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Low-Voltage Closed Loop MEMS Actuators

Shahrzad Towfighian · Glenn R. Heppler · Eihab M. Abdel-Rahaman

Abstract An efficient electrostatic resonator is designed

by adding a low voltage controller to an electrostatic

actuator. The closed loop actuator shows stable, and

bi-sable behaviors with bounded chaotic oscillations as

large as 117% of the capacitor gap. The controller volt-

age is decreased from a previously designed resonator to

less than 9 V thereby reducing the load on the controller

circuit components. Bifurcation diagrams are obtained

showing the frequency and magnitude of AC voltage

required for chaotic oscillations to develop. The infor-

mation entropy, a measure of chaotic characteristic, is

calculated for the micro-resonator and is found to be

0.732.

Keywords micro-resonator · electrostatic actuator ·
closed loop actuator

1 Introduction

Appearance of chaos is not usually desired and there are

numerous control systems designed to avoid it. On the

other hand, there are reports on the constructive use

of chaos in macro-systems for structural health mon-

itoring of aeroelastic systems [1–3], fault detection in

roller bearings [4], and detection of corrosion [5]. Cir-

cuit chaotic oscillations have also been used for secure

communications [6].

S. Towfighian
E-mail: sherryt@mie.utoronto.ca

G. R. Heppler
E-mail: heppler@uwaterloo.ca

E. M. Abdel-Rahaman
E-mail: eihab@uwaterloo.ca
University of Waterloo
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
Tel.: +1-519-888-4567 ext.37737

Despite the few reported studies on the usefulness of

chaos in macro-scale applications, there is no evidence

of applying chaos for detection in micro-scale systems.

The main reason for this deficiency is the lack of re-

sources on the nonlinear dynamic behaviour of MEMS.

Most researchers avoid nonlinear systems due to their

complexity. Only in the last decade, have researchers

paid attention to the study of nonlinear dynamics in

MEMS and NEMS since the main elements of these sys-

tems, including cantilever beams and doubly clamped

beams, show significant nonlinear responses that can-

not be neglected and need thorough study [7]. Such

attention is now growing due to the fast growing area

of NEMS showing strong chaotic responses that can be

effectively used towards developing nonlinear sensors

with improved resolution.

In smaller scale NEMS, there are recent studies on

nonlinear vibration, chaos and their applications [8–10].

Bucks et al. [8] found higher mass detection sensitivity

is achieved once a nanomechanical resonator is oper-

ated in the nonlinear region. Conley et al. [9] studied

the onset of nonlinear planar motion and nonplanar

whirling motion of electrostatically excited nanowires

with a proposed application in an overload detection

mechanism. This study was further developed by Chen

et al. [10], who presented a bifurcation diagram for the

extensive nonplanar chaotic oscillations of a nanowire

at elevated AC voltages. Chen et al. [10] suggested us-

ing the chaotic nanowire oscillators in random number

generation used in secure communications.

A bi-stable system with two stable equilibrium points

is a typical system used to produce chaotic oscillations.

Bi-stability and chaos have been reported in atomic

force microscopy (AFM) [11–16], and electrostatic MEMS

[17–29]. Bi-stability in MEMS was analyzed for electro-

static actuators with geometrical nonlinearities [21–24].

Zhang et al. [21] investigated the static response of an
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arch-shaped beam that showed either snap-through and

pull-in, or only pull-in, under electrostatic loading. The

snap-through response led to bi-stability with a large

amplitude response. Nonlinear dynamic responses of

arches including softening behaviour, dynamic pull-in

and snap through were recently reported by Younis et

al. [28] and Ouakad et al. [29]. Bi-stability has also been

reported in static response and hysteretic jumps in the

response of AFM when the tip-sample distance was less

than 10nm [14]. The potential energy in the bi-stable

region was an asymmetric two-well potential. They also

found that the frequency response at large amplitudes

contained multiple harmonics due to period doubling.

Zhang et al. [26] studied softening in an electrostatic

micro-cantilever beam and reported period doubling bi-

furcations in their simulations.

Chaotic vibrations have been observed in bi-stable

non-interdigitated comb drive electrostatic actuators.

Wang et al. [18] modelled them using a mass-spring

system as a Duffing oscillator with a two-well potential

field. Through simulations and experiments they have

shown chaotic oscillations in the two-well region of the

system. As an extension to this work, De and Aluru [19]

presented a model for the system including the elec-

trostatic forcing, nonlinear stiffness, and squeeze film

damping. They showed that even in the absence of the

nonlinear mechanical and fluidic forces, the system had

chaotic attractors. Thus, the electrostatic forces were

found to be the primary mechanism producing chaos.

The boundaries for chaotic motion in the amplitude-

frequency space of the applied voltage were found both

from experiments and from Melnikov’s method by De-

Martini et al. [20].

Chaos has also been studied in a closed loop feed-

back controlled electrostatic actuator with capacitive

sensing [27] designed by Lu and Fedder [30] for position

tracking of probe-based magnetic disk drives. Other ap-

proaches for controlling electrostatic actuators include

using delayed feedback controllers [31, 32]. Liu et al.

[27] used a lumped mass model to study the probe re-

sponse and reported chaotic oscillation in the presence

of forced excitations. A comprehensive study of the non-

linear system dynamics was carried out by Towfighian

et al. [33] to investigate parameters space of the ac-

tuator for stable and bi-stable behaviors, and chaotic

oscillations.

In this study, a quadratic control law [34] is intro-

duced for the electrostatic mirco-beam actuator to cre-

ate an efficient resonator. The proposed resonator re-

quires less voltage and produces larger motions com-

pared to that previously reported [33].

2 Actuator Model

The configuration of the electrostatic actuator is shown

in Figure 1 and is comprised of a cantilever beam above

a fixed electrode and a voltage regulator. The equation

of motion for the micro-beam (Figure 2) using an Euler-

Bernoulli model is

ρA
∂2ŵ(x̂, t̂)

∂t̂2
+EI

∂4ŵ(x̂, t̂)

∂x̂4
+c

∂ŵ(x̂, t̂)

∂t̂
=

ε0bV
2

2(d− ŵ(x̂, t̂))2

(1)

where ŵ(x̂, t̂) is the deflection of the beam in the trans-

verse ẑ direction, x̂ is the coordinate along the beam

length, and t̂ is time. The linear viscous damping coef-

ficient per unit length c is used to account for damping

losses due to the beam motion through air, V is the

applied voltage, A is the cross sectional area, I is the

area moment of inertia, and the other parameters are

defined in Table 1. To simplify the notation, ŵ(x, t) is

shown as ŵ. Multiplying both sides of the equation by

the denominator of the electrostatic force and using the

nondimentional parameters

x =
x̂

L
, w =

ŵ

d
, t =

t̂

T
(2)

where L is the beam length, and

T =

√
ρAL4

EI
(3)

Eq. (1) is rewritten as

∂2w

∂t2
(1−w)2 +

∂4w

∂x4
(1−w)2 +µ

∂w

∂t
(1−w)2 = αV 2 (4)

where

µ =
cL4

EIT
, α =

ε0bL
4

2EId3
. (5)

Fig. 1 Closed loop system.

The normalized partial differential equation of mo-

tion of the closed-loop actuator is

ẅ(1−w)2+w(4)(1−w)2+µẇ(1−w)2 = α(Vin−Vc)2 (6)

where Vin is the system voltage input, and Vc is the

controller voltage. To obtain the static and dynamic
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Fig. 2 Schematic of the micro-beam oscillator.

responses of the actuator, the partial differential equa-

tion of motion in Eq. (6) is converted to an ordinary

differential equation using separation of variables and

a one-mode Galerkin’s expansion as described in [33].

Two ordinary differential equations are thus obtained: (q̈ + µq̇ + ω2
1q)(1 + c1q + c2q

2) = c3α(Vin − Vc)2

V̇c = −KI

(
Vc −

a0 + a1q + a2q
2

√
α

)
(7)

where q is the normalized beam tip deflection, ω1 is the

first natural frequency of the beam, and c1, c2, and c3
are found from applying Galerkin’s method. The second

equation represents the quadratic controller law with a

constant integrator gain KI . The parameters a0; a1;

;a2 in the controller equation are constants chosen to

obtain four equilibrium points for a voltage range as

explained in section 3.

To implement the electronic circuit of the controller,

the second equation is rewritten to include dimensional

time:

V̇c = −KI

T

(
Vc −

a0 + a1q1 + a2q
2
1√

α

)
(8)

where the value of the integrator gain KI

T is given in

Table 1. The actuator parameters in Table 1 are iden-

tified experimentally [34]. The natural frequency of the

cantilever beam has been found experimentally to be

99.38 kHz and the beam length was determined to be

157 µm.

Table 1 Actuator parameters

Parameter Symbol Value

Density ρ 2331 kg
m3

Beam Length L 157.4 µm
Beam Width b 10 µm
Beam Thickness h 1.9 µm
Initial Gap d 1.9 µm
Nondimensional Damping Coefficient µ 0.6153

Permittivity of Free Space ε0 8.85E-12 F
m

Modulus of Elasticity E 150 GPa

Integrator Gain KI/T 0.1776
1

s

3 Static Analysis

To study the behavior of the actuator, the location of

the equilibrium points and their stability conditions are

obtained. The location of the equilibrium points, in the

static response, is found by solving the algebraic equa-

tion resulting from setting the time derivatives equal to

zero in Eq. (7):

ω2
1q(1+c1q+c2q

2) = c3α(Vin−
(a0 + a1q + a2q

2)√
α

)2 = f

(9)

Eq. (9) describes the balance of the mechanical force

and the regulated electrostatic force. The left hand side

of the equation is the spring force multiplied by the

denominator of the electrostatic force and the middle

equation is the square of the difference of the input

voltage and the regulated voltage. The equation can be

solved graphically by plotting both sides of the equa-

tion as depicted in Figure 3. As it is seen, the system

shows bi-stability as the intersections representing the

equilibrium points include two stable and two unstable

equilibrium points. The stability conditions are deter-

mined by linearizing Eq. (7) around the equilibrium

points and finding the eigenvalues.

Fig. 3 Graphical solution of Eq. (9) showing the balance of
the mechanical force and the regulated electrostatic force at

Vin = 5 V for
a0√
α

= 20.194 V,
a1√
α

= −142.697 V , and

a2√
α

= 142.697 V . − left side and −� the middle equation.

For the system to be bistable, the middle quartic

equation of Eq. (9) in terms of q should have two pairs of

roots between 0 and 1 for an assumed Vin, as shown by

the dash dot line in Figure 3. These roots then dictate

the location of four equilibrium points in the solution of

the equation. The farther the roots in each pair are from

each other, the closer the first stable and last unstable

equilibrium points get to the location of the beam initial

position and the fixed electrode, respectively. Assuming
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the roots, the unknown coefficients of a0, a1, and a2 are

found from solving Eq. (9).

The static response of the actuator for the quadratic

controller is illustrated in Figure 4 at different input

voltages. The eigenvalues of the equilibrium points at

Vin = 2 V are listed in Table 2. It can be concluded

from Figure 4, and Table 2 that points 1 and 3 are

stable equilibrium points and points 2 and 4 are sad-

dles. In other words, the first and the third branches

of the static profile are the loci of stable equilibrium

points and the second and fourth branches are the loci

of the saddles. The upper stable and unstable branches

crosses the unity deflection line at 7.4 V, and 32.5 V,

respectively. Beyond 32.5 V, The unstable and stable

branches diverge from each other in the non-physical

domain. The nondimensional natural frequency of the

lower and upper equilibrium points (1 and 3) are 5.72

and 3.02 corresponding to 161.7 kHz and 85.37 kHz,

respectively.

Fig. 4 Nondimensional deflection of the beam tip versus in-

put DC voltage for
a0√
α

= 20.194 V,
a1√
α

= −142.697 V , and

a2√
α

= 142.697 V , − stable, −− unstable.

Table 2 Eigenvalues of the equilibrium points at Vin = 2 V

# q1 Eigenvalue 1 Eigenvalue 2

1 0.066 -0.308+5.72i -0.308-5.72i
2 0.458 2.43 -3.04
3 0.555 -0.308+3.02i -0.308-3.02i
4 0.962 15.89 -16.51

The closed loop actuator reported [33,35] consisted

of a hyperbolic function ( q
1−q ) in contrast to the quadratic

function introduced here. Figure 5 shows the nondi-

mensional deflection of the closed loop actuator with

the hyperbolic function. There exists a region of bi-

stability and the upper stable branch approaches the

unit deflection line asymptotically. The advantages of

the quadratic controller (Figure 4) are wider bi-stability

input voltage range and lower bi-stability operating volt-

age. The bi-stability input voltage region for the quadratic

controller extends over 20.95 V which is four times

larger than that of the actuator presented in Figure

5. The quadratic controller also poses lower bi-stability

operating voltages: 1.75 V to 22.7 V compared to a min-

imum operating voltage of 110 V for the system shown

in Figure 5, thus reducing the requirements on the elec-

tronic components in the regulator circuit.

The controller quadratic law is chosen so that the

chaotic resonator can be produced both from bi-stability

and from a stable system with an unstable equilibrium

placed far from the stable equilibrium point. In other

words, the system has four equilibrium points including

two stable and two unstable as well as two equilibrium

points composed of one stable and one unstable equilib-

rium point at different ranges of voltage, obtained from

solving the static equilibrium Eq. (9).

Fig. 5 Nondimensional deflection of the beam tip versus
voltage VDC for the closed loop actuator with the hyper-
bolic function reported in [33], − stable, −− unstable.

The quadratic controller has also the advantage of

tunability in terms of the size of the potential wells

of the actuator in the bi-stability region. This prop-

erty can be seen by in Figure 4. At low voltages, the

upper equilibrium point is close to the lower saddle,

while the lower equilibrium point is far from the sad-

dle indicating a large and deep lower well. As the volt-

age increases, this situation reverses and the upper well

becomes larger and deeper as the lower well becomes

smaller and shallower.

In terms of implementation, as q → 1, the proposed

quadratic controller circuit is less susceptible to noise
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than the previous controller [36] by featuring a hyper-

bolic function ( q
1−q ) instead of a quadratic function.

The coefficients in the quadratic equation are also cho-

sen to be realizable in an electronic circuit. Further,

the controller output voltage Vc is limited to a range

of 35 V (-15 V to 20 V) for the full actuator motion

range, as illustrated in Figure 6, obtained from solving

the equilibrium equation of the controller voltage, Eq.

(8) with zero time derivatives.

Fig. 6 Equilibrium of controller output voltage Vc as

a function of the nondimensional gap when
a0√
α

=

20.1939 V,
a1√
α

= −142.6973 V , and
a2√
α

= 142.6973 V .

4 Dynamic Analysis

The steady-state dynamic response of the actuator to

a biased harmonic voltage Vin = VDC + VAC cosΩt is

found by integrating Eq. (7) numerically for 5000 pe-

riods of excitation and retaining the last 128 periods.

Phase space of dynamic orbits according to Eq. (7) con-

sists of three axes: nondimensional velocity, nondimen-

sional displacement and controller voltage. The phase

portraits found in this section are cross sections of the

orbits in the three dimensional phase space. Bifurcation

diagrams are also found revealing the excitation ampli-

tude and frequency ranges where periodic and chaotic

vibrations occur.

To take advantage of the dynamic amplification avail-

able in the vicinity of primary resonance, we excite at a

nondimensional frequency of 3.2, corresponding to 90.4

kHz, which is slightly above the natural frequency of the

upper equilibrium point. It should be noted that due to

squared voltage term in Eq. (7), the actual excitation

frequency is double the nominal excitation frequency.

Chaos at this frequency occurs at an AC amplitude of

VAC = 1 V (Figure 7). Figure 7 shows that almost, but

not quite, periodic oscillations with short intervals of

irregularity develop in the lower well, grow to exceed

the potential hump (saddle) and cross to the upper

well before being injected back into the lower well to

repeat the process. This behavior is typical of an in-

termittency route to chaos, which is different from the

period doubling route to chaos found in the actuator

studied in [33]. The chaotic motion developed in this

case is mostly in the lower well and between the two

wells as the phase portrait and time series of the de-

flection show. In this case, chaos appears subsequent

to a subcritical period-doubling bifurcation. In the for-

mer case, chaos appears subsequent to a cascade of su-

percritical period-doubling bifurcations. The controller

voltage is also limited between 10 to 19 V reduced by

more than half of the voltage required by the previous

controller [33] to produce same ranges of oscillation.

Fig. 7 a) Phase portrait of chaotic oscillation , b) Nondi-
mensioanl beam tip displacement, c) Controller output volt-

age Vc, for
KI

T
= 0.1776

1

s
, at VDC = 2 V, VAC = 1 V, and

Ω = 90.4 kHz. (Crosses show the locations of saddles and
circles show the location of nodes.)

4.1 Force Sweep

Observing chaotic attractors mainly in the lower-well

led us to seek chaotic attractors that are limited strictly

to one well at small DC voltages. Therefore, bifurcation

diagrams were obtained from force sweeps at zero DC

voltage while keeping the excitation frequency constant.

A single stable equilibrium is available at VDC = 0

located at 0.08 of the gap with a natural frequency of

164 kHz (Figure 4). The bifurcation diagrams in Fig-

ure 8 are obtained for excitation frequencies of Ω =

90.4 kHz, Ω = 91.8 kHz, Ω = 93.22 kHz, and Ω =

94.64 kHz. Eqs. (7) are solved numerically for 5000 pe-

riods of AC excitation and Poincaré section is created
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by sampling the last 128 periods at the period of exci-

tation starting from the maximum displacement.

Fig. 8 Bifurcation diagrams constructed by stacking
Poincaré sections in force sweeps of VAC at VDC = 0 at
four fixed frequencies. 1 : Ω = 90.4kHz, 2 : Ω = 91.8kHz,
3 : Ω = 93.22kHz, and 4 : Ω = 94.64kHz

The bifurcation diagrams illustrate the progression

from periodic motion to intermittent chaos. Chaos dis-

appears beyond a voltage limit where the orbit grows

and touches the stable manifold of the upper saddle

leading to dynamic pull-in. At the lowest frequency of

Ω = 90.4 kHz, there is a hysteric jump in the ampli-

tude at VAC = 0.68 V before chaos occurs as the AC

voltage increases. The frequency of this is close to the

threshold frequency of 89.84 kHz for the appearance

of chaos, below this frequency the chaotic oscillations

vanish.

The higher the frequency is, the larger the thresh-

old of AC voltage becomes for the chaotic motions. The

reason is that the kinetic energy is higher for higher fre-

quencies making the potential energy and displacement

smaller for a constant input energy. That means, orbits

at higher frequencies require more voltage to approach

the manifold of the saddle and become chaotic. Con-

versely, the chaotic attractor grows along the displace-

ment axis as the frequency decreases, which is clear

comparing the largest attractor at each frequency. For

the similar reason, the AC voltage range for the chaotic

motion is the shortest at the largest frequency Ω =

94.64 kHz shown since more expansion along the ve-

locity axis makes the attractor touch the manifold ver-

tically for a smaller increase in AC voltage. Therefore,

to create a chaotic resonator, it is desired to operate as

close as possible to the threshold frequency to produce

a large displacement signal that makes the detection

easier.

The chaotic attractor with the widest footprint along

the displacement axis is illustrated in Figure 9 at the

frequency of 90.4kHz and VDC = 0 V, VAC = 1 V.

The displacement signal in part (b) shows vibrations

up to 82% of the gap below and 35% above the neutral

position of the beam. Such large motions are possible

by locating the saddle very close to the fixed electrode,

and locating the stable equilibrium close to the unde-

flected beam position (See Figure 4). It is also noted

that even for large oscillations, the controller voltage

shown in Figure 9 (c) is limited to the range 8 V to

17 V . Hence, the quadratic controller made the total

displacement signal as large as 117% of the gap while

requiring the controller output voltage as small as 9 V.

Using the previous controller, actuation was only fea-

sible up to 90% of the gap at the cost of twice the

controller voltage [35].

Furthermore, such large attractors could indicate

the controller robustness as it shows the system can

survive the large irregular, but bounded chaotic os-

cillations covering almost the entire phase space. The

quadratic regulator can also control the attractor size

and location by appropriate selection of operation point

within the excitation parameter space: DC voltage (Fig-

ure 4), AC voltage and frequency (Figure 8).

Further, the input voltage to the system for large

chaotic attractors does not require any DC voltage,

compared to 110 V DC (Figure 5) for the previous

controller [33]. Eliminating DC voltage prevents leak-

age current into the isolation layers of the actuator and

avoids drift of the measured parameter values over time.

Fig. 9 a) The phase portrait of chaotic oscillations , b)
nondimensioanl beam tip deflection, c) controller output volt-

age Vc, for
KI

T
= 0.1776

1

s
, at VDC = 0 V, VAC = 1 V, and

Ω = 90.4kHz. The cross shows the location of the saddle and
the circle shows the location of the stable equilibrium point.
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4.2 Frequency Sweep

The frequency response curves shown in Figures 10 and

11 are obtained by sweeping the frequency of excita-

tion at two fixed AC voltages of VAC = 1.23 V, and

VAC = 1 V, respectively. The results are obtained by

solving Eqs. (7) numerically for 5000 periods of AC

excitation. Poincaré sections are obtained by sampling

the last 128 periods at the period of excitation start-

ing from the maximum displacement. Decreasing the

excitation frequency in the first case from 113 kHz, the

period-one orbit grows until chaos appears through an

intermittency route at 93.51 kHz and continues down

to 91.8 kHz. Below that, the chaotic attractor becomes

very large, touches the stable manifold of the saddle

and goes to dynamic pull-in, in a process known as the

escape from a potential well [37]. The escape region,

where there is no solution, persists down to the fre-

quency of 85.3 kHz, below which the system response

continues to be periodic with small period-one orbits.

Operation in this region should be avoided since it will

lead to the moving electrode losing stability and coming

into contact with the fixed electrode.

Fig. 10 Bifurcation diagram constructed by stacking
Poincaré sections in a frequency sweep at VAC = 1.23 V
and VDC = 0.

Both frequency sweeps reveal softening-type response

with a small chaotic region. Comparing the two bifurca-

tion diagrams, the escape region shrinks, the threshold

frequency for chaos drops, while the largest attractor

grows for lower AC excitation. Lowering down the AC

excitation voltage eventually eliminates the escape re-

gion and the chaotic region to be replaced by multi-

valued periodic responses and hysteric jumps observed

in the force sweep start to appear. The largest chaotic

attractors shown in Figures 10 and 11 correspond to

the largest attractors in Figure 8 for frequencies of 91.8

kHz and 90.4 kHz, respectively.

Fig. 11 Bifurcation diagram constructed by stacking
Poincaré sections in a frequency sweep at VAC = 1 V and
VDC = 0.

4.3 Information Entropy

Information entropy is used as a metric to verify the

chaotic attractors observed in this study. The size of a

box that surrounds the chaotic attractor in the three di-

mensional phase space (nondimensional velocity, nondi-

mensional displacement, and controller voltage) is ob-

tained and is divided to small cubes of size ε = 0.0002 V.

Then a Poincaré section of the attractor is found by

sampling at the period of excitation starting from the

maximum displacement. The number of points in each

cube is counted (Ni) and divided by the total number

of points on the Poincaré section (N0) to get Pi =
Ni

N0
.

The information entropy is then calculated as [38]:

I(ε) = −
N∑
PilogPi (10)

where N is the total number of cubes. The system is

fully predictable when all points are located in one cell

and therefore I = 0. Any value between 0 and 1 is a

measure of the unpredictability of a chaotic attractor.

The Poincaré section of the attractor shown in Fig-

ure 9 is illustrated in Fig. 12. It clearly shows onset of

chaos as the return-map fill an area rather than dis-

crete points or an orbit. The information entropy is

obtained for the attractor starting from different initial

conditions in the phase space as presented in Figure

13. Information entropies are found to vary between

0.732 and 0.737, which proves that the oscillations are

chaotic. The figure also reveals that there is a common

information entropy of 0.7324 for 23 out of 26 initial

conditions with a small variation of less than 0.005 for

the other three initial conditions.
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Fig. 12 Poincaré section for the attractor in Figure 9 start-
ing from initial conditions of [q0 = 0, q̇0 = 0, Vc0 = 0].

Information entropy is also found for an attractor

located at VAC = 1.8 V and Ω = 94.64 kHz in Figure 8

using the same initial conditions of Figure 13. The cal-

culated information entropies are illustrated in Figure

14, which shows a common value of 0.732 for 23 out of

26 initial conditions and small variation for the other

three initial conditions. The information entropy was

also obtained for other attractors and it was observed

that there was a dominant value of 0.732 for all attrac-

tors that does not depend on the excitation frequency

or amplitude indicating a unique chaotic characteristic.

Fig. 13 Information entropy for the chaotic attractor at
KI

T
= 0.1776

1

s
, VDC = 0 V, VAC = 1 V, and Ω = 90.4kHz.

The initial conditions are q0 at equal increments between
[0.28-0.66], q̇0 = 0.1, and Vc0 = 0 V.

5 Summary and Future Work

A voltage regulator with a quadratic control function is

developed for an electrostatic actuator to make a large

oscillator. Bifurcation diagrams obtained by sweeping

Fig. 14 Information entropy for the chaotic attractor at
KI

T
= 0.1776

1

s
, VDC = 0 V, VAC = 1.8 V, and Ω =

94.64kHz. The initial conditions are q0 at equal increments
between [0.28-0.66], q̇0 = 0.1, and Vc0 = 0 V.

the magnitude and frequency of excitation reveal pe-

riodic and large bounded chaotic oscillation regions in

the parameter space. The quadratic controller demon-

strates valuable advantages over the previously stud-

ied controller. Not only the the quadratic regulator im-

proves the system handling of noise, but also it requires

no input DC voltage that avoids leakage current in

the isolation layers of MEMS. The regulator drives the

beam to vibrate in the positive and negative directions

for a total range of 117% of the gap. It requires only

half of the previous regulator output voltage, thus de-

creasing the load on the circuit components. The large

oscillations of the quadratic resonator are important as

they are bounded in the phase space, thus making de-

tection easier which suitable for use in sensing applica-

tions. Furthermore, the resonator is potentially robust

as it demonstrates a stable response over a large area

of the phase space.

The regulator has two potential functions: one-well

once the DC and RMS of AC voltage is below a thresh-

old, and two-well once this value is above the thresh-

old. Both potential functions can be used for linear or

non-linear oscillators depending on the purpose. The

one-well potential field allows creation of an oscillator

with a large chaotic attractor. The two-well potential

field allows creation of both a relatively small one-well

attractor protected by the upper well and a large two-

well attractor. The size of the chaotic attractors are also

controllable setting the frequency of excitation.

Finally a metric of chaos, namely information en-

tropy, is used to prove that the observed long period

orbits are indeed chaotic and to measure their irregu-

larity. It was found the chaotic attractors have a dom-

inant information entropy of 0.732 that does not de-

pend on the excitation frequency and magnitude and is
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a characteristic of the chaotic process in the quadratic

resonator.

In order to realize a prototype for the controller

in the future work, similar approach used by the au-

thors [36] to make the hyperbolic controller can be ap-

plied. The controller was implemented using an analog

circuit. In that study, to measure the deflection used

by the circuit, a laser Doppler vibrometer was used to

measure the velocity at the tip of the moving electrode

which was then integrated to obtain the tip displace-

ment. For a controller prototype, the same approach

can be used here to measure the beam tip displacement

and to use that signal in an analog circuit controller

with a quadratic function. For practical implementa-

tion of a real system, an approach that can measure

the phase difference between input voltage and output

voltage is probably more suitable than capacitive sens-

ing, since large parasitic capacitance will make impede

measurements highly inaccurate.
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