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NANO EXPRESS Open Access

Chemical vapor-deposited carbon nanofibers on
carbon fabric for supercapacitor electrode
applications
Yang Gao1,2, Gaind P Pandey2*, James Turner3, Charles R Westgate2 and Bahgat Sammakia3

Abstract

Entangled carbon nanofibers (CNFs) were synthesized on a flexible carbon fabric (CF) via water-assisted chemical
vapor deposition at 800°C at atmospheric pressure utilizing iron (Fe) nanoparticles as catalysts, ethylene (C2H4) as
the precursor gas, and argon (Ar) and hydrogen (H2) as the carrier gases. Scanning electron microscopy,
transmission electron microscopy, and electron dispersive spectroscopy were employed to characterize the
morphology and structure of the CNFs. It has been found that the catalyst (Fe) thickness affected the morphology
of the CNFs on the CF, resulting in different capacitive behaviors of the CNF/CF electrodes. Two different Fe
thicknesses (5 and 10 nm) were studied. The capacitance behaviors of the CNF/CF electrodes were evaluated by
cyclic voltammetry measurements. The highest specific capacitance, approximately 140 F g−1, has been obtained in
the electrode grown with the 5-nm thickness of Fe. Samples with both Fe thicknesses showed good cycling
performance over 2,000 cycles.

Keywords: Carbon nanofibers, Carbon fabric, Water-assisted chemical vapor deposition, Supercapacitor, Cyclic
voltammetry

Background
Electrochemical capacitors, also known as supercapaci-
tors or ultracapacitors, are energy storage systems that
differ from regular capacitors in that they have ultrahigh
capacitance, long cycle life, and high power density [1-3].
Supercapacitors have many applications ranging from
hybrid automobiles and large industrial equipment to
storage devices for solar cells and portable consumer
electronics [3,4]. Supercapacitors can be divided into two
categories: electrical double-layer capacitors (EDLCs) and
pseudocapacitors. In EDLCs, different forms of carbon
are commonly used as active electrode materials, and the
capacitance results from electrostatic charge accumula-
tions at the electrode/electrolyte interfaces [5-7]. In con-
trast, in redox or pseudocapacitors, in which transition
metal oxides such as RuO2·xH2O and MnO2 and elec-
tronically conducting polymers such as polyaniline and
polypyrrole are used as active electrode materials [8-11],

charge storage results from fast and reversible faradic
reactions at the surface of the electroactive materials.
Among the many candidates for supercapacitor electrode
materials, mesoporous carbon spheres [12], carbon nano-
tubes (CNTs) and/or carbon nanofibers (CNFs) [13-16],
CNT/polypyrrole composites [17], and MnO2/CNT com-
posites [18] have attracted much attention due to their
excellent electrical conductivity, large surface area, chem-
ical inertness, and high operating temperature range.
Several methods have been developed to synthesize CNTs
and CNFs including arc discharge, laser ablation, and
chemical vapor deposition (CVD) [19-21]. In the CVD
process, transition metals such as nickel (Ni), cobalt (Co),
iron (Fe), or their combination are used as the catalyst and
are often deposited onto the substrates before the CNTs
and CNFs are grown [22]. Then, carbon-containing pre-
cursor gases such as methane (CH4) [23], acetylene
(C2H2) [24], ethylene (C2H4) [25], or ethane (C2H6) [26]
with the carrier gases (argon and/or hydrogen) are intro-
duced into the CVD system and decompose at the catalyst
sites to form CNTs or CNFs at the corresponding gas
decomposition temperature.
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In the water-assisted chemical vapor deposition (WA-
CVD), water vapor is introduced during the CVD
process to enhance CNT/CNF growth [27]. Two main
contributions of the water vapor are as follows: (1) it inhi-
bits catalyst nanoparticles formed at CVD temperature
from diffusing into the substrates by oxidizing metal nano-
particles such as Fe; (2) it removes amorphous carbon that
is formed on the active catalyst surface, thereby increasing
the catalyst lifetime [28].
Compared to commonly used silicon substrates,

weaved carbon fabric (CF) has several advantages such
as flexibility, scalability, light weight, and low cost. In
addition, due to its weave structure, it has more surface
area than other conventional substrates and is more ad-
vantageous for supercapacitor applications. In recent
studies, active carbon [29], multi-walled carbon nano-
tubes (MWCNTs) [30-33], single-walled carbon nano-
tubes [34], CNT and polypyrrole composites [35], TiO2/
MWCNTs [36], and graphene [37] have been success-
fully incorporated into the CF via various growth meth-
ods for supercapacitor applications.
In this work, CNFs are grown on CF substrates using

the aforementioned WA-CVD method with Fe as the
catalyst and C2H4 as the precursor gas. Furthermore, the
effect of the CNF morphology on the capacitive perform-
ance is discussed. Scanning electron microscopy (SEM),
transmission electron microscopy (TEM), and energy dis-
persive spectroscopy (EDS) are utilized to characterize the
structure and morphology of the CNFs. The capacitive
behaviors of the CNF/CF electrodes are investigated by
cyclic voltammetry (CV) via a three-electrode system in a
neutral aqueous Na2SO4 electrolyte solution.

Methods
CF material
Panex 30 carbon fabrics made from spun yarn (plain
weaved; density, 1.75 g cm−3; thickness, 406 μm) were

purchased from Zoltek (St. Louis, MO, USA). The fabrics
were PAN-based materials that are >99% carbonized.

Synthesis of the CNFs on CF
First, a thin film of Fe was deposited onto the CF sub-
strate via DC sputtering at a base pressure of 10−5 Torr.
The deposition rate of Fe was about 1.25 Å/s (RF power,
50W).The thickness of the Fe catalyst can significantly
affect CNF morphology and distribution [38]. Two
thicknesses (5 and 10 nm) of the Fe catalyst layer were
deposited, and their influence on CNF morphology was
compared.
The CNFs were synthesized in a tube furnace via the

WA-CVD method at 800°C as reported earlier [39];
however, a brief description is given as below. The ex-
perimental setup is shown in Figure 1. The CF samples
with two different thicknesses of the Fe catalyst layer
were first placed into a quartz boat that was placed in a
quartz tube inside the furnace. Mass flow controllers
allow Ar and H2 (500 and 10 sccm, respectively) to be
introduced into the tube furnace to create an oxygen-
free environment for CNF growth. In a previous study
[40], it was found that the optimal gas flows (as shown
in the Figure 1) for CNF growth are as follows: Ar, 200
sccm; H2, 10 sccm; and C2H4, 20 sccm. Additional Ar
was introduced through a bubbler containing DI water
(50 sccm). After flushing the tube furnace for 0.5 h, Ar
flow was reduced to 200 sccm, and the furnace was
heated to and maintained at 800°C for 10 min. Subse-
quently, 20 sccm of C2H4 was introduced. After 3 min,
50 sccm of Ar was introduced through the bubbler to
deliver water molecules into the CNF growth system.
The CNF growth time was 2 h; after which, both the
C2H4 and water vapor flows were turned off. Ar flow
was increased to 500 sccm to prevent oxygen from
entering the CVD system. Then, the furnace was

Figure 1 Schematic design of the WA-CVD process setup.
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gradually cooled to ambient temperature. Lastly, the Ar
and H2 were turned off before the samples were taken
out.

Characterization of the CNFs/CF
The Fe catalyst nanoparticle formation on the CFs as
well as the morphology of the CNFs was investigated
using a Zeiss Supra 55 field emission scanning electron
microscope (Carl Zeiss AG, Oberkochen, Germany).
EDS provides information for elemental analysis. The
microstructure of the CNFs was studied by TEM using
JEOL JEM 2100 F (JEOL Ltd., Akishima, Tokyo, Japan).
The crystallinity of the CNFs was observed by electron
diffraction (ED). A Sartorius CPA225D microbalance
(Sartorius AG, Göttingen, Germany) with a resolution of
0.01 mg was used to measure the weight of the CNFs for
the specific capacitance calculation. Before electrochem-
ical measurement, the grown CNFs were treated with
nanostrip (commercial mixture of concentrated H2SO4

and H2O2) to remove the remaining Fe catalyst particles
to accurately measure the intrinsic capacitance of the
CNFs on CF. Electrochemical measurements were car-
ried out using Solartron SI 1287 electrochemical inter-
face system (Solartron Analytical, Farnborough, UK) via
a three-electrode configuration using the CNFs/CF as
the working electrodes, a platinum plate as the counter
electrode, and standard saturated calomel electrode as
the reference electrode. A 0.5 M Na2SO4 aqueous neu-
tral solution was used as the electrolyte. Cyclic voltam-
metry was performed over the potential range from −0.2
to 0.5 V at scan rates ranging from 5 to 100 mV s−1.
Cycling tests were also conducted using the same config-
uration in order to investigate the specific capacitance
behavior over 2,000 cycles.

Results and discussion
Morphology and structure of CNFs/CF
After CNF growth, a black coating was observed on the
CF as shown in Figure 2a which compares the pristine
CF without CNFs with CNFs/CF. It can be seen that
after CNF growth, the color of the CF became darker
and the fabric structure was not apparent. Figure 2b
shows the SEM image of the pristine CF, and it can be
noted that the CF is composed of many individual fibrils
with a diameter of 8 to 10 μm.
As discussed above, catalyst thickness can significantly

affect the morphology and distribution of the CNFs.
Thus, two catalyst thicknesses (5 and 10 nm) were
deposited onto the CF to study the catalyst nanoparticle
distribution. Two samples were heated in the tube fur-
nace in an Ar and H2 environment at 800°C without the
introduction of C2H4 to simulate the intermediate step
of the formation of Fe nanoparticles from the Fe layer
during the CVD process. Different morphologies and

distributions of catalyst nanoparticles on the CF were
observed by SEM as shown in Figure 3. Figure 3a shows
an annealed 5-nm Fe catalyst layer deposited onto the
CF with the inset showing an EDS analysis of the circled
region; Figure 3b shows an annealed 10-nm Fe catalyst
layer after the same process. The Fe and O peaks suggest
that the nanoparticles are actually Fe2O3 which is due to
exposure to air after the Fe sputtering, while the C peak
is mainly from the CF. EDS analysis of the sample with
10 nm of Fe is similar to that with 5 nm of Fe; thus, it is
not shown here. It can also be seen that samples with 10
nm of Fe have a denser distribution of Fe2O3 nanoparti-
cles on the CF.
Figure 4 shows SEM images of the CNFs on CF with

different thicknesses of the Fe catalyst layer. It is consist-
ent with the nanoparticle distribution wherein the sam-
ple with 10 nm of Fe has denser CNF growth compared
to that with 5 nm of Fe. Both images show entangled
CNFs. It can also be seen from the higher magnification
images (Figure 4b,d) that they are round shaped at the
tips of the CNFs. EDS analysis (not shown here) revealed
that they are the Fe catalyst particles. Although there
has been a lot research progress on CNTs and CNFs

Figure 2 CF, CNFs on CF, and CF fibrils. (a) Photograph of pristine
CF (left) and CNFs on CF (right). (b) SEM image of the CF fibrils
before CNF growth.
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since their discovery, the growth mechanism is not fully
understood. The widely accepted growth mechanism of
CNFs has the following steps: (1) decomposition of the
precursor carbon-containing gases at the catalyst sites,
(2) carbon incorporation into the catalysts, (3) saturation
of the carbon and then precipitation out of the metal
catalysts, and (4) formation of the carbon nanostructures
[41,42]. There are commonly two growth modes of
CNFs: the tip-growth model [43] and the base-growth
model [44]. The tip-growth model results from a rela-
tively weak catalyst-substrate interaction, and as they
grow, the CNFs push the catalysts off the substrate, leav-
ing the catalyst particles at the tips [45]. The base-growth
model results from a relatively strong catalyst-substrate
interaction with the catalyst particles remaining on
the substrate [45]. In our work, given that the catalyst

particles remain at the tips of the CNFs in both SEM and
TEM images, the growth model of the CNFs is the tip-
growth model.
The detailed structure information of the CNFs is

illustrated in the TEM images and the ED pattern as
shown in Figure 5. The TEM images in Figure 5a,b
demonstrate that the carbon nanostructures are CNFs
as opposed to CNTs since the structures are solid ra-
ther than having a hollow inside that is typical for
CNTs. These structures are likely to be caused by the
catalyst-substrate interaction as discussed elsewhere
[46]. The diameters of the CNFs ranged from 100 to
120 nm. From Figure 5b, it can be noticed that there
are some dark lines across the CNFs perpendicular to
their long axis; these are most likely the defects in the
CNFs. The electron diffraction pattern in Figure 5c

Figure 3 SEM images of two thicknesses of Fe catalyst on CF after annealing. (a) 5 nm of Fe catalyst on CF after annealing with the inset
showing the EDS analysis of the circled area and (b) 10 nm of Fe catalyst on CF after annealing.

Figure 4 SEM images of the CNFs on CF with different thicknesses of the Fe catalyst layer. (a) CNFs grown with 5 nm of Fe and (b) higher
magnification of the circled area in (a). (c) CNFs grown with 10 nm of Fe on CF and (d) higher magnification of the circled area in (c).
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shows Debye rings, which indicates that the CNFs
have polycrystallinity.

CNF/CF properties as supercapacitor electrodes
The as-grown CNFs were treated with nanostrip for 2 h
to remove the Fe catalyst particles so that the calculated
specific capacitances are exclusively from CNFs/CF. It is
also noticed that the CNFs/CF changed from hydropho-
bic to hydrophilic as a result of the nanostrip treatment.
This is because the acid attacks the defects in the CNFs,
forming carboxylic groups on the sidewalls as well as at
the tip [47,48].

The specific capacitances were determined from the
CV curves by the following equations [49-51]:

Cp ¼ qa þ qcj j
2mΔE

¼

Z E2

E1

ia Eð ÞdE þ
Z E1

E2

ic Eð ÞdE
����

����
2mΔE

ð1Þ

where Cp is the specific capacitance, m is the mass of
the CNFs, ΔE is the potential range, qa and qc are the
anodic and cathodic charges during the positive and
negative going scan, ia and ic are the anodic and cathodic
currents, and E1 and E2 are the switching potentials of
the CV.

Figure 5 TEM images and ED pattern of CNFs. (a) TEM of the CNFs, (b) high-resolution TEM of the CNFs, and (c) electron diffraction pattern of
the CNFs.

Figure 6 CV curves and specific capacitances of CNF/CF electrodes. (a) CV curves of a CNF/CF electrode (5 nm of Fe) at various scan rates.
(b) CV curves of a CNF/CF electrode (10 nm of Fe) at various scan rates. (c) Specific capacitances of a CNF/CF electrode (5 nm of Fe) at various
scan rates. (d) Specific capacitances of CNF/CF electrode (10 nm of Fe) at various scan rates.
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Specific capacitance can be affected by many factors
such as specific surface area, pore size, and conductivity
[52,53]. However, these factors are interrelated, and a
trade-off is usually needed when optimizing the specific
capacitance. For instance, a small pore size may provide
a large specific surface area, but it may also slow the dif-
fusion of the electrolyte ions at interface; CNTs have less
defects which leads to higher conductivity than CNFs,
but the specific area of CNTs is much less than that of
CNFs [52]. In this case, it is desirable for the carbon
supercapacitor materials to have relatively high conduct-
ivity and also mesopores that are large enough for the
electrolyte ions to diffuse and small enough to provide a
large surface area [54].
Figure 6a,b shows the CV curves of the CNF/CF elec-

trode grown with 5 and 10 nm of Fe catalyst via a three-
electrode configuration at a potential window from −0.2
to 0.5 V in 0.5 M Na2SO4 at different scan rates. Both
CNF/CF samples with different catalyst thicknesses
(5 and 10 nm) exhibit good electrochemical performance.
Both CV curves in Figure 6 are quasi-rectangular shape,
which represent capacitive behaviors of CNF/CF electro-
des. The areas of the close loop of the curves represent
the charges stored at the CNFs/CF for one cycle. It is
interesting to see that under the same scan rate, the
charges stored at the CNFs grown with 5 nm of Fe are lar-
ger than those grown with 10 nm of Fe, which represent
better capacitive behavior. Figure 6c,d shows the corre-
sponding specific capacitances for different scan rates. For
CNFs/CF with 5 nm of Fe, the specific capacitances are
142 and 32 F g−1 at the scan rates of 5 and 100 mV s−1,
respectively. By comparison, for the CNF/CF electrode
grown with 10 nm of Fe, the specific capacitances are 99
and 24 F g−1 at the scan rates of 5 and 100 mV s−1,
respectively. For both samples, the specific capacitances at
100 mV s−1 only retained about 30% of the capacitances at
5 mV s−1. As stated above, this is likely to be related to the
morphology of the entangled CNF structures which might

hinder the diffusion ability of the electrolyte ions to
travel from the aqueous solution to the electrode. It
is also interesting to see that although the CNFs
grown with 10 nm of Fe had a denser distribution of
CNFs as suggested by Figure 4; the specific capaci-
tance of the CNFs does not benefit from it. This sug-
gests that the increasing density of the CNFs does
not necessarily increase the specific area (area per
unit gram) of the CNFs, and/or it can also decrease
the pore size due to the higher degree of entangle-
ment and thus lead to the attenuation of the electrolyte
ion diffusion.
Figure 7a shows the CV results of the CNF grown with

5 nm of Fe during the cycling test, and Figure 7b shows
the calculated specific capacitances for different cycles.
It can be noted that in the first 500 cycles, the specific
capacitance increased from 100 to 155 F g−1 and then
started to stabilize at approximately 150 F g−1 for more
than 2,000 cycles. The initial increase of the specific cap-
acitance is also observed in other researchers' work
[55,56] and is due to the activation process that may
gradually let the trapped electrolyte ions diffuse out [57].
More importantly, the specific capacitance at the
2,000th cycle maintained approximately 95% of the peak
capacitance value (155 F g−1 at the 500th cycle), which
demonstrates a very good stability in the cycling per-
formance of the CNF/CF electrodes.

Conclusions
CNFs were directly grown on flexible CF substrates via
the WA-CVD method using Fe as the catalysts and
C2H4 as the precursor gas. Different thicknesses of the
catalyst (5 and 10 nm) led to different morphologies
and densities of the CNFs on the CF, thus resulting in
different capacitive performances of the CNF/CF elec-
trode as a supercapacitor. CNFs grown with 5 nm of Fe
demonstrated better capacitive behaviors with a specific
capacitance of approximately 140 F g−1 at the scan rate

Figure 7 CV results of a CNF during cycling test and specific capacitances. (a) CV curves of a CNF/CF electrode (5 nm of Fe) during the
cycling test. (b) Specific capacitances of a CNF/CF electrode as function of the number of cycles.
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of 5 mV s−1, compared to 99 F g−1 for its counterpart.
The electrode shows good cycling stability for more than
2,000 cycles. The CNF/CF electrodes are flexible, stretch-
able, and scalable, and hence, they could be a good candi-
date for flexible supercapacitor applications.
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