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Abstract. Voltage driven parallel-plate electrostatic actuators suffer from an

operation range limit of 30% of the electrostatic gap; this has restrained their

application in microelectromechanical systems (MEMS). In this paper, the travel

range of an electrostatic actuator made of a micro-cantilever beam above a fixed

electrode is extended quasi-statically to 90% of the capacitor gap by introducing a

voltage regulator (controller) circuit designed for low frequency actuation. The voltage

regulator reduces the actuator input voltage, and therefore the electrostatic force, as

the beam approaches the fixed electrode so that balance is maintained between the

mechanical restoring force and the electrostatic force. The low-frequency actuator also

shows evidence of high order superharmonic resonances that are observed here for the

first time in electrostatic actuators.
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1. Introduction

Extending the range of electrostatic actuation is desirable in many applications including

MEMS optical switches [1], tunable laser diodes [2], polychromator gratings [3], optical

modulators [4], and millipede data storage systems [5]. To extend the travel range

of electrostatic actuators in attracting mode beyond the conventional one-third of the

capacitor gap, researchers have used various methods including: charge and current

control [6–9], and leveraged bending [10]. Other approaches that seek to extend the

travel range of electrostatic actuators include voltage control [11–13], sliding mode

control [14], and other nonlinear feedback controllers [15–17].

Charge and current control are very difficult to perform in MEMS because of the

very small capacitance. Using a capacitor in series with the actuator to control the

charge, Chan et al. [9] experimentally increased travel up to 60% of the gap at the cost

of high voltage requirements. Adding a capacitor in series, they kept the electrostatic

force constant in the actuator by controlling the voltage difference between the actuator

plates. As the gap decreases in the actuator beyond 30% of the gap, its capacitance

increases rapidly, while the voltage across the actuator plates decreases as the square of

the gap helping to keep the electrostatic force constant. Theoretically, it should have

been possible to operate over the full gap of the actuator, but parasitic capacitance

limited the travel range to 60% of the gap. Leveraged bending [10] is another method

to increase the actuation range by applying the electrostatic force only to a portion of

the actuator. The disadvantage of this method is high input voltage requirements.

Current control was examined by Guardia et al. [8]. They used open loop and

closed loop configurations for driving the actuator with a current source. They showed

full gap actuation is achievable with a voltage five times the open-loop pull-in voltage.

Experimentally they obtained actuation up to 48% of the gap. The drawback of this

method was that the actuator was stable only for a short period of time.

There are a number of studies using charge control for extending electrostatic

actuation [6,7]. Using a switched-capacitor circuit Seeger et al. [6] controlled the charge

of an electrostatic actuator. They showed analytically that the pull-in instability can

be eliminated by taking advantage of parasitic capacitance present in the actuator and

employing a voltage 5.2 times smaller than that of voltage controlled systems. They

experimentally achieved 83% of the gap. However, tip-in instability, which arises from

a small rotation of the parallel plate actuator, and snapping could not be eliminated

using this technique.

Using voltage control Chen et al. [12] stabilized the tilt angle of an electrostatic

micro-mirror beyond its snap-down angle. They control the actuation voltage, keeping

the slope of the mechanical torque larger than the electrostatic torque to stabilize the

angle of the mirror. They were able to extend the stable operation range to 10◦ from

an open-loop pull-in angle of 6.1◦. Simulation studies correlated well with experiments

at low actuation angles; at large actuation angles the linear mechanical and damping

force models could not predict the overshoot accurately.
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Employing a nonlinear voltage controller that uses two control methods, feedback

linearization and trajectory planning, Agudelo et al. [13] experimentally achieved

actuation up to 60% of the gap, well beyond pull-in, for an electrostatic micro-mirror.

They used feedback of the mirror tilt angle and the actuation voltage to follow the

desired angle trajectory beyond pull-in and obtained good agreement with simulation.

Simulation showed actuation over the whole gap, this was limited in practice by the

sampling time which restricted the actuation to 60% of the gap.

A nonlinear output tracking controller was proposed by Owusu et al. [16] to extend

the electrostatic actuation range using displacement, velocity and charge feedback.

Simulations showed robust response in the presence of noise and an increased actuation

range to 90% of the gap. Further studies on this controller were conducted by Nikpanah

et al. [17] who improved the performance by eliminating the displacement fluctuations

present in the previous study when using a switching control technique that made the

controller more feasible to implement.

A closed loop controller that used a capacitive sensor for position feedback was

designed by Lu and Fedder [11] for position tracking of probe-based magnetic disk

drives. They added a constant controller gain that ensured a minimum phase margin

of 60◦ to a linearized model of the actuator and experimentally stabilized the actuator

up to 60% of the gap. Liu et al. [18] used a lumped mass model for the cantilever beam

to study the probe response and reported chaotic oscillation in the presence of forced

excitations. The cantilever beam mode shapes were then used and a comprehensive

study of the nonlinear system dynamics was carried out by Towfighian et al. [19] to

investigate the controller parameters for stable and bi-stable behaviors, and chaotic

oscillations.

The largest quasi-static micro-actuation range reported so far is limited to 60

% of the capacitor gap for closed loop actuators and 30 % of the gap for open loop

actuators. Parallel-plate electrostatic actuators able to traverse the entire capacitor gap

with reasonable actuation voltage are an important addition to the state-of-the-art since

they will open the doors to wide spread use of these high-energy density actuators. For

this purpose, we develop a large-stroke actuator by applying a simplified control law to

a micro-cantilever beam. We study the quasi-static and dynamic response of the large-

stroke actuator experimentally and numerically to characterize its performance. In the

following sections, we describe the closed-loop actuator model and report the numerical

and experimental performance of the actuator in quasi-static and dynamic actuation

modes, respectively.

2. Actuator Model

The actuator consists of a polysilicon cantilever beam as a moving electrode above a

fixed electrode (Figure 1). A picture of the fabricated PolyMUMPS actuator is shown

in Figure 2. A feedback control system is added to the open loop electrostatic actuator

to extend the stable electrostatic actuation range.
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Figure 1. Schematic of micro-beam oscillator.

Figure 2. A white-light image of the electrostatic actuator obtained with a WYKO

NT1100 Optical Profiler.

The controller regulates the actuator voltage, and therefore the electrostatic force,

to obtain a larger range of motion. A schematic of the closed-loop system is shown in

Figure 3. In this figure, Vin is the input voltage, Vc is the controller output voltage,

G is a voltage gain, and ŵ is the deflection of the beam in the ẑ direction (Figure 1).

The voltage applied between the two electrodes (see Figure 3) creates the electrostatic

forcing on the cantilever beam

Fe ∝ G2 (Vin − Vc)2

(d− ŵ)2
, (1)

where d− ŵ is the gap.

Figure 3. Closed loop system.
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The equation of motion of the closed loop is [19]

ρA
∂2ŵ(x̂, t̂)

∂t̂2
+ EI

∂4ŵ(x̂, t̂)

∂x̂4
+ c

∂ŵ(x̂, t̂)

∂t̂
=
ε0bG

2(Vin − Vc)2

2(d− ŵ(x̂, t̂))2
(2)

where A is the cross sectional area of the beam, EI is the flexural rigidity of the beam,

the coefficient c accounts for damping losses due to the beam motion through the air.

Other system parameters are identified experimentally as described in Towfighian et

al. [20] and are given in Table 1. To generalize the equation of motion, we use the

following non-dimensional variables to re-write Eq. (2):

x =
x̂

L
, w =

ŵ

d
, t =

t̂

T
(3)

where the time constant T is

T =

√
ρAL4

EI
. (4)

We multiply the result by the denominator of the electrostatic force term to obtain

ẅ(1− w)2 + w(4)(1− w)2 + µẇ(1− w)2 = G2α(Vin − Vc)2. (5)

where

µ =
cL4

EIT
, α =

ε0bL
4

2EId3
, (6)

and w(4) is the fourth derivative of deflection with respect to the axial coordinate x. To

transform Eq. (5) to an ordinary differential equation, it is discretized using separation

of variables and Galerkin’s method with the trial function chosen as the first mode

shape of the cantilever beam. The set of ordinary differential equations of the actuator

including the controller equation is then{
(q̈ + µq̇ + ω2

1q)(1 + c1q + c2q
2) = c3G

2α(Vin − Vc)2
V̇c = −r(Vc − q

1−q
Ψ)

(7)

where q is the beam tip deflection normalized with respect to the initial gap, over-dot

means differentiation with respect to time, ω1 is the first natural frequency of the beam,

and c1, c2, and c3 are found by applying Galerkin’s method. The parameters appearing

in the differential equation for the controller voltage (Vc) [18] are the voltage gain G,

displacement gain Ψ, and controller damping r.

Typically in applications such as AFM based memory devices or in programmable

optical filters [3], actuators travel from an undeflected position to a static hold at a

target location. In these applications resonant and high frequency oscillations are not

advantageous. Henceforth, choosing an excitation frequency around one fourteenth

of the resonant frequency, large stable actuations are investigated quasi-statically.

Restricting the tests to low frequency allows simplification of the control circuit. The

controller Equation (7) can be rewritten in the Laplace domain as

sVc = −rVc + rΨ
q

1− q
(8)
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Table 1. Actuator parameters

Parameter Symbol Value

Displacement Gain Ψ 0.5 V

Voltage Gain G 4.8

Controller Damping r 100

Density of polysilicon ρ 2331 kg/m3

Beam Length L 131 µm

Beam Width b 20 µm

Beam Thickness h 1.9 µm

Initial gap d 1.9 µm

Nondimensional Damping coefficient µ 0.157

Permittivity of air ε 8.85× 10−12 F/m

Modulus of Elasticity E 150 GPa

and after rearranging this becomes

Vc
Ψ q

1−q

=
1

1 + s
r

(9)

The righthand side of Eq. (9) is a low pass filter with a nondimensional cut off frequency

of r. When operating at nondimensional frequencies much lower than the cut off

frequency Ω̂� r (or dimensional frequencies Ω� r/T ), the ratio s
r

in Eq. (9) approaches

zero and thus it can be simplified to

Vc ≈ Ψ
q

1− q
(10)

Using the previous equation to generate the control voltage simplifies the

implementation of the controller and allows for a more compact device. The revised

system equations are then obtained as{
(q̈ + µq̇ + ω2

1q)(1 + c1q + c2q
2) = c3αG

2(Vin − Vc)2
Vc = q

1−q
Ψ

(11)

The stable actuator is obtained by setting the voltage regulator parameters to obtain

a stable equilibrium point for most of the gap distance [19], Figure 4 (b). The results

in part (b) of the figure were obtained by numerically solving the algebraic equations

obtained by equating the time derivatives in Eq. (11) to zero. In this figure, the solid

line shows the location of the stable equilibrium point and the dashed line shows the

location of the unstable saddle point. While the stable equilibrium point defines the

rest position of the beam, the stable manifold of the saddle delineates the basin of

safe oscillations around that equilibrium position. The static profile reveals that the

controller displaces the saddle away from the stable equilibrium point; this is revealed

by comparing to the open loop static response (Figure 4 (a)). The increased distance

of the saddle from the stable equilibrium point creates larger basin for safe motions to

evolve around the equilibrium point.
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Figure 4. a) Open loop displacement b) Closed loop displacement. Dashed lines show

the location of unstable equilibrium points (saddles) and solid lines show the stable

equilibrium location.

3. Quasi-static Actuation

3.1. Closed Loop System

The closed loop system is implemented by introducing a circuit that acts as a voltage

regulator. The controller function, the second of Eqs. (11), was implemented using

analog electronics [21]. Despite the advantages of digital control such as easy code

changes, an analog system is chosen because of its fast response. A challenge with

analog systems though, is the difficulty in changing the controller function. The voltage

regulator input was provided by a signal function generator, and the regulator op-amps

were operated using two power supplies. The intermediate parameters were measured

along the circuit and were displayed on the oscilloscope.

A schematic of the closed loop system is shown in Figure 5 and further details can be

found in reference [22]. First, the beam tip velocity q̇ is measured with the vibrometer,

the corresponding signal is then passed through a high pass filter, cut off at 30 Hz, to

eliminate ground vibration generated by the vacuum pump used to hold the chip in

place. Next, the filtered velocity signal is integrated in the circuit to find the beam

tip displacement q. The displacement signal is scaled so that the entire electrostatic

gap is equivalent to 1 V. Next, the displacement signal is subtracted from a constant

voltage of 1 to evaluate (1 − q), and division is performed to find q
1−q

. The result is

multiplied by the displacement gain Ψ to find the control voltage Vc. This is subtracted

from the input voltage Vin, and the result is finally multiplied by the voltage gain G

to generate the regulated voltage G(Vin − Vc). The regulated voltage is applied to the

actuator. This voltage can control the beam position in the stable regime to create a

stable large-stroke actuator. The schematic of the control circuit is shown in Figure

6, where subtraction and multiplication are implemented using op-amps and division is
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realized using diodes [21].

Figure 5. Schematic of the closed loop system.

The closed loop actuator was tested using a sinusoidal excitation voltage according

to Vin = v(1+cos(Ωt)) that varies between zero and a maximum voltage that corresponds

to a desired static location in Figure 4 (b). The maximum excitation, 2v, corresponds

to the horizontal axis of Figure 4, and the target location corresponds to the vertical

axis. Figures 7 to 11 compare experimental and simulated dynamic responses revealing

quasi-static actuation with target positions located at 37%, 52%, 67%, 78% and 90%

of the gap, respectively. Simulations were performed by numerically solving Eq. (11)

using the beam parameters and the damping ratio in Table 1 identified in [20]. The

frequency of excitation was set to 10 kHz. In comparison to the beam natural frequency

of 140 kHz, the forced motion was quasi-static. The damping ratio was 0.157, the pull-

in voltage was 25 V, and the beam length, width, and thickness were 131 µm, 20 µm,

and 1.9 µm, respectively. The gap distance was perturbed around the nominal value

so that the magnitude of the maximum velocity obtained in simulations was equal to

that obtained the experimentally. Using this method, the capacitor gap was identified

as d = 1.82µm, and 1.9 µm for the beams employed in the tests shown in Figures 7,

and 8-11, respectively.
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Figure 7. Closed loop response to an excitation of v = 2.7 V, ω = 10kHz. −−
measured, − simulated. a) beam tip velocity, b) beam tip displacement, peak at 37%,

c) controller voltage Vc, d) Regulated voltage G(Vin−Vc). (Capacitor gap is 1.82 µm.)

The experimental results in Part (a) of the Figures present the velocity of the

actuator tip measured by the vibrometer and Part (b) represents the displacement

found from the integration of the velocity signal in the circuit. Part (c) and (d) show

the measured controller voltage Vc, and the regulated voltage applied to the actuator

G(Vin−Vc), respectively. The experimental results in parts (a) and part (b) of the figures

are filtered in MATLAB by local regression using weighted linear least squares and a

first degree polynomial model that assigns lower weight to outliers in the regression.

The method assigns zero weight to data outside six mean absolute deviations.

Good agreement between simulation and measured responses is observed for a broad

range of actuation voltage. The smallest range is presented in Figure 7, where though

the controller voltage does not exceed 0.3 V and the regulated voltage does not go

beyond the open loop pull-in voltage of 25 V, the actuator traverses a trajectory that

spans to 0.67 µm or 37% of the gap which is greater than the 33% stability limit

for open loop systems. The low signal to noise ratio for small displacements prevents

the controlled motions from tracking the trajectory in the troughs. However, as the

displacement increases and the signal to noise ratio improves, the controller follows the

desired trajectory well.
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Figure 8. Closed loop response to excitation at v = 2.88 V, ω = 10kHz. −−
measured, − simulated: a) beam tip velocity, b) beam tip displacement, peak at 52%,

c) controller voltage Vc, d) regulated voltage G(Vin− Vc). (Capacitor gap is 1.9 µm.)

Keeping the excitation frequency constant at 10 kHz and increasing the peak

voltage from 2.88 V to 3.2 V for a beam with a larger gap of 1.9 µm, the travel

ranges increase from 52% (0.94 µm) to 90% (1.73 µm) in Figures 8 to 11. This increase

corresponds to a controller voltage rise from 0.45 V to 2.2 V as shown in part (c) of these

figures and to the changes in the regulated voltage shape in part (d). The qualitative

change in the regulated voltage originates from the increase of controller voltage Vc in

sub-figure (c) as the beam displacement reaches its maximum in sub-figure (b). Because

the controller voltage peak and the input voltage peak have the same phase, there is

a voltage drop at the peak of the regulated voltage across the capacitor G(Vin − Vc)

shown in Figure 11 (d). The voltage drop at the peak of the regulated voltage plays an

important role in stabilizing the actuator. As the actuation voltage increases in the open

loop actuator, the electrostatic force increases causing more deflection in the beam which

rapidly increases the electrostatic force even more. This positive feedback loop drives

open-loop actuators to pull-in. The voltage regulator, on the other hand, interrupts this

process by dropping the voltage and the electrostatic force as the displacement increases

helping to balance it with the mechanical spring force and making large displacements

feasible. At the maximum displacement, the actuator reverses direction in sub-figure (a)

as the mechanical force dominates the electrostatic force and the beam returns to the

undeflected position. It is noted that the signal to noise ratio in sub-figures (a) and (b)

deteriorates as the input voltage increases, though that affects the oscillation that takes

place around the undeflected position and not around the target large displacement
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points.

Figure 9. Closed loop response to excitation at v = 2.92 V, ω = 10kHz. −−
measured, − simulated. a) beam tip velocity, b) beam tip displacement, peak at

67%, c) controller voltage Vc, d) Regulated voltage G(Vin − Vc). (Capacitor gap is 1.9

µm.)

The beam tip comes to within 400 nm and 100 nm of the substrate surface for

the trajectories shown in Figures 10 and 11, respectively. This proximity is desirable

for reading and writing in probe based high capacity data storage devices [11] using

miniaturized AFM arrays.

Observing the displacement profiles, it is apparent that more oscillations occur

as the actuator reverses its direction of motion away from the higher peaks and into

the trough. These oscillations modulate the displacement and velocity profiles with

oscillations at the natural frequency of the beam ω1. They occur because of the sudden

motion reversal at the peak. On the other hand, the oscillations are not present at the

counter motion reversal as the actuator climbs out of the trough because of our choice

of input signal which guarantees a trough wide enough for the initial oscillations to die

out and a gradual motion reversal.
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Figure 10. Closed loop response to excitation at v = 3 V, ω = 10kHz. −− measured,

− simulated. a) beam tip velocity, b) beam tip displacement, peak at 78%, c) controller

voltage Vc, d) regulated voltage G(Vin − Vc). (Capacitor gap is 1.9 µm.)

The modulated oscillations are not seen in the predicted path as the model uses a

linear viscous damping term to represent the dissipation mechanisms in the actuator.

In averaging out the highly nonlinear effects of squeeze-film damping, it overestimates

the amount of damping present for the small oscillations in the trough around the

undeflected position. The effects of the discrepancy between the linear damping model

and the actual nonlinear damping effect are also clear in the simulated velocity matching

the minimum measured negative velocity but not the maximum positive velocity in

Figures 10 and 11. This difference between the simulated and measured velocities grows

as the actuation range increases. These limitations not withstanding, the actuator

reaches its target at the peak with minimal delay. Further, unlike the leveraged bending

method, the regulated voltages does not exceed 27 V slightly larger than the pull-in

voltage of 25 V.
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Figure 11. Closed loop response to excitation at v = 3.2 V, ω = 10kHz. −−
measured, − simulated: a) beam tip velocity, b) beam tip displacement, peak at 90%,

c) controller voltage Vc, d) regulated voltage G(Vin− Vc). (Capacitor gap is 1.9 µm.)

At the peak voltage drop, a small phase difference can be seen between the

simulations and experiments in Figures 10(d) and 11(d) that is caused by the delays

imposed by the op-amps in the controller circuit. The phase difference magnitudes are

8.6◦ and 7.5◦ respectively in those figures. This phase shift can be minimized using

more precise non-inverting op-amps. However, actuation ranges are not affected by the

controller phase delay.

The ultimate positions reached at different peak voltages are summarized in Figure

12 as well as the static deflection versus voltage curves shown earlier in Figure 4 (b).

Figure 12 reveals a good agreement between the static simulation results and the quasi-

static experimental measurements, thereby justifying the basic assumption underlying

the simplified controller development.
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Figure 12. Peak actuator displacement versus peak voltage (2v). −− simulated

unstable equilibrium points, − simulated stable equilibrium points, ◦ experimental

results. (Capacitor gap is 1.9 µm.)

3.2. Virtual regulator

Examining the response of the actuator to the controlled voltage, we postulated that

applying the regulated voltage waveform obtained from the simulation directly to the

beam without using the analog regulator could lead to similar results. The experimental

setup consisted exclusively of the micro-beam, a signal generator, and a vibrometer to

measure the beam tip velocity and an analog integrator. Simulations were performed

using the closed loop control model to generate the regulated voltage signal. The

signal generator was then used to produce the customized waveform, the beam response

was measured using the vibrometer and the velocity was integrated using the analog

integrator to find the beam displacement. The results are depicted in Figure 13,

where the customized voltage signal is shown in part (c). Exciting the beam with the

proposed waveform eliminates the need for the external feedback circuit while allowing

for an actuation range as large as 75% of the gap which is significantly larger than the

traditional open loop limit of 33% of the gap. Under this paradigm, the controller can

be constructed as an off-line filter that can be used to filter out the components of the

command voltage that drive the pull-in instability.



A large-stroke electrostatic micro-actuator 16

Figure 13. Actuator open loop response to a customized input waveform. −−
measured, − simulated response to excitation at v = 3 V, ω = 10kHz for a beam with

dimensions of 131 × 20 × 1.9 µm with the gap of 1.82 µm, and controller parameters

of Ψ = 0.5 V,G = 4.8.

4. Dynamic Actuation

4.1. Closed loop Superharmonic Resonances

The closed loop actuator can also act as a resonator in regions of the frequency spectrum

where superharmonic resonances appear. Exciting the system at one frequency, the

system is responding at multiple frequencies. We studied the superharmonic resonances

available at low frequency excitations (< 22 kHz). The results are presented in Figure

15 showing, on the left, the FFT of 212 velocity data points and, on the right, the

phase portrait obtained from plotting the measured velocity versus the integrated

displacement. The beam under test has nominal dimensions of 175×10×2 with a gap of 2

µm and a natural frequency of 80 kHz. All experiments were conducted on the same day

to eliminate variation in the plant parameters due to aging and changes in temperature

and humidity. The superharmonic resonances are verified by the FFT, where a train of

FFT peaks extending from the excitation frequency to the natural frequency exists

and the number of peaks reveals the order of the superharmonic resonance. The

superharmonic resonances of order 8, 6, and 5 are reported at excitation frequencies

of 10, 13, and 15.7 kHz respectively with the same voltage excitation magnitudes

v = 3.56 V . The superharmonic orbits shown expand along the displacement and

velocity axes as the order of the superharmonic drops from 8 to 5. The stretching of

the orbit along the displacement axis corresponds to higher dynamic amplification of

the input at lower orders of the superharmonic resonance that leads to a higher signal
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to noise ratio.

Figure 14. Fast Fourier Transform of the tip velocity and phase portrait for a

beam with a natural frequency of 80 kHz obtained when the controller parameters are

G = 2, Ψ = 0.5 V , and the excitation amplitude is v = 3.56 V for the superharmonic

resonances of a) order 8 at ω = 10 kHz, b) order 6 at ω = 13 kHz, and c) order 5 at

the excitation ω = 15.7 kHz.

Testing a similar beam with a natural frequency of 85 kHz, the superharmonic

resonance of order 4 was observed as shown in Figure 15 (d) at an excitation frequency

of 21.36 kHz. Although the excitation voltage is lower than the previous set of tests, the

phase portrait shows an orbit comparable with the previous three cases of superharmonic

resonance. As the order of superharmonic resonances drops, the regularity increases and

less harmonics appear in the FFT resulting in the reduction of the number of loops in

the phase portrait. Although superharmonic resonances of order half, and two have been

reported by Younis et al. [23], the first instance of higher order resonances in MEMS

electrostatic actuators is observed here.
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Figure 15. Fast Fourier Transform of the tip velocity and phase portrait for

superharmonic resonance order 4 obtained for a beam with a natural frequency of

85 kHz when the controller parameters are G = 2, Ψ = 0.5 V at the excitation

v = 2.78 V, ω = 21.36 kHz.

4.2. Open Loop Superharmonic Resonances

Superharmonic resonance was also observed in the open loop system for excitation at

integer fractions of the natural frequency. The beam had the nominal dimensions of

175 × 10 × 2 and a gap of 2 µm with a natural frequency of 80 kHz. The DC voltage

was held constant at 5 V. Figure 16 presents the FFT of the beam tip velocity response.

Superharmonic resonances of order 6 to 3 in descending order are depicted in parts (a)

to (d) of this figure. The orders of the superharmonics are clear from the number of

peaks in the FFT up to and including the natural frequency peak at 80 kHz.

Figure 16. The superharmonic resonances of an actuator with the nominal dimensions

of 175 × 10 × 2 µm and a gap of 2 µm a) order 6 obtained at VDC = 5.2 V, VAC =

4.7 V, Ω = 13.3 kHz, b) order 5 obtained at VDC = 5.2 V, VAC = 4.16 V, Ω = 16 kHz,

c) order 4 obtained at VDC = 5.2 V, VAC = 3.88 V, Ω = 20 kHz, d) order 3 obtained

at VDC = 5.2 V, VAC = 3.32 V, Ω = 26.6 kHz.
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Although open loop superharmonic resonances require less equipment to produce

the resonance, the closed loop superharmonics carry comparatively more power in higher

harmonics as indicated by the FFT peaks for superharmonic orders of 6, 5, and 4.

The larger kinetic energy of the higher harmonics makes closed loop superharmonic

resonances good candidates for applications such as secure communication devices [24],

where sending and receiving a signal in a wide range of frequencies rather than a single

frequency are desirable.

5. Conclusion

The actuation range of a closed-loop parallel-plate electrostatic actuators in attracting

mode was extended in quasi-static operation mode to 90% of the capacitor gap. This

is a significant improvement since the largest reported quasi-static stroke does not

exceed 60% of the gap [11]. The actuator consists of a micro-cantilever beam and a

voltage controller developed for low frequency applications such as trajectory-tracking

and micro-positioning. The closed-loop actuator voltage requirements are moderate, in

fact the total actuation voltage is less than the pull-in voltage of the open-loop actuator.

Likewise, the travel range of the open loop actuator was increased using a

customized voltage waveform generated using a model of the closed loop system.

Exciting the beam with the proposed waveform eliminates the need for an external

feedback system, while allowing for actuation in quasi-static operation mode with a

stroke as large as 75% of the gap. Such a large stroke in an open loop actuator is well

beyond the present restricted quasi-static actuation range of one third of the gap. Our

results show that this longstanding limitation can be overcome with careful analysis and

design of open and closed loop actuators.

In the closed loop actuator, the tip velocity is measured using a laser Doppler

vibrometer and the corresponding voltage signal is used to regulate the actuator

voltage. For practical deployment of the actuator, the vibrometer can be replaced by a

piezoresistor implanted at the root of the micro-beam to act as a displacement sensor.

The actuator is then combined with the analog controller on a CMOS chip. It could

be emphasized that both our open and closed loop actuators were tested successfully

in an open air environment with significant external disturbances and without any

requirements for a vacuum chamber.

Higher order superharmonic resonances were also observed for the first time both

for open loop and closed loop electrostatic actuators. The superharmonic resonances are

important observations in nonlinear MEM systems and can be used to develop sensors

and communication receivers.
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