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A Hybrid Nonlinear Vibration Energy Harvester

Wei Yanga, Shahrzad Towfighiana,∗

aState University of New York at Binghamton, Binghamton, New York 13902

Abstract

Vibration energy harvesting converts mechanical energy from ambient sources to elec-
tricity to power remote sensors. Compared to linear resonators that have poor performance
away from their natural frequency, nonlinear vibration energy harvesters perform better be-
cause they use vibration energy over a broader spectrum. We present a hybrid nonlinear
energy harvester that combines bi-stability with internal resonance to increase the frequency
bandwidth. A two-fold increase in the frequency bandwidth can be obtained compared to
a bi-stable system with fixed magnets. The harvester consists of a piezoelectric cantilever
beam carrying a movable magnet facing a fixed magnet. A spring allows the magnet to move
along the beam and it provides an extra stored energy to further increase the amplitude of
vibration acting as a mechanical amplifier. An electromechanically coupled mathematical
model of the system is presented to obtain the dynamic response of the cantilever beam,
the movable magnet and the output voltage. The perturbation method of multiple scales
is applied to solve these equations and obtain approximate analytical solutions. The effects
of various system parameters on the frequency responses are investigated. The numerical
approaches of the long time integration (Runge-Kutta method) and the shooting technique
are used to verify the analytical results. The results of this study can be used to improve
efficiency in converting wasted mechanical vibration to useful electrical energy by broadening
the frequency bandwidth.
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1. Nomenclature

D3 : electric displacement
e31 : piezoelectric constant
S1 : mechanical strain
εs33 : piezoelectric material permitivity constant
Ez : electric field
T1s : mechanical stress
c11 : compliance of piezoelectric
λ(t) : flux linkage
Lp : length of piezoelectric
bp : width of piezoelectric
hp : thickness of piezoelectric
L : length of beam
b : width of beam
hs : thickness of beam
L : length of entire piezoelectric beam
A : cross sectional area of entire piezoelectric beam
ρ : volume density of entire piezoelectric beam
I : moment of inertia
E : modulus of elasticity
k : stiffnes of spring
w(x, t) : lateral deflection of the beam
s(t) : position of movable magnet measured from the fixed support
S(t) : position of movable magnet measured from equilibrium position
se : equilibrium position of movable magnet
k1 : normalize first natural frequency of cantilever beam
Umag : magnetic potential energy
y : base excitation
β : slope angle of the beam deflection curve with horizontal line
R : resistance load
φ1(x) : the first mode shap for cantilever beam
α(t) : dynamic response of cantilever beam
Fmagx : magnetic force tangential to the beam length
Fmagy : magnetic force normal to the beam length
µ0 : permeability of space
d : distance between the tip of the cantilever and fixed magnet
D : horizontal distance between two magnets
N : magnetization moment of magnet
ωs : natural frequency of the spring
m : mass of movable magnet
s0 : original length of spring
µn : damping terms
v(t) : voltage
T0, T1 : two time scales
ε : scaling parameter
P1, P2 : complex variables
E(T1) : a variable
σ1, σ2 : small detuning parameters
Ω : frequency of excitation
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2. Introduction

The growth of ultra-low-power sensor technologies inspires the use of alternative energies.
One of the most ubiquitous sources of energy is ambient mechanical vibration, which can be
converted to useful electrical energy. This renewable source of energy can replace batteries,
which have short lives and high maintenance costs. Most of the current vibration energy
harvesters are linear resonators that have a narrow bandwidth, which causes a significant
drop in the output once the excitation frequency differs from the resonant frequency. As
ambient vibrations have a wide spectrum at the low-frequency range, that defect defeats
attempts to use linear resonators as convenient energy harvesters [1].

Increasing the frequency bandwidth of resonators will increase the efficiency of converting
mechanical energy to electricity. To increase the bandwidth, several methods introduced
nonlinearities into the energy harvesting system [2] such as using stoppers to realize a spring
hardening effect [3, 4, 5] and using axial static preload to stiffen or soften the structure [6, 7].
Researchers also applied parametric excitation to trigger nonlinearity for energy harvesting.
Yildirim et al. [8] recently designed a clamped-clamped beam with a movable central magnet
inside a coil. The experiment showed frequency softening and a broader bandwidth close to
the primary and principal parametric resonances.

Nonlinearity from bi-stable systems can also broaden the frequency bandwidth. Such
systems use two magnets (one stationary and one moving) for piezoelectric energy harvesters
[9, 10, 11] to create a double-well potential function. Their performance was studied under
base vibrations of harmonic [11] and random natures [12, 13, 14, 15, 16]. Across various
excitation levels, bi-stable systems outperformed linear ones. Bi-stable systems also were
employed in electromagnetic generators [17, 18]. The magnetic force adds cubic stiffness
nonlinearity and makes the oscillator a Duffing type with frequency hardening behavior[17,
19, 20, 21, 22]. Daqaq [23] investigated the response of such harvesters as a unimodal Duffing-
type oscillator exposed to White Gaussian and Colored excitation. Combining piezoelectric
and electromagnetic energy harvesting mechanisms, a hybrid nonlinear system was studied
by Karami and Inman [24] who introduced a unified model to predict the system behavior.
Zou et al. [25] proposed a compressive-mode wideband vibration energy harvester using a
combination of bi-stable and flextensional mechanisms.

Most vibration energy harvesters use a single degree-of-freedom system. However, to
increase the frequency bandwidth, several multi-degree-of-freedom approaches have been
proposed. Wu et al. [26] reported that a two degrees-of-freedom harvester can achieve two
close resonant frequencies with significant power outputs by using two cantilever beams with
magnetic tips. Tang et al. [27] proposed a piezoelectric harvester composed of a cantilever
with a magnetic tip facing a movable magnet, replacing the fixed magnet in typical bi-
stable harvesters. The power output had a large amplitude over a broad bandwidth. Using
two orthogonal cantilever beams with magnetic tips, Ando et al. [28] presented a coupled
bi-stable system that showed high outputs at low frequencies for bi-directional vibrations.
Increasing degrees of freedom by adding multiple coiled cantilever beams nearby a fixed
magnet was also investigated by Sari et al. [29] that showed increase of the frequency
bandwidth for micro electromagnetic generators.

Internal resonance is another nonlinear phenomenon that can be used to broaden the
bandwidth [30]. An internal resonator acts as a mechanical amplifier to pump energy from
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other regions of the frequency spectrum to the harvesting bandwidth. Amplitude frequency
responses of internal resonators bend to two opposite frequency directions causing an increase
in the frequency bandwidth for energy harvesting. This advantage of internal resonance re-
cently attracted some researchers. Lan et al. [31] investigated the energy harvesting of a
vertical piezoelectric beam with its tip mass under vertical excitations. Static and dynamic
instabilities was used to create large amplitudes. Strong internal resonance of the system
improved energy conversion efficiency under harmonic and random excitations. Adding a
mechanical oscillator to an electromagnetic energy harvester, Chen and Jiang [32] demon-
strated that energy harvesting based on internal resonance produces more power compared
to a linear system through a numerical and analytical study. Using an L-shaped piezoelectric
structure with quadratic nonlinearity, Cao et al. [33] showed exploitation of its two-to-one
internal resonance increased significant frequency bandwidth compared to its 2-DOF coun-
terpart. This increase was achieved for excitation frequencies near the first and second linear
natural frequencies. In addition to an L-shaped piezoelectric beam, Chen et al. [34] used
magnets to improve the performance by increasing the bandwidth of energy harvesting. By
changing the distance between two magnets, the harvester can apply internal resonance
to broaden bandwidth and increase output. Compared to a traditional nonlinear energy
harvester including a cantilever with tip magnet facing fixed magnet, Xiong et al. [35] intro-
duced an auxiliary oscillator that produces internal resonance with the main cantilever. It
demonstrated that the nonlinearity of internal resonance increases the operating bandwidth
by experiment and simulation.

The contributions of this paper is to combine bi-stability and internal resonance effects to
broaden the frequency bandwidth of nonlinear vibration energy harvesting. This is achieved
by employing a system that is composed of a cantilever beam with a movable magnet facing
a fixed magnet. Bi-stability is introduced by the magnetic interactions, while the movable
magnet generates internal resonance. Bi-stability can broaden the frequency bandwidth,
but the increase is not substantial. Combining the two effects results in a larger frequency
bandwidth that can increase energy conversion efficiency. In our preliminary study [36], we
developed a mathematical model for a movable magnet on a cantilever beam. In this paper,
we add a piezoelectric strip to the beam for energy harvesting and develop an electrome-
chanical coupled mathematical model of the system. We present an approximate analytical
solution and numerical verification.

The content of this article is organized as follows. Section 2 describes a mathematical
modeling of the combined resonator followed by the perturbation method of multiple scales
in Section 3 to solve for the steady-state frequency response. A linearized piezoelectric
coupling was used to simulate the electromechanical performance. The obtained solutions
are described in Section 4. The effects of various system parameters on the electromechanical
frequency responses are investigated in this section and analytical solutions are verified with
the numerical solutions. Section 5 concludes the paper.

3. Mathematical modeling

The vibration energy harvester consists of a piezoelectric cantilever beam with a movable
magnet attached to a spring, and another fixed magnet with the arrangement of repulsive
magnetic force that is depicted in Figure 1. The cantilever beam is fully covered by the
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piezoelectric material as the active transducer. The spring on the beam allows the movable
magnet to slide along the beam. The whole structure is attached to a parent host that
generates a mechanical vibration in the horizontal plane making the beam vibrate in the
same plane. Our goal is to increase the vibration amplitude of the cantilever beam to
maximize the piezoelectric voltage output. This goal is achieved using the movable magnet
and the working principle is explained in the next subsection.

Figure 1: Nonlinear vibration energy harvesting with internal resonance

(a) (b)

Figure 2: Beam is in two terminal positions.

3.1. Working principle

The initial position of beam and magnets is shown in Figure 1. The vibration of the
base normal to the beam length causes two terminal positions of the beam in the horizontal
plane (Figure 2). At the initial, centered, position of the beam, the tangential component of
the magnetic force compresses the spring (Figure 1). As the beam vibrates away from the
center position, the effect of the tangential component wanes while the normal component
becomes stronger (Figure 3a). The reduction in the tangential component makes the spring
stretch, reducing the horizontal distance between the magnets. The normal component of
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the magnetic force increases with this distance reduction, hence bending the beam to its
largest displacement. At this terminal position, the restoring force of the beam overcomes
the normal magnetic force, the beam vibration reverses, and the spring compresses again.
The increase in the beam displacement caused by the increase of the normal magnetic force
is unique for this movable magnet configuration. The larger the displacement, the larger the
piezoelectric output voltage.

(a) (b)

Figure 3: a) Schematic of a beam with movable magnet from the top view, b) Variable double well potential
function concept

The working principle of the system can also be explained by a variable potential function.
The potential energy of the system is a double-well function when the distance between two
magnets is below a threshold value, which is shown in Figure 3b. The motion of the cantilever
beam resembles the motion of a heavy ball oscillating in a double well potential function with
a flexible bump standing on a spring in the middle. Position 1 shows the ball compressing the
spring that represents the beam in its initial position with the solid line potential function.
As the ball moves down (as the beam vibrates), the spring releases the stored energy to
create a new potential function (dashed line). The release of spring’s energy helps the ball
gain higher velocity at position 2 that pushes the ball to position 3, where the velocity of
the ball slows to zero. At position 3, the ball has more potential energy than at the starting
position (position 1) because of the added restoring energy of the spring. Then the ball starts
moving back. On the way back (from position 2 to position 1), the heavy ball compresses
the spring and the potential function will be the solid line again. In this variable potential
concept, the key for increasing the height of the ball (equivalent to the beam amplitude) is
therefore the added potential energy of the spring. This results in larger electrical energy
output.

3.2. Governing equations

To predict the dynamic response and output voltage of the resonator, a mathematical
coupled model for the cantilever under the influence of magnets and the piezoelectric strip
is derived. The electromechanical model of the piezoelectric behavior is governed by the
following constitutive laws relating the mechanical stress to the electric field generated within
a layer:

D3 = e31T1s + εs33Ez

S1 = c11T1s + e31Ez
(1)
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Because of the parallel connection of piezoelectric layers, the electric field can be written in
terms of flux linkage λ(t) as:

Ez = − λ̇(t)

hp
(2)

The electric energy for one piezoelectric strip is
1

2

∫
EzD3dv, where v is the volume of piezo-

electric strip. Therefore, the electric energy in the system is [11]

2× 1

2

∫
EzD3dv = e31bp(hp + hs)λ̇(t)wx(Lp, t) + εs33

bpLp
hp

λ̇(t)
2

(3)

We write the total energy of the system and use Hamilton’s Principle and variational
calculus to derive the equations of motion. Our model builds on the work by Siddiqui et al.
[37] who studied the dynamics of a cantilever beam with a moving mass. Here we convert
the moving mass to a moving magnet facing a fixed magnet and add the piezoelectric strip
The total kinetic energy of the proposed system is:

T =
1

2

∫ L

0

ρA(ẇ + ẏ)2dx+
1

2
m[ṡ sin β + (ẇ + ẏ)]2 +

1

2
m(ṡ cos β)2 (4)

where β is the slope angle of the beam deflection curve with the horizontal line assuming

sin β =
∂w

∂x
. Because the width of the beam is aligned along the vertical direction, it has a

low moment of inertia about that axis and causes the beam to vibrate only in the horizontal
plane. Hence, we can ignore the potential energy from gravity on the movable magnet as it
has a negligible effect on the motion of the beam in the horizontal plane. The total potential
energy of the system including the electric energy is:

V =
1

2

∫ L

0

EIw2
xxdx+

1

2
ks2 + Umag − θeλ̇(t)wx(Lp, t)−

1

2
cpλ̇(t)2 (5)

where
θe = e31bp(hp + hs)

cp = εs33

2bpLp
hp

To obtain the governing equations of motion, the extended Hamilton’s Principle,∫ t2

t1

[δ(T − V ) + Iδλ] dt = 0

is used where t1 and t2 are two instants of time in which the variation, δ, is calculated. The
variations are determined for kinetic, potential energy, and virtual work of the generalized
current (I, rate of change of flux linkage over resistive load R), respectively that yields

∫
[

∫
−ρAẅdxδw −

∫
EIwxxxxdxδw − EIwxxδwx|L0 + EIwxxxδw|L0 +mṡδṡ− ksδs− δUmag

+m(ẇ + ẏ)δẇ +mδwx(ẇ + ẏ)ṡ+ θeδλ̇(t)wx(Lp, t) + cpλ̇(t)δλ̇(t)− λ̇(t)

R
δλ(t)]dt = 0

(6)
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To use Galerkin’s decomposition method, the mode shapes need to be detemined. The mode
shape of the beam with moving mass is different from that of a regular cantilever beam,
but it is not significantly different. The difference is certainly not going to be as much as
the difference between a cantilever beam mode and that of a beam with an end-mass. So
we use a trial function generated from an eigenvalue problem similar to that of our system
rather than the actual eigenvalue problem. This will work and produce a reasonably accurate
Galerkin expansion, if the trial function and the actual mode shape are close enough [38, 39],
which is the case here. Hence, the boundary conditions of a cantilever beam is used as

∂3w(x, t)

∂x3
= 0 at x = L (7)

∂2w(x, t)

∂x2
= 0 at x = L

∂w(x, t)

∂x
= 0 at x = 0

w(x, t) = 0 at x = 0

To obtain the ordinary differential equations from the partial differential equations, Galerkin’s
method with a trial function of the form

w(x, t) =
n∑
i=1

φi(x)αi(t)

is used, where i indicates the mode shape number. To simplify the derivations, only the first
mode shape of the cantilever is used (i = 1). The normalized first mode shape is given by

φ1(x) = cosh(k1x)− cos(k1x)

− cos(k1) + cosh(k1)

sin(k1) + sinh(k1)
(sinh(k1x)− sin(k1x))

where k1 is the normalized first natural frequency of cantilever beam. Therefore, we have
δw = φ(x)α(t) and δwx = φ′(x)α(t). Integrating every terms in equation (6) by parts and
dropping terms for boundary conditions, we obtain∫

[φ(

∫
−ρAẅ − EIwxxxxdx)δα−ms̈δs− ksδs+ φFmagyδα + Fmagxδs

+m(ẇ + ẏ)δẇ +mwxδ(ẇ + ẏ)ṡ+ θeδwx(Lp, t)λ̇(t) + cpλ̇(t)δλ̇(t)− λ̇(t)

R
δλ(t)]dt = 0

(8)

where Fmagx and Fmagy are the magnetic force tangential and normal to the beam direc-
tions, respectively and∫

m(ẇ + ẏ)δẇdt =

∫
(−mφ(ẅ + ÿ)δα−mφẇxṡδα)dt∫

mwxδ(ẇ + ẏ)ṡdt =

∫
(mwxṡδẇ +mwx(ẇ + ẏ)δṡ)dt

=

∫
(−mφwxs̈δα−mφẇxṡδα−mφwxxṡ2δα−mwx(ẅ + ÿ)δs)dt
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∫
[θeδwx(Lp, t)λ̇(t) + cpλ̇(t)δλ̇(t)− λ̇(t)

R
δλ(t)]dt

=

∫
[−θeẇx(Lp, t)δλ(t) + θeφ

′(Lp)λ̇(t)δα− cpλ̈(t)δλ(t)− λ̇(t)

R
δλ(t)]dt

Then set terms of δs, δα and δλ(t) in equation (8) to be zero respectively. Governing
equations are obtained by three coupled differential equations as

ms̈(t) + ks(t) +mwx(x, t)ẅ(x, t) +mwx(x, t)ÿ(t)− Fmagx = 0 (9)

φ(

∫ L

0

ρAẅ(x, t) + EIwxxxx(x, t)dx) +mφfa + φ

∫ L

0

ρAdxÿ(t) +mφÿ(t)− φFmagy − θλ̇(t) = 0

(10)

cpλ̈(t) + θeẇx(Lp, t) +
λ̇(t)

R
= 0 (11)

where the coupled acceleration term for the mass is

fa = ẅ + 2ẇxṡ+ wxxṡ
2 + wxs̈

The first term in the above equation is the acceleration of the beam in the lateral direction,
the second term is the Coriolis acceleration, the third is centripetal acceleration and the
fourth term is the acceleration of the mass projected in the lateral direction. It should
be noted that the above equations are written for small oscillations of the beam around
equilibrium points caused by small excitation levels, which is a reasonable assumption for
a vibration energy harvester. Nonlinearity from strain displacement relationships is not
included in the governing equations. The magnetic force terms are

Fmagx =
FR

D4
(1− 5w2

2D2
)

Fmagy =
FRw

D5
(1− 5w2

2D2
)

FR =
3µ0N

2

2π

D = D(t) = L+ d− s(t)

N is the magnetization moment of magnet. N depends on the physical property and size of
magnet. We use a cubic magnet with length of 8 mm. The electromechanical coupling term
is

θ = θeφ
′(L)

The static equilibrium equation is obtained by setting the time derivative terms equal to
zero in equation (9):

ω2
s(s0 − se)−

FR

mD4
= 0 (12)
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Assuming parameters of the system as listed in Table 1, equation (12) is solved to obtain
the static equilibrium positions.

In order to obtain the solution to dynamic equations of equations (9-11), perturbation
method of multiple scales is used. To further simplify the equations, the governing equations
(9) and (10) are expanded about their equilibrium points (se for the movable magnet and
α = 0 for the cantilever beam). A Taylor series expansion about the equilibrium position
and including terms up to the first derivatives are used for the expansion as

1

Dn
=

1

Dn
e

+
nS

Dn+1
e

φ(x)x=s(t) = φe + φ′eS

where S = S(t) = s(t) − se is the dynamic response of the movable magnet about the
equilibrium point. De = L + d − se and φe = φ(se), φ

′
e = φ′(se) . The mode shape of the

cantilever is expanded using Taylor series around the equilibrium position of the movable
magnet and is substituted into governing equations (9) and (10). Dropping static terms
yields

S̈ + ω2
sS + φeφ

′
eα̈α + αφ′eÿ −

FR

mD4
e

{
4S

De

+
−5

2

(
1

D2
e

+
6S

D3
e

)
α2(φe + φ′eS)2

}
= 0 (13)

∫ L

0

EIφ′′2dxα +

∫ L

0

ρAφ2dxα̈ + (φe + φ′eS)

(∫ L

0

ρAdx+m

)
ÿ

+mφ2
eα̈ + 2mSφeφ

′
eα̈ +mφφ′S̈α + 2mφφ′Ṡα̇ +mṠ2αφφ′′ +mS2α̈φ′e

2 − θ ˙λ(t)

− FRα(φe + φ′eS)2

D5
e

{(
1 +

5S

De

)
+
−5

2

(
1

D2
e

+
7S

D3
e

)
α2(φe + φ′eS)2

}
= 0 (14)

where ′ denotes the derivative with respect to x and∫ L

0

EIφ′′2dx =

∫ L

0

EIφφ′′′′dx

Nonlinear terms with orders higher than quadratic in equations (13) and (14) are dropped.
Assuming the contact surface of the beam and the magnet is lubricated, viscous friction
between the two is modeled. For the vibration of the beam, air viscous damping is considered.
Adding two damping terms µn results in

S̈ + ω2S + 2µ1Ṡ + c1α̈α + c2α
2 + φ′αÿ = 0 (15)

α̈ + ω2
1α+2µ2α̇ + 2mc4sα̈ + 2mc4Ṡα̇ +mc4S̈α + c5sα− θλ̇(t) + (φe + Sφ′e)cyÿ = 0 (16)

cpλ̈(t) + θα̇ +
λ̇(t)

R
= 0 (17)

where
ω2 = ω2

s + c3 (18)
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c1 = φφ′ (19)

c2 =
5FRφ2

e

2mD6
e

(20)

c3 = −4FR

mD5
e

(21)

ω2
1 =

∫ L
0
EIφ′′2dx∫ L

0
ρAφ2dx+mφ2

e

− FRφ2
e

(
∫ L

0
ρAφ2dx+mφ2

e)D
5
e

(22)

c4 =
φeφ

′
e∫ L

0
ρAφ2dx+mφ2

e

(23)

c5 = − FR∫ L
0
ρAφ2dx+mφ2

e

(
2φeφ

′
e

D5
e

+
5φ2

e

D6
e

)
(24)

cy =

∫ L
0
ρAdx+m∫ L

0
ρAφ2dx+mφ2

e

(25)

It is noted that the last term in equations (15) and (16) are parametric excitation terms.
A parametric counterpart has a zero steady-state response below the initiation threshold
amplitude and a small non-zero initial displacement condition is required [40]. The initia-
tion threshold depends on the damping and level of excitation. However, in practice, the
ambient vibration available for energy harvesting is very small. Direct excitation always
yields a response regardless of the excitation level. Therefore, in our case, direct excitation
is investigated while ignoring the parametric excitation condition. The relationship between
voltage v(t) and flux linkage λ(t) is v(t) = λ̇(t). Considering only the direct excitation, the
two governing equations (15-17) become

S̈ + ω2S + 2µ1Ṡ + c1α̈α + c2α
2 = 0 (26)

α̈ + ω2
1α + 2µ2α̇ + 2mc4sα̈ + 2mc4Ṡα̇ +mc4S̈α + c5sα− θv(t) = F cos(Ωt+ τ) (27)

cp ˙v(t) +
v(t)

R
+ θα̇ = 0 (28)

where F cos(Ωt+ τ) = −φecyÿ.

4. Perturbation method of multiple scales

The method of multiple scales is used to obtain an analytical solution to the governing
equations and to study the quantitative behavior of the system under various parameters.
Two time scales T0 (fast) and T1 (slow) are used:

T0 = t

T1 = εt

11



where ε is a scaling parameter. Let F = εf , the governing equations become

S̈ + ω2S + ε(2µ1Ṡ + c1α̈α + c2α
2) = 0 (29)

α̈ + ω2
1α + ε(2µ2α̇ + 2mc4Sα̈ + 2mc4Ṡα̇ +mc4S̈α + c5Sα− θv(t)) = εf cos(Ωt+ τ)

(30)

cpv̇(t) +
v(t)

R
+ θα̇ = 0 (31)

The next step is to assume an asymptotic series solution for S(t), α(t) and v(t). In this case,
a two term expansion is assumed as:

S(t) = S1(T0, T1) + εS2(T0, T1)

α(t) = u1(T0, T1) + εu2(T0, T1)

v(t) = v1(T0, T1) + εv2(T0, T1) (32)

Dropping second and higher order terms, time derivatives are written as

∂

∂t
=

∂

∂T0

+ ε
∂

∂T1

∂2

∂t2
=

∂2

∂T 2
0

+ 2ε
∂2

∂T0∂T1

Substituting the asymptotic series solution into the time derivatives gives

Ṡ =
∂S1

∂T0

+ ε
∂S2

∂T0

+ ε
∂S1

∂T1

+ ε2∂S2

∂T1

S̈ =
∂2S1

∂T 2
0

+ ε
∂2S2

∂T 2
0

+ 2ε
∂2S1

∂T0∂T1

+ 2ε2 ∂2S2

∂T0∂T1

α̇ =
∂u1

∂T0

+ ε
∂u2

∂T0

+ ε
∂u1

∂T1

+ ε2∂u2

∂T1

α̈ =
∂2u1

∂T 2
0

+ ε
∂2u2

∂T 2
0

+ 2ε
∂2u1

∂T0∂T1

+ 2ε2 ∂2u2

∂T0∂T1

v̇ =
∂v1

∂T0

+ ε
∂v2

∂T0

+ ε
∂v1

∂T1

+ ε2 ∂v2

∂T1

Plugging the above equations into equations (29-31), and equating the coefficient of ε0 and
ε1 to zero, obtains

ε0 order:
∂2S1

∂T 2
0

+ ω2S1 = 0 (33)

∂2u1

∂T 2
0

+ ω2
1u1 = 0 (34)

cp
∂v1

∂T0

+
v1

R
= −θ∂u1

∂T0

(35)
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ε1 order:
∂2S2

∂T 2
0

+ ω2S2 = −2µ1
∂S1

∂T0

− 2
∂2S1

∂T0∂T1

− c1
∂2u1

∂T 2
0

u1 − c2u
2
1 (36)

∂2u2

∂T 2
0

+ ω2
1u2 =− 2µ2

∂u1

∂T0

− 2
∂2u1

∂T0∂T1

− 2mc4
∂2u1

∂T 2
0

S1

− 2mc4
∂S1

∂T0

∂u1

∂T0

−mc4
∂2S1

∂T 2
0

u1

− c5S1u1 + f cos(ΩT0 + τ) + θv1

(37)

cp
∂v2

∂T0

+
v2

R
= −cp

∂v1

∂T1

− θ(∂u2

∂T0

+
∂u1

∂T0

) (38)

The solutions of equations (33-35) are given by

S1 = P1(T1)eiωT0 + P̄1(T1)e−iωT0 (39)

u1 = P2(T1)eiω1T0 + P̄2(T1)e−iω1T0 (40)

v1 =
−iω1θP2e

iω1T0

1

R
+ iω1cp

+
iω1θP̄2e

−iω1T0

1

R
− iω1cp

+ E(T1)e
− T0

Rcp (41)

where P1 and P2 are complex variables and E(T1) is a variable. The overbars denote the
complex conjugates. Substituting equations (39-41) into the right hand sides of equations
(36) and (37) results in

rhs(22) = −2µ1iωP1e
iωT0 + 2µ1iωP̄1e

−iωT0

− 2iω
∂P1

∂T1

e−iωT0 + 2iω
∂P̄1

∂T1

e−iωT0 + (c1ω
2
1P2e

iω1T0

+ c1ω
2
1P̄2e

−iω1T0)(P2e
iω1T0 + P̄2e

−iω1T0)

− c2P
2
2 e

2iω1T0 − 2c2P2P̄2 − c2P̄2
2
e−2iω1T0

(42)

rhs(23) = −2µ2iω1P2e
iωT0 + 2µ2iω1P̄2e

−iωT0

− 2iω1
∂P2

∂T1

eiω1T0 + 2iω1
∂P̄2

∂T1

e−iω1T0

+mc4(2ω2
1 + ω2 + 2ωω1)P1P2e

i(ω1+ω)T0

+mc4(2ω2
1 + ω2 − 2ωω1)P̄1P2e

i(ω1−ω)T0

+mc4(2ω2
1 + ω2 + 2ωω1)P̄1P̄2e

−i(ω1+ω)T0

+mc4(2ω2
1 + ω2 − 2ωω1)P1P̄2e

−i(ω1−ω)T0

− c5(P1e
iωT0 + P̄1e

−iω1T0)(P2e
iωT0 + P̄2e

−iω1T0)

+
1

2
ei(ΩT0+τ) +

1

2
e−i(ΩT0+τ)

+ θ(
−iω1θP2e

iω1T0

1

R
+ iω1cp

+
iω1θP̄2e

−iω1T0

1

R
− iω1cp

+ E(T1)e
− T0

Rcp )

(43)
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To eliminate the secular terms, the coefficients of eiωT0 and eiω1T0 in equation (42) and
(43) are set to zero. The linear solution is not significant because under these conditions the
coupling between the movable magnet and the cantilever beam is very weak. To study the
solution for the coupled motion, we investigate the internal resonance case, assuming

ω = 2ω1 + εσ2 (44)

where σ2 is small detuning parameters. When σ2 is zero, we have internal resonance of 1:2
ratio (the ratio of the first frequency of the system to the frequency of the moving magnet).
For the frequency of excitation, Ω, there are several cases. We consider the case when Ω is
near to ω1:

Ω = ω1 + εσ1 (45)

where σ1 is small detuning parameters. Applying the internal resonance relationship (44)
and the condition (45), the elimination of secular terms no longer gives a linear solution. We
have more nonlinear terms as

−2µ1iωP1 − 2iω
∂P1

∂T1

+ c1P
2
2ω

2
1e
−iσ2T1 − c2P

2
2 e
−iσ2T1 = 0 (46)

− 2µ2iω1P2 − 2iω1
∂P2

∂T1

+
1

2
fei(σ1T1+τ) − i ω1P2θ

2

1

R
+ iω1cp

+ (2mc4ω
2
1 +mc4ω

2 − 2mc4ωω1 − c5)P1P̄2e
iσ2T1 = 0

(47)

The complex variable P1 and P2 are described in polar form as

P1(T1) =
1

2
p1(T1)eiϕ1(T1)

P2(T1) =
1

2
p2(T1)eiϕ2(T1)

Setting the real and imaginary parts of equations (46) and (47) to zero respectively yields

∂p1

∂T1

= −µ1p1 +
a11

4ω
p2

2 sin γ1 (48)

p1
∂ϕ1

∂T1

= −a11

4ω
p2

2 cos γ1 (49)

∂p2

∂T1

= −µ2p2 −
a22

4ω1

p1p2 sin γ1 +
f

2ω1

sin γ2 + E1p2 (50)

p2
∂ϕ2

∂T1

= − a22

4ω1

p1p2 cos γ1 −
f

2ω1

cos γ2 + E2p2 (51)

where
a11 = c1ω

2
1 − c2

a22 = 2mc4ω
2
1 − 2mc4ωω1 +mc4ω

2 − c5

γ1 = 2ϕ2 − ϕ1 − σ2T1
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γ2 = σ1T1 + τ − ϕ2

E1 = −

θ2

2R
1

R2
+ ω2

1c
2
p

E2 =

θ2ω1cp
2

1

R2
+ ω2

1c
2
p

In equations (48-51), p1 and p2 are modal amplitudes and ϕ1 and ϕ2 are corresponding

phases. For the steady-state response, we set
∂p1

∂T1

=
∂p2

∂T1

=
∂γ1

∂T1

=
∂γ2

∂T1

= 0 to obtain

[a2
22ω
√
µ2

1 + (2σ1 − σ2)2]p3
1

+ [8a22ωω1(µ1(µ2 − E1)− (σ1 − E2)(2σ1 − σ2))]p2
1

+ [16ωω2
1((µ2 − E1)2 + (σ1 − E2)2)

√
µ2

1 + (2σ1 − σ2)2]p1

− a11f
2 = 0

(52)

p2
2 = [

4ω

a11

√
µ2

1 + (2σ1 − σ2)2]p1 (53)

Solving equations (52) and (53) gives the amplitude frequency response. The amplitude
of output voltage is given by

v =
ω1θ√

1
R2 + ω2

1c
2
p

p2 (54)

The stability of the steady-state response can be determined by examining the eigenval-
ues. If all the eigenvalues of a Jacobian matrix have negative real parts, the corresponding
steady state response is stable. If not, the corresponding steady-state response is unstable.

5. Results and discussions

5.1. Simulation results

The response of the energy harvester with the parameters listed in Table 1, is obtained by
solving equations (52-54). The parameters are chosen to have symmetric internal resonance
of 1:2 at ω1 = 16 Hz and ω = 32 Hz (detuning parameter σ2 = 0 in Equation 44). The
default value of base excitation is set to 1g. The corresponding frequency response is shown
in Figure 4a and the output voltage frequency response is shown in Figure 4b. Solid lines
represent the stable solution and dashed line represent the unstable solution. There are two
branches that are tilted to two opposite directions leading to a broad bandwidth frequency
response with a jumping phenomenon observed from varying the frequency of excitation, Ω.
The new structure applying internal resonance shows that the frequency bandwidth is two
times larger than the original nonlinear system using fixed magnets that has only a branch
tilted to one direction. The response of the beam correlates to the voltage production of a
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Parameters Values

Mass of moving magnet, m 4g

Magnet size 8mm× 8mm× 8mm

Mass of beam 5.6g

Length of beam, L 75mm

Width of beam, b 10mm

Thickness of beam, hs 1mm

Flexural rigidity, EI 0.003 Pa ·m4

Damping ratio, µ1 and µ2 0.1

Stiffness of the spring, k 250 N/m

Original length of the spring, s0 57.75mm

Distance between the beam tip and fixed magnet, d 4.5mm

Magnetization moment, N 0.53Am2

Length of piezoelectric, Lp 75mm

Width of piezoelectric, bp 10mm

Thickness of piezoelectric, hp 0.254mm

Permittivity of free space, ε0 8.854× 10−12F/m

Laminate permittivity, ε33 3200ε0

Coupling coefficient, e31 -20

Equivalent resistive load, R 500Ω

Table 1: Energy harvester parameters used in simulation

(a) (b)

Figure 4: a) Frequency response for the beam and moving magnet, b) Output voltage frequency response.
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(a) (b)

Figure 5: a) Beam vibration amplitudes versus excitation level, b) Moving magnet vibration amplitudes
versus excitation level.

piezoelectric strip as shown in Figure 4b. As it can be deduced from these figures, there is
a region near the central frequency where the solution is unstable.

Figure 5 depicts the vibration amplitudes of the beam and movable magnet as functions
of the excitation level for different detuning parameters σ1 (in equations (45)) respectively.
A smaller σ1 means the system works near the resonant frequency. On the contrary, a
large value of σ1 indicates that the system works far from the resonant frequency. Solid
lines represent the stable response and dashed lines represent the unstable response. There
are two regimes for single and multiple solutions depending on the excitation level. In the
multiple solution region, two solutions are stable and one is unstable based on the sign of
the eigenvalues. In this region, the response at higher or lower stable branches depends on
the initial condition of the system. In the single solution region, regardless of the initial
conditions, there is only one solution.

5.2. Parametric study

This section studies the effects on energy harvesting by varying system parameters. Be-
cause the beam, but not the movable magnet, response affects the output voltage, for the rest
of analysis, only the beam response and output voltage are illustrated. The displacement
and voltage frequency responses are depicted in Figure 6 for different levels of base excita-
tion. They reveal the effect of the external excitation amplitude on the frequency response
curves. The response amplitude and frequency bandwidth increase with the excitation level,
but it does not affect the tilting of the frequency response unlike bi-stable resonators. It
is observed that the unstable frequency range in the middle increases with the excitation
amplitude.

The displacement and output voltage frequency responses for different stiffness values of
spring k are plotted in Figure 7. The value of spring stiffness 250N/m results in symmetric
internal resonance (σ2 = 0 in equations (44)). Results show that as k decreases below
250N/m, the central frequency of the frequency response shifts to the left, σ2 < 0 or ω < 2ω1.
Furthermore, the peak of right branch is larger than the left peak and will have a larger
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(a) (b)

Figure 6: a) Frequency response for different excitation levels f (g), b) Output voltage for different excitation
levels f (g).

bandwidth on the right side of the central frequency. On the contrary, when k increases
beyond 250N/m, the curve shifts to the right, σ2 > 0 or ω > 2ω1. In this case, the left
branch outperforms the right branch. The stiffness of the spring breaks symmetry and
changes the position of the central frequency with different performances on two branches.
Once the symmetry is broken in the frequency response, the frequency bandwidth decreases
from 2.3Hz to 1.6Hz.

(a) (b)

Figure 7: a) Frequency response for different excitation levels k (N/m), b) Output voltage for different
excitation levels k (N/m).

The initial distance between the beam tip and the fixed magnet, d, also affects the
frequency responses as shown in Figure 8. Results show that when d decreases, a broader
bandwidth response is obtained with a shift of the central frequency to the left compared to
original curve. The bandwidth increases from 2.3Hz to 2.9Hz when the distance d decreases
from 4.5mm to 2.5mm. At smaller d values, the magnetic force is larger making a stronger

18



(a) (b)

Figure 8: a) Frequency response for different distance d (mm), b) Output voltage for different distance d
(mm).

bi-stability effect that causes larger tilting in the frequency response and output voltage
while maintaining a large amplitude in the response.

The magnetization moment effect on the frequency responses is depicted in Figure 9. The
effect is analogous to changing d. In both cases, as the magnetic force strengthens, more
tilting occurs in the frequency response. The stronger nonlinear effect on the system creates
a broader bandwidth frequency spectrum. We also observe that increasing magnetization
moment shifts the central frequency to the left.

(a) (b)

Figure 9: a) Frequency response for different magnetization moment N (Am2), b) Output voltage for
different magnetization moment N (Am2).

5.3. Numerical validations

In order to verify the approximated analytical solutions, two numerical methods are
employed to solve Equations (26-28). The first method is the long time integration (Runge-
Kutta method) and the second one is the shooting method [41]. A set of parameters used
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for making this comparison is listed in the Table 1. The shooting method is a useful way to
record periodic solutions of a nonlinear system, and it is computationally more time efficient
than the Runge-Kutta method. The procedure of shooting is explained as follows. We let
x1 = S, x2 = Ṡ,x3 = α,x4 = α̇ and x5 = v(t). Then, we set ẋ2 = S̈ and ẋ4 = α̈, which yields

ẋ1 = x2 (55)

ẋ2 = −ω2x1 − 2µ1x2 − c1ẋ4x3 − c2x
2
3 (56)

ẋ3 = x4 (57)

ẋ4 = −ω2
1x3 − 2µ2x4 − 2mc4x1ẋ4 − 2mc4x2x4 −mc4ẋ2x3 − c5x1x3 + θx5 + f cos Ωt (58)

ẋ5 = (−x5

R
− θx4)/cp (59)

To proceed with the shooting technique, for convenience, we define the following variables:

∂x1

∂η1

= x6,
∂x1

∂η2

= x7,
∂x1

∂η3

= x8,
∂x1

∂η4

= x9,
∂x1

∂η5

= x10,

∂x2

∂η1

= x11,
∂x2

∂η2

= x12,
∂x2

∂η3

= x13,
∂x2

∂η4

= x14,
∂x2

∂η5

= x15,

∂x3

∂η1

= x16,
∂x3

∂η2

= x17,
∂x3

∂η3

= x18,
∂x3

∂η4

= x19,
∂x3

∂η5

= x20,

∂x4

∂η1

= x21,
∂x4

∂η2

= x22,
∂x4

∂η3

= x23,
∂x4

∂η4

= x24,
∂x4

∂η5

= x25,

∂x5

∂η1

= x26,
∂x5

∂η2

= x27,
∂x5

∂η3

= x28,
∂x5

∂η4

= x29,
∂x5

∂η5

= x30,

The shooting technique requires simultaneously integrating equations (55-59) in addition to
time derivatives of above terms (for a total of 30 first order differential equations) for one
period of excitation.
The initial conditions are defined as

x1(0) = η1, x2(0) = η2, x3(0) = η3, x4(0) = η4, x5(0) = η5,

x6(0) = 1, x7(0) = 0, x8(0) = 0, x9(0) = 0, x10(0) = 0,

x11(0) = 0, x12(0) = 1, x13(0) = 0, x14(0) = 0, x15(0) = 0,

x16(0) = 0, x17(0) = 0, x18(0) = 1, x19(0) = 0, x20(0) = 0,

x21(0) = 0, x22(0) = 0, x23(0) = 0, x24(0) = 1, x25(0) = 0,

x26(0) = 0, x27(0) = 0, x28(0) = 0, x29(0) = 0, x30(0) = 1.

The thirty first order differential equations are then integrated numerically subjected to
the initial conditions over the duration of one period T. Subsequently, we calculate x6 − x30
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at time T and substitute them in the below algebraic system of equations and solve for the
error in the initial conditions:

x6 − 1 x7 x8 x9 x10

x11 x12 − 1 x13 x14 x15

x16 x17 x18 − 1 x19 x20

x21 x22 x23 x24 − 1 x25

x26 x27 x28 x29 x30 − 1



∂η1

∂η2

∂η3

∂η4

∂η5

 =


η10 − x1

η20 − x2

η30 − x3

η40 − x4

η50 − x5


The procedure is repeated until the errors are minimized and a convergence is achieved.
Figure 10 and 11 reveal the stable numerical solutions compared with analytical solutions
for the cantilever beam response and output voltage, respectively. Both long time integration
(LTI) and shooting methods are applied to get numerical solutions of the frequency responses.
Analytical solutions near the central frequency in the frequency spectrum indicate unstable
solutions, which cannot be obtained from long time integration. Solutions by LTI match with
those of the shooting method very well. It is observed that there is an agreement between
analytical and numerical solutions on having two branches tilted to both sides; however,
there is a quantitative difference between analytical solutions and numerical solutions. The
maximum errors between the numerical and analytical solutions are 25% on the left branch
and 34% on the right branch, respectively. The difference between analytical solutions and
numerical solutions in the large amplitude range comes from the assumption of only linear
terms for asymptotic series solutions for S(t),α(t) and v(t) (Equations (32)). In addition,
the second and higher order terms of time derivatives are also dropped. If higher order terms
were added to the assumed solutions, more accurate solutions would have been obtained by
the multiple scales method, but adding more terms makes the derivations computationally
very sophisticated. Regardless of small differences, all methods indicate the double bending
of frequency response and broadening of the frequency bandwidth.

(a) (b)

Figure 10: a) Cantilever beam frequency response by long time integration (LTI), b) Cantilever beam
frequency response by shooting.
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(a) (b)

Figure 11: a) Output voltage frequency response by long time integration, b) Output voltage frequency
response by shooting.

6. Conclusions

In this paper, the dynamic behavior of a hybrid resonator that combines internal reso-
nance with bi-stability is explored to increase frequency bandwidth. The hybrid resonator
consists of a piezoelectric cantilever beam carrying a movable magnet facing a fixed magnet.
The two magnets face one another with the same pole to create a bi-stable system, while
internal resonance is made by adding a spring that controls the movable magnet.

Three coupled governing equations are obtained by using Hamilton’s energy approach.
The perturbation method of multiple scales is employed to obtain approximate analytical
solutions for the amplitude and voltage frequency responses. The amplitude and voltage
frequency responses reveal a double bending effect, two frequency peaks bending to opposite
sides of the central frequency, resulting in a broader frequency bandwidth. Compared to bi-
stable energy harvesters with two fixed magnets that have only one branch, the bandwidth
of the new design is two times larger. The effects of different system parameters on the
frequency response and output voltage curves are studied. It is concluded that the larger the
magnetization moment and the smaller the initial distance between magnets, the larger the
frequency bandwidth. Variation of spring stiffness changed the symmetry of the frequency
response and shifted the central frequency, but a large amplitude response was maintained.
The approximate analytical solutions are also verified by the numerical methods of long time
integration (Runge-Kutta method) and the shooting technique for a case study. Analytical
and numerical solutions are in good agreement. In summary, the hybrid energy harvester
improves energy conversion efficiency by extending the frequency bandwidth of response and
voltage combining the two effects of bi-stability and internal resonance.
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