0; j < nDimensionSize; j++)

 {
 //System.Console.Write("{0}\t\t", mat[i, j]);

 textBoxResults.AppendText(" "+mat[i, j]);

 //textBoxResults.Update();
 }

 //System.Console.Write("\n");
 textBoxResults.AppendText("\n");

 }

 //System.Console.Write("\n\n");

 textBoxResults.AppendText("\n\n");

 }

 void Print(double[] vector, int nDimensionSize)

 {
 //System.Console.WriteLine("Relative Weight Vector = ");

 textBoxResults.AppendText("Relative Weight Vector = ");

 for (int i = 0; i < nDimensionSize; i++)
 {

 //System.Console.Write("{0}\t\t", vector[i]);

 textBoxResults.AppendText(" " + vector[i]);
 }

 //System.Console.Write("\n");

 textBoxResults.AppendText("\n");
 }

 void Scale(double[] vector, double scaleFactor)
 {

 for (int i = 0; i < vector.Length; i++)

 {
 vector[i] = vector[i] * scaleFactor;//vector[i] *= scaleFactor;

 }

 Print(vector, vector.Length);
 }

 double GetSummationOfVectorElements(double[] vector)
 {

 double Summation = 0.0;

 for (int i = 0; i < vector.Length; i++)
 {

 Summation = Summation + vector[i];

 }
 return Summation;

 }

 double[] CalculateWeightsForEachCriterion(double[,] expertAssesmentMatrix, int nDimensionSize, string strTitle)

 {

 //check for vald input values
 double[] weightVector = new double[nDimensionSize];

144

 if (expertAssesmentMatrix == null)

 return weightVector;

 Print(expertAssesmentMatrix, nDimensionSize, strTitle);

 //Calculate the weight factor for each colmun

 //The result is a vetor

 double[] wieghtFactor = new double[nDimensionSize];
 for (int j = 0; j < nDimensionSize; j++)

 {

 double result = 0.0;
 for (int k = 0; k < nDimensionSize; k++)

 {
 result += expertAssesmentMatrix[k, j]; //result = result + mat1[k, j];

 }

 wieghtFactor[j] = result;
 }

 double[,] mat1ImmediatResult = new double[nDimensionSize, nDimensionSize];

 for (int j = 0; j < nDimensionSize; j++)

 {

 for (int k = 0; k < nDimensionSize; k++)
 {

 expertAssesmentMatrix[k, j] = expertAssesmentMatrix[k, j] / wieghtFactor[j];

 }
 }

 //Calculate the weight factor for each colmun
 //The result is a vetor

 for (int j = 0; j < nDimensionSize; j++)

 {
 double result = 0.0;

 for (int k = 0; k < nDimensionSize; k++)

 {
 result += expertAssesmentMatrix[j, k]; //result = result + mat1[k, j];

 }

 weightVector[j] = result / nDimensionSize;
 }

 Print(weightVector, nDimensionSize);

//System.Console.WriteLine("___

_____________________________\n");

 return weightVector;
 }

 void FillSubMatrix(double[,] SourceMatrix, double[,] destinationSubMatrix, int[] IndeciesArray)
 {

 if (SourceMatrix == null || destinationSubMatrix == null || IndeciesArray == null)

 return;

 for (int i = 0; i < IndeciesArray.Length; i++)

 {
 for (int j = 0; j < IndeciesArray.Length; j++)

 {

 //destinationSubMatrix[IndeciesArray[i], IndeciesArray[j]] = SourceMatrix[IndeciesArray[i], IndeciesArray[j]];
 destinationSubMatrix[i, j] = SourceMatrix[IndeciesArray[i], IndeciesArray[j]];

 }

 }
 }

 double ComputeConsistencyIndex(double[,] Matrix, double[] vector, int nDimensionSize)
 {

 //check for vald input values
 double[] transposeVector = new double[nDimensionSize];

 double[] randomIndex = { 1.0, 0.5, 0.58, 0.9, 1.12, 1.24, 1.32 };

 if (Matrix == null)

 return 0.0;

 for (int j = 0; j < nDimensionSize; j++)

 {

 double result = 0.0;
 for (int k = 0; k < nDimensionSize; k++)

145

 {

 result += (Matrix[j, k] * vector[k]);
 }

 transposeVector[j] = result;

 }
 double division = 0.0;

 for (int k = 0; k < nDimensionSize; k++)

 {
 division += (transposeVector[k] / vector[k]);

 //transposeVector[k] = transposeVector[k]/vector[k];

 }

 division = division / nDimensionSize;

 double consistencyIndex = (division - nDimensionSize) / (nDimensionSize - 1);

 if (consistencyIndex < 0.0 && consistencyIndex > -0.0005)

 consistencyIndex = 0.0;

 if (consistencyIndex < 0.0005)

 consistencyIndex = 0.0;

 textBoxResults.AppendText("Consistency Index = ");

 textBoxResults.AppendText("" + consistencyIndex + "\n");

 textBoxResults.AppendText("\nConsistency Ratio = ");

 if(nDimensionSize > randomIndex.Length)

 textBoxResults.AppendText("" + (consistencyIndex/1.59));
 else

 textBoxResults.AppendText("" + (consistencyIndex/randomIndex[nDimensionSize-1]));

 textBoxResults.AppendText("\n");
 textBoxResults.AppendText("__\n");

 return consistencyIndex;

 }

 public double[] SelectBestSensor(int[] IndeciesArray)

 {
 double[] SensorRanks = new double[IndeciesArray.Length];

 AHPSubCriteria ReturnSubMatrices = new AHPSubCriteria();

 ReturnSubMatrices.CreateSubMatrices(IndeciesArray.Length);
 AHPSubCriteria ReturnSubMatricesNotNormalized = new AHPSubCriteria();

 ReturnSubMatricesNotNormalized.CreateSubMatrices(IndeciesArray.Length);

 double[,] MaximumTempMatrix = new double[,] {

 {1.0,3.0,1.0,9.0,4.0,6.0,4.0},

 {0.3333,1.0,0.3333,6.0,2.0,5.0,2.0},
 {1.0,3.0,1.0,9.0,4.0,6.0,4.0},

 {0.1111,0.1667,0.1111,1.0,0.1667,0.3333,0.1667},

 {0.25,0.5,0.25,6.0,1.0,4.0,1.0},
 {0.1667,0.2,0.1667,3.0,0.25,1.0,0.25},

 {0.25,0.5,0.25,6.0,1.0,4.0,1.0}

 };
 FillSubMatrix(MaximumTempMatrix, ReturnSubMatrices.MaximumTempMatrix, IndeciesArray);

 double[] MaximumTempMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MaximumTempMatrix,

IndeciesArray.Length, "Maximum Operating Temprature: ");

 FillSubMatrix(MaximumTempMatrix, ReturnSubMatricesNotNormalized.MaximumTempMatrix, IndeciesArray);

 double ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MaximumTempMatrix,
MaximumTempMatrixResult, IndeciesArray.Length);

 //

 double[,] MinimumTempMatrix = new double[,] {
 {1.0,2.0,2.0,0.5,0.5,0.125,0.3333},

 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},

 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},
 {2.0,3.0,3.0,1.0,1.0,0.25,0.5},

 {2.0,3.0,3.0,1.0,1.0,0.25,0.5},
 {8.0,8.0,8.0,4.0,4.0,1.0,4.0},

 {3.0,4.0,4.0,2.0,2.0,0.25,1.0}

 };
 FillSubMatrix(MinimumTempMatrix, ReturnSubMatrices.MinimumTempMatrix, IndeciesArray);

 double[] MinimumTempMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MinimumTempMatrix,

IndeciesArray.Length, "Minimum Operating Temprature: ");

 FillSubMatrix(MinimumTempMatrix, ReturnSubMatricesNotNormalized.MinimumTempMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MinimumTempMatrix,
MinimumTempMatrixResult, IndeciesArray.Length);

146

 //
 double[,] TempCurveMtrix = new double[,] {

 {1.0,3.0,0.3333,5.0,5.0,4.0,2.0},

 {0.3333,1.0,0.1667,2.0,2.0,1.0,0.3333},
 {3.0,6.0,1.0,6.0,6.0,6.0,4.0},

 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25},

 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25},
 {0.25,1.0,0.1667,3.0,3.0,1.0,0.5},

 {0.5,3.0,0.25,4.0,4.0,2.0,1.0}

 };
 FillSubMatrix(TempCurveMtrix, ReturnSubMatrices.TempCurveMtrix, IndeciesArray);

 double[] TempCurveMtrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TempCurveMtrix,
IndeciesArray.Length, "Temperature Curve:");

 FillSubMatrix(TempCurveMtrix, ReturnSubMatricesNotNormalized.TempCurveMtrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TempCurveMtrix, TempCurveMtrixResult,

IndeciesArray.Length);

 //

 double[,] MaxSensitivityMatrix = new double[,] {

 {1.0,0.1111,0.2,2.0,2.0,2.0,0.3333},
 {9.0,1.0,4.0,9.0,9.0,6.0,4.0},

 {5.0,0.25,1.0,4.0,5.0,4.0,2.0},

 {0.5,0.1111,0.25,1.0,2.0,2.0,0.25},
 {0.5,.1111,0.2,0.5,1.0,1.0,0.25},

 {0.5,0.1667,0.25,0.5,1.0,1.0,0.25},

 {3.0,0.25,0.5,4.0,4.0,4.0,1.0}
 };

 FillSubMatrix(MaxSensitivityMatrix, ReturnSubMatrices.MaxSensitivityMatrix, IndeciesArray);

 double[] MaxSensitivityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MaxSensitivityMatrix,
IndeciesArray.Length, "Maximum Sensitivity Region:");

 FillSubMatrix(MaxSensitivityMatrix, ReturnSubMatricesNotNormalized.MaxSensitivityMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MaxSensitivityMatrix,

MaxSensitivityMatrixResult, IndeciesArray.Length);

 //

 double[,] SelfHeatingMatrix = new double[,] {

 {1.0,8.0,3.0,3.0,1.0,1.0,2.0},
 {0.125,1.0,0.2,0.25,0.2,0.1667,0.25},

 {0.3333,5.0,1.0,0.5,0.5,0.3333,1.0},

 {0.3333,4.0,2.0,1.0,1.0,0.5,1.0},
 {1.0,5.0,2.0,1.0,1.0,1.0,2.0},

 {1.0,6.0,3.0,2.0,1.0,1.0,1.0},

 {0.5,4.0,1.0,1.0,0.5,1.0,1.0}
 };

 FillSubMatrix(SelfHeatingMatrix, ReturnSubMatrices.SelfHeatingMatrix, IndeciesArray);

 double[] SelfHeatingMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.SelfHeatingMatrix,
IndeciesArray.Length, "Self-Heating Issues:");

 FillSubMatrix(SelfHeatingMatrix, ReturnSubMatricesNotNormalized.SelfHeatingMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.SelfHeatingMatrix,

SelfHeatingMatrixResult, IndeciesArray.Length);

 //

 double[,] LongTermStabilityMatrix = new double[,] {

 {1.0,0.25,0.1667,2.0,0.3333,0.5,0.25},
 {4.0,1.0,0.3333,4.0,3.0,3.0,2.0},

 {6.0,3.0,1.0,8.0,4.0,5.0,3.0},

 {0.5,0.25,0.125,1.0,0.3333,0.3333,0.25},
 {3.0,0.3333,0.25,3.0,1.0,2.0,0.5},

 {2.0,0.3333,0.2,3.0,0.5,1.0,0.3333},

 {4.0,0.5,0.3333,4.0,2.0,3.0,1.0}
 };

 FillSubMatrix(LongTermStabilityMatrix, ReturnSubMatrices.LongTermStabilityMatrix, IndeciesArray);
 double[] LongTermStabilityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.LongTermStabilityMatrix,

IndeciesArray.Length, "Long Term Stability and Accuracy:");

 FillSubMatrix(LongTermStabilityMatrix, ReturnSubMatricesNotNormalized.LongTermStabilityMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.LongTermStabilityMatrix,

LongTermStabilityMatrixResult, IndeciesArray.Length);

 //

 double[,] TypTempCoeffMatrix = new double[,] {
 {1.0,0.1667,0.3333,4.0,4.0,4.0,0.5},

147

 {6.0,1.0,3.0,6.0,6.0,6.0,6.0},

 {3.0,0.3333,1.0,5.0,6.0,5.0,2.0},
 {0.25,0.1667,0.2,1.0,1.0,1.0,0.2},

 {0.25,0.1667,0.1667,1.0,1.0,1.0,0.2},

 {0.25,0.1667,0.2,1.0,1.0,1.0,0.3333},
 {2.0,0.1667,0.5,5.0,5.0,3.0,1.0}

 };

 FillSubMatrix(TypTempCoeffMatrix, ReturnSubMatrices.TypTempCoeffMatrix, IndeciesArray);
 double[] TypTempCoeffMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypTempCoeffMatrix,

IndeciesArray.Length, "Typical Temperature Coefficient:");

 FillSubMatrix(TypTempCoeffMatrix, ReturnSubMatricesNotNormalized.TypTempCoeffMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypTempCoeffMatrix,
TypTempCoeffMatrixResult, IndeciesArray.Length);

 //
 double[,] ExtWiresMatrix = new double[,] {

 {1.0,0.1667,0.16667,0.125,0.125,0.125,0.125},

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25},

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0},
 {8.0,4.0,4.0,1.0,1.0,1.0,1.0},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0}

 };
 FillSubMatrix(ExtWiresMatrix, ReturnSubMatrices.ExtWiresMatrix, IndeciesArray);

 double[] ExtWiresMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.ExtWiresMatrix,

IndeciesArray.Length, "Extension Wires:");

 FillSubMatrix(ExtWiresMatrix, ReturnSubMatricesNotNormalized.ExtWiresMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.ExtWiresMatrix, ExtWiresMatrixResult,
IndeciesArray.Length);

 //
 double[,] LongWireMatrix = new double[,] {

 {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667},

 {3.0,1.0,3.0,0.5,0.5,0.5,0.5},
 {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},
 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0}

 };
 FillSubMatrix(LongWireMatrix, ReturnSubMatrices.LongWireMatrix, IndeciesArray);

 double[] LongWireMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.LongWireMatrix,

IndeciesArray.Length, "Long Wire Runs From Sensor:");

 FillSubMatrix(LongWireMatrix, ReturnSubMatricesNotNormalized.LongWireMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.LongWireMatrix, LongWireMatrixResult,
IndeciesArray.Length);

 //
 double[,] MeasureParaMatrix = new double[,] {

 {1.0,4.0,3.0,5.0,5.0,6.0,1.0},

 {0.25,1.0,0.5,4.0,4.0,5.0,0.3333},
 {0.3333,2.0,1.0,3.0,3.0,4.0,0.3333},

 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2},

 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2},
 {0.1667,0.2,0.25,0.3333,0.3333,1.0,0.1667},

 {1.0,3.0,3.0,5.0,5.0,6.0,1.0}

 };
 FillSubMatrix(MeasureParaMatrix, ReturnSubMatrices.MeasureParaMatrix, IndeciesArray);

 double[] MeasureParaMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MeasureParaMatrix,

IndeciesArray.Length, "Measurement Parameter:");

 FillSubMatrix(MeasureParaMatrix, ReturnSubMatricesNotNormalized.MeasureParaMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MeasureParaMatrix,

MeasureParaMatrixResult, IndeciesArray.Length);

 //

 double[,] TempMeasureMatrix = new double[,] {

 {1.0,0.25,0.2,0.3333,0.3333,0.5,0.1667},

 {4.0,1.0,0.3333,1.0,3.0,3.0,0.1667},

 {5.0,3.0,1.0,4.0,5.0,5.0,0.5},

 {3.0,1.0,0.25,1.0,2.0,2.0,0.25},
 {3.0,0.3333,0.2,0.5,1.0,1.0,0.1667},

148

 {2.0,0.3333,0.2,0.5,1.0,1.0,0.2},

 {6.0,6.0,2.0,4.0,6.0,5.0,1.0}
 };

 FillSubMatrix(TempMeasureMatrix, ReturnSubMatrices.TempMeasureMatrix, IndeciesArray);

 double[] TempMeasureMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TempMeasureMatrix,
IndeciesArray.Length, "Temperature Measurement:");

 FillSubMatrix(TempMeasureMatrix, ReturnSubMatricesNotNormalized.TempMeasureMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TempMeasureMatrix,

TempMeasureMatrixResult, IndeciesArray.Length);

 //

 double[,] StimulationElecMatrix = new double[,] {
 {1.0,4.0,3.0,1.0,1.0,2.0,6.0},

 {0.25,1.0,0.5,0.2,0.2,0.25,3.0},

 {0.3333,2.0,1.0,0.25,0.25,0.5,3.0},
 {1.0,5.0,4.0,1.0,1.0,2.0,6.0},

 {1.0,5.0,4.0,1.0,1.0,3.0,6.0},

 {0.5,4.0,2.0,0.5,0.3333,1.0,4.0},

 {0.1667,0.3333,0.3333,0.1667,0.1667,0.25,1.0}

 };

 FillSubMatrix(StimulationElecMatrix, ReturnSubMatrices.StimulationElecMatrix, IndeciesArray);
 double[] StimulationElecMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.StimulationElecMatrix,

IndeciesArray.Length, "Stimulation Electronics Required:");

 FillSubMatrix(StimulationElecMatrix, ReturnSubMatricesNotNormalized.StimulationElecMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.StimulationElecMatrix,

StimulationElecMatrixResult, IndeciesArray.Length);

 //

 double[,] TypOutputLevelMatrix = new double[,] {
 {1.0,6.0,1.0,4.0,1.0,2.0,1.0},

 {0.1667,1.0,0.1667,0.25,0.1667,0.2,0.125},

 {1.0,6.0,1.0,4.0,1.0,2.0,1.0},
 {0.25,4.0,0.25,1.0,0.25,0.3333,0.1667},

 {1.0,6.0,1.0,4.0,1.0,3.0,1.0},

 {0.5,5.0,0.5,3.0,0.3333,1.0,0.3333},
 {1.0,8.0,1.0,6.0,1.0,3.0,1.0}

 };

 FillSubMatrix(TypOutputLevelMatrix, ReturnSubMatrices.TypOutputLevelMatrix, IndeciesArray);
 double[] TypOutputLevelMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypOutputLevelMatrix,

IndeciesArray.Length, "Existence of Maximum Sensitivity Region :");

 FillSubMatrix(TypOutputLevelMatrix, ReturnSubMatricesNotNormalized.TypOutputLevelMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypOutputLevelMatrix,

TypOutputLevelMatrixResult, IndeciesArray.Length);

 //

 double[,] TypFastThertimeConsMatrix = new double[,] {
 {1.0,3.0,4.0,6.0,5.0,1.0,3.0},

 {0.3333,1.0,2.0,4.0,3.0,0.3333,1.0},

 {0.25,0.5,1.0,2.0,2.0,0.25,1.0},
 {0.1667,0.25,0.5,1.0,0.5,0.1667,0.3333},

 {0.2,0.3333,0.5,2.0,1.0,0.2,0.3333},

 {1.0,3.0,4.0,6.0,5.0,1.0,3.0},
 {0.3333,1.0,1.0,3.0,3.0,0.3333,1.0}

 };

 FillSubMatrix(TypFastThertimeConsMatrix, ReturnSubMatrices.TypFastThertimeConsMatrix, IndeciesArray);
 double[] TypFastThertimeConsMatrixResult =

CalculateWeightsForEachCriterion(ReturnSubMatrices.TypFastThertimeConsMatrix, IndeciesArray.Length, "Typical Fast Thermal

Time Constant:");

 FillSubMatrix(TypFastThertimeConsMatrix, ReturnSubMatricesNotNormalized.TypFastThertimeConsMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypFastThertimeConsMatrix,
TypFastThertimeConsMatrixResult, IndeciesArray.Length);

 //

 double[,] TypSmallSizMatrix = new double[,] {

 {1.0,2.0,3.0,4.0,5.0,6.0,5.0},
 {0.5,1.0,2.0,3.0,4.0,5.0,4.0},

 {0.3333,0.5,1.0,2.0,4.0,6.0,4.0},

 {0.25,0.3333,0.5,1.0,2.0,3.0,2.0},

 {0.2,0.25,0.25,0.5,1.0,3.0,1.0},

 {0.1667,0.2,0.1667,0.3333,0.3333,1.0,0.5},

 {0.2,0.25,0.25,0.5,1.0,2.0,1.0}
 };

149

 FillSubMatrix(TypSmallSizMatrix, ReturnSubMatrices.TypSmallSizMatrix, IndeciesArray);

 double[] TypSmallSizMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypSmallSizMatrix,
IndeciesArray.Length, "Typical Small Size:");

 FillSubMatrix(TypSmallSizMatrix, ReturnSubMatricesNotNormalized.TypSmallSizMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypSmallSizMatrix,

TypSmallSizMatrixResult, IndeciesArray.Length);

 //

 double[,] NoiseImmunityMatrix = new double[,] {

 {1.0,0.1667,0.3333,0.25,0.25,0.5,0.25},
 {6.0,1.0,4.0,3.0,3.0,5.0,3.0},

 {3.0,0.25,1.0,0.5,0.5,2.0,0.5},
 {4.0,0.3333,2.0,1.0,1.0,3.0,1.0},

 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0},

 {2.0,0.2,0.5,0.3333,0.25,1.0,0.25},
 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0}

 };

 FillSubMatrix(NoiseImmunityMatrix, ReturnSubMatrices.NoiseImmunityMatrix, IndeciesArray);

 double[] NoiseImmunityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.NoiseImmunityMatrix,

IndeciesArray.Length, "Noise Immunity:");

 FillSubMatrix(NoiseImmunityMatrix, ReturnSubMatricesNotNormalized.NoiseImmunityMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.NoiseImmunityMatrix,

NoiseImmunityMatrixResult, IndeciesArray.Length);

 //

 double[,] FraDurMatrix = new double[,] {
 {1.0,6.0,3.0,6.0,8.0,3.0,4.0},

 {0.1667,1.0,0.3333,2.0,3.0,0.3333,0.5},

 {0.3333,3.0,1.0,3.0,4.0,2.0,3.0},
 {0.1667,0.5,0.3333,1.0,3.0,0.25,0.3333},

 {0.125,0.3333,0.25,0.3333,1.0,0.25,0.3333},

 {0.3333,3.0,0.5,4.0,4.0,1.0,3.0},
 {0.25,2.0,0.3333,3.0,3.0,0.3333,1.0}

 };
 FillSubMatrix(FraDurMatrix, ReturnSubMatrices.FraDurMatrix, IndeciesArray);

 double[] FraDurMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.FraDurMatrix, IndeciesArray.Length,

"Fragility-Durability:");

 FillSubMatrix(FraDurMatrix, ReturnSubMatricesNotNormalized.FraDurMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.FraDurMatrix, FraDurMatrixResult,
IndeciesArray.Length);

 //
 double[,] HiThGrEnMatrix = new double[,] {

 {1.0,4.0,5.0,7.0,8.0,4.0,6.0},

 {0.25,1.0,2.0,5.0,6.0,2.0,4.0},
 {0.2,0.5,1.0,3.0,3.0,0.5,2.0},

 {0.1429,0.2,0.3333,1.0,1.0,0.25,0.5},

 {0.125,0.1667,0.3333,1.0,1.0,0.2,0.3333},
 {0.25,0.5,2.0,4.0,5.0,1.0,4.0},

 {0.1667,0.25,0.5,2.0,3.0,0.25,1.0}

 };
 FillSubMatrix(HiThGrEnMatrix, ReturnSubMatrices.HiThGrEnMatrix, IndeciesArray);

 double[] HiThGrEnMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.HiThGrEnMatrix,

IndeciesArray.Length, "High Thermal Gradient Environment:");

 FillSubMatrix(HiThGrEnMatrix, ReturnSubMatricesNotNormalized.HiThGrEnMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.HiThGrEnMatrix, HiThGrEnMatrixResult,
IndeciesArray.Length);

 //
 double[,] CorrResMatrix = new double[,] {

 {1.0,0.25,0.1667,0.5,0.1667,0.1667,0.25},
 {4.0,1.0,0.3333,2.0,0.25,0.25,1.0},

 {6.0,3.0,1.0,4.0,1.0,1.0,4.0},

 {2.0,0.5,0.25,1.0,0.25,0.25,0.5},
 {6.0,4.0,1.0,4.0,1.0,1.0,3.0},

 {6.0,4.0,1.0,4.0,1.0,1.0,3.0},

 {4.0,1.0,0.25,2.0,0.3333,0.3333,1.0}

 };

 FillSubMatrix(CorrResMatrix, ReturnSubMatrices.CorrResMatrix, IndeciesArray);

 double[] CorrResMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.CorrResMatrix, IndeciesArray.Length,
"Corrosion Resistance:");

150

 FillSubMatrix(CorrResMatrix, ReturnSubMatricesNotNormalized.CorrResMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.CorrResMatrix, CorrResMatrixResult,

IndeciesArray.Length);

 //

 double[,] PointAreaMeasMatrix = new double[,] {

 {1.0,2.0,3.0,4.0,6.0,6.0,4.0},
 {0.5,1.0,2.0,3.0,4.0,4.0,3.0},

 {0.3333,0.5,1.0,2.0,3.0,4.0,2.0},

 {0.25,0.3333,0.5,1.0,2.0,2.0,0.5},
 {0.1667,0.25,0.3333,0.5,1.0,1.0,0.5},

 {0.1667,0.25,0.25,0.5,1.0,1.0,2.0},
 {0.25,0.5,0.3333,2.0,2.0,0.5,1.0}

 };

 FillSubMatrix(PointAreaMeasMatrix, ReturnSubMatrices.PointAreaMeasMatrix, IndeciesArray);
 double[] PointAreaMeasMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.PointAreaMeasMatrix,

IndeciesArray.Length, "Point or Area Measurement:");

 FillSubMatrix(PointAreaMeasMatrix, ReturnSubMatricesNotNormalized.PointAreaMeasMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.PointAreaMeasMatrix,

PointAreaMeasMatrixResult, IndeciesArray.Length);

 //

 double[,] ManuVarMatrix = new double[,] {
 {1.0, 0.3333, 0.1667,0.25,0.5,0.2,0.25},

 {3.0, 1.0, 0.3333,0.5,2.0,0.25,0.5},

 {6.0, 3.0, 1.0,4.0,3.0,6.0,3.0},
 {4.0,2.0,0.25,1.0,4.0,0.3333,0.5},

 {2.0,0.5,0.3333,0.25,1.0,0.2,0.25},

 {5.0,4.0,0.1667,3.0,5.0,1.0,2.0},
 {4.0,2.0,0.3333,2.0,4.0,0.5,1.0}

 };

 FillSubMatrix(ManuVarMatrix, ReturnSubMatrices.ManuVarMatrix, IndeciesArray);
 double[] ManuVarMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.ManuVarMatrix,

IndeciesArray.Length, "Manufacturing Variances:");

 FillSubMatrix(ManuVarMatrix, ReturnSubMatricesNotNormalized.ManuVarMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.ManuVarMatrix, ManuVarMatrixResult,

IndeciesArray.Length);

 //

 double[,] NistStanMatrix = new double[,] {
 {1.0 , 4.0, 1.0,1.0,1.0,4.0,5.0},

 {0.25, 1.0, 0.25,0.25,0.25,1.0,2.0},

 {1.0, 4.0, 1.0,1.0,1.0,4.0,5.0},
 {1.0,4.0,1.0,1.0,1.0,4.0,5.0},

 {1.0,4.0,1.0,1.0,1.0,4.0,5.0},

 {0.25,1.0,0.25,0.25,0.25,1.0,2.0},
 {0.2,0.5,0.2,0.2,0.2,0.5,1.0}

 };

 FillSubMatrix(NistStanMatrix, ReturnSubMatrices.NistStanMatrix, IndeciesArray);
 double[] NistStanMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.NistStanMatrix, IndeciesArray.Length,

"Standards Exist:");

 FillSubMatrix(NistStanMatrix, ReturnSubMatricesNotNormalized.NistStanMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.NistStanMatrix, NistStanMatrixResult,

IndeciesArray.Length);

 //

 double[,] CostMatrix = new double[,] {
 {1.0,1.0,6.0,3.0,3.0,6.0,3.0},

 {1.0,1.0,6.0,3.0,3.0,6.0,3.0},

 {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25},
 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0},

 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0},
 {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25},

 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}

 };
 FillSubMatrix(CostMatrix, ReturnSubMatrices.CostMatrix, IndeciesArray);

 double[] CostMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.CostMatrix, IndeciesArray.Length,

"Cost:");

 FillSubMatrix(CostMatrix, ReturnSubMatricesNotNormalized.CostMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.CostMatrix, CostMatrixResult,
IndeciesArray.Length);

151

 //
 double[,] weightsOfCriteria = new double[,] {

 {1.0,4.0,3.0,4.0},

 {0.25,1.0,0.5,1.0},
 {0.3333,2.0,1.0,2.0},

 {0.25,1.0,0.5,1.0}

 };

 double[] weightsOfCriteriaResults = CalculateWeightsForEachCriterion(weightsOfCriteria, 4, "Weights of Criteria:");

 double[,] weightsOfCriteria2 = new double[,] {

 {1.0,4.0,3.0,4.0},
 {0.25,1.0,0.5,1.0},

 {0.3333,2.0,1.0,2.0},

 {0.25,1.0,0.5,1.0}
 };

 ConsistencyIndex = ComputeConsistencyIndex(weightsOfCriteria2, weightsOfCriteriaResults, 4);

 //

 double[,] Weightssubcriteriastatic = new double[,] {

 {1.0,1.0,5.0,4.0,4.0,2.0,5.0,6.0,7.0,8.0,6.0},

 {1.0,1.0,5.0,4.0,4.0,2.0,5.0,6.0,7.0,8.0,6.0},
 {0.2,0.2,1.0,0.3333,0.3333,0.25,1.0,2.0,4.0,5.0,3.0},

 {0.25,0.25,3.0,1.0,2.0,0.5,3.0,3.0,5.0,6.0,4.0},

 {0.25,0.25,3.0,0.5,1.0,0.3333,3.0,5.0,6.0,8.0,4.0},
 {0.5,0.5,4.0,2.0,3.0,1.0,4.0,5.0,6.0,8.0,5.0},

 {0.2,0.2,1.0,0.3333,0.3333,0.25,1.0,1.0,4.0,6.0,3.0},

 {0.1667,0.1667,0.5,0.3333,0.2,0.2,1.0,1.0,3.0,4.0,1.0},
 {0.1429,0.1429,0.25,0.2,0.1667,0.1667,0.25,0.3333,1.0,2.0,0.3333},

 {0.125,0.125,0.2,0.1667,0.125,0.125,0.1667,0.25,0.5,1.0,0.25},

 {0.1667,0.1667,0.3333,0.25,0.25,0.2,0.3333,1.0,3.0,4.0,1.0}
 };

 double[] weightsSubCriteriaStaticResult = CalculateWeightsForEachCriterion(Weightssubcriteriastatic, 11, "Weights of Sub-

Criteria Static:");

 double[,] Weightssubcriteriastatic2 = new double[,] {

 {1.0,1.0,5.0,4.0,4.0,2.0,5.0,6.0,7.0,8.0,6.0},
 {1.0,1.0,5.0,4.0,4.0,2.0,5.0,6.0,7.0,8.0,6.0},

 {0.2,0.2,1.0,0.3333,0.3333,0.25,1.0,2.0,4.0,5.0,3.0},

 {0.25,0.25,3.0,1.0,2.0,0.5,3.0,3.0,5.0,6.0,4.0},
 {0.25,0.25,3.0,0.5,1.0,0.3333,3.0,5.0,6.0,8.0,4.0},

 {0.5,0.5,4.0,2.0,3.0,1.0,4.0,5.0,6.0,8.0,5.0},

 {0.2,0.2,1.0,0.3333,0.3333,0.25,1.0,1.0,4.0,6.0,3.0},
 {0.1667,0.1667,0.5,0.3333,0.2,0.2,1.0,1.0,3.0,4.0,1.0},

 {0.1429,0.1429,0.25,0.2,0.1667,0.1667,0.25,0.3333,1.0,2.0,0.3333},

 {0.125,0.125,0.2,0.1667,0.125,0.125,0.1667,0.25,0.5,1.0,0.25},
 {0.1667,0.1667,0.3333,0.25,0.25,0.2,0.3333,1.0,3.0,4.0,1.0}

 };

 ConsistencyIndex = ComputeConsistencyIndex(Weightssubcriteriastatic2, weightsSubCriteriaStaticResult, 11);
 //

 double[,] weightssubCriteriaDynamic = new double[,] {

 {1.0,2.0,0.1667},
 {0.5,1.0,0.1667},

 {6.0,6.0,1.0}

 };
 double[] weightsSubCriteriaDynamicResult = CalculateWeightsForEachCriterion(weightssubCriteriaDynamic, 3, "Weights of

Sub-Criteria Dynamic:");

 double[,] weightssubCriteriaDynamic2 = new double[,] {

 {1.0,2.0,0.1667},

 {0.5,1.0,0.1667},
 {6.0,6.0,1.0}

 };

 ConsistencyIndex = ComputeConsistencyIndex(weightssubCriteriaDynamic2, weightsSubCriteriaDynamicResult, 3);
 //

 double[,] weightssubCriteriaEnv = new double[,] {
 {1.0,3.0,0.3333,4.0,0.25},

 {0.3333,1.0,0.25,3.0,0.2},

 {3.0,4.0,1.0,5.0,0.5},
 {0.25,0.3333,0.2,1.0,0.1667},

 {4.0,5.0,2.0,6.0,1.0}

 };

 double[] weightsSubCriteriaEnvironmentalResult = CalculateWeightsForEachCriterion(weightssubCriteriaEnv, 5, "Weights of

Sub-Criteria Environmental:");

 double[,] weightssubCriteriaEnv2 = new double[,] {

152

 {1.0,3.0,0.3333,4.0,0.25},

 {0.3333,1.0,0.25,3.0,0.2},
 {3.0,4.0,1.0,5.0,0.5},

 {0.25,0.3333,0.2,1.0,0.1667},

 {4.0,5.0,2.0,6.0,1.0}
 };

 ConsistencyIndex = ComputeConsistencyIndex(weightssubCriteriaEnv2, weightsSubCriteriaEnvironmentalResult, 5);

 //
 double[,] Others = new double[,] {

 {1.0,3.0,0.5,0.25},

 {0.3333,1.0,0.3333,0.2},
 {2.0,3.0,1.0,0.3333},

 {4.0,5.0,3.0,1.0}
 };

 double[] weightsSubCriteriaOthersResult = CalculateWeightsForEachCriterion(Others, 4, "Weights of Sub-Criteria Others:");

 double[,] Others2 = new double[,] {

 {1.0,3.0,0.5,0.25},

 {0.3333,1.0,0.3333,0.2},

 {2.0,3.0,1.0,0.3333},

 {4.0,5.0,3.0,1.0}

 };
 ConsistencyIndex = ComputeConsistencyIndex(Others2, weightsSubCriteriaOthersResult, 4);

 //

 //Calculate sub criteria aggregate weights with respect to final goal
 Scale(weightsSubCriteriaStaticResult, weightsOfCriteriaResults[0]);

 Scale(weightsSubCriteriaDynamicResult, weightsOfCriteriaResults[1]);

 Scale(weightsSubCriteriaEnvironmentalResult, weightsOfCriteriaResults[2]);
 Scale(weightsSubCriteriaOthersResult, weightsOfCriteriaResults[3]);

 //
 //Calculate sub criteria aggregate weights for ThermoCouple (alternative 1)

 double ThermoCoupleFinalScore = 0.0;

 double ThermisterFinalScore = 0.0;
 double RTDFinalScore = 0.0;

 double BimetallicFinalScore = 0.0;

 double ThermometerFinalScore = 0.0;
 double PyrometerFinalScore = 0.0;

 double LCDDidplayFinalScore = 0.0;

 for (int k = 0; k < IndeciesArray.Length; k++)

 {

 if (IndeciesArray[k] == AHP.SENSOR_THERMOCOUPLE)
 {

 double[] ThermoCoupleAggregateSubCriteriaStatic = new double[11];

 double[] ThermoCoupleAggregateSubCriteriaDynamic = new double[3];
 double[] ThermoCoupleAggregateSubCriteriaEnvironmental = new double[5];

 double[] ThermoCoupleAggregateSubCriteriaOthers = new double[4];

 ThermoCoupleAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];

 ThermoCoupleAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];

 ThermoCoupleAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];
 ThermoCoupleAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];

 ThermoCoupleAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];

 ThermoCoupleAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];
 ThermoCoupleAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];

 ThermoCoupleAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];

 ThermoCoupleAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];
 ThermoCoupleAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];

 ThermoCoupleAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 ThermoCoupleFinalScore = ThermoCoupleFinalScore +

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaStatic);

 ThermoCoupleAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] *

weightsSubCriteriaDynamicResult[0];
 ThermoCoupleAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] *

weightsSubCriteriaDynamicResult[1];

 ThermoCoupleAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *
weightsSubCriteriaDynamicResult[2];

 ThermoCoupleFinalScore = ThermoCoupleFinalScore +

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaDynamic);

 ThermoCoupleAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[0];

153

 ThermoCoupleAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];
 ThermoCoupleAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[2];

 ThermoCoupleAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[3];

 ThermoCoupleAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[4];

 ThermoCoupleFinalScore = ThermoCoupleFinalScore +

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaEnvironmental);

 ThermoCoupleAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];
 ThermoCoupleAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];

 ThermoCoupleAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 ThermoCoupleAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 ThermoCoupleFinalScore = ThermoCoupleFinalScore +

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaOthers);

 SensorRanks[k] = ThermoCoupleFinalScore;

 System.Console.Write("\n\n");
 System.Console.Write("Thermo Couple Final Score = {0}", ThermoCoupleFinalScore);

 }

 //
 //Calculate sub criteria aggregate weights for Thermister (alternative 2)

 else if (IndeciesArray[k] == AHP.SENSOR_THERMISTER)

 {
 double[] ThermisterAggregateSubCriteriaStatic = new double[11];

 double[] ThermisterAggregateSubCriteriaDynamic = new double[3];

 double[] ThermisterAggregateSubCriteriaEnvironmental = new double[5];
 double[] ThermisterAggregateSubCriteriaOthers = new double[4];

 ThermisterAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];
 ThermisterAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];

 ThermisterAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];

 ThermisterAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];
 ThermisterAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];

 ThermisterAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];

 ThermisterAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];
 ThermisterAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];

 ThermisterAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];

 ThermisterAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];
 ThermisterAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 ThermisterFinalScore = ThermisterFinalScore + GetSummationOfVectorElements(ThermisterAggregateSubCriteriaStatic);

 ThermisterAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];

 ThermisterAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];
 ThermisterAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *

weightsSubCriteriaDynamicResult[2];

 ThermisterFinalScore = ThermisterFinalScore +

GetSummationOfVectorElements(ThermisterAggregateSubCriteriaDynamic);

 ThermisterAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[0];

 ThermisterAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[1];

 ThermisterAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2];

 ThermisterAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[3];

 ThermisterAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4];

 ThermisterFinalScore = ThermisterFinalScore +

GetSummationOfVectorElements(ThermisterAggregateSubCriteriaEnvironmental);

 ThermisterAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];

 ThermisterAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];
 ThermisterAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 ThermisterAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 ThermisterFinalScore = ThermisterFinalScore + GetSummationOfVectorElements(ThermisterAggregateSubCriteriaOthers);

 System.Console.Write("\n\n");
 System.Console.Write("Thermister Final Score = {0}", ThermisterFinalScore);

154

 SensorRanks[k] = ThermisterFinalScore;
 }

 //

 //Calculate sub criteria aggregate weights for RTD (alternative 3)
 else if (IndeciesArray[k] == AHP.SENSOR_RTD)

 {

 double[] RTDAggregateSubCriteriaStatic = new double[11];
 double[] RTDAggregateSubCriteriaDynamic = new double[3];

 double[] RTDAggregateSubCriteriaEnvironmental = new double[5];

 double[] RTDAggregateSubCriteriaOthers = new double[4];

 RTDAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];
 RTDAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];

 RTDAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];

 RTDAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];
 RTDAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];

 RTDAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];

 RTDAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];

 RTDAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];

 RTDAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];

 RTDAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];
 RTDAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaStatic);

 RTDAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];

 RTDAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];
 RTDAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * weightsSubCriteriaDynamicResult[2];

 RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaDynamic);

 RTDAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[0];

 RTDAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[1];

 RTDAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2];

 RTDAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[3];
 RTDAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4];

 RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaEnvironmental);

 RTDAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];

 RTDAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];
 RTDAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 RTDAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaOthers);

 SensorRanks[k] = RTDFinalScore;

 }
 else if (IndeciesArray[k] == AHP.SENSOR_BIMETALLIC)

 {

 double[] BimetallicAggregateSubCriteriaStatic = new double[11];
 double[] BimetallicAggregateSubCriteriaDynamic = new double[3];

 double[] BimetallicAggregateSubCriteriaEnvironmental = new double[5];

 double[] BimetallicAggregateSubCriteriaOthers = new double[4];

 BimetallicAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];

 BimetallicAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];
 BimetallicAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];

 BimetallicAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];

 BimetallicAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];
 BimetallicAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];

 BimetallicAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];

 BimetallicAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];
 BimetallicAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];

 BimetallicAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];
 BimetallicAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 BimetallicFinalScore = BimetallicFinalScore + GetSummationOfVectorElements(BimetallicAggregateSubCriteriaStatic);

 BimetallicAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];

 BimetallicAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];

 BimetallicAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *

weightsSubCriteriaDynamicResult[2];

155

 BimetallicFinalScore = BimetallicFinalScore +

GetSummationOfVectorElements(BimetallicAggregateSubCriteriaDynamic);

 BimetallicAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[0];
 BimetallicAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];

 BimetallicAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2];
 BimetallicAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[3];

 BimetallicAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4];

 BimetallicFinalScore = BimetallicFinalScore +
GetSummationOfVectorElements(BimetallicAggregateSubCriteriaEnvironmental);

 BimetallicAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];
 BimetallicAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];

 BimetallicAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 BimetallicAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 BimetallicFinalScore = BimetallicFinalScore + GetSummationOfVectorElements(BimetallicAggregateSubCriteriaOthers);

 SensorRanks[k] = BimetallicFinalScore;
 }

 else if (IndeciesArray[k] == AHP.SENSOR_THERMOMETER)

 {
 double[] ThermometerAggregateSubCriteriaStatic = new double[11];

 double[] ThermometerAggregateSubCriteriaDynamic = new double[3];

 double[] ThermometerAggregateSubCriteriaEnvironmental = new double[5];
 double[] ThermometerAggregateSubCriteriaOthers = new double[4];

 ThermometerAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];
 ThermometerAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];

 ThermometerAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];

 ThermometerAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];
 ThermometerAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];

 ThermometerAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];

 ThermometerAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];
 ThermometerAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];

 ThermometerAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];

 ThermometerAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];
 ThermometerAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 ThermometerFinalScore = ThermometerFinalScore +
GetSummationOfVectorElements(ThermometerAggregateSubCriteriaStatic);

 ThermometerAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];
 ThermometerAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];

 ThermometerAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *

weightsSubCriteriaDynamicResult[2];

 ThermometerFinalScore = ThermometerFinalScore +

GetSummationOfVectorElements(ThermometerAggregateSubCriteriaDynamic);

 ThermometerAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[0];
 ThermometerAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];

 ThermometerAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[2];

 ThermometerAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[3];
 ThermometerAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[4];

 ThermometerFinalScore = ThermometerFinalScore +

GetSummationOfVectorElements(ThermometerAggregateSubCriteriaEnvironmental);

 ThermometerAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];

 ThermometerAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];
 ThermometerAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 ThermometerAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 ThermometerFinalScore = ThermometerFinalScore +

GetSummationOfVectorElements(ThermometerAggregateSubCriteriaOthers);

 SensorRanks[k] = ThermometerFinalScore;
 }

156

 else if (IndeciesArray[k] == AHP.SENSOR_PYROMETER)

 {
 double[] PyrometerAggregateSubCriteriaStatic = new double[11];

 double[] PyrometerAggregateSubCriteriaDynamic = new double[3];

 double[] PyrometerAggregateSubCriteriaEnvironmental = new double[5];
 double[] PyrometerAggregateSubCriteriaOthers = new double[4];

 PyrometerAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];
 PyrometerAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];

 PyrometerAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];

 PyrometerAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];
 PyrometerAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];

 PyrometerAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];
 PyrometerAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];

 PyrometerAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];

 PyrometerAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];
 PyrometerAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];

 PyrometerAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 PyrometerFinalScore = PyrometerFinalScore + GetSummationOfVectorElements(PyrometerAggregateSubCriteriaStatic);

 PyrometerAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];
 PyrometerAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];

 PyrometerAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *

weightsSubCriteriaDynamicResult[2];

 PyrometerFinalScore = PyrometerFinalScore +

GetSummationOfVectorElements(PyrometerAggregateSubCriteriaDynamic);

 PyrometerAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[0];
 PyrometerAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];

 PyrometerAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2];
 PyrometerAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[3];

 PyrometerAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4];

 PyrometerFinalScore = PyrometerFinalScore +

GetSummationOfVectorElements(PyrometerAggregateSubCriteriaEnvironmental);

 PyrometerAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];

 PyrometerAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];
 PyrometerAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 PyrometerAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 PyrometerFinalScore = PyrometerFinalScore + GetSummationOfVectorElements(PyrometerAggregateSubCriteriaOthers);

 SensorRanks[k] = PyrometerFinalScore;

 }
 else if (IndeciesArray[k] == AHP.SENSOR_LCD_DISPLAY)

 {

 double[] LCDDidplayAggregateSubCriteriaStatic = new double[11];
 double[] LCDDidplayAggregateSubCriteriaDynamic = new double[3];

 double[] LCDDidplayAggregateSubCriteriaEnvironmental = new double[5];

 double[] LCDDidplayAggregateSubCriteriaOthers = new double[4];

 LCDDidplayAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];

 LCDDidplayAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];
 LCDDidplayAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];

 LCDDidplayAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];

 LCDDidplayAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];
 LCDDidplayAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];

 LCDDidplayAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];

 LCDDidplayAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];
 LCDDidplayAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];

 LCDDidplayAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];
 LCDDidplayAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 LCDDidplayFinalScore = LCDDidplayFinalScore +
GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaStatic);

 LCDDidplayAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];

 LCDDidplayAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];

 LCDDidplayAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *

weightsSubCriteriaDynamicResult[2];

157

 LCDDidplayFinalScore = LCDDidplayFinalScore +

GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaDynamic);

 LCDDidplayAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[0];
 LCDDidplayAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];

 LCDDidplayAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[2];

 LCDDidplayAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[3];
 LCDDidplayAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[4];

 LCDDidplayFinalScore = LCDDidplayFinalScore +

GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaEnvironmental);

 LCDDidplayAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];

 LCDDidplayAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];

 LCDDidplayAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 LCDDidplayAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 LCDDidplayFinalScore = LCDDidplayFinalScore +

GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaOthers);

 SensorRanks[k] = LCDDidplayFinalScore;
 }

 }

 textBoxResults.AppendText("\n\n");

 textBoxResults.AppendText("\nSensor Ranks: \n");

 for (int j = 0; j < SensorRanks.Length; j++)
 {

 textBoxResults.AppendText("" + SensorRanks[j] + "\n");

 }

 return SensorRanks;

 }
 }

}

158

4. ChemicalProcess.cs File

using System;

using System.Collections.Generic;

using System.Text;

namespace AhpCaseStudy1GUI

{
 class ChemicalReactions

 {

 public System.Windows.Forms.TextBox textBoxResults;

 void Print(double[,] mat, int nDimensionSize, string strTitle)

 {
 if (strTitle == "")

 strTitle = "Matrix";

 //System.Console.WriteLine(strTitle);

 textBoxResults.AppendText("\n");

 textBoxResults.AppendText(strTitle);
 textBoxResults.AppendText("\n");

 textBoxResults.AppendText("\n");

 for (int i = 0; i < nDimensionSize; i++)
 {

 for (int j = 0; j < nDimensionSize; j++)

 {
 //System.Console.Write("{0}\t\t", mat[i, j]);

 textBoxResults.AppendText(" " + mat[i, j]);

 //textBoxResults.Update();
 }

 //System.Console.Write("\n");
 textBoxResults.AppendText("\n");

 }

 //System.Console.Write("\n\n");

 textBoxResults.AppendText("\n\n");

 }

 void Print(double[] vector, int nDimensionSize)

 {
 //System.Console.WriteLine("Relative Weight Vector = ");

 textBoxResults.AppendText("Relative Weight Vector = ");

 for (int i = 0; i < nDimensionSize; i++)
 {

 //System.Console.Write("{0}\t\t", vector[i]);

 textBoxResults.AppendText(" " + vector[i]);
 }

 //System.Console.Write("\n");

 textBoxResults.AppendText("\n");
 }

 void Scale(double[] vector, double scaleFactor)
 {

 for (int i = 0; i < vector.Length; i++)

 {
 vector[i] = vector[i] * scaleFactor;//vector[i] *= scaleFactor;

 }

 Print(vector, vector.Length);
 }

 double GetSummationOfVectorElements(double[] vector)
 {

 double Summation = 0.0;

 for (int i = 0; i < vector.Length; i++)
 {

 Summation = Summation + vector[i];

 }
 return Summation;

 }

 double[] CalculateWeightsForEachCriterion(double[,] expertAssesmentMatrix, int nDimensionSize, string strTitle)

 {

 //check for vald input values
 double[] weightVector = new double[nDimensionSize];

159

 if (expertAssesmentMatrix == null)

 return weightVector;

 Print(expertAssesmentMatrix, nDimensionSize, strTitle);

 //Calculate the weight factor for each colmun

 //The result is a vetor

 double[] wieghtFactor = new double[nDimensionSize];
 for (int j = 0; j < nDimensionSize; j++)

 {

 double result = 0.0;
 for (int k = 0; k < nDimensionSize; k++)

 {
 result += expertAssesmentMatrix[k, j]; //result = result + mat1[k, j];

 }

 wieghtFactor[j] = result;
 }

 double[,] mat1ImmediatResult = new double[nDimensionSize, nDimensionSize];

 for (int j = 0; j < nDimensionSize; j++)

 {

 for (int k = 0; k < nDimensionSize; k++)
 {

 expertAssesmentMatrix[k, j] = expertAssesmentMatrix[k, j] / wieghtFactor[j];

 }
 }

 //Calculate the weight factor for each colmun
 //The result is a vetor

 for (int j = 0; j < nDimensionSize; j++)

 {
 double result = 0.0;

 for (int k = 0; k < nDimensionSize; k++)

 {
 result += expertAssesmentMatrix[j, k]; //result = result + mat1[k, j];

 }

 weightVector[j] = result / nDimensionSize;
 }

 Print(weightVector, nDimensionSize);

//System.Console.WriteLine("___

_____________________________\n");

 return weightVector;
 }

 void FillSubMatrix(double[,] SourceMatrix, double[,] destinationSubMatrix, int[] IndeciesArray)
 {

 if (SourceMatrix == null || destinationSubMatrix == null || IndeciesArray == null)

 return;

 for (int i = 0; i < IndeciesArray.Length; i++)

 {
 for (int j = 0; j < IndeciesArray.Length; j++)

 {

 //destinationSubMatrix[IndeciesArray[i], IndeciesArray[j]] = SourceMatrix[IndeciesArray[i], IndeciesArray[j]];
 destinationSubMatrix[i, j] = SourceMatrix[IndeciesArray[i], IndeciesArray[j]];

 }

 }
 }

 double ComputeConsistencyIndex(double[,] Matrix, double[] vector, int nDimensionSize)
 {

 //check for vald input values
 double[] transposeVector = new double[nDimensionSize];

 double[] randomIndex = { 1.0, 0.5, 0.58, 0.9, 1.12, 1.24, 1.32 };

 if (Matrix == null)

 return 0.0;

 for (int j = 0; j < nDimensionSize; j++)

 {

 double result = 0.0;
 for (int k = 0; k < nDimensionSize; k++)

160

 {

 result += (Matrix[j, k] * vector[k]);
 }

 transposeVector[j] = result;

 }
 double division = 0.0;

 for (int k = 0; k < nDimensionSize; k++)

 {
 division += (transposeVector[k] / vector[k]);

 //transposeVector[k] = transposeVector[k]/vector[k];

 }

 division = division / nDimensionSize;

 double consistencyIndex = (division - nDimensionSize) / (nDimensionSize - 1);

 if (consistencyIndex < 0.0 && consistencyIndex > -0.0005)

 consistencyIndex = 0.0;

 if (consistencyIndex < 0.0005)

 consistencyIndex = 0.0;

 textBoxResults.AppendText("Consistency Index = ");

 textBoxResults.AppendText("" + consistencyIndex + "\n");

 textBoxResults.AppendText("\nConsistency Ratio = ");

 if (nDimensionSize > randomIndex.Length)

 textBoxResults.AppendText("" + (consistencyIndex / 1.59));
 else

 textBoxResults.AppendText("" + (consistencyIndex / randomIndex[nDimensionSize - 1]));

 textBoxResults.AppendText("\n");
 textBoxResults.AppendText("__\n");

 return consistencyIndex;

 }

 public double[] SelectBestSensor(int[] IndeciesArray)

 {
 double[] SensorRanks = new double[IndeciesArray.Length];

 AHPSubCriteria ReturnSubMatrices = new AHPSubCriteria();

 ReturnSubMatrices.CreateSubMatrices(IndeciesArray.Length);
 AHPSubCriteria ReturnSubMatricesNotNormalized = new AHPSubCriteria();

 ReturnSubMatricesNotNormalized.CreateSubMatrices(IndeciesArray.Length);

 double[,] MaximumTempMatrix = new double[,] {

 {1.0,3.0,1.0,9.0,4.0,6.0,4.0},

 {0.3333,1.0,0.3333,6.0,2.0,5.0,2.0},
 {1.0,3.0,1.0,9.0,4.0,6.0,4.0},

 {0.1111,0.1667,0.1111,1.0,0.1667,0.3333,0.1667},

 {0.25,0.5,0.25,6.0,1.0,4.0,1.0},
 {0.1667,0.2,0.1667,3.0,0.25,1.0,0.25},

 {0.25,0.5,0.25,6.0,1.0,4.0,1.0}

 };
 FillSubMatrix(MaximumTempMatrix, ReturnSubMatrices.MaximumTempMatrix, IndeciesArray);

 double[] MaximumTempMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MaximumTempMatrix,

IndeciesArray.Length, "Maximum Operating Temprature: ");

 FillSubMatrix(MaximumTempMatrix, ReturnSubMatricesNotNormalized.MaximumTempMatrix, IndeciesArray);

 double ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MaximumTempMatrix,
MaximumTempMatrixResult, IndeciesArray.Length);

 //

 double[,] MinimumTempMatrix = new double[,] {
 {1.0,2.0,2.0,0.5,0.5,0.125,0.3333},

 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},

 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},
 {2.0,3.0,3.0,1.0,1.0,0.25,0.5},

 {2.0,3.0,3.0,1.0,1.0,0.25,0.5},
 {8.0,8.0,8.0,4.0,4.0,1.0,4.0},

 {3.0,4.0,4.0,2.0,2.0,0.25,1.0}

 };
 FillSubMatrix(MinimumTempMatrix, ReturnSubMatrices.MinimumTempMatrix, IndeciesArray);

 double[] MinimumTempMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MinimumTempMatrix,

IndeciesArray.Length, "Minimum Operating Temprature: ");

 FillSubMatrix(MinimumTempMatrix, ReturnSubMatricesNotNormalized.MinimumTempMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MinimumTempMatrix,
MinimumTempMatrixResult, IndeciesArray.Length);

161

 //
 double[,] TempCurveMtrix = new double[,] {

 {1.0,3.0,0.3333,5.0,5.0,4.0,2.0},

 {0.3333,1.0,0.1667,2.0,2.0,1.0,0.3333},
 {3.0,6.0,1.0,6.0,6.0,6.0,4.0},

 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25},

 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25},
 {0.25,1.0,0.1667,3.0,3.0,1.0,0.5},

 {0.5,3.0,0.25,4.0,4.0,2.0,1.0}

 };
 FillSubMatrix(TempCurveMtrix, ReturnSubMatrices.TempCurveMtrix, IndeciesArray);

 double[] TempCurveMtrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TempCurveMtrix,
IndeciesArray.Length, "Temperature Curve:");

 FillSubMatrix(TempCurveMtrix, ReturnSubMatricesNotNormalized.TempCurveMtrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TempCurveMtrix, TempCurveMtrixResult,

IndeciesArray.Length);

 //

 double[,] MaxSensitivityMatrix = new double[,] {

 {1.0,0.1111,0.2,2.0,2.0,2.0,0.3333},
 {9.0,1.0,4.0,9.0,9.0,6.0,4.0},

 {5.0,0.25,1.0,4.0,5.0,4.0,2.0},

 {0.5,0.1111,0.25,1.0,2.0,2.0,0.25},
 {0.5,.1111,0.2,0.5,1.0,1.0,0.25},

 {0.5,0.1667,0.25,0.5,1.0,1.0,0.25},

 {3.0,0.25,0.5,4.0,4.0,4.0,1.0}
 };

 FillSubMatrix(MaxSensitivityMatrix, ReturnSubMatrices.MaxSensitivityMatrix, IndeciesArray);

 double[] MaxSensitivityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MaxSensitivityMatrix,
IndeciesArray.Length, "Maximum Sensitivity Region:");

 FillSubMatrix(MaxSensitivityMatrix, ReturnSubMatricesNotNormalized.MaxSensitivityMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MaxSensitivityMatrix,

MaxSensitivityMatrixResult, IndeciesArray.Length);

 //

 double[,] SelfHeatingMatrix = new double[,] {

 {1.0,8.0,3.0,3.0,1.0,1.0,2.0},
 {0.125,1.0,0.2,0.25,0.2,0.1667,0.25},

 {0.3333,5.0,1.0,0.5,0.5,0.3333,1.0},

 {0.3333,4.0,2.0,1.0,1.0,0.5,1.0},
 {1.0,5.0,2.0,1.0,1.0,1.0,2.0},

 {1.0,6.0,3.0,2.0,1.0,1.0,1.0},

 {0.5,4.0,1.0,1.0,0.5,1.0,1.0}
 };

 FillSubMatrix(SelfHeatingMatrix, ReturnSubMatrices.SelfHeatingMatrix, IndeciesArray);

 double[] SelfHeatingMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.SelfHeatingMatrix,
IndeciesArray.Length, "Self-Heating Issues:");

 FillSubMatrix(SelfHeatingMatrix, ReturnSubMatricesNotNormalized.SelfHeatingMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.SelfHeatingMatrix,

SelfHeatingMatrixResult, IndeciesArray.Length);

 //

 double[,] LongTermStabilityMatrix = new double[,] {

 {1.0,0.25,0.1667,2.0,0.3333,0.5,0.25},
 {4.0,1.0,0.3333,4.0,3.0,3.0,2.0},

 {6.0,3.0,1.0,8.0,4.0,5.0,3.0},

 {0.5,0.25,0.125,1.0,0.3333,0.3333,0.25},
 {3.0,0.3333,0.25,3.0,1.0,2.0,0.5},

 {2.0,0.3333,0.2,3.0,0.5,1.0,0.3333},

 {4.0,0.5,0.3333,4.0,2.0,3.0,1.0}
 };

 FillSubMatrix(LongTermStabilityMatrix, ReturnSubMatrices.LongTermStabilityMatrix, IndeciesArray);
 double[] LongTermStabilityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.LongTermStabilityMatrix,

IndeciesArray.Length, "Long Term Stability and Accuracy:");

 FillSubMatrix(LongTermStabilityMatrix, ReturnSubMatricesNotNormalized.LongTermStabilityMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.LongTermStabilityMatrix,

LongTermStabilityMatrixResult, IndeciesArray.Length);

 //

 double[,] TypTempCoeffMatrix = new double[,] {
 {1.0,0.1667,0.3333,4.0,4.0,4.0,0.5},

162

 {6.0,1.0,3.0,6.0,6.0,6.0,6.0},

 {3.0,0.3333,1.0,5.0,6.0,5.0,2.0},
 {0.25,0.1667,0.2,1.0,1.0,1.0,0.2},

 {0.25,0.1667,0.1667,1.0,1.0,1.0,0.2},

 {0.25,0.1667,0.2,1.0,1.0,1.0,0.3333},
 {2.0,0.1667,0.5,5.0,5.0,3.0,1.0}

 };

 FillSubMatrix(TypTempCoeffMatrix, ReturnSubMatrices.TypTempCoeffMatrix, IndeciesArray);
 double[] TypTempCoeffMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypTempCoeffMatrix,

IndeciesArray.Length, "Typical Temperature Coefficient:");

 FillSubMatrix(TypTempCoeffMatrix, ReturnSubMatricesNotNormalized.TypTempCoeffMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypTempCoeffMatrix,
TypTempCoeffMatrixResult, IndeciesArray.Length);

 //
 double[,] ExtWiresMatrix = new double[,] {

 {1.0,0.1667,0.16667,0.125,0.125,0.125,0.125},

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25},

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0},
 {8.0,4.0,4.0,1.0,1.0,1.0,1.0},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0}

 };
 FillSubMatrix(ExtWiresMatrix, ReturnSubMatrices.ExtWiresMatrix, IndeciesArray);

 double[] ExtWiresMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.ExtWiresMatrix,

IndeciesArray.Length, "Extension Wires:");

 FillSubMatrix(ExtWiresMatrix, ReturnSubMatricesNotNormalized.ExtWiresMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.ExtWiresMatrix, ExtWiresMatrixResult,
IndeciesArray.Length);

 //
 double[,] LongWireMatrix = new double[,] {

 {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667},

 {3.0,1.0,3.0,0.5,0.5,0.5,0.5},
 {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},
 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0}

 };
 FillSubMatrix(LongWireMatrix, ReturnSubMatrices.LongWireMatrix, IndeciesArray);

 double[] LongWireMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.LongWireMatrix,

IndeciesArray.Length, "Long Wire Runs From Sensor:");

 FillSubMatrix(LongWireMatrix, ReturnSubMatricesNotNormalized.LongWireMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.LongWireMatrix, LongWireMatrixResult,
IndeciesArray.Length);

 //
 double[,] MeasureParaMatrix = new double[,] {

 {1.0,4.0,3.0,5.0,5.0,6.0,1.0},

 {0.25,1.0,0.5,4.0,4.0,5.0,0.3333},
 {0.3333,2.0,1.0,3.0,3.0,4.0,0.3333},

 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2},

 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2},
 {0.1667,0.2,0.25,0.3333,0.3333,1.0,0.1667},

 {1.0,3.0,3.0,5.0,5.0,6.0,1.0}

 };
 FillSubMatrix(MeasureParaMatrix, ReturnSubMatrices.MeasureParaMatrix, IndeciesArray);

 double[] MeasureParaMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MeasureParaMatrix,

IndeciesArray.Length, "Measurement Parameter:");

 FillSubMatrix(MeasureParaMatrix, ReturnSubMatricesNotNormalized.MeasureParaMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MeasureParaMatrix,

MeasureParaMatrixResult, IndeciesArray.Length);

 //

 double[,] TempMeasureMatrix = new double[,] {

 {1.0,0.25,0.2,0.3333,0.3333,0.5,0.1667},

 {4.0,1.0,0.3333,1.0,3.0,3.0,0.1667},

 {5.0,3.0,1.0,4.0,5.0,5.0,0.5},

 {3.0,1.0,0.25,1.0,2.0,2.0,0.25},
 {3.0,0.3333,0.2,0.5,1.0,1.0,0.1667},

163

 {2.0,0.3333,0.2,0.5,1.0,1.0,0.2},

 {6.0,6.0,2.0,4.0,6.0,5.0,1.0}
 };

 FillSubMatrix(TempMeasureMatrix, ReturnSubMatrices.TempMeasureMatrix, IndeciesArray);

 double[] TempMeasureMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TempMeasureMatrix,
IndeciesArray.Length, "Temperature Measurement:");

 FillSubMatrix(TempMeasureMatrix, ReturnSubMatricesNotNormalized.TempMeasureMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TempMeasureMatrix,

TempMeasureMatrixResult, IndeciesArray.Length);

 //

 double[,] StimulationElecMatrix = new double[,] {
 {1.0,4.0,3.0,1.0,1.0,2.0,6.0},

 {0.25,1.0,0.5,0.2,0.2,0.25,3.0},

 {0.3333,2.0,1.0,0.25,0.25,0.5,3.0},
 {1.0,5.0,4.0,1.0,1.0,2.0,6.0},

 {1.0,5.0,4.0,1.0,1.0,3.0,6.0},

 {0.5,4.0,2.0,0.5,0.3333,1.0,4.0},

 {0.1667,0.3333,0.3333,0.1667,0.1667,0.25,1.0}

 };

 FillSubMatrix(StimulationElecMatrix, ReturnSubMatrices.StimulationElecMatrix, IndeciesArray);
 double[] StimulationElecMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.StimulationElecMatrix,

IndeciesArray.Length, "Stimulation Electronics Required:");

 FillSubMatrix(StimulationElecMatrix, ReturnSubMatricesNotNormalized.StimulationElecMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.StimulationElecMatrix,

StimulationElecMatrixResult, IndeciesArray.Length);

 //

 double[,] TypOutputLevelMatrix = new double[,] {
 {1.0,6.0,1.0,4.0,1.0,2.0,1.0},

 {0.1667,1.0,0.1667,0.25,0.1667,0.2,0.125},

 {1.0,6.0,1.0,4.0,1.0,2.0,1.0},
 {0.25,4.0,0.25,1.0,0.25,0.3333,0.1667},

 {1.0,6.0,1.0,4.0,1.0,3.0,1.0},

 {0.5,5.0,0.5,3.0,0.3333,1.0,0.3333},
 {1.0,8.0,1.0,6.0,1.0,3.0,1.0}

 };

 FillSubMatrix(TypOutputLevelMatrix, ReturnSubMatrices.TypOutputLevelMatrix, IndeciesArray);
 double[] TypOutputLevelMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypOutputLevelMatrix,

IndeciesArray.Length, "Typical Output Levels Per Degree Celsius:");

 FillSubMatrix(TypOutputLevelMatrix, ReturnSubMatricesNotNormalized.TypOutputLevelMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypOutputLevelMatrix,

TypOutputLevelMatrixResult, IndeciesArray.Length);

 //

 double[,] TypFastThertimeConsMatrix = new double[,] {
 {1.0,3.0,4.0,6.0,5.0,1.0,3.0},

 {0.3333,1.0,2.0,4.0,3.0,0.3333,1.0},

 {0.25,0.5,1.0,2.0,2.0,0.25,1.0},
 {0.1667,0.25,0.5,1.0,0.5,0.1667,0.3333},

 {0.2,0.3333,0.5,2.0,1.0,0.2,0.3333},

 {1.0,3.0,4.0,6.0,5.0,1.0,3.0},
 {0.3333,1.0,1.0,3.0,3.0,0.3333,1.0}

 };

 FillSubMatrix(TypFastThertimeConsMatrix, ReturnSubMatrices.TypFastThertimeConsMatrix, IndeciesArray);
 double[] TypFastThertimeConsMatrixResult =

CalculateWeightsForEachCriterion(ReturnSubMatrices.TypFastThertimeConsMatrix, IndeciesArray.Length, "Typical Fast Thermal

Time Constant:");

 FillSubMatrix(TypFastThertimeConsMatrix, ReturnSubMatricesNotNormalized.TypFastThertimeConsMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypFastThertimeConsMatrix,
TypFastThertimeConsMatrixResult, IndeciesArray.Length);

 //

 double[,] TypSmallSizMatrix = new double[,] {

 {1.0,2.0,3.0,4.0,5.0,6.0,5.0},
 {0.5,1.0,2.0,3.0,4.0,5.0,4.0},

 {0.3333,0.5,1.0,2.0,4.0,6.0,4.0},

 {0.25,0.3333,0.5,1.0,2.0,3.0,2.0},

 {0.2,0.25,0.25,0.5,1.0,3.0,1.0},

 {0.1667,0.2,0.1667,0.3333,0.3333,1.0,0.5},

 {0.2,0.25,0.25,0.5,1.0,2.0,1.0}
 };

164

 FillSubMatrix(TypSmallSizMatrix, ReturnSubMatrices.TypSmallSizMatrix, IndeciesArray);

 double[] TypSmallSizMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypSmallSizMatrix,
IndeciesArray.Length, "Typical Small Size:");

 FillSubMatrix(TypSmallSizMatrix, ReturnSubMatricesNotNormalized.TypSmallSizMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypSmallSizMatrix,

TypSmallSizMatrixResult, IndeciesArray.Length);

 //

 double[,] NoiseImmunityMatrix = new double[,] {

 {1.0,0.1667,0.3333,0.25,0.25,0.5,0.25},
 {6.0,1.0,4.0,3.0,3.0,5.0,3.0},

 {3.0,0.25,1.0,0.5,0.5,2.0,0.5},
 {4.0,0.3333,2.0,1.0,1.0,3.0,1.0},

 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0},

 {2.0,0.2,0.5,0.3333,0.25,1.0,0.25},
 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0}

 };

 FillSubMatrix(NoiseImmunityMatrix, ReturnSubMatrices.NoiseImmunityMatrix, IndeciesArray);

 double[] NoiseImmunityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.NoiseImmunityMatrix,

IndeciesArray.Length, "Noise Immunity:");

 FillSubMatrix(NoiseImmunityMatrix, ReturnSubMatricesNotNormalized.NoiseImmunityMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.NoiseImmunityMatrix,

NoiseImmunityMatrixResult, IndeciesArray.Length);

 //

 double[,] FraDurMatrix = new double[,] {
 {1.0,6.0,3.0,6.0,8.0,3.0,4.0},

 {0.1667,1.0,0.3333,2.0,3.0,0.3333,0.5},

 {0.3333,3.0,1.0,3.0,4.0,2.0,3.0},
 {0.1667,0.5,0.3333,1.0,3.0,0.25,0.3333},

 {0.125,0.3333,0.25,0.3333,1.0,0.25,0.3333},

 {0.3333,3.0,0.5,4.0,4.0,1.0,3.0},
 {0.25,2.0,0.3333,3.0,3.0,0.3333,1.0},

 };
 FillSubMatrix(FraDurMatrix, ReturnSubMatrices.FraDurMatrix, IndeciesArray);

 double[] FraDurMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.FraDurMatrix, IndeciesArray.Length,

"Fragility-Durability:");

 FillSubMatrix(FraDurMatrix, ReturnSubMatricesNotNormalized.FraDurMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.FraDurMatrix, FraDurMatrixResult,
IndeciesArray.Length);

 //
 double[,] HiThGrEnMatrix = new double[,] {

 {1.0,4.0,5.0,7.0,8.0,4.0,6.0},

 {0.25,1.0,2.0,5.0,6.0,2.0,4.0},
 {0.2,0.5,1.0,3.0,3.0,0.5,2.0},

 {0.1429,0.2,0.3333,1.0,1.0,0.25,0.5},

 {0.125,0.1667,0.3333,1.0,1.0,0.2,0.3333},
 {0.25,0.5,2.0,4.0,5.0,1.0,4.0},

 {0.1667,0.25,0.5,2.0,3.0,0.25,1.0}

 };
 FillSubMatrix(HiThGrEnMatrix, ReturnSubMatrices.HiThGrEnMatrix, IndeciesArray);

 double[] HiThGrEnMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.HiThGrEnMatrix,

IndeciesArray.Length, "High Thermal Gradient Environment:");

 FillSubMatrix(HiThGrEnMatrix, ReturnSubMatricesNotNormalized.HiThGrEnMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.HiThGrEnMatrix, HiThGrEnMatrixResult,
IndeciesArray.Length);

 //
 double[,] CorrResMatrix = new double[,] {

 {1.0,0.25,0.1667,0.5,0.1667,0.1667,0.25},
 {4.0,1.0,0.3333,2.0,0.25,0.25,1.0},

 {6.0,3.0,1.0,4.0,1.0,1.0,4.0},

 {2.0,0.5,0.25,1.0,0.25,0.25,0.5},
 {6.0,4.0,1.0,4.0,1.0,1.0,3.0},

 {6.0,4.0,1.0,4.0,1.0,1.0,3.0},

 {4.0,1.0,0.25,2.0,0.3333,0.3333,1.0}

 };

 FillSubMatrix(CorrResMatrix, ReturnSubMatrices.CorrResMatrix, IndeciesArray);

 double[] CorrResMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.CorrResMatrix, IndeciesArray.Length,
"Corrosion Resistance:");

165

 FillSubMatrix(CorrResMatrix, ReturnSubMatricesNotNormalized.CorrResMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.CorrResMatrix, CorrResMatrixResult,

IndeciesArray.Length);

 //

 double[,] PointAreaMeasMatrix = new double[,] {

 {1.0,2.0,3.0,4.0,6.0,6.0,4.0},
 {0.5,1.0,2.0,3.0,4.0,4.0,3.0},

 {0.3333,0.5,1.0,2.0,3.0,4.0,2.0},

 {0.25,0.3333,0.5,1.0,2.0,2.0,0.5},
 {0.1667,0.25,0.3333,0.5,1.0,1.0,0.5},

 {0.1667,0.25,0.25,0.5,1.0,1.0,2.0},
 {0.25,0.5,0.3333,2.0,2.0,0.5,1.0}

 };

 FillSubMatrix(PointAreaMeasMatrix, ReturnSubMatrices.PointAreaMeasMatrix, IndeciesArray);
 double[] PointAreaMeasMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.PointAreaMeasMatrix,

IndeciesArray.Length, "Point or Area Measurement:");

 FillSubMatrix(PointAreaMeasMatrix, ReturnSubMatricesNotNormalized.PointAreaMeasMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.PointAreaMeasMatrix,

PointAreaMeasMatrixResult, IndeciesArray.Length);

 //

 double[,] ManuVarMatrix = new double[,] {
 {1.0, 0.3333, 0.1667,0.25,0.5,0.2,0.25},

 {3.0, 1.0, 0.3333,0.5,2.0,0.25,0.5},

 {6.0, 3.0, 1.0,4.0,3.0,6.0,3.0},
 {4.0,2.0,0.25,1.0,4.0,0.3333,0.5},

 {2.0,0.5,0.3333,0.25,1.0,0.2,0.25},

 {5.0,4.0,0.1667,3.0,5.0,1.0,2.0},
 {4.0,2.0,0.3333,2.0,4.0,0.5,1.0}

 };

 FillSubMatrix(ManuVarMatrix, ReturnSubMatrices.ManuVarMatrix, IndeciesArray);
 double[] ManuVarMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.ManuVarMatrix,

IndeciesArray.Length, "Manufacturing Variances:");

 FillSubMatrix(ManuVarMatrix, ReturnSubMatricesNotNormalized.ManuVarMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.ManuVarMatrix, ManuVarMatrixResult,

IndeciesArray.Length);

 //

 double[,] NistStanMatrix = new double[,] {
 {1.0 , 4.0, 1.0,1.0,1.0,4.0,5.0},

 {0.25, 1.0, 0.25,0.25,0.25,1.0,2.0},

 {1.0, 4.0, 1.0,1.0,1.0,4.0,5.0},
 {1.0,4.0,1.0,1.0,1.0,4.0,5.0},

 {1.0,4.0,1.0,1.0,1.0,4.0,5.0},

 {0.25,1.0,0.25,0.25,0.25,1.0,2.0},
 {0.2,0.5,0.2,0.2,0.2,0.5,1.0}

 };

 FillSubMatrix(NistStanMatrix, ReturnSubMatrices.NistStanMatrix, IndeciesArray);
 double[] NistStanMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.NistStanMatrix, IndeciesArray.Length,

"NIST Standards:");

 FillSubMatrix(NistStanMatrix, ReturnSubMatricesNotNormalized.NistStanMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.NistStanMatrix, NistStanMatrixResult,

IndeciesArray.Length);

 //

 double[,] CostMatrix = new double[,] {
 {1.0,1.0,6.0,3.0,3.0,6.0,3.0},

 {1.0,1.0,6.0,3.0,3.0,6.0,3.0},

 {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25},
 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0},

 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0},
 {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25},

 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}

 };
 FillSubMatrix(CostMatrix, ReturnSubMatrices.CostMatrix, IndeciesArray);

 double[] CostMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.CostMatrix, IndeciesArray.Length,

"Cost:");

 FillSubMatrix(CostMatrix, ReturnSubMatricesNotNormalized.CostMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.CostMatrix, CostMatrixResult,
IndeciesArray.Length);

166

 //
 double[,] weightsOfCriteria = new double[,] {

 {1.0,2.0,1.0,4.0},

 {0.5,1.0,0.5,2.0},
 {1.0,2.0,1.0,4.0},

 {0.25,0.5,0.25,1.0}

 };

 double[] weightsOfCriteriaResults = CalculateWeightsForEachCriterion(weightsOfCriteria, 4, "Weights of Criteria:");

 double[,] weightsOfCriteria2 = new double[,] {

 {1.0,2.0,1.0,4.0},
 {0.5,1.0,0.5,2.0},

 {1.0,2.0,1.0,4.0},

 {0.25,0.5,0.25,1.0}
 };

 ConsistencyIndex = ComputeConsistencyIndex(weightsOfCriteria2, weightsOfCriteriaResults, 4);

 //

 double[,] Weightssubcriteriastatic = new double[,] {

 {1.0,1.0,5.0,4.0,4.0,1.0,5.0,6.0,7.0,8.0,6.0},

 {1.0,1.0,5.0,4.0,4.0,1.0,5.0,6.0,7.0,8.0,6.0},
 {0.2,0.2,1.0,0.3333,0.3333,0.2,1.0,2.0,4.0,5.0,3.0},

 {0.25,0.25,3.0,1.0,2.0,0.3333,3.0,3.0,5.0,6.0,4.0},

 {0.25,0.25,3.0,0.5,1.0,0.25,3.0,5.0,6.0,8.0,4.0},
 {1.0,1.0,5.0,3.0,4.0,1.0,5.0,6.0,7.0,9.0,6.0},

 {0.2,0.2,1.0,0.3333,0.3333,0.2,1.0,1.0,4.0,6.0,3.0},

 {0.1667,0.1667,0.5,0.3333,0.2,0.1667,1.0,1.0,3.0,4.0,1.0},
 {0.1429,0.1429,0.25,0.2,0.1667,0.1429,0.25,0.3333,1.0,2.0,0.3333},

 {0.125,0.125,0.2,0.1667,0.125,0.1111,0.1667,0.25,0.5,1.0,0.25},

 {0.1667,0.1667,0.3333,0.25,0.25,0.1667,0.3333,1.0,3.0,4.0,1.0}
 };

 double[] weightsSubCriteriaStaticResult = CalculateWeightsForEachCriterion(Weightssubcriteriastatic, 11, "Weights of Sub-

Criteria Static:");

 double[,] Weightssubcriteriastatic2 = new double[,] {

 {1.0,1.0,5.0,4.0,4.0,1.0,5.0,6.0,7.0,8.0,6.0},
 {1.0,1.0,5.0,4.0,4.0,1.0,5.0,6.0,7.0,8.0,6.0},

 {0.2,0.2,1.0,0.3333,0.3333,0.2,1.0,2.0,4.0,5.0,3.0},

 {0.25,0.25,3.0,1.0,2.0,0.3333,3.0,3.0,5.0,6.0,4.0},
 {0.25,0.25,3.0,0.5,1.0,0.25,3.0,5.0,6.0,8.0,4.0},

 {1.0,1.0,5.0,3.0,4.0,1.0,5.0,6.0,7.0,9.0,6.0},

 {0.2,0.2,1.0,0.3333,0.3333,0.2,1.0,1.0,4.0,6.0,3.0},
 {0.1667,0.1667,0.5,0.3333,0.2,0.1667,1.0,1.0,3.0,4.0,1.0},

 {0.1429,0.1429,0.25,0.2,0.1667,0.1429,0.25,0.3333,1.0,2.0,0.3333},

 {0.125,0.125,0.2,0.1667,0.125,0.1111,0.1667,0.25,0.5,1.0,0.25},
 {0.1667,0.1667,0.3333,0.25,0.25,0.1667,0.3333,1.0,3.0,4.0,1.0}

 };

 ConsistencyIndex = ComputeConsistencyIndex(Weightssubcriteriastatic2, weightsSubCriteriaStaticResult, 11);

 //
 double[,] weightssubCriteriaDynamic = new double[,] {

 {1.0,2.0,0.1429},

 {0.5,1.0,0.1429},
 {7.0,7.0,1.0}

 };

 double[] weightsSubCriteriaDynamicResult = CalculateWeightsForEachCriterion(weightssubCriteriaDynamic, 3, "Weights of
Sub-Criteria Dynamic:");

 double[,] weightssubCriteriaDynamic2 = new double[,] {
 {1.0,2.0,0.1429},

 {0.5,1.0,0.1429},

 {7.0,7.0,1.0}
 };

 ConsistencyIndex = ComputeConsistencyIndex(weightssubCriteriaDynamic2, weightsSubCriteriaDynamicResult, 3);
 //

 double[,] weightssubCriteriaEnv = new double[,] {

 {1.0,4.0,0.5,4.0,0.25},
 {0.25,1.0,0.25,2.0,0.1667},

 {2.0,4.0,1.0,4.0,0.3333},

 {0.25,0.5,0.25,1.0,0.1667},

 {4.0,6.0,3.0,6.0,1.0}

 };

 double[] weightsSubCriteriaEnvironmentalResult = CalculateWeightsForEachCriterion(weightssubCriteriaEnv, 5, "Weights of
Sub-Criteria Environmental:");

167

 double[,] weightssubCriteriaEnv2 = new double[,] {
 {1.0,4.0,0.5,4.0,0.25},

 {0.25,1.0,0.25,2.0,0.1667},

 {2.0,4.0,1.0,4.0,0.3333},
 {0.25,0.5,0.25,1.0,0.1667},

 {4.0,6.0,3.0,6.0,1.0}

 };
 ConsistencyIndex = ComputeConsistencyIndex(weightssubCriteriaEnv2, weightsSubCriteriaEnvironmentalResult, 5);

 //

 double[,] Others = new double[,] {
 {1.0,3.0,0.5,0.25},

 {0.3333,1.0,0.3333,0.2},
 {2.0,3.0,1.0,0.3333},

 {4.0,5.0,3.0,1.0}

 };
 double[] weightsSubCriteriaOthersResult = CalculateWeightsForEachCriterion(Others, 4, "Weights of Sub-Criteria Others:");

 double[,] Others2 = new double[,] {

 {1.0,3.0,0.5,0.25},

 {0.3333,1.0,0.3333,0.2},

 {2.0,3.0,1.0,0.3333},
 {4.0,5.0,3.0,1.0}

 };

 ConsistencyIndex = ComputeConsistencyIndex(Others2, weightsSubCriteriaOthersResult, 4);
 //

 //Calculate sub criteria aggregate weights with respect to final goal

 Scale(weightsSubCriteriaStaticResult, weightsOfCriteriaResults[0]);
 Scale(weightsSubCriteriaDynamicResult, weightsOfCriteriaResults[1]);

 Scale(weightsSubCriteriaEnvironmentalResult, weightsOfCriteriaResults[2]);

 Scale(weightsSubCriteriaOthersResult, weightsOfCriteriaResults[3]);

 //

 //Calculate sub criteria aggregate weights for ThermoCouple (alternative 1)
 double ThermoCoupleFinalScore = 0.0;

 double ThermisterFinalScore = 0.0;

 double RTDFinalScore = 0.0;
 double BimetallicFinalScore = 0.0;

 double ThermometerFinalScore = 0.0;

 double PyrometerFinalScore = 0.0;
 double LCDDidplayFinalScore = 0.0;

 for (int k = 0; k < IndeciesArray.Length; k++)
 {

 if (IndeciesArray[k] == AHP.SENSOR_THERMOCOUPLE)

 {
 double[] ThermoCoupleAggregateSubCriteriaStatic = new double[11];

 double[] ThermoCoupleAggregateSubCriteriaDynamic = new double[3];

 double[] ThermoCoupleAggregateSubCriteriaEnvironmental = new double[5];
 double[] ThermoCoupleAggregateSubCriteriaOthers = new double[4];

 ThermoCoupleAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];
 ThermoCoupleAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];

 ThermoCoupleAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];

 ThermoCoupleAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];
 ThermoCoupleAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];

 ThermoCoupleAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];

 ThermoCoupleAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];
 ThermoCoupleAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];

 ThermoCoupleAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];

 ThermoCoupleAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];
 ThermoCoupleAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 ThermoCoupleFinalScore = ThermoCoupleFinalScore +
GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaStatic);

 ThermoCoupleAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] *

weightsSubCriteriaDynamicResult[0];

 ThermoCoupleAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] *
weightsSubCriteriaDynamicResult[1];

 ThermoCoupleAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *

weightsSubCriteriaDynamicResult[2];

 ThermoCoupleFinalScore = ThermoCoupleFinalScore +

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaDynamic);

168

 ThermoCoupleAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[0];
 ThermoCoupleAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];

 ThermoCoupleAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[2];

 ThermoCoupleAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[3];
 ThermoCoupleAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[4];

 ThermoCoupleFinalScore = ThermoCoupleFinalScore +

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaEnvironmental);

 ThermoCoupleAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];

 ThermoCoupleAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];
 ThermoCoupleAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 ThermoCoupleAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 ThermoCoupleFinalScore = ThermoCoupleFinalScore +

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaOthers);

 SensorRanks[k] = ThermoCoupleFinalScore;

 System.Console.Write("\n\n");

 System.Console.Write("Thermo Couple Final Score = {0}", ThermoCoupleFinalScore);
 }

 //

 //Calculate sub criteria aggregate weights for Thermister (alternative 2)
 else if (IndeciesArray[k] == AHP.SENSOR_THERMISTER)

 {

 double[] ThermisterAggregateSubCriteriaStatic = new double[11];
 double[] ThermisterAggregateSubCriteriaDynamic = new double[3];

 double[] ThermisterAggregateSubCriteriaEnvironmental = new double[5];

 double[] ThermisterAggregateSubCriteriaOthers = new double[4];

 ThermisterAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];

 ThermisterAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];
 ThermisterAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];

 ThermisterAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];

 ThermisterAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];
 ThermisterAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];

 ThermisterAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];

 ThermisterAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];
 ThermisterAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];

 ThermisterAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];

 ThermisterAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 ThermisterFinalScore = ThermisterFinalScore + GetSummationOfVectorElements(ThermisterAggregateSubCriteriaStatic);

 ThermisterAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];

 ThermisterAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];

 ThermisterAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *
weightsSubCriteriaDynamicResult[2];

 ThermisterFinalScore = ThermisterFinalScore +
GetSummationOfVectorElements(ThermisterAggregateSubCriteriaDynamic);

 ThermisterAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[0];

 ThermisterAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];
 ThermisterAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2];

 ThermisterAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[3];
 ThermisterAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4];

 ThermisterFinalScore = ThermisterFinalScore +

GetSummationOfVectorElements(ThermisterAggregateSubCriteriaEnvironmental);

 ThermisterAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];

 ThermisterAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];

 ThermisterAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 ThermisterAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 ThermisterFinalScore = ThermisterFinalScore + GetSummationOfVectorElements(ThermisterAggregateSubCriteriaOthers);

169

 System.Console.Write("\n\n");

 System.Console.Write("Thermister Final Score = {0}", ThermisterFinalScore);

 SensorRanks[k] = ThermisterFinalScore;

 }
 //

 //Calculate sub criteria aggregate weights for RTD (alternative 3)

 else if (IndeciesArray[k] == AHP.SENSOR_RTD)
 {

 double[] RTDAggregateSubCriteriaStatic = new double[11];

 double[] RTDAggregateSubCriteriaDynamic = new double[3];
 double[] RTDAggregateSubCriteriaEnvironmental = new double[5];

 double[] RTDAggregateSubCriteriaOthers = new double[4];

 RTDAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];

 RTDAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];
 RTDAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];

 RTDAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];

 RTDAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];

 RTDAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];

 RTDAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];

 RTDAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];
 RTDAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];

 RTDAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];

 RTDAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaStatic);

 RTDAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];

 RTDAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];

 RTDAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * weightsSubCriteriaDynamicResult[2];

 RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaDynamic);

 RTDAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[0];

 RTDAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];
 RTDAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2];

 RTDAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[3];

 RTDAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4];

 RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaEnvironmental);

 RTDAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];

 RTDAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];

 RTDAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];
 RTDAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaOthers);
 SensorRanks[k] = RTDFinalScore;

 }

 else if (IndeciesArray[k] == AHP.SENSOR_BIMETALLIC)
 {

 double[] BimetallicAggregateSubCriteriaStatic = new double[11];

 double[] BimetallicAggregateSubCriteriaDynamic = new double[3];
 double[] BimetallicAggregateSubCriteriaEnvironmental = new double[5];

 double[] BimetallicAggregateSubCriteriaOthers = new double[4];

 BimetallicAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];

 BimetallicAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];

 BimetallicAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];
 BimetallicAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];

 BimetallicAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];

 BimetallicAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];
 BimetallicAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];

 BimetallicAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];
 BimetallicAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];

 BimetallicAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];

 BimetallicAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 BimetallicFinalScore = BimetallicFinalScore + GetSummationOfVectorElements(BimetallicAggregateSubCriteriaStatic);

 BimetallicAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];

 BimetallicAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];

 BimetallicAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *
weightsSubCriteriaDynamicResult[2];

170

 BimetallicFinalScore = BimetallicFinalScore +
GetSummationOfVectorElements(BimetallicAggregateSubCriteriaDynamic);

 BimetallicAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[0];

 BimetallicAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];
 BimetallicAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2];

 BimetallicAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[3];
 BimetallicAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4];

 BimetallicFinalScore = BimetallicFinalScore +

GetSummationOfVectorElements(BimetallicAggregateSubCriteriaEnvironmental);

 BimetallicAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];

 BimetallicAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];

 BimetallicAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 BimetallicAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 BimetallicFinalScore = BimetallicFinalScore + GetSummationOfVectorElements(BimetallicAggregateSubCriteriaOthers);
 SensorRanks[k] = BimetallicFinalScore;

 }

 else if (IndeciesArray[k] == AHP.SENSOR_THERMOMETER)
 {

 double[] ThermometerAggregateSubCriteriaStatic = new double[11];

 double[] ThermometerAggregateSubCriteriaDynamic = new double[3];
 double[] ThermometerAggregateSubCriteriaEnvironmental = new double[5];

 double[] ThermometerAggregateSubCriteriaOthers = new double[4];

 ThermometerAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];

 ThermometerAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];

 ThermometerAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];
 ThermometerAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];

 ThermometerAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];

 ThermometerAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];
 ThermometerAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];

 ThermometerAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];

 ThermometerAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];
 ThermometerAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];

 ThermometerAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 ThermometerFinalScore = ThermometerFinalScore +

GetSummationOfVectorElements(ThermometerAggregateSubCriteriaStatic);

 ThermometerAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];

 ThermometerAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];

 ThermometerAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *
weightsSubCriteriaDynamicResult[2];

 ThermometerFinalScore = ThermometerFinalScore +
GetSummationOfVectorElements(ThermometerAggregateSubCriteriaDynamic);

 ThermometerAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[0];

 ThermometerAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];
 ThermometerAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[2];

 ThermometerAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[3];

 ThermometerAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[4];

 ThermometerFinalScore = ThermometerFinalScore +
GetSummationOfVectorElements(ThermometerAggregateSubCriteriaEnvironmental);

 ThermometerAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];
 ThermometerAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];

 ThermometerAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 ThermometerAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 ThermometerFinalScore = ThermometerFinalScore +

GetSummationOfVectorElements(ThermometerAggregateSubCriteriaOthers);
 SensorRanks[k] = ThermometerFinalScore;

171

 }

 else if (IndeciesArray[k] == AHP.SENSOR_PYROMETER)
 {

 double[] PyrometerAggregateSubCriteriaStatic = new double[11];

 double[] PyrometerAggregateSubCriteriaDynamic = new double[3];
 double[] PyrometerAggregateSubCriteriaEnvironmental = new double[5];

 double[] PyrometerAggregateSubCriteriaOthers = new double[4];

 PyrometerAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];

 PyrometerAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];

 PyrometerAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];
 PyrometerAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];

 PyrometerAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];
 PyrometerAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];

 PyrometerAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];

 PyrometerAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];
 PyrometerAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];

 PyrometerAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];

 PyrometerAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 PyrometerFinalScore = PyrometerFinalScore + GetSummationOfVectorElements(PyrometerAggregateSubCriteriaStatic);

 PyrometerAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];

 PyrometerAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];

 PyrometerAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *
weightsSubCriteriaDynamicResult[2];

 PyrometerFinalScore = PyrometerFinalScore +
GetSummationOfVectorElements(PyrometerAggregateSubCriteriaDynamic);

 PyrometerAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[0];

 PyrometerAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];
 PyrometerAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2];

 PyrometerAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[3];
 PyrometerAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4];

 PyrometerFinalScore = PyrometerFinalScore +
GetSummationOfVectorElements(PyrometerAggregateSubCriteriaEnvironmental);

 PyrometerAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];
 PyrometerAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];

 PyrometerAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 PyrometerAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 PyrometerFinalScore = PyrometerFinalScore + GetSummationOfVectorElements(PyrometerAggregateSubCriteriaOthers);

 SensorRanks[k] = PyrometerFinalScore;
 }

 else if (IndeciesArray[k] == AHP.SENSOR_LCD_DISPLAY)

 {
 double[] LCDDidplayAggregateSubCriteriaStatic = new double[11];

 double[] LCDDidplayAggregateSubCriteriaDynamic = new double[3];

 double[] LCDDidplayAggregateSubCriteriaEnvironmental = new double[5];
 double[] LCDDidplayAggregateSubCriteriaOthers = new double[4];

 LCDDidplayAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];
 LCDDidplayAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];

 LCDDidplayAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];

 LCDDidplayAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];
 LCDDidplayAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];

 LCDDidplayAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];

 LCDDidplayAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];
 LCDDidplayAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];

 LCDDidplayAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];
 LCDDidplayAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];

 LCDDidplayAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 LCDDidplayFinalScore = LCDDidplayFinalScore +

GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaStatic);

 LCDDidplayAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];

 LCDDidplayAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];

 LCDDidplayAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *
weightsSubCriteriaDynamicResult[2];

172

 LCDDidplayFinalScore = LCDDidplayFinalScore +
GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaDynamic);

 LCDDidplayAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[0];

 LCDDidplayAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];
 LCDDidplayAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[2];

 LCDDidplayAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[3];

 LCDDidplayAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[4];

 LCDDidplayFinalScore = LCDDidplayFinalScore +
GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaEnvironmental);

 LCDDidplayAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];

 LCDDidplayAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];

 LCDDidplayAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 LCDDidplayAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 LCDDidplayFinalScore = LCDDidplayFinalScore +

GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaOthers);
 SensorRanks[k] = LCDDidplayFinalScore;

 }

 }

 textBoxResults.AppendText("\n\n");

 textBoxResults.AppendText("\nSensor Ranks: \n");
 for (int j = 0; j < SensorRanks.Length; j++)

 {

 textBoxResults.AppendText("" + SensorRanks[j] + "\n");
 }

 return SensorRanks;
 }

 }

}

173

5. HVAC.cs File

using System;

using System.Collections.Generic;
using System.Text;

namespace AhpCaseStudy1GUI

{

 class HVAC
 {

 public System.Windows.Forms.TextBox textBoxResults;

 void Print(double[,] mat, int nDimensionSize, string strTitle)

 {

 if (strTitle == "")
 strTitle = "Matrix";

 //System.Console.WriteLine(strTitle);
 textBoxResults.AppendText("\n");

 textBoxResults.AppendText(strTitle);

 textBoxResults.AppendText("\n");
 textBoxResults.AppendText("\n");

 for (int i = 0; i < nDimensionSize; i++)

 {
 for (int j = 0; j < nDimensionSize; j++)

 {

 //System.Console.Write("{0}\t\t", mat[i, j]);
 textBoxResults.AppendText(" " + mat[i, j]);

 //textBoxResults.Update();

 }
 //System.Console.Write("\n");

 textBoxResults.AppendText("\n");

 }

 //System.Console.Write("\n\n");

 textBoxResults.AppendText("\n\n");
 }

 void Print(double[] vector, int nDimensionSize)
 {

 //System.Console.WriteLine("Relative Weight Vector = ");

 textBoxResults.AppendText("Relative Weight Vector = ");
 for (int i = 0; i < nDimensionSize; i++)

 {

 //System.Console.Write("{0}\t\t", vector[i]);
 textBoxResults.AppendText(" " + vector[i]);

 }

 //System.Console.Write("\n");
 textBoxResults.AppendText("\n");

 }

 void Scale(double[] vector, double scaleFactor)

 {

 for (int i = 0; i < vector.Length; i++)
 {

 vector[i] = vector[i] * scaleFactor;//vector[i] *= scaleFactor;
 }

 Print(vector, vector.Length);

 }

 double GetSummationOfVectorElements(double[] vector)

 {
 double Summation = 0.0;

 for (int i = 0; i < vector.Length; i++)

 {
 Summation = Summation + vector[i];

 }

 return Summation;
 }

 double[] CalculateWeightsForEachCriterion(double[,] expertAssesmentMatrix, int nDimensionSize, string strTitle)

 {

 //check for vald input values

 double[] weightVector = new double[nDimensionSize];

174

 if (expertAssesmentMatrix == null)
 return weightVector;

 Print(expertAssesmentMatrix, nDimensionSize, strTitle);

 //Calculate the weight factor for each colmun

 //The result is a vetor
 double[] wieghtFactor = new double[nDimensionSize];

 for (int j = 0; j < nDimensionSize; j++)

 {
 double result = 0.0;

 for (int k = 0; k < nDimensionSize; k++)
 {

 result += expertAssesmentMatrix[k, j]; //result = result + mat1[k, j];

 }
 wieghtFactor[j] = result;

 }

 double[,] mat1ImmediatResult = new double[nDimensionSize, nDimensionSize];

 for (int j = 0; j < nDimensionSize; j++)

 {
 for (int k = 0; k < nDimensionSize; k++)

 {

 expertAssesmentMatrix[k, j] = expertAssesmentMatrix[k, j] / wieghtFactor[j];
 }

 }

 //Calculate the weight factor for each colmun

 //The result is a vetor

 for (int j = 0; j < nDimensionSize; j++)
 {

 double result = 0.0;

 for (int k = 0; k < nDimensionSize; k++)
 {

 result += expertAssesmentMatrix[j, k]; //result = result + mat1[k, j];

 }
 weightVector[j] = result / nDimensionSize;

 }

 Print(weightVector, nDimensionSize);

//System.Console.WriteLine("___
_____________________________\n");

 return weightVector;

 }

 void FillSubMatrix(double[,] SourceMatrix, double[,] destinationSubMatrix, int[] IndeciesArray)

 {

 if (SourceMatrix == null || destinationSubMatrix == null || IndeciesArray == null)
 return;

 for (int i = 0; i < IndeciesArray.Length; i++)
 {

 for (int j = 0; j < IndeciesArray.Length; j++)

 {
 //destinationSubMatrix[IndeciesArray[i], IndeciesArray[j]] = SourceMatrix[IndeciesArray[i], IndeciesArray[j]];

 destinationSubMatrix[i, j] = SourceMatrix[IndeciesArray[i], IndeciesArray[j]];

 }
 }

 }

 double ComputeConsistencyIndex(double[,] Matrix, double[] vector, int nDimensionSize)

 {
 //check for vald input values

 double[] transposeVector = new double[nDimensionSize];

 double[] randomIndex = { 1.0, 0.5, 0.58, 0.9, 1.12, 1.24, 1.32 };

 if (Matrix == null)

 return 0.0;

 for (int j = 0; j < nDimensionSize; j++)

 {
 double result = 0.0;

175

 for (int k = 0; k < nDimensionSize; k++)

 {
 result += (Matrix[j, k] * vector[k]);

 }

 transposeVector[j] = result;
 }

 double division = 0.0;

 for (int k = 0; k < nDimensionSize; k++)
 {

 division += (transposeVector[k] / vector[k]);

 //transposeVector[k] = transposeVector[k]/vector[k];

 }
 division = division / nDimensionSize;

 double consistencyIndex = (division - nDimensionSize) / (nDimensionSize - 1);

 if (consistencyIndex < 0.0 && consistencyIndex > -0.0005)

 consistencyIndex = 0.0;

 if (consistencyIndex < 0.0005)

 consistencyIndex = 0.0;

 textBoxResults.AppendText("Consistency Index = ");

 textBoxResults.AppendText("" + consistencyIndex + "\n");

 textBoxResults.AppendText("\nConsistency Ratio = ");

 if (nDimensionSize > randomIndex.Length)
 textBoxResults.AppendText("" + (consistencyIndex / 1.59));

 else

 textBoxResults.AppendText("" + (consistencyIndex / randomIndex[nDimensionSize - 1]));
 textBoxResults.AppendText("\n");

 textBoxResults.AppendText("__\n");

 return consistencyIndex;
 }

 public double[] SelectBestSensor(int[] IndeciesArray)
 {

 double[] SensorRanks = new double[IndeciesArray.Length];

 AHPSubCriteria ReturnSubMatrices = new AHPSubCriteria();
 ReturnSubMatrices.CreateSubMatrices(IndeciesArray.Length);

 AHPSubCriteria ReturnSubMatricesNotNormalized = new AHPSubCriteria();

 ReturnSubMatricesNotNormalized.CreateSubMatrices(IndeciesArray.Length);

 double[,] MaximumTempMatrix = new double[,] {

 {1.0,3.0,1.0,9.0,4.0,6.0,4.0},
 {0.3333,1.0,0.3333,6.0,2.0,5.0,2.0},

 {1.0,3.0,1.0,9.0,4.0,6.0,4.0},

 {0.1111,0.1667,0.1111,1.0,0.1667,0.3333,0.1667},
 {0.25,0.5,0.25,6.0,1.0,4.0,1.0},

 {0.1667,0.2,0.1667,3.0,0.25,1.0,0.25},

 {0.25,0.5,0.25,6.0,1.0,4.0,1.0}
 };

 FillSubMatrix(MaximumTempMatrix, ReturnSubMatrices.MaximumTempMatrix, IndeciesArray);

 double[] MaximumTempMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MaximumTempMatrix,
IndeciesArray.Length, "Maximum Operating Temprature: ");

 FillSubMatrix(MaximumTempMatrix, ReturnSubMatricesNotNormalized.MaximumTempMatrix, IndeciesArray);
 double ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MaximumTempMatrix,

MaximumTempMatrixResult, IndeciesArray.Length);

 //
 double[,] MinimumTempMatrix = new double[,] {

 {1.0,2.0,2.0,0.5,0.5,0.125,0.3333},

 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},
 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},

 {2.0,3.0,3.0,1.0,1.0,0.25,0.5},
 {2.0,3.0,3.0,1.0,1.0,0.25,0.5},

 {8.0,8.0,8.0,4.0,4.0,1.0,4.0},

 {3.0,4.0,4.0,2.0,2.0,0.25,1.0}
 };

 FillSubMatrix(MinimumTempMatrix, ReturnSubMatrices.MinimumTempMatrix, IndeciesArray);

 double[] MinimumTempMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MinimumTempMatrix,

IndeciesArray.Length, "Minimum Operating Temprature: ");

 FillSubMatrix(MinimumTempMatrix, ReturnSubMatricesNotNormalized.MinimumTempMatrix, IndeciesArray);

176

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MinimumTempMatrix,

MinimumTempMatrixResult, IndeciesArray.Length);

 //

 double[,] TempCurveMtrix = new double[,] {
 {1.0,3.0,0.3333,5.0,5.0,4.0,2.0},

 {0.3333,1.0,0.1667,2.0,2.0,1.0,0.3333},

 {3.0,6.0,1.0,6.0,6.0,6.0,4.0},
 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25},

 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25},

 {0.25,1.0,0.1667,3.0,3.0,1.0,0.5},
 {0.5,3.0,0.25,4.0,4.0,2.0,1.0}

 };
 FillSubMatrix(TempCurveMtrix, ReturnSubMatrices.TempCurveMtrix, IndeciesArray);

 double[] TempCurveMtrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TempCurveMtrix,

IndeciesArray.Length, "Temperature Curve:");

 FillSubMatrix(TempCurveMtrix, ReturnSubMatricesNotNormalized.TempCurveMtrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TempCurveMtrix, TempCurveMtrixResult,

IndeciesArray.Length);

 //
 double[,] MaxSensitivityMatrix = new double[,] {

 {1.0,0.1111,0.2,2.0,2.0,2.0,0.3333},

 {9.0,1.0,4.0,9.0,9.0,6.0,4.0},
 {5.0,0.25,1.0,4.0,5.0,4.0,2.0},

 {0.5,0.1111,0.25,1.0,2.0,2.0,0.25},

 {0.5,.1111,0.2,0.5,1.0,1.0,0.25},
 {0.5,0.1667,0.25,0.5,1.0,1.0,0.25},

 {3.0,0.25,0.5,4.0,4.0,4.0,1.0}

 };
 FillSubMatrix(MaxSensitivityMatrix, ReturnSubMatrices.MaxSensitivityMatrix, IndeciesArray);

 double[] MaxSensitivityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MaxSensitivityMatrix,

IndeciesArray.Length, "Maximum Sensitivity Region:");

 FillSubMatrix(MaxSensitivityMatrix, ReturnSubMatricesNotNormalized.MaxSensitivityMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MaxSensitivityMatrix,
MaxSensitivityMatrixResult, IndeciesArray.Length);

 //
 double[,] SelfHeatingMatrix = new double[,] {

 {1.0,8.0,3.0,3.0,1.0,1.0,2.0},

 {0.125,1.0,0.2,0.25,0.2,0.1667,0.25},
 {0.3333,5.0,1.0,0.5,0.5,0.3333,1.0},

 {0.3333,4.0,2.0,1.0,1.0,0.5,1.0},

 {1.0,5.0,2.0,1.0,1.0,1.0,2.0},
 {1.0,6.0,3.0,2.0,1.0,1.0,1.0},

 {0.5,4.0,1.0,1.0,0.5,1.0,1.0}

 };
 FillSubMatrix(SelfHeatingMatrix, ReturnSubMatrices.SelfHeatingMatrix, IndeciesArray);

 double[] SelfHeatingMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.SelfHeatingMatrix,

IndeciesArray.Length, "Self-Heating Issues:");

 FillSubMatrix(SelfHeatingMatrix, ReturnSubMatricesNotNormalized.SelfHeatingMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.SelfHeatingMatrix,
SelfHeatingMatrixResult, IndeciesArray.Length);

 //
 double[,] LongTermStabilityMatrix = new double[,] {

 {1.0,0.25,0.1667,2.0,0.3333,0.5,0.25},

 {4.0,1.0,0.3333,4.0,3.0,3.0,2.0},
 {6.0,3.0,1.0,8.0,4.0,5.0,3.0},

 {0.5,0.25,0.125,1.0,0.3333,0.3333,0.25},

 {3.0,0.3333,0.25,3.0,1.0,2.0,0.5},
 {2.0,0.3333,0.2,3.0,0.5,1.0,0.3333},

 {4.0,0.5,0.3333,4.0,2.0,3.0,1.0}
 };

 FillSubMatrix(LongTermStabilityMatrix, ReturnSubMatrices.LongTermStabilityMatrix, IndeciesArray);

 double[] LongTermStabilityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.LongTermStabilityMatrix,
IndeciesArray.Length, "Long Term Stability and Accuracy:");

 FillSubMatrix(LongTermStabilityMatrix, ReturnSubMatricesNotNormalized.LongTermStabilityMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.LongTermStabilityMatrix,

LongTermStabilityMatrixResult, IndeciesArray.Length);

 //

177

 double[,] TypTempCoeffMatrix = new double[,] {

 {1.0,0.1667,0.3333,4.0,4.0,4.0,0.5},
 {6.0,1.0,3.0,6.0,6.0,6.0,6.0},

 {3.0,0.3333,1.0,5.0,6.0,5.0,2.0},

 {0.25,0.1667,0.2,1.0,1.0,1.0,0.2},
 {0.25,0.1667,0.1667,1.0,1.0,1.0,0.2},

 {0.25,0.1667,0.2,1.0,1.0,1.0,0.3333},

 {2.0,0.1667,0.5,5.0,5.0,3.0,1.0}
 };

 FillSubMatrix(TypTempCoeffMatrix, ReturnSubMatrices.TypTempCoeffMatrix, IndeciesArray);

 double[] TypTempCoeffMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypTempCoeffMatrix,
IndeciesArray.Length, "Typical Temperature Coefficient:");

 FillSubMatrix(TypTempCoeffMatrix, ReturnSubMatricesNotNormalized.TypTempCoeffMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypTempCoeffMatrix,

TypTempCoeffMatrixResult, IndeciesArray.Length);

 //

 double[,] ExtWiresMatrix = new double[,] {

 {1.0,0.1667,0.16667,0.125,0.125,0.125,0.125},

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25},

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25},
 {8.0,4.0,4.0,1.0,1.0,1.0,1.0},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0},

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0},
 {8.0,4.0,4.0,1.0,1.0,1.0,1.0}

 };

 FillSubMatrix(ExtWiresMatrix, ReturnSubMatrices.ExtWiresMatrix, IndeciesArray);
 double[] ExtWiresMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.ExtWiresMatrix,

IndeciesArray.Length, "Extension Wires:");

 FillSubMatrix(ExtWiresMatrix, ReturnSubMatricesNotNormalized.ExtWiresMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.ExtWiresMatrix, ExtWiresMatrixResult,

IndeciesArray.Length);

 //

 double[,] LongWireMatrix = new double[,] {
 {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667},

 {3.0,1.0,3.0,0.5,0.5,0.5,0.5},

 {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667},
 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0},
 {6.0,2.0,6.0,1.0,1.0,1.0,1.0}

 };

 FillSubMatrix(LongWireMatrix, ReturnSubMatrices.LongWireMatrix, IndeciesArray);
 double[] LongWireMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.LongWireMatrix,

IndeciesArray.Length, "Long Wire Runs From Sensor:");

 FillSubMatrix(LongWireMatrix, ReturnSubMatricesNotNormalized.LongWireMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.LongWireMatrix, LongWireMatrixResult,

IndeciesArray.Length);

 //

 double[,] MeasureParaMatrix = new double[,] {
 {1.0,4.0,3.0,5.0,5.0,6.0,1.0},

 {0.25,1.0,0.5,4.0,4.0,5.0,0.3333},

 {0.3333,2.0,1.0,3.0,3.0,4.0,0.3333},
 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2},

 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2},

 {0.1667,0.2,0.25,0.3333,0.3333,1.0,0.1667},
 {1.0,3.0,3.0,5.0,5.0,6.0,1.0}

 };

 FillSubMatrix(MeasureParaMatrix, ReturnSubMatrices.MeasureParaMatrix, IndeciesArray);
 double[] MeasureParaMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MeasureParaMatrix,

IndeciesArray.Length, "Measurement Parameter:");

 FillSubMatrix(MeasureParaMatrix, ReturnSubMatricesNotNormalized.MeasureParaMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MeasureParaMatrix,
MeasureParaMatrixResult, IndeciesArray.Length);

 //

 double[,] TempMeasureMatrix = new double[,] {

 {1.0,0.25,0.2,0.3333,0.3333,0.5,0.1667},

 {4.0,1.0,0.3333,1.0,3.0,3.0,0.1667},
 {5.0,3.0,1.0,4.0,5.0,5.0,0.5},

178

 {3.0,1.0,0.25,1.0,2.0,2.0,0.25},

 {3.0,0.3333,0.2,0.5,1.0,1.0,0.1667},
 {2.0,0.3333,0.2,0.5,1.0,1.0,0.2},

 {6.0,6.0,2.0,4.0,6.0,5.0,1.0}

 };
 FillSubMatrix(TempMeasureMatrix, ReturnSubMatrices.TempMeasureMatrix, IndeciesArray);

 double[] TempMeasureMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TempMeasureMatrix,

IndeciesArray.Length, "Temperature Measurement:");

 FillSubMatrix(TempMeasureMatrix, ReturnSubMatricesNotNormalized.TempMeasureMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TempMeasureMatrix,
TempMeasureMatrixResult, IndeciesArray.Length);

 //

 double[,] StimulationElecMatrix = new double[,] {

 {1.0,4.0,3.0,1.0,1.0,2.0,6.0},
 {0.25,1.0,0.5,0.2,0.2,0.25,3.0},

 {0.3333,2.0,1.0,0.25,0.25,0.5,3.0},

 {1.0,5.0,4.0,1.0,1.0,2.0,6.0},

 {1.0,5.0,4.0,1.0,1.0,3.0,6.0},

 {0.5,4.0,2.0,0.5,0.3333,1.0,4.0},

 {0.1667,0.3333,0.3333,0.1667,0.1667,0.25,1.0}
 };

 FillSubMatrix(StimulationElecMatrix, ReturnSubMatrices.StimulationElecMatrix, IndeciesArray);

 double[] StimulationElecMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.StimulationElecMatrix,
IndeciesArray.Length, "Stimulation Electronics Required:");

 FillSubMatrix(StimulationElecMatrix, ReturnSubMatricesNotNormalized.StimulationElecMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.StimulationElecMatrix,

StimulationElecMatrixResult, IndeciesArray.Length);

 //

 double[,] TypOutputLevelMatrix = new double[,] {

 {1.0,6.0,1.0,4.0,1.0,2.0,1.0},
 {0.1667,1.0,0.1667,0.25,0.1667,0.2,0.125},

 {1.0,6.0,1.0,4.0,1.0,2.0,1.0},

 {0.25,4.0,0.25,1.0,0.25,0.3333,0.1667},
 {1.0,6.0,1.0,4.0,1.0,3.0,1.0},

 {0.5,5.0,0.5,3.0,0.3333,1.0,0.3333},

 {1.0,8.0,1.0,6.0,1.0,3.0,1.0}
 };

 FillSubMatrix(TypOutputLevelMatrix, ReturnSubMatrices.TypOutputLevelMatrix, IndeciesArray);

 double[] TypOutputLevelMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypOutputLevelMatrix,
IndeciesArray.Length, "Typical Output Levels Per Degree Celsius:");

 FillSubMatrix(TypOutputLevelMatrix, ReturnSubMatricesNotNormalized.TypOutputLevelMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypOutputLevelMatrix,

TypOutputLevelMatrixResult, IndeciesArray.Length);

 //

 double[,] TypFastThertimeConsMatrix = new double[,] {

 {1.0,3.0,4.0,6.0,5.0,1.0,3.0},
 {0.3333,1.0,2.0,4.0,3.0,0.3333,1.0},

 {0.25,0.5,1.0,2.0,2.0,0.25,1.0},

 {0.1667,0.25,0.5,1.0,0.5,0.1667,0.3333},
 {0.2,0.3333,0.5,2.0,1.0,0.2,0.3333},

 {1.0,3.0,4.0,6.0,5.0,1.0,3.0},

 {0.3333,1.0,1.0,3.0,3.0,0.3333,1.0}
 };

 FillSubMatrix(TypFastThertimeConsMatrix, ReturnSubMatrices.TypFastThertimeConsMatrix, IndeciesArray);

 double[] TypFastThertimeConsMatrixResult =
CalculateWeightsForEachCriterion(ReturnSubMatrices.TypFastThertimeConsMatrix, IndeciesArray.Length, "Typical Fast Thermal

Time Constant:");

 FillSubMatrix(TypFastThertimeConsMatrix, ReturnSubMatricesNotNormalized.TypFastThertimeConsMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypFastThertimeConsMatrix,
TypFastThertimeConsMatrixResult, IndeciesArray.Length);

 //
 double[,] TypSmallSizMatrix = new double[,] {

 {1.0,2.0,3.0,4.0,5.0,6.0,5.0},

 {0.5,1.0,2.0,3.0,4.0,5.0,4.0},

 {0.3333,0.5,1.0,2.0,4.0,6.0,4.0},

 {0.25,0.3333,0.5,1.0,2.0,3.0,2.0},

 {0.2,0.25,0.25,0.5,1.0,3.0,1.0},
 {0.1667,0.2,0.1667,0.3333,0.3333,1.0,0.5},

179

 {0.2,0.25,0.25,0.5,1.0,2.0,1.0}

 };
 FillSubMatrix(TypSmallSizMatrix, ReturnSubMatrices.TypSmallSizMatrix, IndeciesArray);

 double[] TypSmallSizMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypSmallSizMatrix,

IndeciesArray.Length, "Typical Small Size:");

 FillSubMatrix(TypSmallSizMatrix, ReturnSubMatricesNotNormalized.TypSmallSizMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypSmallSizMatrix,
TypSmallSizMatrixResult, IndeciesArray.Length);

 //
 double[,] NoiseImmunityMatrix = new double[,] {

 {1.0,0.1667,0.3333,0.25,0.25,0.5,0.25},
 {6.0,1.0,4.0,3.0,3.0,5.0,3.0},

 {3.0,0.25,1.0,0.5,0.5,2.0,0.5},

 {4.0,0.3333,2.0,1.0,1.0,3.0,1.0},
 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0},

 {2.0,0.2,0.5,0.3333,0.25,1.0,0.25},

 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0}

 };

 FillSubMatrix(NoiseImmunityMatrix, ReturnSubMatrices.NoiseImmunityMatrix, IndeciesArray);

 double[] NoiseImmunityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.NoiseImmunityMatrix,
IndeciesArray.Length, "Noise Immunity:");

 FillSubMatrix(NoiseImmunityMatrix, ReturnSubMatricesNotNormalized.NoiseImmunityMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.NoiseImmunityMatrix,

NoiseImmunityMatrixResult, IndeciesArray.Length);

 //

 double[,] FraDurMatrix = new double[,] {

 {1.0,6.0,3.0,6.0,8.0,3.0,4.0},
 {0.1667,1.0,0.3333,2.0,3.0,0.3333,0.5},

 {0.3333,3.0,1.0,3.0,4.0,2.0,3.0},

 {0.1667,0.5,0.3333,1.0,3.0,0.25,0.3333},
 {0.125,0.3333,0.25,0.3333,1.0,0.25,0.3333},

 {0.3333,3.0,0.5,4.0,4.0,1.0,3.0},

 {0.25,2.0,0.3333,3.0,3.0,0.3333,1.0},

 };

 FillSubMatrix(FraDurMatrix, ReturnSubMatrices.FraDurMatrix, IndeciesArray);
 double[] FraDurMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.FraDurMatrix, IndeciesArray.Length,

"Fragility-Durability:");

 FillSubMatrix(FraDurMatrix, ReturnSubMatricesNotNormalized.FraDurMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.FraDurMatrix, FraDurMatrixResult,

IndeciesArray.Length);

 //

 double[,] HiThGrEnMatrix = new double[,] {
 {1.0,4.0,5.0,7.0,8.0,4.0,6.0},

 {0.25,1.0,2.0,5.0,6.0,2.0,4.0},

 {0.2,0.5,1.0,3.0,3.0,0.5,2.0},
 {0.1429,0.2,0.3333,1.0,1.0,0.25,0.5},

 {0.125,0.1667,0.3333,1.0,1.0,0.2,0.3333},

 {0.25,0.5,2.0,4.0,5.0,1.0,4.0},
 {0.1667,0.25,0.5,2.0,3.0,0.25,1.0}

 };

 FillSubMatrix(HiThGrEnMatrix, ReturnSubMatrices.HiThGrEnMatrix, IndeciesArray);
 double[] HiThGrEnMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.HiThGrEnMatrix,

IndeciesArray.Length, "High Thermal Gradient Environment:");

 FillSubMatrix(HiThGrEnMatrix, ReturnSubMatricesNotNormalized.HiThGrEnMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.HiThGrEnMatrix, HiThGrEnMatrixResult,

IndeciesArray.Length);

 //
 double[,] CorrResMatrix = new double[,] {

 {1.0,0.25,0.1667,0.5,0.1667,0.1667,0.25},

 {4.0,1.0,0.3333,2.0,0.25,0.25,1.0},
 {6.0,3.0,1.0,4.0,1.0,1.0,4.0},

 {2.0,0.5,0.25,1.0,0.25,0.25,0.5},

 {6.0,4.0,1.0,4.0,1.0,1.0,3.0},

 {6.0,4.0,1.0,4.0,1.0,1.0,3.0},

 {4.0,1.0,0.25,2.0,0.3333,0.3333,1.0}

 };
 FillSubMatrix(CorrResMatrix, ReturnSubMatrices.CorrResMatrix, IndeciesArray);

180

 double[] CorrResMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.CorrResMatrix, IndeciesArray.Length,

"Corrosion Resistance:");

 FillSubMatrix(CorrResMatrix, ReturnSubMatricesNotNormalized.CorrResMatrix, IndeciesArray);

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.CorrResMatrix, CorrResMatrixResult,
IndeciesArray.Length);

 //
 double[,] PointAreaMeasMatrix = new double[,] {

 {1.0,2.0,3.0,4.0,6.0,6.0,4.0},

 {0.5,1.0,2.0,3.0,4.0,4.0,3.0},
 {0.3333,0.5,1.0,2.0,3.0,4.0,2.0},

 {0.25,0.3333,0.5,1.0,2.0,2.0,0.5},
 {0.1667,0.25,0.3333,0.5,1.0,1.0,0.5},

 {0.1667,0.25,0.25,0.5,1.0,1.0,2.0},

 {0.25,0.5,0.3333,2.0,2.0,0.5,1.0}
 };

 FillSubMatrix(PointAreaMeasMatrix, ReturnSubMatrices.PointAreaMeasMatrix, IndeciesArray);

 double[] PointAreaMeasMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.PointAreaMeasMatrix,

IndeciesArray.Length, "Point or Area Measurement:");

 FillSubMatrix(PointAreaMeasMatrix, ReturnSubMatricesNotNormalized.PointAreaMeasMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.PointAreaMeasMatrix,

PointAreaMeasMatrixResult, IndeciesArray.Length);

 //

 double[,] ManuVarMatrix = new double[,] {

 {1.0, 0.3333, 0.1667,0.25,0.5,0.2,0.25},
 {3.0, 1.0, 0.3333,0.5,2.0,0.25,0.5},

 {6.0, 3.0, 1.0,4.0,3.0,6.0,3.0},

 {4.0,2.0,0.25,1.0,4.0,0.3333,0.5},
 {2.0,0.5,0.3333,0.25,1.0,0.2,0.25},

 {5.0,4.0,0.1667,3.0,5.0,1.0,2.0},

 {4.0,2.0,0.3333,2.0,4.0,0.5,1.0}
 };

 FillSubMatrix(ManuVarMatrix, ReturnSubMatrices.ManuVarMatrix, IndeciesArray);

 double[] ManuVarMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.ManuVarMatrix,
IndeciesArray.Length, "Manufacturing Variances:");

 FillSubMatrix(ManuVarMatrix, ReturnSubMatricesNotNormalized.ManuVarMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.ManuVarMatrix, ManuVarMatrixResult,

IndeciesArray.Length);

 //

 double[,] NistStanMatrix = new double[,] {

 {1.0 , 4.0, 1.0,1.0,1.0,4.0,5.0},
 {0.25, 1.0, 0.25,0.25,0.25,1.0,2.0},

 {1.0, 4.0, 1.0,1.0,1.0,4.0,5.0},

 {1.0,4.0,1.0,1.0,1.0,4.0,5.0},
 {1.0,4.0,1.0,1.0,1.0,4.0,5.0},

 {0.25,1.0,0.25,0.25,0.25,1.0,2.0},

 {0.2,0.5,0.2,0.2,0.2,0.5,1.0}
 };

 FillSubMatrix(NistStanMatrix, ReturnSubMatrices.NistStanMatrix, IndeciesArray);

 double[] NistStanMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.NistStanMatrix, IndeciesArray.Length,
"NIST Standards:");

 FillSubMatrix(NistStanMatrix, ReturnSubMatricesNotNormalized.NistStanMatrix, IndeciesArray);
 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.NistStanMatrix, NistStanMatrixResult,

IndeciesArray.Length);

 //

 double[,] CostMatrix = new double[,] {

 {1.0,1.0,6.0,3.0,3.0,6.0,3.0},
 {1.0,1.0,6.0,3.0,3.0,6.0,3.0},

 {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25},
 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0},

 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0},

 {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25},
 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}

 };

 FillSubMatrix(CostMatrix, ReturnSubMatrices.CostMatrix, IndeciesArray);

 double[] CostMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.CostMatrix, IndeciesArray.Length,

"Cost:");

 FillSubMatrix(CostMatrix, ReturnSubMatricesNotNormalized.CostMatrix, IndeciesArray);

181

 ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.CostMatrix, CostMatrixResult,

IndeciesArray.Length);

 //

 double[,] weightsOfCriteria = new double[,] {
 {1.0,9.0,6.0,4.0},

 {0.1111,1.0,0.5,0.3333},

 {0.1667,2.0,1.0,0.5},
 {0.25,3.0,2.0,1.0}

 };

 double[] weightsOfCriteriaResults = CalculateWeightsForEachCriterion(weightsOfCriteria, 4, "Weights of Criteria:");

 double[,] weightsOfCriteria2 = new double[,] {

 {1.0,9.0,6.0,4.0},

 {0.1111,1.0,0.5,0.3333},
 {0.1667,2.0,1.0,0.5},

 {0.25,3.0,2.0,1.0}

 };

 ConsistencyIndex = ComputeConsistencyIndex(weightsOfCriteria2, weightsOfCriteriaResults, 4);

 //

 double[,] Weightssubcriteriastatic = new double[,] {
 {1.0,1.0,4.0,4.0,3.0,1.0,5.0,5.0,6.0,8.0,5.0},

 {1.0,1.0,4.0,4.0,3.0,1.0,5.0,5.0,6.0,8.0,5.0},

 {0.25,0.25,1.0,0.5,0.3333,0.25,2.0,2.0,4.0,6.0,3.0},
 {0.25,0.25,2.0,1.0,1.0,0.3333,3.0,2.0,4.0,6.0,3.0},

 {0.3333,0.3333,3.0,1.0,1.0,0.3333,4.0,5.0,6.0,9.0,4.0},

 {1.0,1.0,4.0,3.0,3.0,1.0,5.0,5.0,6.0,9.0,5.0},
 {0.2,0.2,0.5,0.3333,0.25,0.2,1.0,0.5,3.0,6.0,3.0},

 {0.2,0.2,0.5,0.5,0.2,0.2,2.0,1.0,3.0,5.0,1.0},

 {0.1667,0.1667,0.25,0.25,0.1667,0.1667,0.3333,0.3333,1.0,3.0,0.3333},
 {0.125,0.125,0.1667,0.1667,0.1111,0.1111,0.1667,0.2,0.3333,1.0,0.2},

 {0.2,0.2,0.3333,0.3333,0.25,0.2,0.3333,1.0,3.0,5.0,1.0}

 };
 double[] weightsSubCriteriaStaticResult = CalculateWeightsForEachCriterion(Weightssubcriteriastatic, 11, "Weights of Sub-

Criteria Static:");

 double[,] Weightssubcriteriastatic2 = new double[,] {

 {1.0,1.0,4.0,4.0,3.0,1.0,5.0,5.0,6.0,8.0,5.0},

 {1.0,1.0,4.0,4.0,3.0,1.0,5.0,5.0,6.0,8.0,5.0},
 {0.25,0.25,1.0,0.5,0.3333,0.25,2.0,2.0,4.0,6.0,3.0},

 {0.25,0.25,2.0,1.0,1.0,0.3333,3.0,2.0,4.0,6.0,3.0},

 {0.3333,0.3333,3.0,1.0,1.0,0.3333,4.0,5.0,6.0,9.0,4.0},
 {1.0,1.0,4.0,3.0,3.0,1.0,5.0,5.0,6.0,9.0,5.0},

 {0.2,0.2,0.5,0.3333,0.25,0.2,1.0,0.5,3.0,6.0,3.0},

 {0.2,0.2,0.5,0.5,0.2,0.2,2.0,1.0,3.0,5.0,1.0},
 {0.1667,0.1667,0.25,0.25,0.1667,0.1667,0.3333,0.3333,1.0,3.0,0.3333},

 {0.125,0.125,0.1667,0.1667,0.1111,0.1111,0.1667,0.2,0.3333,1.0,0.2},

 {0.2,0.2,0.3333,0.3333,0.25,0.2,0.3333,1.0,3.0,5.0,1.0}
 };

 ConsistencyIndex = ComputeConsistencyIndex(Weightssubcriteriastatic2, weightsSubCriteriaStaticResult, 11);

 //
 double[,] weightssubCriteriaDynamic = new double[,] {

 {1.0,2.0,0.1667},

 {0.5,1.0,0.1667},
 {6.0,6.0,1.0}

 };

 double[] weightsSubCriteriaDynamicResult = CalculateWeightsForEachCriterion(weightssubCriteriaDynamic, 3, "Weights of
Sub-Criteria Dynamic:");

 double[,] weightssubCriteriaDynamic2 = new double[,] {
 {1.0,2.0,0.1667},

 {0.5,1.0,0.1667},

 {6.0,6.0,1.0}
 };

 ConsistencyIndex = ComputeConsistencyIndex(weightssubCriteriaDynamic2, weightsSubCriteriaDynamicResult, 3);
 //

 double[,] weightssubCriteriaEnv = new double[,] {

 {1.0,1.0,0.2,4.0,0.1667},
 {1.0,1.0,0.25,5.0,0.2},

 {5.0,4.0,1.0,7.0,0.5},

 {0.25,0.2,0.1429,1.0,0.125},

 {6.0,5.0,2.0,8.0,1.0}

 };

 double[] weightsSubCriteriaEnvironmentalResult = CalculateWeightsForEachCriterion(weightssubCriteriaEnv, 5, "Weights of
Sub-Criteria Environmental:");

182

 double[,] weightssubCriteriaEnv2 = new double[,] {
 {1.0,1.0,0.2,4.0,0.1667},

 {1.0,1.0,0.25,5.0,0.2},

 {5.0,4.0,1.0,7.0,0.5},
 {0.25,0.2,0.1429,1.0,0.125},

 {6.0,5.0,2.0,8.0,1.0}

 };
 ConsistencyIndex = ComputeConsistencyIndex(weightssubCriteriaEnv2, weightsSubCriteriaEnvironmentalResult, 5);

 //

 double[,] Others = new double[,] {
 {1.0,3.0,0.5,0.1667},

 {0.3333,1.0,0.3333,0.1429},
 {2.0,3.0,1.0,0.2},

 {6.0,7.0,5.0,1.0}

 };
 double[] weightsSubCriteriaOthersResult = CalculateWeightsForEachCriterion(Others, 4, "Weights of Sub-Criteria Others:");

 double[,] Others2 = new double[,] {

 {1.0,3.0,0.5,0.1667},

 {0.3333,1.0,0.3333,0.1429},

 {2.0,3.0,1.0,0.2},
 {6.0,7.0,5.0,1.0}

 };

 ConsistencyIndex = ComputeConsistencyIndex(Others2, weightsSubCriteriaOthersResult, 4);
 //

 //Calculate sub criteria aggregate weights with respect to final goal

 Scale(weightsSubCriteriaStaticResult, weightsOfCriteriaResults[0]);
 Scale(weightsSubCriteriaDynamicResult, weightsOfCriteriaResults[1]);

 Scale(weightsSubCriteriaEnvironmentalResult, weightsOfCriteriaResults[2]);

 Scale(weightsSubCriteriaOthersResult, weightsOfCriteriaResults[3]);

 //

 //Calculate sub criteria aggregate weights for ThermoCouple (alternative 1)
 double ThermoCoupleFinalScore = 0.0;

 double ThermisterFinalScore = 0.0;

 double RTDFinalScore = 0.0;
 double BimetallicFinalScore = 0.0;

 double ThermometerFinalScore = 0.0;

 double PyrometerFinalScore = 0.0;
 double LCDDidplayFinalScore = 0.0;

 for (int k = 0; k < IndeciesArray.Length; k++)
 {

 if (IndeciesArray[k] == AHP.SENSOR_THERMOCOUPLE)

 {
 double[] ThermoCoupleAggregateSubCriteriaStatic = new double[11];

 double[] ThermoCoupleAggregateSubCriteriaDynamic = new double[3];

 double[] ThermoCoupleAggregateSubCriteriaEnvironmental = new double[5];
 double[] ThermoCoupleAggregateSubCriteriaOthers = new double[4];

 ThermoCoupleAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];
 ThermoCoupleAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];

 ThermoCoupleAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];

 ThermoCoupleAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];
 ThermoCoupleAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];

 ThermoCoupleAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];

 ThermoCoupleAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];
 ThermoCoupleAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];

 ThermoCoupleAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];

 ThermoCoupleAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];
 ThermoCoupleAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 ThermoCoupleFinalScore = ThermoCoupleFinalScore +
GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaStatic);

 ThermoCoupleAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] *

weightsSubCriteriaDynamicResult[0];

 ThermoCoupleAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] *
weightsSubCriteriaDynamicResult[1];

 ThermoCoupleAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *

weightsSubCriteriaDynamicResult[2];

 ThermoCoupleFinalScore = ThermoCoupleFinalScore +

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaDynamic);

183

 ThermoCoupleAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[0];
 ThermoCoupleAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];

 ThermoCoupleAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[2];

 ThermoCoupleAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[3];
 ThermoCoupleAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[4];

 ThermoCoupleFinalScore = ThermoCoupleFinalScore +

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaEnvironmental);

 ThermoCoupleAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];

 ThermoCoupleAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];
 ThermoCoupleAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 ThermoCoupleAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 ThermoCoupleFinalScore = ThermoCoupleFinalScore +

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaOthers);

 SensorRanks[k] = ThermoCoupleFinalScore;

 System.Console.Write("\n\n");

 System.Console.Write("Thermo Couple Final Score = {0}", ThermoCoupleFinalScore);
 }

 //

 //Calculate sub criteria aggregate weights for Thermister (alternative 2)
 else if (IndeciesArray[k] == AHP.SENSOR_THERMISTER)

 {

 double[] ThermisterAggregateSubCriteriaStatic = new double[11];
 double[] ThermisterAggregateSubCriteriaDynamic = new double[3];

 double[] ThermisterAggregateSubCriteriaEnvironmental = new double[5];

 double[] ThermisterAggregateSubCriteriaOthers = new double[4];

 ThermisterAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];

 ThermisterAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];
 ThermisterAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];

 ThermisterAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];

 ThermisterAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];
 ThermisterAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];

 ThermisterAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];

 ThermisterAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];
 ThermisterAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];

 ThermisterAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];

 ThermisterAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 ThermisterFinalScore = ThermisterFinalScore + GetSummationOfVectorElements(ThermisterAggregateSubCriteriaStatic);

 ThermisterAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];

 ThermisterAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];

 ThermisterAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *
weightsSubCriteriaDynamicResult[2];

 ThermisterFinalScore = ThermisterFinalScore +
GetSummationOfVectorElements(ThermisterAggregateSubCriteriaDynamic);

 ThermisterAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[0];

 ThermisterAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];
 ThermisterAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2];

 ThermisterAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[3];
 ThermisterAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4];

 ThermisterFinalScore = ThermisterFinalScore +

GetSummationOfVectorElements(ThermisterAggregateSubCriteriaEnvironmental);

 ThermisterAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];

 ThermisterAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];

 ThermisterAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 ThermisterAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 ThermisterFinalScore = ThermisterFinalScore + GetSummationOfVectorElements(ThermisterAggregateSubCriteriaOthers);

184

 System.Console.Write("\n\n");

 System.Console.Write("Thermister Final Score = {0}", ThermisterFinalScore);

 SensorRanks[k] = ThermisterFinalScore;

 }
 //

 //Calculate sub criteria aggregate weights for RTD (alternative 3)

 else if (IndeciesArray[k] == AHP.SENSOR_RTD)
 {

 double[] RTDAggregateSubCriteriaStatic = new double[11];

 double[] RTDAggregateSubCriteriaDynamic = new double[3];
 double[] RTDAggregateSubCriteriaEnvironmental = new double[5];

 double[] RTDAggregateSubCriteriaOthers = new double[4];

 RTDAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];

 RTDAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];
 RTDAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];

 RTDAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];

 RTDAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];

 RTDAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];

 RTDAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];

 RTDAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];
 RTDAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];

 RTDAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];

 RTDAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaStatic);

 RTDAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];

 RTDAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];

 RTDAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * weightsSubCriteriaDynamicResult[2];

 RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaDynamic);

 RTDAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[0];

 RTDAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];
 RTDAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2];

 RTDAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[3];

 RTDAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4];

 RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaEnvironmental);

 RTDAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];

 RTDAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];

 RTDAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];
 RTDAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaOthers);
 SensorRanks[k] = RTDFinalScore;

 }

 else if (IndeciesArray[k] == AHP.SENSOR_BIMETALLIC)
 {

 double[] BimetallicAggregateSubCriteriaStatic = new double[11];

 double[] BimetallicAggregateSubCriteriaDynamic = new double[3];
 double[] BimetallicAggregateSubCriteriaEnvironmental = new double[5];

 double[] BimetallicAggregateSubCriteriaOthers = new double[4];

 BimetallicAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];

 BimetallicAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];

 BimetallicAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];
 BimetallicAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];

 BimetallicAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];

 BimetallicAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];
 BimetallicAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];

 BimetallicAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];
 BimetallicAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];

 BimetallicAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];

 BimetallicAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 BimetallicFinalScore = BimetallicFinalScore + GetSummationOfVectorElements(BimetallicAggregateSubCriteriaStatic);

 BimetallicAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];

 BimetallicAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];

 BimetallicAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *
weightsSubCriteriaDynamicResult[2];

185

 BimetallicFinalScore = BimetallicFinalScore +
GetSummationOfVectorElements(BimetallicAggregateSubCriteriaDynamic);

 BimetallicAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[0];

 BimetallicAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];
 BimetallicAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2];

 BimetallicAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[3];
 BimetallicAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4];

 BimetallicFinalScore = BimetallicFinalScore +

GetSummationOfVectorElements(BimetallicAggregateSubCriteriaEnvironmental);

 BimetallicAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];

 BimetallicAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];

 BimetallicAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 BimetallicAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 BimetallicFinalScore = BimetallicFinalScore + GetSummationOfVectorElements(BimetallicAggregateSubCriteriaOthers);
 SensorRanks[k] = BimetallicFinalScore;

 }

 else if (IndeciesArray[k] == AHP.SENSOR_THERMOMETER)
 {

 double[] ThermometerAggregateSubCriteriaStatic = new double[11];

 double[] ThermometerAggregateSubCriteriaDynamic = new double[3];
 double[] ThermometerAggregateSubCriteriaEnvironmental = new double[5];

 double[] ThermometerAggregateSubCriteriaOthers = new double[4];

 ThermometerAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];

 ThermometerAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];

 ThermometerAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];
 ThermometerAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];

 ThermometerAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];

 ThermometerAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];
 ThermometerAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];

 ThermometerAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];

 ThermometerAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];
 ThermometerAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];

 ThermometerAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 ThermometerFinalScore = ThermometerFinalScore +

GetSummationOfVectorElements(ThermometerAggregateSubCriteriaStatic);

 ThermometerAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];

 ThermometerAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];

 ThermometerAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *
weightsSubCriteriaDynamicResult[2];

 ThermometerFinalScore = ThermometerFinalScore +
GetSummationOfVectorElements(ThermometerAggregateSubCriteriaDynamic);

 ThermometerAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[0];

 ThermometerAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];
 ThermometerAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[2];

 ThermometerAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[3];

 ThermometerAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[4];

 ThermometerFinalScore = ThermometerFinalScore +
GetSummationOfVectorElements(ThermometerAggregateSubCriteriaEnvironmental);

 ThermometerAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];
 ThermometerAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];

 ThermometerAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 ThermometerAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 ThermometerFinalScore = ThermometerFinalScore +

GetSummationOfVectorElements(ThermometerAggregateSubCriteriaOthers);
 SensorRanks[k] = ThermometerFinalScore;

186

 }

 else if (IndeciesArray[k] == AHP.SENSOR_PYROMETER)
 {

 double[] PyrometerAggregateSubCriteriaStatic = new double[11];

 double[] PyrometerAggregateSubCriteriaDynamic = new double[3];
 double[] PyrometerAggregateSubCriteriaEnvironmental = new double[5];

 double[] PyrometerAggregateSubCriteriaOthers = new double[4];

 PyrometerAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];

 PyrometerAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];

 PyrometerAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];
 PyrometerAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];

 PyrometerAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];
 PyrometerAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];

 PyrometerAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];

 PyrometerAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];
 PyrometerAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];

 PyrometerAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];

 PyrometerAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 PyrometerFinalScore = PyrometerFinalScore + GetSummationOfVectorElements(PyrometerAggregateSubCriteriaStatic);

 PyrometerAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];

 PyrometerAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];

 PyrometerAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *
weightsSubCriteriaDynamicResult[2];

 PyrometerFinalScore = PyrometerFinalScore +
GetSummationOfVectorElements(PyrometerAggregateSubCriteriaDynamic);

 PyrometerAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[0];

 PyrometerAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];
 PyrometerAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2];

 PyrometerAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[3];
 PyrometerAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4];

 PyrometerFinalScore = PyrometerFinalScore +
GetSummationOfVectorElements(PyrometerAggregateSubCriteriaEnvironmental);

 PyrometerAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];
 PyrometerAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];

 PyrometerAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 PyrometerAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 PyrometerFinalScore = PyrometerFinalScore + GetSummationOfVectorElements(PyrometerAggregateSubCriteriaOthers);

 SensorRanks[k] = PyrometerFinalScore;
 }

 else if (IndeciesArray[k] == AHP.SENSOR_LCD_DISPLAY)

 {
 double[] LCDDidplayAggregateSubCriteriaStatic = new double[11];

 double[] LCDDidplayAggregateSubCriteriaDynamic = new double[3];

 double[] LCDDidplayAggregateSubCriteriaEnvironmental = new double[5];
 double[] LCDDidplayAggregateSubCriteriaOthers = new double[4];

 LCDDidplayAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0];
 LCDDidplayAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1];

 LCDDidplayAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2];

 LCDDidplayAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3];
 LCDDidplayAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4];

 LCDDidplayAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5];

 LCDDidplayAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6];
 LCDDidplayAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7];

 LCDDidplayAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8];
 LCDDidplayAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9];

 LCDDidplayAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10];

 LCDDidplayFinalScore = LCDDidplayFinalScore +

GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaStatic);

 LCDDidplayAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0];

 LCDDidplayAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1];

 LCDDidplayAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] *
weightsSubCriteriaDynamicResult[2];

187

 LCDDidplayFinalScore = LCDDidplayFinalScore +
GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaDynamic);

 LCDDidplayAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[0];

 LCDDidplayAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[1];
 LCDDidplayAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] *

weightsSubCriteriaEnvironmentalResult[2];

 LCDDidplayAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[3];

 LCDDidplayAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] *
weightsSubCriteriaEnvironmentalResult[4];

 LCDDidplayFinalScore = LCDDidplayFinalScore +
GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaEnvironmental);

 LCDDidplayAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0];

 LCDDidplayAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1];

 LCDDidplayAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2];

 LCDDidplayAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3];

 LCDDidplayFinalScore = LCDDidplayFinalScore +

GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaOthers);
 SensorRanks[k] = LCDDidplayFinalScore;

 }

 }

 textBoxResults.AppendText("\n\n");

 textBoxResults.AppendText("\nSensor Ranks: \n");
 for (int j = 0; j < SensorRanks.Length; j++)

 {

 textBoxResults.AppendText("" + SensorRanks[j] + "\n");
 }

 return SensorRanks;
 }

 }

}

188

6. Program.cs File(Entry Point)

using System;

using System.Collections.Generic;
using System.Windows.Forms;

namespace AhpCaseStudy1GUI

{

 static class Program
 {

 /// <summary>
 /// The main entry point for the application.

 /// </summary>

 [STAThread]
 static void Main()

 {

 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);

 Application.Run(new Form1());

 }
 }

}

189

Appendix VII: Complete List of Software Results for the

Three Sensors: the Thermocouple, the Thermister, and the

RTD Automotive Catalytic Converter Case Study

Maximum Operating Temperature Matrix:

 1 3 1

0.3333 1 0.3333
1 3 1

Alternatives Weight Vector = 0.42857 0.14284 0.42857

Consistency Index = 0

Consistency Ratio = 0

Minimum Operating Temperature Matrix:

1 2 2
0.5 1 1

0.5 1 1

Alternatives Weight Vector = 0.5 0.25 0.25

Consistency Index = 0
Consistency Ratio = 0

__

Temperature Curve Matrix:
1 3 0.3333

0.3333 1 0.1667

3 6 1

 Alternatives Weight Vector = 0.25099 0.09601 0.65299

Consistency Index = 0.00918

Consistency Ratio = 0.01583

__
Sensitivity Matrix:

 1 0.1111 0.2

 9 1 4
 5 0.25 1

Alternatives Weight Vector = 0.06225 0.70131 0.23643

Consistency Index = 0.03610

Consistency Ratio = 0.06225
__

Self-Heating Issues Matrix:

 1 8 3
 0.125 1 0.2

 0.3333 5 1

 1Alternatives Weight Vector = 0.65714 0.06825 0.27459

Consistency Index = 0.02217

Consistency Ratio = 0.03823

__
Long Term Stability and Accuracy Matrix:

 1 0.25 0.1667

 4 1 0.3333
 6 3 1

Alternatives Weight Vector = 0.08695 0.27371 0.63933

Consistency Index = 0.02704

Consistency Ratio = 0.04663
__

Typical Temperature Coefficient Matrix:

190

 1 0.1667 0.3333

 6 1 3
 3 0.3333 1

Alternatives Weight Vector = 0.09601 0.65299 0.25099

Consistency Index = 0.00918

Consistency Ratio = 0.01583
__

Extension Wires Matrix:

 1 0.1667 0.1667
 6 1 1

 6 1 1

Alternatives Weight Vector = 0.07692 0.46153 0.46153

Consistency Index = 0

Consistency Ratio = 0

__

Long Wire Runs From Sensor Matrix:

 1 0.3333 1

 3 1 3
 1 0.3333 1

Alternatives Weight Vector = 0.19999 0.60000 0.19999

Consistency Index = 0

Consistency Ratio = 0
__

Measurement Parameter Matrix:

 1 4 3
 0.25 1 0.5

 0.3333 2 1

Alternatives Weight Vector = 0.62322 0.13728 0.23948

Consistency Index = 0.00915
Consistency Ratio = 0.01578

__

Temperature Measurement Matrix:
 1 0.25 0.2

 4 1 0.3333

 5 3 1

Alternatives Weight Vector = 0.09642 0.28422 0.61935

Consistency Index = 0.04333

Consistency Ratio = 0.07471

__
Stimulation Electronics Required Matrix:

 1 4 3

 0.25 1 0.5
 0.3333 2 1

0.23948Alternatives Weight Vector = 0.62322 0.13728

Consistency Index = 0.00915

Consistency Ratio = 0.01578
__

Existence of Maximum Sensitivity Region Matrix:

 1 6 1
 0.1667 1 0.1667

 1 6 1

Alternatives Weight Vector = 0.46153 0.07693 0.46153

Consistency Index = 0

Consistency Ratio = 0

__
Typical Fast Thermal Time Constant Matrix:

 1 3 4

 0.3333 1 2

 0.25 0.5 1

Alternatives Weight Vector = 0.62322 0.23948 0.13728

Consistency Index = 0.00915

191

Consistency Ratio = 0.01578

__
Typical Small Size Matrix:

 1 2 3

 0.5 1 2
 0.3333 0.5 1

Alternatives Weight Vector = 0.53896 0.29725 0.16377

Consistency Index = 0.00458

Consistency Ratio = 0.00790
__

Noise Immunity matrix:

 1 0.1667 0.33333
 6 1 4

 3 0.25 1

Alternatives Weight Vector = 0.09338 0.68529 0.22132

Consistency Index = 0.02710
Consistency Ratio = 0.04672

__

Fragility-Durability Matrix:
 1 6 3

 0.1667 1 0.3333

 0.3333 3 1

Alternatives Weight Vector = 0.65299 0.09601 0.25099

Consistency Index = 0.00918

Consistency Ratio = 0.01583

__
High Thermal Gradient Environment Matrix:

 1 4 5

 0.25 1 2
 0.2 0.5 1

Alternatives Weight Vector = 0.68064 0.20141 0.11794

Consistency Index = 0.01235
Consistency Ratio = 0.02129

__

Corrosion Resistance Matrix:
 1 0.25 0.1667

 4 1 0.3333

 6 3 1

 Alternatives Weight Vector = 0.08695 0.27371 0.63933

Consistency Index = 0.02704

Consistency Ratio = 0.04663

__
Point or Area Measurement Matrix:

 1 2 3

 0.5 1 2
 0.3333 0.5 1

Alternatives Weight Vector = 0.53896 0.29725 0.16377

Consistency Index = 0.00458

Consistency Ratio = 0.00790
__

Manufacturing Variances Matrix:
 1 0.3333 0.1667

 3 1 0.3333

 6 3 1

Alternatives Weight Vector = 0.09601 0.25099 0.65299

Consistency Index = 0.00918

Consistency Ratio = 0.01583

NIST Standards Matrix:

192

 1 4 5

 0.25 1 0.25
 1 4 1

Alternatives Weight Vector = 0.44444 0.11111 0.44444

Consistency Index = 0
Consistency Ratio = 0

__

Cost Matrix:
 1 1 6

 1 1 6
 0.1667 0.1667 1

Alternatives Weight Vector = 0.46153 0.46153 0.07693

Consistency Index = 0

Consistency Ratio = 0

Criteria Matrix:

 1 4 3 4

 0.25 1 0.5 1

 0.3333 2 1 2

 0.25 1 0.5 1

Criteria Weight Vector = 0.53636 0.12159 0.22045 0.12159

Consistency Index = 0.00686

Consistency Ratio = 0.00762
__

Sub-Criteria Static Matrix:

 1.0 1.0 5.0 4.0 4.0 2.0 5.0 6.0 7.0 8.0 6.0

 1.0 1.0 5.0 4.0 4.0 2.0 5.0 6.0 7.0 8.0 6.0

 0.2 0.2 1.0 0.3333 0.3333 0.25 1.0 2.0 4.0 5.0 3.0

 0.25 0.25 3.0 1.0 2.0 0.5 3.0 3.0 5.0 6.0 4.0

 0.25 0.25 3.0 0.5 1.0 0.3333 3.0 5.0 6.0 8.0 4.0

 0.5 0.5 4.0 2.0 3.0 1.0 4.0 5.0 6.0 8.0 5.0

 0.2 0.2 1.0 0.3333 0.3333 0.25 1.0 1.0 4.0 6.0 3.0

 0.1667 0.1667 0.5 0.3333 0.2 0.2 1.0 1.0 3.0 4.0 1.0

 0.1429 0.1429 0.25 0.2 0.1667 0.1667 0.25 0.3333 1.0 2.0 0.3333

 0.125 0.125 0.2 0.1667 0.125 0.125 0.1667 0.25 0.5 1.0 0.25

 0.1667 0.1667 0.3333 0.25 0.25 0.2 0.3333 1.0 3.0 4.0 1.0

Sub-Criteria Static Weight Vector = 0.22118 0.22118 0.05379 0.09836 0.09777 0.15040 0.05233 0.03703

0.01983 0.01452 0.03355

Consistency Index = 0.08281

Consistency Ratio = 0.05208

__
Sub-Criteria Dynamic Matrix:

 1 2 0.1667

 0.5 1 0.1667

 6 6 1

Relative Weight Vector = 0.16019 0.10093 0.73887

Consistency Index = 0.02722

Consistency Ratio = 0.04694

193

__

Sub-Criteria Environmental Matrix:
 1 3 0.3333 4 0.25

 0.3333 1 0.25 3 0.2

 3 4 1 5 0.5

 0.25 0.3333 0.2 1 0.1667

 4 5 2 6 1

Relative Weight Vector = 0.15164 0.08645 0.28264 0.04767 0.43157

Consistency Index = 0.06346

Consistency Ratio = 0.05666
__

Sub-Criteria Others Matrix:

 1 3 0.5 0.25

 0.3333 1 0.3333 0.2

 2 3 1 0.3333

 4 5 3 1

Relative Weight Vector = 0.15750 0.07747 0.22913 0.53589

Consistency Index = 0.03752

Consistency Ratio = 0.04169

__
Relative Weight Vector = 0.118638 0.11863 0.02885 0.05276 0.05244 0.08066 0.02807 0.01986 0.01063

0.00778 0.01799

Relative Weight Vector = 0.01947 0.01227 0.08984
Relative Weight Vector = 0.03343 0.01905 0.06230 0.01050 0.09514

Relative Weight Vector = 0.01915 0.00942 0.02786 0.06516

Sensor Ranks

0.37849
0.27560

 0.34589

194

Abstract in Arabic

التسلسل ختيار مستشعرات قياس الحرارة باستخدام طريقة تطبيق برمجي لا

 التحليلي الهرمي

 البعولمحمد يشاد اعداد:

 الملخص

بهدف اختيار أفضل (AHP) الاطروحة تقدم تطبيق برمجي يعتمد على استخدام طريقة التسلسل الهرمي التحليلي

 مستشعر لقياس الحرارة من بين عدة مستشعرات و لتطبيقات متعددة. تقوم منهجية الإختيار على اعطاء المستشعرات

ناتجة عن تركيب الأوزان النسبية لكل مستشعر نسبة الى المستشعرات (Ranks) تبا ر ذات الخصائص المختلفة

الأخرى في المستويات المختلفة للتسلسل الهرمي و بالإعتماد على معايير تقييم مستقلة. يتم حساب الوزن النسبي لكل

مقارنات ت جرى بين هذه مستشعر بالنسبة للطبقة المباشرة الأعلى في كل مستوى من مستويات التسلسل الهرمي بوساطة

ضمن التطبيق الواحد. هذه و التي تؤخذ من مواصفات المستشعرات المعلومة (pair-wise)المستشعرات مثنى مثنى

دخلة ومتضمّنة داخل البرنامج الأوزان الثنائية و يقوم البرنامج باسترجاعها بمجرد أن يحدد (embedded) م

الصناعي، قيود التطبيق، و المستشعرات المتوفرة. من مزايا طريقة التسلسل المستخدم للبرنامج كلا من التطبيق

هي تسمح بعملية اتخاذ قرار أسهل و أكثر تنظيما من وعقلانية ، الهرمي التحليلي أنها طرقة تقييم لأداء البدائل مكممة

الدراسة، تتم عملية الإختيار مجرد الأراء الشخصية الخاضعة لأراء الأفراد و المعرّضة لأحكام خاطئة. في هذه

حوسبة وسهلة على وم لتسهيل اجراء عملية الإختيار بطريقة جاهزة (# C)بوساطة برنامج حاسوبي مبنيّ باستخدام لغة

المستخدم، و بالتالي هذه الدراسة تقدم المساعدة للعاملين في الصناعة و الراغبين في الإختيار بين مستشعرات حرارة

 متعددة.

و متنوع و قابل للتطبيق بالنسبة للعديد من حالات اختيار المستشعرات. رنامج الحاسوبي المقترح متعدد الإستخدام إن الب

يتطلب هذا التطبيق .في هذه الأطروحة على استخدام البرنامج يتمثل بتطبيق المحول المحفّز في السيارات مثال ميدتم تق

درجة مئوية، و بدرجة حرارة قصوى 750-500استخدام مستعرات حرارة قادرة على قياس حرارات عالية في المدى

درجة مئوية. تم الاختيار في هذا المثال بين ثلاثة أصناف من مستشعرات الحرارة: الثنائي الحراري 870قد تصل الى

(Thermocouplesو ،)(الثيرمسترThermisters(و موازين الحرارة المتحسسة بالمقاومة ،)RTDs.) ،و مع ذلك

 لتطبيقات صناعية متعددة.يق على مجوعة أوسع من الخيارات وقوي و قابل للتطبالبرنامج الحاسوبي ف

	Binghamton University
	The Open Repository @ Binghamton (The ORB)
	9-2010

	A Software Application For The Selection Of Temperature Measuring Sensors Using The Analytic Hierarchy Process (AHP)
	Shadi Mohammad AL-B'ool
	Recommended Citation

	THE EFFECT OF HEAT TREATMENT TEMPERATURE AND TIME ON THE PRECIPITATION HARDENING OF (Al-Cu-Ni) ALLOYS

