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Biomass Accumulation and Carbon Sequestration in Four
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Shelterbelt Plantations in South China
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1 Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR

China, 2 Institute of Wetland Research, Chinese Academy of Forestry, Beijing, PR China, 3Department of Biological Sciences, State University of New York-Binghamton,

Binghamton, New York, United States of America

Abstract

Thousands of kilometers of shelterbelt plantations of Casuarina equisetifolia have been planted to protect the southeast
coastline of China. These plantations also play an important role in the regional carbon (C) cycling. In this study, we
examined plant biomass increment and C accumulation in four different aged C. equisetifolia plantations in sandy beaches in
South China. The C accumulated in the C. equisetifolia plant biomass increased markedly with stand age. The annual rate of
C accumulation in the C. equisetifolia plant biomass during 0–3, 3–6, 6–13 and 13–18 years stage was 2.9, 8.2, 4.2 and 1.0 Mg
C ha21 yr21, respectively. Soil organic C (SOC) at the top 1 m soil layer in these plantations was 17.74, 5.14, 6.93, and
11.87 Mg C ha21, respectively, with SOC density decreasing with increasing soil depth. Total C storage in the plantation
ecosystem averaged 26.57, 38.50, 69.78, and 79.79 Mg C ha21 in the 3, 6, 13 and 18- yrs plantation, with most of the C
accumulated in the aboveground biomass rather than in the belowground root biomass and soil organic C. Though our
results suggest that C. equisetifolia plantations have the characteristics of fast growth, high biomass accumulation, and the
potential of high C sequestration despite planting in poor soil conditions, the interactive effects of soil condition, natural
disturbance, and human policies on the ecosystem health of the plantation need to be further studied to fully realize the
ecological and social benefits of the C equisetifolia shelterbelt forests in South China.
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Introduction

Forest restorations, including tree plantations, are often

proposed as a remedy to combat global climate change. Globally,

plantations are being established at an increasing rate, and now

accounting for 5% of the global forest cover [1]. Trees can capture

atmospheric CO2 through photosynthesis and store it in biomass

with a turnover time of several decades. Thus, tree plantations

play important roles in global C cycling and the uses of tree

products can mediate various anthropogenic C releases [2,3].

China maintained the largest plantation area in the world,

reaching 62 million ha in 2008, and accounting for 35.5% of the

total forest area in China [4]. Shelterbelt plantation, established

along coastlines, is a special type of well-protected plantation in

China due to socio-economic considerations. There is a ‘‘zero

tolerance’’ policy on illegal act of cutting and tree harvesting,

although local collecting of litter and fallen dead trees are often

allowed. China has 18,000 kilometers mainland coastline,

corresponding to 11.3 million hectares of coastal land; this

provides a wide range of land resource for coastal shelterbelt

plantation.

Casuarina equisetifolia is an N-fixing species that has been used

extensively for windbreak and coastal stabilization in tropical and

sub-tropical areas of the world [5,6]. The critical ecosystem

services of coastal forests, including Casuarina plantations, have

gained great recognition recently, particularly after the devastating

2004 Southeast Asian tsunami [6,7]. Casuarina equisetifolia is

naturally distributed in the Oceania, Pacific islands and Southeast

Asia [8,9]. It requires limited growth conditions, likely because of

its actinorhizal and mycorrhizal symbioses that fix nitrogen (N)

and benefit phosphorus (P) acquisition [9,10]. Since 1950 s,

C. equisetifolia has been planted in the southeast coast of China

[11]. The area of the C. equisetifolia plantation in China has

currently reached 300,000 ha, with various field and nursery

experimental trials been conducted [10,12].

Casuarina equisetifolia plantation has the potential to sequestrate

atmospheric CO2 and contributes to the regional C cycling. Most

studies have focused on the ecological functions of C. equisetifolia,

such as land reclamation, windbreaks, erosion control, and wood
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and fuel production [5,6]. Many N-fixation studies have been

done on this plant [13,14]. In addition, its arbuscular mycorrhizal

(AM) and ectomycorrhizal (ECM) symbioses have also been

examined [10,15]. However, the aboveground and belowground

biomass increment and C sequestration in C. equisetifolia planta-

tions in South China are largely unknown. Due to its large actual

and potential planting areas in China and other parts of the world,

the C sequestration potential in C. equisetifolia may greatly account

for the regional and global C budget.

The patterns of C stock during forest development have gained

great attention since one century ago [16]. Many studies have

reported changes in biomass and production with stand age using

chronosequence method [17]. Generally, plant biomass would

increase gradually with stand age. However, soil C might perform

differently. The decomposition of soil C might proceed more

rapidly than the plant C input in the initial stage, resulting in a net

loss of soil C at early stage of stand development. In this paper, we

investigated the plant biomass increment and soil C change in four

different aged C. equisetifolia plantations growing at a sandy beach

site in South China. The objectives of this study were to: 1)

quantify aboveground and belowground biomass of C. equisetifolia

at different aged plantations; 2) estimate C sequestration in plant

biomass and soil. Our hypotheses were that (1) ecosystem C

storage (including biomass C and soil C) would increase with the

stands ages; and (2) soil might contribute to carbon storage less

than plant biomass as a result of unfavorable texture of sandy soil.

Materials and Methods

Ethics Statement
This research was conducted in South China Botanical Garden,

Chinese Academy of Sciences. This study was also supported by

this institute. We confirmed that the location is not privately-

owned and the sampling of soils and plants was approved by

Forestry Agency of Maogang District, the local administrator of

coastal shelterbelt plantations. We also confirmed that the field

studies did not involve endangered or protected species.

Site Description
The study area is located in the coastal Maogang District,

southeast of Maoming City (110u549E, 21u279N), Guangdong

Province, South China. The region has a tropical monsoon

climate, including a rainy and warm season (April to October:

precipitation 1400 mm) and a dry and cool season (November to

March: precipitation 160 mm). Typhoons occur in this area from

June to late October. The annual mean temperature is 23uC, with

an average July high of 30uC and January low of 18uC.

Casuarina equisetifolia has been planted continuously in this area

since 1960 s. Due to the disturbance of typhoon, the plantations

were frequently destroyed and replanted again. However, as a

substitute for fuel material, the litterfalls of C. equisetifolia were

collected regularly by the local residents, so were the fallen trees

after the typhoon disturbance.

Experiment Design
We applied a chronosequence approach. Four different age

classes of C. equisetifolia plantations were selected, which were

established in 1994, 1999, 2006 and 2009, respectively. Soil

texture was very homogenous in these plantations, with sand

accounting for 92–93% and clay for 4–5% of the soil mass (Table

S1). The original number of trees planted at all sites is 2500 plant

ha21. Four 10 m610 m plots were established in each of the four

plantations in March 2012. Species density, tree height (H) and

tree diameter at breast height (DBH) were recorded at each plot

(Table 1). We used a C. equisetifolia growth model developed

specifically for the coastal South China region to estimate the plant

biomass [18]. Plant biomass included root, stem, branch, and

branchlet was estimated in each plot (Table S2).

Field Sampling and Measurements
We collected samples of C. equisetifolia branchlets, branches,

stems and fine roots at each individual plot, and analyzed each

component separately for their relative concentration of C.

Samples were dried to a constant weight at 65uC, ground and

passed through a fine screen (0.5 mm). The C concentration was

determined using the potassium dichromate oxidation method

[19], and then applied to the growth model to estimate biomass C

accural.

Roots were also sampled directly using a 25 cm diameter PVC

pipe. Root cores were taken at 3 random places in each plot at the

0–10, 10–20, 20–40, 40–60, 60–80 and 80–100 cm soil depths.

Roots were washed free of soil with a spray of water. Fine root

(,2 mm) was separated from coarse root (.2 mm) and dried at

65uC to a constant weight.

Soil samples were collected from 3 positions in each plot by

using a 5 cm diameter PVC tube at the 0–10, 10–20, 20–40, 40–

60 and 60–100 cm soil depths. Bulk density was determined by

taking an adjacent core. All of soil samples within the same soil

depth in each plot were pooled together and air-dried. Before

analyzing total N (TN) and organic matter content, soils were

ground to pass through a 0.25-mm sieve. Total N concentration

was determined by the micro-Kjeldahl digestion followed by the

colorimetric determination [19] on a flow injection autoanalyzer

(FIA) (Lachat Instruments, USA). Soil organic carbon (SOC) was

determined by the potassium dichromate oxidation method with

SOM calculated as SOM = 1.7246SOC [19].

Statistical Analysis
Statistical analyses were performed using SAS 8.1 for Windows

(SAS Institute, Cary, NC, USA.). Biomass accumulation, carbon

concentrations and C storage of plant materials and soils, as well as

fine root distribution among 4 age classes of plantations were

compared by one-way ANOVA, followed by the LSD method to

test among different age groups.

Results

Plant Biomass and C Concentration
Aboveground biomass (AGB), belowground biomass (BGB), and

total plant biomass (PB) of the C. equisetifolia plantations increased

markedly with stand age. The plantation followed a classic self-

Table 1. The general status of four age classes of
C. equisetifolia plantations in 2011 (mean6S.E.).

Stand age
(yrs)

Density
(plants ha21)

DBH
(cm)

Height
(m)

3 2350a687 4.49d60.28 4.92c60.63

6 2200a682 9.46c60.14 8.16b60.40

13 1250b6144 15.88b60.40 12.67a60.16

18 975b663 19.35a60.90 10.63b60.57

Note: DBH: Diameter at breast height. Means in a column followed by different
lower-case letters are significantly different at P,0.05 (one-way ANOVA and
LSD test).
doi:10.1371/journal.pone.0077449.t001

C Sequestration in Coastal Shelterbelt Plantations
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thinning growth with the steady increases of DBH and height

along with the decrease of tree density (Table 1). The AGB and

BGB of C. equisetifolia plantation increased from 14.22 and

7.77 Mg ha21 at the 3 yrs-old plots to 130.34 and 21.13 Mg

ha21 at the 18 yrs-old plots, respectively (Table 2). The PB of

C. equisetifolia plantation in our study site increased from 21.99 Mg

ha21 at the 3 yrs-old plots to 151.46 Mg ha21 at the 18 yrs-old

plots, with the most rapid increase occurred in the 3–6 years stage

(Table 2). The biomass of stem and root accounted for more than

70% of the total plant biomass. In the four age classes plantations,

we found that the proportion of stem biomass was the largest and

the branchlet biomass was the smallest. The BGB/AGB ratio was

0.61, 0.21, 0.16, and 0.16 at the 3, 6, 13, and 18 yrs old

plantation, respectively.

There was significant difference in the C concentrations among

different parts of C. equisetifolia tree (P,0.05, data not shown).

Across all age groups, stems had the highest C concentration with

mean value of 45.69%. In contrast, fine roots had the lowest C

concentration with a mean of 35.32%. The mean C concentration

of branches and branchlets was 45.28% and 42.08%, respectively.

Soil C, N Concentration and Fine Root Distribution
In the 0–10 cm soil, mean SOC concentrations ranged from

0.71 g kg21 in the 6-yrs plots to 2.67 g kg21 in the 3-yrs plots

(Table 3). In all age plantations, SOC decreased with increasing

soil depth (Fig. 1). There was a significant difference in the SOC

density among the four age classes C. equisetifolia plantations

respectively (P,0.05, Fig. 1), with the highest values in 3-yrs plots

and lowest ones in 6-yrs plots in all soil layers. Soil total N (TN)

was also low in these plantations. In the 0–10 cm soil, TN ranged

from just 0.09 g kg21 in the 6-yrs plots to 0.39 g kg21 in the 3-yrs

plots. Soil TN followed a similar decline with increasing soil depth

like the SOC (Table 3). Like SOC, TN was highest in the 3-yrs

plots, declined to the lowest concentration in the 6-yrs plots, and

then gradually recovered in the 18-yrs plots. C/N ratios of the 0–

10 cm soils ranged from 6.94 to 11.33, and the ratios typically

decreased with increasing soil depth (Table 3).

Mean fine root biomass at 1 m soil depth averaged 2.62, 4.48,

2.69 and 2.82 Mg ha21 in the 3, 6, 13 and 18 yrs old C. equisetifolia

plantations, respectively (Table 4). Six yrs plantation had the

highest fine root biomass among the four age classes plantations

(P,0.05). The fine root biomass decreased with an increase in soil

depth, with a large proportion located in the top 40 cm soil

(70.1%, 46.7%, 62.8%, and 78.9% of the total in the 3-yrs, 6-yrs,

13-yrs, and 18-yrs old plantations, respectively). Fine roots were

sparse in the 3-yrs old C. equisetifolia plantation, especially in the

deep soil; then it increased in the 6-yrs old plantation and declined

again in the 13- and 18-yrs plantation (Table 4), despite the

increase of total plant biomass over time.

Table 2. Biomass of four different age classes of C. equisetifolia plantations (Mg ha21, mean 6 S.E.).

Stand age
(yrs) Stem Branch Branchlet AGB Root (BGB) PB

3 8.80c62.06 2.59c60.52 2.83b60.37 14.22c62.96 7.77c60.43 21.99c63.33

6 46.05b62.79 10.65b60.61 7.01a60.35 63.71b63.74 13.1b60.60 76.9b64.32

13 96.0a66.70 18.3a61.35 8.12a60.69 122.5a68.69 19.6a61.44 142.1a610.1

18 104.6a621.9 18.5a63.31 7.20a60.91 130.3a626.1 21.1a64.32 151.5a630.4

Note: AGB refers to aboveground biomass, PB refers to total plantation biomass. Means in a column followed by different lower-case letters are significantly different at
P,0.05 (one-way ANOVA and LSD test).
doi:10.1371/journal.pone.0077449.t002

Figure 1. The soil carbon density of four different age classes
of C. equisetifolia plantations. Note: Error bar indicating SE.
doi:10.1371/journal.pone.0077449.g001

Table 3. Properties of the soil in four different age classes of
C. equisetifolia plantations (only 0–10 and 10–20 cm soil data
were presented here, mean 6 S.E.).

Variables Stand age

Soil
depth 3 6 13 18

Bulk
Density
(g cm23)

0–10 cm 1.5460.02 1.5060.01 1.4960.03 1.5360.02

10–20 cm 1.5060.02 1.5060.01 1.4760.01 1.4860.02

SOC
(g kg21)

0–10 cm 2.67a60.59 0.71b60.06 0.87b60.11 2.10a60.14

10–20 cm 2.35a60.55 0.43c60.05 0.49c60.07 1.31b60.11

TN (g kg21) 0–10 cm 0.39a60.02 0.09c60.01 0.13c60.02 0.19b60.02

10–20 cm 0.32a60.04 0.09c60.01 0.09b60.02 0.15b60.02

C/N 0–10 cm 6.94b61.66 7.62b60.68 6.68b60.27 11.33a61.38

10–20 cm 7.12ab61.39 4.84c60.59 5.85bc60.62 9.44a61.37

Note: Means in a row followed by different lower-case letters are significantly
different at P,0.05 (one-way ANOVA and LSD test).
doi:10.1371/journal.pone.0077449.t003

C Sequestration in Coastal Shelterbelt Plantations
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Ecosystem C Sequestration
Most plant C was accumulated in the aboveground biomass,

especially in stems. Carbon storage in the aboveground plant

biomass averaged 6.3, 28.8, 55.9, and 59.7 Mg C ha21 in the 3, 6,

13, and 18 yrs old plantations respectively (Table 5). Root biomass

C increased from 2.5 Mg C ha21 in the 3-yrs plots to 8.3 Mg C

ha21 in the 18-yrs plots, representing 28.2%, 13.7%, 11.0%, and

12.2% of the total plant biomass C in the four age classes of

plantations. The C accumulated in the C. equisetifolia plant biomass

increased markedly with stand age. The annual rate of C

accumulation in the C. equisetifolia plant biomass during 0–3, 3–

6, 6–13 and 13–18 yrs stage was 2.9, 8.2, 4.2 and 1.0 Mg C

ha21 yr21, respectively (Table 6).

Soil organic C storage in the top 100 cm soil was 17.74, 5.14,

6.93, 11.87 Mg ha21 at the 3, 6, 13 and 18 yrs plantation,

respectively (Table 5). The highest soil carbon storage existed at

the 3 yrs plantation and the lowest at the 6 yrs plantation, with

SOC storage increased markedly from 6-yrs plots to 13-yrs and

18-yrs plots (Table 5).

Total C storage in the plantation ecosystem averaged 26.57,

38.50, 69.78, and 79.79 Mg C ha21 in the 3, 6, 13 and 18- yrs

plantation respectively, with most of the C accumulated during the

18 yr growth stored in the aboveground biomass rather than in the

belowground root biomass and soil organic C (Table 5).

Discussion

Biomass C Accumulation in Casuarina Equisetifolia
Plantations

This study supports our hypothesis that C. equisetifolia biomass

and C storage increased quickly with plantation age in both

aboveground and belowground parts. A number of studies have

reported similar trends of forest growth [20,21]. Moreover, the

accumulation rate was fast in the early stages of plantation and

then slowed down as the plantation aged. The highest accumu-

lation rate was observed in the 3–6 yrs old stage (Table 6). The

biomass of the fine root also reached maximum values in this stage

(Table 4). These results were consistent with other studies, which

found the largest fine root biomass in the fast-growth stage stand

[22,23].

The C. equisetifolia plantation also accumulated more biomass

than many other secondary tropical forests. Harmand et al. [24]

reported that total biomass in the 7 yrs old Eucalyptus camaldulensis

and 6 yrs old Senna siamea was 62.35 and 45.39 Mg ha21,

respectively. Similarly, aboveground biomass in the 7 yrs old

secondary forests in the Uxpanapa Region of Veracruz, Mexico

was 52.7 Mg ha21 [25]. Miao et al. [26] examined biomass of

different mangrove forests in South China and found that total

forest biomass in the 5 yrs old Aegiceras corniculatum, Avicennia marina,

and Kandelia candel forests was 5.5, 16.4, and 62.6 Mg ha21,

respectively. These values were smaller than the 63.71 Mg ha21

(6 yrs old plantation) found in our study. Our data thus suggest

that the C. equisetifolia plantations can accumulate large amount of

biomass in both of aboveground and belowground parts, despite

Table 4. The depth distribution of fine root biomass at four age classes of C. equisetifolia plantations (Mg ha21, mean 6 S.E.).

Stand age (yrs) 0–10 cm 10–20 cm 20–40 cm 40–60 cm 60–80 cm 80–100 cm Total

3 0.6860.09 0.5460.06 0.6260.09 0.3460.12 0.29b60.13 0.16b60.07 2.62b60.37

6 0.5960.04 0.6460.11 0.8660.27 0.8060.09 0.65a60.13 0.94a60.22 4.48a60.40

13 0.5960.20 0.4060.10 0.7160.16 0.4160.06 0.23b60.08 0.36b60.12 2.69b60.55

18 1.0360.25 0.5560.06 0.6460.23 0.3860.19 0.09b60.04 0.13b60.06 2.82b60.67

Note: Means in a column followed by different lower-case letters are significantly different at P,0.05(LSD test).
doi:10.1371/journal.pone.0077449.t004

Table 5. Carbon storage in biomass and soils in four C. equisetifolia plantations (Mg ha21, mean 6 S.E.).

Stand age
(yrs) Stem Branch Leaf AGCS Root TBCS SOC TCS

3 3.94c60.92 1.18c60.24 1.22b60.16 6.34c61.32 2.49c60.14 8.83c61.44 17.74a63.21 26.57c62.80

6 21.04b60.00 4.82b60.27 2.93a60.14 28.78b60.42 4.58bc60.21 33.37b60.63 5.14c60.24 38.51b62.11

13 44.19a63.09 8.34a60.61 3.41a60.29 55.94a63.97 6.91ab60.51 62.85a64.48 6.93c60.24 69.78a64.68

18 48.35a610.1 8.31a61.49 2.99a60.38 59.65a612.0 8.26a61.69 67.91a613.6 11.87b60.76 79.78a613.91

Note: SOC, TBCS, AGCS and TCS refer to soil organic carbon (0–100 cm), total biomass C storage, aboveground C storage and total C storage, respectively. Means in a
column followed by different lower-case letters are significantly different at P,0.05(one-way ANOVA and LSD test).
doi:10.1371/journal.pone.0077449.t005

Table 6. Average annual rate of biomass carbon
accumulation at four age classes of C. equisetifolia plantations
(Mg C ha21 yr21).

Stand stage AGC BGC TBC

0–3 yrs 2.1 0.8 2.9

3–6 yrs 7.5 0.7 8.2

6–13 yrs 3.9 0.3 4.2

13–18 yrs 0.7 0.3 1.0

Note: AGB refers to aboveground biomass C; BGC refers to belowground
biomass C; TBC refers to total biomass C.
doi:10.1371/journal.pone.0077449.t006

C Sequestration in Coastal Shelterbelt Plantations
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growing in the sandy coastal soils with low nutrient and low

organic matter.

Most tropical forests accumulate large amounts of biomass in

their roots [24,26]. In this study, however, we found average BGB

(Belowground biomass)/AGB (Aboveground biomass) ratio was

just 0.27 in the four C. equisetifolia plantations. The ratios reported

here was much lower than those reported in other tropical forests.

Harmand et al. [24] reported that the BGB/AGB ratio was 0.76,

0.90, and 0.44 in the 5 yrs old Acacia polyacantha, S. siamea and E.

camaldulensis forests, respectively. However, the average BGB/AGB

ratio was 0.29 in the humid tropical forests in Costa Rica [27], a

value much closer to ours. In the mangrove forests, Miao et al.

[26] reported that BGB/AGB ratio for the three 5 yrs old

mangrove forests was 0.6, 0.7, and 0.8, respectively.

Soil Organic C and TN in Casuarina Equisetifolia
Plantations

Our study did not support the hypothesis that C storage in the

soil increased with plantation age. Davis et al. [28] reported an

increase of SOC from 29.8 Mg ha21 to 42.0 Mg ha21 in the

mineral soil (0–10 cm) along a stand development sequence in a

New Zealand Nothofagus forest. Sartori et al. [29] conducted a

chronosequence study of poplar plantations in USA. They found

that C concentration in the upper 5 cm of the mineral soil

increased with plantation age but decreased with age at 5–15 cm

and 15–25 cm depths. Similar results had been reported in other

studies [30,31]. In our study, SOC decreased in the early stage

after the reforestation and then gradually increased with the stand

age. Paul et al. [32] showed the similar result in an afforestation

site in Australia. They found that surface soil (,10 or ,30 cm

depth) C generally decreased during the first 5 years but then

increased, and recovered after about 30 yrs afforestation. It is well

known in ecological literature that during early stages of forest

development, fast litter decomposition and SOC mineralization

could lead to SOC decrease (before its eventual increase), a

phenomena termed ‘‘Covington curve’’ [33,34]. Such initial

decrease of SOC followed by SOC increase have been shown in

many other studies [35–38].

Land use history had a significant effect on changes in soil C, so

had the soil disturbance during the site preparation for forest

growth [20,39,40]. In the first several years of reforestation, there

is relatively little input of C from aboveground [41]. However, C

from residues of the preceding plantation continues to decompose

during this time. In addition to the land use history, the methods of

cultivation and management also have significant effects on the C

content [32]. During many plantation site preparations in China,

soils were often heavy disturbed, sometimes including root

excavation, which can greatly accelerate SOC loss in the early

years of reforestation.

The litterfalls of C. equisetifolia were collected regularly by the

local residents as biofuel materials. As an important aboveground

C input into soils, the harvesting of litter usually results in

additional losses of C from the soil. Many studies have suggested

that retaining residues on site could reduce soil C loss [42], and the

removing or burning of litters and residues always lead to a large

loss of C. Thus, our study suggests that given appropriate

management practices (i.e., retaining litterfall), the C. equisetifolia

plantations would have a higher potential to sequester more C.

Nitrogen is one of the most common limiting elements in

terrestrial ecosystems that limit the primary production and other

ecological processes [43,44]. Soil N would vary considerably

during soil development as N accumulates through N-fixation and

deposition [45]. In our study, the concentration of soil TN ranged

from 0.09 to 0.39 g kg21 in the 0–10 soil layer, which was much

lower than the data reported in nearby soils. For example, Mo

et al. [46] reported that total N of top soil (0–20 cm) in the

disturbed, rehabilitated and mature forests in tropical China was

0.9, 1.0, and 1.9 g kg21, respectively. The specific soil type may

partially explain the low N status in this study. More than 92% of

sand fraction of the soil might enhance the soil N loss through

leaching during N mineralization processes. In addition, the

collection of litterfall by the local residents might be another

reason for the low concentration in soil N, because litterfall is a

major pathway of nutrient return to the soil [47].

C Accrual in Casuarina Equisetifolia Plantations
Our results suggested that organic C can accumulate rapidly in

the C. equisetifolia plantations in South China. Furthermore, most C

accrual was due to high biomass accumulation. The estimation of

annual biomass C accumulation rate of C. equisetifolia plantation

reached 8.2 Mg/ha in 3–6 yrs stage (Table 6). This value was

higher than the data in 3 yrs old A. crassicarpa plantation (6.5 Mg/

ha) in tropical China [48]. Our estimation was also consistent with

previous study [49]. Yang and Guan [49] have reported annual

biomass C accumulation rate in various forests of Pearl River

Delta, and found that C. equisetifolia plantation (7.25 Mg/ha) had

the fastest rate among different forest types (ie: Pinus elliottii

plantation: 4.8 Mg/ha, Acacia plantation: 4.7 Mg/ha, broadleaf

forests: 6.5 Mg/ha).

In consistent with our hypotheses, the contribution of SOC to

total ecosystem C storage decreases with the stand age. SOC was

17.74, 5.14, 6.93, and 11.87 Mg C ha21 at the 3, 6, 13 and 18 yrs

old plantation, respectively, representing 66.8%, 13.3%, 9.9% and

14.9% of the total ecosystem carbon. The percentage was smaller

than many other studies. Fonseca et al. [27] reported that the

amount of carbon stored in the soil represented 74.3% of the total

carbon in forest, 51.5% higher than the biomass C in the humid

tropics of Costa Rica. The rapid accrual of ecosystem C in the

C. equisetifolia plantations has benefited from the coastal protection

policy of ‘‘zero tolerance’’ on tree cutting and harvesting.

Conversely, the low soil nutrient (TN) and SOC content in the

coastal sandy soil may limit soil microbial mediated nutrient

turnover, subsequently, may limit the C accumulation potential of

this ecosystem. The C accumulation potential is further con-

strained by the routine litter removal by local residents. The litter

removal not only reduced direct SOC flow belowground, but also

diminished essential soil nutrients (N, P) for plant growth and

further C accumulation in the system.

Since there is a large planting area reaching 300,000 ha for this

species in the coastal area of China [12], C. equisetifolia plantations

might have played great roel in sequestering C. To fully realize

such potential, we need to understand the interactive effects of soil

nutrient, natural disturbance, and human decisions on the

ecosystem health of the C. equisetifolia plantations. The large-scale

Casuarina plantations as shelterbelt forest along the coastline in

South China has important roles beyond C sequestration,

including restoring degraded coastal land and protecting coastal

community, thus the social and ecological factors that affecting

such critical ecosystem services need to be further investigated.

Conclusions

Casuarina equisetifolia plantations (3–18 years old) in this study

could rapidly accumulate large quantities of biomass. The total

plant biomass of C. equisetifolia plantation at 3, 6, 13, and 18 yrs old

plantations was 22.0, 76.8, 142.1, and 151.5 Mg ha21, respec-

tively, greater than many other tropical forests of similar ages. The

SOC content was 17.74, 5.14, 6.93, and 11.87 Mg ha21,
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representing 66.8%, 13.3%, 9.9% and 14.9% respectively of the

total ecosystem carbon pool. Our study suggests that these

plantations have a greater potential to sequestrate C despite poor

soil conditions. The expansion of C. equisetifolia plantations in the

South China can play important roles in the regional C budget

and coastal protection. Long-term monitoring and research are

needed to further explore the ecological and social-economic

factors that affect the C sequestration and ecosystem health of

these shelterbelt forests.
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