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Active Queue Management via Event-Driven Feedback

Control

Mehmet H. Suzer∗, Kyoung-Don Kang, Can Basaran

Department of Computer Science, State University of New York at Binghamton

Binghamton, NY 13902

Abstract

Active Queue Management (AQM) is investigated to avoid incipient con-
gestion in gateways to complement congestion control run by the transport
layer protocol such as the TCP. Most existing work on AQM can be catego-
rized as (1) ad-hoc event-driven control and (2) time-driven feedback control
approaches based on control theory. Ad hoc event-driven approaches for
congestion control, such as RED (Random Early Detection), lack a math-
ematical model. Thus, it is hard to analyze their dynamics and tune the
parameters. Time-driven control theoretic approaches based on solid math-
ematical models have drawbacks too. As they sample the queue length and
run AQM algorithm at every fixed time interval, they may not be adaptive
enough to an abrupt load surge. Further, they can be executed unnecessarily
often under light loads due to the time-driven nature. To seamlessly inte-
grate the advantages of both event-driven and control-theoretic time-driven
approaches, we present an event-driven feedback control approach based on
formal control theory. As our approach is based on a mathematical model,
its performance is more analyzable and predictable than ad hoc event-driven
approaches are. Also, it is more reactive to dynamic load changes due to its
event-driven nature. Our simulation results show that our event-driven con-
troller effectively maintains the queue length around the specified set-point.
It achieves shorter E2E (end-to-end) delays and smaller E2E delay fluctua-
tions than several existing AQM approaches, which are ad-hoc event-driven
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and based on time-driven control theory, while achieving almost the same
E2E delays and E2E delay fluctuations as the two other advanced control
theoretic AQM approaches. Further, our AQM algorithm is invoked much
less frequently than the tested baselines.

Keywords: Congestion Control, Active Queue Management, Event-Driven
Feedback Control

1. Introduction

Congestion control and avoidance is critical. Packets can be dropped be-
fore reaching their destinations due to congestion, wasting all the resources
consumed by them. It is known that, in an extreme case, congestion collapse
may happen causing users suffer severe network performance degradation
[1]. For congestion control and avoidance, AQM (Active Queue Manage-
ment) has been investigated. Usually, AQM is implemented in gateways
that can distinguish between the propagation delay and persistent queuing
delay for effective congestion detection. As a gateway is shared by many
active connections with a wide range of round trip times, delay tolerances,
and throughput requirements, decisions about the duration and magnitude
of transient congestion to be allowed at the gateway are best made by the
gateway itself.

The notion of feedback control has been applied to manage the queue
length. Most existing work on AQM can be categorized in two major classes:
(1) ad hoc event-driven approaches and (2) time-driven feedback control
approaches. Ad-hoc approaches are event-driven; however, they neither have
a mathematical model nor apply formal feedback control techniques. Other
approaches rely on a mathematical model of the TCP and queue dynamics
to perform congestion control. They use linear PID (Proportional, Integral
and Derivative) and nonlinear fuzzy control techniques based on fixed-interval
sampling and control algorithm execution for congestion control. Unlike these
approaches, our work is not only event-driven but also based on formal control
theoretic techniques. We discuss a few representative existing approaches
from the two camps that are closely related to our work in the following.

1.1. Ad Hoc Event-Driven Approaches

RED (Random Early Detection) [2], which is one of the earliest ap-
proaches for AQM, controls the queue length based on ad hoc feedback con-
trol. The objective of RED is to detect any incipient congestion early and

2

https://www.researchgate.net/publication/234780531_Congestion_avoidance_and_control?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/242505628_Random_Early_Detection_Gateways_for_Congestion_AIvoidance?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3


provide congestion notification to the sources to let them reduce their trans-
mission rates before packets are dropped due to overflow in network queues.
To detect congestion, RED keeps track of an exponentially weighted moving
average of the queue length. If the average queue length exceeds a minimum
threshold, RED randomly drops or marks packets with an explicit congestion
notification bit. Additionally, all packets are marked or dropped if the aver-
age queue length exceeds the specified maximum threshold. RED is an ad
hoc feedback-based approach, as it neither mathematically models the TCP
and queue length dynamics nor develops a feedback controller for congestion
control by applying formal control theoretic techniques [3]. Instead, RED
tries to avoid congestion by monitoring the average queue length and manip-
ulating the packet drop rate if necessary. Due to its superior performance to
the previous approaches such as the Drop Tail mechanism, it is recommended
by the Internet Engineering Task Force and adopted by many commercial
routers. However, it is difficult to analyze the dynamics of RED, because
the RED mechanism [2] lacks a mathematical model. Another drawback of
RED is the difficulty of tuning its parameters. RED received a remarkable
attention in the research community. It is followed by a number of projects
including [4, 5, 6, 7, 8, 9, 10] just to name a few. Lin et al. proposed Flow
Random Early Drop (FRED) [10]. They evaluate the effectiveness of RED
over traffic types categorized as non-adaptive, fragile and robust, according
to their responses to congestion. They point out that RED allows unfair
bandwidth sharing when a mixture of the three traffic types shares a link.
FRED uses per-active-flow accounting to impose on each flow a loss rate
that depends on the flow’s buffer use. Ott et al. proposed Stabilized RED
(SRED) [9] to statistically estimate the number of active flows at a link and
also identify misbehaving flows. SRED uses the estimated number of ac-
tive flows and the instantaneous queue size to calculate the packet-dropping
probability. Feng et al. developed a self-configuring version of RED [8]. The
authors suggest using an on-line algorithm for dynamically changing RED
parameters according to the observed traffic. The authors show that this
mechanism can reduce packet losses, while maintaining high link utilization.
Feng et al. proposed BLUE [7] as a congestion control algorithm to be de-
ployed in gateways. By considering packet loss and link idle events to manage
congestion, BLUE significantly outperformed RED.
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1.2. Time-Driven Feedback Control Approaches

On the other hand, there have been efforts [11, 12, 13, 14] to apply feed-
back control theory [3, 15] to AQM, since feedback control is very effective to
support the desired performance when the system model includes uncertain-
ties [3, 15]. Misra et al. modeled the interactions of TCP flows and AQM
routers by using stochastic differential equations [16]. Using this model in
their simulations, they analyzed the impact of RED parameters on the net-
work performance. This mathematical model constitutes a basis for a num-
ber of projects regarding AQM. The authors of [17], [11], [12], [13] and [14]
used this model to develop control-theoretic approaches for AQM. Hollot et
al. analyzed RED in control theoretic aspects [18] using the mathematical
model developed in [16]. Using this model, they also developed a P and a
PI controller in a companion paper [17]. Zhang et al. proposed an online
self-tuning structure [11] based on the mathematical model [16] to estimate
and correct network parameters online. Accompanied by a PI controller, this
structure is used to manage the queue length. Heying et al. [12] developed a
novel algorithm, called Proportional Integral based series compensation and
Position feedback compensation (PIP), to manage the queue length. They
used the model developed in [16] to implement their approach. Wang et
al. [13] proposed an optimized version of the mathematical model in [16] and
they built the Adaptive Optimized Proportional Controller (AOPC). AOPC
measures the latest packet loss ratio and uses it as a complement to the
queue length in order to dynamically adjust the packet drop probability. It
measures an additional state information, i.e., the latest packet loss ratio,
to enhance the control performance. Fengyuan et al. [14] built a fuzzy logic
controller based on the model developed by Misra et al. [16] to manage the
queue length. Their approach is inspired by the fact that fuzzy control the-
ory [15] is more versatile than the classical control theoretical solutions in
the presence of nonlinear system behaviors. However, their approach is also
time-driven.

Although the time-driven feedback controller [17] is shown to achieve bet-
ter performance than RED, it has shortcomings too. A time-driven controller
uses equidistant sampling of the controlled system behavior, e.g., the queue
length in a router, in time and compares the measured value to the specified
reference to compute the error, e.g., the difference between the current queue
length and the specified reference value. Based on the error, the control sig-
nal is computed to achieve the desired performance such as the reference
queue length. However, a time-driven approach for feedback-based conges-
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tion control may not be able to support good performance, if a low sampling
rate for feedback control is used or a large number of packets arrive in a short
time period that is shorter than the sampling period. To avoid this problem,
a short sampling period should be selected based on pessimistic assumptions
about the network load. As a result, the controller is executed unnecessarily
often when the load is not high, wasting precious resources at the gateway.

1.3. Event-Driven AQM based on Formal Control Theory

In this paper, to seamlessly integrate the event-driven nature of RED
and control theoretic approaches for congestion control (and avoidance), we
develop an event-driven feedback controller based on formal control theory

[19, 3]. The key idea of our approach is to design a feedback-based congestion
controller that is invoked upon the arrivals of a specified number of packets
rather than being invoked at every fixed sampling period. The advantages
of our event-driven approach for congestion control are as follows:

• The nature of congestion control is event-driven and initiated by packet
arrivals. For this reason, RED is designed to be event-driven. Our
approach is also event-driven. Further, it is based on a rigorous math-
ematical model and formal control theory [19, 3] unlike RED. Thus, we
can apply well established control theory [19, 3] to tune and mathemati-
cally analyze and support the stability of our feedback-based congestion
control scheme.

• If a large number of packets arrive in a short time interval, event-driven
controller autonomously executes more often. As a result, the latency
for congestion control reduces, enhancing the reactiveness to bursty
network loads. In contrast, a time-driven controller has to wait until
the next sampling period even in the presence of a dramatic increase
in packet arrivals during the current sampling period.

• If the packet arrival rate decreases, an event-driven controller automat-
ically adapts itself to execute less frequently. As a result, under light
loads, it consumes less computational resources than a time-driven con-
troller does.

To support event-driven congestion control, we convert the time domain
TCP and queue model [16, 18] to the corresponding spatial domain−event
domain−model. A summary of our key contributions follows:
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• We transform the time-domain nonlinear TCP and queue model [18]
to the corresponding spatial-domain model. For this transformation
and event-driven controller design, we adapt the event-driven control
theoretic techniques [19] developed for motor synchronization. The key
idea behind [19] is to measure the time between angular movements
around a motor’s axis to compute the speed and acceleration in an
event-driven fashion rather than calculating the speed and acceleration
using a fixed (periodic) sampling rate. In this paper, we adapt this
approach to measure the time taken for a specified number of packets to
arrive at the queue. Thus, our approach is not tied to a fixed sampling
rate but purely driven by events, i.e., packet arrivals.

• We linearize the spatial-domain nonlinear model and design an event-
driven controller based on the linearized model. The basic approach
is similar to [17] that linearize the time-driven model; however, we
linearize the event-driven model in the spatial domain unlike [17].

• We thoroughly evaluate the performance of our approach via an exten-
sive simulation study in OMNeT++ [20]. OMNeT++ is widely used for
network research, because it is relatively easy to use due to its modular,
component-based, and open-architecture. Further, it provides similar
capabilities to the other network simulators such as ns-2 or ns-3. We
compare it to five advanced approaches for AQM: (1) RED [2] with
the ’gentle’ parameter turned on, (2) the time-driven feedback-based
PI (Proportional Integral) congestion controller developed by Hollot et
al.[17], (3) Proportional Integral based series compensation, and Posi-
tion feedback compensation (PIP) Controller [12], (4) Adaptive Opti-
mized Proportional Controller (AOPC) [13] and (5) Fuzzy Logic Con-
troller (FLC) [14]. The simulation results show that our event-driven
controller effectively maintains the queue length around the specified
reference, while reducing queue length fluctuations compared to the
tested baseline approaches. At the same time, it achieves shorter E2E
(end-to-end) delays and noticeably smaller E2E delay fluctuations than
RED, PI and PIP controllers, while achieving almost the same E2E
delays and E2E delay fluctuations with AOPC and FLC controllers.
Further, it is invoked only 8 times per second in average. In contrast,
RED is activated 30 times/s in average while PI [17], PIP [12], AOPC
[13] and FLC [14] congestion controllers are activated 160 times/s.
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• Moreover, we have repeated the same set of experiments for a higher
bandwidth and arrival rate. More specifically, we increase the band-
width and arrival rate by an order of magnitude for experimental pur-
poses. Interestingly, the time-driven approaches for AQM, i.e., the PI
controller, PIP controller, FLC controller and AOPC, which show good
performance for a relatively low bandwidth and arrival rate in our simu-
lation study, show poor performance in this set of experiments, because
their activation frequency is fixed and do not increase/decrease based
on the traffic pattern. RED and our event-driven controller significantly
outperform the other approaches in terms of the queue length, E2E de-
lay, and packet drop rate. However, RED is executed more than 2000
times/s in an extreme case. In contrast, our event-driven controller is
activated no more than 200 times/s. Also, its average activation fre-
quency is 90 times/s. Our approach is executed less frequently, because
it effectively avoids building a large backlog, while the sources adjust
their TCP congestion windows accordingly.

The remainder of this paper is organized as follows. A problem formu-
lation is given in Section 2. Our event-driven approach for active queue
management is described in Section 3. The performance of our approach
and five baselines is compared in Section 4. Finally, Section 5 concludes the
paper and discusses future work.

2. Problem Formulation

This section describes the scope of this paper, while reviewing the main
objectives of AQM.

AQM aims to support congestion avoidance by controlling the queue
length to be shorter than the specified upper bound, even if the transport
layer protocols in the traffic sources do not support any congestion control.
In this way, AQM aims to reduce the number of packet drops when a net-
work traffic burst arrives. Although there is an upper bound on the queue
length, AQM is desired to allow queue length fluctuations to let the queue
absorb bursty traffic spikes and accommodate transient congestion. This can
be accomplished by either controlling the average queue length instead of the
transient queue length or by employing a low pass filter, such as the inte-
grator in a PID (proportional, integral, and differential) or PI controller [3],
on the control path. Thus, the queue length limit reflects the size of bursts
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needed to be absorbed rather than the steady state queue length desired to
be maintained. Queue length control affects the overall throughput and E2E
delay. Especially, there is a trade-off between throughput and E2E delay.
Enforcing a smaller upper bound on the queue length translates into lower
E2E delay, but this comes at the expense of lower throughput and vice versa.

In AQM, the gateway needs to randomly select a victim connection to
drop packets from. If the gateway drops packets from all connections at
the same time, this will result in global synchronization where all the flows
throttle back their transmission rates under congestion and potentially in-
crease the rates later in a synchronized manner. As a result, the network
performance may oscillate widely. Via random selection, AQM also aims to
avoid biases against bursty traffic that is observed, for example, in a Drop
Tail queue [2].

Moreover, AQM should be compatible with TCP. Generally, AQM noti-
fies the traffic source of a congestion condition implicitly (by dropping pack-
ets) or explicitly (by forwarding an explicit control notification to sources).
Therefore, AQM is appropriate to be used with TCP flows that can react to
congestion detection.

In addition, there are several features desired to be supported by AQM:

• An AQM algorithm is desired to react quickly to workload changes.
Ideally, an overshoot, i.e., the queue length longer than the desired
reference value, and settling time, i.e., the time taken to cancel an
overshoot (if any), should be minimal in the presence of dynamic load
changes.

• Even if the load changes abruptly, the algorithm is desired to control
the queue length to be stable and avoid large queue length oscillations.

• The implementation and tuning of the algorithm is desired to be easy.

• It is desirable for the algorithm to not need any further tuning upon
load changes.

• The algorithm itself should not consume excessive amounts of system
resources.

The bursty nature of network traffic and dynamic behavior of network
components make these performance criteria difficult to meet. RED controls
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the packet drop rate by monitoring the average queue length. However,
RED lacks a mathematical or control theoretic model. Thus, it shows weak
performance in the presence of highly dynamic network traffic [18]. Also,
RED has many parameters to tune, which makes it difficult to obtain best
performance. The time driven controllers such as ([17], [12], [13], [14]) showed
superior performance to RED; however, they cannot adapt their sampling
rate according to the network traffic. Thus, they must be designed in a
pessimistic way to support acceptable performance under heavy loads. As
a result, they have to sample the queue length and run the AQM algorithm
unnecessarily often under light loads as discussed before.

To address these problems, we develop an EDC (Event Driven Controller).
Different from most of existing approaches for AQM that is based on either
ad hoc event-driven feedback control [2, 4, 5, 6, 9] or time-driven control
theoretic techniques [17, 11, 12, 13, 14], our approach for congestion con-
trol leverages both the event-driven nature of the RED scheme and control
theoretic aspect of the feedback PI controller scheme. EDC has only two
parameters to tune for application dependent performance requirements: (1)
the desired queue length set-point and (2) event threshold that specifies the
number of packet arrivals that triggers an event. By applying control theo-
retic techniques [19, 3], we aim to tune EDC to support its stability. Also,
EDC aims to reduce the consumption of system resources for AQM via sys-
tematic event-driven control of the queue length.

3. Event-Driven Control for AQM

In this section, the architecture of our event-driven AQM scheme is de-
scribed. For event-driven AQM, we first transform the time-domain non-
linear TCP and queue model [18] that shows the relation between packet
arrivals and queue length variations [18] to the spatial-domain correspon-
dent. Also, we linearize the model around the operating point, at which
the spatial-domain derivatives of the queue length and TCP window size
are zero, in order to support the stability of our EDC. Using the linearized
model, an event-driven feedback controller for congestion control is designed
as discussed in the following subsections.

3.1. System Architecture

Figure 1 shows the system architecture of our closed loop control sys-
tem. Arriving packets are added to the queue or randomly dropped by the

9

https://www.researchgate.net/publication/222485181_Asynchronous_measurement_and_control_A_case_study_on_motor_synchronization?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/221244070_On_Designing_Improved_Controllers_for_AQM_Routers_Supporting_TCP_Flows?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/221244070_On_Designing_Improved_Controllers_for_AQM_Routers_Supporting_TCP_Flows?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/3893922_A_control_theoretic_analysis_of_RED?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/3893922_A_control_theoretic_analysis_of_RED?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/3893922_A_control_theoretic_analysis_of_RED?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/223899491_Design_of_a_fuzzy_controller_for_active_queue_management?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/223899491_Design_of_a_fuzzy_controller_for_active_queue_management?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/2367898_Adaptive_RED_An_Algorithm_for_Increasing_the_Robustness_of_RED's_Active_Queue_Management?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/222408107_A_robust_proportional_controller_for_AQM_based_on_optimized_second-order_system_model?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/222408107_A_robust_proportional_controller_for_AQM_based_on_optimized_second-order_system_model?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/238672911_Recommendation_on_using_the_gentle_variant_of_red?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/221164678_Design_of_a_robust_active_queue_management_algorithm_based_on_feedback_compensation?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/221164678_Design_of_a_robust_active_queue_management_algorithm_based_on_feedback_compensation?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/4051846_A_self-tuning_structure_for_adaptation_in_TCPAQM_networks?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/3416945_PD-RED_to_improve_the_performance_of_RED?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/242505628_Random_Early_Detection_Gateways_for_Congestion_AIvoidance?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3
https://www.researchgate.net/publication/245928345_Digital_Control_System_Analysis_and_Design?el=1_x_8&enrichId=rgreq-4da578cfc3339e9243f8f1357aecd0eb-XXX&enrichSource=Y292ZXJQYWdlOzIyMDIxMjgyMztBUzo5NzIyNzcyNDgyMDQ5M0AxNDAwMTkyMzA1MTc3


Packets
Arrived

Packets
Served

EDC

Queue

AC

Event
Threshold

Reference
Queue Length

Current
Queue Length

Control
Signal

Controller
Invocation SignalEvent

Check

Figure 1: System Architecture

Admission Controller (AC) according to the drop probability calculated by
our EDC. EDC is invoked if the number of arriving packets becomes equal
to (or exceeds) the specified event threshold. When invoked, EDC computes
the difference between the current queue length and specified reference queue
length (i.e., set-point) to compute the control signal, i.e., the drop rate ad-
justment, needed to avoid congestion. If many packets arrive in a short time
interval, EDC is invoked frequently and vice versa.

The selection of the event threshold is based on the trade-off between
control performance and resource usage: A smaller event threshold value
generally makes our EDC more reactive to dynamic loads and vice versa.
However, simply picking the smallest possible event threshold may not be
a solution, because too frequent EDC invocations may consume excessive
computational resources at the router. In our approach, the event threshold
is computed based on the network parameters usually available, such as the
link capacity, typical packet size, or the set-point queue length. For exam-
ple, let us assume that the link capacity is 10Mbps and the measured average
packet size is 1,000 bits. In this case, to invoke EDC for a number of new
packet arrivals estimated to consume 2% link utilization, the event threshold
is set to 200 packets. Alternatively, we can select the event threshold con-
sidering potential queue length variations. Since the event-driven controller
dynamically adapts to the arrival rate, the threshold value is not dependent
on the arrival rate, but it is determined based on the tolerable queue length
variation that can be specified by a network administrator. For example,
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when the set-point queue length is 200, the event-driven controller can be
activated upon 30 packet arrivals. In Section 4, we use the second approach
since selecting the event threshold based on the queue length variation is
independent of the network capacity or packet length.

From these examples, we observe that, to select the event threshold, we do
not need to assume heavy network loads that may happen only occasionally.
Selecting a smaller value as the event threshold or selecting a short sampling
period both cause higher consumption of system resources. However, after
a sampling period is selected for a high arrival rate that can be predicted,
for example, based on historic data arrival rates, the controller is executed
at every fixed sampling period, even in the presence of a large increase or
decrease of the arrival rate, which could be difficult to predict. This problem
is less severe in event-driven control, since the event-driven controller is au-
tomatically activated more/less often as the arrival rate increases/decreases.
Hence, selecting the event threshold is much less complex and less pessimistic
than choosing the sampling period for a time-driven controller.

3.2. TCP and Queue Mathematical Models

Let ẋ denote the time derivative of x. At time t, the following nonlinear
differential equations model the TCP and queue dynamics [18] in the time
domain:

Ẇ (t) =
1

R(t)
−

W (t) ·W (t−R(t))

2R(t−R(t))
· p(t−R(t))

q̇(t) =
W (t)

R(t)
·N(t)− C (1)

where W is the expected TCP window size, q is the expected queue length,
C is the link capacity (packets/s), N is the load factor expressed in terms of
the number of TCP sessions, Tp is the propagation delay, R is the average
round trip time = q

C
+ Tp (seconds) and p(∈ [0, 1]) is the packet mark/drop

probability.
In Eq. 1, the queue length q and the window size W are bounded positive

quantities; therefore, q ∈ [0, q̄] and W ∈ [0, W̄ ] where q̄ and W̄ denote the
maximum queue size and maximum window size, respectively.

3.3. Transformation from Time Domain to Spatial Domain

For event-driven AQM, we transform the window size and queue length
models in Eq. 1 to the spatial domain correspondents by applying the tech-
niques presented in [19].
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If θ(t) denotes the number of packets arrived at the queue at time t, the
packet arrival rate at time t is:

dθ

dt
=

N(t)

R(t)
·W (t) (2)

The transformation from the time domain (t) to the spatial domain (θ) can
be performed based on this relationship. The key idea is to consider θ no

longer as a function of time t, but to let time t be a function of packet arrivals

θ. The notation t(θ) then denotes the time at which θ packets arrived at the
queue. With this interpretation, W (θ), R(θ) and N(θ) denote the window
size, round trip time and number of TCP sessions at the time when θ packets
arrive at the queue. Based on this observation, we transform Eq. 2 to the
event-driven, spatial-domain as follows:

dt =
R(θ)

N(θ) ·W (θ)
· dθ (3)

Let W̃ (θ) = dW
dθ

and q̃(θ) = dq

dθ
. Since Ẇ (t) = dW (t)

dt
in the time-driven

model (Eq. 1), we can transform this model by substituting dt with Eq. 3
and setting the independent variable to θ:

f(θ) = W̃ (θ) =
R(θ)

N(θ) ·W (θ)
·

[

1

R(θ)
−

W 2(θ)

2R(θ)
· p(θ)

]

=
1

N(θ) ·W (θ)
−

W (θ)

2N(θ)
· p(θ) (4)

g(θ) = q̃(θ) =
R(θ)

N(θ) ·W (θ)
·

[

W (θ)

R(θ)
·N(θ)− C

]

= 1−
C ·R(θ)

N(θ) ·W (θ)
= 1−

C( q

C
+ Tp)

N(θ)W (θ)
(5)

Note that the round trip time delay in t−R(t)’s in Eq.1 is omitted while
the time domain model is transformed into its spatial domain correspondent
(Eq.4 and Eq.5), because the time between two consecutive events t(θ) −
t(θ−1) is at least an order of magnitude larger than R(t) due to our method
for selecting the event threshold discussed before. Also, note that the RTT
is not ignored in the linearized model shown in Eq. 4 and Eq. 5.
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After the transformation, we have obtained another set of nonlinear differ-
ential equations. In order to apply linear control theory [3] to these models,
we linearize them around an operating point next.

3.4. Linearizing the TCP and Queue Models

In this paper, (W (θ), q(θ)) in Eq. 4 and Eq. 5 is defined as the state of
event-driven AQM. Also, the spatial domain expression of the drop probabil-
ity p(θ) is the control input to the AC in Figure 1. Therefore, the operating
point (W0(θ), q0(θ), p0(θ)) is defined by W̃ (θ) = 0 and q̃(θ) = 0. From this
and Eq. 4 and Eq. 5, the following is derived:

W 2
0 p0 = 2 and W0 =

R0C

N
⇒ p0 =

2N2

(R0C)2
(6)

where R0 = q0
C
+ Tp. Assuming that N(t) ≡ N and R(t) ≡ R0, we linearize

the model around the operating point [21] as follows1:

δW̃ (θ) = j11 · δW (θ) + j12 · δq(θ) + j13 · δp(θ)

δq̃(θ) = j21 · δW (θ) + j22 · δq(θ) + j23 · δp(θ) (7)

where δX = X−X0 and jij’s are elements of Jacobian Matrix 2 of the system:

J =

[

j11 j12 j13
j21 j22 j23

]

=

[

∂f

∂W

∂f

∂q

∂f

∂p
∂g

∂W

∂g

∂q

∂g

∂p

]

(f0,g0)

which can be calculated by taking partial derivatives of the nonlinear model
around the operating point (f0, g0) and using relationships given in Eq. 6:

1Note that the equilibrium points, i.e., N,R0,W0, and p0, are not assumed to be
constant in our system model (Eq. 9). If the system diverges from the equilibrium points,
the control performance may degrade. However, the system will stay stable as analyzed
in the last paragraph of Section 3.4

2The third row of Jacobian Matrix, which is the feedback controller model, is omitted
since it is not needed to linearize the nonlinear open loop model.
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j11 =
∂f

∂W
=

−1

NW 2
0

−
p0

2N
=

−p0

N
=

−2N

(R0C)2

j13 =
∂f

∂p
=

−W0

2N
=

−R0C

2N2

j21 =
∂g

∂W
=

−CR0

N
·
−1

W 2
0

=
N

R0C

j22 =
∂g

∂q
=

−1

NW0

=
−1

R0C

j12 = j23 = 0 (8)

Finally, we derive our linearized spatial domain model as follows:

δW̃ (θ) = −
2N

(R0C)2
· δW (θ)−

R0C

2N2
· δp(θ)

δq̃(θ) =
N

R0C
· δW (θ)−

1

R0C
· δq(θ) (9)

The eigenvalues of the linearized TCP and queue dynamics (9) are− 2N
(R0C)2

and − 1
R0C

, respectively. Since all the network parameters are positive quanti-
ties, these negative eigenvalues indicate that the equilibrium state of the non-
linear dynamics is locally asymptotically stable. A steady state equilibrium is
locally asymptotically stable if there exists an ǫ neighborhood of the steady
state equilibrium such that from an arbitrary initial condition within this
neighborhood, the system converges to this steady state equilibrium. For-
mally, a steady state equilibrium, ȳ, of the difference equation yθ+1 = ayθ+ b

is locally asymptotically stable, if lim
θ→∞

yθ = ȳ ∀ initial condition y0 such

that |y0 − ȳ| < ǫ for some small ǫ > 0 [22].

3.5. Event-Driven Congestion Controller Design

For event-driven congestion control, we implement a PI (Proportional and
Integral) controller to manage the drop probability for congestion control. A
PI controller is a variation of a popular PID (Proportional, Integral and Dif-
ferential) controller. A proportional controller computes the control signal
in proportion to the error, i.e., the difference between the measured perfor-
mance of the controlled system and the specified reference performance. A

14



proportional controller by itself cannot support the stability of the feedback
control system [3]. An integrator is a low pass filter and it can support the
stability of the closed-loop system. In this paper, an integrator is employed to
allow traffic bursts as discussed before, while supporting the stability of the
closed-loop congestion control system. We do not use a differential controller,
because it may show unreliable performance when workloads are highly dy-
namic. The time-driven congestion controller developed by Hollot et al. [17]
is also implemented using a PI controller.

We formulate the PI Controller as a transfer function, which characterize
the behavior of a closed-loop system [3] in the discrete time z domain rather
than in the continuous time s domain, because most of computational sys-
tems, such as routers, usually work in the discrete time domain. Further, the
notation z̃ is used instead of z in the following PI transfer function to em-
phasize that the discretization has been made in the spatial domain, instead
of the time domain:

C(z) =
α(z̃ − β)

z̃ − 1
(10)

where α = KP (KI + 1), β = 1
KI+1

. KP and KI are the proportional and
integral control gains. To support the stability of the closed-loop system for
AQM, we need to tune the control gains, KP and KI , so that the closed-loop
poles are located inside the unit circle [3]. There are several approaches to
tune control gains to achieve the objective. In this paper, we apply the Root
Locus method [3], in which one can graphically tune feedback control gains to
support the stability by locating the closed-loop poles inside the unit circle.
In this way, we ensure that our EDC closely supports the set-point queue
length, while avoiding excessive queue length oscillations, i.e., sensitivities of
our EDC to bursty packet arrivals, as experimentally verified in Section 4.
For more details about controller tuning and the Root Locus method, readers
are referred to [3].

4. Performance Evaluation

Performing an extensive simulation study similar to [17, 12, 13, 14], we
compare the performance of EDC to five existing approaches used as base-
lines in this paper: (1) RED [2] with the ’gentle’ parameter turned on, (2)
PI [17], (3) PIP [12], (4) AOPC [13] and (5) FLC [14] congestion controllers.
For performance evaluation, we simulate 10 clients and a server connected
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Figure 2: Simulation Setup

by a gateway in INET framework [23] which is an open-source communica-
tion networks simulation package for the OMNeT++ simulation environment
[20]. The accuracy of the INET simulation package is verified in [24] by using
a testbed that consists of INET nodes connected to real nodes through the
Ethernet. OMNeT++ is widely used for general network research due to its
accuracy and modular, component-based design [25]. As shown in Figure 2,
each client is connected to the gateway with a 10 Mbps link. The 1.5Mbps
link between the gateway and the server constitutes a bottleneck. Our simu-
lation starts with 60 ftp and 180 http applications and continues until 100s.
At 100s, 60 more ftp applications are activated in order to observe how the
tested approaches for AQM react to the abrupt load increase. The simulation
ends at 200s. In addition, we perform another set of experiments to show the
performance of the tested approaches for relatively high bandwidth and high
arrival rate. Specifically, we increase the bandwidth of the links between
the servers and gateway to 100 Mbps and bandwidth of the link between
gateway and client to 15 Mbps. We also increased the amount of data to
be transferred in each ftp connection by the factor of 10, while keeping the
other parameters the same. For the clarity of presentation, in the rest of the
paper, we call the first set and second set of experiments low bandwidth low
arrival rate (LL) and high bandwidth high arrival rate (HH) experiments,
respectively.

4.1. Credibility of the Simulation Study

Credibility of a simulation study is an issue. Pawlowski et al [26] have
made three invaluable recommendations for a credible simulation study:

• Use a valid simulation model.
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• Use appropriate pseudo-random number generators (PRNGs).

• Derive the statistical confidence of simulation results.

Our simulation model described before is designed after the models used
in the previous congestion control work [17, 12, 13, 14]. We have designed
our event-driven controller by using well established formal control theoretic
tools [19, 3]. For the tested baseline approaches, we set the congestion con-
trol parameters by following the recommendations provided in the original
papers for each controller, while tuning the control gains of the PI and PIP
controllers to obtain the best possible performance and support their stability
by applying formal control theoretic techniques [3]. The control parameters
used for our simulation study are given in Section 4.2.

Secondly, we have used the built-in PRNG of OMNet++. OMNeT++
supports modern PRNGs such as Mersenne Twister used in our simulation
study. Mersenne Twister provides a super astronomical cycle of 219937−1 and
good virtual randomness in up to 623 dimensions ([26]). Further, OMNet++
supports automatic pseudo random seeding. Specifically, OMNeT++ selects
a seed number from a table of 256 seeds, spaced about 8 million values apart.
Thus, our simulation runs use different seed numbers largely spaced apart.

Finally, we repeated each simulation 10 times and took their average as
simulation results. We computed 90% confidence interval for each average
performance data, i.e., the average queue length and delay. A confidence
interval is computed for each data point of the average curve in Figures 3
− 10. However, we omit the confidence interval bars, because their values
are very small ranging between 0.5% − 2.7% and unnecessarily clutter the
performance result graphs.

4.2. Parameter Settings

The parameters of the baselines and our event driven controller are set
as follows:

• Gentle RED:

– Minimum queue length threshold: 150 packets

– Maximum queue length threshold: 300 packets

– Averaging weight (wq in [2]): 0.00133

– Maximum drop probability: 0.1
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• PI Controller

– Reference (set-point) queue length: 200 packets

– Sampling frequency: 160 Hz (as recommended in [17])

– KP = 0.0015 and KI = 0.0003 (tuned via the Root Locus design
method [3])

• PIP

– Reference queue length: 200 packets

– Sampling frequency: 160 Hz

– Kh = 0.0021, τ = 0.47 (tuned via the Root Locus design method
[3])

• AOPC

– Reference queue length: 200 packets

– Sampling frequency: 160 Hz

• FLC

– Reference queue length: 200 packets

– Sampling frequency: 160 Hz

– Ke = 0.05 and Kδe = 0.01 (tuned via trial and error)

• EDC:

– Reference queue length: 200 packets

– Event threshold: 30 packets

– KP = 0.03 and KI = 0.01 (tuned via the Root Locus design
method [3])

As discussed in Section 3.1 the selection of the event threshold is based
on the trade-off between control performance and resource usage. Since the
event-driven controller dynamically adapts to the arrival rate, the threshold
value is not dependent on the arrival rate, but it is determined based on
the tolerable queue length variation as discussed before. In this paper, the
maximum buffer size is 800 packets for all the tested approaches. We picked

18



a threshold value of 30 packets that can support reasonable performance in
terms of queue length variation, i.e., 3.75% of the maximum buffer size or
15% of the reference queue length for EDC.

4.3. Performance Evaluation Results

For performance analysis, we show (1) the average and transient queue
length, (2) E2E delay, (3) number of packet drops and (4) controller activa-
tion frequencies. Since the measured link utilization is almost 100% for all
the tested approaches, we do not plot it.

Figure 3 shows the transient and average queue lengths of all the baselines
and our controller, EDC. From the figure, we observe that RED keeps the av-
erage queue length between the specified minimum and maximum thresholds,
i.e. 150 and 300 packets, after canceling big transient overshoots (in terms of
the queue length) at the beginning. However, RED’s reaction to the abrupt
load increase at 100s is much slower than the other controllers’ reactions. All
the other approaches successfully maintain the average queue length near the
desired set-point of 200 packets, converging to the set-point. When the load
is increased suddenly at 100s, every approach shows a queue length over-
shoot. PI, PIP, AOPC and FLC show relatively large transient fluctuations
of the queue length around the set-point. This is mainly because of their
fixed activation rate, which may not be high enough to effectively handle
an abrupt increase of the packet arrival rate. Generally, a short sampling
period (i.e., a high sampling rate) usually improves the performance of the
feedback controller, but it increases the control overhead [3]. Furthermore,
simply using a short sampling period for feedback control may lead to the
design of an overly reactive controller, which may show unstable behaviors.
In general, selecting an optimal sampling period is a hard problem [3]. The
problem becomes even harder for a network congestion control system that
has to deal with stochastic workloads unlike physical systems, e.g., a cruise
control system, which can model the controlled system, e.g., an automobile,
using physics laws. In contrast, EDC does not use a fixed activation rate
for congestion control. Instead, it is activated in an event-driven manner;
therefore, its activation rate is automatically adapted according to poten-
tial variations in the packet arrival rate. As a result, EDC in Figure 3 can
considerably reduce the queue length fluctuations compared to the baseline
approaches.

Figure 4 shows the transient and average queue lengths of all the baselines
and our controller, EDC, under the high bandwidth and the high arrival rate.
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As shown in the figure, RED keeps the queue length between 150 and 300
packets. EDC shows the best performance; that is, it closely supports the
set-point queue length. In comparison, AOPC, PI, PIP and FLC that are
time-driven cannot adapt to the new arrival rate and fail to support the set-
point queue length. Since the time-driven controllers, i.e., AOPC, PI, PIP
and FLC, are tuned and their sampling rate is selected according to the low
traffic rate, these controllers cannot react to the high packet rate which is
ten times higher than the initial rate. As a result, they cannot avoid queue
length saturation at the maximum buffer size, which is 800 packets for all the
tested approaches. To support congestion control for a significantly higher
traffic rate than the rate used for tuning these controllers, their sampling
rate needs to be higher and their control gains, such as KP and KI , need to
be retuned. Although it is possible to retune control gains and select a new
sampling period considering new network conditions, the queue length and
delay may largely fluctuate while the control gains and sampling period are
adjusted. After the adjustment is finished, the traffic condition may change
again. In contrast, EDC does not need to re-tune its parameters, since its
sampling rate automatically adapts to higher traffic rate.

Figure 5 shows the average and transient E2E delays for all the baselines
and EDC. In Figure 5, the average E2E delay of RED is approximately
0.75s, whereas all the other baselines and EDC maintain the average E2E
delay around 0.5s. Further, from the transient E2E delay curves in Figure 5,
we observe that EDC achieves smaller E2E delay fluctuations than RED,
PI and PIP controllers, while achieving almost equal E2E delay fluctuations
as AOPC and FLC. (Note that all the E2E delays plotted in Figure 5 are
larger than zero. Relatively small E2E delays shown in the figure are tens of
milliseconds.)

Figure 6 shows the average and transient E2E delays for all the baselines
and EDC under the high bandwidth and the high arrival rate. In comparison
to the Figure5, RED and EDC reduces the E2E delay by effectively taking
advantage of the network bandwidth increased by a factor of 10. On the
other hand, AOPC, PI, PIP and FLC cause an increase in the E2E delay,
since they fail to manage the queue length as previously shown in Figure 4.

Figure 7 shows the average and transient packet drop rates measured in
terms of the number of packet drops/s for all the baselines and EDC. In aver-
age, RED drops approximately 30 packets/s, whereas all the other baselines
and EDC drop approximately 50 packets/s. RED drops a smaller number of
packets, since its queue length is generally longer than the reference queue
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length of other baselines and EDC as shown in Figure 3.
Figure 8 shows the average and transient packet drop rates measured in

terms of the number of packet drops per second for all the baselines and
EDC under the high bandwidth and the high arrival rate. In comparison to
Figure 7, the drop rate increases for all the tested approaches, since more
packets are needed to be dropped by the controllers in order to keep the
queue length near the set-point. However, AOPC, PI, PIP and FLC cause
considerably more drops than RED and EDC do, since they cannot effectively
manage the queue length as discussed before.

Finally, we compare the performance of the tested AQM schemes in terms
of the activation frequency, i.e., the number of control algorithm executions
per second. Figure 9 shows the activation frequencies of RED and EDC. PI,
PIP, AOPC and FLC’s activation frequency is fixed at 160Hz following [17].
From the figure, we observe that EDC has the smallest transient activation
frequencies among the tested approaches. In average, EDC is activated only
approximately 8 times per second and RED is activated approximately 30
times/s. As shown in Figure 9, RED and EDC increase their activation
frequencies upon the abrupt load increase at 100s and then decrease the
frequencies as the load becomes stable after 100s.

Figure 10 shows the activation frequencies of RED and EDC in the HH
experiments. PI, PIP, AOPC and FLC’s activation frequency is 160 Hz.
Compared to Figure 9, the activation frequency of RED and EDC has been
increased to adapt to the new arrival rate. Specifically, the average activation
frequency of RED has increased from 30 times/s to 350 times/s, exceeding
the activation frequency of PI, PIP, AOPC and FLC. In contrast, EDC’s av-
erage activation frequency has only increased to 90 times/s. The reasonable
increase in the activation frequency of RED and EDC is caused by the con-
gestion control mechanism supported by TCP itself, which adapts the trans-
mission rate according to the packet drop rate. If the gateway drops packets,
TCP reduces the window size; therefore, the packet arrival rate at the gate-
way reduces. Additionally, although the average activation frequency of EDC
is smaller than the activation frequency of the time driven approaches, EDC
based on formal control theoretic techniques effectively adapts its activation
frequency according to the arrival rate. Sometimes the transient activation
frequency of EDC is higher than that of the time-driven approaches. At
other times, it is activated less frequently than the time-driven approaches
based on the need for activation. As a result, it can effectively manage the
queue length, while keeping its average activation frequency and resource
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usage relatively low compared to the time-driven approaches and RED.

5. Conclusions and Future Work

Active Queue Management (AQM) is investigated to avoid incipient con-
gestion in gateways to complement congestion control run by the transport
layer protocol such as the TCP. To seamlessly integrate the advantages of
both event-driven and control-theoretic time-driven approaches, we present
an event-driven feedback control approach for AQM based on formal control
theory. As our approach is based on a mathematical model, its performance
is more predictable than ad hoc event-driven approaches are. Also, it is
more reactive to dynamic load changes than time-driven approaches due to
its even-driven nature. We analyze the stability of the open-loop model and
tune the event-driven controller to support the stability of the closed loop sys-
tem by applying formal control theoretic techniques. Our simulation results
show that our event-driven controller effectively maintains the queue length
around the specified set-point. It generally achieves shorter E2E (end-to-end)
delays and smaller E2E delay fluctuations than the baselines. Further, our
AQM algorithm is invoked much less frequently than the tested baselines. In
the future, we will continue to investigate more cost-effective approaches for
active queue management.
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Figure 3: Queue Lengths for LL (Low bandwidth Low arrival rate) Experiments
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Figure 4: Queue Lengths for HH (High bandwidth High arrival rate) Experiments
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Figure 5: E2E Delays for LL Experiments
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Figure 6: E2E Delays for HH Experiments
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Figure 7: Packet Drop Rates for LL Experiments
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Figure 8: Packet Drop Rates for HH Experiments
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Figure 9: Activation Frequencies for LL Experiments
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Figure 10: Activation Frequencies for HH Experiments
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