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Abstract. This study analyzes a theoretical bistable MEMS device, which exhibits a considerable versatility 
of behavior. After exploring the coexistence of attractors, we focus on each rest position, and investigate the 
final outcome, when the electrodynamic voltage is suddenly applied. Our aim is to describe the parameter 
range where each attractor may practically be observed under realistic conditions, when an electric load is 
suddenly applied. Since disturbances are inevitably encountered in experiments and practice, a dynamical 
integrity analysis is performed in order to take them into account. We build the integrity charts, which examine 
the practical vulnerability of each attractor. A small integrity enhances the sensitivity of the system to 
disturbances, leading in practice either to jump or to dynamic pull-in. Accordingly, the parameter range where 
the device, subjected to a suddenly applied load, can operate in safe conditions with a certain attractor is 
smaller, and sometimes considerably smaller, than in the theoretical predictions. While we refer to a particular 
case-study, the approach is very general. 

1 Introduction  
Complex nonlinear features represent a very attractive 
opportunity for improving performances of micro- and 
nano-systems [1, 2]. New sophisticated devices 
deliberately operating in the nonlinear regime are 
emerging in a variety of different applications, ranging 
from mass sensors, signal processing, energy harvesting, 
up to health monitoring, laser scanners and 
bioengineering.  

Kumar and Rhoads investigate an optically actuated 
bistable MEMS device [3], Hornstein and Gottlieb 
multimode dynamics and internal resonances in non-
contact atomic force microscopy [4], Cho et al. nonlinear 
hardening and softening response and the switching 
among them [5], Welte et al. parametric resonance and 
anti-resonance [6], Kacem et al. primary and 
superharmonic resonances [7], Tusset et al. chaos control 
designs [8], Gerson et al. pull-in phenomenon in 
electrically actuated meso scale beams [9], Vyasarayani 
et al. past pull-in behavior [10], Ouakad and Ramini et al. 
response to mechanical shock [11, 12], Arlett et al. and 
Eom et al. extensively review current advances in 
nanotechnologies and their related applications in 

chemical/biological sensing and detection [13, 14], 
Villanueva et al., Belardinelli et al., and Corigliano et al. 
address the problem of design and reliability assessment 
[15-17], Kozinsky et al. describe the effect of 
disturbances in the experimental initial conditions [18], 
etc. 

Motivated by the increasing relevance of nonlinear 
features, the present research study analyzes a theoretical 
bistable MEMS device, Fig. 1. A considerable versatility 
of behavior is observed, since the disappearance of the 
attractors may eventually lead either to jump and 
hysteresis loops with both small and large oscillation 
amplitudes, or, alternatively, to dynamic pull-in. In 
particular, we investigate the nonlinear response when, 
starting from the initial condition of rest, the device is 
subjected to a suddenly applied electrodynamic 
excitation.  

Extensive numerical simulations are performed. 
Special attention is dedicated to the presence of 
disturbances. As previously observed in Thompson and 
coworkers [19, 20], disturbances are inevitably 
encountered under realistic conditions. They produce 
small, but finite perturbations, which may significantly 
affect and alter the system response. Taking them into 
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account is essential for reliable safety estimation of 
systems load carrying capacity. To this purpose, we need 
to overcome the merely local perspective and investigate 
the global one, where the overall dynamic behavior is 
explored. This fundamental issue is recently reviewed 
and reconsidered in Lenci and Rega [21, 22], where all 
the basic aspects are illustrated and discussed, including 
the difference with respect to the classical stability 
concepts, the main current advances in analytical tools 
for quantifying the integrity of a system against 
disturbances, and the actual substantial developments in 
the direction of practical applications. Dynamical 
integrity predictions have been recently widely referred 
in the literature in micro and nanosystems, both for 
interpreting and predicting the experimental behavior [23, 
24], and for getting hints towards engineering design [25, 
26], and for controlling the global dynamics [27]. 

In this framework, we perform a dynamical integrity 
analysis of the MEMS dynamical response to sudden 
excitations. Our aim is to develop an applicable confident 
estimate of the MEMS nonlinear behavior, which is 
essential for proper design, performance analysis, and 
calibration. The outline of the paper is as follows. The 
MEMS device is introduced (section 2), some 
preliminary investigations are performed (section 3), 
dynamical integrity charts are drawn (section 4), and the 
main conclusions are summarized (section 5). 

2 The MEMS device  

The analyzed MEMS device is represented in Fig. 1. The 
authors previously considered this microstructure in [25], 
where a simple single mode reduced order model was 
derived and extensive theoretical simulations were 
performed. In this section we briefly recall the major 
results, since they represent the starting point of the 
present paper.  

The device consists of a slender imperfect 
microbeam, which is actuated by an electrostatic voltage 
load VDC and an electrodynamic harmonic load of 
amplitude VAC and frequency Ω. The microbeam has 
length � and a constant rectangular cross section of width 
� and thickness ℎ. The shallow arched initial shape, 
which simulates the imperfections possibly due to the 
microfabrication process is expressed by ��(�) =

(1 2)⁄ ��(1 − cos(2��)), where �� is the maximum 
initial rise. The microbeam is subjected to a constant 
axial load 	, which produces the axial displacement 
�

at the right end B. Assuming l = 400 μm, h = 1.4 μm, b = 
25μm, d = 2.2 μm, y0 = 0.1 μm, n = 60 (i.e. wB = 25nm), 
VDC = 1.2V, the single-mode reduced order model is: 

�̈ + 0.17247 �̇ − 0.325217 − 256.704 � − 445.54 ��

+2866.89 �� + (1.2 + ��� cos(Ω�))� ∙
(0.016816 + 0.12395 � + 0.35318 �� + 0.46159 ��

+0.233094 ��)/(1.44 (0.596 + �)�) = 0
(6) 

The system has a double potential well, with escape 
direction. Accordingly, the device may exhibit a bistable 
static behavior, i.e. at rest has two stable equilibrium 
configurations, an upper one and a lower one.  

Fig. 1. A schematic model of the MEMS device. 

Thanks to the inherent nonlinearities, the dynamics of 
the analyzed MEMS device are particularly rich, which is 
due to the coexistence of several principal competing 
attractors with different characteristics. This leads to a 
considerable versatility of behavior. The frequency 
response diagram in Fig. 2 shows both in-well 
oscillations belonging both to the principal well (denoted 
by A), and to the secondary well (denoted by B), and 
large cross-well oscillations. Both A and B exhibit both 
non-resonant and resonant branch, which undergo 
softening behavior, with the characteristic bending 
toward lower frequencies. 

3 Theoretical final behavior at suddenly 
applied electrodynamic excitation  

We consider the initial condition of rest in the left well, 
and analyze the trajectory when the electric excitation is 
suddenly applied. Our aim is to understand both if there 
will be a bounded motion or dynamic pull-in, and, in case 
of bounded motion, to distinguish which one of those 
detected in Fig. 2 will appear. The overall scenario is 
summarized in Fig. 3. It describes the final outcome that 
will theoretically occur when a certain VAC and a certain 
Ω are suddenly applied. Green, orange and white 
respectively denote oscillations in the left well, 
oscillations in the right well, and escape. 

A large compact green area exists, which denotes that 
there is a wide parameter range where a suddenly applied 
excitation from the rest configuration in the left well 
produces oscillations in the same well. A fall in the green 
area occurs at Ω = 18 (in the left neighbourhood of the 
resonance frequency), where a large V-shaped orange 
fractal area is observed. As far as the voltage is kept low, 
only bounded motions occur. Increasing the voltage, 
instead, fractal tongues involve the escape.  

In practice disturbances exist, which are not 
considered in these simulations. As experimentally 
observed by the authors in previous studies [23, 24], they 
may alter the final outcome, making it different from the 
theoretical predictions. To take disturbances into account, 
we develop a dynamical integrity analysis.  

Fig. 2. Frequency response at VAC = 3.5V.
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Fig. 3. Behavior chart for initial condition of rest in left well. 

4 Practical final behavior at suddenly 
applied electrodynamic excitation  

We focus on the range in Fig. 3 where a bounded motion 
is expected. Our aim is to improve the analysis in order to 
detect which final attractor will be caught in practice. 

Taking into account the presence of disturbances 
requires analyzing the system behavior not only locally, 
by studying the response of each single initial condition 
of rest to sudden electric excitation, but also globally, by 
focusing on the attractor-basin scenario. An example of 
attractor-basin phase portrait is reported in Fig. 4. Green, 
red and orange denote the basins of the non-resonant B, 
the resonant B and the non-resonant A, respectively. The 
dark red dots mark each initial condition of rest. To 
guarantee that the analyzed initial condition of rest leads 
to a certain attractor, it is essential that this initial 
condition is surrounded by its basin. A large compact 
area of this basin is necessary to tolerate disturbances. 
Conversely, a small area is sensitive to perturbations, i.e. 
the final outcome may be different in practice from the 
theoretical predictions.  

We consider as safe basin the basin of attraction of 
each single attractor. To measure the dynamical integrity, 
we introduce the Extended Local Integrity Measure 
(ELIM), which extends the definition of LIM introduced 
by Soliman and Thompson in [20], in order to consider 
initial conditions different from each single attractor. In 
particular, ELIM may be defined as the normalized radius 
of the largest circle entirely belonging to the safe basin 
and centered at the initial condition under consideration. 
Examples of circles used in the definition of ELIM are 
reported in Fig. 4. We normalize each radius with the 
analogous radius drawn for the initial condition of rest in 
the right well in the unforced dynamics. 

An example of ELIM integrity profile is reported in 
Fig. 5, which describes ELIM dynamical integrity vs 
frequency, at certain fixed VAC voltage. Where ELIM has 
elevated values, e.g. ELIM > 10%, the initial condition of 
rest is expected to lead not only in theory but also in 
practice to the particular attractor predicted in Fig. 3.  

Fig. 4. Attractor-basin phase portrait at Ω = 16, VAC = 1.5V. 
Initial conditions of rest in the left and right well are in red dots. 

Examples of circles used in ELIM definition are in solid line. 

Where ELIM drops to smaller values, the attractor 
theoretically expected to exist may practically disappear 
under realistic conditions, i.e. in the parameter ranges 
where ELIM becomes too small, a different bounded 
attractor may appear in practice. 

Collecting information from several integrity profiles 
at different values of VAC, we build the ELIM integrity 
chart, which shows the curves of constant percentage of 
ELIM, Fig. 6. For convenience, they are overlapped to 
the results obtained in Fig. 3 (shown in grayscale). The 
curves describe the overall scenario of structural safety of 
the initial condition of rest when subjected to a suddenly 
applied excitation of different frequency and voltage.  

The curves are nearly parallel to the boundaries of the 
green (dark grey) compact area. At low voltage, elevated 
ELIM is guaranteed, i.e. when the device is excited from 
the rest position, attractor B can be safely observed. At 
high voltage, small ELIM occurs, i.e. attractor B (even if 
theoretically expected) may not appear in practice, but the 
device may exhibit another final motion (pull-in or 
another bounded attractor). The curves appear at about 
constant steps, i.e. the deterioration (or the increment) of 
the dynamical integrity is rather slow. This means that the 
range where the initial condition of rest in the left well 
practically leads to a safe attractor in the same well 
enlarges (reduces) significantly by decreasing 
(increasing) disturbances. A drop in ELIM dynamical 
integrity is observed at the V-shaped region, where the 
final outcome is very sensitive to disturbances despite the 
low voltage loads.  

A similar analysis can be performed for the initial 
condition in the right well. 

Fig. 5. ELIM integrity profiles for the initial condition of rest in 
the left well, at VAC = 2.0 V. 
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Fig. 6. ELIM integrity chart for the initial condition of rest in 
the left well. 

The integrity curves may be used in the design to 
detect a lower bound of safety below which a certain final 
response may practically vanish, i.e. they point out that 
we cannot operate the MEMS device in safe conditions in 
the practical area where the initial condition of rest is not 
sufficiently robust (e.g. ELIM < 10%). It is concluded 
that the practical region of existence of a certain response 
is a subset of the theoretical one. 

5 Conclusions  

An electrically actuated MEMS device with considerable 
versatility of behavior has been analyzed. The device has 
a bistable static configuration, with possibility of escape. 
Systematic theoretical investigations have been 
performed to explore the nonlinear response when the 
device, from rest, is subjected to a suddenly applied 
electric excitation.  

To take into account the inevitable presence of 
disturbances, a dynamical integrity analysis is carried out, 
where we have focused on the practical vulnerability of 
each attractor. ELIM integrity charts highlight that we 
cannot rely on the theoretical range of existence of each 
attractor, since disturbances considerably reduce the safe 
parameter range. The practical safe area is smaller, and 
sometimes remarkably smaller, than theoretical one. 

We have emphasised that the integrity charts may be 
applied in the design to identify lower bounds of safety 
where we can operate the device with the desired motion 
in safe conditions. While we refer to a particular case-
study, the approach is very general. 
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