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The Effect of Time-Delay Feedback Controller on an Electrically Actuated 
Resonator 
 
S. Shao, K. M. Masri, and M.I. Younis  
Binghamton University, State University of New York PO BOX 6000 Binghamton, NY 13902-6000, USA. 
myounis@binghamton.edu 

Abstract. This paper presents a study of the effect of a time-delay feedback controller on the dynamics of a 
Microelectromechanical systems (MEMS) capacitor actuated by DC and AC voltages. It is shown that negative 
time-delay feedback control gain can lead to an unstable system, even if AC voltage is relatively small 
compared to DC voltage. Perturbation method is utilized to present analytically the nonlinear dynamic 
characteristics of the MEMS capacitor. Agreements among the results of a shooting technique, long-time 
integration, basin of attraction analysis with the perturbation method are achieved. 

1 Introduction  

Delay in MEMS devices is a very common 
phenomenon, which can be introduced into the system 
unavoidably or by design. The desire of improved device 
features, such as low-cost, low-voltage, high quality 
factor, and improved reliability has motivated great 
interest recently to understand the impact of delays on 
MEMS. 

For electrostatic MEMS resonators, many inherent 
system delays can be introduced through actuators, 
filters, processor dynamics, and feedback measurements. 
Feedback controllers are applied to stabilize the response, 
compensate for system parameter changes, and generally 
to enhance the resonator performance.  Especially 
challenging is to drive electrostatic MEMS resonator at 
sharp response while preventing them from collapse due 
to pull-in. 

Recent years have witnessed numerous studies on the 
time-delay systems and their application. An effective 
method of oscillators stabilization has been developed by 
Pyragas [1], which was originally proposed to stabilize 
the unstable periodic orbits of a chaotic system. Wang & 
Hu [2] applied several singular perturbation methods, 
such as methods of multiple scales and averaging, to 
model a controlled Duffing oscillator with delayed 
velocity feedback. They also applied other methods 
including the Lyapunov function for stability combined 
with averaging, the energy analysis, and pseudo-oscillator 
analysis [3]. 

In a previous work, Younis and Nafyeh [4] used a 
perturbation method to analytically describe dynamics of 
a resonant microbeam excited electrically [4]. Alsaleem 
and Younis [5] investigated theoretically the dynamics of 
MEMS resonators using shooting technique and basin of 

attraction analysis and verified their results 
experimentally.   

In this paper, we use a single-freedom model to 
investigate the dynamics of electrostatic MEMS 
resonators with the delayed feedback controller of [1]. A 
perturbation method, the method of multiple scales, is 
used to present analytically the impact on the dynamic 
system by the control gain. The results are then verified 
using long-time integration, shooting techniques, and 
basin of attraction analysis.   

2 Problem Formulation  

 
Figure 1. A single-degree-freedom model for electrically 

actuated resonator. 

We consider a nonlinear single-degree-of-freedom 
model (Fig. 1) actuated by an electric load composed of a 
DC component ஽ܸ஼ and an AC harmonic component  ஺ܸ஼ 
subject to a viscous damping of coefficient c. The 
equation of motion governing the behavior of the 
resonator under a delay feedback controller can be 
expressed as 
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where   is the equilibrium position of the oscillator due 
to VDC, u is the dynamic amplitude of the motion (x=u+δ), 

0  is the dielectric constant of air, A is the electrode area, 

  is the AC excitation frequency, G is the amplitude of 
the controller, and ( )du u t    , where  is the time 

delay. The rest of parameters are as shown in Fig. 1.  
Next, we normalize the equation by introducing the non-
dimensional variables  
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where = /T m k . After expanding the electrostatic force 
term up to the third order, we end up with the below non-
dimensional equation 
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Applying the method of multiple scales [6] on Eq. (2) 
yields the following modulation equations governing the 
amplitude a and phase ߮ of the dynamic response: 
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Based on Eqs.  (3) and (4), the steady-state frequency-
response equation can be written as 
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From Eq. (5) we can see the term sin( )g  plays the 

role of varying the excitation frequency σ, since σ 
represents the deviation from the natural frequency. 
Similarly, cos( )g  plays the role of varying the 

effective damping. Usually, τ=T/2=π/ω is adopted, and 
then the effect of gain can be described as g  . 

 
Figure 2. Analytical and simulation results for the frequency 
response for G=0, VAC =1 V, and VDC =40.2V (squares: long-

time integration; points: perturbation). 

 
 

Figure3. Positive gain versus AC voltage effect for VDC =40.2 
V and  =T/2 (squares: VAC =1 V, G=0; circles: VAC =0.6 V, 

G=0; points: VAC =1 V, G=110 Vs/m). 

Next, we use Eq. (5) to analytically generate frequency-
response curves of the resonator for various values of 
gain and voltage loads. Also, we will compare these 
results to results of direct time integration of Eq. (1) 

 
Figure 4. Comparison of the effect of using a positive gain 

versus VAC   to yield the same dynamic amplitude (circles: VAC 

=3.8 V, G=200 Vs/m; points: VAC =1 V, G=0). 

3 Result and analysis  

This section presents results based on the capacitive 
resonator studied in [5]. The resonator is composed of 
two long cantilever beams attached to a proof mass at the 
tip. First, we show results for an un-controlled case with 
small voltage loads. Figure 2 compares the frequency 
response curve (normalized response versus frequency) 
obtained by the method of multiple scales (MMS) to that 
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of long-time integration of Eq. (1). As shown, the 
agreement is good among the results.  Figure 3 
demonstrates the effect of applying a control gain using 
the MMS. First we show the solution for VAC =1 V with 
no gain.  Decreasing VAC   lowers the amplitude response, 
shown in circles in the figure. We can see however that 
the response bandwidth shrinks. On the other hand, 
applying a control gain instead of lowering the excitation 
voltage, one can see the positive gain not only does it 
reduce the response amplitude, but also it keeps the 
bandwidth unchanged. Figure 4 demonstrates another 
way of taking advantage of this dynamical feature by 
comparing uncontrolled response of the resonator to a 
controlled response using lower values of VAC such that 
both actuation methods yield the same maximum 
response amplitude. Clearly, the controlled response has 
much wider bandwidth.  This remarkable result can be of 
great advantage in MEMS for sensing and energy-
harvesting applications, where both sharp response and 
wide bandwidth are desirable.  

Next, we investigate the effect of negative gain on the 
dynamics. We establish a Jacobin matrix based on Eq. (3) 
and Eq. (4) and solve for eigenvalues to judge the 
system’s stability.  

 
Figure 5. Gain sweeping result at frequency=189.5 Hz for VAC 

=1 V and VAC =40.2 V (squares: stable; triangles: unstable). 

 
(a) G= -20 Vs/m.                  

 
(b) G= -50 Vs/m. 

 
(c) G= -80 Vs/m. 

 
(d) G= -100 Vs/m. 

Figure 6. Comparison between Perturbation method (MMS) 
and shooting technique results as well as time integration 
separately. Time delay is T/2. Same ஺ܸ஼ and ஽ܸ஼ as above 

(circles: perturbation stable; triangles:  perturbation unstable; 
solid: shooting stable; dashed:  shooting unstable; diamonds:  

long time integration). 

 
Figure 5 shows bifurcations occur within the interval 

G= -40 ~ -70 Vs/m. Figure 6, a set of frequency response 
curves with different gains illustrating the scenario of Fig. 
5 in another perspective. In Fig. 6a, consider the case of 
G=-20 Vs/m.  The response curve has a linear shape with 
no hysteresis. Thus, at the excitation frequency of 189.5 
Hz, it has one single value of a stable response.  When 
increasing the gain to G= -50 Vs/m (Fig. 6b), the 
response becomes of softening behavior with hysteresis. 
Thus, at 189.5 Hz, the response  can be a stable of low 
value, unstable, or stable at higher value.  Increasing  the 
gain further  to G= -80 Vs/m (Fig. 6c), according to the 
perturbation results, the frequency-response curve 
becomes entirely unstable.    

Using a shooting technique to find periodic motions 
combined with the Floquet theory, we found good 
agreement with the perturbation results for small values 
of gain. For larger values of negative gain, shooting 
predict some regions of stable response while 
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perturbation predicts unstable solutions everywhere. 
According to the shooting results, a pair of Floquet 
multiplier exists the unit circle through complex numbers, 
which indicate a secondary Hopf bifurcation.   

Next, we analyze the basin of attraction of the 
obtained solution for the specific operating point of 
=189.5 Hz for the various gains of Fig. 6. The basin of 
attraction is obtained by integrating the equation of 
motion, Eq. (1), in time for various initial conditions 
using a grid of 500x500 initial velocity and displacement. 
We use the special subprogram in MATLAB, DDE23, for 
delayed differential equations [7]. We assume the initial 
state of the system to be constant (equal to the initial 
condition) prior to the application of the delayed signal.  
 In the case of G= -50 Vs/m, Fig. 7a, one can see that 
there is a large safe area. As the negative value of G is 
increased to G= -80 Vs/m, the safe area erodes leading to 
a very small basin of attraction, Fig. 7b. Practically 
speaking, the resonator is most likely to pull-in in this 
case. It supports the MMS result in the perspective of the 
system’s initial states. However, this partly matches 
shooting technique results locally near 190 Hz (natural 
frequency). One should note that the perturbation method 
analyzes the response locally near primary resonance in 
the neighborhood of natural frequency. Increasing the 
negative value of G further to G= -100 Vs/m leads to 
complete erosion of the basin of attraction, Fig. 7c.  

 
(a) G=-50 Vs/m 

 
(b) G=-80 Vs/m 

 
(c) G=-100 Vs/m 

Figure 7. Basin of attractions for different negative gains at 
excitation frequency=189.5 Hz (white areas represent initial 

conditions leading to stable solution). 

4 Summary and conclusions  

This paper presented analytical solution for a single-
degree-freedom resonator model actuated by VDC and VAC 
with a delay feedback controller. We used method of 
multiple scales (MMS) to obtain an analytical 
explanation for the effect of control gain. The MMS 
results for nonlinear dynamic system with no controller 
agree well with the long-time integration results. For   
negative control gain, MMS presents bifurcation 
behavior, showing that the system reaches unstable state 
when gain is negative enough even though the harmonic 
load ஺ܸ஼ is relatively small (for example VAC=1 V, VDC 

=40.2 V). This nonlinear property can lead to an 
attractive industry application, such as low-actuation 
voltage MEMS switches. 

The analytical results indicate another attractive 
feature in the case of positive gains to achieve sharp 
response of resonators while maintaining large 
bandwidth. This can be also very attractive for variety of 
sensing and actuation application in MEMS.  

 We compared the results of the perturbation method 
to those of  the  shooting technique and the basin of 
attraction analysis. The basin of attraction indicated that 
while shooting predicts stable regime in the frequency-
response curves for large values of negative gain; the 
basin of attraction of these states are extremely small and 
fragile. This surprisingly agrees with the analytical results 
from MMS, which predicts unstable solutions 
everywhere. Moreover, the shooting results predict 
secondary Hopf bifurcation for some large values of 
negative gain. This may lead to quasi-periodic motion as 
well as other complex dynamic behaviors.    
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