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ABSTRACT 

 

A SOFTWARE APPLICATION FOR THE SELECTION OF 

TEMPERATURE MEASURING SENSORS USING THE 

ANALYTIC HIERARCHY PROCESS (AHP) 

 

by 

Shadi Mohammad AL-B’ool 

 

 

 

 

This study presents a computer program that applies analytic hierarchy process 

(AHP) method to objectively select the best temperature sensors for various 

applications from multiple nominated alternatives. The underlying decision method 

based on AHP methodology, ranks temperature sensors with different features with a 

score resulting from the synthesis of relative preferences of each alternative to the 

others at different levels considering independent evaluation criteria. At each level, 

relative preferences of each candidate alternative with respect to the upper 

immediate level are calculated from pair-wise comparisons among the candidate 

alternative sensors based on the specifications of sensors with respect to a selected 

application. These pair-wise relative comparison weights are embedded in the 

computer software and are retrieved whenever the user specifies the application, the 

restrictions, and the available alternative sensors that meet these restrictions. AHP 

method proves to provide a quantitative and rational alternative performance 

evaluation method; it permits simpler, easier and more organized decision making 

process than subjective opinions that are subject to erroneous judgments. In this 

study, the application of AHP method in selecting the best temperature sensor for a 

particular application is embedded via the use of a computer program built using C# 

programming language to help perform the selection process in an easy graphical 

user interface GUI, ready-to-use, and computerized way and thus provides aid to 

those working in industry and in need of such a software tool.  

 

The proposed computer program is versatile and applicable to multitude of 

temperature sensors selection situations. A case study from the automotive industry 

which is the catalytic convertor application is presented. This application demands 

the use of temperature sensors capable of monitoring high temperatures in the order 

of 500°C-750°C, with a maximum temperature of ~870°C [1]. The selection process 

is conducted from among three alternative sensor categories, these are: 

thermocouples, thermisters, and RTD thermometers. The computer program is 



 xiii 

robust and applicable to a wider range of temperature sensors selection situations 

with a variety of applications and different arrays of candidate sensors. 
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Chapter One Introduction 

1.1 Motivation for Process Measurement  

The ultimate goal of any industrial company is to make profit. Companies that in the long 

run continue to provide an adequate return on stockholder investment tend to survive; 

those that fail to do so eventually disappear. This underscores the importance of profitable 

manufacturing operations, and it is ultimately the need to maximize profit that provides the 

motivation for a company to buy process measurement and control systems. The 

uniformity and quality of the product in any industrial process depend on the ability to 

maintain the correct operating conditions and parameters within a certain range. Process 

sensors are devices that measure these parameters, and the resulting data is used to control 

the process. In addition, such measurements enable better process understanding, which 

often drives process improvement. The connection between profit and process 

measurement is illustrated in Figure 1.1. 

Product quality and uniformity have a large impact on market demand and share of any 

industrial company, especially if similar products are offered by competitors. Apart from 

machine malfunction or operator error, defects are usually caused by variability in the feed 

stock or excursions in the operating conditions. Process feedback gained from process 

sensors enables active process control, which can respond to such variations in feedstock 

and excursions in operating conditions as they arise. By automatically adapting the process 

to changing feedstock with a strong connection with the process measurement system, the 

process controller improves product uniformity and minimizes the amount of defective 
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product. The result is a top-quality product that will consistently meet customers’ 

expectations.  

 

                     

 

                                                             

 

 

   

 

 

 

 

        

                                                                         

                                     

 

 

 

 

 

 

 

Figure  1.1: Process measurement is crucial to plant operation and profitability. 

Process efficiency also has a major impact on profitability. By minimizing defective 

product, process control also minimizes the associated waste in raw material, effort, and 

energy. Automation of various operations within the process leads to lower labor costs. 

Finally, process measurement and control can reduce energy costs by running mills, 

mixers, and other energy-intensive devices. It is not uncommon to realize savings of more 

than 15% in energy and maintenance costs on such equipment. The resulting increase in 

asset productivity is also important when the plant is running near capacity. By running an 

efficient process, the company can maximize its profit margin on the product [2]. 

Since most processes operate entirely within closed metal vessels, the operator relies on 

sensor data for knowledge about the state of the process. It would therefore be impossible 

to run most plants without sensors.  
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1.2 Temperature Measurement 

Temperature is one of the most frequently used process measurements. Almost all 

chemical processes and reactions are temperature-dependent. Frequently in chemical plant, 

temperature is the only indication of the progress of the process. A considerable loss of 

product may result from incorrect temperatures. In some cases, loss of control of 

temperature can result in catastrophic plant failure with the attendant damage and possibly 

loss of life. There are many areas of industry where temperature measurement is essential. 

Such applications include steam raising and electricity generation, metallurgical industries, 

typically steel and aluminum alloys, moulding and plastics manufacturing, food industries 

and many different others. 

1.3 Definitions 

For the understanding of temperature measurement it is essential to have an appreciation of 

the concepts of temperature and other heat-related phenomena. 

1.3.1 Temperature 

The temperature of a medium is an expression of its content of thermodynamic energy. 

The thermodynamic energy represents the average velocity of the unarranged molecular 

movement in the material.  To measure the temperature by a temperature sensor, then the 

measurement medium and temperature sensor both must reach thermal equilibrium such 

that both assume the same temperature. To achieve this, the following 3 conditions must be 

fulfilled: 

1- The bodies must not exchange heat with external or internal sources. 

2- The bodies must be in mutual balance. 

3- The bodies have had thermal contact through sufficiently long time [3].  



4 

 

Temperature is therefore related to the kinetic energy of the molecules at a localized region 

in a body; however, these kinetic energies cannot be measured directly and the temperature 

inferred. To circumvent this difficulty, the International Practical Temperature Scale 

(IPTS) has been defined in terms of the behavior of a number of materials at 

thermodynamic fixed points [4]. 

1.3.2 The International Practical Temperature Scale (IPTS) 

The international Practical Temperature Scale (IPTS) is based on six primary fixed points 

that cover the temperature range from -183 °C(-297 °F) to 1065°C (1949°F) and other 

secondary fixed points each of  which corresponds to an equilibrium state during a phase 

transformation of a particular material. Between the fixed points (both primary and 

secondary), the temperature is defined by the response of specified temperature sensors 

and interpolation equations. The scale is divided into four ranges with the sensors, fixed 

points, and temperature span as indicated in Table1-1 [4]. 

Table  1-1: Temperature Range, Sensors, and Interpolation Equations for the 
International Practical Temperature Scale 

 Temperature   Sensor                              Fixed Point                             Equation 

  range (°C)                                                                

                           

-190 to 0            Platinum thermometer      Oxygen, ice, steam, sulfur      Reference equation    

 

0 to 660             Platinum thermometer       Ice, steam, sulfur                    Parabola    

 

660 to 1063      10% rhodium platinum      Antimony, silver, gold            Parabola thermocouple 

 

Above 1063      Optical pyrometer                                                            Planck’s Law    
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1.3.3 Thermal Expansion 

Themal expansion of solids is defined in terms of the coefficient of linear expansion α 

which is defined as the increase in length per unit length when the temperature is raised by 

1 K: 

           lt  = l0+ l0.αt                                                                                                         (1.1) 

where l0  = the initial length at temperature 0 °C  

           lt = the length when the temperature is raised to t °C 

1.3.4 Radiation  

Radiation is the direct transfer of heat (or other form of energy) across space. Thermal 

radiation is electromagnetic radiation and comes within the infrared, visible and ultraviolet 

regions of the electromagnetic spectrum. In this thesis, the temperature measurement 

instrument that has to do with radiation heat transfer is the optical pyrometer.   

1.3.5 Sensor Accuracy  

A measure of how closely the sensor output approximates the true value of the measured 

variable, the temperature in this case [5].  

1.3.6 Sensor Resolution 

The smallest increment in the value of the measured variable (temperature) that results in 

detectable increment in the output [5]. 

1.3.7 Sensor Stability 

Sensor stability is the ability of the sensor to maintain and reproduce its specific resistance-

temperature characteristic for long periods of time within its specified temperature range of 

operation. The degree of thermometer stability is expressed in terms of drift, or more 
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simply sensor stability is the ability of the sensor to maintain R vs. T over time as a result 

of thermal exposure [6]. 

1.3.8 Sensor Repeatability Performance 

Repeatability performance is closely related to stability. Repeatability is defined as the 

conformity of consecutive temperature measurements for an individual test thermometer at 

selected temperatures within its specified temperature range of operation, or more simply 

sensor repeatability is the ability of the sensor to maintain R vs. T under the same 

conditions after experiencing thermal cycling throughout a specified temperature range [6]. 

1.3.9 Sensor’s Drift 

It is an undesirable change in resistance over a period of time which is unrelated to the 

actual operating temperature. Usually, maximum drift is experienced by the sensor at high 

temperatures [6]. 

1.3.10 Sensor’s Sensitivity 

Is the incremental ratio of the sensor’s output (y) to the input temperature (x): 

 

              S = Δy/Δx                                                                                                           (1.2) 

1.3.11 Sensor Hysteresis 

Difference in the output of the sensor for a given input value of the measured temperature 

when the measured temperature is reached from two opposite directions, i.e. during heating 

and during cooling you do not reach the same value of temperature.   

1.3.12 Nonlinearity Behavior of Sensor 

A measure of deviation from linearity of the sensor output. 
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1.3.13 Sensor’s Operating Range 

The range of input variable (temperature) that produces a meaningful sensor output. 

1.3.14 Noise  

Random fluctuation in the value of the measured temperature that causes random 

fluctuation in the output. Noise at the sensor output is due to either internal noise sources, 

such as resistors at finite temperatures, or externally generated mechanical and 

electromagnetic fluctuations. The external noise will become more important as the 

transducer size is made progressively smaller. 

1.3.15 Sensor’s Response Time  

Response time for a sensor is normally measured by the thermal time constant τ. Thermal 

time constant is the 63.2% response to a step-function change in the sensor temperature 

when the power dissipated in the sensor is negligible [7]. A temperature sensor’s response 

time is a function of the following characteristics: 

1- Dimension of sensor or its size 

2- Sensor’s construction and encapsulation 

3- Heat transfer ability between sensor and medium. Heat transfer between sensor and 

liquid medium is much easier than with gaseous medium and hence response time 

is faster. 

4- Static or dynamic medium 

5- Production method of sensor 

1.3.16 Self-Heating of Sensor 

The current that measures sensor resistance in RTD and thermister thermometers also heats 

the sensor. This is known as Joule heating effect. Because of this effect, the sensor’s 
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indicated temperature is somewhat higher than the actual temperature. This inconsistency 

is called self-heating error. Self-heating errors, which are dependent on the application, can 

range from negligible values to 1°C. The greatest heating errors occur because of poor heat 

transfer between the sensing element and application, or excessive current used in 

measuring resistance.  

1.3.17 Environmental Parameters  

By environmental parameters we mean all the external variables such as pressure, 

humidity, and vibration that affect the performance of the sensor. It should be emphasized 

that a parameter is considered as an environmental parameter only if it is not the one to be 

sensed.  

1.4 Thesis Objective 

The objective of this thesis is to apply the AHP method in selecting the appropriate 

temperature sensor from among several alternative sensors for a particular industrial 

application. It provides the underlying mathematical work and a computerized tool for the 

selection process. This study can be considered a new addition to the multitude of AHP 

applications and opens the door to similar studies conducted in the field of sensors 

selection. 

1.5 Significance of the Work 

On one hand, no single study was found upon literature survey in the field of sensor 

selection using AHP methodology, and here comes to the fore the significance of this work 

of applying principles of AHP methodology in the sensor selection process. Furthermore, 

the computer software proposed by the thesis is laying a helping hand for those interested 
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in selecting between different temperature sensors. The software is versatile and contains 

seven sensor categories. It also comprises three industrial applications and numerous 

selection cases are possible by means of the software. Moreover, results easily obtained by 

the software can be utilized in further analysis such as conducting sensitivity analyses. 

1.6 Organization of the Thesis 

This thesis consists of six chapters. The first chapter is an introduction chapter, defining 

the abstract of the thesis in addition to the objective of the study and some definitions 

relevant to sensors science and essential for the well understanding of sensors features and 

characteristics. Chapter 2 tackles the different sensor categories that are used in the 

computer software in addition to listing main advantages and disadvantages of each 

category that make it more suitable or unsuitable for use in a particular industrial 

application . It should be noted that temperature sensors employed in industry and 

referenced in books are much more than the ones presented here. Nevertheless, the 

software is easily expandable to other sensors and applications. Chapter 3 narrates the 

basic Analytical Hierarchy Process (AHP) method theoretical background. Chapter 4 is a 

description of the proposed computer software and how the AHP method is implemented 

in the software. Chapter 5 is a practical implementation of a three sensors: the 

thermocouple, the thermister, and the RTD case study to the computer software in the 

automotive catalytic converter application in addition to Sensitivity Analysis employed to 

the software to test its solidity and ruggedness towards variations in system inputs. And 

finally, chapter 6 presents discussion of the results in chapters 4 and 5 in addition to  

concluding remarks and future work .    
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Chapter Two Temperature Measurement Sensors Used in 

Thesis 

2.1 List of Different Sensor Categories Used in Thesis 

Techniques for temperature measurement are very varied. Table 2-1[8] is a summary of the 

used measuring sensors in this thesis in the range quoted. 

Table  2-1: General specifications of the sensors used in thesis for temperature 
Measurement. 

Range (K)       Technique                                                             Application            Resolution (K) 

                                                                                                                              
20-2700          Thermocouple                                                       General-purpose             1.0 
73-1123          K-type thermocouple                                            General-purpose             1.0 

                       (Nickel-Chromium versus constantan)                                                         

4-1300            Thermister                                                             Laboratory                     0.001 

                                                                                                      Industrial                        0.1  

15-1150          Platinum resistance thermometer                          Standard                         0.00001 

                                                                                                      Industrial                        0.1 

130-950          Liquid-in-glass                                                      General-purpose             0.1 

130-700          Bimetal                                                                  Industrial                        1-2 

950-3300        Optical (Disappearing filament) Pyrometer          Industrial                        0.1 

200-950          LCD thermometer                                                 Industrial                        0.001         

2.1.1 Liquid-in-Glass Thermometers 

Although several liquids are employed in the liquid-in-glass type thermometers, the one 

tackled in this thesis is mercury-in-glass thermometer.  

2.1.1.1 Mercury-in-Glass Thermometers 

This thermometer consists simply of stem of glass tubing having a very small uniform 

bore. At the bottom of the stem there is a thin-walled glass bulb. The bulb may be 

cylindrical or spherical in shape, and has a capacity many times larger than that of the bore 

of the stem. The bulb and bore are completely filled with mercury, and the open end of the 
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bore is sealed off either at high temperatures or under vacuum, so that no air is included in 

the system.  

Drawbacks of mercury-in-glass thermometer 

1- It has a fairly large thermal capacity, with glass being not a very good conductor of 

heat. Therefore, this class of temperature sensors have definite thermal lag, i.e., it 

will require a definite time to reach the temperature of its surroundings. This time 

should be allowed for before any reading is taken. In this regard, if the sensed 

temperature is varying rapidly, then the thermometer may never indicate the 

temperature accurately, particularly if the tested medium is gas.  

2- Glass thermometers used in industry are usually protected by metal sheaths. These 

metal sheaths may conduct heat to or from the neighborhood of the bulb and cause 

the thermometer to read either higher or lower according to the actual conditions 

prevailing. 

3- For particularly cheap mercury-in-glass thermometers, large errors may be 

introduced by changes in the size of the bulb due to aging. This occurs during 

manufacture of the thermometer when glass is heated to high temperatures, and 

upon cooling does not contract to its original size. Thus a long time after it has been 

made it contracts very slowly so that the original zero mark is too low on the stem, 

and thus the thermometer reads higher than the actual temperature. In order to 

minimize error introduced in this case, thermometers are annealed during 

manufacturing by baking them for several days at temperatures above that which 

they will be required to measure, and then cooled slowly over a period of several 

days [8]. 
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2.1.1.2 Mercury-in-Glass Thermometers for Measuring High Temperatures 

Mercury boils at 357 °C at atmospheric pressure. To extend this range, the top of the 

thermometer bore is enlarged into a bulb having a capacity 20 times that of the bore of the 

stem. This bulb, together with the bore above mercury, are then filled with nitrogen or 

carbon dioxide at sufficiently high pressure to prevent mercury boiling. A pressure of 20 

bars is required to extend the range to 550 °C [8].  

2.1.2 Bimetal Strip Thermometer  

Bimetal strips are fabricated from two strips of different metals with different coefficients 

of thermal expansion bonded together to form, in the simplest case, a cantilever. Typical 

metals are brass and Invar. As the temperature rises the brass side of the strip expands 

more than the Invar side, resulting in the strip curling. The compound strip is formed by 

riveting or welding two layers of metals, chosen so as to have very different values of 

coefficient of linear expansion.  

2.1.3 Platinum Resistance Thermometers (PRTDs)  

One common way to measure temperature is by using Resistive Temperature Detectors 

(RTDs). These electrical temperature instruments provide highly accurate temperature 

readings: simple industrial RTDs used within a manufacturing process are accurate to ± 

0.1°C, while Standard Platinum Resistance Thermometers (SPRTs) are accurate to ± 

0.0001°C. [7]  

All metals are electrical conductors that show resistance to the passage of electric current. 

The proportional relationship of electrical current and potential difference is given by 

Ohm’s law: 

            R = E / I                                                                                                                (2.1) 

Where R = the electrical resistance in ohms 
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            E = potential difference in volts 

            I = current in amperes 

The resistance of a conductor is proportional to its length and inversely proportional to its 

cross-sectional area, i.e.  

            R = ρ. L/A                                                                                                             (2.2) 

Where R = the resistance of the conductor 

            ρ = resistivity of the material 

            L = the length of the conductor 

            A = cross-sectional area of the conductor 

Units of ρ are ohms. meter. The resistivity of a conductor is temperature dependent and 

changes in a known and predictable manner, depending on the rise or fall in temperature. 

As temperature rises, the electric resistance of the metal increases. As temperature drops, 

electric resistance decreases. RTDs use this characteristic as a basis for measuring 

temperature. The sensitive portion of an RTD, called an element, is a coil of small-

diameter, high-purity wire, usually constructed of platinum, copper, or nickel. This type of 

configuration is called a wire-wound element. Another configuration; thin-film element, 

with thin-film of platinum deposited on a ceramic substrate is also present [7].       

The temperature coefficient of resistivity α is positive for metals, that is, resistance 

increases with temperature, and for semiconductors the temperature coefficient is negative. 

The temperature coefficient α is a measure of the sensitivity of the resistance thermometer. 

It is also an expression of the mean value for the relative change in resistance per °C 

between 0 and 100°C. As a general guide at normal ambient temperatures the coefficient of 

resistivity of moat elemental metals lies in the region of 0.35 per cent to 0.7 per cent per 

Kelvin [8]. Table 2.5 shows the resistivity and temperature coefficients for a number of 

common metals: both elements and alloys.   
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 This study was concerned with Platinum resistance thermometer. Platinum, a noble metal, 

is the best metal for RTD elements for three reasons: 

1- It follows a very linear-to-temperature relationship 

2- It follows its resistance-to-temperature relationship in a highly repeatable manner 

over its temperature range. 

3- It has the most stable resistance-to-temperature relationship over the largest 

temperature range -184.44 °C to 648.88°C, although Platinum thermometers can be 

used for temperatures up to 800 °C and down to -253 °C. Platinum is not the most 

sensitive metal; however, it is the metal that offers the best long term stability and 

repeatability, RTDs can be removed from service and recalibrated for verifiable 

accuracy and checked for any possible drift. The accuracy of an RTD is 

significantly better than that of a thermocouple within RTD’s normal temperature 

range of -184.44 °C to 648.88°C [7].  

In operation, the measuring instrument applies a constant current through the RTD. As the 

temperature changes, the resistance changes and the corresponding change in voltage is 

measured. There are three main classes of Platinum Resistance Thermometers (PRTs): 

1- Standard Platinum Resistance Thermometers (SPRTs). 

2- Secondary Standard Platinum Resistance Thermometers (Secondary SPRTs). 

3- Industrial Platinum Resistance Thermometers (IPRTs). Table 2-2 [7] presents 

information about each. 
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Table  2-2: Characteristics of different classes RTDs.  

Probe                          Basic application      Temperature (°C)       Cost          Probe style 
a
          Handling 

   

SPRT                         calibration of             -200 to 1000              $ 5000               I                     Very fragile    

                                   secondary SPRT     

 

Secondary SPRT       Lab use                       -200 to 500               $ 700              I, A                  Fragile  

 

Wirewound IPRT     Industrial field use      -200 to 648               $ 60-$ 180     I, S, A               Rugged 

 

Thin-film IPRT         Industrial field use      -50 to 260                 $ 40-$ 140    I, S, A               Rugged 

 
a 
I = immersion; A = air; S = surface. 

2.1.4 Thermister Thermometers 

A themister is a thermally sensitive resistor whose primary function is to exhibit a change 

in electric resistance with a change in body temperature. a thermister is a ceramic 

semiconductor. Depending on the type of material used, a thermister can have either a 

large positive temperature coefficient of resistance (PTC device) or a large negative 

temperature coefficient of resistance (NTC device). The focus in this thesis is on NTC 

thermistors. 

NTC thermisters consist of metal oxides such as the oxides of chromium, cobalt, copper, 

iron, manganese, nickel, and titanium. Such units exhibit a decrease in electric resistance 

with an increase in temperature. The resistance–temperature characteristics of NTC 

thermisters are nonlinear.  

Because of its nonlinear resistance–temperature characteristic, the temperature coefficient 

of resistance of an NTC thermister changes with temperature. Depending on the material 

used, the temperature coefficient at 25C typically is in the range of –3 to –5%  C
-1 

[7].  

The thermal time constant τ is the 63.2 % response to a step-function change in the 

thermister temperature when the power dissipated in the thermister is negligible.  

Two major categories of NTC thermisters exist. Bead-type thermisters have platinum alloy 

lead wires sintered into the body of the ceramic. Chip, disk, surface-mount, flake, and rod-
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type thermisters have metallized surface electrodes. Table 2-3 shows thermal properties for 

some thermister types [7].  

Table  2-3: Thermal Properties of Thermisters with Metallized Surface Electrodes. 

Style                                                                       Diameter            Dissipation constant        Time constant  

                                                                                  (mm)                       (mW C
-1

)                          (s) 

                                                                      

 

Chip or disk in glass diode package                         2                             2-3                              7-8         

 

Interchangeable epoxy coated chip or disk                 2.4                              1                                    10 

  

Disk with radial or axial leads                                    2.5                              3-4                                 8-15 

 

Disk with radial or axial leads                                    5.1                              4-8                                 13-50 

 

Disk with radial or axial leads                                    7.6                              7-9                                 35-85 

 

Rod with radial or axial leads                                  1.8                             4-10                                35-90 

 

Rod with radial or axial leads                                     4.4                              8-24                               80-125 

                             

 

It should be noticed, however, that these values of thermal properties of these units depend 

on the environment and the measurement medium in which the sensor will be used.          

2.1.5 Thermocouple Thermometers 

Thermocouple thermometers are self-generating sensors, i.e. they do not need external 

source of power to drive them. They remain the most generally used sensors for 

thermometry because of their versatility, simplicity, and ease of use. Any pair of 

electrically conducting and thermoelectrically dissimilar materials coupled at an interface 

is a thermocouple. The legs are thermoelements. The Seebeck effect produces a voltage in 

all such thermoelements when they are not at a uniform temperature. Any electric interface 

between dissimilar electric conductors is a thermoelectric junction.  

The Seebeck effect happens when a closed circuit is formed of two metals, and the two 

junctions of the metals are at different temperatures, then an electric current will flow 

round the circuit, as shown in Figure 2.1, which shows a wire of two different metals such 
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as iron and copper. If one junction remains at room temperature, while the other is heated 

to a higher temperature, a current is produced which flows from copper to iron at the hot 

junction, and from iron to copper at the cold one.                  

 

                                                                            Cold 

 

 

                                   Copper                               Iron 

 

 

 

                                                                              Hot 

                                                                                        

Figure  2.1:  Simple thermocouple. 

The most commonly used industrial thermocouples are identified for convenience by type 

letters. The main types, together with the relevant British Standard specification and 

permitted tolerance on accuracy, are shown in Appendix Ι [8]. Also shown are their output 

e.m.f.s with the cold junction at 0 C. 

2.1.5.1 Thermocouple Materials 

Broadly, thermocouple materials divide into two arbitrary groups based upon cost of the 

materials, namely, base metal thermocouples and precious metal thermocouples. 

Base Metal Thermocouples 
 

The commonly used base metal thermocouples are types E, J, K, and T. Of these J and K 

are probably the most usual ones. They have a high e.m.f. output and type K is reasonably 

resistant to corrosion. Type T has a slight advantage, where the temperature measurement 

points are very remote from the instrumentation, because one conductor is copper the 

overall resistance of the circuit can be lower than for other types. A comprehensive list of 

the industrially available thermocouples alongside their designations and color codes can 

be found in Appendix II [3].  
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Precious Metal Thermocouples 

Thermocouples types B, R, and S clearly carry a considerable cost penalty and normally 

are only used when essential for their temperature range or their relatively high resistance 

to chemical attack. Their temperature top limit is 1500 C for continuous use or 1650 C 

for intermittent, spot reading, applications. This compares with 1100 C continuous and 

1300 C intermittent for type K.  

Errors in type R and S thermocouple readouts result from strain, contamination and 

rhodium drift. The effect of strain is to reduce the e.m.f. resulting in low readings. 

Noble metal thermocouples may be used for measuring cryogenic temperatures. Iron-

gold/nickel-chromium may be used for temperatures from 1 K to 300 K. For high 

temperature work special thermocouples have been developed, tungsten 5 per cent 

rhenium/tungsten 20 per cent rhenium for use in hydrogen, vacuum and inert gas 

atmospheres up to 2320 C [8]. 

2.1.6 CD Semiconductor Thermometer   

This thermometer chosen in this thesis is basically a wire wound platinum resistance 

temperature sensor, but with higher level of accuracy than normal RTDs due to the use of a 

calibration algorithm embedded in the instrument. It is an LCD display temperature sensor 

a resolution of 0.001C. It is perfect for metrology applications where extreme accuracy is 

required and as a calibration reference thermometer.   

2.1.7 Optical Disappearing Filament Thermometers (Pyrometers) 

Optical pyrometers are one type of radiation thermometers and are considered to be the 

most accurate radiation thermometers for temperature range 700C to 3000C [7]. The 

operating principle of optical pyrometer is based on Planck’s law which states that 
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intensity and color of a surface changes with temperature. This type of thermometers is 

suitable for non-contact measurement of medium temperature. The idea behind the design 

of the pyrometer instrument is to balance the radiation from an object (tungsten filament) 

having a known temperature against unknown temperature from a target. The pyrometer 

has a lens through which the operator views the target when an image of a tungsten 

filament is superimposed on the image of the target. The filament is warmed up by an 

electric current to glow. The operator views the target through the eyepiece and manually 

adjusts the heating current to the level when an image of the glowing filament visible in the 

foreground disappears — that is, when both the target and the filament have the same 

brightness and color. 

The measurement accuracy of an optical pyrometer is typically ±5K between 800C and 

1300C and ±10K between 1300C and 2000C [8]. Modern industrial pyrometers are 

accurate to ± 0.1C and this figure was adopted in the computer software proposed by the 

thesis. 

2.2 Selection of Temperature Sensors  

2.2.1 Important Criteria for the Selection of Temperature Sensors 

Selection of sensors in practice should be based on a total evaluation, in which the 

following parameters are considered (see Appendix II): 

1- Temperature range 

2- Accuracy 

3- Response time 

4- Sensitivity                  

5- Corrosion conditions and resistance 
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6- Breaking down due to wear and tear  

7- Interchangeability  

8- Variations in temperature – temperature shock 

9- Pressure conditions 

2.2.2 Relative Merits for Each Category  

1- Thermistors provide high resolution, have the widest range of applications, are the 

most sensitive, and are low cost, but are nonlinear and have limited temperature 

range. 

2- Thermocouples have the highest temperature range and are durable for high 

vibration and high shock applications, but require special extension wire of the 

same material as the thermocouple itself. 

3- RTDs are the most linear and are highly accurate and stable, but they are large size 

and expensive. 

4- Advantages and Disadvantages of Bimetal Strip thermometers 

Advantages 

a- Direct interface with application for fast response 

b- No additional circuitry/components required 

c- High current carrying capacity 

d- Wide operating temperature range: 130 K to 700 K 

Disadvantages 

a- Less accurate than most electronic-based systems 

b- Larger size than electronic-based systems 

c- Creepage-type device cannot interface with electronic components 

d- Can fail “closed” at end of life 

e- Advantages and disadvantages of optical pyrometer thermometer 
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Advantages 

a- Allows for non-contact measurement of moving objects or hazardous materials. 

b- Can be used in conjunction with fiber optics for remote sensing 

c- Typical temperature range 270 K to 5000 K  

d- Accuracy is typically ±5K between 800C and 1300C and ±10K      

between 1300C and 2000C. 

Disadvantages 

a- Accuracy can be affected by surface finish 

b- Field of view must be matched to target size 

c- Ambient temperature can affect readings 

d- Wavelength filter must be matched to the application 

e- Higher cost ($200+) can be even higher if control circuitry is required 

f- Calibration can be difficult and costly 

g- Dust, gas, or other vapors in the environment can affect the accuracy  

         of the system. 

2.2.3 Application-Related Issues 

The following are application-related issues that have to be taken into mind in selecting 

temperature sensors. 

2.2.3.1 Contact or Non-contact Sensing? 

 Does the application need contact or non-contact sensing? If the application is moving or 

if physical contact is not practical due to contamination or hazardous material issues, 

Optical Pyrometry is the technology of choice. 
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2.2.3.2 What is the Temperature Range? 

What is the temperature range the sensor is required to measure or control? Thermocouples 

have the broadest temperature range, 20 K to 2700 K. Depending on design and material, 

thermsisters have a usable range of 4 K to 500 K and this range can be extended to 800 K. 

Bi-metal thermostats can handle temperatures from 130 K to 700 K. For cryogenic 

temperatures, RTDs are capable of approaching absolute zero (0K). Maximum temperature 

is 1000 K. For non-contact Pyrometers, temperatures above 973K (700°C) and up to 5000 

K are attainable. 

2.2.3.3 What is the Rate of Temperature Change? 

What is the rate of temperature change of the application? For applications where the rate 

of temperature change is rapid (>1.0°C/minute), the mass of the sensor may become an 

issue. For extremely rapid changes, sensor mass should be kept to a minimum to allow it to 

more accurately track the change of the application. 

2.2.3.4 Tolerance 

How tightly do you need to control or monitor the temperature? For certain processes 

applications involving chemical reactions, tolerances of ±0.1°C or less may be required. 

For any application requiring tolerances of less than ±1.7°C, an electronic system will be 

required. Silicon, RTD, thermocouple or thermister-based systems can all be designed to 

maintain these extremely tight tolerances. Typically RTDs will provide the greatest overall 

accuracy.  

2.2.3.5 Cost 

How important is total system cost in the selection of the sensor? In high-end applications 

costing thousands of dollars like, say, automotives and chemical reactions applications the 

cost of the temperature sensor is typically insignificant. For this reason, the selection is 
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based on required system accuracy. An accuracy of ±0.1°C or less will require a 

sophisticated (and expensive) alternative.  
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Chapter Three Theoretical Background for the Analytic 

Hierarchy Process (AHP) Method 

3.1 Introduction 

The analytic hierarchy process is a multi-attribute decision-making tool mostly used when 

a decision maker is faced with a problem involving multiple objectives. It can also be used 

to handle problems involving uncertainty. The method, which was developed by Thomas 

Saaty has been very widely applied to decision making problems in areas like: planning, 

economics, energy policies, material handling and purchasing, trading strategies, project 

and businesses selection, budget allocations and forecasting. Alongside the analytical 

procedure of the method, a user-friendly computer package, EXPERT CHOICE has been 

developed to support the method.  

In a typical decision making problem, the decision maker will have an objective or 

multiple objectives that he wants to fulfill and a group of candidate alternatives that are to 

be assessed in terms of the best alternative that meets that objective. These alternatives will 

have certain attributes and sub-attributes (criteria and sub-criteria) qualifying these 

alternatives. The alternatives, criteria and sub-criteria, and the objective are linked in a 

hierarchal structure and each forms a hierarchal level. Each component at a particular level 

is relatively pair-wise compared with its sister components with respect to the immediate 

upper level and weights of all components are determined and aggregated for upper levels. 

The final outcome of the method is a fractional score for each alternative representing its 

relative preference towards the objective.     

The method widespread use may be considered as an evidence of the method power and 

reliability among decision makers in dealing with different decision problems. However, 
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critics have questioned its axiomatic basis and the degree it can lead to a reliable and true 

representation of the decision maker’s preferences [9]. 

3.2 Description of the Method 

Once the decision maker has identified the objective of his problem, the alternatives that 

have to be compared towards the goal and the criteria and sub-criteria governing the 

comparison process between the alternatives, then the application of the method becomes 

easy and can be described in terms of these steps: 

Step 1: Set up the decision hierarchy. The decision hierarchy will be made of the objective 

level, the criteria level, the sub-criteria level, and finally the alternatives level. 

Step 2: Perform the pair-wise comparisons of the alternatives, sub-criteria, and criteria. 

This is done to determine the relative importance of the criteria and sub-criteria and also to 

determine how well the alternatives score on each sub-criteria and criteria. This is done 

starting from the alternative level and hierarchically through sub-criteria level and criteria 

level up to reach the objective level.   

Starting from the alternative level, the relative importance of one alternative over the other 

with respect to the same sub-criteria in the decision hierarchy can be determined using 

Saaty’s scale [10] (Table 3-1). According to Saaty, the relative weight of alternative i 

compared to alternative j with respect to the same sub-criteria can be obtained from a 9-

point scale and assigned to the (i , j)th position of the pair-wise comparison matrix or 

judgment matrix. 
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Table  3-1: The pair-wise comparison scale (Saaty, 1980) 

   Intensity of importance                              Definition 

 

   1                                                                 Equally important  

   3                                                                 Weakly more important  

   5                                                                 strongly more important  

   7                                                                 very strongly more important   

   9                                                                 extremely more important 

   2, 4, 6, 8                                                     Intermediate values between two adjacent 

                                                                      judgments  
 

 

In a more general form, let A1, A2, … , An  be the set of stimuli (these stimuli can be the 

alternatives, the sub-criteria , or he criteria), were n refers to the number of these stimuli.  

The quantified judgments on pairs of stimuli Ai, Aj  are represented by the judgment matrix  

A :                                                                                                                               

         A= [aij],                                   i, j = 1,2, … , n.                                                        (3.1) 

 

 

The comparison of any two criteria Ci and Cj is made using the questions of the type: of 

the two criteria Ci and Cj which is more important and by how much. Saaty’s scale is used 

to transform verbal judgments of relative preference of one alternative to the other into 

numerical quantities representing the values of aij. The entries aij are governed by the 

following rules: 

         aij > 0 ,            aji = 1/ aij    ,          aii = 1  for all i.                                                    (3.2) 

 

Thus, the reciprocal of the assigned value is automatically assigned to the (j, i)th position 

in the judgment matrix.  

Step 3: Transform the comparisons set in the previous step into weights corresponding to 

the different criteria, sub-criteria and alternatives and check the consistency in decision 

maker’s comparisons in terms of consistency index and consistency ratio. 
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After the pair-wise comparison matrices (As) have been numerically established , the next 

step is to recover the weights of the different alternatives from these comparison matrices. 

This can be done by solving for the eigenvectors of the pair-wise comparison matrices. Let 

(W1, W2, … , Wn) be weights of the alternatives relating to a certain sub-criteria. Consider 

the following equation: 

 

              a11    a12   …   a1n               W1 / W1    W1 / W2    …    W1 / Wn                                    

              a21    a22   …  a2n                W2 / W1    W2 / W2    …    W2 / Wn 

 A  =        .        .    …    .        =              .                .          …         .             

                .        .    …    .                        .                .          …         .               

              an1    an2   …   ann              Wn / W1    Wn / W2    …    Wn / Wn                           (3.3)                   

for a perfectly consistent decision maker, and the following equation: 

 

              a11    a12   …   a1n               W1 / W1    W1 / W2    …    W1 / Wn                                    

              a21    a22   …  a2n                W2 / W1    W2 / W2    …    W2 / Wn 

 A  =        .        .    …    .        ≈              .                .          …         .             

                .        .    …    .                        .                .          …         .               

              an1    an2   …   ann              Wn / W1    Wn / W2   …    Wn / Wn                            (3.4) 

for not perfectly consistent decision maker. Let us multiply both sides of the equation (3) 

with the weights vector W = (W1, W2, … , Wn), then we have: 

         AW
 T

= ΔW
 T

                                                                                                             (3.5)        

This is a system of homogenous linear equations, where Δ is an unknown number and W
 T 

is an unknown n-dimensional column vector [11], for any number Δ, equation (5) always 

has the trivial solution W= (0, 0, ..., 0). It can be shown that if A is the pair-wise 

comparison matrix of a perfectly consistent decision maker, i.e. equation (3) applies, and 

we do not allow Δ = 0, then the only nontrivial solution to (5) is Δ = n and W = (W1, W2, 
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… , Wn). However, if the decision maker is not perfectly consistent, i.e. equation (4) 

applies in this case, then let Δ max be the largest number for which (5) has a nontrivial 

solution (call it Wmax) . Saaty verified that if the decision maker’s comparisons do not 

deviate very much from perfect consistency, then Δ max is close to n and Wmax is close to 

W. Saaty’s method computes W as the principal right eigenvector of the matrix A. Saaty 

also proposed measuring the decision maker’s consistency by looking how close Δ max is  

to n. Δ max is called the maximum eigenvalue of matrix A.    

Consistency index (CI) is a measure of how consistent and rational the decision maker is in 

his pair-wise comparisons. According to Saaty CI is defined as: 

         CI = (Δ max - n) / (n - 1)                                                                                          (3.6) 

Consistency ratio (CR) is defined in terms of consistency index (CI) and random index (RI) 

as: 

         CR = CI / RI                                                                                                          (3.7) 

Where the random index (RI) represents the average consistency index value taken over 

numerous random entries of the same order matrices as matrix A. Values of RI for the 

appropriate value of n are given in Table 3-2 [11].    

Table  3-2:  Random Index Values 

        n                           RI                          n                           RI   

         

        2                          0.0                         7                          1.32     

        3                          0.58                       8                          1.41 

        4                          0.90                       9                          1.45 

        5                          1.12                       10                        1.51 

        6                          1.24 
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An index of zero value refers to perfect consistency, while an index of more than zero 

refers to inconsistency in decision maker’s comparisons. For example, suppose the decision 

maker’s response imply that alternative 1 is twice as important as alternative 2, while 

alternative 2 is judged to be three times as important as alternative 3. To be perfectly 

consistent the decision maker should judge that alternative 1 is six times more important 

than alternative 3.  Any other response will lead to an index greater than zero. Saaty 

recommends that inconsistency should only be a concern if the index exceeds 0.1, in which 

case the comparisons should be reexamined. But he stresses that minimizing inconsistency 

should not be the main goal of the analysis since a set of erroneous judgments about 

importance and preference may be perfectly consistent, but they will not lead to the ‘best’ 

decision.  

A simple method [11] is used to approximate Δ max  , W max , CI and CR which comprises 

the following steps: 

1- Find the normalized matrix Anorm. This can be done by dividing each entry for each 

of A’s columns by the sum of all entries in the same column. 

2- An approximate estimate of the weights vector W is by estimating each entry Wi as 

the average of the entries in row i of Anorm. 

3- An approximate estimate of Δ max is: 

                  𝜟 𝒎𝒂𝒙 = 




ni

i
T

T

Winentryith

AWinentryith

1

                                              (3.8) 

4- The consistency index,  

CI = (result in step 3 - n) / (n - 1)                                                                    (3.9) 

5- The consistency ratio, CR = CI / RI                                                                   (3.10) 

The consistency ratio will enable the decision maker to examine how consistent he is with 

his pair-wise comparisons and to examine how robust the provisional decision in the 

previous step is to changes in the ratings of importance and preference. 
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Step 4: aggregate these weights up to obtain scores for the different alternatives towards 

the final objective and make a provisional decision. 

Step 5: Perform the sensitivity analysis. Sensitivity analysis is important to examine how 

sensitive the preferred alternative is to changes in the judgments made by the decision 

maker. The decision maker may provide rough judgments or he may be unsure exactly 

what judgments to provide. Sensitivity analysis can provide for the extent of change that 

can be made to the criteria or sub-criteria weights before the preferred alternative changes 

in favor of another alternative. EXPERT CHOICE is fitted with such a tool and it will be 

utilized for this purpose as will be shown in the next chapter.  

3.3 Strengths and Weaknesses of AHP 

3.3.1 Strengths [9] 

1- Formal structuring of the problem. This allows complex decision problems to be 

broken down into sets of simpler judgments that can be more easily assessed. 

2- The pair-wise comparisons are simple, which simplifies the task for the decision 

maker by concentrating on each small part of the problem when comparing two 

entities at a time. Also the method, aided with Saaty scale of relative importance 

fits well for verbal comparisons most likely preferred by decision makers who 

might have difficulty in expressing their preferences numerically. 

3- Redundant assessment of the relative importance of multiple criteria allows the 

decision maker to check consistency in his judgments. for example, if a decision 

maker states that criteria A is as twice important as B, and B, in turn, is as three 

times as important as C, then it can be deduced that A is six times more important 

than C. however, by also asking the decision maker separately to compare A to C it 

is possible to check consistency of the judgments. 
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4- Versatility. The wide range of applications of the AHP is evidence of its versatility. 

3.3.2 Weaknesses [9] 

1- Conversion from verbal to numeric scale. The correspondence between the verbal 

and numeric scales is based on untested assumptions. 

2- The 1 to 9 scale imposes inconsistencies. In some cases of comparisons the scale is 

bound in such away it enforces inconsistencies in comparisons. For example, if A is 

6 times more important than B, and B is 5 important than C. then the consistent 

comparison of A to C is that A 30 times more important than C which is 

impossible. 

3- New alternatives introduced into the problem can reverse the rank of existing 

alternatives. For example, suppose that AHP is used to choose a site for a new 

company, and suppose the site alternatives are: X, Y, and Z and after the use of 

AHP the order of preference is: 1-Y, 2-X, 3-Z. However, it was discovered that a 

new site W is worth considering, when introduced into the problem and AHP 

reused on the basis of four alternatives the order of preference can very likely 

become: 1-X, 2-Y, 3-W, 4-Z showing reversal between Y, X alternatives though 

relative importance of criteria is left unchanged. 

4- Number of comparisons required becomes large to handle as number of alternatives 

increases. 

5- The axioms of the method are not founded on testable descriptions of rational 

behavior, as argues Dyer [12].  
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Chapter Four A Software Application for the Selection of 

Temperature Sensors Using the Analytic Hierarchy 

Process (AHP) 

4.1 Literature Review  

Previous literature indicates the massive use of AHP methodology as a multi-criteria 

decision making tool in selecting from among nominated alternatives in many industrial 

fields. However the literature survey has not revealed any research conducted specifically 

on the selection of temperature sensors using AHP method, and here comes to the fore the 

importance of this study. Vaidya and Kumar [13] conducted a research that overviewed 

different applications of Analytic Hierarchy Process method. In their paper, they presented 

a literature review of various applications of Analytic Hierarchy Process (AHP), they 

referred to a total of 150 application papers, of which 27 were critically analyzed. In their 

work, they analyzed the applications papers according to three main groups: (a) 

applications based on a theme, (b) specific applications, and (c) applications combined with 

some other methodology, with all application papers in a specific group given distribution 

in the form of a pie-chart. Some theme-specific applications which were mentioned in the 

paper used AHP in: selection, evaluation, benefit-cost analysis, resource allocation, 

decision making, forecasting, medicine, and QFD. Some application area-specific papers 

were in: social, political, manufacturing, engineering, education, industry, government, and 

others. And finally, the distribution of reviewed papers over the years was investigated in 

the form of a pie-chart. Yurdakul [14] applied AHP method as a strategic decision-making 

tool to justify machine tool, namely machining centers, selection. He tested AHP approach 

in his research based on a three-machining centre case study for Dizayn Machinery 
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Manufacturing and Engineering Inc., in which case the company opted to purchase new 

machine tools in order to reduce lead times without compromising quality and cost of its 

products. Analytic Hierarchy Process (AHP) method was used to combine different types 

of evaluation criteria in a multi-level decision structure to obtain a single score for each 

alternative machine tool to rank the alternatives. Analytic Network Process (ANP) method 

was used in the same paper to account for the calculation of the weights of criteria due to 

interdependencies and interrelationships that exist among the evaluation criteria. Yurdakul 

stated that the company management found the application and results satisfactory and 

implementable in their machine tool selection decisions. Pi-Fang et al [15] presented an 

AHP method in objectively selecting medical waste disposal firms in Taiwan based on the 

results of interviews with experts in the field. In their study, an appropriate weight criterion 

based on AHP was derived to assess the effectiveness of medical waste disposal firms. The 

proposed AHP-based method in the paper offered a more efficient and precise means of 

selecting medical waste firms than subjective assessment methods did, thus reducing the 

potential risks for hospitals. Che-Wei et al [16] studied and developed a manufacturing 

quality yield model for forecasting 12 in. silicon wafer slicing machine based on AHP 

framework. In their work, Exponentially weighted Moving Average EWMA control chart 

was presented to demonstrate and verify the feasibility and effectiveness of the proposed 

AHP-based algorithm, and selective analysis was performed to test the stability of the 

priority ranking. Okada et al [17] applied AHP to irrigation project improvement. In his 

study, Okada divided his work into two parts. In the first part, a questionnaire survey was 

distributed among irrigation professionals to determine the evaluation factors they see the 

most important in evaluating an irrigation project, the answers to the survey were processed 

by the AHP method. A hierarchy was formed with the objective of Quality of the internal 

process of the irrigation project and criteria of: 1- serviceability of water delivery, 2- 
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suitability of hardware, and 3- managing entities, and alternatives divided into two groups. 

Group 1 comprises: actual water delivery services at the most downstream point, actual 

water delivery services at the point to the individual ownership units and actual water 

delivery services at the point from the primary canals to the secondary canals. Group 2 

comprises: primary canals and secondary canals. After applying the AHP to the answers, 

local weights of evaluation factors were obtained. These local weights were statistically 

analyzed and modeled by probability density functions. Results of the study indicated that 

professionals give the first priority to water delivery services and that they consider the 

irrigation infrastructure (hardware) of primary canals is more important than that for 

secondary canals. 

Despite the fact that the literature survey reveals a wide array of papers applied in AHP for 

different applications, the survey does not reveal its use in evaluating temperature sensors 

alternatives, rather, research on temperature sensors was primarily concerned about 

proposing new temperature sensors designs that satisfy certain special demands and 

requirements. Vavra et al [18] proposed the use of Fe/Cr magnetoresisitive sensors at 

temperatures below 2 K in the milliKelvin temperature range. Hoa et al [19] studied 

electrical resistance drift of molybdenum disilicide (MoSi2) thin film temperature sensors 

to study their thermoresistance, i.e. resistance vs. temperature (R-T) characteristics. 

Bianchi et al [20] discussed the properties, characteristics, applications and sensing 

principles of most of present-day integrated smart temperature sensors. A CMOS process-

compatible temperature sensor developed for low-cost high-volume integrated 

Microsystems for a wide range of fields (such as automotive, space, oil prospecting, and 

biomedical applications) was also described. Han & Kim [21] developed a diode 

temperature sensor array (DTSA) for measuring the temperature distribution on a small 

surface with high resolution. The DTSA consisted of an array of 32x32 diodes (1024) for 
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temperature detection in an 8mmx8mm surface area and was fabricated using the very 

large scale integration (VLSI) technique.    

This study presents a computer program built using C# programming language to perform 

the selection process of the best temperature sensor for a particular application from 

among available alternative sensors that meet the restrictions set by the program and 

chosen by the user, this is done by embedding the AHP method in a ready-to-use and in an 

easy graphical-user-interface computerized way. The proposed computer program is 

versatile and applicable to a multitude of temperature sensors selection situations, but it 

should be noted that as an example of the proposed program, the work in this paper 

presents a single case study in which an application is considered in the automotives 

industry in which three temperature sensors are being assessed and compared, these are: 

thermocouple, thermister and RTD thermometer. Nonetheless, the computer program is 

expandable and applicable to a wider range of temperature sensors selection situations 

with different applications and different arrays of candidate sensors.  

4.2 Computer Software Description 

In this thesis, the computer program that is used for the selection process of the best sensor 

from among different alternatives was built using Microsoft Visual Studio.NET. Starting 

from a C# Windows application template, a base -code project was created in which a 

two-page form was designed to show sensor selection based on AHP principles. 

The first page in the form is used to select the application from three predefined 

applications: HVAC, Automotives, and Chemical Processes. In the first page also lie 

restrictions applicable to the mentioned applications that the user should specify such as: 

Temperature Range, Resolution, and Response time. Upon user’s selection of the 

application required and restrictions pertaining to the application in the first page, the 
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second page tab can be pressed to list the available alternative candidate sensors which can 

be used in the selected application and that the user can further choose from. These 

available alternative sensors would appear in activated checkboxes, while those sensors 

that do not conform to the restrictions set and chosen by the user in the first page will 

automatically be shown by the system in an inactivated- checkbox mode in the second 

page, and thus the user cannot choose from. 

In practice, the user selects the application in page one and depending on the restrictions 

selected some sensors will be enabled while others will be disabled on page two. The user 

then presses the selection button in the second page which would initiate the selection 

process. The results of the calculations that are automatically based on AHP method will 

be displayed and the final scores of the checked-in sensors will be shown from top to 

bottom in the same arrangement and number that the checked sensors appear on the 

second tab of the program.  Of course the best sensor will be the one with the largest final 

weight while the worst choice for the application will be the one with the smallest weight. 

Relevant calculations of weights of sub-criteria, weights of criteria, consistency ratio, 

consistency index and final scores of the alternative sensors are all shown on the console 

provided on the second page.  

4.3 AHP Application and Results from the Computer Software 

In order to select the best temperature sensor from among different candidate sensors 

using the proposed software, five steps are performed by the user in order to achieve this. 

First, the user has to start up the computer program. Second, the user specifies the 

application on the first tab in which the sensors are to be used. Third, he or she specifies 

the restrictions pertaining to the application on the first tab in terms of temperature range, 

resolution, and the response time. Fourth, the user checks in the available candidate 
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sensors that the software suggests on the second tab. Fifth, the user presses the Select 

button on the second tab and then views the results. 

The software uses the AHP method to assess the preferences of the checked sensors. The 

different weights in the hierarchal structure that are needed to perform the necessary 

calculations in the AHP method are assessed and built into the software. It is worth noting 

here; however, that the user can access the program and change the weights values 

according to his assessment of the weights or according to new expert opinions. The 

weights values are then used and being aggregated by the software to obtain the weight of 

the components in the immediate upper levels. The software then calculates the weights 

for the all components in the hierarchal structure, synthesizes the contribution of the 

components for the whole hierarchy and for all levels and displays the overall ranking 

scores for the different alternatives on the software console. 

The software performs the consistency test in terms of consistency index and consistency 

ratio which can be regarded as a measure of consistency in the decision maker’s 

comparisons and displays these indices on the same console. 

4.3.1 Starting the Program 

When the user opens the application, a window will open up as shown in Figure 4.1. 

 

 

 

 

 

 

 

Figure  4.1: The main application window. 
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The Solution Explorer tab may not be visible. If so, the user presses the Solution Explorer 

icon at the top right of the main window to make it visible as shown in Figure 4.2 

 

 

 

 

 

 

 

 

 

 

Figure  4.2: Visualizing Solution Explorer tab. 

For visualizing the GUI main window from which the selection process of the best sensor 

will be launched, the user will first need to double click the C# file named Form1.cs in the 

Solution Explorer tab at the far left side of the application window and the design form of 

the application window will appear as shown in Figure 4.3. The user then runs the 

program to start it.  
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Figure  4.3: The two-tab page GUI main window. 

In the GUI main window appears the two-tab page from which the user can choose the 

application under concern as well as the restrictions pertaining to that application in terms 

of Temperature Range, Resolution, and Response Time. All this can be done from the first 

tab. Upon completion of the first tab, the user can proceed to the next tab where the 

available candidate alternative sensors that meet the restrictions set in the first tab for the 

application under concern are listed in an activated checkbox mode, and those alternative 

sensors that do not conform to restrictions are disabled and shown in an inactivated mode. 

Figure 4.4 shows the components of the second tab. 
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Figure  4.4: Alternative sensors in the second tab in the application main window. 

4.3.2 The Evaluative Criteria and Sub-criteria 

Upon literature survey in the field of sensors and sensors selection, four broad criteria 

were settled on, within each criterion lie multiple sub-criteria. These parent criteria and 

sub-criteria form the basis for the comparison between alternative sensors. Table 4-1 

shows these criteria and sub-criteria which are incorporated inside the software. 

 

 

 

 

 

 

 



41 

 

Table  4-1: Criteria and sub-criteria factors used as basis for comparison between 
alternative sensors. 

Criteria                                                                         Sub-Criteria 

 

Static Criteria (C1)                                                      Maximum Operating Temperature (CS1)                          

                                                                                     Minimum Operating Temperature (CS2) 

                                                                                     Temperature Curve (CS3) 

                                                                                     Sensitivity (CS4) 

                                                                                     Self-Heating Issues (CS5) 

                                                                                     Long Term Stability and Accuracy (CS6) 

                                                                                     Typical Temperature Coefficient (CS7) 

                                                                                     Extension Wires (CS8) 

                                                                                     Long Wire runs from Sensor (CS9) 

                                                                                     Measurement Parameter (CS10) 

                                                                                     Temperature Measurement (CS11) 

 
Dynamic Characteristics (C2)                                     Stimulation Electronics required (CS12) 

                                                                                     Existence of Maximum Sensitivity Region (CS13)  

                                                                                     Typical Fast Thermal Time Constant (CS14) 

 

Environmental Parameters (C3)                                  Typical Small Size (CS15) 

                                                                                     Noise Immunity (CS16) 

                                                                                     Fragility-Durability Characteristics (CS17) 

                                                                                     High Thermal Gradient Environment (CS18) 

                                                                                     Corrosion Resistance (CS19) 

 

Other Criteria (or Simply Others) (C4)                       Point or Area Measurement (CS20) 

                                                                                     Manufacturing Variances (CS21) 

                                                                                     NIST Standards exist (CS22) 

                                                                                     Cost (CS23) 

 

Static criterion category refers to the inherent technical characteristics or qualities of the 

sensor that are not time related. Dynamic category, on the other hand, refers mainly to the 

transient time-related characteristics of the sensor. Environmental category refers to 

characteristics of the sensor that are environment-related. Others category refers to other 

miscellaneous characteristics.  

4.3.3 The Hierarchal Structure 

The best temperature sensor can then be selected and evaluated by the software based on 

four evaluation criteria, twenty –three evaluation sub-criteria. Figure 4.5 shows the 

hierarchal structure for the temperature sensor selection problem. The software is 
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programmed to automatically perform calculations based on the hierarchal structure shown 

in Figure 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.5: AHP Structure for Sensors Selection Problem 

Level 1: Goal Level 2: Criteria Level 3: Sub-criteria Level 4: Alternatives 
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4.3.4 Components Weights 

Appendix ΙΙI shows a complete list of all component weights including weights of 

alternatives with respect to the 23 sub-criteria, the weights of the 23 sub-criteria with 

respect to each criterion, and the weight of the 4 criteria with respect to the goal for the 

three applications: HVAC, Automotives, and Chemical Process applications. Note that 

these weights are listed in the Alternatives weight vectors, Sub-criteria weight vectors, 

and Criteria weight vectors rows in the Appendix, respectively.    

4.3.5 Components Weights Interpretation (Automotives) 

The relative preference of one alternative sensor with respect to another alternative sensor 

against certain sub-criterion can be assessed by asking a question of the type: of the two 

alternative sensors, which scores more on a certain sub-criterion and by how much?  Saaty 

scale is used to give a numerical value for the comparison as in Table 3.1. For the 7 

sensors alternatives, the 23 sub-criteria, and the 4 criteria, entries for 23 matrices of the 

dimension 7X7 representing relative weights of the 7 sensors against the 23 sub-criteria , 

and entries for an 11X 11 matrix, 3X3 matrix, 5X5 matrix, and 4X4 matrix representing 

relative weights of the Static, Dynamic, Environmental and Others sub-criteria towards 

their corresponding parent criteria, respectively, and entries for a 4X4 matrix representing 

the relative weights of the four criteria towards the final goal are introduced and 

incorporated in the software.  This work is separately repeated for the three applications: 

the HVAC, the Automotives, and the Chemical Process. These relative weights for the 

three different applications are listed in Appendix ΙΙI. These weights were based on the 

view of experts in the sensor field including professors from the Mechanical Engineering 

Department in Jordan University of Science and Technology and from external experts 

working for National Paints, Inc., Amman, Jordan. Also, these weights were based on 
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sensors literature taken from sensors text books and from catalogues from the Web 

containing different sensor products from different universal manufacturing companies.    

The Interpretation of the components relative weights presented in the coming sections 

applies to the Automotives application. 

4.3.5.1 Alternatives Weights Interpretation for Selected Sub-criteria  

Maximum Operating Temperature Sub-criterion: according to experts views and 

based on the review of sensors literature and technical data material, the fitness of a 

particular sensor with respect to the temperature range sub-criterion, and hence to the 

maximum and minimum operating temperatures is based on the closeness of the operating 

temperature range for the sensor to the operating temperature range of the requested 

application, in other words the suitability, and hence the preference of a proposed sensor 

towards the maximum and minimum operating temperatures of the application is 

governed by how close the maximum and minimum operating temperatures of the 

proposed sensor are to the maximum and minimum operating temperatures of the 

application respectively. The maximum operating temperature for the catalytic convertor 

application case study is, for example, 1023 Kelvin, while the minimum operating 

temperature for the application is 773 Kelvin. Moreover, the proposed sensor should 

ideally be able to measure the maximum malfunctioning temperature condition upon 

which melting of the packing material (substrate material of the catalytic converter) 

occurs, this is a temperature of 1143 K. To facilitate the evaluation of one alternative 

sensor with respect to another against the maximum operating temperature sub-criterion, 

each sensor was relatively ranked with respect to the rest sensors in terms of its preference 

towards the sub-criterion, then the relative weights were determined by taking all 

combinations of relative preferences (ranks) of one alternative sensor to another for all 
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seven sensors. The following are considerations of the characteristics for the seven 

sensors that relate to the maximum operating temperature sub-criterion: 

Thermocouple: according to Table 2.1, K-type thermocouple (which has Nickel-

Chromium as the positive conductor and Constantan as the negative conductor) has a 

maximum operating temperature of 1123 Kelvin. By comparing the closeness of the 

maximum operating temperature for all seven sensors with the maximum operating 

temperature for the application, and putting in mind that the compared sensors should be 

capable of measuring the melting point of the packing, thermocouple was found the 

closest and thus relatively ranked among the seven sensors the first, i.e. has rank (1).  

Thermister: has a maximum operating temperature of 1300 Kelvin, with a difference 

from the value 1123 K by almost 170 K, though it satisfies measurement of the melting 

point, ranked among the seven sensors (2). 

RTD: has a maximum operating temperature of 1150 K, satisfies measurement of the 

melting point, ranked (1). 

Bimetallic: has a maximum operating temperature of 700 K, doesn’t measure the 

maximum operating temperature of the application at all, theoretically, has a rank (5), 

practically in the software, it is excluded on the first tab, when the user chooses the 

temperature range for the application. 

Note: in the cases where the alternative does not match the minimum required constraints 

of an application, or subsequently, the minimum requirements of the sub-criteria related to 

that application, the pair-wise comparisons (weights) for the two alternatives are 

theoretically evaluated and set into the 23 comparison matrices even though the system 

takes care of the problem in advance in the filtering stage (constraint stage) on tab one of 

the application program when the user chooses the nearest temperature range to the 

application from the list in the Temperature Range list box which is in this case 700-1150 
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K. Those alternatives on the second tab that fail to meet temperature range constraint on 

the first tab are rejected (excluded) on the second tab and appear in an inactivated-check 

box mode. Moreover, if a certain alternative passes the temperature range constraint for 

the application, but fails to satisfy the next constraint, the resolution, or the third 

constraint for the application, the response time, it will be filtered out on either cases, and 

will not be further considered for comparison on the second tab, yet its relative weight is 

fictitiously set in all the 7X7 sub-criteria matrices but it is not actually taken into account 

in the comparison process.      

Thermometer: has a maximum operating temperature of 950 K. Upon consulting the 

experts and upon literature review, its maximum temperature span can be customized 

through special advanced manufacturing techniques and enlarged to entail the maximum 

operating temperature of the application (1023).  It is ranked (3).  

Pyrometer: has a maximum operating temperature of 3300 K, well above the required 

operating temperature for the application, so minimizing its relative preference among 

other sensors, ranked (4).     

LCD: has a maximum operating temperature of 950 K. The same analogy of the 

thermometer applies to the LCD semiconductor thermometer, so it is ranked (3). 

According to above characteristics, the following 7X7 judgment matrix representing the 

relative weights for the seven alternatives against the first sub-criterion, the Maximum 

Operating Temperature, as it appears in Appendix ΙΙI, , is set in the program: 
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                                  1.0          3.0         1. 0         9.0    4.0        6.0         4.0 

                                  0.3333    1.0         0.3333    6.0    2.0        5.0         2.0 

                                  1.0          3.0         1.0          9.0    4.0        6.0         4.0 

    Amax temp = [aij] =    0.1111    0.1667   0.1111    1.0    0.1667  0.3333   0.1667  

                                  0.25        0.5         0.25        6.0    1.0        4.0         1.0 

                                  0.1667    0.2         0.1667    3.0     0.25      1.0        0.25 

                                  0.25        0.5         0.25       6.0     1.0        4.0         1.0     

Based on the aforementioned descriptions of the maximum operating temperature 

characteristics for each sensor alternative, the evaluation of the relative weights of each 

alternative sensor with respect to the other sensors against the maximum operating 

temperature sub-criterion, i.e. entries in the above matrix, is an easy task now. Let’s 

interpret, for example, the evaluation of the first row of the above matrix. Since the 

relative rank of the thermocouple among the seven sensor is (1), i.e. thermocouple is the 

best, and since the thermister is the second preferred choice and has a relative rank (2), 

then the thermocouple can be evaluated as being weakly more important than the 

thermister and thus given a relative weight of 3.0 according to Saaty scale. This value 

corresponds to entry a12 in the above matrix.  Because the RTD has the same preference as 

the thermocouple (rank 1), so there is no relative preference of the thermocouple with 

respect to the RTD, i.e. both alternatives are equally important. Thus entry a13 is given a 

value 1.0. And since the bimetallic strip thermometer comes fifth rank when relatively 

compared to the rest of the seven sensors (the worst choice among the other choices with 

respect to the maximum operating temperature sub-criterion), then the thermocouple is 

extremely more important than the bimetal owing to a relative weight (entry a14 ) of 9.0. 

And because the mercury-in-glass thermometer comes rank (3) in the above designation, 

then the relative importance (entry a15) of the thermocouple with respect to the 

thermometer comes according to Saaty scale mid way between weakly more important 

and strongly more important with a value set to 4.0.  And as the optical disappearing 
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filament pyrometer comes rank (4) in the above designation, then the relative importance 

(entry a16)of the thermocouple with respect to the pyrometer according to Saaty scale is 

mid way between strongly more important and very strongly more important, and thus 

given a value of 6.0. And finally, since the LCD semiconductor thermometer is rank (3), 

just the same as the thermometer’s, then the relative importance (entry a17) of the 

thermocouple with respect to the pyrometer according to Saaty scale is mid way between 

weakly more important and strongly more important, and thus given a value of 4.0, just, 

the same value for the relative weight between thermocouple and thermometer. The same 

discussion can be elaborated to interpret all the remaining rows of the above matrix.     

After running the software, and if we assume that the user checks in the boxes of only 

thermocouple, thermister, and RTD sensors, then the software extracts automatically a 

3X3 matrix from the 7X7 matrix presented above representing values that correspond to 

these three sensors, and the software calculates the weights of the three sensors with 

respect to the maximum operating temperature sub-criteria, in addition to this, the 

software calculates the consistency index and consistency ratio for this 3X3 matrix. The 

software results in terms of the three sensors: the thermocouple, the thermister, and the 

RTD weights against the Maximum Operating Temperature sub-criterion in the case study 

are shown in Table 4-2.  

Table  4-2: Weights of the three alternatives against the Maximum Operating 
Temperature sub-criterion as they appear in the software results 

Maximum Operating Temperature matrix:  

     1              3     1 

     0.3333     1     0.3333 

     1              3     1 

                                                    Thermocouple                  Thermister                  RTD 

Alternatives Weight Vector =      0.42858                            0.14285                     0.42858 

Consistency Index = 0 

Consistency Ratio = 0 
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 As can be seen from Table 4.2 the weights of the three sensors: thermocouple, thermister, 

and RTD against maximum operating temperature sub-criterion are: 0.42858, 0.14285, 

and 0.42858 respectively, indicating that the RTD and the Thermocouple score equally 

the best against maximum operating temperature sub-criterion while the thermister scores 

the worst. Table 4.2 also shows the consistency index for this 3X3 case study matrix to be 

0 and consistency ratio to be 0 indicating that decision maker’s judgments are completely 

consistent.  

Temperature Curve Sub-criterion  

Appendix ΙV [6, 23] lists descriptions for the performance of the thermocouple, the 

thermister, and the RTD alternative sensors against the 23 sub-criteria. Information in this 

appendix was utilized for the evaluation of the relative weights for these three sensors in 

this section and the many subsequent sections.  

The following considerations of linearity or nonlinearity of the seven sensors were taken 

in assessing relative weights of this sub-criterion and in ranking the sensors accordingly: 

Thermocouple: fair linearity, to facilitate estimating the relative weights in the 7X7 

matrix, the thermocouple was relatively ranked among the seven sensors in rank (2).  

Thermister: nonlinear, ranked among the seven sensors (3). 

RTD: the most linear, or the best, ranked among the seven sensors (1). 

Bimetallic: nonlinear due to nonlinearity of characteristic equation, ranked (6). 

Thermometer: nonlinear due to nonlinearity of coefficient of linear expansion of both 

liquid and the glass, but ranked (5) since coefficient of linear expansion of glass is smaller 

than that for any metal.  

Pyrometer: nonlinear due to nonlinearity of governing equations of radiation 

phenomena (Stefan-Boltzmann law of total power of radiant flux), ranked (4).     
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LCD: nearly linear since it is mainly a silicon based semiconductor sensor, ranked nearly 

(2) like the thermocouple, but thermocouple is two folds better. 

It is an advantage for any temperature measurement system to have a linear response of 

the sensor, since little or no electronic circuits are needed to correct for nonlinearity in 

addition the sensor is more electronically compatible and easily connected to transmitters 

and signal conditioning circuits and the total system error becomes smaller. Based on the 

previous considerations, the following matrix represents the relative weights of the seven 

sensors against Temperature Curve sub-criterion as it appears in the software: 

 

                                   1.0         3.0             0.3333    5.0        5.0        4.0        2.0 

                                   0.3333   1.0             0.1667    2.0        2.0        1.0        0.3333 

                                   3.0         6.0             1.0          6.0        6.0        6.0        4.0 

    Atemp curve = [aij] =    0.2         0.5             0.1667    1.0        1.0        0.3333  0.25 

                                   0.2         0.5             0.1667    1.0        1.0        0.3333  0.25 

                                      0.25        1.0               0.1667     3.0         3.0         1.0         0.5 

 

                                   0.5         3.0             0.25        4.0        4.0        2.0        1.0 

 

An example of  the relative weight  estimation in the above matrix  is the relative weight 

of the thermocouple with respect to the thermister,  entry a12 in the above matrix, this 

weight is set 3, because thermocouple is weakly more preferred than thermister with 

respect to Temperature Curve sub-criterion, while that of an RTD with respect to the 

bimetallic is 6 because RTD relative weight lies mid way between being strongly more 

important and very strongly more important than bimetallic with respect to the 

Temperature Curve sub-criteria. The same analogy applies to the rest of the entries in the 

matrix.  
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The software results in terms of the three sensors: the thermocouple, the thermister, and 

the RTD weights against the Temperature Curve sub-criterion in the case study are shown 

in Table 4-3.  

Table  4-3: Weights of the three alternatives against the Temperature Curve sub-
criterion.  

  Temperature Curve matrix: 

      0.3333         3                1 

         0.1667         1     0.3333   

         1    6                3 

                                                      Thermocouple                  Thermister                  RTD  

Alternatives Weight Vector =        0.25099                            0.09602                     0.65299 

Consistency Index = 0.00918 

Consistency Ratio = 0.01583 

 

Sensitivity Sub-criterion: values of the incremental ratio of the sensor’s output to the 

input temperature (the sensitivity) for the seven sensors [7] are as follows: 

Thermocouple: low sensitivity on the order of 20-80 μV/°C, to facilitate estimating the 

relative weights in the 7X7 matrix, the thermocouple was relatively ranked among the 

sensors in rank (4).  

Thermister: very high sensitivity, negative temperature coefficient (NTC) thermisters 

can have sensitivities on the order of 4.0 % Ω/Ω/C, the most sensitive of all sensors, 

ranked among the seven sensors (1). 

RTD: medium sensitivity on the order of 0.39 % Ω/Ω/C, (~4milli /C) ranked among the 

seven sensors (2). 

Bimetallic: low sensitivity on the order of 20 ppm (mm/mm/C), ranked (5). 

Thermometer: low sensitivity on the order of 8.5 ppm (mm/mm/C), ranked (7).  

Pyrometer: low sensitivity on the order of 10 ppmC 
-1

, ranked (6).      

LCD: medium sensitivity on the order of 0.19 % Ω/Ω/C [7], (~1.9 milli /C),  
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ranked (3). 

Based on the above technical data, the judgment matrix of the relative weights for the 

Sensitivity sub-criterion for the seven sensors as it appears in Appendix ΙΙI is: 

 

                                  1.0     0.1111        0.2         2.0        2.0        2.0       0.3333 

                                  9.0     1.0             4.0         9.0        9.0        6.0       4.0 

                                  5.0     0.25           1.0         4.0        5.0        4.0       2.0 

    Asensitivity = [aij] =    0.5     0.1111       0.25       1.0        2.0        2.0       0.25  

                                  0.5     0.1111       0.2         0.5        1.0        1.0       0.25 

                                  0.5     0.1667       0.25       0.5        1.0        1.0       0.25 

                                  3.0     0.25           0.5        4.0        4.0        4.0       1.0    

  

The relative weights of the sensors in the above matrix were based on the values of 

sensitivities for these sensors. For example, the thermister relative weight with respect to 

the thermocouple, entry a21 is 9 since sensitivity of the thermister is the highest among all 

sensors and thermocouple sensitivity is low on the order of ppm (parts per million or 

microns). Another example is the relative weight of the RTD with respect to the bimetallic 

strip thermometer, entry a34, is 4 since the RTD’s sensitivity is moderate on the order of 4 

milli per Celsius while that of the bimetallic is very low on the order of 20 ppm. The same 

analogy is used for the rest of the weights (entries). The software uses these preset values 

to calculate weights of the seven sensors with respect to the Sensitivity sub-criterion. 

Results of the software in terms of sensors weights for the Sensitivity sub-criterion for the 

three sensors case study are shown in Table 4-4. 
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Table  4-4: The three alternatives case study weights for the Sensitivity sub-criterion  

  Sensitivity matrix: 

0.2     0.1111      1 

             4     1      9 

     1        0.25      5  

                                                     Thermocouple                  Thermister                  RTD  

Alternatives Weight Vector =       0.06225                            0.70131                    0.23644  

Consistency Index = 0.03611 

Consistency Ratio = 0.06226 

 

Self Heating Sub-criterion: below are the judgments relating to the seven sensors with 

respect to Self Heating sub-criterion that will be used in determining the relative weights 

of the judgment matrix. 

Thermocouple: experiences no self heating, one among the best sensors, ranked (1).  

Thermister: experiences high level of self heating, the worst sensor of all, ranked (7). 

RTD: experiences very low to low level of self heating, ranked (4). 

Bimetallic: experiences no self heating, but can fail ‘closed’ (short-circuited) at end of 

life, ranked (2). 

Thermometer: experiences no self heating, one among the best sensors, ranked (1).  

Pyrometer: experiences no self heating, one among the best sensors, ranked (1).      

LCD: experiences very low to low level of self heating, ranked (3). 

Based on the upper judgments, the judgment matrix of the relative weights for the Self 

Heating sub-criterion is 
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                                   1.0         8.0       3. 0    3.0     1.0      1.0            2.0 

                                   0.125     1.0       0.2     0.25    0.2      0.1667     0.25 

                                   0.3333   5.0       1.0     0.5      0.5      0.3333     1.0 

    Aself heating = [aij] =     0.3333   4.0       2.0     1.0      1.0      0.5           1.0  

                                   1.0         5.0       2.0     1.0      1.0      1.0           2.0 

                                   1.0         6.0       3.0     2.0      1.0      1.0           1.0 

                                   0.5         4.0       1.0     1.0      0.5      1.0           1.0     

 

The values of the relative weights in the above matrix are based on the judgments stated 

before. For example, since the thermocouple experiences no self heating problem at all, it 

is considered superior to the thermister which experiences high level of self heating, so 

the relative weight of the thermocouple with respect to the thermister, the a12 entry in the 

above matrix, is set mid way on Saaty’s scale between very strongly more important and 

extremely more important and given a value of 8. Another example is the relative weight 

of the RTD with respect to the bimetallic, the a34 entry. Since the RTD experiences very 

low to low self heating and is ranked relative to the rest of the sensors (4) and the 

bimetallic ranked (2), and since self heating is not common in bimetallic, i.e. we don’t, in 

general, talk about bimetallic self heating characteristic, then the relative importance of 

the bimetallic with respect to the RTD is no more than a factor of 2. The same analogy 

applies to the rest of the entries in the matrix. Table 4-5 shows the results of the software 

in terms of sensors weights for the Self Heating sub-criterion for the three sensors case 

study.  
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Table  4-5: The results for the Self Heating sub-criterion 

   Self-Heating Issues matrix: 

     3         8                1 

0.2         1      0.125  

     1         5     0.3333 

                                                      Thermocouple                  Thermsiter                  RTD 

Alternatives Weight Vector =       0.65715                             0.06825                    0.27459 

Consistency Index = 0.02218 

Consistency Ratio = 0.03824 

   

Typical Small Size Sub-criterion: below are the judgments [7] relating to the seven 

sensors with respect to the Typical Small Size sub-criterion and that will be used in 

determining the relative weights of the judgment matrix. 

Thermocouple: the smallest sensor, sizes down to 0.025 mm of the thermocouple wire 

diameter are present in industry. Typical size is 0.25 mm diameter, ranked relative to rest 

alternatives (1).  

Thermister: the next smaller sensor, typical sizes for bead-type thermisters diameters 

range from 0.4 mm to 2.5 mm with a typical probe length 3-12.7 mm, ranked (2). 

RTD: the second next smaller sensor, with an RTD diameter ranging from 1.6 mm to 6.35 

mm and an RTD probe length ranging from 1.6 mm to 101.6 mm, ranked (3). 

Bimetallic: has a typical strip length of 3 inches (76.2 mm), ranked (4). 

Thermometer: has a typical length of 8 inches (203.2 mm), ranked (5).  

Pyrometer: commercial pyrometer has a size of 54 mm X 54 mm X 147 mm, ranked (6). 

LCD: commercial LCD has dimensions of 20 cm X 6.35 cm, ranked (5). 

Based on the upper judgments, and based on the notion that as the size of the sensor 

becomes smaller it is considered better due to its faster response time and increased 

fitness to be installed in any place within process, then the judgment matrix of the relative 

weights for the Typical Small Size sub-criterion is: 
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                                 1.0        2.0         3.0        4.0          5.0         6.0       5.0 

                                   0.5        1.0         2.0       3.0           4.0         5.0       4.0 

                                   0.3333   0.5         1.0       2.0          4.0         6.0       4.0 

            Asize = [aij] =     0.25       0.3333   0.5       1.0          2.0         3.0       2.0  

                                   0.2         0.25      0.25      0.5          1.0         3.0       1.0 

                                   0.1667    0.2       0.1667   0.3333   0.3333     1.0       0.5 

                                    0.2         0.25      0.25      0.5          1.0         2.0       1.0            

  

The values of the relative weights in the above matrix are based on the information stated 

above. For example, since the thermocouple is the smallest sensor and the pyrometer is 

the largest the relative weight of the thermocouple with respect to the pyrometer, i.e. the 

a16 entry in the above matrix, is set mid way on Saaty’s scale between strongly more 

important and very strongly more important and given a value of 6. Another example is 

the relative weight of the pyrometer with respect to the thermometer, the a65 entry. Since 

the pyrometer is a 3-D device and the thermometer is only approximately one dimension 

(length), then the relative weight is set to 0.3333 indicating that pyrometer is weakly less 

important than the liquid-in-glass thermometer. The same analogy applies to the rest of 

the entries in the matrix. Table 4-6 shows the results of the software in terms of sensor 

weights for the Typical Small Size sub-criterion for the three sensors case study.  

 

Table  4-6: The software results for the Typical Small Size sub-criterion  

Typical Small Size matrix:     

1            2        3 

0.5         1        2 

0.3333   0.5     1 

                                                    Thermocouple                  Thermister                  RTD 

Alternatives Weight Vector =       0.53896                            0.29725                  0.16377 

Consistency Index = 0.00458 

Consistency Ratio = 0.00791 
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Typical Fast Thermal Time Constant Sub-criterion: below are values of the average 

response time for the seven sensors. These values will be used in determining the relative 

weights of the judgment matrix. 

Thermocouple: 0.01 seconds (see Appendix ΙV), among the fastest sensors, ranked 

relative to rest alternatives (1).  

Thermister: typical response time 2 seconds [7], ranked (2). 

RTD: 5 seconds [7] , ranked (4). 

Bimetallic: 20 seconds [24], the slowest of all sensors, ranked (6). 

Thermometer: 10 seconds [25], ranked (5).  

Pyrometer: 0.01 seconds [26], among the fastest sensors, ranked (1). 

LCD: 3 seconds [27], ranked (3). 

Based on the upper judgments, and based on the notion that it is an advantage for the 

sensor in a process to have smaller response time then the judgment matrix of the relative 

weights for the Fast Thermal Time Constant sub-criterion is: 

                                   1.0         3.0          4.0      6.0      5.0        1.0         3.0 

                                     0.3333   1.0          2.0      4.0      3.0        0.3333   1.0 

                                     0.25       0.5          1.0      2.0      2.0        0.25       1.0 

Afast th time cons = [aij] =       0.1667   0.25        0.5      1.0      0.5        0.1667   0.3333  

                                     0.2         0.3333    0.5      2.0      1.0        0.2         0.3333 

                                     1.0         3.0          4.0       6.0      5.0       1.0         3.0 

                                     0.3333   1.0          1.0       3.0     3.0        0.3333   1.0     

The values of the relative weights in the above matrix were based on the response time 

values for the seven sensors stated above. For example, since the thermocouple and the 

pyrometer are the fastest sensors and the bimetallic strip is the slowest, then entries a14 

and a64 are set midway on Saaty’s scale between strongly more important and very 

strongly more important and given a value of 6. Another example is the relative weight of 
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the LCD with respect to the pyrometer. The response time of an LCD is 3 seconds and 

that of pyrometer is 0.01 seconds, then the pyrometer is relatively weakly more important 

than the LCD and the entry a67 is given a value of 3. The same analogy applies to the rest 

of the entries in the matrix. Table 4-7 shows the results of the software for the Typical 

Fast Thermal Time Constant sub-criterion for the three sensors case study. 

Table  4-7: The software results for the Typical Fast Thermal Time Constant sub-
criterion. 

Typical Fast Thermal Time Constant matrix: 

   1             3         4 

   0.3333    1         2 

   0.25        0.5      1 

                                                    Thermocouple                  Thermister                  RTD 

Alternatives Weight Vector =       0.62323                           0.23948                  0.13728 

Consistency Index = 0.00915 

Consistency Ratio = 0.01578 

 

Long Term Stability and Accuracy Sub-criterion: below are descriptions of the long 

term stability and accuracy behavior for the seven sensors.  

Thermocouple: thermocouple long term stability and accuracy is okay (see Appendix 

ΙV), it experiences drift and needs calibration. Its resolution is within ± 1.0 C. It is ranked 

relative to rest alternatives (6).  

Thermister: good stability and accuracy, its resolution ranges from ± 0.1 C to ± 0.001 

C, ranked (2). 

RTD: RTD is the most stable and accurate of all sensors, its resolution can reach ± 

0.00001 C, ranked (1). 

Bimetallic: bimetallic thermometer experiences drift, its resolution ranges from ± 1.0 C 

to ± 2.0 C, ranked (7). 

Thermometer: thermometer exhibits fair stability, accuracy of ± 0.1 C, ranked (4).  
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Pyrometer: pyrometer has good resolution ranging from ± 0.1 C to ± 1.0 C, ranked 

(5). 

LCD: LCD has good stability, resolution of 0.001-0.1 C, ranked (3). 

Based on the upper judgments, and based on the notion that long term stability and 

accuracy is an advantage for a sensor then the judgment matrix of the relative weights for 

the Long Term Stability and Accuracy sub-criterion is: 

                                     1.0     0.25        0.1667    2.0      0.3333     0.5         0.25         

                                       4.0     1.0          0.3333    4.0      3.0          3.0         2.0 

                                       6.0     3.0          1.0          8.0      4.0          5.0         3.0 

Along term stability = [aij] =       0.5    0.25        0.125      1.0      0.3333     0.3333     0.25  

                                       3.0     0.3333    0.25        3.0      1.0          2.0          0.5 

                                       2.0     0.3333    0.2          3.0      0.5          1.0         0.3333               

                                       4.0     0.5          0.3333    4.0      2.0          3.0         1.0          

The values of the relative weights in the above matrix were based on the descriptions for 

the seven sensors stated above. For example, since the RTD exhibits the best stability and 

accuracy and the thermister exhibits good stability and accuracy, a relative weight of 

0.3333 is given to the entry a23 in the above matrix. The same analogy applies to the rest 

of the entries in the matrix. Table 4-8 shows the results of the software for the Long Term 

Stability and Accuracy sub-criterion for the three sensors case study.  

Table  4-8: The software results for the Long Term Stability and Accuracy sub-
criterion 

Long Term Stability and Accuracy matrix: 

1           0.25        0.1667 

4           1             0.3333 

6           3             1 

                                                    Thermocouple                  Thermister                  RTD 

Alternatives Weight Vector =       0.08695                            0.27371                  0.63933 

Consistency Index = 0.02704 

Consistency Ratio = 0.04663 
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Corrosion Resistance Sub-criterion: below are descriptions of the corrosion 

characteristics for the seven sensors.  

Thermocouple: low corrosion resistance [7, 8]. It is ranked relative to rest alternatives 

(4).  

Thermister: good corrosion resistance, but corrodes in acidic, alkali media, ranked [23] 

(2). 

RTD: RTD has good corrosion resistance due to its highly inert platinum wire [7, 8], 

ranked (1). 

Bimetallic: experiences normal corrosion of component metals, ranked (3). 

Thermometer: has good corrosion resistance due to its inert glass capillary tube,  

ranked (1).  

Pyrometer: pyrometer has no direct contact with the medium, so it is not exposed to 

corrosion due to medium, ranked (1). 

LCD: LCD has good corrosion resistance, relatively ranked [7] (2). 

Based on the upper judgments, and based on the notion that corrosion resistance is an 

advantage for a sensor then the judgment matrix of the relative weights for the Corrosion 

Resistance sub-criterion is: 

                                   1.0     0.25   0.1667    0.5    0.1667    0.1667     0.25         

                                     4.0     1.0     0.3333    2.0     0.25       0.25        1.0 

                                     6.0     3.0     1.0          4.0     1.0         1.0          4.0 

Acorrosion resis.  = [aij] =       2.0     0. 5    0.25        1.0    0.25        0.25         0.5  

                                     6.0     4.0     1.0          4.0    1.0          1.0          3.0 

                                     6.0     4.0     1.0          4.0    1.0          1.0          3.0               

                                     4.0     1.0     0.25        2.0    0.3333    0.3333     1.0     
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The values of the relative weights in the above matrix were based on the descriptions for 

the seven sensors stated above. For example, since the thermocouple exhibits the worst 

corrosion resistance and the thermometer exhibits excellent corrosion resistance, the entry 

a15 in the above matrix is given a value of 0.1667. The same analogy applies to the rest of 

the entries in the matrix. Table 4-9 shows the results of the software for the Corrosion 

Resistance sub-criterion for the three sensors case study.  

Table  4-9: The software results for the Corrosion Resistance sub-criterion 

Corrosion Resistance matrix:  

  1      0.25      0.1667 

  4      1           0.3333 

  6      3           1 

                                                    Thermocouple                  Thermister                  RTD 

Alternatives Weight Vector =       0.08695                            0.27371                  0.63933 

Consistency Index = 0.02704 

Consistency Ratio = 0.04663 

 

Cost Sub-criterion: below is cost information for the seven sensors. Putting into mind 

that cost minimization is a pursuit of any temperature measurement system then the 

relative rank of the seven sensors would appear as indicated beside each.  

Thermocouple: low –medium cost. Typical cost values depending on the thermocouple 

type range from $5 for many thermocouples to $150 for some products of the high 

temperature measuring K-type thermocouple.  So it is one of the least expensive choices. 

It is ranked relative to rest alternatives (1).  

Thermister: low –medium cost. Typical cost values depend on the thermister features and 

range from $0.6 to $28, relatively close cost to thermocouple’s, ranked (1). 

RTD: high cost. High-accuracy wire-wound RTDs can be as costly as $5000, $700 is not 

uncommon. See Table 2.2, ranked the worst alternative relative to the Cost sub- 

criterion (3). 
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Bimetallic: medium cost, cost ranges from $10 to $53, ranked (2). 

Thermometer: medium cost, typical cost values range from $15 to $67, ranked (2).  

Pyrometer: very expensive, cost values for pyrometers can range from $200 up to more 

than $3000, ranked (3). 

LCD: medium cost, cost ranges from $10 to $50, relatively ranked (2). 

Based on the upper judgments, the following is the relative weights judgment matrix for 

the Cost sub-criterion. 

                           1.0         1.0          6.0    3.0     3.0    6.0    3.0         

                           1.0         1.0          6.0    3.0     3.0    6.0    3.0 

                           0.1667    0.1667    1.0    0.25   0.25   1.0    0.25 

Acost  = [aij] =        0.3333    0. 3333   4.0    1.0     1.0     4.0    1.0  

                           0.3333    0.3333    4.0    1.0     1.0     4.0    1.0 

                           0.1667    0.1667    1.0    0.25   0.25   1.0    0.25               

                               0.3333    0.3333     4.0    1.0      1.0      4.0     1.0      

Evaluating the relative weights in the above matrix is based on comparing the relative 

ranks given to the seven sensors against the cost sub-criterion. For example, since the 

thermocouple and the thermister on average exhibit the least cost sensor choices, and come 

rank 1 while the industrial thermometer exhibits a medium cost alternative with a rank 2, 

then both the thermocouple and the thermsiter are equally weakly more important than the 

thermometer and entries a15 and a25  are assigned value 3.0. On the other hand, since the 

thermocouple is the most preferred alternative with respect to the Cost sub-criterion with 

rank 1 and because the RTD and the pyrometer are the most expensive alternatives among 

all alternatives having a rank 3 then the RTD and the pyrometer score badly relative to the 

thermocouple. You can consider them as being mid way between strongly less important 

and very strongly less important than the thermocouple and thus entries a31 and a61 are 
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given value 0.1667. Table 4-10 shows the results of the software for the Cost sub-criterion 

for the three sensors case study. 

Table  4-10 The software results for the Cost sub-criterion  

Cost matrix: 

   1                 1                6 

   1                 1                6 

   0.1667        0.1667       1 

                                                    Thermocouple                  Thermister                  RTD 

Alternatives Weight Vector =       0.46153                           0.46153                   0.07693 

Consistency Index = 0 

Consistency Ratio = 0 

4.3.5.2 Sub-criteria Weights Interpretation  

The discussion in this section and the next section relates to the Automotives application. 

Criteria and sub-criteria weights for the other two applications: the Chemical Process and 

the HVAC applications will be interpreted and explained in section 4.3.5.4.  

Static Sub-criteria Relative Weights: the 11 sub-criteria comprising the Static criterion 

are relatively pair-wise compared using Saaty scale. Recall from section 2.2.1 the important 

requirements for the selection of temperature sensors for a certain application. These 

requirements are mentioned here again to remind of the relative importance for each: 

1- Temperature range 

2- Accuracy 

3- Response time 

4- Sensitivity                  

5- Corrosion conditions and resistance 

6- Breaking down due to wear and tear  

7- Interchangeability  

8- Variations in temperature – temperature shock 
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9- Pressure conditions 

The scheme for  prioritizing the 23 sub-criteria-although not seen here- was first laid on 

comparing the 23 sub-criteria as a whole, and as if they all belong to the same parent 

criterion, which is in this case, the overall goal; the selection of the best sensor. In doing so, 

the 23 sub-criteria are passed on and assimilated to one of the above requirements. The 

requirements are followed here from top to bottom in a descending order of preference or 

priority for evaluating the relative preferences of the 23 sub-criteria, i.e. starting from 

temperature range requirement with the first priority, then passing on to accuracy 

requirement with the second priority and so forth. 

To elaborate, every single sub-criterion of the 23 sub-criteria is passed on the requirements 

and assimilated to one of them. Throughout the work for this section, if multiple sub-

criteria of the 23 sub-criteria are related in different degrees to the same requirement of the 

above, only the one with the closest relation to the requirement is passed on at one time and 

the next with the second degree relationship is passed on after the rest of sub-criteria that 

assimilate the next requirements are passed on. For example, the Long Term Stability and 

Accuracy sub-criterion, the NIST Standards sub-criterion, the Point or Area Measurement 

sub-criterion, the Self-Heating Issues sub-criterion , the Temperature Curve sub-criterion, 

the Extension Wires sub-criterion, and the Temperature Measurement sub-criterion all are 

related and assimilated to the accuracy requirement in different degrees of relationship. 

However only one sub-criterion of the seven afore mentioned sub-criteria with the closest 

similitude (degree of relationship) to the accuracy requirement, which is the Long Term 

Stability and Accuracy sub-criterion in this case, is passed on at a time for purposes of 

prioritization. The other six are periodically passed on one by one after the next 

requirements are assimilated  with the rest of the sub-criteria, i.e. after response time, 

sensitivity,… etc. requirements have been assimilated with the remaining sub-criteria. 
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Based on this scheme the relative preference of the aforementioned seven sub-criteria from 

the most important to the least important is: the Long Term Stability sub-criterion, the 

NIST Standards sub-criterion, the Point or Area Measurement sub-criterion, the Self-

Heating Issues sub-criterion, the Temperature Curve sub-criterion, the Extension Wires 

sub-criterion, and the Temperature Measurement sub-criterion, respectively.  The outcome 

of this prioritization scheme is 23 sub-criteria relatively ranked from (1) to (23). Table 4-11 

depicts the ranks for the 23 sub-criteria under this prioritization scheme.  

Table  4-11: The ranks for the 23 Sub-criteria with respect to the overall goal.   

Criteria                                                Sub-Criteria                                                                          Rank 

 

Static Criteria                                      Maximum Operating Temperature                                      1                    

                                                            Minimum Operating Temperature                                       1 

                                                            Temperature Curve                                                              15 

                                                            Sensitivity                                                                            6 

                                                            Self-Heating Issues                                                              13 

                                                            Long Term Stability and Accuracy                                      2 

                                                            Typical Temperature Coefficient                                         16 

                                                            Extension Wires                                                                   17 

                                                            Long Wire runs from Sensor                                                21 

                                                            Measurement Parameter                                                       22 

                                                            Temperature Measurement                                                   20 

 
Dynamic Characteristics                     Stimulation Electronics required                                          5 

                                                            Existence of Maximum Sensitivity Region                          18  

                                                            Typical Fast Thermal Time Constant                                    3 

 

Environmental Parameters                 Typical Small Size                                                                12 

                                                            Noise Immunity                                                                    14 

                                                            Fragility-Durability Characteristics                                       8 

                                                            High Thermal Gradient Environment                                    9 

                                                            Corrosion Resistance                                                             7 

 

Others                                                 Point or Area Measurement                                                  11 

                                                            Manufacturing Variances                                                     19 

                                                            NIST Standards exist                                                            10                   

                                                            Cost                                                                                       4 

 

The next step is to categorize these 23 sub-criteria into their 4 parent criteria, namely, into: 

Static criteria, Dynamic criteria, Environmental criteria, and Others criteria categories. The 

prioritization scheme will be utilized here to help prioritize different sub-criteria inside the 

same parent criterion (see Table 4.11). Putting in mind that operating temperature range 
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comprises both minimum and maximum operating temperatures then the relative 

preferences (ranks) that apply to the 11 sub-criteria comprising the Static criterion 

alongside their interpretation become as follows: 

Maximum Operating Temperature: is assimilated to temperature range requirement, 

and since the temperature range requirement has requirement priority (1) to be satisfied, 

then the Maximum Operating Temperature sub-criterion also has priority (1) among other 

sub-criteria inside the Static criterion. So it is ranked (1). 

Minimum Operating Temperature: is assimilated to temperature range requirement, it 

has the same priority as the Maximum Operating Temperature sub-criterion and  

ranked (1). 

Temperature Curve: is realized in sensors and assimilated to accuracy requirement. A 

linear response of a sensor provides for accurate sensor measurements while non-linear 

responses add to sensor inaccuracy and error. Since it is prioritized in the second pass on 

requirements while the more relevant sub-criterion to the accuracy requirement, which is 

the Long Term Stability and Accuracy sub-criterion is prioritized in the first pass, so it is 

ranked less important than the Long Term Stability and Accuracy sub-criterion in the Static 

category and has a new rank (5). 

Sensitivity: is assimilated to sensitivity requirement and ranked relatively inside Static 

criterion (3). 

Self-Heating Issues: assimilated to accuracy, ranked inside Static criterion (4). 

Long Term Stability and Accuracy: assimilated to accuracy, ranked (2). 

Typical Temperature Coefficient: assimilated to sensitivity, ranked (6). 

Extension Wires: assimilated to accuracy, ranked (7). 

Long Wire Runs from Sensor: assimilated to accuracy, ranked (9). 

Measurement Parameter: assimilated to accuracy, ranked (10). 
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Temperature Measurement: assimilated to accuracy, ranked (8). 

Having set the relative preferences for the 11 Static sub-criteria, the following judgment 

matrix is established based on Saaty scale of relative importance: 

                                             1.0           1.0          5.0         4.0          4.0         2.0         5.0     6.0       7.0    8.0     6.0 

                                             1.0           1.0          5.0         4.0          4.0         2.0         5.0     6.0       7.0    8.0     6.0 

                                             0.2           0.2         1.0         0.3333    0.3333    0.25       1.0       2.0       4.0    5.0     3.0 

                                            0.25         0.25        3.0         1.0           2.0         0.5         3.0      3.0       5.0    6.0     4.0 

                                            0.25         0.25        3.0         0.5           1.0       0.3333     3.0       5.0       6.0    8.0     4.0 

 Asub-static  = [aij] =         0.5           0.5          4.0        2.0            3.0          1.0        4.0       5.0       6.0    8.0     5.0 

                                            0.2           0.2          1.0       0.3333    0.3333     0.25        1.0       1.0       4.0    6.0     3.0  

                                            0.1667     0.1667     0.5       0.3333      0.2          0.2         1.0      1.0       3.0    4.0     1.0 

                                             0.1429     0.1429      0.25         0.2        0.1667      0.1667      0.25    0.3333   1.0    2.0     0.3333 

                                            0.125       0.125      0.2       0.1667     0.125       0.125     0.1667   0.25     0.5    1.0     0.25 

                                 0.1667   0.1667   0.3333     0.25        0.25       0.2        0.3333   1.0       3.0    4.0     1.0 

 

The interpretation of entries values for the above matrix is an easy task after the 11 sub-

criteria have been properly prioritized. For example, since Maximum and Minimum 

Operating Temperature sub-criteria rank 1 while Temperature Curve sub-criterion ranks 5, 

then both Maximum and Minimum Operating Temperature sub-criteria are strongly more 

important than Temperature Curve sub-criterion and their relative weights according to 

Saaty’s scale is given a value 5, so both entries a13 and a23 have a value 5. The self heating 

is an important characteristic that plays decisive role in sensor’s accuracy, so the Self 

heating Issues sub-criterion ranks 4 among the 11 sub-criteria. The Typical Temperature 

Coefficient, on the other hand, is less important for a sensor- yet retains good importance- 

than Self Heating Issue sub-criterion, so it ranks 6, if these considerations are taken into 

mind, then the Self heating Issues sub-criterion can be considered weakly more important 

than the Typical Temperature Coefficient sub-criterion with three folds and thus entry a57 

has a value 3. The worst scoring sub-criterion among all 11 sub-criteria is the 

Measurement Parameter sub-criterion (see Appendix IV for meaning of measurement 
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parameter), the reason behind is that whether you are measuring resistance or voltage by 

your sensor, it makes a slight difference, both measurement parameters will eventually 

give you a representation of the temperature measured. This gives rise to the relatively 

low rank given to the Measurement Parameter sub-criteria which is (10). However, 

Measurement Parameter sub-criterion still has a slight effect on the final goal in the sense 

that because temperature measurement through voltage difference created via 

thermoelectric effect in thermocouple, for example, is an inherent phenomenon that 

happens whenever a thermo element conductor is exposed to a temperature difference. It 

does not need an external power source to drive the sensor nor does it need software to 

convert the thermo voltage to temperature. The thermo voltage has a direct relation to the 

temperature difference, needs no signal conditioning, and can be directly looked up from 

standard tables. Resistance temperature measurement, on the other hand, relies on passing 

direct current through the sensor, the thermister, for example, then measuring the electric 

resistance of the sensor then relating this resistance to the temperature being measured. It 

normally needs computer software to convert these resistance values into a value of the 

temperature according to the characteristic Temperature-Resistance equation for the 

sensor. All these stages have their own contribution to the total error in the sensor’s 

temperature reading, so thermo voltage parameter is generally better, however, this need 

not prevent the use of passive devices- those that use direct current to drive them- and 

thus the overall relative importance of Measurement Parameter sub-criterion is the lowest. 

Because the Minimum Operating Temperature sub-criterion is the most important sub-

criterion among the 11 sub-criteria that a certain alternative sensor must fulfill with rank 

(1) and because the Measurement Parameter is the least important (10), then the Minimum 

Operating Temperature sub-criterion is midway between very strongly more important 
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and extremely more important than the Measurement Parameter sub-criterion and thus 

entry a10 2 is a fraction 0.125. 

The same analogy can be applied to the rest of entries. Having been set into the software, 

this 11X 11 matrix is then used to calculate the weights of the individual sub-criteria that 

comprise the Static criterion. Table 4.12 shows the sub-criteria weights calculated by the 

software for the Static criterion.   

Table  4-12: Static Sub-criteria Weights 

Sub-Criteria Static matrix:                                                                                                                  List of Sub-criteria 

1.0           1.0          5.0           4.0          4.0          2.0         5.0           6.0         7.0    8.0     6.0        (1) Maximum Operating Temperature  

1.0           1.0          5.0           4.0          4.0          2.0         5.0           6.0         7.0    8.0     6.0         (2) Minimum Operating Temperature 

0.2          0.2          1.0      0.3333    0.3333        0.25       1.0           2.0        4.0    5.0     3.0         (3) Temperature Curve 

0.25        0.25        3.0         1.0        2.0              0.5        3.0          3.0         5.0    6.0     4.0         (4) Sensitivity 

0.25        0.25        3.0         0.5        1.0           0.3333     3.0          5.0         6.0    8.0     4.0         (5) Self Heating 

0.5          0.5          4.0        2.0          3.0            1.0         4.0         5.0         6.0    8.0     5.0         (6) Stability and Accuracy 

0.2          0.2          1.0        0.3333    0.3333      0.25       1.0         1.0         4.0    6.0     3.0         (7) Temperature Coefficient 

0.1667     0.1667    0.5        0.3333    0.2           0.2         1.0         1.0         3.0    4.0     1.0         (8) Extension Wires 

0.1429     0.1429    0.25       0.2       0.1667    0.1667     0.25       0.3333     1.0    2.0     0.3333    (9) Long Wire  Runs 

0.125       0.125      0.2       0.1667    0.125      0.125     0.1667     0.25       0.5    1.0     0.25       (10) Measurement Parameter 

0.1667   0.1667   0.3333  0.25     0.25       0.2        0.3333   1.0        3.0    4.0   1.0         (11) Temperature Measurement 

                                                              (1)             (2)              (3)             (4)            (5)             (6)             (7)             (8) 

Static sub-criteria Weight Vector =      0.22120     0.22120     0.05379     0.09837    0.09777     0.15040     0.05234     0.03704      

 (9)            (10)           (11) 

0.01983     0.01452     0.03355 

Consistency Index = 0.08281 

Consistency Ratio = 0.05209 

 

Dynamic Sub-criteria Relative Weights: in this section, the three Dynamic sub-criteria 

are also ranked after being assimilated to the requirements mentioned in the previous 

section. These sub-criteria and their relative ranks are: 

Stimulation Electronics Required: this sub-criterion refers to the extent a nominated 

alternative sensor is in need to be driven by an external source of electrical power, namely, 
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direct current, or it is self-driven and the consequent need for the set of stimulation 

electronics and/ or the need for signal conditioning circuits, interface circuits, analogue to 

digital converter circuits, lead wires circuits, or signal amplification circuits. It is ranked 

relative to the other two sub-criteria with respect to the Dynamic criterion (2). 

Existence of Maximum Sensitivity Region: for certain sensors, the thermister for 

example, there is a region in its resistance-temperature characteristic equation in which the 

sensitivity-the slope of the curve- is abnormally maximum. This maximum sensitivity 

region is considered a disadvantage in the sensor’s characteristics because the sensor’s 

behavior is extremely non-linear and unpredictable [7] which adds up sharply to inaccurate 

readings and difficulty of characterizing the resistance-temperature curve for that sensor. It 

is ranked (3). 

Typical Fast Thermal Time Constant: this sub-criterion refers to how fast the sensor 

behaves in responding to a step change in the measured variable, the temperature in this 

case. In any sensing system, fast time response is regarded as an advantage for the sensor.   

This sub-criterion is assimilated to response time requirement and ranked inside Dynamic 

criterion (1). 

Based on the relative ranks for the Dynamic sub-criteria, the following judgment matrix is 

established: 

                                     1.0          2.0        0.1667     

      A Sub dyn. = [aij] =        0.5          1. 0       0.1667     

                                     6.0          6.0        1.0     

Because the most important sub-criterion among the three Dynamic sub-criteria is the 

Typical Fast Thermal Time Constant and the least important sub-criterion is the Existence 

of Maximum Sensitivity Region sub-criterion, then it is fair to consider the Typical Fast 

Thermal Time Constant sub-criterion mid way between strongly and very strongly more 

important than the Existence of Maximum Sensitivity Region sub-criterion and thus entry 
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a16 is given a value 0.1667. After the above Dynamic sub-criteria judgment matrix has 

been introduced into the software, the software can then calculate the weights for 

individual Dynamic sub-criteria. Table 4-13 shows these weights. 

Table  4-13 Dynamic sub-criteria weights.                   

Sub-Criteria Dynamic matrix: 

   1        2     0.1667 

   0.5     1     0.1667 

   6        6     1 

                                                                  Stimulation Electronics           Maximum Sensitivity          Time Constant           

Dynamic sub-criteria Weight Vector =       0.16019                                   0.10093                               0.73888 

Consistency Index = 0.02722 

Consistency Ratio = 0.04694 

 

Environmental Sub-criteria Relative Weights: the Environmental sub-criteria 

alongside their relative ranks are: 

Typical Small Size: it is an advantage for a sensor to be small-sized for three reasons:  

1- It becomes more similar to a point-measurement sensor. Point measurement sensors     

measure temperature more accurately than area measurement sensors because of 

their fastness in reaching thermal equilibrium with the sensed medium. Small-sized 

sensors reach thermal equilibrium faster because of their small thermal mass. Area 

measurement sensors, on the other hand, are slower in response and a temperature 

gradient arises through the different parts (points) of the sensor, hence you can see 

industrial products of area measurement sensors having temperature averaging 

capabilities. In general, area measurement sensors add up to the total sensor error 

because of the temperature gradient.       

2- The small-sized sensor is faster in response. 

3- The small-sized sensor fits better -in terms of size-in places of closed compartments 

and or vessels, and can be more customized in varying industrial environments. 
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The above considerations suggest the relatively high importance of the small size sub-

criterion, but since corrosion resistance concerns us more-it appears frankly in the 

requirements list and small size doesn’t- so it is comfortable to rank it among the five sub-

criteria that comprise the Dynamic criterion (3).  

Noise Immunity: noise immunity is an advantage for a sensor. A sensor that is prone to 

electrical and electromagnetic noise from neighboring electrical or electronic devices, 

such as motors for example, is considered a bad alternative. Noise immunity at the final 

end adds up to the total sensor’s accuracy. It is ranked relative to the rest four sub-criteria 

(4).   

Fragility-Durability Characteristics: it is an important sub-criterion that relates to the 

sensor’s reliability. It is ranked (2). 

High Thermal Gradient Environment: it is important for a sensor to withstand and 

cope with high thermal gradients that may be encountered in harsh environments-like 

chemical processes for example. Sensors that don’t withstand temperature and pressure 

gradients often experience thermal cracks and the final damage of the sensor giving rise to 

maintenance and replacement costs. It is given rank (5). 

Corrosion Resistance: it is an exceptionally important sub-criterion among other 

Environmental sub-criteria since it is frankly mentioned in the requirements list. It is 

given rank (1).  

The Environmental sub-criteria judgment matrix is: 

                                1.0         3.0         0.3333   4.0    0.25 

                                0.3333   1.0         0.25       3.0    0.2 

 A Sub Env. = [aij] =       3.0         4.0         1.0         5.0    0.5       

                                0.25       0.3333   0.2         1.0    0.1667     

                                4.0         5.0         2.0         6.0    1.0 
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Fragility-Durability Characteristics sub-criterion ranks (2) while Typical Small Size sub-

criterion ranks (3), so it is safe to consider the Fragility-Durability Characteristics sub-

criterion weakly more important than the Typical Small Size sub-criterion and thus entry a31 

has a value 3. But since the Corrosion Resistance sub-criterion ranks (1) while the 

Fragility-Durability Characteristics sub-criterion and the High Thermal Gradient 

Environment sub-criterion rank (2) and (5) respectively then entries a53 and a54 can have in 

the above matrix values 2 and 6 respectively. After the Environmental sub-criteria 

judgment matrix has been introduced into the software, the software calculates the weights 

for the individual Environmental sub-criteria. Table 4-14 shows these weights. 

Table  4-14: Environmental sub-criteria weights.                  

Sub-Criteria Environmental matrix: 

   1             3             0.3333    4     0.25 

   0.3333    1             0.25        3     0.2 

   3             4             1             5     0.5 

   0.25        0.3333    0.2          1     0.1667 

   4             5             2             6     1 

                                                                                 Small Size          Noise Immunity          Fragility-Durability          Thermal Gradient 

Environmental sub-criteria Weight Vector =            0.15165              0.08646                      0.28264                             0.04767                  

                                                                                 Corrosion Resistance  

                                                                                  0.43158 

Consistency Index = 0.06347 

Consistency Ratio = 0.05667   

 

Others Sub-criteria Relative Weights: the Others sub-criteria alongside their relative 

ranks are: 

Point or Area Measurement: it is an advantage for a sensor to be similar to a point-

measurement sensor. Nonetheless, area measurement does not prevent use of area 

measuring sensors for temperature measurement. In fact area measuring sensors are 

widely industrially employed. This sub-criterion is ranked (3). 
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Manufacturing Variances: it is an advantage for a sensor to be homogenous and 

invariant from batch to batch during manufacturing. It is ranked (4). 

NIST Standards Exist: NIST is an American body that is concerned about different 

standards for materials and manufacturing technologies, the abbreviation NIST stands for 

National Institute of Standards and Technology. It is considered an advantage for a sensor 

to be compliant with NIST standards, and this is what is sometimes referred to in 

reference books as interchangeability. Compliance with NIST standards 

(interchangeability) leads to a final better accuracy of the sensor. NIST standards sub-

criterion is ranked (2). 

Cost: in many low -accuracy demanding sensor selection situations, the cost sub-criterion 

has the preference to all other sensor’s sub-criteria. The same applies if a group of sensor 

systems with large numbers of sensors are needed for a certain application, as is the case in 

the HVAC application. In this respect, it is an advantage for a sensor to have low price. 

However, cost should not be the final criterion that overbalances sensor’s choice. In fact, 

for the long-run operability and reliability, other sub-criteria should not be overlooked or 

sacrificed in favor of cost. Cost is given rank (1). The Others sub-criteria judgment matrix 

is: 

                                      1.0         3.0     0.5         0.25     

A Sub Others. = [aij] =        0.3333   1.0     0.3333   0.2     

                                     2.0         3.0    1.0          0.3333      

                                     4.0         5.0    3.0          1.0                          

Because the NIST standards sub-criterion ranks (2) while the Manufacturing Variances 

sub-criterion ranks (4) then it is safe to consider NIST standards sub-criterion weakly 

more important than the Manufacturing Variances sub-criterion, and thus entry a32 can be 

given a value 3. After The Others sub-criteria judgment matrix has been introduced into 
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the software, the software calculates the weights of the Others sub-criteria. Table 4.15 

shows these weights. 

Table  4-15 Others sub-criteria weights.                  

Sub-Criteria Others matrix: 

  1              3     0.5           0.25 

  0.3333     1     0.3333     0.2 

  2              3     1              0.3333 

  4              5     3              1 

                                                               Point Area Measurement        Manufacturing Variances        NIST Standards        Cost   

Others sub-criteria Weight Vector =       0.15750                                   0.07747                                   0.22913                    0.53589 

Consistency Index = 0.03752 

Consistency Ratio = 0.04169 

4.3.5.3 Criteria Weights Interpretation 

In the prioritization scheme followed in this thesis, the 23 sub-criteria are prioritized as a 

whole against the overall goal, then they are sorted out into their parent criteria and a new 

prioritization scheme was followed inside each criterion yet making use of and depending 

on the previous 23 sub-criteria prioritization scheme. Now, for estimating the relative 

importance of one criterion relative to another with respect to the final goal, a third scheme 

was adopted. This scheme simply comprises assigning relative scores (weights) to each 

sub-criterion of the 23 sub-criteria after they have been ranked from (1) to (23) in the first 

stage. These relative scores are then aggregated (simply summed up) for sub-criteria that 

belong to the same parent criterion in order to obtain a total score for that criterion. By 

doing this, a score for each criterion is obtained. The next step is to relate these scores to 

each other-by simple division- of the four criteria aggregated score in order to obtain the 

relative weights of the criteria which will be entered in the criteria judgment matrix. This 

work was done separately, and the criteria judgment matrix for the Automotives application 

is obtained as follows: 
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                                                    1.0           4.0    3.0    4.0     

                  A criteria = [aij]   =     0.25         1.0    0.5    1.0     

                                                   0.3333    2.0    1.0     2.0      

                                                   0.25        1.0    0.5     1.0     

Looking at the above matrix, it is clear that the Static criterion is the most important 

criterion among the four criteria, it has a relative weight with respect to the Dynamic, 

Environmental, Others criteria of 4, 3, 4 (entries a12, a13, a14 in the matrix) respectively. 

This can easily be figured out if we recall that the Static criterion contains 11 sub-criteria 

among which lie the most important  and the second most important of all 23 sub-criteria, 

the Maximum , Minimum Operating Temperature  and the Long Term Stability and 

Accuracy sub-criteria. The second important criterion is evident to be the Environmental, 

having a weight of 2 relative to both Dynamic and Others criteria (entries a32 and a34). The 

Dynamic and Others criteria are equally important criteria, this can be deduced from their 

relative weights with respect to each other (value 1 for entries a24 and a42). Having been 

introduced into the software, the judgment matrix can then be used by the software to 

calculate the weights for the criteria with respect to the final goal. Table 4-16 shows these 

weights. 

Table  4-16: Criteria weights for the Automotives application.                   

Criteria matrix: 

  1              4     3        4 

  0.25         1     0.5     1 

  0.3333     2     1        2 

  0.25         1     0.5     1 

                                             Static                  Dynamic                  Environmental                  Others      

Criteria Weight Vector =      0.53637              0.12159                   0.22045                            0.12159 

Consistency Index = 0.00687 

Consistency Ratio = 0.00763 
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Having introduced all the matrices representing relative weights of the alternatives with 

respect to each sub-criterion, the relative weights of the sub-criteria with respect to the 

criteria, and the relative weights of the criteria with respect to the goal for a certain 

application in the software then the results of the software for any application case study 

the user applies to the software in the form of alternatives scores can easily be obtained by 

simply pressing the Select button on the second tab. Table 4-17 shows the results for the 

three sensors: the thermocouple, the thermister, and the RTD case study for the automotive 

catalytic converter application. 

Table  4-17 Scores for the thermocouple, the thermister, and the RTD for the 
Automotives application. 

   Sensor                            Score                          Rank 

   Thermocouple                0.37849                           1 

   Thermister                     0.27560                           3 

   RTD                              0.34589                           2 

4.3.5.4 Variations in Components Weights for the Three Applications 

The interpretation of the components weights in the previous three sections applies only to 

the Automotives application, which is set as the default application in the software as the 

user opens it. New sets of weights are introduced into the software that take care of the 

special requirements for the other two applications: the Chemical Process and the HVAC 

(Heating, Ventilating and Air Conditioning) applications. 

The Chemical Process Application 

The following are considerations pertaining to the Chemical Process application that have 

to be taken into account when varying the component weights of the Chemical  

Process application:  

1- Chemical processes are harsh environments in which the proposed sensor faces high 

rates of corrosion, and in many cases high temperatures and pressures and high 
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temperature gradients. The proposed sensor is then to be exceptionally corrosion 

with high thermal gradient resistance.  

2- Normally, the rate of temperature change for the chemical medium in which the 

proposed sensor is to be put is high (< 1.0 
0
C/ min), and so the sensor should have 

fast response time to cope with fast varying medium temperatures. 

3- Chemical Process applications usually need accurate temperature measurement and 

control because of the nature of the chemical reaction. Catastrophic loss of material, 

energy, equipment and /or human lives can be possible if temperature measurement 

and control were not maintained within narrow ranges of accuracy and precision.  

4- Sensors used in chemical processes are normally enclosed into closed 

compartments and/or closed vessels or reactors, distillation columns, mixers, 

evaporators, heat exchangers…etc. hence the need for a small-sized sensor that fits 

into these enclosures.  

Based on these requirements for the Chemical Process application, the following scheme is 

proposed to take care of these requirements and to create new weights for the Chemical 

Process application: 

1- To account for the corrosion resistance and other environment-related requirements, 

the weight of the Environmental criterion entered in Table 4.16 for the Automotive 

application is increased by a percentage of 60 %. This means that its relative 

weights in the criteria judgment matrix for the Chemical Process application with 

respect to the other three criteria will increase. 

2- To account for the fast response time requirement of the sensor and other dynamic-

behavior related issues, the weight of the Dynamic criterion is increased by a 

percentage of 35 %. This means that its relative weights in the criteria judgment 

matrix with respect to the Static and Others criteria will increase.  
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Of course these increases to the Environmental and Dynamic criteria will be 

charged to the other two remaining criteria, namely, the Static and Others criteria in 

the same proportion that the Static criterion is more important than the Others 

criterion, i.e. these increases will be charged in a proportion of 4:1. 

3- The Long Term Stability and Accuracy sub-criterion relative weights inside the 

11X 11 Static sub-criteria judgment matrix will be increased by a factor of 1 

relative importance on Saaty’s scale relative to the rest of the eleven sub-criteria 

while the Static criterion weight with respect to the goal will remain unchanged. 

4- The Typical Fast Thermal Time Constant sub-criterion relative weights inside the 

3X3  Dynamic sub-criteria judgment matrix will be increased by a factor of 1 

relative importance on Saaty’s scale relative to the rest of the three sub-criteria.  

5- The Typical small size, the Corrosion Resistance, and the High Thermal Gradient 

Environment sub-criteria relative weights in the 5X5 Environmental Parameters 

sub-criteria judgment matrix will be increased by a factor of 1 relative importance 

on Saaty’s scale relative to the rest two sub-criteria but will not be increased one 

against each other. 

Based on these amendments, the new Criteria judgment matrix for the Chemical Process 

application is as follows: 

                                       1.0     2.0   1.0     4.0     

A criteria = [aij]     =             0.5    1.0   0.5     2.0     

                                      1.0     2.0   1.0     4.0      

                                      0.25   0.5   0.25   1.0              

Note the essential change to the relative weights of the various components of the criteria 

matrix before the amendments for the Automotives application and after the amendments 

for the Chemical Process application. For example, the relative weight of the Static 

criterion with respect to the Environmental criterion, entry a13, was 3.0 before the 
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amendments indicating weak importance of the Static criterion relative to the 

Environmental criterion   in the Automotives application. This weight drastically changed 

to 1.0 after the amendments for the Chemical Process application indicating equal 

importance of the two criteria with respect to the goal which makes sense in an application 

where corrosion and other detrimental effects are to be minimized. The relative weight of 

the Dynamic criterion with respect to the Static criterion, entry a21, was 0.25 before the 

amendments indicating that Dynamic criterion is mid way between being weakly and 

strongly less important than the Static criterion in the Automotives application. This weight 

also changed remarkably to a value of 0.5 after the amendments indicating that the 

Dynamic criterion became mid way between being equally and weakly less important than 

the Static criterion in the Chemical Process application which makes sense for an 

application in which fast response is needed. Having introduced the above matrix into the 

software for the Chemical Process application, the new weights of the four criteria will be 

calculated. Table 4.18 shows the software criteria new weights values for the Chemical 

Process application versus their old values in the Automotives application for purposes of 

comparison in addition to % increase or decrease in each criterion value before and after 

the amendments.    

Table  4-18: Criteria weights for the Chemical Process application.                   

Criteria Matrix (Chemical Process): 

1        2       1        4 

0.5     1       0.5     2 

1        2       1        4 

0.25   0.5    0.25   1                                  

                                                                                  Static                   Dynamic                     Environmental                     Others    

Automotives Criteria Weight Vector =                      0.53637               0.12159                      0.22045                               0.12159 

Chemical Process Criteria Weight Vector =              0.36363               0.18181                      0.36363                               0.09090 

% increase or decrease =                                             - 32                     + 49                            + 65                                     - 25     

Consistency Index (Chemical Process) = 0 

Consistency Ratio (Chemical Process) = 0 
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The rest of the relative weights amendments other than amendments for the criteria matrix 

are introduced into the software. Table 4-19 shows the new weights for the Long Term 

Stability and Accuracy, Typical Fast Thermal Time Constant, Corrosion Resistance, 

Typical Small Size, and High Thermal Gradient Environment sub-criteria in the Chemical 

Process application versus their corresponding old values in the Automotives application in 

addition to % increase in their values. 

Table  4-19: New sub-criteria weights for the Chemical Process application versus old 
values for the Automotives application and % increase in weights.                   

Sub-Criterion                                          Old value       New value      % increase  

Long Term Stability and Accuracy            0.15040         0.19869               32 

Typical Fast Thermal Time Constant        0.73887         0.76708                4 

Corrosion Resistance                                0.43157         0.47902                5 

Typical Small Size                                    0.15165         0.17142              13 

High Thermal Gradient Environment        0.04767         0.05228              10 

 

Figure 4.6 shows a 3D-column chart depicting values for these sub-criteria in both 

Automotives and Chemical Process applications. 

 

Figure  4.6: Values of sub-criteria in both Automotives and Chemical Process 
applications. 

Automotives

Chemical Process
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Having introduced all these amendments into the software project in the Chemical Process 

file, the results for the best alternative sensor among a set of nominated alternative sensors 

can be obtained. Table 4-20 shows the new scores for the three alternative sensors: the 

thermocouple, the thermister, and the RTD case study in the Chemical Process application. 

It also shows the old scores for the same sensors in the Automotives application for 

purposes of comparison. 

Table  4-20: Scores for the three sensor case study in the Chemical Process application  

Sensor                         Automotives                 Chemical                Rank (Chemical)                 

Thermocouple              0.37849                        0.38179                               1 

Thermister                   0.27560                        0.26806                               3 

RTD                            0.34589                        0.35013                               2 

 

The HVAC Application 

The following are the basic HVAC applications sensor selection considerations (see 

Appendix V [28]): 

1- High accuracy because of the need to control the consumption of energy during 

heating and cooling within narrow tolerances for cost consumption purposes. Low 

accuracy sensors or sensor systems can be responsible for a large amount of energy 

loss and thus lager sums of wasted money. 

2- Reliability and quality of the proposed sensor or system of sensors. 

3- Initial cost, maintenance and replacement costs. The cost issue is very important in 

talking about the HVAC application because a group of sensors in large numbers 

(automated system of sensors) are normally needed. 

4- Lead wire characteristics are also enhanced in the HVAC applications because of 

the electromagnetic noise peculiar to HVAC applications. 
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5- Consideration must be given to moisture, vibration, temperature extremes, 

condensation, vandalism, and other aggressive environments but to a less degree 

than in the case of Chemical Process application. 

Based on these requirements, the following amendments are introduced into the 

components weights: 

1- Since a high level of accuracy is needed in the HVAC application and since Static 

sub-criteria like: Temperature Curve, Self Heating, Long Term Stability and 

Accuracy, Extension Wires, Long Wire Runs from Sensor and Temperature 

Measurement all add to sensors accuracy then the scheme is to increase the Static 

criterion weight in the Automotives application by 20 % and to increase the relative 

weights of these six sub-criteria inside the 11X11 static sub-criteria matrix by a 

factor of 1 relative importance on Saaty’s scale. 

2- The relative weights of the Fragility and Durability, Noise Immunity, and Corrosion 

resistance sub-criteria will be increased inside the Environmental 5X5 sub-criteria 

judgment matrix by a factor of 2 relative importance on Saaty’s scale to account for 

requirements of reliability, electromagnetic interference, and aggressive 

environments, respectively, but without increasing the overall Environmental 

criterion weight. 

3- The Others criterion weight will be increased by a percentage of 40 % over its value 

in the Automotives application. In addition to this, the cost sub-criterion relative 

weights inside the 4X4 Others sub-criteria matrix with respect to the remaining 

three sub-criteria will be increased by a factor of 2 relative importance on Saaty’s 

scale.  

The criteria judgment matrix after these amendments for the HVAC application is: 
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                                  1.0           9.0   6.0     4.0     

A criteria = [aij] =      0.1111       1.0   0.5     0.3333     

                                 0.1667     2.0   1.0     0.5      

                                 0.25         3.0   2.0    1.0  

Table 4-21 shows criteria weights as they appear in the software after the amendments have 

been introduced for the HVAC application; it also shows their respective values in the 

Automotives application for purposes of comparison in addition to % increase or decrease 

in these sub-criteria values. 

Table  4-21: Criteria weights for the HVAC application.                   

Criteria Matrix (HVAC): 

 1              9     6        4 

 0.1111     1     0.5     0.3333 

 0.1667     2     1        0.5 

 0.25        3      2        1 

                                                                                  Static                   Dynamic                     Environmental                     Others    

Automotives Criteria Weight Vector =                      0.53637               0.12159                      0.22045                               0.12159 

HVAC Criteria Weight Vector =                              0.64295                0.06228                      0.10835                               0.18639 

% increase or decrease =                                            + 20                      - 49                            - 51                                     + 53     

Consistency Index = 0.00692 

Consistency Ratio = 0.00769            

 

The rest of the relative weights amendments other than amendments for the criteria matrix 

are introduced into the software. Table 4-22 shows the new weights for the Temperature 

Curve, the Self Heating Issues, the Long Term Stability and Accuracy, the Extension 

Wires, the Long Wire Runs from Sensor, the Temperature Measurement, the Fragility-

Durability Characteristics, the Noise Immunity, the Corrosion Resistance, and the Cost 

sub-criteria new weights in the HVAC application versus their corresponding old values in 

the Automotives application in addition to percentage increase in these sub-criteria values. 
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Table  4-22: New sub-criteria weights for the HVAC application versus old values for 
the Automotives application. 

  Sub-Criterion                                          Old value          New value      % Increase 

Temperature Curve                                    0.05379              0.06348                  18               

Self-Heating Issues                                    0.09777              0.11344                   16 

Long Term Stability and Accuracy           0.15040              0.18940                   26            

Extension Wires                                        0.03704              0.04448                   20 

Long Wire Runs from Sensor                   0.01983              0.02295                   16 

Temperature Measurement                       0.03355              0.03764                   12 

Fragility-Durability Characteristics          0.28264              0.30877                   9 

Noise Immunity                                        0.08646              0.10695                   24 

Corrosion Resistance                                0.43158              0.45559                   6 

Cost                                                           0.53589              0.63425                  18 

 

Figure 4.7 shows a 3D-column chart depicting the values of these sub-criteria for the 

HVAC and Automotives applications. 

 

Figure  4.7: Values of sub-criteria in both Automotives and HVAC applications. 

Having introduced all these amendments into the software project in the HVAC file, the 

results for the best alternative sensor among a set of nominated alternative sensors can be 

obtained. Table 4-23 shows the new scores for the three alternative sensors: the 

Automotives

HVAC
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thermocouple, the thermister, and the RTD case study in the HVAC application. It also 

shows the old scores for the same sensors in the Automotives application for purposes of 

comparison. 

Table  4-23: Scores for the three sensor case study in the HVAC application.  

Sensor                         Automotives                 HVAC                Rank (HVAC)                 

Thermocouple              0.37849                        0.35968                              1 

Thermister                   0.27560                        0.28670                              3 

RTD                            0.34589                        0.35362                              2 

 

Figure 4.8 shows a 3D-column chart depicting values of the Static, Dynamic, 

Enironmental, and Others criteria weights in the Automtives, Chemical Process, and 

HVAC applications for purposes of comparison. 

 

Figure  4.8: Values of criteria weights in the Automotives, the Chemical Process and 
the HVAC applications. 

Figure 4.9 shows a 3D-column chart depicting  final scores of the three sensors: the 

thermocouple, the thermister, and the RTD case study in the Automtives, Chemical 

Process, and HVAC applications. 

Automotives

Chemical Process

HVAC
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Figure  4.9: Values of sensors’ final scores in the Automotives, the Chemical Process 
and the HVAC applications. 

4.3.6 Components Weights Calculation 

In this step, relative comparison weights of each checked alternative sensor against other 

checked sensors are retrieved by the system from the input values, and weights of all 

components in the hierarchal structure are consequently determined and calculated by the 

software. Most of these sub-criteria and therefore parent criteria in addition to the 

alternatives and the goal are separate and distinct entities and are therefore considered 

independent components such that AHP method can be used. Interdependencies are 

minimum between most criteria and can be assumed independent with minimum effects on 

the final judgment.  

After the system retrieves the weights of the alternatives in the lower level, it aggregates 

them to obtain weights of upper immediate parent components in the immediate upper 

levels. Specifically speaking, this step consists of the following three sub-steps: 

 

Automotives

Chemical Process

HVAC



88 

 

1- Starting from the twenty-three 7X7 matrices of relative weights of the alternatives, 

the software calculates the score of each alternative against each sub-criterion as 

was interpreted in the previous section. 

2- Using the 11X11, 3X3, 5X5, 4X4 matrices of relative weights of the Static, 

Dynamic, Environmental, and Others sub-criteria against their respective parent 

criteria, and using the 4X4 matrix of relative weights of the four criteria against 

the final goal, the software calculates the scores of the different components in the 

hierarchy in the sub-criteria and criteria level.    

3- Finally, the software, lumps scores of alternatives against sub-criteria from the 

first step and scores of different components from the second step and integrates 

them all to obtain the final contribution (score) of each alternative sensor against 

the goal. This score is the final outcome of the AHP method and is the measure of 

preference of the alternatives towards our final goal such that the alternative 

sensor with the largest score is considered the best (most preferred) and the one 

with the smallest score the worst (the least preferred) and values in between are 

arranged in preference according to descending order of score value. 

4.3.7 Performing the Consistency Test 

The software then computes the consistency index and the consistency ratio based on 

equations (3.8), (3.9), and (3.10).   

4.3.8 Displaying the Final Results 

After the user does the necessary selections of the intended application, the restrictions 

and the sensors and presses the Select button, the software then displays the final results 

on the software console. These results include:  
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1- The final scores of the selected sensors against the goal, these scores are shown 

vertically from top to bottom in the same order the selected sensors appear in on 

the second tab. 

2- The list of all matrices representing the relative weights of the alternative sensors 

with respect to sub-criteria, the relative weights of the sub-criteria with respect to 

criteria, and the relative weights of criteria with respect to the goal  

3- Values of consistency index and consistency ratio for the whole set of matrices. 

The next chapter deals with applying the proposed software to the case study of choosing 

the best alternative sensor from among the three sensors: the thermocouple, the thermister, 

and the RTD in the automotive catalytic converter application.  

After being introduced to the software, the user may want to look at the base code the 

program was built-in. This code is shown for the three applications in Appendix VI.  
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Chapter Five Case Study 

5.1 Case Study Description 

The case study which will be applied here to the software is the selection between three 

alternative sensors: the thermocouple, the thermister, and the RTD in the Automotives 

catalytic converter application. 

5.2 Automotive Catalytic Converter Description 

A catalytic converter is a device which chemically converts harmful exhaust gases, 

produced by the internal combustion engine as by-products of the fuel combustion process, 

into harmless carbon dioxide, water vapor, and nitrogen gas. Essentially, the catalytic 

converter is used to complete the oxidation process for hydrocarbons and carbon 

monoxide, in addition to reducing oxides of nitrogen (NOx) back to simple nitrogen and 

carbon dioxide.  

The converter is constructed such that the converter shell contains a substrate material. 

There are two types of converter substrates: Pelletized, which consists of many small-sized 

ceramic pellets and Monolithic, which is a ceramic "honeycomb" material. The surface of 

the substrate material is coated with a thin film of precious metals (rhodium, platinum / 

palladium, and cerium) which acts as a chemical catalyst. Its function is to assist in the 

chemical reactions that are required to lower the emission levels to be within acceptable 

environmental regulations. As engine exhaust gases flow through the converter, they 

contact the coated surface which initiates the catalytic process. As exhaust and catalyst 

temperatures rise, the following reactions occur: 
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 Oxides of nitrogen (NOx) are reduced into simple nitrogen (N2) and carbon dioxide 

(CO2). 

 Hydrocarbons (HC) and carbon monoxide (CO) are oxidized to produce water and 

carbon dioxide. 

Figure 5.1 depicts a commercial converter and the various parts and chemical reactions that 

occur within the converter. 

Catalyst operating efficiency is greatly affected by two factors; operating temperature and 

feed gas composition. The catalyst begins to operate at around 288 
0
C; however, efficient 

purification does not take place until the catalyst reaches at least 400 
0
C. Also, the 

converter feed gases (exhaust gases coming out of engine) must alternate rapidly between 

high CO content, to reduce NOx emissions, and high O2 content, to oxidize HC and CO 

emissions. To ensure that the catalytic converter has the feed gas composition it needs, a 

closed loop control system is designed to rapidly alternate the air/fuel ratio slightly rich 

(air-to-fuel mass ratio lower than 14.7: 1), then slightly lean (air-to-fuel mass ratio higher 

than 14.7: 1) of stoichiometry. By doing this, the carbon monoxide and oxygen content of 

the exhaust gas also alternates with the air/fuel ratio. Temperature sensors are used in the 

catalytic converter to measure the temperature of the inlet and outlet gas for two purposes: 

to indicate the maximum temperature the converter can tolerate before the substrate 

material melts, and for loop control purposes of the air/fuel ratio. 
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Figure  5.1: A commercial catalytic converter with the parts and chemical reactions 
that occur within the converter. 

5.3 Application Operating Conditions 

The Automotive catalytic converter application operates in the temperature range 500-750 

0
C (773-1023 K). The maximum temperature could reach in cases of malfunctioning and 

melting of the substrate material up to 870 
0
C (1143 K). The resolution of industrial 

sensors employed practically for the application is 1 % of the temperature range, i.e. (5-

7.5) 
0
C. The response time is 5-10 seconds. Normally employed sensors for the 

automotive application in industry are wide variety with wide range of customized 

features including: the thermocouple, the thermister, the RTD, the infrared pyrometer, the 

thermocouple pyrometer, the LCD pyrometer, the infrared laser sighting pyrometer …etc. 
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5.4 Applying the Software to the Case Study    

After the application operating conditions have been determined, the user can now enter 

them into the software and get the result of the best sensor. More specifically, on the first 

tab the user chooses the application “Automotives”, he or she chooses the nearest 

temperature range in the software to the application temperature range. The nearest 

temperature range on the first tab is 700-1150 K. The user then chooses the software 

nearest resolution to the application resolution, this is 1.0 
0
C as per provided by the 

software. Next, he or she specifies the response time, in this case it is chosen 5 seconds. 

Figure 5.2 depicts these choices.  After the user completes his choices on the first tab he 

moves to the second tab where he checks in the intended sensors: the thermocouple, the 

thermister, and the RTD. Figure 5.3 shows these checked sensors. The user then them 

presses the Select button.  

 

 

 

 

 

 

 

 

 

 

Figure  5.2: Choices on the first tab for the case study. 
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Figure  5.3: Checked in sensors on the second tab. 

5.5 Software Results 

Appendix VII shows the complete list of the software results for the three sensors: the 

thermocouple, the thermister, and the RTD automotive catalytic converter case study. 

Table 5-1summarizes the three alternatives weights (scores) with respect to the 23 sub-

criteria, the 4 criteria weights with respect to the goal, the synthesis weight (value) of the 

23 sub-criteria towards the final goal, and the score of each alternative against each 

criterion.     
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Table  5-1: Weights of alternatives, sub-criteria, criteria and synthesis values for sub-
criteria and the alternatives. 

 Criteria    Weights of   Sub-criteria   Weights of   Synthesis          Thermocouple    Thermister        RTD  
                 Criteria                              sub-criteria      value                                                  

 
    C1          0.53637          CS1           0.22119       0.11863               0.42858           0.14283        0.42858    
                                          CS2           0.22119       0.11863               0.5                   0.25              0.25 
                                          CS3           0.05379       0.02885               0.25099           0.09602        0.65299 
                                          CS4           0.09836       0.05275               0.06225           0.70131        0.23644 
                                          CS5           0.09777       0.05244               0.65715           0.06825        0.27460 
                                          CS6           0.15040       0.08067               0.086955         0.27371        0.63933 
                                          CS7           0.05233       0.02806               0.09602           0.65299        0.25099 
                                          CS8           0.03038       0.01629               0.07693           0.46154        0.46154 
                                          CS9           0.01983       0.01063               0.19999           0.60000        0.19999 
                                          CS10         0.01452       0.00778               0.62322           0.13729        0.23948 
                                          CS11         0.03355       0.01799               0.09642           0.28422        0.61936 

  
                           Score of each alternative against first criterion        0.17481           0.15043        0.20743 

 
  C2            0.12159          CS12         0.16019       0.01947               0.62322           0.13728        0.23948  
                                          CS13         0.10093       0.01227               0.46153           0.07693        0.46153 
                                          CS14         0.73887       0.08983               0.62322           0.23948        0.13728  

                                      
                         Score of each alternative against second criterion    0.07378           0.02513        0.02268  

 
                C3             0.22045          CS15         0.15164       0.03342               0.53896           0.29726        0.16378  
                                                         CS16         0.08645       0.01905               0.09339           0.68529        0.22132                                                                               

                                          CS17         0.28264       0.06230               0.65299           0.09602        0.25099 
                                          CS18         0.04767       0.01050               0.68064           0.20141        0.11794  
                                          CS19         0.43157       0.09513               0.08696           0.27371        0.63933 

 
                         Score of each alternative against third criterion         0.07557           0.05767        0.08720 

  
 C4             0.12159          CS20         0.15750       0.01915               0.53896           0.29726        0.16378  
                                          CS21         0.07747       0.00941               0.09602           0.25099        0.65299 
                                          CS22         0.22913       0.02786               0.44444           0.11111        0.44444   
                                          CS23         0.53589       0.06519               0.46153           0.46153        0.07693 

 
                         Score of each alternative against second criterion    0.05369           0.04123        0.02667 

 

 

Table 5-2 lists values of consistency index (CI) and consistency ratio (CR) for the matrices 

of the different components in the hierarchal structure. 
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Table  5-2: Criteria and sub-criteria factors used as basis for comparison between 
alternative sensors.  

Criteria                                      Sub-Criteria                                                           CI                    CR 
 

Static Criterion                          Maximum Operating Temperature                        0                       0 
  CI = 0.08281                           Minimum Operating Temperature                         0                       0                                                                      
  CR= 0.05208                          Temperature Curve                                           0.00918         0.01583 
                                                  Sensitivity                                                         0.03622         0.06225 
                                                  Self-Heating Issues                                          0.02218         0.03824 
                                                  Long Term Stability and Accuracy                    0.02705        0.04663 
                                                  Typical Temperature Coefficient                       0.00918        0.01583 
                                                  Extension Wires                                                    0                     0 
                                                  Long Wire runs from Sensor                                 0                     0 
                                                  Measurement Parameter                                 0.00915        0.01578 
                                                  Temperature Measurement                             0.04333        0.07471 

 
Dynamic Characteristics           Stimulation Electronics required                      0.00915         0.01578 

                     CI = 0.02722                            Existence of Maximum Sensitivity Region            0                     0 
  CR = 0.04694                          Typical Fast Thermal Time Constant              0.00915         0.01578 
 
Environmental Parameters       Typical Small Size                                           0.00459         0.00791 
  CI = 0.06346                           Noise Immunity                                                0.02710        0.04672 
 CR = 0.05666                          Fragility-Durability Characteristics                   0.00918        0.01583 
                                                  High Thermal Gradient Environment               0.01235        0.02129 
                                                  Corrosion Resistance                                      0.02705        0.04663 
 
Others                                       Point or Area Measurement                             0.00459        0.00791 
  CI = 0.03752                           Manufacturing Variances                                 0.00918        0.01583 
  CR = 0.04169                         Standards exist                                                      0                   0 
                                                  Cost                                                                       0                   0 
 
 
The four-criteria matrix                                                                 CI = 0.00687             CR = 0.00763 

 

Table 5-3 shows the final scores for the three temperature sensors, the one with the largest 

score is the best, the thermocouple, with a score of 0.37849 and rank 1, the second ranked 

sensor is the RTD with a score of 0.34589, and the least preferred sensor is the thermister 

with a score of 0.27560. Note that the scores are arranged from top to bottom in the same 

order the checked alternative sensors appear in.   

Table  5-3: The software final results: the three sensors scores.                                                                             

       Sensor                            Score                            Rank                 

  

       Thermocouple               0.37849                            1 

       Thermister                     0.27560                            3 

       RTD                              0.34589                             2 
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5.6 Sensitivity Analysis 

This section tackles the Sensitivity Analysis applied to the case study using the software. 

Sensitivity Analysis for any system of input and output dependent variables refers to 

intended variations or perturbations in the input variables of the system for the purpose of 

monitoring changes in the output dependent variables. In any system, Sensitivity Analysis 

gives deeper understanding of the relationships that govern the system and allows for 

developing and optimizing the system and avoiding critical conditions which make the 

system unpredictable. In this thesis four variations were made and the results studied: 

variations in the alternative relative weights with respect to the other alternatives in the 23 

matrices, variations in the relative weight of the criteria and sub-criteria, variation in the 

application, and variations in the number of alternatives that fit a certain application. All 

these variations will be applied using the software, and to simplify the situation they will 

be applied based on the case study described in the previous sections.  

5.6.1 Case 1: Alternative Weights Variation 

According to Table 5.3, the thermocouple alternative is the best alternative, having a score 

of 0.37849 while the second preferred sensor is the RTD having a score of 0.34589 and the 

worst choice is the thermister with a score of 0.27560. In this section the relative weight of 

the RTD will be increased by 1 relative weight unit on Saaty’s scale. This means adding 1  

to each entry in all the 23 matrices where the RTD appears, i.e. the addition would occur to 

the third row of each of the 23 alternative matrices. Then the new scores of the alternatives 

are monitored and discussed. This operation has been performed in the software, and the 

new scores of the alternative sensors were as in Table 5-4. 
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Table  5-4: Case 1 Sensitivity Analysis Results. 

   Sensor                    Old Score                    New score               New Rank 

   Thermocouple         0.37849                        0.35457                          2 

   Thermister              0.27560                        0.24957                          3 

   RTD                       0.34589                        0.39585                          1 

 

Figure 5.4 shows a 3D-column chart manifesting the old and new scores of the sensors. 

 

Figure  5.4: Case 1 Sensitivity Analysis results. 

5.6.2 Case 2: Sub-criterion Relative Weights Variation 

In this case of Sensitivity Analysis the variation will be made to the Long Term Stability 

and Accuracy sub-criterion inside the Static criterion and the scores monitored. The 

relative weights of this sub-criterion among the 11 Static sub-criteria will be increased by a 

factor of 1 on Saaty’s scale while the Static criterion overall score would remain 

unchanged to ensure that the change in the results is due to this sub-criterion effect and not 

from others. The procedure is merely to increase the whole values of the sixth row of the 

11X11 Static sub-criteria matrix by one and the corresponding necessary changes in the 

reciprocals. This was done in the software, although not shown here, and the new scores of 

the three alternatives were as in Table 5-5. 

old score

new score
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Table  5-5: Case 2 Sensitivity Analysis Results. 

   Sensor                    Old Score                    New score               New Rank 

   Thermocouple         0.37849                       0.37016                           1 

   Thermister              0.27560                       0.27616                           3 

   RTD                       0.34589                       0.35368                           2 

 

Figure 5.5 shows the 3D-column chart depicting these results. 

 

Figure  5.5: Case 2 Sensitivity Analysis results. 

5.6.3 Case 3: Dynamic Criterion Relative Weights Variation 

In this case of Sensitivity Analysis the relative weight of the Dynamic criterion is increased 

by a factor of 1 relative importance on Saaty’s scale while the remaining criteria weights 

were kept unchanged. The results for this case were as in Table 5-6. 

Table  5-6: Case 3 Sensitivity Analysis Results. 

   Sensor                    Old Score                    New score               New Rank 

   Thermocouple         0.37849                       0.39531                            1 

   Thermister              0.27560                       0.27022                            3 

   RTD                       0.34589                       0.33446                            2 

  

old score

new score
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Figure 5.6 shows the new scores. 

 

Figure  5.6: Case 3 Sensitivity Analysis results. 

5.6.4 Case 4: Changing the Application 

The three sensors: the thermocouple, the thermister, and the RTD case study is applied to 

the three different applications: Automotives, Chemical Process, and the HVAC 

applications, and the variations in the alternatives scores monitored. Table 5-7 shows the 

score of the three sensors against each application. 

Table  5-7: Scores of the three sensors in the three applications. 

Sensor                         Automotives         Chemical Process          HVAC                                 

Thermocouple              0.37849                0.38179                         0.35968                               

Thermister                   0.27560                026806                          0.28670                               

RTD                            0.34589                0.35013                         0.35362                               

5.6.5 Case 5: Increasing Number of Sensors  

In this case, the results are monitored upon introducing a new viable alternative sensor. In 

other words, scores for the three sensors case study are compared to those obtained when 

the pyrometer for example, is introduced among the alternative sensors and results 

old score

new score
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discussed. The scores for the four sensors: the thermocouple, the thermister, the RTD, and 

the pyrometer case are as in Table 5-8. 

Table  5-8: Case 5 Sensitivity Analysis Results. 

Sensor                Old Score     New score    % decrease (score)    New Rank 

Thermocouple     0.37849         0.26910                     29                       1 

Thermister          0.27560         0.20988                     24                       4 

RTD                   0.34589         0.26403                     24                       2 

Pyrometer                 -             0.25697                      -                         3 

 

Figure 5.7 shows the results for this case. 

 
 

Figure  5.7: Case 5 Sensitivity Analysis results. 

The next Chapter deals with the discussion part of the results presented in chapter 4, results 

presented in the case study, and results presented in the Sensitivity Analysis section. 

   

 

 

  

old score

new score
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Chapter Six Discussion of Results 

6.1 Chapter Four Discussion 

6.1.1 Alternatives Weights Discussion 

It can be seen from Table 4.2 that the best scoring sensors against the Maximum Operating 

Temperature sub-criterion in the automotive catalytic converter application are the 

thermocouple and the RTD while the worst scoring is the thermister. This is because the 

first two sensors have the closest maximum operating temperature to the catalytic 

converter operating temperature while the thermister has the farthest operating temperature 

from that of the catalytic converter. 

It can be seen from Table 4.3 that the best scoring sensor against the Temperature Curve 

sub-criterion in the automotive catalytic converter application is the RTD with a weight of 

0.65299 while the worst scoring is the thermister with a weight of 0.09602, and that the 

thermocouple comes in between with a weight of 0.25099. This is because the RTD has the 

most linear Temperature-resistance relationship while the thermister has the most non-

linear relationship and the thermocouple has good linearity relationship. The value of the 

consistency ratio is 0.01583 lying within acceptable limits indicating coherence and   

consistency in decision maker’s judgments of the alternatives relative weights. 

It can be seen from Table 4.4 that the best scoring sensor against the Sensitivity sub-

criterion in the automotive catalytic converter application is the thermister with a weight of 

0.70131 while the worst scoring is the thermocouple with a weight of 0.06225, and that the 

RTD comes in between with a weight of 0.23644. This is easily understood if we see 

sensitivity values for the three sensors and remember that the most sensitive of all three 
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sensors is the thermister and the least of the three is the thermocouple, and with RTD 

sensitivity value in between. 

It can be seen from Table 4.5 that the best scoring sensor against the Self Heating sub-

criterion in the automotive catalytic converter application is the thermocouple with a 

weight of 0.65715 while the worst scoring is the thermister with a weight of 0.06825, and 

that the RTD comes in between with a weight of 0.27459. This makes sense because the 

thermocouple experiences the least amount of self-heating while the thermister experiences 

much self-heating. The RTD, on the other hand, experiences moderate levels of self 

heating issues.  The consistency ratio for the Self Heating sub-criterion matrix is 0.03824 

which falls within acceptable limits and indicates consistent decision maker judgments.  

It can be seen from Table 4.6 that the best scoring sensor against the Small Size sub-

criterion in the automotive catalytic converter application is the thermocouple with a 

weight of 0.53896 while the worst scoring is the RTD with a weight of 0.16377, and that 

the thermister comes in between with a weight of 0.29725. This is understandable because 

the thermocouple is the smallest-sized sensor while the RTD is largest. The thermister’s 

size, on the other hand, lies in between.   

It can be seen from Table 4.7 that the best scoring sensor against the Time Constant sub-

criterion in the automotive catalytic converter application is the thermocouple with a 

weight of 0.62323 while the worst scoring is the RTD with a weight of 0.13729, and that 

the Thermister comes in between with a weight of 0.23948. This makes sense because the 

thermocouple is the fastest sensor among all three sensors while the RTD is the slowest 

sensor. The thermister, on the other hand, has moderate value of response time.   

It can be seen from Table 4.8 that the best scoring sensor against the Long Term Stability 

and Accuracy sub-criterion in the automotive catalytic converter application is the RTD 

with a weight of 0.63933 while the worst scoring is the thermocouple with a weight of 
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0.08695, and that the thermister comes in between with a weight of 0.27371. This can be 

figured out since the thermocouple is the least accurate of the three sensors while the RTD 

is the most accurate. The thermister, on the other hand, retains  moderate levels of 

accuracy.   

The results presented in Table 4.9 in terms of sensors weights are the same value as those 

presented in Table 4.8 and suggest the preference of the RTD amongst the three sensors 

with respect to corrosion resistance capability.  

The results presented in Table 4.10 concerning the sensors Cost sub-criterion are rational 

in the sense that both the thermocouple and the thermister are relatively low cost 

alternatives and thus their weights are 0.46153 while the RTD is a very expensive 

alternative owing to a weight of only 0.07693. 

6.1.2 Sub-criteria Weights Discussion 

According to Table 4.12, the top most five important sub-criteria that make up the Static 

criterion in a descending order of importance, except for the first two, are: the Maximum 

Operating Temperature, the Minimum Operating Temperature, the Long Term Stability 

and Accuracy, the Sensitivity, and the Self-Heating Issues sub-criteria having weights of: 

0.22120, 0.22120, 0.15040, 0.09837, and 0.09777 respectively with a total sum importance 

for the five sub-criteria with respect to the whole Static criterion of 0.78894. In fact, these 

are the basic important sub-criteria that make up Static behavior a sensor. As is explicit in 

the table, the consistency ratio is 0.05209 which is within acceptable limits and which 

indicates coherent decision maker’s judgments on the Static sub-criteria relative weights.   

According to Table 4.13, the most important sub-criterion that almost determines the 

sensor’s dynamic behavior and accounts for 74 % of the total Dynamic criterion weight is 

the Typical Fast Thermal Time Constant having a weight of 0.73888 with respect to the 

Dynamic criterion. 
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According to Table 4.14, the top most two important sub-criteria that make up the 

Environmental criterion are: the Corrosion Resistance and the Fragility-Durability 

Characteristics sub-criteria having weights of: 0.43158 and 0.28264 respectively. These 

two sub-criteria comprise together about 71 % of the total Environmental criterion weight. 

In fact, these are the basic important sub-criteria that stand for sensor’s resistance to 

environment. As can be noticed in the table, the consistency ratio is 0.05667 which is 

within acceptable limits indicating consistent decision maker’s judgments on the 

Environmental sub-criteria relative weights. 

According to Table 4.15, the top most two important sub-criteria that make up the Others 

criterion are: the Cost and the Existence of NIST Standards sub-criteria having weights of: 

0.53589 and 0.22913 respectively. These two sub-criteria comprise together about 77 % of 

the total Others criterion weight. As can be seen in the table, the consistency ratio is 

0.04169 which is within acceptable limits indicating consistent decision maker’s 

judgments on the Others sub-criteria relative weights. 

6.1.3 Criteria Weights Discussion 

As Table 4.16 shows, the most important criterion in the selection of any temperature 

sensor in the Automotives application is the Static criterion with an overall score towards 

the goal of 0.53637. Static criterion pertains to those static qualities that are inherent in the 

sensor architecture and that relate to the basic technical characteristics that make a sensor. 

In the light of this, the score makes sense. On the other hand, the score of the 

Environmental criterion is 0.22045, suggesting a second-importance place of the criterion 

after the Static criterion. This also makes sense and matches well with view of experts in 

the field of sensors who state that the choice of any temperature sensor is dictated by the 

technical qualities that the sensor has to meet on the first scale, and on the environmental 

considerations, or alternatively, the medium characteristics that the sensor will be placed in 
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on the second scale. The relative weight (importance) of the Static criterion with respect to 

the Environmental criterion can be obtained from the criteria judgment matrix or from 

simply dividing the two scores. This is a factor of almost 2.43 which can be considered fair 

value, it is not too high, ignoring the importance of the Environmental criterion nor is it too 

small ignoring the more important Static criterion. Finally, the Dynamic and Others criteria 

came last important informing that response time and other dynamic response behavior-

related characteristics are just third place in determining best temperature sensor with a 

weight of almost 0.12159 for each against the Static criterion. 

6.1.4 Alternatives Final Scores Discussion 

The thermocouple alternative is the best choice (rank 1) for the automotive catalytic 

converter application in the three sensors case study with an overall score of 0.37849 as 

Table 4.17 suggests. The second preferred alternative according to the same table is the 

RTD with an overall score of 0.34589 while the thermister comes last preference with an 

overall score of 0.27560. These results can be matched generally with views of experts in 

the field who state that almost the best sensor alternative for any application is just the 

thermocouple. Thermocouple is the simplest to install, the least expensive, the smallest 

size, the most durable and reliable, the fastest, the least interface electronic circuits-

demanding senor of all or even it does not electronic devices at all. It retains reasonable 

accuracy and even good in many low accuracy-demanding applications, as is the case in 

the automotive catalytic converter, in addition to it experiences no self heating. It is a point 

measurement sensor with well-established traceable NIST standards. All in all, it is the 

best. The second best choice, the RTD, retains many of the good qualities that the 

thermocouple has, but it suffers from serious drawbacks such as: fragility, high cost, 

relatively slow response time, very low to low self heating issues, large size, and because it 

is an area measurement sensor it suffers from effects of high thermal environment 
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temperature gradients. Needless to say, that the thermister comes last because of the many 

drawbacks it shares with the RTD besides the high level of self heating issues it 

experiences, its non-standardized technical data owing to a larger amount of uncertainty in 

its measurements, and the manufacturing variances that accompany their use.   

It should, however, be stated here that the thermocouple and the RTD final scores are close 

to each other (0.37849 is close to 0.34589) which poses a challenge in discriminating 

between the relative preferences of the thermocouple to the RTD and a challenge to the 

extent to which the thermocouple remains preferable to the RTD, i.e. if, for certain 

temperature measurement application, input values to the software in terms of components 

weights were revised then to what extent the thermocouple remains first preference and the 

RTD the second. This challenge can be resolved by means of Sensitivity analysis which 

reveals our system robustness and solidity, this work was done in the sensitivity section in 

the previous chapter. In general, other decision making problems that employ AHP and 

that contain alternatives scores well far apart from each other are more explicit and obvious 

in denoting the preference of the alternatives. For example, the preference of the first 

alternative in a certain decision problem having three alternative scores: 0.50, 0.30, and 

0.20 is clearer and more obvious having a value 0.5 well far apart from the second 

alternative score 0.3. Large amount of input variations will need to be passed before the 

preference order between say the first and the second alternatives changes.    

6.1.5 Chemical Process Weights Discussion 

According to Table 4.18, the weights of the criteria components for the Chemical Process 

application are: 0.36363, 0.18181, 0.36363, and 0.09090 for the Static, Dynamic, 

Environmental, and Others criteria, respectively. We can glimpse the exceptional 

importance of the Environmental and Dynamic criteria in the Chemical Process application 

by noticing the drastic increase in their weights relative to their weights in the Automotives 
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application. The weight of the Environmental criterion has increased from 0.22045 to 

0.36363 with a percentage increase of 65 % while the Dynamic criterion weight has 

increased from 0.12159 to 0.18181 with a percentage increase of 49 %. Also notice the 

dramatic increase in their relative weights with respect to the other two remaining criteria. 

For example, in the Automotives application, the relative weight of the Environmental 

criterion with respect to the Static criterion is 0.412 (the reciprocal of 2.43) indicating that 

the Static criterion is more important than the Environmental criterion. Now, the relative 

weight has changed to 1.0 indicating that the Environmental criterion became equal 

importance in the Chemical Process application with the Static criterion. Moreover, the 

relative weight of the Static criterion with respect to the Dynamic criterion was 4.41 

(0.53637/0.12159) in the Automotives application. This relative weight has now changed 

to 2.0 in the Chemical Process application.  

Under these new weights for the Chemical Process application, the three sensors: the 

thermocouple, the thermister, and the RTD would score differently against the overall goal.         

The new scores for the three sensors case study presented in Table 4.20 reveal an increase 

in the final thermocouple and RTD score and a decrease in the final score of the thermsiter. 

This is because the thermocouple fits slightly better with respect to the other two sensors in 

terms of response time, small size, and high thermal gradient environment resistance. 

However, since these characteristics are relatively minor in determining sensor’s overall 

performance, i.e. the rest of the 23 sub-criteria are far more important than them then the 

increase in the thermocouple final score came small ( the score changed only from 0.37849 

to 0.38179 ). The increase in the RTD final score came also because of increased 

suitability of the RTD in meeting the special requirements pertaining to the Chemical 

Process application. This increased suitability is mainly attributed to sub-criteria like: 

RTD’s excellent stability and accuracy and its corrosion resistance. The thermister 



109 

 

experienced a decrease in its final score because of its many drawbacks that force it to 

retreat against these new requirements of the Chemical Process application. To nominate 

some: thermister’s relatively slow response time, medium stability and accuracy, decreased 

thermal gradient resistance, and non-existence of traceable standards.   

6.1.6 HVAC Weights Discussion 

According to Table 4.21, the weights of the criteria components for the Chemical Process 

application are: 0.64295, 0.06228, 0.10835, and 0.18639 for the Static, Dynamic, 

Environmental, and Others criteria, respectively. We can notice the increase in the 

importance (weights) of the Static and the Others criteria in the HVAC application relative 

to their corresponding weights in the Automotives application. For example, the Static 

criterion weight has increased from 0.53637 to 0.64295 with an increase of about 20 %, 

and the increase in the Others (mainly cost) criterion is 53 %. This increase came at the 

expense of the Environmental criterion which has decreased from 0.22045 to 0.10835  with 

a percentage decrease of 51 % and at the expense of the Dynamic criterion weight has 

decreased from 0.12159 to 0.06228 with a percentage decrease of 49 %. The Static 

criterion remained the most important but farther more important than the rest criteria- 

except for the Others criteria. For example, it became more important than the Dynamic 

criterion with relative importance (weight) 0.64295/0.06228 which is a value around 10.3, 

a drastic change from its corresponding value in the Automotives 4.41 (0.53637/0.12159). 

It also became more important than the Environmental criterion by a factor of around 6.0. 

However, its importance against the Others criterion has decreased from 4.41 

(0.53637/0.12159) in the Automotives application to 3.45 (0.64295/0.18639) in the 

Chemical Process application.  

The new scores for the three sensors case study in the HVAC application presented in 

Table 4.23 reveal an increase in the final Thermister and RTD score and a decrease in the 
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final score of the thermocouple. This is because the thermocouple scores badly on issues 

concerning Stability and Accuracy besides its bad corrosion resistant behavior. The RTD 

score has increased, on the other hand, because of its excellent stability and accuracy 

characteristics besides its good corrosion resistance performance. The thermister score has 

also increased because of its relatively low cost, excellent noise immunity and good 

corrosion resistance characteristics. Although the overall thermocouple score has 

decreased, it remained the most preferred alternative with a final score 0.35968, however, 

the RTD final score became very close to that of the thermocouple with a value 0.35362.   

6.2 Sensitivity Analysis Discussion 

6.2.1 Case 1 Discussion 

It can be clearly seen from Table 5.4 that increasing the relative weights of the RTD 

alternative in the 23 sub-criteria matrices by a factor of 1 relative importance on Saaty’s 

scale resulted in dominance of the RTD alternative over the thermocouple alternative, i.e. 

the thermocouple was the most preferred sensor choice before the increase while the RTD 

became the most preferred after the increase was employed to the system. This reveals and 

confirms the challenging decision situation when the scores of alternatives obtained by 

AHP fall close to each other and slightly apart, in which case the decision maker cannot 

decide sharply of the preference of one alternative to the other, rather, the close-scored 

alternatives are almost the same preference.  

6.2.2 Case 2 Discussion       

It can clearly be seen from Table 5.5 that although increasing the relative weights of the 

Long Term Stability and Accuracy sub-criterion by a factor of 1 on Saaty’s scale has 

decreased the final score of the thermocouple alternative and has increased the final score 
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of the RTD alternative it did not change the preferences (ranks) of the three alternatives 

and that the thermocouple remained the most preferred (rank 1). 

6.2.3 Case 3 Discussion 

It can be clearly seen from Table 5.6 that increasing the Dynamic criterion relative weight 

by a factor of 1 relative importance on Saaty’s scale has increased the thermocouple final 

score and decreased the thermister and the RTD final scores, this is because the 

thermocouple scores the best on the response time sub-criterion. This change also made the 

preference of the thermocouple to the RTD more distinct and sharp. Now the thermocouple 

final score increased from 0.37849 to 0.39531 and the RTD score decreased from 0.34589 

to 0.33446. The distance between the two alternatives before the change was 0.04403 

(0.37849-0.33446) has enlarged to 0.06085 (0.39531-0.33446) indicating sharper decision 

of the thermocouple preference to the RTD.  

6.2.4 Case 4 Discussion 

Results of Table 5.7 confirm the view of experts that not only does an alternative 

temperature sensor selection depend on its inherent characteristics but also it depends on 

the specific application and the peculiar environment (medium) the sensor is to be put in. 

The table also evidently reveals the increased suitability of the RTD and the decreased 

suitability of the thermocouple to the HVAC application temperature sensing. This is due 

to the fact that the RTD is the best choice with regard to stability and accuracy 

characteristics, while many factors gather to worsen the thermocouple choice in this 

regard. The final score of the RTD in the HVAC application is 0.35362 became very close 

and strong rival a value to the value of the final score of the thermocouple 0.35968, 

suggesting both the thermocouple and the RTD are almost the most preferred sensors in the 

HVAC application.  
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6.2.5 Case 5 Discussion 

As table 5.8 shows the introduction of a new candidate sensor can totally change the scene. 

When the pyrometer is introduced into the set of alternative sensors available for the 

selection process, it came third place preferred with a strong score 0.25697 (this value is 

comparable to those of the thermocouple’s and the RTD’s, 0.26910 and 0.26403 

respectively), and the thermister choice retreated to a fourth place preference. All the 

sensors’ scores: the hermocouple’s, the thermister’s, and the RTD’s have decreased, but 

the decrease experienced by the thermocouple was the largest, about 29 %, this indicates 

that the introduction of the pyrometer was at the expense of the thermocouple to a larger 

degree than it was to the thermister and the RTD (decrease in their final score both was 

only 24 %). 

6.3 Conclusions 

This study presents one new addition to the multitude of the Analytic Hierarchy Process 

(AHP) applications and fields of use. The advantage of AHP method implementation in 

selecting the optimum temperature sensor in a certain application is that the multi-criteria 

decision making process is based on objective break down  of the whole decision problem 

into a hierarchy of multiple layers (levels) that can be further broken down into low-

leveled sub-layers each of which is being well defined and given an objective weight that 

can be integrated through the whole hierarchy to obtain an objective evaluation of the 

alternative candidate sensors under study rather than the decision problem is based upon 

one level of assessment and is subject to subjective evaluation of the selection by decision 

makers and expertise in the field. This study highlighted the evaluative criteria and sub-

criteria that relate to the selection of temperature sensors. Those criteria with high weights 

through the hierarchy can be regarded as being the most important and critical in 
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evaluation of best candidate temperature sensors and can be lumped together in a bundle 

and may be used as first assessment or screening stage for the selection process in other 

situations. One more advantage of AHP method in the selection of temperature sensors is 

that it has the capability to handle qualitative (verbal) as well as quantitative judgments of 

the alternatives and reflect these judgments into measurable quantitative final scores when 

ranking the alternatives. The outcome of the study in terms of alternatives final scores not 

only gives a rank to the candidate alternative sensors, but also gives a quantitative 

measure of the degree of dominance of one alternative over the others.  This dominance or 

preference, of say the best alternative sensor, the thermocouple in the case study presented 

in this thesis, and inferiority of the least preferred alternative sensor, the thermister in this 

case, was further tested by means of sensitivity analysis to investigate to what degree  the 

best alternative sensor remains dominant and the inferior sensor remains inferior. Inputs to 

the sensitivity analysis problem were variations in criteria and sub-criteria weights and 

variations in the expert’s evaluation of the relative weights for one alternative sensor 

against the 23 sub-criteria in addition to variations in the application the nominated 

sensors are to be used in and variations in the sensors final scores due to the introduction 

of a new candidate sensor. The results showed the robustness of the proposed work and 

software to the variations carried out in all cases Sensitivity Analysis except for the case 

of revising the expert’s evaluation of the relative weights of one alternative sensor with 

regard to other alternative sensors against the 23 sub-criteria. This challenge can be 

circumvented if we notice the closeness of the most preferred sensor, the thermocouple, 

final score to that of the second preferred alternative sensor, the RTD’s. This closeness in 

final scores reveals the unique challenge that is inherent in the decision problem itself, the 

best sensor, and not the proposed method nor the proposed computer program. The 

selection of the best temperature sensor decision problem is confusing and problematic in 
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itself owing to the very contradicting features that are present in the different alternatives. 

You may find the best durability, response time, small size, and cost in the thermocouple 

alternative but you will be, on the other hand, frowned when you confront the several 

defects of the same alternative, the thermocouple, exemplified in relatively low accuracy, 

low corrosion resistance, extension wires problems, …etc. The same applies to the RTD, 

you will find some merits you are looking for in the RTD but always you will find 

multiple drawbacks that worsen the RTD’s alternative. The merits of the two sensors, the 

thermocouple and the RTD seem to balance each other and the same applies to their 

disadvantages. Under these circumstances, it becomes evident why scores of these two 

sensors are close to each other and why the sensors decision making problem becomes 

challenging. Anyway, in industrial environment, one should better treat the selection cases 

one by one paying much attention to the application and environment under concern and 

the specific technical characteristics of the alternative sensors that may be widely 

customized and extremely variant and to match these specific characteristics with the 23 

sub-criteria matrices introduced in this thesis and to revise the entries of these 23 matrices 

for better matching to the real industrial-field selection case, or other new criteria that can 

be added to the assessment process and have significant contribution, especially if area of 

application differs, or old sensors that can be eliminated in favor to new generations of 

sensors. New versions of fabricated sensors in industry in each of the sensors categories 

that have superior features can also be compared. These new sensors with new features 

may affect the degree of dominance of the alternative sensors when pair-wise compared.   
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Future Work 

The study opens the door wide to apply AHP method in selecting other types of sensors in 

many other areas, these devices may include: chemical composition sensors, 

meteorological air pollution sensors, blood pressure and blood chemistry measurement 

sensors, and many other applications and fields of study. In this sense, future work may 

include AHP method implementation in one of these fields.     
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Appendix Ι: Thermocouples to British Standards 

 
Type    Conductors (positive conductor first)             BS 1041, Part 4: 1966                        Output for indicated           Service temperature.            

                                                                                  Tolerance on temperature                 temperature                        max intermittent 

                                                                                                                                           cold junction at 0C            service in bracket 

 
 

B          Platinum: 30% Rhodium                                 0 to 1100C± 3C                                1.241 mV at 500C              0 to 1500C (1700C) 

 

 

             Platinum: 6% Rhodium                                   1100 to 1550C±4C                                                                        Better life expectancy 

                                                                                                                                                                                         at high temperature  

                                                                                                                                                                                         than types R&S 

 

K         Nickel: Chromium/Constantan                        0 to 400C±3C                                   6.317 mV at 100C             -200 to 850C (1100C)  

    (Chromel/Constantan)                                                                                                                                                 resistant to oxidizing 

               (Chromel/Advance)                                                                                                                                                      atmospheres 

 

J          Iron/Constantan                                                0 to 300C±3C                                   5.268 mV at 100C             -200 to 850C (1100C) 

                                                                                         300 to 850C±1%                                                                            low cost, suitable for  

                                                                                                                                                                                                      general use  

 

K          Nickel: Chromium/ Nickel: Aluminium        0 to 400C±3C                                   4.095 mV at 100C             -200 to 1100C (1300C) 

               (Chromel/Alumel)                                            400 to 1100C±0.75%                                                                      good general purpose, 

                                                                                                                                                                                        best in oxidizing                                 

                                                                                                                                                                                        atmosphere 

                                                                                                                                                                                                         

 

R         Platinum: 13%Rhodium/Platinum                 0 to 1100C±1C                                  4.471 mV at 500C            0 to 1500C(1700C) 

                                                                             1100 to 1400C±2C                                                                        high temperature  

                                                                             1400C±3C                                                                                     corrosion resistant 

 

       S         Platinum: 10%Rhodium/Platinum                 0 to 1100C±1C                                  4.471 mV at 500C             0 to 1500C(1700C) 

                                                                            1100 to 1400C±2C                                                                          high temperature 

                                                                            1400C±3C                                                                                       corrosion resistant 

 

T        Copper/Constantan; (Copper/Advance)         0 to 100C±1C                                     4.277 mV at 100C             -250 to 400C(500C)     

                                                                            100 to 400C±1%                                                                               high resistance to 

                                                                                                                                                                                                   corrosion by water 

             Rhodium: Iridium/Rhodium                           composition and accuracy                   6.4 mV at 1200C                0 to 2000C(2100C) 

                                                                           to be agreed with manufacturer 

           Tungsten: Rhenium 5% Tungsten:                accuracy to be agreed with                  8.890 mV at 500C              0 to 2300C(2600C) 

           Rhenium 26%                                                  manufacturer 

           Tungsten/Molybdenum                                   composition and accuracy 

                                                                           to be agreed with manufacturer                           -                            1250 to 2600C 
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Appendix II: AMETEK CALIBRATION INSTRUMENT 

Industrial Temperature Measurement Pages 1, 7-12, 18-23 

(Omitted)   
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Appendix III: List of Matrices in the software for the seven 

sensors the Three Applications: the Automotives, the 

Chemical Process, and the HVAC 

1- Automotives Application 
 
 

 Maximum Opearting Temperature Matrix: 

  

 {1.0,3.0,1.0,9.0,4.0,6.0,4.0}, 

 {0.3333,1.0,0.3333,6.0,2.0,5.0,2.0},  

 {1.0,3.0,1.0,9.0,4.0,6.0,4.0}, 

 {0.1111,0.1667,0.1111,1.0,0.1667,0.3333,0.1667}, 

 {0.25,0.5,0.25,6.0,1.0,4.0,1.0}, 

 {0.1667,0.2,0.1667,3.0,0.25,1.0,0.25}, 

 {0.25,0.5,0.25,6.0,1.0,4.0,1.0} 

             

 Minimum Operating Tempearture Matrix:  

 

 {1.0,2.0,2.0,0.5,0.5,0.125,0.3333}, 

 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},  

 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25}, 

 {2.0,3.0,3.0,1.0,1.0,0.25,0.5}, 

 {2.0,3.0,3.0,1.0,1.0,0.25,0.5}, 

 {8.0,8.0,8.0,4.0,4.0,1.0,4.0}, 

 {3.0,4.0,4.0,2.0,2.0,0.25,1.0} 

             

 Temperature Curve Matrix: 

 

 {1.0,3.0,0.3333,5.0,5.0,4.0,2.0}, 

 {0.3333,1.0,0.1667,2.0,2.0,1.0,0.3333},  

 {3.0,6.0,1.0,6.0,6.0,6.0,4.0}, 

 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25}, 

 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25}, 

 {0.25,1.0,0.1667,3.0,3.0,1.0,0.5}, 

 {0.5,3.0,0.25,4.0,4.0,2.0,1.0} 

             

 Sensitivity Matrix:  

 

 {1.0,0.1111,0.2,2.0,2.0,2.0,0.3333}, 

 {9.0,1.0,4.0,9.0,9.0,6.0,4.0},  

 {5.0,0.25,1.0,4.0,5.0,4.0,2.0}, 

 {0.5,0.1111,0.25,1.0,2.0,2.0,0.25}, 

 {0.5,.1111,0.2,0.5,1.0,1.0,0.25}, 

 {0.5,0.1667,0.25,0.5,1.0,1.0,0.25}, 

 {3.0,0.25,0.5,4.0,4.0,4.0,1.0} 

 

 Self Heating Issues Matrix: 

  

 {1.0,8.0,3.0,3.0,1.0,1.0,2.0}, 

 {0.125,1.0,0.2,0.25,0.2,0.1667,0.25},  

 {0.3333,5.0,1.0,0.5,0.5,0.3333,1.0}, 

 {0.3333,4.0,2.0,1.0,1.0,0.5,1.0}, 
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 {1.0,5.0,2.0,1.0,1.0,1.0,2.0}, 

 {1.0,6.0,3.0,2.0,1.0,1.0,1.0}, 

 {0.5,4.0,1.0,1.0,0.5,1.0,1.0} 

             

 Long Term Stability and Accuracy Matrix:  

 

 {1.0,0.25,0.1667,2.0,0.3333,0.5,0.25}, 

 {4.0,1.0,0.3333,4.0,3.0,3.0,2.0},  

 {6.0,3.0,1.0,8.0,4.0,5.0,3.0}, 

 {0.5,0.25,0.125,1.0,0.3333,0.3333,0.25}, 

 {3.0,0.3333,0.25,3.0,1.0,2.0,0.5}, 

 

 {2.0,0.3333,0.2,3.0,0.5,1.0,0.3333}, 

 {4.0,0.5,0.3333,4.0,2.0,3.0,1.0} 

             

 Typical Temperature Coefficient Matrix: 

  

 {1.0,0.1667,0.3333,4.0,4.0,4.0,0.5}, 

 {6.0,1.0,3.0,6.0,6.0,6.0,6.0},  

 {3.0,0.3333,1.0,5.0,6.0,5.0,2.0}, 

 {0.25,0.1667,0.2,1.0,1.0,1.0,0.2}, 

 {0.25,0.1667,0.1667,1.0,1.0,1.0,0.2}, 

 {0.25,0.1667,0.2,1.0,1.0,1.0,0.3333}, 

 {2.0,0.1667,0.5,5.0,5.0,3.0,1.0} 

             

  Extension Wires Matrix:   

 

  {1.0,0.1667,0.16667,0.125,0.125,0.125,0.125}, 

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25},  

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25}, 

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0} 

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0}, 

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0}, 

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0} 

             

  LongWireMatrix:                       

   

  {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667}, 

 {3.0,1.0,3.0,0.5,0.5,0.5,0.5},  

 {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667}, 

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0} 

             

 Measurement Parameter Matrix:                          

 

 {1.0,4.0,3.0,5.0,5.0,6.0,1.0}, 

 {0.25,1.0,0.5,4.0,4.0,5.0,0.3333},  

 {0.3333,2.0,1.0,3.0,3.0,4.0,0.3333}, 

 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2}, 

 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2}, 

 {0.1667,0.2,0.25,0.3333,0.3333,1.0,0.1667}, 

 {1.0,3.0,3.0,5.0,5.0,6.0,1.0} 

             

 Temperature Measurement Matrix:  

  

 {1.0,0.25,0.2,0.3333,0.3333,0.5,0.1667}, 

 {4.0,1.0,0.3333,1.0,3.0,3.0,0.1667},  

 {5.0,3.0,1.0,4.0,5.0,5.0,0.5}, 
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 {3.0,1.0,0.25,1.0,2.0,2.0,0.25}, 

 {3.0,0.3333,0.2,0.5,1.0,1.0,0.1667}, 

 {2.0,0.3333,0.2,0.5,1.0,1.0,0.2}, 

 {6.0,6.0,2.0,4.0,6.0,5.0,1.0} 

 

 Stimulation Electronics Matrix:  

  

 {1.0,4.0,3.0,1.0,1.0,2.0,6.0},                   

 {0.25,1.0,0.5,0.2,0.2,0.25,3.0},  

 {0.3333,2.0,1.0,0.25,0.25,0.5,3.0}, 

 {1.0,5.0,4.0,1.0,1.0,2.0,6.0}, 

 {1.0,5.0,4.0,1.0,1.0,3.0,6.0}, 

 {0.5,4.0,2.0,0.5,0.3333,1.0,4.0}, 

 {0.1667,0.3333,0.3333,0.1667,0.1667,0.25,1.0} 

             

 Existence of Maximum Sensitivity Region Matrix:  

  

 {1.0,6.0,1.0,4.0,1.0,2.0,1.0}, 

 {0.1667,1.0,0.1667,0.25,0.1667,0.2,0.125},  

 {1.0,6.0,1.0,4.0,1.0,2.0,1.0}, 

 {0.25,4.0,0.25,1.0,0.25,0.3333,0.1667}, 

 {1.0,6.0,1.0,4.0,1.0,3.0,1.0}, 

 {0.5,5.0,0.5,3.0,0.3333,1.0,0.3333}, 

 {1.0,8.0,1.0,6.0,1.0,3.0,1.0} 

             

 Typical Fast Thermal Time Constant Matrix:  

  

 {1.0,3.0,4.0,6.0,5.0,1.0,3.0}, 

 {0.3333,1.0,2.0,4.0,3.0,0.3333,1.0},  

 {0.25,0.5,1.0,2.0,2.0,0.25,1.0}, 

 {0.1667,0.25,0.5,1.0,0.5,0.1667,0.3333}, 

 {0.2,0.3333,0.5,2.0,1.0,0.2,0.3333}, 

 {1.0,3.0,4.0,6.0,5.0,1.0,3.0}, 

 {0.3333,1.0,1.0,3.0,3.0,0.3333,1.0} 

             

 Typiacl Small Size Matrix: 

  

 {1.0,2.0,3.0,4.0,5.0,6.0,5.0}, 

 {0.5,1.0,2.0,3.0,4.0,5.0,4.0},  

 {0.3333,0.5,1.0,2.0,4.0,6.0,4.0}, 

 {0.25,0.3333,0.5,1.0,2.0,3.0,2.0}, 

 {0.2,0.25,0.25,0.5,1.0,3.0,1.0}, 

 {0.1667,0.2,0.1667,0.3333,0.3333,1.0,0.5}, 

 {0.2,0.25,0.25,0.5,1.0,2.0,1.0} 

             

 Noise Immunity Matrix:  

  

 {1.0,0.1667,0.3333,0.25,0.25,0.5,0.25}, 

 {6.0,1.0,4.0,3.0,3.0,5.0,3.0},  

 {3.0,0.25,1.0,0.5,0.5,2.0,0.5}, 

 {4.0,0.3333,2.0,1.0,1.0,3.0,1.0}, 

 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0}, 

 {2.0,0.2,0.5,0.3333,0.25,1.0,0.25}, 

 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0} 

             

             

 Fragility-Durability Characteristics Matrix:                         

 

 {1.0,6.0,3.0,6.0,8.0,3.0,4.0}, 

 {0.1667,1.0,0.3333,2.0,3.0,0.3333,0.5},  
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 {0.3333,3.0,1.0,3.0,4.0,2.0,3.0}, 

 {0.1667,0.5,0.3333,1.0,3.0,0.25,0.3333}, 

 {0.125,0.3333,0.25,0.3333,1.0,0.25,0.3333}, 

 {0.3333,3.0,0.5,4.0,4.0,1.0,3.0}, 

 {0.25,2.0,0.3333,3.0,3.0,0.3333,1.0} 

                     

             

 High Thermal Gradient Environment Matrix:  

  

 {1.0,4.0,5.0,7.0,8.0,4.0,6.0}, 

 {0.25,1.0,2.0,5.0,6.0,2.0,4.0},  

 {0.2,0.5,1.0,3.0,3.0,0.5,2.0}, 

 {0.1429,0.2,0.3333,1.0,1.0,0.25,0.5}, 

 {0.125,0.1667,0.3333,1.0,1.0,0.2,0.3333}, 

 {0.25,0.5,2.0,4.0,5.0,1.0,4.0}, 

 {0.1667,0.25,0.5,2.0,3.0,0.25,1.0} 

             

 Corrosion Resistance Matrix:  

  

 {1.0,0.25,0.1667,0.5,0.1667,0.1667,0.25}, 

 {4.0,1.0,0.3333,2.0,0.25,0.25,1.0},  

 {6.0,3.0,1.0,4.0,1.0,1.0,4.0}, 

 {2.0,0.5,0.25,1.0,0.25,0.25,0.5}, 

 {6.0,4.0,1.0,4.0,1.0,1.0,3.0}, 

 {6.0,4.0,1.0,4.0,1.0,1.0,3.0}, 

 {4.0,1.0,0.25,2.0,0.3333,0.3333,1.0} 

             

 Point or Area Measurement Matrix:  

  

 {1.0,2.0,3.0,4.0,6.0,6.0,4.0}, 

 {0.5,1.0,2.0,3.0,4.0,4.0,3.0},  

 {0.3333,0.5,1.0,2.0,3.0,4.0,2.0}, 

 {0.25,0.3333,0.5,1.0,2.0,2.0,0.5}, 

 {0.1667,0.25,0.3333,0.5,1.0,1.0,0.5}, 

 {0.1667,0.25,0.25,0.5,1.0,1.0,2.0}, 

 {0.25,0.5,0.3333,2.0,2.0,0.5,1.0} 

             

 Manufacturing Variances Matrix:  

  

 {1.0, 0.3333, 0.1667,0.25,0.5,0.2,0.25}, 

 {3.0, 1.0, 0.3333,0.5,2.0,0.25,0.5},  

 {6.0, 3.0, 1.0,4.0,3.0,6.0,3.0}, 

 {4.0,2.0,0.25,1.0,4.0,0.3333,0.5}, 

 {2.0,0.5,0.3333,0.25,1.0,0.2,0.25}, 

 {5.0,4.0,0.1667,3.0,5.0,1.0,2.0}, 

 {4.0,2.0,0.3333,2.0,4.0,0.5,1.0} 

             

 NIST Standards Matrix:  

  

 {1.0   , 4.0, 1.0,1.0,1.0,4.0,5.0}, 

 {0.25, 1.0, 0.25,0.25,0.25,1.0,2.0},  

 {1.0, 4.0, 1.0,1.0,1.0,4.0,5.0}, 

 {1.0,4.0,1.0,1.0,1.0,4.0,5.0}, 

 {1.0,4.0,1.0,1.0,1.0,4.0,5.0}, 

 {0.25,1.0,0.25,0.25,0.25,1.0,2.0}, 

 {0.2,0.5,0.2,0.2,0.2,0.5,1.0} 

             

 Cost Matrix:  

  

 {1.0,1.0,6.0,3.0,3.0,6.0,3.0}, 
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 {1.0,1.0,6.0,3.0,3.0,6.0,3.0},  

 {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25}, 

 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}, 

 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}, 

 {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25}, 

 {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0} 

             

 Criteria Matrix:  

  

 {1.0,4.0,3.0,4.0}, 

 {0.25,1.0,0.5,1.0},  

 {0.3333,2.0,1.0,2.0}, 

 {0.25,1.0,0.5,1.0} 

             

             

 Sub-criteria Static Matrix:  

  

 {1.0,1.0,5.0,4.0,4.0,2.0,5.0,6.0,7.0,8.0,6.0}, 

 {1.0,1.0,5.0,4.0,4.0,2.0,5.0,6.0,7.0,8.0,6.0},  

 {0.2,0.2,1.0,0.3333,0.3333,0.25,1.0,2.0,4.0,5.0,3.0}, 

 {0.25,0.25,3.0,1.0,2.0,0.5,3.0,3.0,5.0,6.0,4.0}, 

 {0.25,0.25,3.0,0.5,1.0,0.3333,3.0,5.0,6.0,8.0,4.0}, 

 {0.5,0.5,4.0,2.0,3.0,1.0,4.0,5.0,6.0,8.0,5.0}, 

 {0.2,0.2,1.0,0.3333,0.3333,0.25,1.0,1.0,4.0,6.0,3.0}, 

{0.1667,0.1667,0.5,0.3333,0.2,0.2,1.0,1.0,3.0,4.0,1.0}, 

{0.1429,0.1429,0.25,0.2,0.1667,0.1667,0.25,0.3333,1.0,2.0,0.3333}, 

{0.125,0.125,0.2,0.1667,0.125,0.125,0.1667,0.25,0.5,1.0,0.25},                   

{0.1667,0.1667,0.3333,0.25,0.25,0.2,0.3333,1.0,3.0,4.0,1.0} 

             

 Sub-criteria Dynamic Matrix:  

  

 {1.0,2.0,0.1667}, 

 {0.5,1.0,0.1667},  

 {6.0,6.0,1.0} 

             

 Sub-criteria Environmental Matrix:  

  

 {1.0,3.0,0.3333,4.0,0.25}, 

 {0.3333,1.0,0.25,3.0,0.2},  

 {3.0,4.0,1.0,5.0,0.5}, 

 {0.25,0.3333,0.2,1.0,0.1667}, 

 {4.0,5.0,2.0,6.0,1.0}   

             

 Others Matrix:  

  

 {1.0,3.0,0.5,0.25}, 

 {0.3333,1.0,0.3333,0.2},  

 {2.0,3.0,1.0,0.3333}, 

 {4.0,5.0,3.0,1.0}  
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2- Chemical Process Application 
 

 

 Maximum Opearting Temperature Matrix: 

  

 {1.0,3.0,1.0,9.0,4.0,6.0,4.0}, 

 {0.3333,1.0,0.3333,6.0,2.0,5.0,2.0},  

 {1.0,3.0,1.0,9.0,4.0,6.0,4.0}, 

 {0.1111,0.1667,0.1111,1.0,0.1667,0.3333,0.1667}, 

 {0.25,0.5,0.25,6.0,1.0,4.0,1.0}, 

 {0.1667,0.2,0.1667,3.0,0.25,1.0,0.25}, 

 {0.25,0.5,0.25,6.0,1.0,4.0,1.0}             

  

 Minimum Operating Tempearture Matrix:  

                     

 {1.0,2.0,2.0,0.5,0.5,0.125,0.3333}, 

 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},  

 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25}, 

 {2.0,3.0,3.0,1.0,1.0,0.25,0.5}, 

 {2.0,3.0,3.0,1.0,1.0,0.25,0.5}, 

 {8.0,8.0,8.0,4.0,4.0,1.0,4.0}, 

 {3.0,4.0,4.0,2.0,2.0,0.25,1.0}             

  

 Temperature Curve Matrix: 

 

 {1.0,3.0,0.3333,5.0,5.0,4.0,2.0}, 

 {0.3333,1.0,0.1667,2.0,2.0,1.0,0.3333},  

 {3.0,6.0,1.0,6.0,6.0,6.0,4.0}, 

 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25}, 

 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25}, 

 {0.25,1.0,0.1667,3.0,3.0,1.0,0.5}, 

 {0.5,3.0,0.25,4.0,4.0,2.0,1.0}             

  

 Sensitivity Matrix:  

 

 {1.0,0.1111,0.2,2.0,2.0,2.0,0.3333}, 

 {9.0,1.0,4.0,9.0,9.0,6.0,4.0},  

 {5.0,0.25,1.0,4.0,5.0,4.0,2.0}, 

 {0.5,0.1111,0.25,1.0,2.0,2.0,0.25}, 

 {0.5,.1111,0.2,0.5,1.0,1.0,0.25}, 

 {0.5,0.1667,0.25,0.5,1.0,1.0,0.25}, 

 {3.0,0.25,0.5,4.0,4.0,4.0,1.0} 

  

 Self Heating Issues Matrix: 

  

 {1.0,8.0,3.0,3.0,1.0,1.0,2.0}, 

 {0.125,1.0,0.2,0.25,0.2,0.1667,0.25},  

 {0.3333,5.0,1.0,0.5,0.5,0.3333,1.0}, 

 {0.3333,4.0,2.0,1.0,1.0,0.5,1.0}, 

 {1.0,5.0,2.0,1.0,1.0,1.0,2.0}, 

 {1.0,6.0,3.0,2.0,1.0,1.0,1.0}, 

 {0.5,4.0,1.0,1.0,0.5,1.0,1.0}             

  

 Long Term Stability and Accuracy Matrix:  

 

 {1.0,0.25,0.1667,2.0,0.3333,0.5,0.25}, 

 {4.0,1.0,0.3333,4.0,3.0,3.0,2.0},  

 {6.0,3.0,1.0,8.0,4.0,5.0,3.0}, 

 {0.5,0.25,0.125,1.0,0.3333,0.3333,0.25}, 

 {3.0,0.3333,0.25,3.0,1.0,2.0,0.5}, 
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 {2.0,0.3333,0.2,3.0,0.5,1.0,0.3333}, 

 {4.0,0.5,0.3333,4.0,2.0,3.0,1.0}             

 

 Typical Temperature Coefficient Matrix: 

  

 {1.0,0.1667,0.3333,4.0,4.0,4.0,0.5}, 

 {6.0,1.0,3.0,6.0,6.0,6.0,6.0},  

 {3.0,0.3333,1.0,5.0,6.0,5.0,2.0}, 

 {0.25,0.1667,0.2,1.0,1.0,1.0,0.2}, 

 {0.25,0.1667,0.1667,1.0,1.0,1.0,0.2}, 

 {0.25,0.1667,0.2,1.0,1.0,1.0,0.3333}, 

 {2.0,0.1667,0.5,5.0,5.0,3.0,1.0}             

   

  Extension Wires Matrix:   

 

 {1.0,0.1667,0.16667,0.125,0.125,0.125,0.125}, 

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25},  

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25}, 

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0}, 

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0}, 

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0}, 

  {8.0,4.0,4.0,1.0,1.0,1.0,1.0}             

   

  LongWireMatrix:                       

   

 {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667}, 

 {3.0,1.0,3.0,0.5,0.5,0.5,0.5},  

 {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667}, 

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0}             

  

 Measurement Parameter Matrix:                          

 

 {1.0,4.0,3.0,5.0,5.0,6.0,1.0}, 

 {0.25,1.0,0.5,4.0,4.0,5.0,0.3333},  

 {0.3333,2.0,1.0,3.0,3.0,4.0,0.3333}, 

 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2}, 

 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2}, 

 {0.1667,0.2,0.25,0.3333,0.3333,1.0,0.1667}, 

 {1.0,3.0,3.0,5.0,5.0,6.0,1.0}             

  

 Temperature Measurement Matrix:  

  

 {1.0,0.25,0.2,0.3333,0.3333,0.5,0.1667}, 

 {4.0,1.0,0.3333,1.0,3.0,3.0,0.1667},  

 {5.0,3.0,1.0,4.0,5.0,5.0,0.5}, 

 {3.0,1.0,0.25,1.0,2.0,2.0,0.25}, 

 {3.0,0.3333,0.2,0.5,1.0,1.0,0.1667}, 

 {2.0,0.3333,0.2,0.5,1.0,1.0,0.2}, 

 {6.0,6.0,2.0,4.0,6.0,5.0,1.0} 

  

 Stimulation Electronics Matrix:  

  

 {1.0,4.0,3.0,1.0,1.0,2.0,6.0},                   

 {0.25,1.0,0.5,0.2,0.2,0.25,3.0},  

 {0.3333,2.0,1.0,0.25,0.25,0.5,3.0}, 

 {1.0,5.0,4.0,1.0,1.0,2.0,6.0}, 

 {1.0,5.0,4.0,1.0,1.0,3.0,6.0}, 
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 {0.5,4.0,2.0,0.5,0.3333,1.0,4.0}, 

 {0.1667,0.3333,0.3333,0.1667,0.1667,0.25,1.0}             

  

Existence of Maximum Sensitivity Region Matrix:  

  

 {1.0,6.0,1.0,4.0,1.0,2.0,1.0}, 

 {0.1667,1.0,0.1667,0.25,0.1667,0.2,0.125},  

 {1.0,6.0,1.0,4.0,1.0,2.0,1.0}, 

 {0.25,4.0,0.25,1.0,0.25,0.3333,0.1667}, 

 {1.0,6.0,1.0,4.0,1.0,3.0,1.0}, 

 {0.5,5.0,0.5,3.0,0.3333,1.0,0.3333}, 

 {1.0,8.0,1.0,6.0,1.0,3.0,1.0}             

  

 Typical Fast Thermal Time Constant Matrix:  

  

 {1.0,3.0,4.0,6.0,5.0,1.0,3.0}, 

 {0.3333,1.0,2.0,4.0,3.0,0.3333,1.0},  

 {0.25,0.5,1.0,2.0,2.0,0.25,1.0}, 

 {0.1667,0.25,0.5,1.0,0.5,0.1667,0.3333}, 

 {0.2,0.3333,0.5,2.0,1.0,0.2,0.3333}, 

 {1.0,3.0,4.0,6.0,5.0,1.0,3.0}, 

 {0.3333,1.0,1.0,3.0,3.0,0.3333,1.0}             

  

 Typiacl Small Size Matrix: 

  

 {1.0,2.0,3.0,4.0,5.0,6.0,5.0}, 

 {0.5,1.0,2.0,3.0,4.0,5.0,4.0},  

 {0.3333,0.5,1.0,2.0,4.0,6.0,4.0}, 

 {0.25,0.3333,0.5,1.0,2.0,3.0,2.0}, 

 {0.2,0.25,0.25,0.5,1.0,3.0,1.0}, 

 {0.1667,0.2,0.1667,0.3333,0.3333,1.0,0.5}, 

 {0.2,0.25,0.25,0.5,1.0,2.0,1.0}             

  

 Noise Immunity Matrix:  

  

 {1.0,0.1667,0.3333,0.25,0.25,0.5,0.25}, 

 {6.0,1.0,4.0,3.0,3.0,5.0,3.0},  

 {3.0,0.25,1.0,0.5,0.5,2.0,0.5}, 

 {4.0,0.3333,2.0,1.0,1.0,3.0,1.0}, 

 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0}, 

 {2.0,0.2,0.5,0.3333,0.25,1.0,0.25}, 

 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0}             

             

 Fragility-Durability Characteristics Matrix:                         

 

 {1.0,6.0,3.0,6.0,8.0,3.0,4.0}, 

 {0.1667,1.0,0.3333,2.0,3.0,0.3333,0.5},  

 {0.3333,3.0,1.0,3.0,4.0,2.0,3.0}, 

 {0.1667,0.5,0.3333,1.0,3.0,0.25,0.3333}, 

 {0.125,0.3333,0.25,0.3333,1.0,0.25,0.3333}, 

 {0.3333,3.0,0.5,4.0,4.0,1.0,3.0}, 

 {0.25,2.0,0.3333,3.0,3.0,0.3333,1.0},                     

             

 High Thermal Gradient Environment Matrix:  

  

 {1.0,4.0,5.0,7.0,8.0,4.0,6.0}, 

 {0.25,1.0,2.0,5.0,6.0,2.0,4.0},  

 {0.2,0.5,1.0,3.0,3.0,0.5,2.0}, 

 {0.1429,0.2,0.3333,1.0,1.0,0.25,0.5}, 

 {0.125,0.1667,0.3333,1.0,1.0,0.2,0.3333}, 
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 {0.25,0.5,2.0,4.0,5.0,1.0,4.0}, 

 {0.1667,0.25,0.5,2.0,3.0,0.25,1.0}             

  

 Corrosion Resistance Matrix:  

  

  {1.0,0.25,0.1667,0.5,0.1667,0.1667,0.25}, 

  {4.0,1.0,0.3333,2.0,0.25,0.25,1.0},  

  {6.0,3.0,1.0,4.0,1.0,1.0,4.0}, 

  {2.0,0.5,0.25,1.0,0.25,0.25,0.5}, 

  {6.0,4.0,1.0,4.0,1.0,1.0,3.0}, 

  {6.0,4.0,1.0,4.0,1.0,1.0,3.0}, 

  {4.0,1.0,0.25,2.0,0.3333,0.3333,1.0}             

   

  Point or Area Measurement Matrix:  

  

  {1.0,2.0,3.0,4.0,6.0,6.0,4.0}, 

  {0.5,1.0,2.0,3.0,4.0,4.0,3.0},  

  {0.3333,0.5,1.0,2.0,3.0,4.0,2.0}, 

  {0.25,0.3333,0.5,1.0,2.0,2.0,0.5}, 

  {0.1667,0.25,0.3333,0.5,1.0,1.0,0.5}, 

  {0.1667,0.25,0.25,0.5,1.0,1.0,2.0}, 

  {0.25,0.5,0.3333,2.0,2.0,0.5,1.0}             

  

  Manufacturing Variances Matrix:  

  

  {1.0, 0.3333, 0.1667,0.25,0.5,0.2,0.25}, 

  {3.0, 1.0, 0.3333,0.5,2.0,0.25,0.5},  

  {6.0, 3.0, 1.0,4.0,3.0,6.0,3.0}, 

  {4.0,2.0,0.25,1.0,4.0,0.3333,0.5}, 

  {2.0,0.5,0.3333,0.25,1.0,0.2,0.25}, 

  {5.0,4.0,0.1667,3.0,5.0,1.0,2.0}, 

  {4.0,2.0,0.3333,2.0,4.0,0.5,1.0}             

  

  NIST Standards Matrix:  

  

  {1.0   , 4.0, 1.0,1.0,1.0,4.0,5.0}, 

  {0.25, 1.0, 0.25,0.25,0.25,1.0,2.0},  

  {1.0, 4.0, 1.0,1.0,1.0,4.0,5.0}, 

  {1.0,4.0,1.0,1.0,1.0,4.0,5.0}, 

  {1.0,4.0,1.0,1.0,1.0,4.0,5.0}, 

  {0.25,1.0,0.25,0.25,0.25,1.0,2.0}, 

  {0.2,0.5,0.2,0.2,0.2,0.5,1.0}             

   

  Cost Matrix:  

  

  {1.0,1.0,6.0,3.0,3.0,6.0,3.0}, 

  {1.0,1.0,6.0,3.0,3.0,6.0,3.0},  

  {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25}, 

  {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}, 

  {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}, 

  {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25}, 

  {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}             

  

  Criteria Matrix:  

                                                     

  {1.0,2.0,1.0,4.0}, 

  {0.5,1.0,0.5,2.0},  

  {1.0,2.0,1.0,4.0}, 

  {0.25,0.5,0.25,1.0}             
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  Sub-criteria Static Matrix:  

  

  {1.0,1.0,5.0,4.0,4.0,1.0,5.0,6.0,7.0,8.0,6.0}, 

  {1.0,1.0,5.0,4.0,4.0,1.0,5.0,6.0,7.0,8.0,6.0},  

  {0.2,0.2,1.0,0.3333,0.3333,0.2,1.0,2.0,4.0,5.0,3.0}, 

  {0.25,0.25,3.0,1.0,2.0,0.3333,3.0,3.0,5.0,6.0,4.0}, 

  {0.25,0.25,3.0,0.5,1.0,0.25,3.0,5.0,6.0,8.0,4.0}, 

  {1.0,1.0,5.0,3.0,4.0,1.0,5.0,6.0,7.0,9.0,6.0}, 

  {0.2,0.2,1.0,0.3333,0.3333,0.2,1.0,1.0,4.0,6.0,3.0},                    

{0.1667,0.1667,0.5,0.3333,0.2,0.1667,1.0,1.0,3.0,4.0,1.0},                    

{0.1429,0.1429,0.25,0.2,0.1667,0.1429,0.25,0.3333,1.0,2.0,0.3333},                 

{0.125,0.125,0.2,0.1667,0.125,0.1111,0.1667,0.25,0.5,1.0,0.25},                    

{0.1667,0.1667,0.3333,0.25,0.25,0.1667,0.3333,1.0,3.0,4.0,1.0}             

  

  Sub-criteria Dynamic Matrix:  

  

  {1.0,2.0,0.1429}, 

  {0.5,1.0,0.1429},  

  {7.0,7.0,1.0}             

  

  Sub-criteria Environmental Matrix:  

  

  {1.0,4.0,0.5,4.0,0.25}, 

  {0.25,1.0,0.25,2.0,0.1667},  

  {2.0,4.0,1.0,4.0,0.3333}, 

  {0.25,0.5,0.25,1.0,0.1667}, 

  {4.0,6.0,3.0,6.0,1.0}             

   

  Others Matrix:  

  

  {1.0,3.0,0.5,0.25}, 

  {0.3333,1.0,0.3333,0.2},  

  {2.0,3.0,1.0,0.3333}, 

  {4.0,5.0,3.0,1.0}             
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3- HVAC Application 
 

 

 Maximum Opearting Temperature Matrix: 

  

 {1.0,3.0,1.0,9.0,4.0,6.0,4.0}, 

 {0.3333,1.0,0.3333,6.0,2.0,5.0,2.0},  

 {1.0,3.0,1.0,9.0,4.0,6.0,4.0}, 

 {0.1111,0.1667,0.1111,1.0,0.1667,0.3333,0.1667}, 

 {0.25,0.5,0.25,6.0,1.0,4.0,1.0}, 

 {0.1667,0.2,0.1667,3.0,0.25,1.0,0.25}, 

 {0.25,0.5,0.25,6.0,1.0,4.0,1.0}             

  

 Minimum Operating Tempearture Matrix:  

                     

 {1.0,2.0,2.0,0.5,0.5,0.125,0.3333}, 

 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},  

 {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25}, 

 {2.0,3.0,3.0,1.0,1.0,0.25,0.5}, 

 {2.0,3.0,3.0,1.0,1.0,0.25,0.5}, 

 {8.0,8.0,8.0,4.0,4.0,1.0,4.0}, 

 {3.0,4.0,4.0,2.0,2.0,0.25,1.0}             

  

 Temperature Curve Matrix: 

 

 {1.0,3.0,0.3333,5.0,5.0,4.0,2.0}, 

 {0.3333,1.0,0.1667,2.0,2.0,1.0,0.3333},  

 {3.0,6.0,1.0,6.0,6.0,6.0,4.0}, 

 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25}, 

 {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25}, 

 {0.25,1.0,0.1667,3.0,3.0,1.0,0.5}, 

 {0.5,3.0,0.25,4.0,4.0,2.0,1.0}             

  

 Sensitivity Matrix:  

 

 {1.0,0.1111,0.2,2.0,2.0,2.0,0.3333}, 

 {9.0,1.0,4.0,9.0,9.0,6.0,4.0},  

 {5.0,0.25,1.0,4.0,5.0,4.0,2.0}, 

 {0.5,0.1111,0.25,1.0,2.0,2.0,0.25}, 

 {0.5,.1111,0.2,0.5,1.0,1.0,0.25}, 

 {0.5,0.1667,0.25,0.5,1.0,1.0,0.25}, 

 {3.0,0.25,0.5,4.0,4.0,4.0,1.0} 

  

 Self Heating Issues Matrix: 

  

 {1.0,8.0,3.0,3.0,1.0,1.0,2.0}, 

 {0.125,1.0,0.2,0.25,0.2,0.1667,0.25},  

 {0.3333,5.0,1.0,0.5,0.5,0.3333,1.0}, 

 {0.3333,4.0,2.0,1.0,1.0,0.5,1.0}, 

 {1.0,5.0,2.0,1.0,1.0,1.0,2.0}, 

 {1.0,6.0,3.0,2.0,1.0,1.0,1.0}, 

 {0.5,4.0,1.0,1.0,0.5,1.0,1.0}             

  

 Long Term Stability and Accuracy Matrix:  

 

 {1.0,0.25,0.1667,2.0,0.3333,0.5,0.25}, 

 {4.0,1.0,0.3333,4.0,3.0,3.0,2.0},  

 {6.0,3.0,1.0,8.0,4.0,5.0,3.0}, 

 {0.5,0.25,0.125,1.0,0.3333,0.3333,0.25}, 

 {3.0,0.3333,0.25,3.0,1.0,2.0,0.5}, 
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 {2.0,0.3333,0.2,3.0,0.5,1.0,0.3333}, 

 {4.0,0.5,0.3333,4.0,2.0,3.0,1.0}             

 

 Typical Temperature Coefficient Matrix: 

  

 {1.0,0.1667,0.3333,4.0,4.0,4.0,0.5}, 

 {6.0,1.0,3.0,6.0,6.0,6.0,6.0},  

 {3.0,0.3333,1.0,5.0,6.0,5.0,2.0}, 

 {0.25,0.1667,0.2,1.0,1.0,1.0,0.2}, 

 {0.25,0.1667,0.1667,1.0,1.0,1.0,0.2}, 

 {0.25,0.1667,0.2,1.0,1.0,1.0,0.3333}, 

 {2.0,0.1667,0.5,5.0,5.0,3.0,1.0}             

   

  Extension Wires Matrix:   

 

 {1.0,0.1667,0.16667,0.125,0.125,0.125,0.125}, 

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25},  

 {6.0,1.0,1.0,0.25,0.25,0.25,0.25}, 

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0}, 

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0}, 

 {8.0,4.0,4.0,1.0,1.0,1.0,1.0}, 

  {8.0,4.0,4.0,1.0,1.0,1.0,1.0}             

   

  LongWireMatrix:                       

   

 {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667}, 

 {3.0,1.0,3.0,0.5,0.5,0.5,0.5},  

 {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667}, 

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 

 {6.0,2.0,6.0,1.0,1.0,1.0,1.0}             

  

 Measurement Parameter Matrix:                          

 

 {1.0,4.0,3.0,5.0,5.0,6.0,1.0}, 

 {0.25,1.0,0.5,4.0,4.0,5.0,0.3333},  

 {0.3333,2.0,1.0,3.0,3.0,4.0,0.3333}, 

 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2}, 

 {0.2,0.25,0.3333,1.0,1.0,3.0,0.2}, 

 {0.1667,0.2,0.25,0.3333,0.3333,1.0,0.1667}, 

 {1.0,3.0,3.0,5.0,5.0,6.0,1.0}             

  

 Temperature Measurement Matrix:  

  

 {1.0,0.25,0.2,0.3333,0.3333,0.5,0.1667}, 

 {4.0,1.0,0.3333,1.0,3.0,3.0,0.1667},  

 {5.0,3.0,1.0,4.0,5.0,5.0,0.5}, 

 {3.0,1.0,0.25,1.0,2.0,2.0,0.25}, 

 {3.0,0.3333,0.2,0.5,1.0,1.0,0.1667}, 

 {2.0,0.3333,0.2,0.5,1.0,1.0,0.2}, 

 {6.0,6.0,2.0,4.0,6.0,5.0,1.0} 

  

 Stimulation Electronics Matrix:  

  

 {1.0,4.0,3.0,1.0,1.0,2.0,6.0},                   

 {0.25,1.0,0.5,0.2,0.2,0.25,3.0},  

 {0.3333,2.0,1.0,0.25,0.25,0.5,3.0}, 

 {1.0,5.0,4.0,1.0,1.0,2.0,6.0}, 

 {1.0,5.0,4.0,1.0,1.0,3.0,6.0}, 
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 {0.5,4.0,2.0,0.5,0.3333,1.0,4.0}, 

 {0.1667,0.3333,0.3333,0.1667,0.1667,0.25,1.0}             

  

Existence of Maximum Sensitivity Region Matrix:  

  

 {1.0,6.0,1.0,4.0,1.0,2.0,1.0}, 

 {0.1667,1.0,0.1667,0.25,0.1667,0.2,0.125},  

 {1.0,6.0,1.0,4.0,1.0,2.0,1.0}, 

 {0.25,4.0,0.25,1.0,0.25,0.3333,0.1667}, 

 {1.0,6.0,1.0,4.0,1.0,3.0,1.0}, 

 {0.5,5.0,0.5,3.0,0.3333,1.0,0.3333}, 

 {1.0,8.0,1.0,6.0,1.0,3.0,1.0}             

  

 Typical Fast Thermal Time Constant Matrix:  

  

 {1.0,3.0,4.0,6.0,5.0,1.0,3.0}, 

 {0.3333,1.0,2.0,4.0,3.0,0.3333,1.0},  

 {0.25,0.5,1.0,2.0,2.0,0.25,1.0}, 

 {0.1667,0.25,0.5,1.0,0.5,0.1667,0.3333}, 

 {0.2,0.3333,0.5,2.0,1.0,0.2,0.3333}, 

 {1.0,3.0,4.0,6.0,5.0,1.0,3.0}, 

 {0.3333,1.0,1.0,3.0,3.0,0.3333,1.0}             

  

 Typiacl Small Size Matrix: 

  

 {1.0,2.0,3.0,4.0,5.0,6.0,5.0}, 

 {0.5,1.0,2.0,3.0,4.0,5.0,4.0},  

 {0.3333,0.5,1.0,2.0,4.0,6.0,4.0}, 

 {0.25,0.3333,0.5,1.0,2.0,3.0,2.0}, 

 {0.2,0.25,0.25,0.5,1.0,3.0,1.0}, 

 {0.1667,0.2,0.1667,0.3333,0.3333,1.0,0.5}, 

 {0.2,0.25,0.25,0.5,1.0,2.0,1.0}             

  

 Noise Immunity Matrix:  

  

 {1.0,0.1667,0.3333,0.25,0.25,0.5,0.25}, 

 {6.0,1.0,4.0,3.0,3.0,5.0,3.0},  

 {3.0,0.25,1.0,0.5,0.5,2.0,0.5}, 

 {4.0,0.3333,2.0,1.0,1.0,3.0,1.0}, 

 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0}, 

 {2.0,0.2,0.5,0.3333,0.25,1.0,0.25}, 

 {4.0,0.3333,2.0,1.0,1.0,4.0,1.0}             

             

 Fragility-Durability Characteristics Matrix:                         

 

 {1.0,6.0,3.0,6.0,8.0,3.0,4.0}, 

 {0.1667,1.0,0.3333,2.0,3.0,0.3333,0.5},  

 {0.3333,3.0,1.0,3.0,4.0,2.0,3.0}, 

 {0.1667,0.5,0.3333,1.0,3.0,0.25,0.3333}, 

 {0.125,0.3333,0.25,0.3333,1.0,0.25,0.3333}, 

 {0.3333,3.0,0.5,4.0,4.0,1.0,3.0}, 

 {0.25,2.0,0.3333,3.0,3.0,0.3333,1.0},                     

             

 High Thermal Gradient Environment Matrix:  

  

 {1.0,4.0,5.0,7.0,8.0,4.0,6.0}, 

 {0.25,1.0,2.0,5.0,6.0,2.0,4.0},  

 {0.2,0.5,1.0,3.0,3.0,0.5,2.0}, 

 {0.1429,0.2,0.3333,1.0,1.0,0.25,0.5}, 

 {0.125,0.1667,0.3333,1.0,1.0,0.2,0.3333}, 
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 {0.25,0.5,2.0,4.0,5.0,1.0,4.0}, 

 {0.1667,0.25,0.5,2.0,3.0,0.25,1.0}             

  

 Corrosion Resistance Matrix:  

  

  {1.0,0.25,0.1667,0.5,0.1667,0.1667,0.25}, 

  {4.0,1.0,0.3333,2.0,0.25,0.25,1.0},  

  {6.0,3.0,1.0,4.0,1.0,1.0,4.0}, 

  {2.0,0.5,0.25,1.0,0.25,0.25,0.5}, 

  {6.0,4.0,1.0,4.0,1.0,1.0,3.0}, 

  {6.0,4.0,1.0,4.0,1.0,1.0,3.0}, 

  {4.0,1.0,0.25,2.0,0.3333,0.3333,1.0}             

   

  Point or Area Measurement Matrix:  

  

  {1.0,2.0,3.0,4.0,6.0,6.0,4.0}, 

  {0.5,1.0,2.0,3.0,4.0,4.0,3.0},  

  {0.3333,0.5,1.0,2.0,3.0,4.0,2.0}, 

  {0.25,0.3333,0.5,1.0,2.0,2.0,0.5}, 

  {0.1667,0.25,0.3333,0.5,1.0,1.0,0.5}, 

  {0.1667,0.25,0.25,0.5,1.0,1.0,2.0}, 

  {0.25,0.5,0.3333,2.0,2.0,0.5,1.0}             

  

  Manufacturing Variances Matrix:  

  

  {1.0, 0.3333, 0.1667,0.25,0.5,0.2,0.25}, 

  {3.0, 1.0, 0.3333,0.5,2.0,0.25,0.5},  

  {6.0, 3.0, 1.0,4.0,3.0,6.0,3.0}, 

  {4.0,2.0,0.25,1.0,4.0,0.3333,0.5}, 

  {2.0,0.5,0.3333,0.25,1.0,0.2,0.25}, 

  {5.0,4.0,0.1667,3.0,5.0,1.0,2.0}, 

  {4.0,2.0,0.3333,2.0,4.0,0.5,1.0}             

  

  NIST Standards Matrix:  

  

  {1.0   , 4.0, 1.0,1.0,1.0,4.0,5.0}, 

  {0.25, 1.0, 0.25,0.25,0.25,1.0,2.0},  

  {1.0, 4.0, 1.0,1.0,1.0,4.0,5.0}, 

  {1.0,4.0,1.0,1.0,1.0,4.0,5.0}, 

  {1.0,4.0,1.0,1.0,1.0,4.0,5.0}, 

  {0.25,1.0,0.25,0.25,0.25,1.0,2.0}, 

  {0.2,0.5,0.2,0.2,0.2,0.5,1.0}             

   

  Cost Matrix:  

  

  {1.0,1.0,6.0,3.0,3.0,6.0,3.0}, 

  {1.0,1.0,6.0,3.0,3.0,6.0,3.0},  

  {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25}, 

  {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}, 

  {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}, 

  {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25}, 

  {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}             

  

  Criteria Matrix:  

                                                     

  {1.0,9.0,6.0,4.0}, 

  {0.1111,1.0,0.5,0.3333},  

  {0.1667,2.0,1.0,0.5}, 

  {0.25,3.0,2.0,1.0}             
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  Sub-criteria Static Matrix:  

  

  {1.0,1.0,4.0,4.0,3.0,1.0,5.0,5.0,6.0,8.0,5.0}, 

  {1.0,1.0,4.0,4.0,3.0,1.0,5.0,5.0,6.0,8.0,5.0},  

  {0.25,0.25,1.0,0.5,0.3333,0.25,2.0,2.0,4.0,6.0,3.0}, 

  {0.25,0.25,2.0,1.0,1.0,0.3333,3.0,2.0,4.0,6.0,3.0}, 

  {0.3333,0.3333,3.0,1.0,1.0,0.3333,4.0,5.0,6.0,9.0,4.0}, 

  {1.0,1.0,4.0,3.0,3.0,1.0,5.0,5.0,6.0,9.0,5.0}, 

  {0.2,0.2,0.5,0.3333,0.25,0.2,1.0,0.5,3.0,6.0,3.0}, 

  {0.2,0.2,0.5,0.5,0.2,0.2,2.0,1.0,3.0,5.0,1.0},                      

{0.1667,0.1667,0.25,0.25,0.1667,0.1667,0.3333,0.3333,1.0,3.0,0.3333},                   

{0.125,0.125,0.1667,0.1667,0.1111,0.1111,0.1667,0.2,0.3333,1.0,0.2}, 

{0.2,0.2,0.3333,0.3333,0.25,0.2,0.3333,1.0,3.0,5.0,1.0} 

  

  Sub-criteria Dynamic Matrix:  

  

  {1.0,2.0,0.1667}, 

  {0.5,1.0,0.1667},  

  {6.0,6.0,1.0}  

   

  Sub-criteria Environmental Matrix:  

  

  {1.0,1.0,0.2,4.0,0.1667}, 

  {1.0,1.0,0.25,5.0,0.2},  

  {5.0,4.0,1.0,7.0,0.5}, 

  {0.25,0.2,0.1429,1.0,0.125}, 

  {6.0,5.0,2.0,8.0,1.0} 

   

  Others Matrix:  

  

  {1.0,3.0,0.5,0.1667}, 

  {0.3333,1.0,0.3333,0.1429},  

  {2.0,3.0,1.0,0.2}, 

  {6.0,7.0,5.0,1.0}          
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Appendix IV [c.f. 6, 23]: Comparison between the 

Thermocouple, the Thermister, and the RTD against the 23 

Sub-criteria             

Sub-criterion Thermocouple Thermistor RTD 

Maximum Operating Temperature 

(°C) 

2300 1000 850 

Minimum Operating Temperature 

(°C) 

-200 -100 -200 

Temperature Curve Fair linearity
*
 Poor linearity

*
 Good Linearity

*
 

Point or Area measurement Point Area Area 

                     Sensitivity Low
*
 Very high

*
 Medium

*
 

Measurement Parameter Voltage Resistance Resistance 

Temperature Measurement differential Absolute Absolute 

Stimulation Electronics required None Yes Yes 

Self-Heating Issues No self heating
*
 High

*
 Very low to low

*
 

Existence of Maximum Sensitivity 

Region 

No Yes No 

                Standards Exist     Yes No Yes 

Manufacturing Variances Inhomogeniety Batch-to-batch Lowest 

Typical Small Size 

 

0.01″ 

Small to large
*
 

0.1′ 

Small to medium
*
 

0.1′ 

Large
*
 

Typical Fast Thermal Time Constant 0.01 sec 0.1 sec 0.1 sec 

Long Term Stability and Accuracy OK 

Poor to fair
*
 

Good 

poor
*
 

Best 

good
*
 

Noise immunity OK if shielded best Good 

Fragility/Durability Best OK Good 
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High thermal gradient environment Best OK OK 

Typical Temperature Coefficient      + 0.4 % C 
-1

     -3 to -5 % C 
-1

 + 0.4 to + 0.5% C 
-1

 

Corrosion resistance Low Good Good 

Extension Wires Same alloy Any kind Any kind 

Long Wire runs from Sensor No OK No 

Cost Low-medium Low-medium High 

 
*
 These comparisons were taken from reference [6]. 
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Appendix V [28]:  Selecting and Specifying Building 

Automation System Sensors Considerations for Upgrading 

Sensor Performance (Omitted) 
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Appendix VI: Programming Code for the Software 

1. AHP.cs File  
 

using System; 

using System.Collections.Generic; 

using System.Text; 
 

namespace AhpCaseStudy1GUI 

{ 
    class AHP 

    { 

        public static int APPLICATION_HVAC = 0; 
        public static int APPLICATION_AUTOMOTIVES = 1; 

        public static int APPLICATION_CHEMICAL_REACTIONS = 2; 

 
        public static int SENSOR_THERMOCOUPLE = 0; 

        public static int SENSOR_THERMISTER = 1; 

        public static int SENSOR_RTD = 2; 
        public static int SENSOR_BIMETALLIC = 3; 

        public static int SENSOR_THERMOMETER = 4; 

        public static int SENSOR_PYROMETER = 5; 
        public static int SENSOR_LCD_DISPLAY = 6; 

 

        public static int TEMP_RANGE_20_200 = 0; 
        public static int TEMP_RANGE_200_700 = 1; 

        public static int TEMP_RANGE_700_950 = 2; 

        public static int TEMP_RANGE_950_1150 = 3; 
        public static int TEMP_RANGE_1150_1300 = 4; 

        public static int TEMP_RANGE_Minus_1300_2700 = 5; 

        public static int TEMP_RANGE_Minus_2700_3300 = 6; 
        public static int TEMP_RANGE_Minus_200_950 = 7; 

        public static int TEMP_RANGE_Minus_700_1150 = 8; 

 
 

        public static int ACURACY_1 = 0; 

        public static int ACURACY_POINT_1 = 1; 
        public static int ACURACY_POINT_O_1 = 2; 

        public static int ACURACY_POINT_O_O_1 = 3; 

        public static int ACURACY_POINT_O_O_O_O_1 = 4; 
         

        public static int RESPONSE_TIME_POINT_O_1 = 0; 

        public static int RESPONSE_TIME_POINT_2 = 1; 
        public static int RESPONSE_TIME_POINT_3 = 2; 

        public static int RESPONSE_TIME_1 = 3; 

        public static int RESPONSE_TIME_10 = 4; 
        public static int RESPONSE_TIME_20 = 5; 

         

    } 

} 
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2. AHPSubCriteria.cs File 
 

using System; 

using System.Collections.Generic; 

using System.Text; 
 

namespace AhpCaseStudy1GUI 

{ 
 

    class AHPSubCriteria 

    { 
         

        public double[,] MaximumTempMatrix; 

        public double[,] MinimumTempMatrix; 
        public double[,] TempCurveMtrix; 

        public double[,] MaxSensitivityMatrix; 

        public double[,] SelfHeatingMatrix; 
        public double[,] LongTermStabilityMatrix; 

        public double[,] TypTempCoeffMatrix; 

        public double[,] ExtWiresMatrix; 
        public double[,] LongWireMatrix; 

        public double[,] MeasureParaMatrix; 

        public double[,] TempMeasureMatrix; 
        public double[,] StimulationElecMatrix; 

        public double[,] TypOutputLevelMatrix; 

        public double[,] TypFastThertimeConsMatrix; 
        public double[,] TypSmallSizMatrix; 

        public double[,] NoiseImmunityMatrix; 

        public double[,] FraDurMatrix; 
        public double[,] HiThGrEnMatrix; 

        public double[,] CorrResMatrix; 
        public double[,] PointAreaMeasMatrix; 

        public double[,] ManuVarMatrix; 

        public double[,] NistStanMatrix; 
        public double[,] CostMatrix; 

 

        public void CreateSubMatrices(int size) 
        { 

            MaximumTempMatrix = new double[size, size]; 

            MinimumTempMatrix = new double[size, size]; 
            TempCurveMtrix = new double[size, size]; 

            MaxSensitivityMatrix = new double[size, size]; 

            SelfHeatingMatrix = new double[size, size]; 
            LongTermStabilityMatrix = new double[size, size]; 

            TypTempCoeffMatrix = new double[size, size]; 

            ExtWiresMatrix = new double[size, size]; 
            LongWireMatrix = new double[size, size]; 

            MeasureParaMatrix = new double[size, size]; 

            TempMeasureMatrix = new double[size, size]; 
            StimulationElecMatrix = new double[size, size]; 

            TypOutputLevelMatrix = new double[size, size]; 

            TypFastThertimeConsMatrix = new double[size, size]; 
            TypSmallSizMatrix = new double[size, size]; 

            NoiseImmunityMatrix = new double[size, size]; 

            FraDurMatrix = new double[size, size]; 
            HiThGrEnMatrix = new double[size, size]; 

            CorrResMatrix = new double[size, size]; 

            PointAreaMeasMatrix = new double[size, size]; 
            ManuVarMatrix = new double[size, size]; 

            NistStanMatrix = new double[size, size]; 

            CostMatrix = new double[size, size]; 
        } 

 

        public void FillMatrices(int[] IndeciesArray) 
        { 

            CreateSubMatrices(IndeciesArray.Length); 

        } 
    } 

} 
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3. Automotives.cs File 
 

using System; 

using System.Collections.Generic; 

using System.Text; 
 

namespace AhpCaseStudy1GUI 

{ 
    class Automotives 

    { 

        public System.Windows.Forms.TextBox textBoxResults; 
 

        void Print(double[,] mat, int nDimensionSize, string strTitle) 

        { 
            if (strTitle == "") 

                strTitle = "Matrix"; 

 
            //System.Console.WriteLine(strTitle); 

            textBoxResults.AppendText("\n"); 

            textBoxResults.AppendText(strTitle); 
            textBoxResults.AppendText("\n"); 

            textBoxResults.AppendText("\n"); 

            for (int i = 0; i < nDimensionSize; i++) 
            { 

                for (int j = 0; j < nDimensionSize; j++) 

                { 
                    //System.Console.Write("{0}\t\t", mat[i, j]); 

                    textBoxResults.AppendText("     "+mat[i, j]); 

                    //textBoxResults.Update(); 
                } 

                //System.Console.Write("\n"); 
                textBoxResults.AppendText("\n"); 

            } 

 
            //System.Console.Write("\n\n"); 

            textBoxResults.AppendText("\n\n"); 

        } 
 

        void Print(double[] vector, int nDimensionSize) 

        { 
            //System.Console.WriteLine("Relative Weight Vector = "); 

            textBoxResults.AppendText("Relative Weight Vector = "); 

            for (int i = 0; i < nDimensionSize; i++) 
            { 

                //System.Console.Write("{0}\t\t", vector[i]); 

                textBoxResults.AppendText("     " + vector[i]); 
            } 

            //System.Console.Write("\n"); 

            textBoxResults.AppendText("\n"); 
        } 

 

        void Scale(double[] vector, double scaleFactor) 
        { 

            for (int i = 0; i < vector.Length; i++) 

            { 
                vector[i] = vector[i] * scaleFactor;//vector[i] *= scaleFactor; 

            } 

            Print(vector, vector.Length); 
        } 

 

        double GetSummationOfVectorElements(double[] vector) 
        { 

            double Summation = 0.0; 

            for (int i = 0; i < vector.Length; i++) 
            { 

                Summation = Summation + vector[i]; 

            } 
            return Summation; 

        } 

 
        double[] CalculateWeightsForEachCriterion(double[,] expertAssesmentMatrix, int nDimensionSize, string strTitle) 

        { 

            //check for vald input values 
            double[] weightVector = new double[nDimensionSize]; 
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            if (expertAssesmentMatrix == null) 

                return weightVector; 
 

            Print(expertAssesmentMatrix, nDimensionSize, strTitle); 

 
            //Calculate the weight factor for each colmun 

            //The result is a vetor 

            double[] wieghtFactor = new double[nDimensionSize]; 
            for (int j = 0; j < nDimensionSize; j++) 

            { 

                double result = 0.0; 
                for (int k = 0; k < nDimensionSize; k++) 

                { 
                    result += expertAssesmentMatrix[k, j]; //result = result + mat1[k, j]; 

                } 

                wieghtFactor[j] = result; 
            } 

 

            double[,] mat1ImmediatResult = new double[nDimensionSize, nDimensionSize]; 

            for (int j = 0; j < nDimensionSize; j++) 

            { 

                for (int k = 0; k < nDimensionSize; k++) 
                { 

                    expertAssesmentMatrix[k, j] = expertAssesmentMatrix[k, j] / wieghtFactor[j]; 

                } 
            } 

 

            //Calculate the weight factor for each colmun 
            //The result is a vetor 

            for (int j = 0; j < nDimensionSize; j++) 

            { 
                double result = 0.0; 

                for (int k = 0; k < nDimensionSize; k++) 

                { 
                    result += expertAssesmentMatrix[j, k]; //result = result + mat1[k, j]; 

                } 

                weightVector[j] = result / nDimensionSize; 
            } 

 

            Print(weightVector, nDimensionSize); 
            

//System.Console.WriteLine("_____________________________________________________________________________________

_____________________________\n"); 
             

 

            return weightVector; 
        } 

 

        void FillSubMatrix(double[,] SourceMatrix, double[,] destinationSubMatrix, int[] IndeciesArray) 
        { 

            if (SourceMatrix == null || destinationSubMatrix == null || IndeciesArray == null) 

                return; 
 

            for (int i = 0; i < IndeciesArray.Length; i++) 

            { 
                for (int j = 0; j < IndeciesArray.Length; j++) 

                { 

                    //destinationSubMatrix[IndeciesArray[i], IndeciesArray[j]] = SourceMatrix[IndeciesArray[i], IndeciesArray[j]]; 
                    destinationSubMatrix[i, j] = SourceMatrix[IndeciesArray[i], IndeciesArray[j]]; 

                } 

            } 
        } 

 

        double ComputeConsistencyIndex(double[,] Matrix, double[] vector, int nDimensionSize) 
        { 

            //check for vald input values 
            double[] transposeVector = new double[nDimensionSize]; 

            double[] randomIndex = { 1.0, 0.5, 0.58, 0.9, 1.12, 1.24, 1.32 }; 

 
            if (Matrix == null) 

                return 0.0; 

 

            for (int j = 0; j < nDimensionSize; j++) 

            { 

                double result = 0.0; 
                for (int k = 0; k < nDimensionSize; k++) 
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                { 

                    result += (Matrix[j, k] * vector[k]);  
                } 

                transposeVector[j] = result; 

            } 
            double division = 0.0; 

            for (int k = 0; k < nDimensionSize; k++) 

            { 
                division += (transposeVector[k] / vector[k]); 

                //transposeVector[k] = transposeVector[k]/vector[k]; 

                 
            } 

            division = division / nDimensionSize; 
 

            double consistencyIndex = (division - nDimensionSize) / (nDimensionSize - 1); 

 
            if (consistencyIndex < 0.0 && consistencyIndex > -0.0005) 

                consistencyIndex = 0.0; 

 

            if (consistencyIndex < 0.0005) 

                consistencyIndex = 0.0; 

 
            textBoxResults.AppendText("Consistency Index = "); 

            textBoxResults.AppendText("" + consistencyIndex + "\n"); 

 
            textBoxResults.AppendText("\nConsistency Ratio = "); 

            if( nDimensionSize > randomIndex.Length ) 

                textBoxResults.AppendText("" + (consistencyIndex/1.59)); 
            else 

                textBoxResults.AppendText("" + (consistencyIndex/randomIndex[nDimensionSize-1])); 

            textBoxResults.AppendText("\n"); 
            textBoxResults.AppendText("__________________________________________________________________________\n"); 

            return consistencyIndex; 

        } 
 

        public double[] SelectBestSensor(int[] IndeciesArray) 

        { 
            double[] SensorRanks = new double[IndeciesArray.Length]; 

            AHPSubCriteria ReturnSubMatrices = new AHPSubCriteria(); 

            ReturnSubMatrices.CreateSubMatrices(IndeciesArray.Length); 
            AHPSubCriteria ReturnSubMatricesNotNormalized = new AHPSubCriteria(); 

            ReturnSubMatricesNotNormalized.CreateSubMatrices(IndeciesArray.Length); 

 
            double[,] MaximumTempMatrix = new double[,] { 

                    {1.0,3.0,1.0,9.0,4.0,6.0,4.0}, 

                    {0.3333,1.0,0.3333,6.0,2.0,5.0,2.0},  
                    {1.0,3.0,1.0,9.0,4.0,6.0,4.0}, 

                    {0.1111,0.1667,0.1111,1.0,0.1667,0.3333,0.1667}, 

                    {0.25,0.5,0.25,6.0,1.0,4.0,1.0}, 
                    {0.1667,0.2,0.1667,3.0,0.25,1.0,0.25}, 

                    {0.25,0.5,0.25,6.0,1.0,4.0,1.0} 

            }; 
            FillSubMatrix(MaximumTempMatrix, ReturnSubMatrices.MaximumTempMatrix, IndeciesArray); 

            double[] MaximumTempMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MaximumTempMatrix, 

IndeciesArray.Length, "Maximum Operating Temprature: "); 
 

            FillSubMatrix(MaximumTempMatrix, ReturnSubMatricesNotNormalized.MaximumTempMatrix, IndeciesArray); 

            double ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MaximumTempMatrix, 
MaximumTempMatrixResult, IndeciesArray.Length); 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] MinimumTempMatrix = new double[,] { 
                    {1.0,2.0,2.0,0.5,0.5,0.125,0.3333}, 

                    {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},  

                    {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25}, 
                    {2.0,3.0,3.0,1.0,1.0,0.25,0.5}, 

                    {2.0,3.0,3.0,1.0,1.0,0.25,0.5}, 
                    {8.0,8.0,8.0,4.0,4.0,1.0,4.0}, 

                    {3.0,4.0,4.0,2.0,2.0,0.25,1.0} 

            }; 
            FillSubMatrix(MinimumTempMatrix, ReturnSubMatrices.MinimumTempMatrix, IndeciesArray); 

            double[] MinimumTempMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MinimumTempMatrix, 

IndeciesArray.Length, "Minimum Operating Temprature: "); 

 

            FillSubMatrix(MinimumTempMatrix, ReturnSubMatricesNotNormalized.MinimumTempMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MinimumTempMatrix, 
MinimumTempMatrixResult, IndeciesArray.Length); 
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            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] TempCurveMtrix = new double[,] { 

                    {1.0,3.0,0.3333,5.0,5.0,4.0,2.0}, 

                    {0.3333,1.0,0.1667,2.0,2.0,1.0,0.3333},  
                    {3.0,6.0,1.0,6.0,6.0,6.0,4.0}, 

                    {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25}, 

                    {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25}, 
                    {0.25,1.0,0.1667,3.0,3.0,1.0,0.5}, 

                    {0.5,3.0,0.25,4.0,4.0,2.0,1.0} 

            }; 
            FillSubMatrix(TempCurveMtrix, ReturnSubMatrices.TempCurveMtrix, IndeciesArray); 

            double[] TempCurveMtrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TempCurveMtrix, 
IndeciesArray.Length, "Temperature Curve:"); 

 

            FillSubMatrix(TempCurveMtrix, ReturnSubMatricesNotNormalized.TempCurveMtrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TempCurveMtrix, TempCurveMtrixResult, 

IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] MaxSensitivityMatrix = new double[,] { 

                    {1.0,0.1111,0.2,2.0,2.0,2.0,0.3333}, 
                    {9.0,1.0,4.0,9.0,9.0,6.0,4.0},  

                    {5.0,0.25,1.0,4.0,5.0,4.0,2.0}, 

                    {0.5,0.1111,0.25,1.0,2.0,2.0,0.25}, 
                    {0.5,.1111,0.2,0.5,1.0,1.0,0.25}, 

                    {0.5,0.1667,0.25,0.5,1.0,1.0,0.25}, 

                    {3.0,0.25,0.5,4.0,4.0,4.0,1.0} 
            }; 

            FillSubMatrix(MaxSensitivityMatrix, ReturnSubMatrices.MaxSensitivityMatrix, IndeciesArray); 

            double[] MaxSensitivityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MaxSensitivityMatrix, 
IndeciesArray.Length, "Maximum Sensitivity Region:"); 

 

            FillSubMatrix(MaxSensitivityMatrix, ReturnSubMatricesNotNormalized.MaxSensitivityMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MaxSensitivityMatrix, 

MaxSensitivityMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] SelfHeatingMatrix = new double[,] { 

                    {1.0,8.0,3.0,3.0,1.0,1.0,2.0}, 
                    {0.125,1.0,0.2,0.25,0.2,0.1667,0.25},  

                    {0.3333,5.0,1.0,0.5,0.5,0.3333,1.0}, 

                    {0.3333,4.0,2.0,1.0,1.0,0.5,1.0}, 
                    {1.0,5.0,2.0,1.0,1.0,1.0,2.0}, 

                    {1.0,6.0,3.0,2.0,1.0,1.0,1.0}, 

                    {0.5,4.0,1.0,1.0,0.5,1.0,1.0} 
            }; 

            FillSubMatrix(SelfHeatingMatrix, ReturnSubMatrices.SelfHeatingMatrix, IndeciesArray); 

            double[] SelfHeatingMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.SelfHeatingMatrix, 
IndeciesArray.Length, "Self-Heating Issues:"); 

 

            FillSubMatrix(SelfHeatingMatrix, ReturnSubMatricesNotNormalized.SelfHeatingMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.SelfHeatingMatrix, 

SelfHeatingMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] LongTermStabilityMatrix = new double[,] { 

                    {1.0,0.25,0.1667,2.0,0.3333,0.5,0.25}, 
                    {4.0,1.0,0.3333,4.0,3.0,3.0,2.0},  

                    {6.0,3.0,1.0,8.0,4.0,5.0,3.0}, 

                    {0.5,0.25,0.125,1.0,0.3333,0.3333,0.25}, 
                    {3.0,0.3333,0.25,3.0,1.0,2.0,0.5}, 

                    {2.0,0.3333,0.2,3.0,0.5,1.0,0.3333}, 

                    {4.0,0.5,0.3333,4.0,2.0,3.0,1.0} 
            }; 

            FillSubMatrix(LongTermStabilityMatrix, ReturnSubMatrices.LongTermStabilityMatrix, IndeciesArray); 
            double[] LongTermStabilityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.LongTermStabilityMatrix, 

IndeciesArray.Length, "Long Term Stability and Accuracy:"); 

 
            FillSubMatrix(LongTermStabilityMatrix, ReturnSubMatricesNotNormalized.LongTermStabilityMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.LongTermStabilityMatrix, 

LongTermStabilityMatrixResult, IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] TypTempCoeffMatrix = new double[,] { 
                    {1.0,0.1667,0.3333,4.0,4.0,4.0,0.5}, 
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                    {6.0,1.0,3.0,6.0,6.0,6.0,6.0},  

                    {3.0,0.3333,1.0,5.0,6.0,5.0,2.0}, 
                    {0.25,0.1667,0.2,1.0,1.0,1.0,0.2}, 

                    {0.25,0.1667,0.1667,1.0,1.0,1.0,0.2}, 

                    {0.25,0.1667,0.2,1.0,1.0,1.0,0.3333}, 
                    {2.0,0.1667,0.5,5.0,5.0,3.0,1.0} 

            }; 

            FillSubMatrix(TypTempCoeffMatrix, ReturnSubMatrices.TypTempCoeffMatrix, IndeciesArray); 
            double[] TypTempCoeffMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypTempCoeffMatrix, 

IndeciesArray.Length, "Typical Temperature Coefficient:"); 

 
            FillSubMatrix(TypTempCoeffMatrix, ReturnSubMatricesNotNormalized.TypTempCoeffMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypTempCoeffMatrix, 
TypTempCoeffMatrixResult, IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] ExtWiresMatrix = new double[,] { 

                    {1.0,0.1667,0.16667,0.125,0.125,0.125,0.125}, 

                    {6.0,1.0,1.0,0.25,0.25,0.25,0.25},  

                    {6.0,1.0,1.0,0.25,0.25,0.25,0.25}, 

                    {8.0,4.0,4.0,1.0,1.0,1.0,1.0}, 

                    {8.0,4.0,4.0,1.0,1.0,1.0,1.0}, 
                    {8.0,4.0,4.0,1.0,1.0,1.0,1.0}, 

                    {8.0,4.0,4.0,1.0,1.0,1.0,1.0} 

            }; 
            FillSubMatrix(ExtWiresMatrix, ReturnSubMatrices.ExtWiresMatrix, IndeciesArray); 

            double[] ExtWiresMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.ExtWiresMatrix, 

IndeciesArray.Length, "Extension Wires:"); 
 

            FillSubMatrix(ExtWiresMatrix, ReturnSubMatricesNotNormalized.ExtWiresMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.ExtWiresMatrix, ExtWiresMatrixResult, 
IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] LongWireMatrix = new double[,] { 

                    {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667}, 

                    {3.0,1.0,3.0,0.5,0.5,0.5,0.5},  
                    {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667}, 

                    {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 

                    {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 
                    {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 

                    {6.0,2.0,6.0,1.0,1.0,1.0,1.0} 

            }; 
            FillSubMatrix(LongWireMatrix, ReturnSubMatrices.LongWireMatrix, IndeciesArray); 

            double[] LongWireMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.LongWireMatrix, 

IndeciesArray.Length, "Long Wire Runs From Sensor:"); 
 

            FillSubMatrix(LongWireMatrix, ReturnSubMatricesNotNormalized.LongWireMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.LongWireMatrix, LongWireMatrixResult, 
IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] MeasureParaMatrix = new double[,] { 

                    {1.0,4.0,3.0,5.0,5.0,6.0,1.0}, 

                    {0.25,1.0,0.5,4.0,4.0,5.0,0.3333},  
                    {0.3333,2.0,1.0,3.0,3.0,4.0,0.3333}, 

                    {0.2,0.25,0.3333,1.0,1.0,3.0,0.2}, 

                    {0.2,0.25,0.3333,1.0,1.0,3.0,0.2}, 
                    {0.1667,0.2,0.25,0.3333,0.3333,1.0,0.1667}, 

                    {1.0,3.0,3.0,5.0,5.0,6.0,1.0} 

            }; 
            FillSubMatrix(MeasureParaMatrix, ReturnSubMatrices.MeasureParaMatrix, IndeciesArray); 

            double[] MeasureParaMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MeasureParaMatrix, 

IndeciesArray.Length, "Measurement Parameter:"); 
 

            FillSubMatrix(MeasureParaMatrix, ReturnSubMatricesNotNormalized.MeasureParaMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MeasureParaMatrix, 

MeasureParaMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] TempMeasureMatrix = new double[,] { 

                    {1.0,0.25,0.2,0.3333,0.3333,0.5,0.1667}, 

                    {4.0,1.0,0.3333,1.0,3.0,3.0,0.1667},  

                    {5.0,3.0,1.0,4.0,5.0,5.0,0.5}, 

                    {3.0,1.0,0.25,1.0,2.0,2.0,0.25}, 
                    {3.0,0.3333,0.2,0.5,1.0,1.0,0.1667}, 
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                    {2.0,0.3333,0.2,0.5,1.0,1.0,0.2}, 

                    {6.0,6.0,2.0,4.0,6.0,5.0,1.0} 
            }; 

            FillSubMatrix(TempMeasureMatrix, ReturnSubMatrices.TempMeasureMatrix, IndeciesArray); 

            double[] TempMeasureMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TempMeasureMatrix, 
IndeciesArray.Length, "Temperature Measurement:"); 

 

            FillSubMatrix(TempMeasureMatrix, ReturnSubMatricesNotNormalized.TempMeasureMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TempMeasureMatrix, 

TempMeasureMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] StimulationElecMatrix = new double[,] { 
                    {1.0,4.0,3.0,1.0,1.0,2.0,6.0},                   

                    {0.25,1.0,0.5,0.2,0.2,0.25,3.0},  

                    {0.3333,2.0,1.0,0.25,0.25,0.5,3.0}, 
                    {1.0,5.0,4.0,1.0,1.0,2.0,6.0}, 

                    {1.0,5.0,4.0,1.0,1.0,3.0,6.0}, 

                    {0.5,4.0,2.0,0.5,0.3333,1.0,4.0}, 

                    {0.1667,0.3333,0.3333,0.1667,0.1667,0.25,1.0} 

            }; 

            FillSubMatrix(StimulationElecMatrix, ReturnSubMatrices.StimulationElecMatrix, IndeciesArray); 
            double[] StimulationElecMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.StimulationElecMatrix, 

IndeciesArray.Length, "Stimulation Electronics Required:"); 

 
            FillSubMatrix(StimulationElecMatrix, ReturnSubMatricesNotNormalized.StimulationElecMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.StimulationElecMatrix, 

StimulationElecMatrixResult, IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] TypOutputLevelMatrix = new double[,] { 
                    {1.0,6.0,1.0,4.0,1.0,2.0,1.0}, 

                    {0.1667,1.0,0.1667,0.25,0.1667,0.2,0.125},  

                    {1.0,6.0,1.0,4.0,1.0,2.0,1.0}, 
                    {0.25,4.0,0.25,1.0,0.25,0.3333,0.1667}, 

                    {1.0,6.0,1.0,4.0,1.0,3.0,1.0}, 

                    {0.5,5.0,0.5,3.0,0.3333,1.0,0.3333}, 
                    {1.0,8.0,1.0,6.0,1.0,3.0,1.0} 

            }; 

            FillSubMatrix(TypOutputLevelMatrix, ReturnSubMatrices.TypOutputLevelMatrix, IndeciesArray); 
            double[] TypOutputLevelMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypOutputLevelMatrix, 

IndeciesArray.Length, "Existence of Maximum Sensitivity Region :"); 

 
            FillSubMatrix(TypOutputLevelMatrix, ReturnSubMatricesNotNormalized.TypOutputLevelMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypOutputLevelMatrix, 

TypOutputLevelMatrixResult, IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] TypFastThertimeConsMatrix = new double[,] { 
                    {1.0,3.0,4.0,6.0,5.0,1.0,3.0}, 

                    {0.3333,1.0,2.0,4.0,3.0,0.3333,1.0},  

                    {0.25,0.5,1.0,2.0,2.0,0.25,1.0}, 
                    {0.1667,0.25,0.5,1.0,0.5,0.1667,0.3333}, 

                    {0.2,0.3333,0.5,2.0,1.0,0.2,0.3333}, 

                    {1.0,3.0,4.0,6.0,5.0,1.0,3.0}, 
                    {0.3333,1.0,1.0,3.0,3.0,0.3333,1.0} 

            }; 

            FillSubMatrix(TypFastThertimeConsMatrix, ReturnSubMatrices.TypFastThertimeConsMatrix, IndeciesArray); 
            double[] TypFastThertimeConsMatrixResult = 

CalculateWeightsForEachCriterion(ReturnSubMatrices.TypFastThertimeConsMatrix, IndeciesArray.Length, "Typical Fast Thermal 

Time Constant:"); 
 

            FillSubMatrix(TypFastThertimeConsMatrix, ReturnSubMatricesNotNormalized.TypFastThertimeConsMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypFastThertimeConsMatrix, 
TypFastThertimeConsMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] TypSmallSizMatrix = new double[,] { 

                    {1.0,2.0,3.0,4.0,5.0,6.0,5.0}, 
                    {0.5,1.0,2.0,3.0,4.0,5.0,4.0},  

                    {0.3333,0.5,1.0,2.0,4.0,6.0,4.0}, 

                    {0.25,0.3333,0.5,1.0,2.0,3.0,2.0}, 

                    {0.2,0.25,0.25,0.5,1.0,3.0,1.0}, 

                    {0.1667,0.2,0.1667,0.3333,0.3333,1.0,0.5}, 

                    {0.2,0.25,0.25,0.5,1.0,2.0,1.0} 
            }; 
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            FillSubMatrix(TypSmallSizMatrix, ReturnSubMatrices.TypSmallSizMatrix, IndeciesArray); 

            double[] TypSmallSizMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypSmallSizMatrix, 
IndeciesArray.Length, "Typical Small Size:"); 

 

            FillSubMatrix(TypSmallSizMatrix, ReturnSubMatricesNotNormalized.TypSmallSizMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypSmallSizMatrix, 

TypSmallSizMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] NoiseImmunityMatrix = new double[,] { 

                    {1.0,0.1667,0.3333,0.25,0.25,0.5,0.25}, 
                    {6.0,1.0,4.0,3.0,3.0,5.0,3.0},  

                    {3.0,0.25,1.0,0.5,0.5,2.0,0.5}, 
                    {4.0,0.3333,2.0,1.0,1.0,3.0,1.0}, 

                    {4.0,0.3333,2.0,1.0,1.0,4.0,1.0}, 

                    {2.0,0.2,0.5,0.3333,0.25,1.0,0.25}, 
                    {4.0,0.3333,2.0,1.0,1.0,4.0,1.0} 

            }; 

            FillSubMatrix(NoiseImmunityMatrix, ReturnSubMatrices.NoiseImmunityMatrix, IndeciesArray); 

            double[] NoiseImmunityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.NoiseImmunityMatrix, 

IndeciesArray.Length, "Noise Immunity:"); 

 
            FillSubMatrix(NoiseImmunityMatrix, ReturnSubMatricesNotNormalized.NoiseImmunityMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.NoiseImmunityMatrix, 

NoiseImmunityMatrixResult, IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] FraDurMatrix = new double[,] { 
                    {1.0,6.0,3.0,6.0,8.0,3.0,4.0}, 

                    {0.1667,1.0,0.3333,2.0,3.0,0.3333,0.5},  

                    {0.3333,3.0,1.0,3.0,4.0,2.0,3.0}, 
                    {0.1667,0.5,0.3333,1.0,3.0,0.25,0.3333}, 

                    {0.125,0.3333,0.25,0.3333,1.0,0.25,0.3333}, 

                    {0.3333,3.0,0.5,4.0,4.0,1.0,3.0}, 
                    {0.25,2.0,0.3333,3.0,3.0,0.3333,1.0} 

                     

            }; 
            FillSubMatrix(FraDurMatrix, ReturnSubMatrices.FraDurMatrix, IndeciesArray); 

            double[] FraDurMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.FraDurMatrix, IndeciesArray.Length, 

"Fragility-Durability:"); 
 

            FillSubMatrix(FraDurMatrix, ReturnSubMatricesNotNormalized.FraDurMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.FraDurMatrix, FraDurMatrixResult, 
IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] HiThGrEnMatrix = new double[,] { 

                    {1.0,4.0,5.0,7.0,8.0,4.0,6.0}, 

                    {0.25,1.0,2.0,5.0,6.0,2.0,4.0},  
                    {0.2,0.5,1.0,3.0,3.0,0.5,2.0}, 

                    {0.1429,0.2,0.3333,1.0,1.0,0.25,0.5}, 

                    {0.125,0.1667,0.3333,1.0,1.0,0.2,0.3333}, 
                    {0.25,0.5,2.0,4.0,5.0,1.0,4.0}, 

                    {0.1667,0.25,0.5,2.0,3.0,0.25,1.0} 

            }; 
            FillSubMatrix(HiThGrEnMatrix, ReturnSubMatrices.HiThGrEnMatrix, IndeciesArray); 

            double[] HiThGrEnMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.HiThGrEnMatrix, 

IndeciesArray.Length, "High Thermal Gradient Environment:"); 
 

            FillSubMatrix(HiThGrEnMatrix, ReturnSubMatricesNotNormalized.HiThGrEnMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.HiThGrEnMatrix, HiThGrEnMatrixResult, 
IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] CorrResMatrix = new double[,] { 

                    {1.0,0.25,0.1667,0.5,0.1667,0.1667,0.25}, 
                    {4.0,1.0,0.3333,2.0,0.25,0.25,1.0},  

                    {6.0,3.0,1.0,4.0,1.0,1.0,4.0}, 

                    {2.0,0.5,0.25,1.0,0.25,0.25,0.5}, 
                    {6.0,4.0,1.0,4.0,1.0,1.0,3.0}, 

                    {6.0,4.0,1.0,4.0,1.0,1.0,3.0}, 

                    {4.0,1.0,0.25,2.0,0.3333,0.3333,1.0} 

            }; 

            FillSubMatrix(CorrResMatrix, ReturnSubMatrices.CorrResMatrix, IndeciesArray); 

            double[] CorrResMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.CorrResMatrix, IndeciesArray.Length, 
"Corrosion Resistance:"); 
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            FillSubMatrix(CorrResMatrix, ReturnSubMatricesNotNormalized.CorrResMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.CorrResMatrix, CorrResMatrixResult, 

IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] PointAreaMeasMatrix = new double[,] { 

                    {1.0,2.0,3.0,4.0,6.0,6.0,4.0}, 
                    {0.5,1.0,2.0,3.0,4.0,4.0,3.0},  

                    {0.3333,0.5,1.0,2.0,3.0,4.0,2.0}, 

                    {0.25,0.3333,0.5,1.0,2.0,2.0,0.5}, 
                    {0.1667,0.25,0.3333,0.5,1.0,1.0,0.5}, 

                    {0.1667,0.25,0.25,0.5,1.0,1.0,2.0}, 
                    {0.25,0.5,0.3333,2.0,2.0,0.5,1.0} 

            }; 

            FillSubMatrix(PointAreaMeasMatrix, ReturnSubMatrices.PointAreaMeasMatrix, IndeciesArray); 
            double[] PointAreaMeasMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.PointAreaMeasMatrix, 

IndeciesArray.Length, "Point or Area Measurement:"); 

 

            FillSubMatrix(PointAreaMeasMatrix, ReturnSubMatricesNotNormalized.PointAreaMeasMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.PointAreaMeasMatrix, 

PointAreaMeasMatrixResult, IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] ManuVarMatrix = new double[,] { 
                    {1.0, 0.3333, 0.1667,0.25,0.5,0.2,0.25}, 

                    {3.0, 1.0, 0.3333,0.5,2.0,0.25,0.5},  

                    {6.0, 3.0, 1.0,4.0,3.0,6.0,3.0}, 
                    {4.0,2.0,0.25,1.0,4.0,0.3333,0.5}, 

                    {2.0,0.5,0.3333,0.25,1.0,0.2,0.25}, 

                    {5.0,4.0,0.1667,3.0,5.0,1.0,2.0}, 
                    {4.0,2.0,0.3333,2.0,4.0,0.5,1.0} 

            }; 

            FillSubMatrix(ManuVarMatrix, ReturnSubMatrices.ManuVarMatrix, IndeciesArray); 
            double[] ManuVarMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.ManuVarMatrix, 

IndeciesArray.Length, "Manufacturing Variances:"); 

 
            FillSubMatrix(ManuVarMatrix, ReturnSubMatricesNotNormalized.ManuVarMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.ManuVarMatrix, ManuVarMatrixResult, 

IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] NistStanMatrix = new double[,] { 
                    {1.0   , 4.0, 1.0,1.0,1.0,4.0,5.0}, 

                    {0.25, 1.0, 0.25,0.25,0.25,1.0,2.0},  

                    {1.0, 4.0, 1.0,1.0,1.0,4.0,5.0}, 
                    {1.0,4.0,1.0,1.0,1.0,4.0,5.0}, 

                    {1.0,4.0,1.0,1.0,1.0,4.0,5.0}, 

                    {0.25,1.0,0.25,0.25,0.25,1.0,2.0}, 
                    {0.2,0.5,0.2,0.2,0.2,0.5,1.0} 

            }; 

            FillSubMatrix(NistStanMatrix, ReturnSubMatrices.NistStanMatrix, IndeciesArray); 
            double[] NistStanMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.NistStanMatrix, IndeciesArray.Length, 

"Standards Exist:"); 

 
            FillSubMatrix(NistStanMatrix, ReturnSubMatricesNotNormalized.NistStanMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.NistStanMatrix, NistStanMatrixResult, 

IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] CostMatrix = new double[,] { 
                    {1.0,1.0,6.0,3.0,3.0,6.0,3.0}, 

                    {1.0,1.0,6.0,3.0,3.0,6.0,3.0},  

                    {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25}, 
                    {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}, 

                    {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}, 
                    {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25}, 

                    {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0} 

            }; 
            FillSubMatrix(CostMatrix, ReturnSubMatrices.CostMatrix, IndeciesArray); 

            double[] CostMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.CostMatrix, IndeciesArray.Length, 

"Cost:"); 

 

            FillSubMatrix(CostMatrix, ReturnSubMatricesNotNormalized.CostMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.CostMatrix, CostMatrixResult, 
IndeciesArray.Length); 
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            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] weightsOfCriteria = new double[,] { 

                    {1.0,4.0,3.0,4.0}, 

                    {0.25,1.0,0.5,1.0},  
                    {0.3333,2.0,1.0,2.0}, 

                    {0.25,1.0,0.5,1.0} 

            }; 
 

            double[] weightsOfCriteriaResults = CalculateWeightsForEachCriterion(weightsOfCriteria, 4, "Weights of Criteria:"); 

 
            double[,] weightsOfCriteria2 = new double[,] { 

                    {1.0,4.0,3.0,4.0}, 
                    {0.25,1.0,0.5,1.0},  

                    {0.3333,2.0,1.0,2.0}, 

                    {0.25,1.0,0.5,1.0} 
            }; 

            ConsistencyIndex = ComputeConsistencyIndex(weightsOfCriteria2, weightsOfCriteriaResults, 4); 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] Weightssubcriteriastatic = new double[,] { 

                    {1.0,1.0,5.0,4.0,4.0,2.0,5.0,6.0,7.0,8.0,6.0}, 

                    {1.0,1.0,5.0,4.0,4.0,2.0,5.0,6.0,7.0,8.0,6.0},  
                    {0.2,0.2,1.0,0.3333,0.3333,0.25,1.0,2.0,4.0,5.0,3.0}, 

                    {0.25,0.25,3.0,1.0,2.0,0.5,3.0,3.0,5.0,6.0,4.0}, 

                    {0.25,0.25,3.0,0.5,1.0,0.3333,3.0,5.0,6.0,8.0,4.0}, 
                    {0.5,0.5,4.0,2.0,3.0,1.0,4.0,5.0,6.0,8.0,5.0}, 

                    {0.2,0.2,1.0,0.3333,0.3333,0.25,1.0,1.0,4.0,6.0,3.0}, 

                    {0.1667,0.1667,0.5,0.3333,0.2,0.2,1.0,1.0,3.0,4.0,1.0}, 
                    {0.1429,0.1429,0.25,0.2,0.1667,0.1667,0.25,0.3333,1.0,2.0,0.3333}, 

                    {0.125,0.125,0.2,0.1667,0.125,0.125,0.1667,0.25,0.5,1.0,0.25}, 

                    {0.1667,0.1667,0.3333,0.25,0.25,0.2,0.3333,1.0,3.0,4.0,1.0} 
            }; 

            double[] weightsSubCriteriaStaticResult = CalculateWeightsForEachCriterion(Weightssubcriteriastatic, 11, "Weights of Sub-

Criteria Static:"); 
 

            double[,] Weightssubcriteriastatic2 = new double[,] { 

                    {1.0,1.0,5.0,4.0,4.0,2.0,5.0,6.0,7.0,8.0,6.0}, 
                    {1.0,1.0,5.0,4.0,4.0,2.0,5.0,6.0,7.0,8.0,6.0},  

                    {0.2,0.2,1.0,0.3333,0.3333,0.25,1.0,2.0,4.0,5.0,3.0}, 

                    {0.25,0.25,3.0,1.0,2.0,0.5,3.0,3.0,5.0,6.0,4.0}, 
                    {0.25,0.25,3.0,0.5,1.0,0.3333,3.0,5.0,6.0,8.0,4.0}, 

                    {0.5,0.5,4.0,2.0,3.0,1.0,4.0,5.0,6.0,8.0,5.0}, 

                    {0.2,0.2,1.0,0.3333,0.3333,0.25,1.0,1.0,4.0,6.0,3.0}, 
                    {0.1667,0.1667,0.5,0.3333,0.2,0.2,1.0,1.0,3.0,4.0,1.0}, 

                    {0.1429,0.1429,0.25,0.2,0.1667,0.1667,0.25,0.3333,1.0,2.0,0.3333}, 

                    {0.125,0.125,0.2,0.1667,0.125,0.125,0.1667,0.25,0.5,1.0,0.25}, 
                    {0.1667,0.1667,0.3333,0.25,0.25,0.2,0.3333,1.0,3.0,4.0,1.0} 

            }; 

            ConsistencyIndex = ComputeConsistencyIndex(Weightssubcriteriastatic2, weightsSubCriteriaStaticResult, 11); 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] weightssubCriteriaDynamic = new double[,] { 

                    {1.0,2.0,0.1667}, 
                    {0.5,1.0,0.1667},  

                    {6.0,6.0,1.0} 

            }; 
            double[] weightsSubCriteriaDynamicResult = CalculateWeightsForEachCriterion(weightssubCriteriaDynamic, 3, "Weights of 

Sub-Criteria Dynamic:"); 

 
            double[,] weightssubCriteriaDynamic2 = new double[,] { 

                    {1.0,2.0,0.1667}, 

                    {0.5,1.0,0.1667},  
                    {6.0,6.0,1.0} 

            }; 

            ConsistencyIndex = ComputeConsistencyIndex(weightssubCriteriaDynamic2, weightsSubCriteriaDynamicResult, 3); 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] weightssubCriteriaEnv = new double[,] { 
                    {1.0,3.0,0.3333,4.0,0.25}, 

                    {0.3333,1.0,0.25,3.0,0.2},  

                    {3.0,4.0,1.0,5.0,0.5}, 
                    {0.25,0.3333,0.2,1.0,0.1667}, 

                    {4.0,5.0,2.0,6.0,1.0}   

            }; 

            double[] weightsSubCriteriaEnvironmentalResult = CalculateWeightsForEachCriterion(weightssubCriteriaEnv, 5, "Weights of 

Sub-Criteria Environmental:"); 

 
            double[,] weightssubCriteriaEnv2 = new double[,] { 
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                    {1.0,3.0,0.3333,4.0,0.25}, 

                    {0.3333,1.0,0.25,3.0,0.2},  
                    {3.0,4.0,1.0,5.0,0.5}, 

                    {0.25,0.3333,0.2,1.0,0.1667}, 

                    {4.0,5.0,2.0,6.0,1.0}   
            }; 

            ConsistencyIndex = ComputeConsistencyIndex(weightssubCriteriaEnv2, weightsSubCriteriaEnvironmentalResult, 5); 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] Others = new double[,] { 

                    {1.0,3.0,0.5,0.25}, 

                    {0.3333,1.0,0.3333,0.2},  
                    {2.0,3.0,1.0,0.3333}, 

                    {4.0,5.0,3.0,1.0}  
            }; 

            double[] weightsSubCriteriaOthersResult = CalculateWeightsForEachCriterion(Others, 4, "Weights of Sub-Criteria Others:"); 

 
            double[,] Others2 = new double[,] { 

                    {1.0,3.0,0.5,0.25}, 

                    {0.3333,1.0,0.3333,0.2},  

                    {2.0,3.0,1.0,0.3333}, 

                    {4.0,5.0,3.0,1.0} 

            }; 
            ConsistencyIndex = ComputeConsistencyIndex(Others2, weightsSubCriteriaOthersResult, 4); 

            ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

            //Calculate sub criteria aggregate weights with respect to final goal 
            Scale(weightsSubCriteriaStaticResult, weightsOfCriteriaResults[0]); 

            Scale(weightsSubCriteriaDynamicResult, weightsOfCriteriaResults[1]); 

            Scale(weightsSubCriteriaEnvironmentalResult, weightsOfCriteriaResults[2]); 
            Scale(weightsSubCriteriaOthersResult, weightsOfCriteriaResults[3]); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
            //Calculate sub criteria aggregate weights for ThermoCouple (alternative 1) 

            double ThermoCoupleFinalScore = 0.0; 

            double ThermisterFinalScore = 0.0; 
            double RTDFinalScore = 0.0; 

            double BimetallicFinalScore = 0.0; 

            double ThermometerFinalScore = 0.0; 
            double PyrometerFinalScore = 0.0; 

            double LCDDidplayFinalScore = 0.0; 

 
            for (int k = 0; k < IndeciesArray.Length; k++) 

            { 

                if (IndeciesArray[k] == AHP.SENSOR_THERMOCOUPLE) 
                { 

                    double[] ThermoCoupleAggregateSubCriteriaStatic = new double[11]; 

                    double[] ThermoCoupleAggregateSubCriteriaDynamic = new double[3]; 
                    double[] ThermoCoupleAggregateSubCriteriaEnvironmental = new double[5]; 

                    double[] ThermoCoupleAggregateSubCriteriaOthers = new double[4]; 

 
                    ThermoCoupleAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 

                    ThermoCoupleAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 

                    ThermoCoupleAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 
                    ThermoCoupleAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 

                    ThermoCoupleAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 

                    ThermoCoupleAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 
                    ThermoCoupleAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 

                    ThermoCoupleAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 

                    ThermoCoupleAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 
                    ThermoCoupleAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 

                    ThermoCoupleAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 

 
                    ThermoCoupleFinalScore = ThermoCoupleFinalScore + 

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaStatic); 

 
                    ThermoCoupleAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * 

weightsSubCriteriaDynamicResult[0]; 
                    ThermoCoupleAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * 

weightsSubCriteriaDynamicResult[1]; 

                    ThermoCoupleAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 
weightsSubCriteriaDynamicResult[2]; 

 

                    ThermoCoupleFinalScore = ThermoCoupleFinalScore + 

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaDynamic); 

 

                    ThermoCoupleAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[0]; 
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                    ThermoCoupleAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 
                    ThermoCoupleAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[2]; 

                    ThermoCoupleAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[3]; 

                    ThermoCoupleAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[4]; 
 

                    ThermoCoupleFinalScore = ThermoCoupleFinalScore + 

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaEnvironmental); 
 

                    ThermoCoupleAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 
                    ThermoCoupleAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 

                    ThermoCoupleAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    ThermoCoupleAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 
 

                    ThermoCoupleFinalScore = ThermoCoupleFinalScore + 

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaOthers); 

                    SensorRanks[k] = ThermoCoupleFinalScore; 

 

                    System.Console.Write("\n\n"); 
                    System.Console.Write("Thermo Couple Final Score = {0}", ThermoCoupleFinalScore); 

                } 

                ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
                //Calculate sub criteria aggregate weights for Thermister (alternative 2) 

                else if (IndeciesArray[k] == AHP.SENSOR_THERMISTER) 

                { 
                    double[] ThermisterAggregateSubCriteriaStatic = new double[11]; 

                    double[] ThermisterAggregateSubCriteriaDynamic = new double[3]; 

                    double[] ThermisterAggregateSubCriteriaEnvironmental = new double[5]; 
                    double[] ThermisterAggregateSubCriteriaOthers = new double[4]; 

 

                    ThermisterAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 
                    ThermisterAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 

                    ThermisterAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 

                    ThermisterAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 
                    ThermisterAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 

                    ThermisterAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 

                    ThermisterAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 
                    ThermisterAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 

                    ThermisterAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 

                    ThermisterAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 
                    ThermisterAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 

 

                    ThermisterFinalScore = ThermisterFinalScore + GetSummationOfVectorElements(ThermisterAggregateSubCriteriaStatic); 
 

                    ThermisterAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 

                    ThermisterAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 
                    ThermisterAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 

weightsSubCriteriaDynamicResult[2]; 

 
                    ThermisterFinalScore = ThermisterFinalScore + 

GetSummationOfVectorElements(ThermisterAggregateSubCriteriaDynamic); 

 
                    ThermisterAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[0]; 

                    ThermisterAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[1]; 

                    ThermisterAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2]; 

                    ThermisterAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[3]; 

                    ThermisterAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4]; 

 
                    ThermisterFinalScore = ThermisterFinalScore + 

GetSummationOfVectorElements(ThermisterAggregateSubCriteriaEnvironmental); 
 

                    ThermisterAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 

                    ThermisterAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 
                    ThermisterAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    ThermisterAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 

 

                    ThermisterFinalScore = ThermisterFinalScore + GetSummationOfVectorElements(ThermisterAggregateSubCriteriaOthers); 

 

                    System.Console.Write("\n\n"); 
                    System.Console.Write("Thermister Final Score = {0}", ThermisterFinalScore); 
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                    SensorRanks[k] = ThermisterFinalScore; 
                } 

                ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

                //Calculate sub criteria aggregate weights for RTD (alternative 3) 
                else if (IndeciesArray[k] == AHP.SENSOR_RTD) 

                { 

                    double[] RTDAggregateSubCriteriaStatic = new double[11]; 
                    double[] RTDAggregateSubCriteriaDynamic = new double[3]; 

                    double[] RTDAggregateSubCriteriaEnvironmental = new double[5]; 

                    double[] RTDAggregateSubCriteriaOthers = new double[4]; 
 

                    RTDAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 
                    RTDAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 

                    RTDAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 

                    RTDAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 
                    RTDAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 

                    RTDAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 

                    RTDAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 

                    RTDAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 

                    RTDAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 

                    RTDAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 
                    RTDAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 

 

                    RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaStatic); 
 

                    RTDAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 

                    RTDAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 
                    RTDAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * weightsSubCriteriaDynamicResult[2]; 

 

                    RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaDynamic); 
 

                    RTDAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[0]; 

                    RTDAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[1]; 

                    RTDAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2]; 

                    RTDAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[3]; 
                    RTDAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4]; 

 

                    RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaEnvironmental); 
 

                    RTDAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 

                    RTDAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 
                    RTDAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    RTDAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 

 
                    RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaOthers); 

                    SensorRanks[k] = RTDFinalScore; 

                } 
                else if (IndeciesArray[k] == AHP.SENSOR_BIMETALLIC) 

                { 

                    double[] BimetallicAggregateSubCriteriaStatic = new double[11]; 
                    double[] BimetallicAggregateSubCriteriaDynamic = new double[3]; 

                    double[] BimetallicAggregateSubCriteriaEnvironmental = new double[5]; 

                    double[] BimetallicAggregateSubCriteriaOthers = new double[4]; 
 

                    BimetallicAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 

                    BimetallicAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 
                    BimetallicAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 

                    BimetallicAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 

                    BimetallicAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 
                    BimetallicAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 

                    BimetallicAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 

                    BimetallicAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 
                    BimetallicAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 

                    BimetallicAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 
                    BimetallicAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 

 

                    BimetallicFinalScore = BimetallicFinalScore + GetSummationOfVectorElements(BimetallicAggregateSubCriteriaStatic); 
 

                    BimetallicAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 

                    BimetallicAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 

                    BimetallicAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 

weightsSubCriteriaDynamicResult[2]; 
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                    BimetallicFinalScore = BimetallicFinalScore + 

GetSummationOfVectorElements(BimetallicAggregateSubCriteriaDynamic); 
 

                    BimetallicAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[0]; 
                    BimetallicAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 

                    BimetallicAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2]; 
                    BimetallicAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[3]; 

                    BimetallicAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4]; 
 

                    BimetallicFinalScore = BimetallicFinalScore + 
GetSummationOfVectorElements(BimetallicAggregateSubCriteriaEnvironmental); 

 

                    BimetallicAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 
                    BimetallicAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 

                    BimetallicAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    BimetallicAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 

 

                    BimetallicFinalScore = BimetallicFinalScore + GetSummationOfVectorElements(BimetallicAggregateSubCriteriaOthers); 

                    SensorRanks[k] = BimetallicFinalScore; 
                } 

                else if (IndeciesArray[k] == AHP.SENSOR_THERMOMETER) 

                { 
                    double[] ThermometerAggregateSubCriteriaStatic = new double[11]; 

                    double[] ThermometerAggregateSubCriteriaDynamic = new double[3]; 

                    double[] ThermometerAggregateSubCriteriaEnvironmental = new double[5]; 
                    double[] ThermometerAggregateSubCriteriaOthers = new double[4]; 

 

                    ThermometerAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 
                    ThermometerAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 

                    ThermometerAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 

                    ThermometerAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 
                    ThermometerAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 

                    ThermometerAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 

                    ThermometerAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 
                    ThermometerAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 

                    ThermometerAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 

                    ThermometerAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 
                    ThermometerAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 

 

                    ThermometerFinalScore = ThermometerFinalScore + 
GetSummationOfVectorElements(ThermometerAggregateSubCriteriaStatic); 

 

                    ThermometerAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 
                    ThermometerAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 

                    ThermometerAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 

weightsSubCriteriaDynamicResult[2]; 
 

                    ThermometerFinalScore = ThermometerFinalScore + 

GetSummationOfVectorElements(ThermometerAggregateSubCriteriaDynamic); 
 

                    ThermometerAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[0]; 
                    ThermometerAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 

                    ThermometerAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[2]; 

                    ThermometerAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[3]; 
                    ThermometerAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[4]; 

 
                    ThermometerFinalScore = ThermometerFinalScore + 

GetSummationOfVectorElements(ThermometerAggregateSubCriteriaEnvironmental); 
 

                    ThermometerAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 

                    ThermometerAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 
                    ThermometerAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    ThermometerAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 

 

                    ThermometerFinalScore = ThermometerFinalScore + 

GetSummationOfVectorElements(ThermometerAggregateSubCriteriaOthers); 

                    SensorRanks[k] = ThermometerFinalScore; 
                } 
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                else if (IndeciesArray[k] == AHP.SENSOR_PYROMETER) 

                { 
                    double[] PyrometerAggregateSubCriteriaStatic = new double[11]; 

                    double[] PyrometerAggregateSubCriteriaDynamic = new double[3]; 

                    double[] PyrometerAggregateSubCriteriaEnvironmental = new double[5]; 
                    double[] PyrometerAggregateSubCriteriaOthers = new double[4]; 

 

                    PyrometerAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 
                    PyrometerAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 

                    PyrometerAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 

                    PyrometerAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 
                    PyrometerAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 

                    PyrometerAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 
                    PyrometerAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 

                    PyrometerAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 

                    PyrometerAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 
                    PyrometerAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 

                    PyrometerAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 

 

                    PyrometerFinalScore = PyrometerFinalScore + GetSummationOfVectorElements(PyrometerAggregateSubCriteriaStatic); 

 

                    PyrometerAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 
                    PyrometerAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 

                    PyrometerAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 

weightsSubCriteriaDynamicResult[2]; 
 

                    PyrometerFinalScore = PyrometerFinalScore + 

GetSummationOfVectorElements(PyrometerAggregateSubCriteriaDynamic); 
 

                    PyrometerAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[0]; 
                    PyrometerAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 

                    PyrometerAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2]; 
                    PyrometerAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[3]; 

                    PyrometerAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4]; 
 

                    PyrometerFinalScore = PyrometerFinalScore + 

GetSummationOfVectorElements(PyrometerAggregateSubCriteriaEnvironmental); 
 

                    PyrometerAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 

                    PyrometerAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 
                    PyrometerAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    PyrometerAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 

 
                    PyrometerFinalScore = PyrometerFinalScore + GetSummationOfVectorElements(PyrometerAggregateSubCriteriaOthers); 

                    SensorRanks[k] = PyrometerFinalScore; 

                } 
                else if (IndeciesArray[k] == AHP.SENSOR_LCD_DISPLAY) 

                { 

                    double[] LCDDidplayAggregateSubCriteriaStatic = new double[11]; 
                    double[] LCDDidplayAggregateSubCriteriaDynamic = new double[3]; 

                    double[] LCDDidplayAggregateSubCriteriaEnvironmental = new double[5]; 

                    double[] LCDDidplayAggregateSubCriteriaOthers = new double[4]; 
 

                    LCDDidplayAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 

                    LCDDidplayAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 
                    LCDDidplayAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 

                    LCDDidplayAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 

                    LCDDidplayAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 
                    LCDDidplayAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 

                    LCDDidplayAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 

                    LCDDidplayAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 
                    LCDDidplayAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 

                    LCDDidplayAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 
                    LCDDidplayAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 

 

                    LCDDidplayFinalScore = LCDDidplayFinalScore + 
GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaStatic); 

 

                    LCDDidplayAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 

                    LCDDidplayAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 

                    LCDDidplayAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 

weightsSubCriteriaDynamicResult[2]; 
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                    LCDDidplayFinalScore = LCDDidplayFinalScore + 

GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaDynamic); 
 

                    LCDDidplayAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[0]; 
                    LCDDidplayAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 

                    LCDDidplayAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[2]; 

                    LCDDidplayAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[3]; 
                    LCDDidplayAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[4]; 
 

                    LCDDidplayFinalScore = LCDDidplayFinalScore + 

GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaEnvironmental); 
 

                    LCDDidplayAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 

                    LCDDidplayAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 

                    LCDDidplayAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    LCDDidplayAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 

 
                    LCDDidplayFinalScore = LCDDidplayFinalScore + 

GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaOthers); 

                    SensorRanks[k] = LCDDidplayFinalScore; 
                } 

            } 

 
            textBoxResults.AppendText("\n\n"); 

            textBoxResults.AppendText("\nSensor Ranks: \n"); 

            for (int j = 0; j < SensorRanks.Length; j++) 
            { 

                textBoxResults.AppendText("" + SensorRanks[j] + "\n"); 

            } 
 

            return SensorRanks; 

        } 
    } 

} 
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4. ChemicalProcess.cs File 
 

using System; 

using System.Collections.Generic; 

using System.Text; 
 

namespace AhpCaseStudy1GUI 

{ 
    class ChemicalReactions 

    { 

        public System.Windows.Forms.TextBox textBoxResults; 
 

        void Print(double[,] mat, int nDimensionSize, string strTitle) 

        { 
            if (strTitle == "") 

                strTitle = "Matrix"; 

 
            //System.Console.WriteLine(strTitle); 

            textBoxResults.AppendText("\n"); 

            textBoxResults.AppendText(strTitle); 
            textBoxResults.AppendText("\n"); 

            textBoxResults.AppendText("\n"); 

            for (int i = 0; i < nDimensionSize; i++) 
            { 

                for (int j = 0; j < nDimensionSize; j++) 

                { 
                    //System.Console.Write("{0}\t\t", mat[i, j]); 

                    textBoxResults.AppendText("     " + mat[i, j]); 

                    //textBoxResults.Update(); 
                } 

                //System.Console.Write("\n"); 
                textBoxResults.AppendText("\n"); 

            } 

 
            //System.Console.Write("\n\n"); 

            textBoxResults.AppendText("\n\n"); 

        } 
 

        void Print(double[] vector, int nDimensionSize) 

        { 
            //System.Console.WriteLine("Relative Weight Vector = "); 

            textBoxResults.AppendText("Relative Weight Vector = "); 

            for (int i = 0; i < nDimensionSize; i++) 
            { 

                //System.Console.Write("{0}\t\t", vector[i]); 

                textBoxResults.AppendText("     " + vector[i]); 
            } 

            //System.Console.Write("\n"); 

            textBoxResults.AppendText("\n"); 
        } 

 

        void Scale(double[] vector, double scaleFactor) 
        { 

            for (int i = 0; i < vector.Length; i++) 

            { 
                vector[i] = vector[i] * scaleFactor;//vector[i] *= scaleFactor; 

            } 

            Print(vector, vector.Length); 
        } 

 

        double GetSummationOfVectorElements(double[] vector) 
        { 

            double Summation = 0.0; 

            for (int i = 0; i < vector.Length; i++) 
            { 

                Summation = Summation + vector[i]; 

            } 
            return Summation; 

        } 

 
        double[] CalculateWeightsForEachCriterion(double[,] expertAssesmentMatrix, int nDimensionSize, string strTitle) 

        { 

            //check for vald input values 
            double[] weightVector = new double[nDimensionSize]; 
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            if (expertAssesmentMatrix == null) 

                return weightVector; 
 

            Print(expertAssesmentMatrix, nDimensionSize, strTitle); 

 
            //Calculate the weight factor for each colmun 

            //The result is a vetor 

            double[] wieghtFactor = new double[nDimensionSize]; 
            for (int j = 0; j < nDimensionSize; j++) 

            { 

                double result = 0.0; 
                for (int k = 0; k < nDimensionSize; k++) 

                { 
                    result += expertAssesmentMatrix[k, j]; //result = result + mat1[k, j]; 

                } 

                wieghtFactor[j] = result; 
            } 

 

            double[,] mat1ImmediatResult = new double[nDimensionSize, nDimensionSize]; 

            for (int j = 0; j < nDimensionSize; j++) 

            { 

                for (int k = 0; k < nDimensionSize; k++) 
                { 

                    expertAssesmentMatrix[k, j] = expertAssesmentMatrix[k, j] / wieghtFactor[j]; 

                } 
            } 

 

            //Calculate the weight factor for each colmun 
            //The result is a vetor 

            for (int j = 0; j < nDimensionSize; j++) 

            { 
                double result = 0.0; 

                for (int k = 0; k < nDimensionSize; k++) 

                { 
                    result += expertAssesmentMatrix[j, k]; //result = result + mat1[k, j]; 

                } 

                weightVector[j] = result / nDimensionSize; 
            } 

 

            Print(weightVector, nDimensionSize); 
            

//System.Console.WriteLine("_____________________________________________________________________________________

_____________________________\n"); 
 

 

            return weightVector; 
        } 

 

        void FillSubMatrix(double[,] SourceMatrix, double[,] destinationSubMatrix, int[] IndeciesArray) 
        { 

            if (SourceMatrix == null || destinationSubMatrix == null || IndeciesArray == null) 

                return; 
 

            for (int i = 0; i < IndeciesArray.Length; i++) 

            { 
                for (int j = 0; j < IndeciesArray.Length; j++) 

                { 

                    //destinationSubMatrix[IndeciesArray[i], IndeciesArray[j]] = SourceMatrix[IndeciesArray[i], IndeciesArray[j]]; 
                    destinationSubMatrix[i, j] = SourceMatrix[IndeciesArray[i], IndeciesArray[j]]; 

                } 

            } 
        } 

 

        double ComputeConsistencyIndex(double[,] Matrix, double[] vector, int nDimensionSize) 
        { 

            //check for vald input values 
            double[] transposeVector = new double[nDimensionSize]; 

            double[] randomIndex = { 1.0, 0.5, 0.58, 0.9, 1.12, 1.24, 1.32 }; 

 
            if (Matrix == null) 

                return 0.0; 

 

            for (int j = 0; j < nDimensionSize; j++) 

            { 

                double result = 0.0; 
                for (int k = 0; k < nDimensionSize; k++) 
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                { 

                    result += (Matrix[j, k] * vector[k]); 
                } 

                transposeVector[j] = result; 

            } 
            double division = 0.0; 

            for (int k = 0; k < nDimensionSize; k++) 

            { 
                division += (transposeVector[k] / vector[k]); 

                //transposeVector[k] = transposeVector[k]/vector[k]; 

 
            } 

            division = division / nDimensionSize; 
 

            double consistencyIndex = (division - nDimensionSize) / (nDimensionSize - 1); 

 
            if (consistencyIndex < 0.0 && consistencyIndex > -0.0005) 

                consistencyIndex = 0.0; 

 

            if (consistencyIndex < 0.0005) 

                consistencyIndex = 0.0; 

 
            textBoxResults.AppendText("Consistency Index = "); 

            textBoxResults.AppendText("" + consistencyIndex + "\n"); 

 
            textBoxResults.AppendText("\nConsistency Ratio = "); 

            if (nDimensionSize > randomIndex.Length) 

                textBoxResults.AppendText("" + (consistencyIndex / 1.59)); 
            else 

                textBoxResults.AppendText("" + (consistencyIndex / randomIndex[nDimensionSize - 1])); 

            textBoxResults.AppendText("\n"); 
            textBoxResults.AppendText("__________________________________________________________________________\n"); 

            return consistencyIndex; 

        } 
 

        public double[] SelectBestSensor(int[] IndeciesArray) 

        { 
            double[] SensorRanks = new double[IndeciesArray.Length]; 

            AHPSubCriteria ReturnSubMatrices = new AHPSubCriteria(); 

            ReturnSubMatrices.CreateSubMatrices(IndeciesArray.Length); 
            AHPSubCriteria ReturnSubMatricesNotNormalized = new AHPSubCriteria(); 

            ReturnSubMatricesNotNormalized.CreateSubMatrices(IndeciesArray.Length); 

 
            double[,] MaximumTempMatrix = new double[,] { 

                    {1.0,3.0,1.0,9.0,4.0,6.0,4.0}, 

                    {0.3333,1.0,0.3333,6.0,2.0,5.0,2.0},  
                    {1.0,3.0,1.0,9.0,4.0,6.0,4.0}, 

                    {0.1111,0.1667,0.1111,1.0,0.1667,0.3333,0.1667}, 

                    {0.25,0.5,0.25,6.0,1.0,4.0,1.0}, 
                    {0.1667,0.2,0.1667,3.0,0.25,1.0,0.25}, 

                    {0.25,0.5,0.25,6.0,1.0,4.0,1.0} 

            }; 
            FillSubMatrix(MaximumTempMatrix, ReturnSubMatrices.MaximumTempMatrix, IndeciesArray); 

            double[] MaximumTempMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MaximumTempMatrix, 

IndeciesArray.Length, "Maximum Operating Temprature: "); 
 

            FillSubMatrix(MaximumTempMatrix, ReturnSubMatricesNotNormalized.MaximumTempMatrix, IndeciesArray); 

            double ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MaximumTempMatrix, 
MaximumTempMatrixResult, IndeciesArray.Length); 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] MinimumTempMatrix = new double[,] { 
                    {1.0,2.0,2.0,0.5,0.5,0.125,0.3333}, 

                    {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},  

                    {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25}, 
                    {2.0,3.0,3.0,1.0,1.0,0.25,0.5}, 

                    {2.0,3.0,3.0,1.0,1.0,0.25,0.5}, 
                    {8.0,8.0,8.0,4.0,4.0,1.0,4.0}, 

                    {3.0,4.0,4.0,2.0,2.0,0.25,1.0} 

            }; 
            FillSubMatrix(MinimumTempMatrix, ReturnSubMatrices.MinimumTempMatrix, IndeciesArray); 

            double[] MinimumTempMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MinimumTempMatrix, 

IndeciesArray.Length, "Minimum Operating Temprature: "); 

 

            FillSubMatrix(MinimumTempMatrix, ReturnSubMatricesNotNormalized.MinimumTempMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MinimumTempMatrix, 
MinimumTempMatrixResult, IndeciesArray.Length); 
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            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] TempCurveMtrix = new double[,] { 

                    {1.0,3.0,0.3333,5.0,5.0,4.0,2.0}, 

                    {0.3333,1.0,0.1667,2.0,2.0,1.0,0.3333},  
                    {3.0,6.0,1.0,6.0,6.0,6.0,4.0}, 

                    {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25}, 

                    {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25}, 
                    {0.25,1.0,0.1667,3.0,3.0,1.0,0.5}, 

                    {0.5,3.0,0.25,4.0,4.0,2.0,1.0} 

            }; 
            FillSubMatrix(TempCurveMtrix, ReturnSubMatrices.TempCurveMtrix, IndeciesArray); 

            double[] TempCurveMtrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TempCurveMtrix, 
IndeciesArray.Length, "Temperature Curve:"); 

 

            FillSubMatrix(TempCurveMtrix, ReturnSubMatricesNotNormalized.TempCurveMtrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TempCurveMtrix, TempCurveMtrixResult, 

IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] MaxSensitivityMatrix = new double[,] { 

                    {1.0,0.1111,0.2,2.0,2.0,2.0,0.3333}, 
                    {9.0,1.0,4.0,9.0,9.0,6.0,4.0},  

                    {5.0,0.25,1.0,4.0,5.0,4.0,2.0}, 

                    {0.5,0.1111,0.25,1.0,2.0,2.0,0.25}, 
                    {0.5,.1111,0.2,0.5,1.0,1.0,0.25}, 

                    {0.5,0.1667,0.25,0.5,1.0,1.0,0.25}, 

                    {3.0,0.25,0.5,4.0,4.0,4.0,1.0} 
            }; 

            FillSubMatrix(MaxSensitivityMatrix, ReturnSubMatrices.MaxSensitivityMatrix, IndeciesArray); 

            double[] MaxSensitivityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MaxSensitivityMatrix, 
IndeciesArray.Length, "Maximum Sensitivity Region:"); 

 

            FillSubMatrix(MaxSensitivityMatrix, ReturnSubMatricesNotNormalized.MaxSensitivityMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MaxSensitivityMatrix, 

MaxSensitivityMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] SelfHeatingMatrix = new double[,] { 

                    {1.0,8.0,3.0,3.0,1.0,1.0,2.0}, 
                    {0.125,1.0,0.2,0.25,0.2,0.1667,0.25},  

                    {0.3333,5.0,1.0,0.5,0.5,0.3333,1.0}, 

                    {0.3333,4.0,2.0,1.0,1.0,0.5,1.0}, 
                    {1.0,5.0,2.0,1.0,1.0,1.0,2.0}, 

                    {1.0,6.0,3.0,2.0,1.0,1.0,1.0}, 

                    {0.5,4.0,1.0,1.0,0.5,1.0,1.0} 
            }; 

            FillSubMatrix(SelfHeatingMatrix, ReturnSubMatrices.SelfHeatingMatrix, IndeciesArray); 

            double[] SelfHeatingMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.SelfHeatingMatrix, 
IndeciesArray.Length, "Self-Heating Issues:"); 

 

            FillSubMatrix(SelfHeatingMatrix, ReturnSubMatricesNotNormalized.SelfHeatingMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.SelfHeatingMatrix, 

SelfHeatingMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] LongTermStabilityMatrix = new double[,] { 

                    {1.0,0.25,0.1667,2.0,0.3333,0.5,0.25}, 
                    {4.0,1.0,0.3333,4.0,3.0,3.0,2.0},  

                    {6.0,3.0,1.0,8.0,4.0,5.0,3.0}, 

                    {0.5,0.25,0.125,1.0,0.3333,0.3333,0.25}, 
                    {3.0,0.3333,0.25,3.0,1.0,2.0,0.5}, 

                    {2.0,0.3333,0.2,3.0,0.5,1.0,0.3333}, 

                    {4.0,0.5,0.3333,4.0,2.0,3.0,1.0} 
            }; 

            FillSubMatrix(LongTermStabilityMatrix, ReturnSubMatrices.LongTermStabilityMatrix, IndeciesArray); 
            double[] LongTermStabilityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.LongTermStabilityMatrix, 

IndeciesArray.Length, "Long Term Stability and Accuracy:"); 

 
            FillSubMatrix(LongTermStabilityMatrix, ReturnSubMatricesNotNormalized.LongTermStabilityMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.LongTermStabilityMatrix, 

LongTermStabilityMatrixResult, IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] TypTempCoeffMatrix = new double[,] { 
                    {1.0,0.1667,0.3333,4.0,4.0,4.0,0.5}, 
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                    {6.0,1.0,3.0,6.0,6.0,6.0,6.0},  

                    {3.0,0.3333,1.0,5.0,6.0,5.0,2.0}, 
                    {0.25,0.1667,0.2,1.0,1.0,1.0,0.2}, 

                    {0.25,0.1667,0.1667,1.0,1.0,1.0,0.2}, 

                    {0.25,0.1667,0.2,1.0,1.0,1.0,0.3333}, 
                    {2.0,0.1667,0.5,5.0,5.0,3.0,1.0} 

            }; 

            FillSubMatrix(TypTempCoeffMatrix, ReturnSubMatrices.TypTempCoeffMatrix, IndeciesArray); 
            double[] TypTempCoeffMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypTempCoeffMatrix, 

IndeciesArray.Length, "Typical Temperature Coefficient:"); 

 
            FillSubMatrix(TypTempCoeffMatrix, ReturnSubMatricesNotNormalized.TypTempCoeffMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypTempCoeffMatrix, 
TypTempCoeffMatrixResult, IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] ExtWiresMatrix = new double[,] { 

                    {1.0,0.1667,0.16667,0.125,0.125,0.125,0.125}, 

                    {6.0,1.0,1.0,0.25,0.25,0.25,0.25},  

                    {6.0,1.0,1.0,0.25,0.25,0.25,0.25}, 

                    {8.0,4.0,4.0,1.0,1.0,1.0,1.0}, 

                    {8.0,4.0,4.0,1.0,1.0,1.0,1.0}, 
                    {8.0,4.0,4.0,1.0,1.0,1.0,1.0}, 

                    {8.0,4.0,4.0,1.0,1.0,1.0,1.0} 

            }; 
            FillSubMatrix(ExtWiresMatrix, ReturnSubMatrices.ExtWiresMatrix, IndeciesArray); 

            double[] ExtWiresMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.ExtWiresMatrix, 

IndeciesArray.Length, "Extension Wires:"); 
 

            FillSubMatrix(ExtWiresMatrix, ReturnSubMatricesNotNormalized.ExtWiresMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.ExtWiresMatrix, ExtWiresMatrixResult, 
IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] LongWireMatrix = new double[,] { 

                    {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667}, 

                    {3.0,1.0,3.0,0.5,0.5,0.5,0.5},  
                    {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667}, 

                    {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 

                    {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 
                    {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 

                    {6.0,2.0,6.0,1.0,1.0,1.0,1.0} 

            }; 
            FillSubMatrix(LongWireMatrix, ReturnSubMatrices.LongWireMatrix, IndeciesArray); 

            double[] LongWireMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.LongWireMatrix, 

IndeciesArray.Length, "Long Wire Runs From Sensor:"); 
 

            FillSubMatrix(LongWireMatrix, ReturnSubMatricesNotNormalized.LongWireMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.LongWireMatrix, LongWireMatrixResult, 
IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] MeasureParaMatrix = new double[,] { 

                    {1.0,4.0,3.0,5.0,5.0,6.0,1.0}, 

                    {0.25,1.0,0.5,4.0,4.0,5.0,0.3333},  
                    {0.3333,2.0,1.0,3.0,3.0,4.0,0.3333}, 

                    {0.2,0.25,0.3333,1.0,1.0,3.0,0.2}, 

                    {0.2,0.25,0.3333,1.0,1.0,3.0,0.2}, 
                    {0.1667,0.2,0.25,0.3333,0.3333,1.0,0.1667}, 

                    {1.0,3.0,3.0,5.0,5.0,6.0,1.0} 

            }; 
            FillSubMatrix(MeasureParaMatrix, ReturnSubMatrices.MeasureParaMatrix, IndeciesArray); 

            double[] MeasureParaMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MeasureParaMatrix, 

IndeciesArray.Length, "Measurement Parameter:"); 
 

            FillSubMatrix(MeasureParaMatrix, ReturnSubMatricesNotNormalized.MeasureParaMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MeasureParaMatrix, 

MeasureParaMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] TempMeasureMatrix = new double[,] { 

                    {1.0,0.25,0.2,0.3333,0.3333,0.5,0.1667}, 

                    {4.0,1.0,0.3333,1.0,3.0,3.0,0.1667},  

                    {5.0,3.0,1.0,4.0,5.0,5.0,0.5}, 

                    {3.0,1.0,0.25,1.0,2.0,2.0,0.25}, 
                    {3.0,0.3333,0.2,0.5,1.0,1.0,0.1667}, 
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                    {2.0,0.3333,0.2,0.5,1.0,1.0,0.2}, 

                    {6.0,6.0,2.0,4.0,6.0,5.0,1.0} 
            }; 

            FillSubMatrix(TempMeasureMatrix, ReturnSubMatrices.TempMeasureMatrix, IndeciesArray); 

            double[] TempMeasureMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TempMeasureMatrix, 
IndeciesArray.Length, "Temperature Measurement:"); 

 

            FillSubMatrix(TempMeasureMatrix, ReturnSubMatricesNotNormalized.TempMeasureMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TempMeasureMatrix, 

TempMeasureMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] StimulationElecMatrix = new double[,] { 
                    {1.0,4.0,3.0,1.0,1.0,2.0,6.0},                   

                    {0.25,1.0,0.5,0.2,0.2,0.25,3.0},  

                    {0.3333,2.0,1.0,0.25,0.25,0.5,3.0}, 
                    {1.0,5.0,4.0,1.0,1.0,2.0,6.0}, 

                    {1.0,5.0,4.0,1.0,1.0,3.0,6.0}, 

                    {0.5,4.0,2.0,0.5,0.3333,1.0,4.0}, 

                    {0.1667,0.3333,0.3333,0.1667,0.1667,0.25,1.0} 

            }; 

            FillSubMatrix(StimulationElecMatrix, ReturnSubMatrices.StimulationElecMatrix, IndeciesArray); 
            double[] StimulationElecMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.StimulationElecMatrix, 

IndeciesArray.Length, "Stimulation Electronics Required:"); 

 
            FillSubMatrix(StimulationElecMatrix, ReturnSubMatricesNotNormalized.StimulationElecMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.StimulationElecMatrix, 

StimulationElecMatrixResult, IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] TypOutputLevelMatrix = new double[,] { 
                    {1.0,6.0,1.0,4.0,1.0,2.0,1.0}, 

                    {0.1667,1.0,0.1667,0.25,0.1667,0.2,0.125},  

                    {1.0,6.0,1.0,4.0,1.0,2.0,1.0}, 
                    {0.25,4.0,0.25,1.0,0.25,0.3333,0.1667}, 

                    {1.0,6.0,1.0,4.0,1.0,3.0,1.0}, 

                    {0.5,5.0,0.5,3.0,0.3333,1.0,0.3333}, 
                    {1.0,8.0,1.0,6.0,1.0,3.0,1.0} 

            }; 

            FillSubMatrix(TypOutputLevelMatrix, ReturnSubMatrices.TypOutputLevelMatrix, IndeciesArray); 
            double[] TypOutputLevelMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypOutputLevelMatrix, 

IndeciesArray.Length, "Typical Output Levels Per Degree Celsius:"); 

 
            FillSubMatrix(TypOutputLevelMatrix, ReturnSubMatricesNotNormalized.TypOutputLevelMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypOutputLevelMatrix, 

TypOutputLevelMatrixResult, IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] TypFastThertimeConsMatrix = new double[,] { 
                    {1.0,3.0,4.0,6.0,5.0,1.0,3.0}, 

                    {0.3333,1.0,2.0,4.0,3.0,0.3333,1.0},  

                    {0.25,0.5,1.0,2.0,2.0,0.25,1.0}, 
                    {0.1667,0.25,0.5,1.0,0.5,0.1667,0.3333}, 

                    {0.2,0.3333,0.5,2.0,1.0,0.2,0.3333}, 

                    {1.0,3.0,4.0,6.0,5.0,1.0,3.0}, 
                    {0.3333,1.0,1.0,3.0,3.0,0.3333,1.0} 

            }; 

            FillSubMatrix(TypFastThertimeConsMatrix, ReturnSubMatrices.TypFastThertimeConsMatrix, IndeciesArray); 
            double[] TypFastThertimeConsMatrixResult = 

CalculateWeightsForEachCriterion(ReturnSubMatrices.TypFastThertimeConsMatrix, IndeciesArray.Length, "Typical Fast Thermal 

Time Constant:"); 
 

            FillSubMatrix(TypFastThertimeConsMatrix, ReturnSubMatricesNotNormalized.TypFastThertimeConsMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypFastThertimeConsMatrix, 
TypFastThertimeConsMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] TypSmallSizMatrix = new double[,] { 

                    {1.0,2.0,3.0,4.0,5.0,6.0,5.0}, 
                    {0.5,1.0,2.0,3.0,4.0,5.0,4.0},  

                    {0.3333,0.5,1.0,2.0,4.0,6.0,4.0}, 

                    {0.25,0.3333,0.5,1.0,2.0,3.0,2.0}, 

                    {0.2,0.25,0.25,0.5,1.0,3.0,1.0}, 

                    {0.1667,0.2,0.1667,0.3333,0.3333,1.0,0.5}, 

                    {0.2,0.25,0.25,0.5,1.0,2.0,1.0} 
            }; 
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            FillSubMatrix(TypSmallSizMatrix, ReturnSubMatrices.TypSmallSizMatrix, IndeciesArray); 

            double[] TypSmallSizMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypSmallSizMatrix, 
IndeciesArray.Length, "Typical Small Size:"); 

 

            FillSubMatrix(TypSmallSizMatrix, ReturnSubMatricesNotNormalized.TypSmallSizMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypSmallSizMatrix, 

TypSmallSizMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] NoiseImmunityMatrix = new double[,] { 

                    {1.0,0.1667,0.3333,0.25,0.25,0.5,0.25}, 
                    {6.0,1.0,4.0,3.0,3.0,5.0,3.0},  

                    {3.0,0.25,1.0,0.5,0.5,2.0,0.5}, 
                    {4.0,0.3333,2.0,1.0,1.0,3.0,1.0}, 

                    {4.0,0.3333,2.0,1.0,1.0,4.0,1.0}, 

                    {2.0,0.2,0.5,0.3333,0.25,1.0,0.25}, 
                    {4.0,0.3333,2.0,1.0,1.0,4.0,1.0} 

            }; 

            FillSubMatrix(NoiseImmunityMatrix, ReturnSubMatrices.NoiseImmunityMatrix, IndeciesArray); 

            double[] NoiseImmunityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.NoiseImmunityMatrix, 

IndeciesArray.Length, "Noise Immunity:"); 

 
            FillSubMatrix(NoiseImmunityMatrix, ReturnSubMatricesNotNormalized.NoiseImmunityMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.NoiseImmunityMatrix, 

NoiseImmunityMatrixResult, IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] FraDurMatrix = new double[,] { 
                    {1.0,6.0,3.0,6.0,8.0,3.0,4.0}, 

                    {0.1667,1.0,0.3333,2.0,3.0,0.3333,0.5},  

                    {0.3333,3.0,1.0,3.0,4.0,2.0,3.0}, 
                    {0.1667,0.5,0.3333,1.0,3.0,0.25,0.3333}, 

                    {0.125,0.3333,0.25,0.3333,1.0,0.25,0.3333}, 

                    {0.3333,3.0,0.5,4.0,4.0,1.0,3.0}, 
                    {0.25,2.0,0.3333,3.0,3.0,0.3333,1.0}, 

                     

            }; 
            FillSubMatrix(FraDurMatrix, ReturnSubMatrices.FraDurMatrix, IndeciesArray); 

            double[] FraDurMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.FraDurMatrix, IndeciesArray.Length, 

"Fragility-Durability:"); 
 

            FillSubMatrix(FraDurMatrix, ReturnSubMatricesNotNormalized.FraDurMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.FraDurMatrix, FraDurMatrixResult, 
IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] HiThGrEnMatrix = new double[,] { 

                    {1.0,4.0,5.0,7.0,8.0,4.0,6.0}, 

                    {0.25,1.0,2.0,5.0,6.0,2.0,4.0},  
                    {0.2,0.5,1.0,3.0,3.0,0.5,2.0}, 

                    {0.1429,0.2,0.3333,1.0,1.0,0.25,0.5}, 

                    {0.125,0.1667,0.3333,1.0,1.0,0.2,0.3333}, 
                    {0.25,0.5,2.0,4.0,5.0,1.0,4.0}, 

                    {0.1667,0.25,0.5,2.0,3.0,0.25,1.0} 

            }; 
            FillSubMatrix(HiThGrEnMatrix, ReturnSubMatrices.HiThGrEnMatrix, IndeciesArray); 

            double[] HiThGrEnMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.HiThGrEnMatrix, 

IndeciesArray.Length, "High Thermal Gradient Environment:"); 
 

            FillSubMatrix(HiThGrEnMatrix, ReturnSubMatricesNotNormalized.HiThGrEnMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.HiThGrEnMatrix, HiThGrEnMatrixResult, 
IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] CorrResMatrix = new double[,] { 

                    {1.0,0.25,0.1667,0.5,0.1667,0.1667,0.25}, 
                    {4.0,1.0,0.3333,2.0,0.25,0.25,1.0},  

                    {6.0,3.0,1.0,4.0,1.0,1.0,4.0}, 

                    {2.0,0.5,0.25,1.0,0.25,0.25,0.5}, 
                    {6.0,4.0,1.0,4.0,1.0,1.0,3.0}, 

                    {6.0,4.0,1.0,4.0,1.0,1.0,3.0}, 

                    {4.0,1.0,0.25,2.0,0.3333,0.3333,1.0} 

            }; 

            FillSubMatrix(CorrResMatrix, ReturnSubMatrices.CorrResMatrix, IndeciesArray); 

            double[] CorrResMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.CorrResMatrix, IndeciesArray.Length, 
"Corrosion Resistance:"); 
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            FillSubMatrix(CorrResMatrix, ReturnSubMatricesNotNormalized.CorrResMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.CorrResMatrix, CorrResMatrixResult, 

IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] PointAreaMeasMatrix = new double[,] { 

                   {1.0,2.0,3.0,4.0,6.0,6.0,4.0}, 
                    {0.5,1.0,2.0,3.0,4.0,4.0,3.0},  

                    {0.3333,0.5,1.0,2.0,3.0,4.0,2.0}, 

                    {0.25,0.3333,0.5,1.0,2.0,2.0,0.5}, 
                    {0.1667,0.25,0.3333,0.5,1.0,1.0,0.5}, 

                    {0.1667,0.25,0.25,0.5,1.0,1.0,2.0}, 
                    {0.25,0.5,0.3333,2.0,2.0,0.5,1.0} 

            }; 

            FillSubMatrix(PointAreaMeasMatrix, ReturnSubMatrices.PointAreaMeasMatrix, IndeciesArray); 
            double[] PointAreaMeasMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.PointAreaMeasMatrix, 

IndeciesArray.Length, "Point or Area Measurement:"); 

 

            FillSubMatrix(PointAreaMeasMatrix, ReturnSubMatricesNotNormalized.PointAreaMeasMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.PointAreaMeasMatrix, 

PointAreaMeasMatrixResult, IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] ManuVarMatrix = new double[,] { 
                    {1.0, 0.3333, 0.1667,0.25,0.5,0.2,0.25}, 

                    {3.0, 1.0, 0.3333,0.5,2.0,0.25,0.5},  

                    {6.0, 3.0, 1.0,4.0,3.0,6.0,3.0}, 
                    {4.0,2.0,0.25,1.0,4.0,0.3333,0.5}, 

                    {2.0,0.5,0.3333,0.25,1.0,0.2,0.25}, 

                    {5.0,4.0,0.1667,3.0,5.0,1.0,2.0}, 
                    {4.0,2.0,0.3333,2.0,4.0,0.5,1.0} 

            }; 

            FillSubMatrix(ManuVarMatrix, ReturnSubMatrices.ManuVarMatrix, IndeciesArray); 
            double[] ManuVarMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.ManuVarMatrix, 

IndeciesArray.Length, "Manufacturing Variances:"); 

 
            FillSubMatrix(ManuVarMatrix, ReturnSubMatricesNotNormalized.ManuVarMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.ManuVarMatrix, ManuVarMatrixResult, 

IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] NistStanMatrix = new double[,] { 
                    {1.0   , 4.0, 1.0,1.0,1.0,4.0,5.0}, 

                    {0.25, 1.0, 0.25,0.25,0.25,1.0,2.0},  

                    {1.0, 4.0, 1.0,1.0,1.0,4.0,5.0}, 
                    {1.0,4.0,1.0,1.0,1.0,4.0,5.0}, 

                    {1.0,4.0,1.0,1.0,1.0,4.0,5.0}, 

                    {0.25,1.0,0.25,0.25,0.25,1.0,2.0}, 
                    {0.2,0.5,0.2,0.2,0.2,0.5,1.0} 

            }; 

            FillSubMatrix(NistStanMatrix, ReturnSubMatrices.NistStanMatrix, IndeciesArray); 
            double[] NistStanMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.NistStanMatrix, IndeciesArray.Length, 

"NIST Standards:"); 

 
            FillSubMatrix(NistStanMatrix, ReturnSubMatricesNotNormalized.NistStanMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.NistStanMatrix, NistStanMatrixResult, 

IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] CostMatrix = new double[,] { 
                    {1.0,1.0,6.0,3.0,3.0,6.0,3.0}, 

                    {1.0,1.0,6.0,3.0,3.0,6.0,3.0},  

                    {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25}, 
                    {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}, 

                    {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}, 
                    {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25}, 

                    {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0} 

            }; 
            FillSubMatrix(CostMatrix, ReturnSubMatrices.CostMatrix, IndeciesArray); 

            double[] CostMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.CostMatrix, IndeciesArray.Length, 

"Cost:"); 

 

            FillSubMatrix(CostMatrix, ReturnSubMatricesNotNormalized.CostMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.CostMatrix, CostMatrixResult, 
IndeciesArray.Length); 
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            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] weightsOfCriteria = new double[,] { 

                    {1.0,2.0,1.0,4.0}, 

                    {0.5,1.0,0.5,2.0},  
                    {1.0,2.0,1.0,4.0}, 

                    {0.25,0.5,0.25,1.0} 

            }; 
 

            double[] weightsOfCriteriaResults = CalculateWeightsForEachCriterion(weightsOfCriteria, 4, "Weights of Criteria:"); 

 
            double[,] weightsOfCriteria2 = new double[,] { 

                    {1.0,2.0,1.0,4.0}, 
                    {0.5,1.0,0.5,2.0},  

                    {1.0,2.0,1.0,4.0}, 

                    {0.25,0.5,0.25,1.0} 
            }; 

            ConsistencyIndex = ComputeConsistencyIndex(weightsOfCriteria2, weightsOfCriteriaResults, 4); 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] Weightssubcriteriastatic = new double[,] { 

                   {1.0,1.0,5.0,4.0,4.0,1.0,5.0,6.0,7.0,8.0,6.0}, 

                    {1.0,1.0,5.0,4.0,4.0,1.0,5.0,6.0,7.0,8.0,6.0},  
                    {0.2,0.2,1.0,0.3333,0.3333,0.2,1.0,2.0,4.0,5.0,3.0}, 

                    {0.25,0.25,3.0,1.0,2.0,0.3333,3.0,3.0,5.0,6.0,4.0}, 

                    {0.25,0.25,3.0,0.5,1.0,0.25,3.0,5.0,6.0,8.0,4.0}, 
                    {1.0,1.0,5.0,3.0,4.0,1.0,5.0,6.0,7.0,9.0,6.0}, 

                    {0.2,0.2,1.0,0.3333,0.3333,0.2,1.0,1.0,4.0,6.0,3.0}, 

                    {0.1667,0.1667,0.5,0.3333,0.2,0.1667,1.0,1.0,3.0,4.0,1.0}, 
                    {0.1429,0.1429,0.25,0.2,0.1667,0.1429,0.25,0.3333,1.0,2.0,0.3333}, 

                    {0.125,0.125,0.2,0.1667,0.125,0.1111,0.1667,0.25,0.5,1.0,0.25}, 

                    {0.1667,0.1667,0.3333,0.25,0.25,0.1667,0.3333,1.0,3.0,4.0,1.0} 
            }; 

            double[] weightsSubCriteriaStaticResult = CalculateWeightsForEachCriterion(Weightssubcriteriastatic, 11, "Weights of Sub-

Criteria Static:"); 
 

            double[,] Weightssubcriteriastatic2 = new double[,] { 

                    {1.0,1.0,5.0,4.0,4.0,1.0,5.0,6.0,7.0,8.0,6.0}, 
                    {1.0,1.0,5.0,4.0,4.0,1.0,5.0,6.0,7.0,8.0,6.0},  

                    {0.2,0.2,1.0,0.3333,0.3333,0.2,1.0,2.0,4.0,5.0,3.0}, 

                    {0.25,0.25,3.0,1.0,2.0,0.3333,3.0,3.0,5.0,6.0,4.0}, 
                    {0.25,0.25,3.0,0.5,1.0,0.25,3.0,5.0,6.0,8.0,4.0}, 

                    {1.0,1.0,5.0,3.0,4.0,1.0,5.0,6.0,7.0,9.0,6.0}, 

                    {0.2,0.2,1.0,0.3333,0.3333,0.2,1.0,1.0,4.0,6.0,3.0}, 
                    {0.1667,0.1667,0.5,0.3333,0.2,0.1667,1.0,1.0,3.0,4.0,1.0}, 

                    {0.1429,0.1429,0.25,0.2,0.1667,0.1429,0.25,0.3333,1.0,2.0,0.3333}, 

                    {0.125,0.125,0.2,0.1667,0.125,0.1111,0.1667,0.25,0.5,1.0,0.25}, 
                    {0.1667,0.1667,0.3333,0.25,0.25,0.1667,0.3333,1.0,3.0,4.0,1.0} 

                 

                     
            }; 

            ConsistencyIndex = ComputeConsistencyIndex(Weightssubcriteriastatic2, weightsSubCriteriaStaticResult, 11); 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] weightssubCriteriaDynamic = new double[,] { 

                    {1.0,2.0,0.1429}, 

                    {0.5,1.0,0.1429},  
                    {7.0,7.0,1.0} 

            }; 

            double[] weightsSubCriteriaDynamicResult = CalculateWeightsForEachCriterion(weightssubCriteriaDynamic, 3, "Weights of 
Sub-Criteria Dynamic:"); 

 

            double[,] weightssubCriteriaDynamic2 = new double[,] { 
                    {1.0,2.0,0.1429}, 

                    {0.5,1.0,0.1429},  

                    {7.0,7.0,1.0} 
            }; 

            ConsistencyIndex = ComputeConsistencyIndex(weightssubCriteriaDynamic2, weightsSubCriteriaDynamicResult, 3); 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] weightssubCriteriaEnv = new double[,] { 

                    {1.0,4.0,0.5,4.0,0.25}, 
                    {0.25,1.0,0.25,2.0,0.1667},  

                    {2.0,4.0,1.0,4.0,0.3333}, 

                    {0.25,0.5,0.25,1.0,0.1667}, 

                    {4.0,6.0,3.0,6.0,1.0}   

            }; 

            double[] weightsSubCriteriaEnvironmentalResult = CalculateWeightsForEachCriterion(weightssubCriteriaEnv, 5, "Weights of 
Sub-Criteria Environmental:"); 
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            double[,] weightssubCriteriaEnv2 = new double[,] { 
                    {1.0,4.0,0.5,4.0,0.25}, 

                    {0.25,1.0,0.25,2.0,0.1667},  

                    {2.0,4.0,1.0,4.0,0.3333}, 
                    {0.25,0.5,0.25,1.0,0.1667}, 

                    {4.0,6.0,3.0,6.0,1.0}    

            }; 
            ConsistencyIndex = ComputeConsistencyIndex(weightssubCriteriaEnv2, weightsSubCriteriaEnvironmentalResult, 5); 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] Others = new double[,] { 
                    {1.0,3.0,0.5,0.25}, 

                    {0.3333,1.0,0.3333,0.2},  
                    {2.0,3.0,1.0,0.3333}, 

                    {4.0,5.0,3.0,1.0}  

            }; 
            double[] weightsSubCriteriaOthersResult = CalculateWeightsForEachCriterion(Others, 4, "Weights of Sub-Criteria Others:"); 

 

            double[,] Others2 = new double[,] { 

                   {1.0,3.0,0.5,0.25}, 

                    {0.3333,1.0,0.3333,0.2},  

                    {2.0,3.0,1.0,0.3333}, 
                    {4.0,5.0,3.0,1.0} 

            }; 

            ConsistencyIndex = ComputeConsistencyIndex(Others2, weightsSubCriteriaOthersResult, 4); 
            ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

            //Calculate sub criteria aggregate weights with respect to final goal 

            Scale(weightsSubCriteriaStaticResult, weightsOfCriteriaResults[0]); 
            Scale(weightsSubCriteriaDynamicResult, weightsOfCriteriaResults[1]); 

            Scale(weightsSubCriteriaEnvironmentalResult, weightsOfCriteriaResults[2]); 

            Scale(weightsSubCriteriaOthersResult, weightsOfCriteriaResults[3]); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

            //Calculate sub criteria aggregate weights for ThermoCouple (alternative 1) 
            double ThermoCoupleFinalScore = 0.0; 

            double ThermisterFinalScore = 0.0; 

            double RTDFinalScore = 0.0; 
            double BimetallicFinalScore = 0.0; 

            double ThermometerFinalScore = 0.0; 

            double PyrometerFinalScore = 0.0; 
            double LCDDidplayFinalScore = 0.0; 

 

            for (int k = 0; k < IndeciesArray.Length; k++) 
            { 

                if (IndeciesArray[k] == AHP.SENSOR_THERMOCOUPLE) 

                { 
                    double[] ThermoCoupleAggregateSubCriteriaStatic = new double[11]; 

                    double[] ThermoCoupleAggregateSubCriteriaDynamic = new double[3]; 

                    double[] ThermoCoupleAggregateSubCriteriaEnvironmental = new double[5]; 
                    double[] ThermoCoupleAggregateSubCriteriaOthers = new double[4]; 

 

                    ThermoCoupleAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 
                    ThermoCoupleAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 

                    ThermoCoupleAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 

                    ThermoCoupleAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 
                    ThermoCoupleAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 

                    ThermoCoupleAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 

                    ThermoCoupleAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 
                    ThermoCoupleAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 

                    ThermoCoupleAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 

                    ThermoCoupleAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 
                    ThermoCoupleAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 

 

                    ThermoCoupleFinalScore = ThermoCoupleFinalScore + 
GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaStatic); 

 
                    ThermoCoupleAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * 

weightsSubCriteriaDynamicResult[0]; 

                    ThermoCoupleAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * 
weightsSubCriteriaDynamicResult[1]; 

                    ThermoCoupleAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 

weightsSubCriteriaDynamicResult[2]; 

 

                    ThermoCoupleFinalScore = ThermoCoupleFinalScore + 

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaDynamic); 
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                    ThermoCoupleAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[0]; 
                    ThermoCoupleAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 

                    ThermoCoupleAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[2]; 

                    ThermoCoupleAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[3]; 
                    ThermoCoupleAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[4]; 

 
                    ThermoCoupleFinalScore = ThermoCoupleFinalScore + 

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaEnvironmental); 
 

                    ThermoCoupleAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 

                    ThermoCoupleAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 
                    ThermoCoupleAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    ThermoCoupleAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 

 

                    ThermoCoupleFinalScore = ThermoCoupleFinalScore + 

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaOthers); 

                    SensorRanks[k] = ThermoCoupleFinalScore; 
 

                    System.Console.Write("\n\n"); 

                    System.Console.Write("Thermo Couple Final Score = {0}", ThermoCoupleFinalScore); 
                } 

                ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

                //Calculate sub criteria aggregate weights for Thermister (alternative 2) 
                else if (IndeciesArray[k] == AHP.SENSOR_THERMISTER) 

                { 

                    double[] ThermisterAggregateSubCriteriaStatic = new double[11]; 
                    double[] ThermisterAggregateSubCriteriaDynamic = new double[3]; 

                    double[] ThermisterAggregateSubCriteriaEnvironmental = new double[5]; 

                    double[] ThermisterAggregateSubCriteriaOthers = new double[4]; 
 

                    ThermisterAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 

                    ThermisterAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 
                    ThermisterAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 

                    ThermisterAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 

                    ThermisterAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 
                    ThermisterAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 

                    ThermisterAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 

                    ThermisterAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 
                    ThermisterAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 

                    ThermisterAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 

                    ThermisterAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 
 

                    ThermisterFinalScore = ThermisterFinalScore + GetSummationOfVectorElements(ThermisterAggregateSubCriteriaStatic); 

 
                    ThermisterAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 

                    ThermisterAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 

                    ThermisterAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 
weightsSubCriteriaDynamicResult[2]; 

 

                    ThermisterFinalScore = ThermisterFinalScore + 
GetSummationOfVectorElements(ThermisterAggregateSubCriteriaDynamic); 

 

                    ThermisterAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[0]; 

                    ThermisterAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 
                    ThermisterAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2]; 

                    ThermisterAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[3]; 
                    ThermisterAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4]; 

 
                    ThermisterFinalScore = ThermisterFinalScore + 

GetSummationOfVectorElements(ThermisterAggregateSubCriteriaEnvironmental); 

 
                    ThermisterAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 

                    ThermisterAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 

                    ThermisterAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    ThermisterAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 

 

                    ThermisterFinalScore = ThermisterFinalScore + GetSummationOfVectorElements(ThermisterAggregateSubCriteriaOthers); 
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                    System.Console.Write("\n\n"); 

                    System.Console.Write("Thermister Final Score = {0}", ThermisterFinalScore); 
 

                    SensorRanks[k] = ThermisterFinalScore; 

                } 
                ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

                //Calculate sub criteria aggregate weights for RTD (alternative 3) 

                else if (IndeciesArray[k] == AHP.SENSOR_RTD) 
                { 

                    double[] RTDAggregateSubCriteriaStatic = new double[11]; 

                    double[] RTDAggregateSubCriteriaDynamic = new double[3]; 
                    double[] RTDAggregateSubCriteriaEnvironmental = new double[5]; 

                    double[] RTDAggregateSubCriteriaOthers = new double[4]; 
 

                    RTDAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 

                    RTDAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 
                    RTDAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 

                    RTDAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 

                    RTDAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 

                    RTDAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 

                    RTDAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 

                    RTDAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 
                    RTDAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 

                    RTDAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 

                    RTDAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 
 

                    RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaStatic); 

 
                    RTDAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 

                    RTDAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 

                    RTDAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * weightsSubCriteriaDynamicResult[2]; 
 

                    RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaDynamic); 

 
                    RTDAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[0]; 

                    RTDAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 
                    RTDAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2]; 

                    RTDAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[3]; 

                    RTDAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4]; 
 

                    RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaEnvironmental); 

 
                    RTDAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 

                    RTDAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 

                    RTDAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 
                    RTDAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 

 

                    RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaOthers); 
                    SensorRanks[k] = RTDFinalScore; 

                } 

                else if (IndeciesArray[k] == AHP.SENSOR_BIMETALLIC) 
                { 

                    double[] BimetallicAggregateSubCriteriaStatic = new double[11]; 

                    double[] BimetallicAggregateSubCriteriaDynamic = new double[3]; 
                    double[] BimetallicAggregateSubCriteriaEnvironmental = new double[5]; 

                    double[] BimetallicAggregateSubCriteriaOthers = new double[4]; 

 
                    BimetallicAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 

                    BimetallicAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 

                    BimetallicAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 
                    BimetallicAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 

                    BimetallicAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 

                    BimetallicAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 
                    BimetallicAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 

                    BimetallicAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 
                    BimetallicAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 

                    BimetallicAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 

                    BimetallicAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 
 

                    BimetallicFinalScore = BimetallicFinalScore + GetSummationOfVectorElements(BimetallicAggregateSubCriteriaStatic); 

 

                    BimetallicAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 

                    BimetallicAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 

                    BimetallicAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 
weightsSubCriteriaDynamicResult[2]; 
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                    BimetallicFinalScore = BimetallicFinalScore + 
GetSummationOfVectorElements(BimetallicAggregateSubCriteriaDynamic); 

 

                    BimetallicAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[0]; 

                    BimetallicAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 
                    BimetallicAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2]; 

                    BimetallicAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[3]; 
                    BimetallicAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4]; 

 
                    BimetallicFinalScore = BimetallicFinalScore + 

GetSummationOfVectorElements(BimetallicAggregateSubCriteriaEnvironmental); 

 
                    BimetallicAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 

                    BimetallicAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 

                    BimetallicAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    BimetallicAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 

 

                    BimetallicFinalScore = BimetallicFinalScore + GetSummationOfVectorElements(BimetallicAggregateSubCriteriaOthers); 
                    SensorRanks[k] = BimetallicFinalScore; 

                } 

                else if (IndeciesArray[k] == AHP.SENSOR_THERMOMETER) 
                { 

                    double[] ThermometerAggregateSubCriteriaStatic = new double[11]; 

                    double[] ThermometerAggregateSubCriteriaDynamic = new double[3]; 
                    double[] ThermometerAggregateSubCriteriaEnvironmental = new double[5]; 

                    double[] ThermometerAggregateSubCriteriaOthers = new double[4]; 

 
                    ThermometerAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 

                    ThermometerAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 

                    ThermometerAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 
                    ThermometerAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 

                    ThermometerAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 

                    ThermometerAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 
                    ThermometerAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 

                    ThermometerAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 

                    ThermometerAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 
                    ThermometerAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 

                    ThermometerAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 

 
                    ThermometerFinalScore = ThermometerFinalScore + 

GetSummationOfVectorElements(ThermometerAggregateSubCriteriaStatic); 

 
                    ThermometerAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 

                    ThermometerAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 

                    ThermometerAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 
weightsSubCriteriaDynamicResult[2]; 

 

                    ThermometerFinalScore = ThermometerFinalScore + 
GetSummationOfVectorElements(ThermometerAggregateSubCriteriaDynamic); 

 

                    ThermometerAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[0]; 

                    ThermometerAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 
                    ThermometerAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[2]; 

                    ThermometerAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[3]; 

                    ThermometerAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[4]; 
 

                    ThermometerFinalScore = ThermometerFinalScore + 
GetSummationOfVectorElements(ThermometerAggregateSubCriteriaEnvironmental); 

 

                    ThermometerAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 
                    ThermometerAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 

                    ThermometerAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    ThermometerAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 

 

                    ThermometerFinalScore = ThermometerFinalScore + 

GetSummationOfVectorElements(ThermometerAggregateSubCriteriaOthers); 
                    SensorRanks[k] = ThermometerFinalScore; 
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                } 

                else if (IndeciesArray[k] == AHP.SENSOR_PYROMETER) 
                { 

                    double[] PyrometerAggregateSubCriteriaStatic = new double[11]; 

                    double[] PyrometerAggregateSubCriteriaDynamic = new double[3]; 
                    double[] PyrometerAggregateSubCriteriaEnvironmental = new double[5]; 

                    double[] PyrometerAggregateSubCriteriaOthers = new double[4]; 

 
                    PyrometerAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 

                    PyrometerAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 

                    PyrometerAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 
                    PyrometerAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 

                    PyrometerAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 
                    PyrometerAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 

                    PyrometerAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 

                    PyrometerAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 
                    PyrometerAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 

                    PyrometerAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 

                    PyrometerAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 

 

                    PyrometerFinalScore = PyrometerFinalScore + GetSummationOfVectorElements(PyrometerAggregateSubCriteriaStatic); 

 
                    PyrometerAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 

                    PyrometerAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 

                    PyrometerAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 
weightsSubCriteriaDynamicResult[2]; 

 

                    PyrometerFinalScore = PyrometerFinalScore + 
GetSummationOfVectorElements(PyrometerAggregateSubCriteriaDynamic); 

 

                    PyrometerAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[0]; 

                    PyrometerAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 
                    PyrometerAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2]; 

                    PyrometerAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[3]; 
                    PyrometerAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4]; 

 

                    PyrometerFinalScore = PyrometerFinalScore + 
GetSummationOfVectorElements(PyrometerAggregateSubCriteriaEnvironmental); 

 

                    PyrometerAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 
                    PyrometerAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 

                    PyrometerAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    PyrometerAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 
 

                    PyrometerFinalScore = PyrometerFinalScore + GetSummationOfVectorElements(PyrometerAggregateSubCriteriaOthers); 

                    SensorRanks[k] = PyrometerFinalScore; 
                } 

                else if (IndeciesArray[k] == AHP.SENSOR_LCD_DISPLAY) 

                { 
                    double[] LCDDidplayAggregateSubCriteriaStatic = new double[11]; 

                    double[] LCDDidplayAggregateSubCriteriaDynamic = new double[3]; 

                    double[] LCDDidplayAggregateSubCriteriaEnvironmental = new double[5]; 
                    double[] LCDDidplayAggregateSubCriteriaOthers = new double[4]; 

 

                    LCDDidplayAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 
                    LCDDidplayAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 

                    LCDDidplayAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 

                    LCDDidplayAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 
                    LCDDidplayAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 

                    LCDDidplayAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 

                    LCDDidplayAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 
                    LCDDidplayAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 

                    LCDDidplayAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 
                    LCDDidplayAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 

                    LCDDidplayAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 

 
                    LCDDidplayFinalScore = LCDDidplayFinalScore + 

GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaStatic); 

 

                    LCDDidplayAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 

                    LCDDidplayAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 

                    LCDDidplayAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 
weightsSubCriteriaDynamicResult[2]; 
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                    LCDDidplayFinalScore = LCDDidplayFinalScore + 
GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaDynamic); 

 

                    LCDDidplayAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[0]; 

                    LCDDidplayAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 
                    LCDDidplayAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[2]; 

                    LCDDidplayAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[3]; 

                    LCDDidplayAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[4]; 

 

                    LCDDidplayFinalScore = LCDDidplayFinalScore + 
GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaEnvironmental); 

 

                    LCDDidplayAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 

                    LCDDidplayAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 

                    LCDDidplayAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    LCDDidplayAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 
 

                    LCDDidplayFinalScore = LCDDidplayFinalScore + 

GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaOthers); 
                    SensorRanks[k] = LCDDidplayFinalScore; 

                } 

            } 
 

            textBoxResults.AppendText("\n\n"); 

            textBoxResults.AppendText("\nSensor Ranks: \n"); 
            for (int j = 0; j < SensorRanks.Length; j++) 

            { 

                textBoxResults.AppendText("" + SensorRanks[j] + "\n"); 
            } 

 

            return SensorRanks; 
        } 

    } 

} 
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5. HVAC.cs File 
 

using System; 

using System.Collections.Generic; 
using System.Text; 

 
namespace AhpCaseStudy1GUI 

{ 

    class HVAC 
    { 

        public System.Windows.Forms.TextBox textBoxResults; 

 
        void Print(double[,] mat, int nDimensionSize, string strTitle) 

        { 

            if (strTitle == "") 
                strTitle = "Matrix"; 

 

            //System.Console.WriteLine(strTitle); 
            textBoxResults.AppendText("\n"); 

            textBoxResults.AppendText(strTitle); 

            textBoxResults.AppendText("\n"); 
            textBoxResults.AppendText("\n"); 

            for (int i = 0; i < nDimensionSize; i++) 

            { 
                for (int j = 0; j < nDimensionSize; j++) 

                { 

                    //System.Console.Write("{0}\t\t", mat[i, j]); 
                    textBoxResults.AppendText("     " + mat[i, j]); 

                    //textBoxResults.Update(); 

                } 
                //System.Console.Write("\n"); 

                textBoxResults.AppendText("\n"); 

            } 
 

            //System.Console.Write("\n\n"); 

            textBoxResults.AppendText("\n\n"); 
        } 

 

        void Print(double[] vector, int nDimensionSize) 
        { 

            //System.Console.WriteLine("Relative Weight Vector = "); 

            textBoxResults.AppendText("Relative Weight Vector = "); 
            for (int i = 0; i < nDimensionSize; i++) 

            { 

                //System.Console.Write("{0}\t\t", vector[i]); 
                textBoxResults.AppendText("     " + vector[i]); 

            } 

            //System.Console.Write("\n"); 
            textBoxResults.AppendText("\n"); 

        } 

 
        void Scale(double[] vector, double scaleFactor) 

        { 

            for (int i = 0; i < vector.Length; i++) 
            { 

                vector[i] = vector[i] * scaleFactor;//vector[i] *= scaleFactor; 
            } 

            Print(vector, vector.Length); 

        } 
 

        double GetSummationOfVectorElements(double[] vector) 

        { 
            double Summation = 0.0; 

            for (int i = 0; i < vector.Length; i++) 

            { 
                Summation = Summation + vector[i]; 

            } 

            return Summation; 
        } 

 

        double[] CalculateWeightsForEachCriterion(double[,] expertAssesmentMatrix, int nDimensionSize, string strTitle) 

        { 

            //check for vald input values 

            double[] weightVector = new double[nDimensionSize]; 
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            if (expertAssesmentMatrix == null) 
                return weightVector; 

 

            Print(expertAssesmentMatrix, nDimensionSize, strTitle); 
 

            //Calculate the weight factor for each colmun 

            //The result is a vetor 
            double[] wieghtFactor = new double[nDimensionSize]; 

            for (int j = 0; j < nDimensionSize; j++) 

            { 
                double result = 0.0; 

                for (int k = 0; k < nDimensionSize; k++) 
                { 

                    result += expertAssesmentMatrix[k, j]; //result = result + mat1[k, j]; 

                } 
                wieghtFactor[j] = result; 

            } 

 

            double[,] mat1ImmediatResult = new double[nDimensionSize, nDimensionSize]; 

            for (int j = 0; j < nDimensionSize; j++) 

            { 
                for (int k = 0; k < nDimensionSize; k++) 

                { 

                    expertAssesmentMatrix[k, j] = expertAssesmentMatrix[k, j] / wieghtFactor[j]; 
                } 

            } 

 
            //Calculate the weight factor for each colmun 

            //The result is a vetor 

            for (int j = 0; j < nDimensionSize; j++) 
            { 

                double result = 0.0; 

                for (int k = 0; k < nDimensionSize; k++) 
                { 

                    result += expertAssesmentMatrix[j, k]; //result = result + mat1[k, j]; 

                } 
                weightVector[j] = result / nDimensionSize; 

            } 

 
            Print(weightVector, nDimensionSize); 

            

//System.Console.WriteLine("_____________________________________________________________________________________
_____________________________\n"); 

 

 
            return weightVector; 

        } 

 
        void FillSubMatrix(double[,] SourceMatrix, double[,] destinationSubMatrix, int[] IndeciesArray) 

        { 

            if (SourceMatrix == null || destinationSubMatrix == null || IndeciesArray == null) 
                return; 

 

            for (int i = 0; i < IndeciesArray.Length; i++) 
            { 

                for (int j = 0; j < IndeciesArray.Length; j++) 

                { 
                    //destinationSubMatrix[IndeciesArray[i], IndeciesArray[j]] = SourceMatrix[IndeciesArray[i], IndeciesArray[j]]; 

                    destinationSubMatrix[i, j] = SourceMatrix[IndeciesArray[i], IndeciesArray[j]]; 

                } 
            } 

        } 

 
        double ComputeConsistencyIndex(double[,] Matrix, double[] vector, int nDimensionSize) 

        { 
            //check for vald input values 

            double[] transposeVector = new double[nDimensionSize]; 

            double[] randomIndex = { 1.0, 0.5, 0.58, 0.9, 1.12, 1.24, 1.32 }; 
 

            if (Matrix == null) 

                return 0.0; 

 

            for (int j = 0; j < nDimensionSize; j++) 

            { 
                double result = 0.0; 
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                for (int k = 0; k < nDimensionSize; k++) 

                { 
                    result += (Matrix[j, k] * vector[k]); 

                } 

                transposeVector[j] = result; 
            } 

            double division = 0.0; 

            for (int k = 0; k < nDimensionSize; k++) 
            { 

                division += (transposeVector[k] / vector[k]); 

                //transposeVector[k] = transposeVector[k]/vector[k]; 
 

            } 
            division = division / nDimensionSize; 

 

            double consistencyIndex = (division - nDimensionSize) / (nDimensionSize - 1); 
 

            if (consistencyIndex < 0.0 && consistencyIndex > -0.0005) 

                consistencyIndex = 0.0; 

 

            if (consistencyIndex < 0.0005) 

                consistencyIndex = 0.0; 
 

            textBoxResults.AppendText("Consistency Index = "); 

            textBoxResults.AppendText("" + consistencyIndex + "\n"); 
 

            textBoxResults.AppendText("\nConsistency Ratio = "); 

            if (nDimensionSize > randomIndex.Length) 
                textBoxResults.AppendText("" + (consistencyIndex / 1.59)); 

            else 

                textBoxResults.AppendText("" + (consistencyIndex / randomIndex[nDimensionSize - 1])); 
            textBoxResults.AppendText("\n"); 

            textBoxResults.AppendText("__________________________________________________________________________\n"); 

            return consistencyIndex; 
        } 

 

        public double[] SelectBestSensor(int[] IndeciesArray) 
        { 

            double[] SensorRanks = new double[IndeciesArray.Length]; 

            AHPSubCriteria ReturnSubMatrices = new AHPSubCriteria(); 
            ReturnSubMatrices.CreateSubMatrices(IndeciesArray.Length); 

            AHPSubCriteria ReturnSubMatricesNotNormalized = new AHPSubCriteria(); 

            ReturnSubMatricesNotNormalized.CreateSubMatrices(IndeciesArray.Length); 
 

            double[,] MaximumTempMatrix = new double[,] { 

                    {1.0,3.0,1.0,9.0,4.0,6.0,4.0}, 
                    {0.3333,1.0,0.3333,6.0,2.0,5.0,2.0},  

                    {1.0,3.0,1.0,9.0,4.0,6.0,4.0}, 

                    {0.1111,0.1667,0.1111,1.0,0.1667,0.3333,0.1667}, 
                    {0.25,0.5,0.25,6.0,1.0,4.0,1.0}, 

                    {0.1667,0.2,0.1667,3.0,0.25,1.0,0.25}, 

                    {0.25,0.5,0.25,6.0,1.0,4.0,1.0} 
            }; 

            FillSubMatrix(MaximumTempMatrix, ReturnSubMatrices.MaximumTempMatrix, IndeciesArray); 

            double[] MaximumTempMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MaximumTempMatrix, 
IndeciesArray.Length, "Maximum Operating Temprature: "); 

 

            FillSubMatrix(MaximumTempMatrix, ReturnSubMatricesNotNormalized.MaximumTempMatrix, IndeciesArray); 
            double ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MaximumTempMatrix, 

MaximumTempMatrixResult, IndeciesArray.Length); 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] MinimumTempMatrix = new double[,] { 

                    {1.0,2.0,2.0,0.5,0.5,0.125,0.3333}, 

                    {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25},  
                    {0.5,1.0,1.0,0.3333,0.3333,0.125,0.25}, 

                    {2.0,3.0,3.0,1.0,1.0,0.25,0.5}, 
                    {2.0,3.0,3.0,1.0,1.0,0.25,0.5}, 

                    {8.0,8.0,8.0,4.0,4.0,1.0,4.0}, 

                    {3.0,4.0,4.0,2.0,2.0,0.25,1.0} 
            }; 

            FillSubMatrix(MinimumTempMatrix, ReturnSubMatrices.MinimumTempMatrix, IndeciesArray); 

            double[] MinimumTempMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MinimumTempMatrix, 

IndeciesArray.Length, "Minimum Operating Temprature: "); 

 

            FillSubMatrix(MinimumTempMatrix, ReturnSubMatricesNotNormalized.MinimumTempMatrix, IndeciesArray); 
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            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MinimumTempMatrix, 

MinimumTempMatrixResult, IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] TempCurveMtrix = new double[,] { 
                    {1.0,3.0,0.3333,5.0,5.0,4.0,2.0}, 

                    {0.3333,1.0,0.1667,2.0,2.0,1.0,0.3333},  

                    {3.0,6.0,1.0,6.0,6.0,6.0,4.0}, 
                    {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25}, 

                    {0.2,0.5,0.1667,1.0,1.0,0.3333,0.25}, 

                    {0.25,1.0,0.1667,3.0,3.0,1.0,0.5}, 
                    {0.5,3.0,0.25,4.0,4.0,2.0,1.0} 

            }; 
            FillSubMatrix(TempCurveMtrix, ReturnSubMatrices.TempCurveMtrix, IndeciesArray); 

            double[] TempCurveMtrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TempCurveMtrix, 

IndeciesArray.Length, "Temperature Curve:"); 
 

            FillSubMatrix(TempCurveMtrix, ReturnSubMatricesNotNormalized.TempCurveMtrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TempCurveMtrix, TempCurveMtrixResult, 

IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] MaxSensitivityMatrix = new double[,] { 

                    {1.0,0.1111,0.2,2.0,2.0,2.0,0.3333}, 

                    {9.0,1.0,4.0,9.0,9.0,6.0,4.0},  
                    {5.0,0.25,1.0,4.0,5.0,4.0,2.0}, 

                    {0.5,0.1111,0.25,1.0,2.0,2.0,0.25}, 

                    {0.5,.1111,0.2,0.5,1.0,1.0,0.25}, 
                    {0.5,0.1667,0.25,0.5,1.0,1.0,0.25}, 

                    {3.0,0.25,0.5,4.0,4.0,4.0,1.0} 

            }; 
            FillSubMatrix(MaxSensitivityMatrix, ReturnSubMatrices.MaxSensitivityMatrix, IndeciesArray); 

            double[] MaxSensitivityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MaxSensitivityMatrix, 

IndeciesArray.Length, "Maximum Sensitivity Region:"); 
 

            FillSubMatrix(MaxSensitivityMatrix, ReturnSubMatricesNotNormalized.MaxSensitivityMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MaxSensitivityMatrix, 
MaxSensitivityMatrixResult, IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] SelfHeatingMatrix = new double[,] { 

                    {1.0,8.0,3.0,3.0,1.0,1.0,2.0}, 

                    {0.125,1.0,0.2,0.25,0.2,0.1667,0.25},  
                    {0.3333,5.0,1.0,0.5,0.5,0.3333,1.0}, 

                    {0.3333,4.0,2.0,1.0,1.0,0.5,1.0}, 

                    {1.0,5.0,2.0,1.0,1.0,1.0,2.0}, 
                    {1.0,6.0,3.0,2.0,1.0,1.0,1.0}, 

                    {0.5,4.0,1.0,1.0,0.5,1.0,1.0} 

            }; 
            FillSubMatrix(SelfHeatingMatrix, ReturnSubMatrices.SelfHeatingMatrix, IndeciesArray); 

            double[] SelfHeatingMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.SelfHeatingMatrix, 

IndeciesArray.Length, "Self-Heating Issues:"); 
 

            FillSubMatrix(SelfHeatingMatrix, ReturnSubMatricesNotNormalized.SelfHeatingMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.SelfHeatingMatrix, 
SelfHeatingMatrixResult, IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] LongTermStabilityMatrix = new double[,] { 

                    {1.0,0.25,0.1667,2.0,0.3333,0.5,0.25}, 

                    {4.0,1.0,0.3333,4.0,3.0,3.0,2.0},  
                    {6.0,3.0,1.0,8.0,4.0,5.0,3.0}, 

                    {0.5,0.25,0.125,1.0,0.3333,0.3333,0.25}, 

                    {3.0,0.3333,0.25,3.0,1.0,2.0,0.5}, 
                    {2.0,0.3333,0.2,3.0,0.5,1.0,0.3333}, 

                    {4.0,0.5,0.3333,4.0,2.0,3.0,1.0} 
            }; 

            FillSubMatrix(LongTermStabilityMatrix, ReturnSubMatrices.LongTermStabilityMatrix, IndeciesArray); 

            double[] LongTermStabilityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.LongTermStabilityMatrix, 
IndeciesArray.Length, "Long Term Stability and Accuracy:"); 

 

            FillSubMatrix(LongTermStabilityMatrix, ReturnSubMatricesNotNormalized.LongTermStabilityMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.LongTermStabilityMatrix, 

LongTermStabilityMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 



177 

 

            double[,] TypTempCoeffMatrix = new double[,] { 

                    {1.0,0.1667,0.3333,4.0,4.0,4.0,0.5}, 
                    {6.0,1.0,3.0,6.0,6.0,6.0,6.0},  

                    {3.0,0.3333,1.0,5.0,6.0,5.0,2.0}, 

                    {0.25,0.1667,0.2,1.0,1.0,1.0,0.2}, 
                    {0.25,0.1667,0.1667,1.0,1.0,1.0,0.2}, 

                    {0.25,0.1667,0.2,1.0,1.0,1.0,0.3333}, 

                    {2.0,0.1667,0.5,5.0,5.0,3.0,1.0} 
            }; 

            FillSubMatrix(TypTempCoeffMatrix, ReturnSubMatrices.TypTempCoeffMatrix, IndeciesArray); 

            double[] TypTempCoeffMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypTempCoeffMatrix, 
IndeciesArray.Length, "Typical Temperature Coefficient:"); 

 
            FillSubMatrix(TypTempCoeffMatrix, ReturnSubMatricesNotNormalized.TypTempCoeffMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypTempCoeffMatrix, 

TypTempCoeffMatrixResult, IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] ExtWiresMatrix = new double[,] { 

                    {1.0,0.1667,0.16667,0.125,0.125,0.125,0.125}, 

                    {6.0,1.0,1.0,0.25,0.25,0.25,0.25},  

                    {6.0,1.0,1.0,0.25,0.25,0.25,0.25}, 
                    {8.0,4.0,4.0,1.0,1.0,1.0,1.0}, 

                    {8.0,4.0,4.0,1.0,1.0,1.0,1.0}, 

                    {8.0,4.0,4.0,1.0,1.0,1.0,1.0}, 
                    {8.0,4.0,4.0,1.0,1.0,1.0,1.0} 

            }; 

            FillSubMatrix(ExtWiresMatrix, ReturnSubMatrices.ExtWiresMatrix, IndeciesArray); 
            double[] ExtWiresMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.ExtWiresMatrix, 

IndeciesArray.Length, "Extension Wires:"); 

 
            FillSubMatrix(ExtWiresMatrix, ReturnSubMatricesNotNormalized.ExtWiresMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.ExtWiresMatrix, ExtWiresMatrixResult, 

IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] LongWireMatrix = new double[,] { 
                    {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667}, 

                    {3.0,1.0,3.0,0.5,0.5,0.5,0.5},  

                    {1.0,0.3333,1.0,0.1667,0.1667,0.1667,0.1667}, 
                    {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 

                    {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 

                    {6.0,2.0,6.0,1.0,1.0,1.0,1.0}, 
                    {6.0,2.0,6.0,1.0,1.0,1.0,1.0} 

            }; 

            FillSubMatrix(LongWireMatrix, ReturnSubMatrices.LongWireMatrix, IndeciesArray); 
            double[] LongWireMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.LongWireMatrix, 

IndeciesArray.Length, "Long Wire Runs From Sensor:"); 

 
            FillSubMatrix(LongWireMatrix, ReturnSubMatricesNotNormalized.LongWireMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.LongWireMatrix, LongWireMatrixResult, 

IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] MeasureParaMatrix = new double[,] { 
                    {1.0,4.0,3.0,5.0,5.0,6.0,1.0}, 

                    {0.25,1.0,0.5,4.0,4.0,5.0,0.3333},  

                    {0.3333,2.0,1.0,3.0,3.0,4.0,0.3333}, 
                    {0.2,0.25,0.3333,1.0,1.0,3.0,0.2}, 

                    {0.2,0.25,0.3333,1.0,1.0,3.0,0.2}, 

                    {0.1667,0.2,0.25,0.3333,0.3333,1.0,0.1667}, 
                    {1.0,3.0,3.0,5.0,5.0,6.0,1.0} 

            }; 

            FillSubMatrix(MeasureParaMatrix, ReturnSubMatrices.MeasureParaMatrix, IndeciesArray); 
            double[] MeasureParaMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.MeasureParaMatrix, 

IndeciesArray.Length, "Measurement Parameter:"); 
 

            FillSubMatrix(MeasureParaMatrix, ReturnSubMatricesNotNormalized.MeasureParaMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.MeasureParaMatrix, 
MeasureParaMatrixResult, IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] TempMeasureMatrix = new double[,] { 

                    {1.0,0.25,0.2,0.3333,0.3333,0.5,0.1667}, 

                    {4.0,1.0,0.3333,1.0,3.0,3.0,0.1667},  
                    {5.0,3.0,1.0,4.0,5.0,5.0,0.5}, 
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                    {3.0,1.0,0.25,1.0,2.0,2.0,0.25}, 

                    {3.0,0.3333,0.2,0.5,1.0,1.0,0.1667}, 
                    {2.0,0.3333,0.2,0.5,1.0,1.0,0.2}, 

                    {6.0,6.0,2.0,4.0,6.0,5.0,1.0} 

            }; 
            FillSubMatrix(TempMeasureMatrix, ReturnSubMatrices.TempMeasureMatrix, IndeciesArray); 

            double[] TempMeasureMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TempMeasureMatrix, 

IndeciesArray.Length, "Temperature Measurement:"); 
 

            FillSubMatrix(TempMeasureMatrix, ReturnSubMatricesNotNormalized.TempMeasureMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TempMeasureMatrix, 
TempMeasureMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] StimulationElecMatrix = new double[,] { 

                    {1.0,4.0,3.0,1.0,1.0,2.0,6.0},                   
                    {0.25,1.0,0.5,0.2,0.2,0.25,3.0},  

                    {0.3333,2.0,1.0,0.25,0.25,0.5,3.0}, 

                    {1.0,5.0,4.0,1.0,1.0,2.0,6.0}, 

                    {1.0,5.0,4.0,1.0,1.0,3.0,6.0}, 

                    {0.5,4.0,2.0,0.5,0.3333,1.0,4.0}, 

                    {0.1667,0.3333,0.3333,0.1667,0.1667,0.25,1.0} 
            }; 

            FillSubMatrix(StimulationElecMatrix, ReturnSubMatrices.StimulationElecMatrix, IndeciesArray); 

            double[] StimulationElecMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.StimulationElecMatrix, 
IndeciesArray.Length, "Stimulation Electronics Required:"); 

 

            FillSubMatrix(StimulationElecMatrix, ReturnSubMatricesNotNormalized.StimulationElecMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.StimulationElecMatrix, 

StimulationElecMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] TypOutputLevelMatrix = new double[,] { 

                    {1.0,6.0,1.0,4.0,1.0,2.0,1.0}, 
                    {0.1667,1.0,0.1667,0.25,0.1667,0.2,0.125},  

                    {1.0,6.0,1.0,4.0,1.0,2.0,1.0}, 

                    {0.25,4.0,0.25,1.0,0.25,0.3333,0.1667}, 
                    {1.0,6.0,1.0,4.0,1.0,3.0,1.0}, 

                    {0.5,5.0,0.5,3.0,0.3333,1.0,0.3333}, 

                    {1.0,8.0,1.0,6.0,1.0,3.0,1.0} 
            }; 

            FillSubMatrix(TypOutputLevelMatrix, ReturnSubMatrices.TypOutputLevelMatrix, IndeciesArray); 

            double[] TypOutputLevelMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypOutputLevelMatrix, 
IndeciesArray.Length, "Typical Output Levels Per Degree Celsius:"); 

 

            FillSubMatrix(TypOutputLevelMatrix, ReturnSubMatricesNotNormalized.TypOutputLevelMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypOutputLevelMatrix, 

TypOutputLevelMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] TypFastThertimeConsMatrix = new double[,] { 

                    {1.0,3.0,4.0,6.0,5.0,1.0,3.0}, 
                    {0.3333,1.0,2.0,4.0,3.0,0.3333,1.0},  

                    {0.25,0.5,1.0,2.0,2.0,0.25,1.0}, 

                    {0.1667,0.25,0.5,1.0,0.5,0.1667,0.3333}, 
                    {0.2,0.3333,0.5,2.0,1.0,0.2,0.3333}, 

                    {1.0,3.0,4.0,6.0,5.0,1.0,3.0}, 

                    {0.3333,1.0,1.0,3.0,3.0,0.3333,1.0} 
            }; 

            FillSubMatrix(TypFastThertimeConsMatrix, ReturnSubMatrices.TypFastThertimeConsMatrix, IndeciesArray); 

            double[] TypFastThertimeConsMatrixResult = 
CalculateWeightsForEachCriterion(ReturnSubMatrices.TypFastThertimeConsMatrix, IndeciesArray.Length, "Typical Fast Thermal 

Time Constant:"); 

 
            FillSubMatrix(TypFastThertimeConsMatrix, ReturnSubMatricesNotNormalized.TypFastThertimeConsMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypFastThertimeConsMatrix, 
TypFastThertimeConsMatrixResult, IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] TypSmallSizMatrix = new double[,] { 

                    {1.0,2.0,3.0,4.0,5.0,6.0,5.0}, 

                    {0.5,1.0,2.0,3.0,4.0,5.0,4.0},  

                    {0.3333,0.5,1.0,2.0,4.0,6.0,4.0}, 

                    {0.25,0.3333,0.5,1.0,2.0,3.0,2.0}, 

                    {0.2,0.25,0.25,0.5,1.0,3.0,1.0}, 
                    {0.1667,0.2,0.1667,0.3333,0.3333,1.0,0.5}, 
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                    {0.2,0.25,0.25,0.5,1.0,2.0,1.0} 

            }; 
            FillSubMatrix(TypSmallSizMatrix, ReturnSubMatrices.TypSmallSizMatrix, IndeciesArray); 

            double[] TypSmallSizMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.TypSmallSizMatrix, 

IndeciesArray.Length, "Typical Small Size:"); 
 

            FillSubMatrix(TypSmallSizMatrix, ReturnSubMatricesNotNormalized.TypSmallSizMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.TypSmallSizMatrix, 
TypSmallSizMatrixResult, IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] NoiseImmunityMatrix = new double[,] { 

                    {1.0,0.1667,0.3333,0.25,0.25,0.5,0.25}, 
                    {6.0,1.0,4.0,3.0,3.0,5.0,3.0},  

                    {3.0,0.25,1.0,0.5,0.5,2.0,0.5}, 

                    {4.0,0.3333,2.0,1.0,1.0,3.0,1.0}, 
                    {4.0,0.3333,2.0,1.0,1.0,4.0,1.0}, 

                    {2.0,0.2,0.5,0.3333,0.25,1.0,0.25}, 

                    {4.0,0.3333,2.0,1.0,1.0,4.0,1.0} 

            }; 

            FillSubMatrix(NoiseImmunityMatrix, ReturnSubMatrices.NoiseImmunityMatrix, IndeciesArray); 

            double[] NoiseImmunityMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.NoiseImmunityMatrix, 
IndeciesArray.Length, "Noise Immunity:"); 

 

            FillSubMatrix(NoiseImmunityMatrix, ReturnSubMatricesNotNormalized.NoiseImmunityMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.NoiseImmunityMatrix, 

NoiseImmunityMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] FraDurMatrix = new double[,] { 

                    {1.0,6.0,3.0,6.0,8.0,3.0,4.0}, 
                    {0.1667,1.0,0.3333,2.0,3.0,0.3333,0.5},  

                    {0.3333,3.0,1.0,3.0,4.0,2.0,3.0}, 

                    {0.1667,0.5,0.3333,1.0,3.0,0.25,0.3333}, 
                    {0.125,0.3333,0.25,0.3333,1.0,0.25,0.3333}, 

                    {0.3333,3.0,0.5,4.0,4.0,1.0,3.0}, 

                    {0.25,2.0,0.3333,3.0,3.0,0.3333,1.0}, 
                     

            }; 

            FillSubMatrix(FraDurMatrix, ReturnSubMatrices.FraDurMatrix, IndeciesArray); 
            double[] FraDurMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.FraDurMatrix, IndeciesArray.Length, 

"Fragility-Durability:"); 

 
            FillSubMatrix(FraDurMatrix, ReturnSubMatricesNotNormalized.FraDurMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.FraDurMatrix, FraDurMatrixResult, 

IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] HiThGrEnMatrix = new double[,] { 
                    {1.0,4.0,5.0,7.0,8.0,4.0,6.0}, 

                    {0.25,1.0,2.0,5.0,6.0,2.0,4.0},  

                    {0.2,0.5,1.0,3.0,3.0,0.5,2.0}, 
                    {0.1429,0.2,0.3333,1.0,1.0,0.25,0.5}, 

                    {0.125,0.1667,0.3333,1.0,1.0,0.2,0.3333}, 

                    {0.25,0.5,2.0,4.0,5.0,1.0,4.0}, 
                    {0.1667,0.25,0.5,2.0,3.0,0.25,1.0} 

            }; 

            FillSubMatrix(HiThGrEnMatrix, ReturnSubMatrices.HiThGrEnMatrix, IndeciesArray); 
            double[] HiThGrEnMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.HiThGrEnMatrix, 

IndeciesArray.Length, "High Thermal Gradient Environment:"); 

 
            FillSubMatrix(HiThGrEnMatrix, ReturnSubMatricesNotNormalized.HiThGrEnMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.HiThGrEnMatrix, HiThGrEnMatrixResult, 

IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] CorrResMatrix = new double[,] { 

                    {1.0,0.25,0.1667,0.5,0.1667,0.1667,0.25}, 

                    {4.0,1.0,0.3333,2.0,0.25,0.25,1.0},  
                    {6.0,3.0,1.0,4.0,1.0,1.0,4.0}, 

                    {2.0,0.5,0.25,1.0,0.25,0.25,0.5}, 

                    {6.0,4.0,1.0,4.0,1.0,1.0,3.0}, 

                    {6.0,4.0,1.0,4.0,1.0,1.0,3.0}, 

                    {4.0,1.0,0.25,2.0,0.3333,0.3333,1.0} 

            }; 
            FillSubMatrix(CorrResMatrix, ReturnSubMatrices.CorrResMatrix, IndeciesArray); 
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            double[] CorrResMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.CorrResMatrix, IndeciesArray.Length, 

"Corrosion Resistance:"); 
 

            FillSubMatrix(CorrResMatrix, ReturnSubMatricesNotNormalized.CorrResMatrix, IndeciesArray); 

            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.CorrResMatrix, CorrResMatrixResult, 
IndeciesArray.Length); 

 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] PointAreaMeasMatrix = new double[,] { 

                   {1.0,2.0,3.0,4.0,6.0,6.0,4.0}, 

                    {0.5,1.0,2.0,3.0,4.0,4.0,3.0},  
                    {0.3333,0.5,1.0,2.0,3.0,4.0,2.0}, 

                    {0.25,0.3333,0.5,1.0,2.0,2.0,0.5}, 
                    {0.1667,0.25,0.3333,0.5,1.0,1.0,0.5}, 

                    {0.1667,0.25,0.25,0.5,1.0,1.0,2.0}, 

                    {0.25,0.5,0.3333,2.0,2.0,0.5,1.0} 
            }; 

            FillSubMatrix(PointAreaMeasMatrix, ReturnSubMatrices.PointAreaMeasMatrix, IndeciesArray); 

            double[] PointAreaMeasMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.PointAreaMeasMatrix, 

IndeciesArray.Length, "Point or Area Measurement:"); 

 

            FillSubMatrix(PointAreaMeasMatrix, ReturnSubMatricesNotNormalized.PointAreaMeasMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.PointAreaMeasMatrix, 

PointAreaMeasMatrixResult, IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] ManuVarMatrix = new double[,] { 

                    {1.0, 0.3333, 0.1667,0.25,0.5,0.2,0.25}, 
                    {3.0, 1.0, 0.3333,0.5,2.0,0.25,0.5},  

                    {6.0, 3.0, 1.0,4.0,3.0,6.0,3.0}, 

                    {4.0,2.0,0.25,1.0,4.0,0.3333,0.5}, 
                    {2.0,0.5,0.3333,0.25,1.0,0.2,0.25}, 

                    {5.0,4.0,0.1667,3.0,5.0,1.0,2.0}, 

                    {4.0,2.0,0.3333,2.0,4.0,0.5,1.0} 
            }; 

            FillSubMatrix(ManuVarMatrix, ReturnSubMatrices.ManuVarMatrix, IndeciesArray); 

            double[] ManuVarMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.ManuVarMatrix, 
IndeciesArray.Length, "Manufacturing Variances:"); 

 

            FillSubMatrix(ManuVarMatrix, ReturnSubMatricesNotNormalized.ManuVarMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.ManuVarMatrix, ManuVarMatrixResult, 

IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] NistStanMatrix = new double[,] { 

                    {1.0   , 4.0, 1.0,1.0,1.0,4.0,5.0}, 
                    {0.25, 1.0, 0.25,0.25,0.25,1.0,2.0},  

                    {1.0, 4.0, 1.0,1.0,1.0,4.0,5.0}, 

                    {1.0,4.0,1.0,1.0,1.0,4.0,5.0}, 
                    {1.0,4.0,1.0,1.0,1.0,4.0,5.0}, 

                    {0.25,1.0,0.25,0.25,0.25,1.0,2.0}, 

                    {0.2,0.5,0.2,0.2,0.2,0.5,1.0} 
            }; 

            FillSubMatrix(NistStanMatrix, ReturnSubMatrices.NistStanMatrix, IndeciesArray); 

            double[] NistStanMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.NistStanMatrix, IndeciesArray.Length, 
"NIST Standards:"); 

 

            FillSubMatrix(NistStanMatrix, ReturnSubMatricesNotNormalized.NistStanMatrix, IndeciesArray); 
            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.NistStanMatrix, NistStanMatrixResult, 

IndeciesArray.Length); 

 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] CostMatrix = new double[,] { 

                    {1.0,1.0,6.0,3.0,3.0,6.0,3.0}, 
                    {1.0,1.0,6.0,3.0,3.0,6.0,3.0},  

                    {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25}, 
                    {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}, 

                    {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0}, 

                    {0.1667,0.1667,1.0,0.25,0.25,1.0,0.25}, 
                    {0.3333,0.3333,4.0,1.0,1.0,4.0,1.0} 

            }; 

            FillSubMatrix(CostMatrix, ReturnSubMatrices.CostMatrix, IndeciesArray); 

            double[] CostMatrixResult = CalculateWeightsForEachCriterion(ReturnSubMatrices.CostMatrix, IndeciesArray.Length, 

"Cost:"); 

 
            FillSubMatrix(CostMatrix, ReturnSubMatricesNotNormalized.CostMatrix, IndeciesArray); 
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            ConsistencyIndex = ComputeConsistencyIndex(ReturnSubMatricesNotNormalized.CostMatrix, CostMatrixResult, 

IndeciesArray.Length); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] weightsOfCriteria = new double[,] { 
                    {1.0,9.0,6.0,4.0}, 

                    {0.1111,1.0,0.5,0.3333},  

                    {0.1667,2.0,1.0,0.5}, 
                    {0.25,3.0,2.0,1.0} 

            }; 

 
            double[] weightsOfCriteriaResults = CalculateWeightsForEachCriterion(weightsOfCriteria, 4, "Weights of Criteria:"); 

 
            double[,] weightsOfCriteria2 = new double[,] { 

                    {1.0,9.0,6.0,4.0}, 

                    {0.1111,1.0,0.5,0.3333},  
                    {0.1667,2.0,1.0,0.5}, 

                    {0.25,3.0,2.0,1.0} 

            }; 

            ConsistencyIndex = ComputeConsistencyIndex(weightsOfCriteria2, weightsOfCriteriaResults, 4); 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] Weightssubcriteriastatic = new double[,] { 
                    {1.0,1.0,4.0,4.0,3.0,1.0,5.0,5.0,6.0,8.0,5.0}, 

                    {1.0,1.0,4.0,4.0,3.0,1.0,5.0,5.0,6.0,8.0,5.0},  

                    {0.25,0.25,1.0,0.5,0.3333,0.25,2.0,2.0,4.0,6.0,3.0}, 
                    {0.25,0.25,2.0,1.0,1.0,0.3333,3.0,2.0,4.0,6.0,3.0}, 

                    {0.3333,0.3333,3.0,1.0,1.0,0.3333,4.0,5.0,6.0,9.0,4.0}, 

                    {1.0,1.0,4.0,3.0,3.0,1.0,5.0,5.0,6.0,9.0,5.0}, 
                    {0.2,0.2,0.5,0.3333,0.25,0.2,1.0,0.5,3.0,6.0,3.0}, 

                    {0.2,0.2,0.5,0.5,0.2,0.2,2.0,1.0,3.0,5.0,1.0}, 

                    {0.1667,0.1667,0.25,0.25,0.1667,0.1667,0.3333,0.3333,1.0,3.0,0.3333}, 
                    {0.125,0.125,0.1667,0.1667,0.1111,0.1111,0.1667,0.2,0.3333,1.0,0.2}, 

                    {0.2,0.2,0.3333,0.3333,0.25,0.2,0.3333,1.0,3.0,5.0,1.0} 

            }; 
            double[] weightsSubCriteriaStaticResult = CalculateWeightsForEachCriterion(Weightssubcriteriastatic, 11, "Weights of Sub-

Criteria Static:"); 

 
            double[,] Weightssubcriteriastatic2 = new double[,] { 

                    {1.0,1.0,4.0,4.0,3.0,1.0,5.0,5.0,6.0,8.0,5.0}, 

                    {1.0,1.0,4.0,4.0,3.0,1.0,5.0,5.0,6.0,8.0,5.0},  
                    {0.25,0.25,1.0,0.5,0.3333,0.25,2.0,2.0,4.0,6.0,3.0}, 

                    {0.25,0.25,2.0,1.0,1.0,0.3333,3.0,2.0,4.0,6.0,3.0}, 

                    {0.3333,0.3333,3.0,1.0,1.0,0.3333,4.0,5.0,6.0,9.0,4.0}, 
                    {1.0,1.0,4.0,3.0,3.0,1.0,5.0,5.0,6.0,9.0,5.0}, 

                    {0.2,0.2,0.5,0.3333,0.25,0.2,1.0,0.5,3.0,6.0,3.0}, 

                    {0.2,0.2,0.5,0.5,0.2,0.2,2.0,1.0,3.0,5.0,1.0}, 
                    {0.1667,0.1667,0.25,0.25,0.1667,0.1667,0.3333,0.3333,1.0,3.0,0.3333}, 

                    {0.125,0.125,0.1667,0.1667,0.1111,0.1111,0.1667,0.2,0.3333,1.0,0.2}, 

                    {0.2,0.2,0.3333,0.3333,0.25,0.2,0.3333,1.0,3.0,5.0,1.0} 
            }; 

            ConsistencyIndex = ComputeConsistencyIndex(Weightssubcriteriastatic2, weightsSubCriteriaStaticResult, 11); 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 
            double[,] weightssubCriteriaDynamic = new double[,] { 

                    {1.0,2.0,0.1667}, 

                    {0.5,1.0,0.1667},  
                    {6.0,6.0,1.0} 

            }; 

            double[] weightsSubCriteriaDynamicResult = CalculateWeightsForEachCriterion(weightssubCriteriaDynamic, 3, "Weights of 
Sub-Criteria Dynamic:"); 

 

            double[,] weightssubCriteriaDynamic2 = new double[,] { 
                    {1.0,2.0,0.1667}, 

                    {0.5,1.0,0.1667},  

                    {6.0,6.0,1.0} 
            }; 

            ConsistencyIndex = ComputeConsistencyIndex(weightssubCriteriaDynamic2, weightsSubCriteriaDynamicResult, 3); 
            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] weightssubCriteriaEnv = new double[,] { 

                    {1.0,1.0,0.2,4.0,0.1667}, 
                    {1.0,1.0,0.25,5.0,0.2},  

                    {5.0,4.0,1.0,7.0,0.5}, 

                    {0.25,0.2,0.1429,1.0,0.125}, 

                    {6.0,5.0,2.0,8.0,1.0}  

            }; 

            double[] weightsSubCriteriaEnvironmentalResult = CalculateWeightsForEachCriterion(weightssubCriteriaEnv, 5, "Weights of 
Sub-Criteria Environmental:"); 
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            double[,] weightssubCriteriaEnv2 = new double[,] { 
                    {1.0,1.0,0.2,4.0,0.1667}, 

                    {1.0,1.0,0.25,5.0,0.2},  

                    {5.0,4.0,1.0,7.0,0.5}, 
                    {0.25,0.2,0.1429,1.0,0.125}, 

                    {6.0,5.0,2.0,8.0,1.0}   

            }; 
            ConsistencyIndex = ComputeConsistencyIndex(weightssubCriteriaEnv2, weightsSubCriteriaEnvironmentalResult, 5); 

            ////////////////////////////////////////////////////////////////////////////////////////////////////// 

            double[,] Others = new double[,] { 
                    {1.0,3.0,0.5,0.1667}, 

                    {0.3333,1.0,0.3333,0.1429},  
                    {2.0,3.0,1.0,0.2}, 

                    {6.0,7.0,5.0,1.0} 

            }; 
            double[] weightsSubCriteriaOthersResult = CalculateWeightsForEachCriterion(Others, 4, "Weights of Sub-Criteria Others:"); 

 

            double[,] Others2 = new double[,] { 

                     {1.0,3.0,0.5,0.1667}, 

                    {0.3333,1.0,0.3333,0.1429},  

                    {2.0,3.0,1.0,0.2}, 
                    {6.0,7.0,5.0,1.0} 

            }; 

            ConsistencyIndex = ComputeConsistencyIndex(Others2, weightsSubCriteriaOthersResult, 4); 
            ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

            //Calculate sub criteria aggregate weights with respect to final goal 

            Scale(weightsSubCriteriaStaticResult, weightsOfCriteriaResults[0]); 
            Scale(weightsSubCriteriaDynamicResult, weightsOfCriteriaResults[1]); 

            Scale(weightsSubCriteriaEnvironmentalResult, weightsOfCriteriaResults[2]); 

            Scale(weightsSubCriteriaOthersResult, weightsOfCriteriaResults[3]); 
 

            ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

            //Calculate sub criteria aggregate weights for ThermoCouple (alternative 1) 
            double ThermoCoupleFinalScore = 0.0; 

            double ThermisterFinalScore = 0.0; 

            double RTDFinalScore = 0.0; 
            double BimetallicFinalScore = 0.0; 

            double ThermometerFinalScore = 0.0; 

            double PyrometerFinalScore = 0.0; 
            double LCDDidplayFinalScore = 0.0; 

 

            for (int k = 0; k < IndeciesArray.Length; k++) 
            { 

                if (IndeciesArray[k] == AHP.SENSOR_THERMOCOUPLE) 

                { 
                    double[] ThermoCoupleAggregateSubCriteriaStatic = new double[11]; 

                    double[] ThermoCoupleAggregateSubCriteriaDynamic = new double[3]; 

                    double[] ThermoCoupleAggregateSubCriteriaEnvironmental = new double[5]; 
                    double[] ThermoCoupleAggregateSubCriteriaOthers = new double[4]; 

 

                    ThermoCoupleAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 
                    ThermoCoupleAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 

                    ThermoCoupleAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 

                    ThermoCoupleAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 
                    ThermoCoupleAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 

                    ThermoCoupleAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 

                    ThermoCoupleAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 
                    ThermoCoupleAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 

                    ThermoCoupleAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 

                    ThermoCoupleAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 
                    ThermoCoupleAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 

 

                    ThermoCoupleFinalScore = ThermoCoupleFinalScore + 
GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaStatic); 

 
                    ThermoCoupleAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * 

weightsSubCriteriaDynamicResult[0]; 

                    ThermoCoupleAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * 
weightsSubCriteriaDynamicResult[1]; 

                    ThermoCoupleAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 

weightsSubCriteriaDynamicResult[2]; 

 

                    ThermoCoupleFinalScore = ThermoCoupleFinalScore + 

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaDynamic); 
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                    ThermoCoupleAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[0]; 
                    ThermoCoupleAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 

                    ThermoCoupleAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[2]; 

                    ThermoCoupleAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[3]; 
                    ThermoCoupleAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[4]; 

 
                    ThermoCoupleFinalScore = ThermoCoupleFinalScore + 

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaEnvironmental); 
 

                    ThermoCoupleAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 

                    ThermoCoupleAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 
                    ThermoCoupleAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    ThermoCoupleAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 

 

                    ThermoCoupleFinalScore = ThermoCoupleFinalScore + 

GetSummationOfVectorElements(ThermoCoupleAggregateSubCriteriaOthers); 

                    SensorRanks[k] = ThermoCoupleFinalScore; 
 

                    System.Console.Write("\n\n"); 

                    System.Console.Write("Thermo Couple Final Score = {0}", ThermoCoupleFinalScore); 
                } 

                ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

                //Calculate sub criteria aggregate weights for Thermister (alternative 2) 
                else if (IndeciesArray[k] == AHP.SENSOR_THERMISTER) 

                { 

                    double[] ThermisterAggregateSubCriteriaStatic = new double[11]; 
                    double[] ThermisterAggregateSubCriteriaDynamic = new double[3]; 

                    double[] ThermisterAggregateSubCriteriaEnvironmental = new double[5]; 

                    double[] ThermisterAggregateSubCriteriaOthers = new double[4]; 
 

                    ThermisterAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 

                    ThermisterAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 
                    ThermisterAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 

                    ThermisterAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 

                    ThermisterAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 
                    ThermisterAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 

                    ThermisterAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 

                    ThermisterAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 
                    ThermisterAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 

                    ThermisterAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 

                    ThermisterAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 
 

                    ThermisterFinalScore = ThermisterFinalScore + GetSummationOfVectorElements(ThermisterAggregateSubCriteriaStatic); 

 
                    ThermisterAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 

                    ThermisterAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 

                    ThermisterAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 
weightsSubCriteriaDynamicResult[2]; 

 

                    ThermisterFinalScore = ThermisterFinalScore + 
GetSummationOfVectorElements(ThermisterAggregateSubCriteriaDynamic); 

 

                    ThermisterAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[0]; 

                    ThermisterAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 
                    ThermisterAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2]; 

                    ThermisterAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[3]; 
                    ThermisterAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4]; 

 
                    ThermisterFinalScore = ThermisterFinalScore + 

GetSummationOfVectorElements(ThermisterAggregateSubCriteriaEnvironmental); 

 
                    ThermisterAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 

                    ThermisterAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 

                    ThermisterAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    ThermisterAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 

 

                    ThermisterFinalScore = ThermisterFinalScore + GetSummationOfVectorElements(ThermisterAggregateSubCriteriaOthers); 
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                    System.Console.Write("\n\n"); 

                    System.Console.Write("Thermister Final Score = {0}", ThermisterFinalScore); 
 

                    SensorRanks[k] = ThermisterFinalScore; 

                } 
                ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

                //Calculate sub criteria aggregate weights for RTD (alternative 3) 

                else if (IndeciesArray[k] == AHP.SENSOR_RTD) 
                { 

                    double[] RTDAggregateSubCriteriaStatic = new double[11]; 

                    double[] RTDAggregateSubCriteriaDynamic = new double[3]; 
                    double[] RTDAggregateSubCriteriaEnvironmental = new double[5]; 

                    double[] RTDAggregateSubCriteriaOthers = new double[4]; 
 

                    RTDAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 

                    RTDAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 
                    RTDAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 

                    RTDAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 

                    RTDAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 

                    RTDAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 

                    RTDAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 

                    RTDAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 
                    RTDAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 

                    RTDAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 

                    RTDAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 
 

                    RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaStatic); 

 
                    RTDAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 

                    RTDAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 

                    RTDAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * weightsSubCriteriaDynamicResult[2]; 
 

                    RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaDynamic); 

 
                    RTDAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[0]; 

                    RTDAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 
                    RTDAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2]; 

                    RTDAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[3]; 

                    RTDAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4]; 
 

                    RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaEnvironmental); 

 
                    RTDAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 

                    RTDAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 

                    RTDAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 
                    RTDAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 

 

                    RTDFinalScore = RTDFinalScore + GetSummationOfVectorElements(RTDAggregateSubCriteriaOthers); 
                    SensorRanks[k] = RTDFinalScore; 

                } 

                else if (IndeciesArray[k] == AHP.SENSOR_BIMETALLIC) 
                { 

                    double[] BimetallicAggregateSubCriteriaStatic = new double[11]; 

                    double[] BimetallicAggregateSubCriteriaDynamic = new double[3]; 
                    double[] BimetallicAggregateSubCriteriaEnvironmental = new double[5]; 

                    double[] BimetallicAggregateSubCriteriaOthers = new double[4]; 

 
                    BimetallicAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 

                    BimetallicAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 

                    BimetallicAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 
                    BimetallicAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 

                    BimetallicAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 

                    BimetallicAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 
                    BimetallicAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 

                    BimetallicAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 
                    BimetallicAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 

                    BimetallicAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 

                    BimetallicAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 
 

                    BimetallicFinalScore = BimetallicFinalScore + GetSummationOfVectorElements(BimetallicAggregateSubCriteriaStatic); 

 

                    BimetallicAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 

                    BimetallicAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 

                    BimetallicAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 
weightsSubCriteriaDynamicResult[2]; 
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                    BimetallicFinalScore = BimetallicFinalScore + 
GetSummationOfVectorElements(BimetallicAggregateSubCriteriaDynamic); 

 

                    BimetallicAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[0]; 

                    BimetallicAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 
                    BimetallicAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2]; 

                    BimetallicAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[3]; 
                    BimetallicAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4]; 

 
                    BimetallicFinalScore = BimetallicFinalScore + 

GetSummationOfVectorElements(BimetallicAggregateSubCriteriaEnvironmental); 

 
                    BimetallicAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 

                    BimetallicAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 

                    BimetallicAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    BimetallicAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 

 

                    BimetallicFinalScore = BimetallicFinalScore + GetSummationOfVectorElements(BimetallicAggregateSubCriteriaOthers); 
                    SensorRanks[k] = BimetallicFinalScore; 

                } 

                else if (IndeciesArray[k] == AHP.SENSOR_THERMOMETER) 
                { 

                    double[] ThermometerAggregateSubCriteriaStatic = new double[11]; 

                    double[] ThermometerAggregateSubCriteriaDynamic = new double[3]; 
                    double[] ThermometerAggregateSubCriteriaEnvironmental = new double[5]; 

                    double[] ThermometerAggregateSubCriteriaOthers = new double[4]; 

 
                    ThermometerAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 

                    ThermometerAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 

                    ThermometerAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 
                    ThermometerAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 

                    ThermometerAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 

                    ThermometerAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 
                    ThermometerAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 

                    ThermometerAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 

                    ThermometerAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 
                    ThermometerAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 

                    ThermometerAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 

 
                    ThermometerFinalScore = ThermometerFinalScore + 

GetSummationOfVectorElements(ThermometerAggregateSubCriteriaStatic); 

 
                    ThermometerAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 

                    ThermometerAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 

                    ThermometerAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 
weightsSubCriteriaDynamicResult[2]; 

 

                    ThermometerFinalScore = ThermometerFinalScore + 
GetSummationOfVectorElements(ThermometerAggregateSubCriteriaDynamic); 

 

                    ThermometerAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[0]; 

                    ThermometerAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 
                    ThermometerAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[2]; 

                    ThermometerAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[3]; 

                    ThermometerAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[4]; 
 

                    ThermometerFinalScore = ThermometerFinalScore + 
GetSummationOfVectorElements(ThermometerAggregateSubCriteriaEnvironmental); 

 

                    ThermometerAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 
                    ThermometerAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 

                    ThermometerAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    ThermometerAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 

 

                    ThermometerFinalScore = ThermometerFinalScore + 

GetSummationOfVectorElements(ThermometerAggregateSubCriteriaOthers); 
                    SensorRanks[k] = ThermometerFinalScore; 
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                } 

                else if (IndeciesArray[k] == AHP.SENSOR_PYROMETER) 
                { 

                    double[] PyrometerAggregateSubCriteriaStatic = new double[11]; 

                    double[] PyrometerAggregateSubCriteriaDynamic = new double[3]; 
                    double[] PyrometerAggregateSubCriteriaEnvironmental = new double[5]; 

                    double[] PyrometerAggregateSubCriteriaOthers = new double[4]; 

 
                    PyrometerAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 

                    PyrometerAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 

                    PyrometerAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 
                    PyrometerAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 

                    PyrometerAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 
                    PyrometerAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 

                    PyrometerAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 

                    PyrometerAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 
                    PyrometerAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 

                    PyrometerAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 

                    PyrometerAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 

 

                    PyrometerFinalScore = PyrometerFinalScore + GetSummationOfVectorElements(PyrometerAggregateSubCriteriaStatic); 

 
                    PyrometerAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 

                    PyrometerAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 

                    PyrometerAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 
weightsSubCriteriaDynamicResult[2]; 

 

                    PyrometerFinalScore = PyrometerFinalScore + 
GetSummationOfVectorElements(PyrometerAggregateSubCriteriaDynamic); 

 

                    PyrometerAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[0]; 

                    PyrometerAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 
                    PyrometerAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[2]; 

                    PyrometerAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[3]; 
                    PyrometerAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * weightsSubCriteriaEnvironmentalResult[4]; 

 

                    PyrometerFinalScore = PyrometerFinalScore + 
GetSummationOfVectorElements(PyrometerAggregateSubCriteriaEnvironmental); 

 

                    PyrometerAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 
                    PyrometerAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 

                    PyrometerAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    PyrometerAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 
 

                    PyrometerFinalScore = PyrometerFinalScore + GetSummationOfVectorElements(PyrometerAggregateSubCriteriaOthers); 

                    SensorRanks[k] = PyrometerFinalScore; 
                } 

                else if (IndeciesArray[k] == AHP.SENSOR_LCD_DISPLAY) 

                { 
                    double[] LCDDidplayAggregateSubCriteriaStatic = new double[11]; 

                    double[] LCDDidplayAggregateSubCriteriaDynamic = new double[3]; 

                    double[] LCDDidplayAggregateSubCriteriaEnvironmental = new double[5]; 
                    double[] LCDDidplayAggregateSubCriteriaOthers = new double[4]; 

 

                    LCDDidplayAggregateSubCriteriaStatic[0] = MaximumTempMatrixResult[k] * weightsSubCriteriaStaticResult[0]; 
                    LCDDidplayAggregateSubCriteriaStatic[1] = MinimumTempMatrixResult[k] * weightsSubCriteriaStaticResult[1]; 

                    LCDDidplayAggregateSubCriteriaStatic[2] = TempCurveMtrixResult[k] * weightsSubCriteriaStaticResult[2]; 

                    LCDDidplayAggregateSubCriteriaStatic[3] = MaxSensitivityMatrixResult[k] * weightsSubCriteriaStaticResult[3]; 
                    LCDDidplayAggregateSubCriteriaStatic[4] = SelfHeatingMatrixResult[k] * weightsSubCriteriaStaticResult[4]; 

                    LCDDidplayAggregateSubCriteriaStatic[5] = LongTermStabilityMatrixResult[k] * weightsSubCriteriaStaticResult[5]; 

                    LCDDidplayAggregateSubCriteriaStatic[6] = TypTempCoeffMatrixResult[k] * weightsSubCriteriaStaticResult[6]; 
                    LCDDidplayAggregateSubCriteriaStatic[7] = ExtWiresMatrixResult[k] * weightsSubCriteriaStaticResult[7]; 

                    LCDDidplayAggregateSubCriteriaStatic[8] = LongWireMatrixResult[k] * weightsSubCriteriaStaticResult[8]; 
                    LCDDidplayAggregateSubCriteriaStatic[9] = MeasureParaMatrixResult[k] * weightsSubCriteriaStaticResult[9]; 

                    LCDDidplayAggregateSubCriteriaStatic[10] = TempMeasureMatrixResult[k] * weightsSubCriteriaStaticResult[10]; 

 
                    LCDDidplayFinalScore = LCDDidplayFinalScore + 

GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaStatic); 

 

                    LCDDidplayAggregateSubCriteriaDynamic[0] = StimulationElecMatrixResult[k] * weightsSubCriteriaDynamicResult[0]; 

                    LCDDidplayAggregateSubCriteriaDynamic[1] = TypOutputLevelMatrixResult[k] * weightsSubCriteriaDynamicResult[1]; 

                    LCDDidplayAggregateSubCriteriaDynamic[2] = TypFastThertimeConsMatrixResult[k] * 
weightsSubCriteriaDynamicResult[2]; 
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                    LCDDidplayFinalScore = LCDDidplayFinalScore + 
GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaDynamic); 

 

                    LCDDidplayAggregateSubCriteriaEnvironmental[0] = TypSmallSizMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[0]; 

                    LCDDidplayAggregateSubCriteriaEnvironmental[1] = NoiseImmunityMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[1]; 
                    LCDDidplayAggregateSubCriteriaEnvironmental[2] = FraDurMatrixResult[k] * 

weightsSubCriteriaEnvironmentalResult[2]; 

                    LCDDidplayAggregateSubCriteriaEnvironmental[3] = HiThGrEnMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[3]; 

                    LCDDidplayAggregateSubCriteriaEnvironmental[4] = CorrResMatrixResult[k] * 
weightsSubCriteriaEnvironmentalResult[4]; 

 

                    LCDDidplayFinalScore = LCDDidplayFinalScore + 
GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaEnvironmental); 

 

                    LCDDidplayAggregateSubCriteriaOthers[0] = PointAreaMeasMatrixResult[k] * weightsSubCriteriaOthersResult[0]; 

                    LCDDidplayAggregateSubCriteriaOthers[1] = ManuVarMatrixResult[k] * weightsSubCriteriaOthersResult[1]; 

                    LCDDidplayAggregateSubCriteriaOthers[2] = NistStanMatrixResult[k] * weightsSubCriteriaOthersResult[2]; 

                    LCDDidplayAggregateSubCriteriaOthers[3] = CostMatrixResult[k] * weightsSubCriteriaOthersResult[3]; 
 

                    LCDDidplayFinalScore = LCDDidplayFinalScore + 

GetSummationOfVectorElements(LCDDidplayAggregateSubCriteriaOthers); 
                    SensorRanks[k] = LCDDidplayFinalScore; 

                } 

            } 
 

            textBoxResults.AppendText("\n\n"); 

            textBoxResults.AppendText("\nSensor Ranks: \n"); 
            for (int j = 0; j < SensorRanks.Length; j++) 

            { 

                textBoxResults.AppendText("" + SensorRanks[j] + "\n"); 
            } 

 

            return SensorRanks; 
        } 

    } 

} 
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6. Program.cs File(Entry Point) 
 
using System; 

using System.Collections.Generic; 
using System.Windows.Forms; 

 
namespace AhpCaseStudy1GUI 

{ 

    static class Program 
    { 

 

        /// <summary> 
        /// The main entry point for the application. 

        /// </summary> 

        [STAThread] 
        static void Main() 

        { 

            Application.EnableVisualStyles(); 
            Application.SetCompatibleTextRenderingDefault(false); 

            Application.Run(new Form1()); 

        } 
    } 

} 
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Appendix VII: Complete List of Software Results for the 

Three Sensors: the Thermocouple, the Thermister, and the 

RTD Automotive Catalytic Converter Case Study 

 
Maximum Operating Temperature Matrix:  

     1       3             1 

0.3333     1      0.3333 
1             3      1      

 

Alternatives Weight Vector =      0.42857     0.14284     0.42857 
 

Consistency Index = 0 

Consistency Ratio = 0 
_______________________________________________________________ 

Minimum Operating Temperature Matrix: 

1         2        2 
0.5      1        1 

0.5     1        1   

 
Alternatives Weight Vector =      0.5     0.25     0.25 

 

Consistency Index = 0 
Consistency Ratio = 0 

__________________________________________________________________________ 

Temperature Curve Matrix: 
1                3            0.3333 

0.3333       1            0.1667 

3                6            1 
      

         Alternatives Weight Vector =      0.25099     0.09601     0.65299 

 
Consistency Index = 0.00918 

Consistency Ratio = 0.01583 

__________________________________________________________________________ 
Sensitivity Matrix: 

 1         0.1111       0.2 

 9         1                4 
 5         0.25           1 

 

Alternatives Weight Vector =      0.06225     0.70131     0.23643 
 

Consistency Index = 0.03610 

Consistency Ratio = 0.06225 
__________________________________________________________________________ 

Self-Heating Issues Matrix: 

 1              8      3 
 0.125       1      0.2 

 0.3333    5      1      

          
 1Alternatives Weight Vector =      0.65714    0.06825     0.27459 

 
Consistency Index = 0.02217 

Consistency Ratio = 0.03823 

__________________________________________________________________________ 
Long Term Stability and Accuracy Matrix: 

 1       0.25       0.1667 

 4       1            0.3333 
 6       3            1 

    

Alternatives Weight Vector =      0.08695     0.27371     0.63933 
 

Consistency Index = 0.02704 

Consistency Ratio = 0.04663 
__________________________________________________________________________ 

Typical Temperature Coefficient Matrix: 
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 1      0.1667       0.3333 

 6      1                3 
 3      0.3333       1 

      

Alternatives Weight Vector =      0.09601     0.65299    0.25099 
  

Consistency Index = 0.00918 

Consistency Ratio = 0.01583 
__________________________________________________________________________ 

Extension Wires Matrix: 

 1     0.1667      0.1667 
 6     1               1 

 6     1               1 
          

Alternatives Weight Vector =      0.07692     0.46153     0.46153 

 
Consistency Index = 0 

Consistency Ratio = 0 

__________________________________________________________________________ 

Long Wire Runs From Sensor Matrix: 

 1      0.3333       1 

 3      1                3 
 1      0.3333       1 

     

Alternatives Weight Vector =      0.19999     0.60000     0.19999 
 

Consistency Index = 0 

Consistency Ratio = 0 
__________________________________________________________________________ 

Measurement Parameter Matrix: 

 1              4       3 
 0.25         1       0.5 

 0.3333     2       1 

       
Alternatives Weight Vector =      0.62322     0.13728     0.23948 

 

Consistency Index = 0.00915 
Consistency Ratio = 0.01578 

__________________________________________________________________________ 

Temperature Measurement Matrix: 
 1       0.25     0.2 

 4       1          0.3333 

 5       3          1  
   

Alternatives Weight Vector =      0.09642     0.28422     0.61935 

 
Consistency Index = 0.04333 

Consistency Ratio = 0.07471 

__________________________________________________________________________ 
Stimulation Electronics Required Matrix: 

 1              4        3 

 0.25         1        0.5 
 0.3333     2       1 

      

0.23948Alternatives Weight Vector =      0.62322     0.13728      
 

Consistency Index = 0.00915 

Consistency Ratio = 0.01578 
__________________________________________________________________________ 

Existence of Maximum Sensitivity Region Matrix: 

 1              6      1 
 0.1667     1      0.1667 

 1              6      1 

         
Alternatives Weight Vector =      0.46153     0.07693     0.46153 

 
Consistency Index = 0 

Consistency Ratio = 0 

__________________________________________________________________________ 
Typical Fast Thermal Time Constant Matrix: 

 1              3        4 

 0.3333     1        2 

 0.25         0.5     1     

Alternatives Weight Vector =      0.62322     0.23948     0.13728 

 
Consistency Index = 0.00915 
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Consistency Ratio = 0.01578 

__________________________________________________________________________ 
Typical Small Size Matrix: 

 1              2        3 

 0.5           1        2 
 0.3333     0.5     1 

    

Alternatives Weight Vector =      0.53896    0.29725     0.16377 
 

Consistency Index = 0.00458 

Consistency Ratio = 0.00790 
__________________________________________________________________________ 

 
 

Noise Immunity matrix: 

 1         0.1667    0.33333 
 6         1             4 

 3         0.25        1     

    

Alternatives Weight Vector =      0.09338     0.68529    0.22132 

 

Consistency Index = 0.02710 
Consistency Ratio = 0.04672 

__________________________________________________________________________ 

Fragility-Durability Matrix: 
 1               6       3 

 0.1667      1       0.3333 

 0.3333      3        1 
 

Alternatives Weight Vector =      0.65299     0.09601     0.25099 

 
Consistency Index = 0.00918 

Consistency Ratio = 0.01583 

__________________________________________________________________________ 
High Thermal Gradient Environment Matrix: 

 1         4       5 

 0.25    1       2 
 0.2      0.5    1 

    

   
Alternatives Weight Vector =      0.68064     0.20141     0.11794 

 

Consistency Index = 0.01235 
Consistency Ratio = 0.02129 

__________________________________________________________________________ 

Corrosion Resistance Matrix: 
  1       0.25      0.1667 

  4       1           0.3333 

  6       3           1 
 

    Alternatives Weight Vector =      0.08695     0.27371     0.63933 

 
Consistency Index = 0.02704 

Consistency Ratio = 0.04663 

__________________________________________________________________________ 
Point or Area Measurement Matrix: 

 1              2        3 

 0.5           1        2 
 0.3333     0.5     1 

       

Alternatives Weight Vector =      0.53896     0.29725     0.16377 
 

Consistency Index = 0.00458 

Consistency Ratio = 0.00790 
__________________________________________________________________________ 

Manufacturing Variances Matrix: 
 1      0.3333     0.1667 

 3       1             0.3333 

 6       3             1 
 

Alternatives Weight Vector =      0.09601     0.25099      0.65299 

 

Consistency Index = 0.00918 

Consistency Ratio = 0.01583 

_________________________________________________________________________ 
NIST Standards Matrix: 
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 1         4       5 

 0.25    1       0.25 
 1         4       1 

  

      
Alternatives Weight Vector =      0.44444   0.11111     0.44444 

 

Consistency Index = 0 
Consistency Ratio = 0 

__________________________________________________________________________ 

Cost Matrix: 
 1              1              6 

 1              1              6 
 0.1667    0.1667      1         

 

Alternatives Weight Vector =      0.46153     0.46153     0.07693 
 

Consistency Index = 0 

Consistency Ratio = 0 

_________________________________________________________________________ 

Criteria Matrix:  

    1              4     3        4 

    0.25         1     0.5     1 

    0.3333     2     1        2 

    0.25         1     0.5     1 

   

Criteria  Weight Vector =      0.53636     0.12159     0.22045     0.12159 
 

Consistency Index = 0.00686 

Consistency Ratio = 0.00762 
__________________________________________________________________________ 

Sub-Criteria Static Matrix: 

  1.0           1.0          5.0           4.0          4.0          2.0         5.0           6.0         7.0    8.0     6.0           

  1.0           1.0          5.0           4.0          4.0          2.0         5.0           6.0         7.0    8.0     6.0          

  0.2           0.2          1.0           0.3333    0.3333    0.25       1.0           2.0         4.0    5.0     3.0          

  0.25         0.25        3.0           1.0          2.0          0.5         3.0           3.0         5.0    6.0     4.0          

  0.25         0.25        3.0           0.5          1.0          0.3333   3.0           5.0         6.0    8.0     4.0          

  0.5           0.5          4.0           2.0          3.0          1.0         4.0           5.0         6.0    8.0     5.0          

  0.2           0.2          1.0           0.3333    0.3333    0.25       1.0           1.0         4.0    6.0     3.0          

  0.1667     0.1667    0.5           0.3333    0.2          0.2         1.0           1.0         3.0    4.0     1.0          

  0.1429     0.1429    0.25         0.2          0.1667    0.1667   0.25         0.3333   1.0    2.0     0.3333    

  0.125       0.125      0.2           0.1667    0.125      0.125     0.1667     0.25       0.5    1.0     0.25        

  0.1667   0.1667   0.3333   0.25       0.25       0.2        0.3333   1.0        3.0    4.0   1.0       

Sub-Criteria Static Weight Vector =      0.22118     0.22118     0.05379    0.09836     0.09777     0.15040    0.05233     0.03703     

0.01983     0.01452    0.03355 

 
Consistency Index = 0.08281 

Consistency Ratio = 0.05208 

__________________________________________________________________________ 
Sub-Criteria Dynamic Matrix: 

   1        2     0.1667 

   0.5     1     0.1667 

   6        6     1 

Relative Weight Vector =      0.16019     0.10093     0.73887 

 
Consistency Index = 0.02722 

Consistency Ratio = 0.04694 
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__________________________________________________________________________ 

Sub-Criteria Environmental Matrix: 
   1             3             0.3333    4     0.25 

   0.3333    1             0.25        3     0.2 

   3             4             1             5     0.5 

   0.25        0.3333    0.2          1     0.1667 

   4             5             2             6     1 

Relative Weight Vector =      0.15164     0.08645     0.28264     0.04767     0.43157 
 

Consistency Index = 0.06346 

Consistency Ratio = 0.05666 
__________________________________________________________________________ 

Sub-Criteria Others Matrix: 

   1              3     0.5           0.25 

   0.3333     1     0.3333     0.2 

   2              3     1              0.3333 

   4              5     3              1   

Relative Weight Vector =      0.15750     0.07747     0.22913     0.53589 

 
Consistency Index = 0.03752 

Consistency Ratio = 0.04169 

__________________________________________________________________________ 
Relative Weight Vector =       0.118638     0.11863     0.02885     0.05276     0.05244     0.08066     0.02807     0.01986     0.01063     

0.00778     0.01799 

Relative Weight Vector =      0.01947     0.01227     0.08984 
Relative Weight Vector =      0.03343     0.01905     0.06230     0.01050     0.09514 

Relative Weight Vector =      0.01915     0.00942     0.02786     0.06516 

 
 

Sensor Ranks  

0.37849 
0.27560 

  0.34589 
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Abstract in Arabic 

 

 

 

 

 

 

التسلسل  ختيار مستشعرات قياس الحرارة باستخدام طريقة تطبيق برمجي لا

   التحليلي الهرمي

   
 

 البعولمحمد  يشاد اعداد:

 

 

 الملخص
 

 

بهدف اختيار أفضل  (AHP) الاطروحة تقدم تطبيق برمجي يعتمد على استخدام طريقة التسلسل الهرمي التحليلي

 مستشعر لقياس الحرارة من بين عدة مستشعرات و لتطبيقات متعددة. تقوم منهجية الإختيار على اعطاء المستشعرات

ناتجة عن تركيب الأوزان النسبية لكل مستشعر نسبة الى المستشعرات  (Ranks) تبا  ر  ذات الخصائص المختلفة 

الأخرى في المستويات المختلفة للتسلسل الهرمي و بالإعتماد على معايير تقييم مستقلة. يتم حساب الوزن النسبي لكل 

مقارنات ت جرى بين هذه مستشعر بالنسبة للطبقة المباشرة الأعلى في كل مستوى من مستويات التسلسل الهرمي بوساطة 

ضمن التطبيق الواحد. هذه و التي تؤخذ من مواصفات المستشعرات المعلومة   (pair-wise)المستشعرات مثنى مثنى

دخلة  ومتضمّنة داخل البرنامج  الأوزان الثنائية و يقوم البرنامج باسترجاعها بمجرد أن يحدد  (embedded) م 

الصناعي، قيود التطبيق، و المستشعرات المتوفرة. من مزايا طريقة التسلسل  المستخدم للبرنامج كلا  من التطبيق

هي تسمح بعملية اتخاذ قرار أسهل و أكثر تنظيما  من وعقلانية ،  الهرمي التحليلي أنها طرقة تقييم لأداء البدائل مكممة

الدراسة، تتم عملية الإختيار مجرد الأراء الشخصية الخاضعة لأراء الأفراد و المعرّضة لأحكام خاطئة. في هذه 

حوسبة وسهلة على وم لتسهيل اجراء عملية الإختيار بطريقة جاهزة  (# C)بوساطة برنامج حاسوبي مبنيّ باستخدام لغة

المستخدم، و بالتالي هذه الدراسة تقدم المساعدة للعاملين في الصناعة و الراغبين في الإختيار بين مستشعرات حرارة 

 متعددة. 

و متنوع و قابل للتطبيق بالنسبة للعديد من حالات اختيار المستشعرات. رنامج الحاسوبي المقترح متعدد الإستخدام إن الب

يتطلب هذا التطبيق  .في هذه الأطروحة على استخدام البرنامج يتمثل بتطبيق المحول المحفّز في السيارات مثال ميدتم تق

درجة مئوية، و بدرجة حرارة قصوى  750-500استخدام مستعرات حرارة قادرة على قياس حرارات عالية في المدى 

درجة مئوية. تم الاختيار في هذا المثال بين ثلاثة أصناف من مستشعرات الحرارة: الثنائي الحراري  870قد تصل الى 

(Thermocouplesو ،)(الثيرمسترThermisters( و موازين الحرارة المتحسسة بالمقاومة ،)RTDs.) ،و مع ذلك 

   لتطبيقات صناعية متعددة.يق على مجوعة أوسع من الخيارات وقوي و قابل للتطبالبرنامج الحاسوبي ف

 


	Binghamton University
	The Open Repository @ Binghamton (The ORB)
	9-2010

	A Software Application For The Selection Of Temperature Measuring Sensors Using The Analytic Hierarchy Process (AHP)
	Shadi Mohammad AL-B'ool
	Recommended Citation


	THE EFFECT OF HEAT TREATMENT TEMPERATURE AND TIME ON THE PRECIPITATION HARDENING OF (Al-Cu-Ni) ALLOYS

