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Bacteria Present in Carotid Arterial Plaques Are Found as Biofilm
Deposits Which May Contribute to Enhanced Risk of Plaque Rupture

Bernard B. Lanter, Karin Sauer, David G. Davies

Department of Biological Sciences, Binghamton University, Binghamton, New York, USA

ABSTRACT Atherosclerosis, a disease condition resulting from the buildup of fatty plaque deposits within arterial walls, is the
major underlying cause of ischemia (restriction of the blood), leading to obstruction of peripheral arteries, congestive heart fail-
ure, heart attack, and stroke in humans. Emerging research indicates that factors including inflammation and infection may play
a key role in the progression of atherosclerosis. In the current work, atherosclerotic carotid artery explants from 15 patients were
all shown to test positive for the presence of eubacterial 16S rRNA genes. Density gradient gel electrophoresis of 5 of these sam-
ples revealed that each contained 10 or more distinct 16S rRNA gene sequences. Direct microscopic observation of transverse
sections from 5 diseased carotid arteries analyzed with a eubacterium-specific peptide nucleic acid probe revealed these to have
formed biofilm deposits, with from 1 to 6 deposits per thin section of plaque analyzed. A majority, 93%, of deposits was located
proximal to the internal elastic lamina and associated with fibrous tissue. In 6 of the 15 plaques analyzed, 16S rRNA genes from
Pseudomonas spp. were detected. Pseudomonas aeruginosa biofilms have been shown in our lab to undergo a dispersion re-
sponse when challenged with free iron in vitro. Iron is known to be released into the blood by transferrin following interaction
with catecholamine hormones, such as norepinephrine. Experiments performed in vitro showed that addition of physiologically
relevant levels of norepinephrine induced dispersion of P. aeruginosa biofilms when grown under low iron conditions in the
presence but not in the absence of physiological levels of transferrin.

IMPORTANCE The association of bacteria with atherosclerosis has been only superficially studied, with little attention focused on
the potential of bacteria to form biofilms within arterial plaques. In the current work, we show that bacteria form biofilm depos-
its within carotid arterial plaques, and we demonstrate that one species we have identified in plaques can be stimulated in vitro
to undergo a biofilm dispersion response when challenged with physiologically relevant levels of norepinephrine in the presence
of transferrin. Biofilm dispersion is characterized by the release of bacterial enzymes into the surroundings of biofilm micro-
colonies, allowing bacteria to escape the biofilm matrix. We believe these enzymes may have the potential to damage surround-
ing tissues and facilitate plaque rupture if norepinephrine is able to stimulate biofilm dispersion in vivo. This research, there-
fore, suggests a potential mechanistic link between hormonal state and the potential for heart attack and stroke.
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Atherosclerosis is a syndrome in which arterial elasticity is re-
duced due to the accumulation of fatty deposits and calcium

within an arterial wall. Atherosclerosis is the principal underlying
cause of coronary artery disease, peripheral arterial disease, and
stroke (1). It is currently accepted that atherosclerosis develops
gradually, with low-density lipoprotein (LDL) and cholesterol
from plasma collecting beneath the endothelium of arterial walls,
resulting in an atheromatous plaque (2). The principal danger
associated with atherosclerosis is the sudden rupture of a stable
atheroma, leading to a life-threatening atherothrombotic lesion
(3). The importance of plaque stability is underscored by the find-
ing that 76% of all fatal coronary thrombi arise from arterial
plaque rupture (4).

There is mounting evidence that arterial plaques typically con-
tain bacteria or signature prokaryotic biomarkers (1, 5–13). We
believe the association of bacteria with arterial plaques may be an

indication of colonization by biofilms, which are localized aggre-
gations of bacteria that are refractory to antimicrobial treatment
and are associated with a chronic infection state (14). The poten-
tial of biofilms to influence the progression of atherosclerosis has
not been previously addressed. However, we hypothesize that if
biofilms are present within atherosclerotic lesions, they may be
susceptible to induction of a dispersion response with the poten-
tial of affecting the stability of the plaque deposit. Biofilm disper-
sion is characterized by the coordinated release of degradative
enzymes by bacteria to liberate individual cells from the biofilm
matrix and a transition to higher growth rates (15–21). Interest-
ingly, it has been shown under in vitro conditions that when ex-
posed to a sudden increase in a limiting nutrient, biofilm bacteria
will respond by mounting a dispersion event (15). We believe that
in an atheroma, a biofilm dispersion event could result from a
sudden increase in the availability of free iron, an essential nutri-
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ent, released from its bound state by elevated levels of norepineph-
rine. The induction of a biofilm dispersion response within an
atheroma may, therefore, have the potential to induce collateral
tissue damage resulting from the localized release of degradative
enzymes by the participating bacteria. This response, in turn,
could influence the integrity of the surrounding arterial tissues,
leading to an enhanced risk of plaque rupture and thrombogen-
esis.

It has long been appreciated that emotional or physical stress
can act as a trigger for plaque rupture and thrombogenesis, even
though the actual mechanism of destabilization may be poorly
understood. In the Multicenter Investigation of Limitation of In-
farct Size (MILIS) study, possible triggers of acute cardiovascular
disease were identified in 48.5% of the population, with the most
common being emotional upset (18.4%) and moderate physical
activity (14.1%) (22). Associations with stress and anger have also
been identified in both population-based studies of natural disas-
ters (23) and clinical studies of hospital patients admitted with
acute myocardial infarction (MI). Mittleman et al. (24) reported
that the relative risk of acute MI more than doubled in the 2 h after
an episode of anger, and similar effects have been reported for
severe work-related stress (25).

One of the hallmarks of the onset of stress is an increase in the
plasma concentration of norepinephrine (26). Among its other
effects, norepinephrine has been shown to interact with the iron
transport protein transferrin in serum, causing it to release free
iron (27). Transferrin is used by the human body in part to inhibit
the invasion and growth of microbial pathogens, restricting the
amount of ionic iron available in body fluids to 10�18 M (13). This
amount is insufficient for normal bacterial growth, requiring
pathogens to produce their own iron-chelating agents to compete
with transferrin (and other related chelators) for available iron
(13, 28). A sudden increase in free iron, therefore, has the poten-
tial to impact the growth state or behavior of resident pathogens in
an infected host.

In the current study, we hypothesized that in at least some
cases, atherosclerosis may be a biofilm-associated chronic disease.
To test this hypothesis, we examined atheromas within diseased
human carotid artery explants for the presence of bacteria and
performed microscopic analyses to determine whether these bac-
teria showed evidence of having developed into biofilm deposits.
We also evaluated Pseudomonas aeruginosa, a bacterial species
shown in this study to be present in atheromas, to determine
whether it could be induced to undergo a dispersion response in
vitro when norepinephrine was added to cultures of this organism
grown as a biofilm in the presence of iron-bound transferrin.

RESULTS
PCR of 16S rRNA and P. aeruginosa-specific 16S rRNA gene
sequences. Samples of diseased carotid arteries obtained from 15
patients with advanced atherosclerosis were examined by PCR
amplification of the V2-V3 region of eubacterial 16S rRNA genes,
followed by gel electrophoresis to determine the number of pa-
tients with bacterial DNA sequences associated with arterial
plaque. All 15 samples were found to contain eubacterial 16S
rRNA gene sequences (Fig. 1A). In order to determine if the single
16S rRNA band obtained represented multiple colonizing species,
five random subsamples from this set were selected as representa-
tive data and analyzed to determine the number of unique bacte-
rial 16S rRNA gene sequences in each sample via density gradient

gel electrophoresis (DGGE). Each of the five carotid arteries tested
was observed to have from 10 to 18 unique 16S rRNA gene signa-
tures, indicating polymicrobial colonization (Fig. 1B). Compari-
son of the samples revealed a total of 8 bacterial 16S rRNA gene
sequences that were common to all 5 patients and multiple addi-
tional sequences that were present in some patients but not others
(Fig. 1B). The results from DGGE of the five samples proved to be
unanimous for the presence of multiple strains in atherosclerotic
plaques, and therefore no further samples were analyzed using
DGGE.

In previous work in our laboratory, we isolated and identified
cultivable P. aeruginosa as a colonizing pathogen from a diseased
carotid endarterectomy sample. In the present study, we checked
for the presence of this bacterial pathogen by screening all 15
patient samples for Pseudomonas spp.-specific 16S rRNA genes via
PCR amplification. Positive PCR product for Pseudomonas spp.
was isolated from 6 of the 15 samples (Fig. 1, patient numbers 4, 5,
6, 7, 10, and 15). These PCR products were sequenced and ana-
lyzed for alignment to known bacterial 16S rRNA gene sequences
by using BLAST (Basic Local Alignment Search Tool). Samples
from patients 5, 6, 7, 10, and 15 were shown to contain sequences
that aligned with P. aeruginosa, and the sample from patient 4
indicated the presence of Pseudomonas sp. (Fig. 2A). BLAST re-
sults confirmed that all strains derived from carotid artery plaque
samples in the present study differed from our laboratory strain,
indicating that our results were not influenced by laboratory con-
tamination (Fig. 2B).

PNA-FISH probed samples. In order to examine atheroscle-
rotic arteries for evidence of biofilm colonization, we prepared

FIG 1 PCR and DGGE profiles from carotid artery explants of patients with
atherosclerosis. (A) Eubacterial 16S rRNA gene PCR results from 15 patients
with advanced atherosclerosis. Each numbered lane represents a carotid arte-
rial plaque sample from a separate patient. P. aeruginosa PA14 was used as a
positive control, a negative control containing no 16S rRNA gene sequence is
labeled BLANK, and 16S indicates 16S rRNA gene bands. PB, primer band.
The DNA marker is indicated at the right. (B) Results from DGGE analysis of
5 random plaque samples taken from the original 15 patients, indicated at left.
Large white arrows show 16S rRNA gene bands that were common to all 5
patients. Small white arrows indicate 16S rRNA gene bands that were found in
some but not all samples. A positive control with P. aeruginosa PA14 16S rRNA
genes is shown at the top of the gel. Note that the PA14 genomic DNA did not
align with any DNA from the patient samples.

Lanter et al.

2 ® mbio.asm.org May/June 2014 Volume 5 Issue 3 e01206-14

 
m

bio.asm
.org

 on A
ugust 18, 2016 - P

ublished by 
m

bio.asm
.org

D
ow

nloaded from
 

mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


two 25-�m-thick transverse sections from each of 5 carotid artery
subsamples chosen from the 15 patients in the present study. The
5 subsamples were chosen due to the length of the artery, to ensure
that enough of the sample was left for DNA extraction. That 10 of
the samples were not included for peptide nucleic acid-fluorescent
in situ hybridization (PNA-FISH) probing was due to the limited
size of the arterial sample. Each section was analyzed by PNA-
FISH with fluorescence-tagged eubacterium-specific 16S rRNA
gene probes to test for the presence of eubacterial targets. Each
carotid artery sample was found to be positive for the presence of
bound probe (n � 5/5). These fluorescent deposits were arranged
as microcolonies, each limited in area and comprising a few dozen
to a few hundred detectable probe targets averaging approxi-
mately 1 �m in diameter and indicative of bacteria (Fig. 3). The
individual probe targets showed slight separation from one an-
other, indicating the presence of unstained matrix, and were lo-
cated in areas showing a variation of tissue densities and struc-
tures, indicated by the fluorescence intensities. These areas
contained locations where tissue thickness was reduced and ap-
peared to include porous or structurally altered tissue, giving the

impression that there was localized tissue damage, which is a char-
acteristic associated with inflammation. Patient 1’s sample con-
tained red fluorescent deposits with approximately 22 and 83 PNA
probe targets, respectively, the first located proximal to the inter-
nal elastic lamina and the second within the tunica externa
(Fig. 3A). Increased magnification of these deposits showed these
probe targets were arranged as aggregates and were confined to
specific sites (Fig. 3B and C). A 3-dimensional composite image of
the deposit located within the tunica externa revealed that this
colonization focus was comprised of two separate microcolonies
embedded within the arterial tissue (Fig. 3D). The schematic dia-
gram (inset) indicates the locations of the various anatomical fea-
tures indicated in the photomicrographs. Patient 3’s sample
showed extensive probe binding associated with the tunica interna
at a location that appeared to have experienced a plaque rupture
event due to the split in the tunica intima (Fig. 4A). The separation
of individual probe targets in Fig. 4B and C was suggestive of
bacteria associated with one another by being enmeshed in a non-
fluorescent matrix. Patient 2’s sample (see Fig. S1A in the supple-
mental material) contained a single isolated microcolony located

FIG 2 P. aeruginosa sequence data from carotid artery explants of study patients. (A) BLAST results for 16S rRNA gene sequences from patient samples 4, 5, 6,
7, 10, and 15, indicating probable species, sequence length, expect value (number of hits by chance when searching a database of a particular size), and maximum
identity (percent similarity between the query and subject sequences over the length of the coverage area). (B) Multiple alignments between our lab strain and the
sequences obtained from atherosclerotic plaque samples. It can be seen that there are various regions that did not match up, which allowed us to draw the
conclusion that the strains we obtained were different from our lab strain.
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proximal to the internal elastic lamina below the fibrous tissue.
Patient 4’s sample (see Fig. S1B) demonstrated extensive micro-
colony development within the tunica interna that was associated
with a porous tissue structure that may have been due to extensive
tissue damage, and patient 5’s sample (Fig. S1C) showed an iso-
lated microcolony located proximal to the internal elastic lamina.
Of all microcolonies detected, 76.5% were located proximal to the
internal elastic lamina, within the tunica interna and associated
with fibrous tissue, while an additional 5.9% of microcolonies
were associated with the external elastic lamina. Since all 5 samples
contained bound probe and demonstrated a similar microcolony
presence of eubacterial 16S rRNA gene sequences, no more sam-
ples were evaluated.

Transferrin-norepinephrine-induced P. aeruginosa PAO1
biofilm dispersion. Having shown that atheromas contain depos-
its of cells that bound the 16S rRNA gene eubacterial probe and
that these deposits display characteristics of biofilm colonization,
our next question was whether any bacteria in these deposits had
the potential to undergo a biofilm dispersion response when ex-
posed to Fe2�. To test this, we grew biofilms of P. aeruginosa, a
bacterium for which 16S rRNA gene sequences had been shown to
be associated with one-third of the samples in the present study,

added FeSO4 to the medium, and measured the bacteria released
from the biofilms, using optical density (OD) as a measure of
biofilm dispersion. At a concentration of 1.78 mg and 3.5 mg
Fe/liter, significant dispersion was induced and detected starting
at approximately 20 min postchallenge (Fig. 5A). In control ex-
periments, addition of up to 3.0 mg/liter free iron did not result in
detectable population growth over a period of 3.5 h, indicating
that the increased OD measured in the dispersion experiments
was not the result of population growth over the time interval of
the experiment (see Fig. S2 in the supplemental material).

Our next experiment was to determine whether a biofilm dis-
persion response could be induced by interaction of norepineph-
rine with holo-transferrin at physiologically relevant concentra-
tions. It was subsequently demonstrated that free iron, released
due to an interaction of bovine holo-transferrin (0.5 g/liter) (29)
with norepinephrine (0.4 mM) (30), induced biofilm dispersion
in P. aeruginosa cultures (Fig. 5B). The free iron concentration,
measured in the medium following addition of norepinephrine,
was found to be 0.267 mg/liter, compared to �0.02 mg/liter in
medium supplemented only with transferrin. Norepinephrine-
transferrin challenge resulted in a 72% increase in released cells
above that with transferrin alone (P � 5.64E�13). The dispersion

FIG 3 CSLM images of eubacterial 16S rRNA gene sequence in the carotid arterial plaque sample from patient 1, demonstrated via PNA-FISH. (A) An overview
of the patient 1 sample, showing the location of 2 fluorescent deposits located proximal to the internal elastic lamina (L1) and proximal to the external elastic
lamina (L2). (Inset) Anatomical features of an atherosclerotic artery in cross-section. (B) Location L1 at higher magnification. (C) Location L2 at higher
magnification. (D) A 3-dimensional rendering of microcolony L2. Red fluorescence indicates eubacterial 16S rRNA gene PNA-FISH probe targets; green
fluorescence indicates background.
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response of biofilm bacteria is known to be associated with the
release of degradative enzymes. Therefore, a dispersion response
in vivo may have important consequences for surrounding tissues.

DISCUSSION

This study has shown that bacterial association with arterial
plaque can be extensive and involve a genetically diverse commu-
nity. Microscopic examination of these colonizing organisms in-
dicated that they form biofilm structures within the atheroma and
associated tissues. To our knowledge, this is the first direct obser-
vation of biofilm bacteria within a carotid arterial plaque deposit.
This is important, because biofilm bacteria display resistance and
physiological characteristics that are distinct from their plank-
tonic counterparts and manifest unique behaviors, such as biofilm
dispersion (8, 14). Thus, biofilm infections require targeted ther-
apeutic approaches if they are to be managed successfully. It has
been demonstrated by Parsek and Singh that biofilm infections
display 4 characteristics by which they may be identified (31).
According to these criteria, biofilm bacteria are (i) adherent to
some substratum or are surface associated, (ii) aggregated in cell
clusters encased in a matrix, (iii) confined to a particular site in the
host, and (iv) are difficult or impossible to eradicate with antibi-
otics, despite the fact that the responsible organisms are suscepti-
ble to killing in the planktonic state. The biofilm nature of the

carotid arterial plaque-associated bacteria detected in the present
study is supported by criteria i, ii, and iii of Parsek and Singh. We
did not collect data on prior antibiotic use by patients (criterion
4).

The presence of bacteria in a biofilm structure implies that
known biofilm behaviors may be associated with arterial plaque
colonization, notably, the ability to respond to extracellular sig-
nals to induce a dispersion event. Biofilm dispersion is significant
because in the process of evacuating a biofilm structure, the dis-
persing bacteria must release a wide range of degradative enzymes
to digest the matrix within which they are enmeshed. Such an
event within an atheroma may have the potential to cause collat-
eral damage to proximal tissues and negatively impact plaque sta-
bility. Thus, we believe there is the potential that stimulation of a
biofilm dispersion response in patients with advanced atheroscle-
rosis may be a predisposing factor in thrombogenesis.

It is significant that P. aeruginosa, which was identified in 5 of
the 15 plaque samples analyzed, was shown in this study to un-
dergo biofilm dispersion when challenged with elevated levels of
free iron. Biofilm dispersion by this microorganism was also
shown here to be inducible by the addition of norepinephrine to
transferrin-containing culture medium. Thus, under laboratory
conditions, an in vitro spike in hormone concentration was shown
to induce biofilm dispersion. It is unclear at this time whether a

FIG 4 Confocal images of eubacterial 16S rRNA gene sequence in the carotid arterial plaque sample from patient 3, demonstrated via PNA-FISH. (A) Overall
view of the location where an intima rupture appears to have occurred, with tissue damaged from severe atherosclerosis containing multiple fluorescent deposits.
(B, C, and D) Magnified images of the fluorescent deposits shown in panel A. Red fluorescence indicates eubacterial 16S rRNA gene PNA-FISH probe targets;
green fluorescence indicates background.
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biofilm dispersion response is inducible in vivo. For instance, se-
questration of biofilm deposits within atheromas may have a mit-
igating effect on the ability of norepinephrine to induce iron re-
lease in the vicinity of the infecting bacteria. Furthermore, the
association of degradative enzyme release during the biofilm dis-
persion response with collateral tissue damage is speculative on
our part. We have no direct evidence that this occurs in vivo;
however, we believe that the potential for additional damage to
surrounding tissues due to bacterial enzyme release may be an
additional significant factor contributing to thrombogenesis.

In addition to the potential role of bacteria in the destabiliza-
tion of arterial plaque, other factors have been identified that
could contribute to thrombogenesis. Dietel et al. (32) assessed
atherosclerotic plaques based on fibrous cap thickness (FCT) and
the lipid core ratio ([LCR]; the lipid core area divided by the
plaque area) and classified them as vulnerable (FCT � 100 �m,
LCR � 50%) or stable (FCT � 100 �m, LCR � 50%). Increased
transcription of gamma interferon (IFN-�) and interleukin-17�
(IL-17�) along with increased infiltration of mature dendritic
cells (DCs) were found in vulnerable atherosclerotic plaques com-
pared to stable atherosclerotic plaques. Production of IL-17 by
Th17 cells is commonly associated with Gram-negative bacterial

infection (33) and has been shown to have a proatherogenic in-
flammatory role in promotion of monocyte/macrophage recruit-
ment, as has been demonstrated for the aortic arterial wall (34).
Additionally, IFN-� has been shown in a murine model to induce
a Th1 immune response, resulting in the release of T-cell cytokines
and maximization of macrophage bactericidal activity (35).
Moser et al. demonstrated a decrease in the level of granulocyte-
macrophage colony-stimulating factor (GM-CSF) and an increase
in granulocyte colony-stimulating factor (G-CSF) in cystic fibro-
sis patients that had P. aeruginosa lung infections (36). The ratio of
GM-CSF to G-CSF was shown to be positively correlated with the
IFN-� response. Since there was a direct correlation between
P. aeruginosa infection, GM-CSF/G-CSF ratio, and IFN-� activity
in the lungs, we postulated that this system may also play a role in
atherosclerotic lesions and explain the observed levels of increased
transcription of IFN-� in vulnerable versus stable plaques. We
suspect that transport of immune system components across the
fibrous cap is facilitated by its reduced thickness and may be stim-
ulated by the presence of these bacterial biofilm infections, result-
ing in an increase in proinflammatory factors, such as IFN-� and
IL-17�. Maturation of DCs occurs when they phagocytize patho-
gens. According to Dietel et al., the increased presence of mature
DCs in vulnerable plaques suggests a particular involvement of
mature DCs in the process of plaque destabilization, though what
factors may be stimulating immature DCs to become mature was
not addressed in their study (32). It is possible that the biofilm
infections observed in this study could provide the pathogenic
link for the change from an immature to mature DC, and as men-
tioned previously, diffusion across the fibrous cap could be
streamlined by its decreased thickness.

An additional factor that likely contributes to inflammation
and tissue damage within atherosclerosis is C-reactive protein
(CRP). Meuwissen et al. demonstrated a positive correlation be-
tween levels of CRP and severity of coronary atherosclerotic dis-
ease. CRP promotes the formation of foam cells within atheroscle-
rotic plaque deposits (37). Tissue injury has been shown to
stimulate hepatocytes to produce CRP. It could be that tissue
damage caused by biofilm dispersion events causes an increase in
serum CRP levels. While all of these factors are derived from the
host, it appears that plaque instability is derived from a complex
system of the host immune response misbehaving, resulting in
tissue inflammation and damage. Biofilm infections within ath-
erosclerotic arteries could provide the answer as to why we see an
increase in proinflammatory cytokines and host-derived tissue
damage.

The results from this study add another potentially significant
contributing factor to the biology of the arterial plaque environ-
ment. This environment is already understood to be a complex
association of interacting factors with the potential to destabilize
atheromatous lesions and contribute to thrombogenesis. The in-
volvement of biofilm bacteria within this environment may con-
tribute to this destabilization in a number of ways. Our in vitro
results hint at the possibility that biofilm-associated bacteria
within an atheroma are induced to disperse when norepinephrine
levels become elevated. Such a dispersion event would likely be
associated with the release of degradative enzymes that have the
potential to induce collateral tissue damage. However, whether
norepinephrine has the ability to induce transferrin (or other iron
chelators) to release free iron into the environment of a plaque
lesion is unknown at this time. Furthermore, the release of degra-

FIG 5 P. aeruginosa response to challenge with free iron and norepinephrine.
(A) Dispersion of biofilms grown for 7 days in continuous culture and chal-
lenged with Fe2� or the carrier control. Each line represents the average of 3
replicate experiments. Onset of dispersion was observed at approximately
20 min. (B) Results for 7-day P. aeruginosa biofilm cultures challenged with
0.4 mM norepinephrine (NE) in the presence and absence of 0.5 g/liter of
holo-transferrin (Tf) at 37°C (n � 38 for each test; error bars represent stan-
dard deviations).
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dative enzymes from bacteria in a biofilm dispersion response
within an atheroma is unproven in vivo. The ability of such deg-
radative enzymes to contribute to thrombogenesis is also un-
proven. However, the ability of norepinephrine to stimulate bio-
film dispersion suggests a potential mechanism whereby the
hormonal state of an individual may contribute to arterial plaque
destabilization.

MATERIALS AND METHODS
Acquisition of arterial plaque samples. Carotid artery explants from 15
patients with advanced atherosclerosis were collected in sterile Ringer’s
solution following extraction by standard carotidectomy and held at 4°C
until transport to the laboratory for analysis within 24 h. No patient data
were provided.

PCR amplification of 16S rRNA genes and Pseudomonas aeruginosa
screening. Amplification of bacterial 16S rRNA genes was carried out
according to the methods of McBain et al., using primers HDA1 (5=GAC
TCC TAC GGG AGG CAG CAG T 3=) and HDA2 (5= GTA TTA CCG
CGG CTG CTG GCA C 3=) (38). Amplification of P. aeruginosa 16S rRNA
genes was performed on DNA extracted from carotid artery explants by
using the primers PA-SS–F (5= GGGGGATCTTCGGACCTCA 3=) and
PA-SS–R (5= TCCTTAGAGTGCCCACCCG 3=), developed by Spilker et
al. (39). A full description of DNA extraction, PCR amplification, and
P. aeruginosa 16S rRNA gene sequencing is provided in the supplemental
material.

DGGE. PCR amplification and DGGE analysis were carried out ac-
cording to the methods of Muyzer et al. (40, 41), using the primers
HDA1-GC (5= CGC CCG GGG CGC GCC CCG GGC GGG GCG GGG
GCA CGG GGG GAC TCC TAC GGG AGG CAG CAG T 3=) and HDA2
(5= GTA TTA CCG CGG CTG CTG GCA C 3=). Samples were stored at
�20°C until analyzed (41). Additional information for the DDGE analysis
is provided in the supplemental material.

Fluorescent in situ hybridization. A universal bacterial PNA-FISH kit
(AdvanDx, Woburn, MA) for bacterial 16S rRNA genes was used to label
eubacteria present within arterial plaque thin sections. A Zeiss 510 Meta
(Zeiss, Jena, Germany) confocal laser scanning microscope (CLSM) was
used to detect in situ bacteria. A full description of the PNA-FISH protocol
is provided in the supplemental material.

Bacterial strains and media. All biofilm and dispersion studies were
performed using Pseudomonas aeruginosa strain PAO1 grown aerobically
in minimal medium as described by Sauer et al. (42).

Biofilm growth and dispersion in continuous culture. Biofilms were
grown in continuous culture on the luminal surface of silicon tubing
(internal diameter of 1.6 mm and length of 81.3 cm) at a flow rate of
0.1 ml/min according to the method of Sauer et al. (42). After 7 days of
biofilm growth, minimal medium was supplemented with known con-
centrations of iron as ferrous sulfate (FeSO4·7H2O), pH 7.0. Biofilm re-
actor effluent was collected in 96-well microtiter plates at intervals of
2 min for 72 min. Cell densities were determined based on the absorbance
at 595 nm by using a Fisher Scientific Multiskan MCC reader. Data were
obtained from 3 replicate lines and averaged. Dissolved iron was deter-
mined spectrophotometrically by using a FerroMo iron test kit (Hach Co.,
Loveland, CO).

Microtiter plate biofilm dispersion assay. Biofilms were grown in
acetone-etched 96-well microtiter plates following transfer of 150 �l of
0.1% P. aeruginosa PAO1 preculture into wells containing 0.5 g/liter bo-
vine holo-transferrin (MP Biomedicals, Solon, OH) and incubated at
37°C with shaking at 220 rpm for 24 h. Spent medium was exchanged with
fresh, sterile medium every 24 h for 5 days, followed by two additional
exchanges after 12 h and a wash step after 2 h. Samples were supplemented
with 0.4 mM norepinephrine (Sigma, St. Louis, MO) for test samples or
carrier for control samples and incubated for an additional 90 min. Dis-
persion was determined by recording the OD at 595 nm of culture super-
natants by using a Fisher Scientific Multiskan MCC reader (Thermo Elec-
tron Corporation, Vantaa, Finland). Data were obtained from 3 replicate

experiments of 13 samples for each treatment (n � 39) and averaged. A
2-tailed t test was performed on the data.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.01206-14/-/DCSupplemental.

Text S1, DOCX file, 0.1 MB.
Figure S1, TIF file, 11.9 MB.
Figure S2, TIF file, 1.5 MB.
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