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Robust Fuzzy CPU Utilization Control for Dynamic Workloads

Can Basaran, Mehmet H. Suzer, Kyoung-Don Kang∗

Department of Computer Science, State University of New York at Binghamton

Xue Liu

School of Computer Science, McGill University

Abstract

In a number of real-time applications such as target tracking, precise workloads are unknown a priori but
may dynamically vary, for example, based on the changing number of targets to track. It is important to
manage the CPU utilization, via feedback control, to avoid severe overload or underutilization even in
the presence of dynamic workloads. However, it is challengeto model a real-time system for feedback
control, as computer systems cannot be modeled via physics laws. In this paper, we present a novel
closed-loop approach for utilization control based on formal fuzzy logic control theory [1], which is
very effective to support the desired performance in a nonlinear dynamic system without requiring a
system model. We mathematically prove the stability of the fuzzy closed-loop system. Further, in a
real-time kernel, we implement and evaluate our fuzzy logicutilization controller, the PI utilization
controller [2], and the model predictive utilization controller [3] for an extensive set of workloads.
Our approach supports the specified average utilization set-point, while showing the best transient
performance in terms of utilization control among the tested approaches.

1. Introduction

Real-time systems are deployed in mission critical applications such as target tracking, traffic con-
trol, and electric grid management where the workload may dynamically vary [4, 5]. For example,
the execution times of real-time tasks for target tracking or traffic control may vary significantly when
the number of targets or traffic density dynamically changes. In these systems, traditional real-time
scheduling techniques [6] requiringprecise a prioriknowledge of the workload are not directly appli-
cable to support timing constraints. Thus, it is critical tocontinuously measure and control the utiliza-
tion in a feedback loop to avoid severe underutilization or overload in real-time systems operating in
dynamic environments.

Linear PID (proportional, integral, and differential) control techniques [7] have been applied to man-
age real-time performance in dynamic environments [2, 8]. However, PID controllers and their variants,

∗Corresponding Author
Email addresses:{cbasaran,msuzer,kang}@cs.binghamton.edu (Can Basaran, Mehmet H. Suzer, Kyoung-Don

Kang),xueliu@cs.mcgill.ca (Xue Liu)

Preprint submitted to Journal of Systems and Software October 18, 2009

https://www.researchgate.net/publication/220339073_Real-time_systems?el=1_x_8&enrichId=rgreq-7dabe8e723299ad8ef04e3dc7227ae2d-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM3NzkxMTtBUzoxMDQzMTE4NTgxMzkxNDNAMTQwMTg4MTI5MzYxMg==
https://www.researchgate.net/publication/4121559_A_distributed_real-time_embedded_application_for_surveillance_detection_and_tracking_of_time_critical_targets?el=1_x_8&enrichId=rgreq-7dabe8e723299ad8ef04e3dc7227ae2d-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM3NzkxMTtBUzoxMDQzMTE4NTgxMzkxNDNAMTQwMTg4MTI5MzYxMg==
https://www.researchgate.net/publication/220413978_Feedback_Control_Real-Time_Scheduling_Framework_Modeling_and_Algorithms?el=1_x_8&enrichId=rgreq-7dabe8e723299ad8ef04e3dc7227ae2d-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM3NzkxMTtBUzoxMDQzMTE4NTgxMzkxNDNAMTQwMTg4MTI5MzYxMg==
https://www.researchgate.net/publication/220414154_Experimental_evaluation_of_linear_time-invariant_models_for_feedback_performance_control_in_real-time_systems?el=1_x_8&enrichId=rgreq-7dabe8e723299ad8ef04e3dc7227ae2d-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM3NzkxMTtBUzoxMDQzMTE4NTgxMzkxNDNAMTQwMTg4MTI5MzYxMg==
https://www.researchgate.net/publication/267403352_Sandia_SCADA_Program_High-Security_SCADA_LDRD_Final_Report?el=1_x_8&enrichId=rgreq-7dabe8e723299ad8ef04e3dc7227ae2d-XXX&enrichSource=Y292ZXJQYWdlOzIyMDM3NzkxMTtBUzoxMDQzMTE4NTgxMzkxNDNAMTQwMTg4MTI5MzYxMg==


e.g., P, PI, or PD controllers, usually approximate the system dynamics in a piecewise linear fashion
[2, 9]. PID controllers are guaranteed to support the set-point only if system dynamics do not devi-
ate from a specific operating range derived offline. If the workload varies dynamically exceeding the
operating range, PID controllers and their variants, may largely fail to support the set-point [9].

Model predictive control theory [10] is applied to manage the utilization in dynamic environments
by continuously modeling the system behavior online [3, 11]. However, approximate models are often
used to reduce the complexity of online predictive modelingof the controlled real-time system. For
example, the authors of [3, 11] assume that the actual execution times of real-time tasks are equal to
their estimated execution times to decrease the complexityof system modeling. Also, the predictive
system model derived online may have non-trivial errors when workloads change fast [12].

In this paper, we apply formalfuzzy logic control theory[1] to adapt workloads, if necessary, to
make the utilization converge to the specified set-point even given dynamic workloads. Unlike PID and
model predictive control techniques, fuzzy control is not tied to a mathematical model of the controlled
system or an operating range. Because of the model-free nature of a fuzzy logic controller, there is less
risk of introducing design errors due to, for example, statistical inaccuracies existing in a black-box
plant model [7, 10].

Rather than relying on an approximate system model, we develop novel fuzzy closed-loop system
to control the utilization based on the logical understanding of the relation between the workload and
utilization changes. Intuitively, it is clear that the utilization increases as the load increases before it
saturates at 1 and vice versa. After the utilization saturates at 1, any further load increase does not
affect the utilization. In this paper, we develop a fuzzy logic utilization controller based on the logical
understanding of the nonlinear relation between utilization and load changes. We prove the stability of
our fuzzy logic controller via the Lyapunov direct method [1, 12]. By leveraging the stability analysis
result, we also tune the fuzzy logic controller to avoid repetitive tuning and testing.

For fair and realistic performance evaluation, we extend the Real-Time Application Interface (RTAI)
for Linux kernel [13] to implement our fuzzy logic utilization controller (FLC), the PI utilization con-
troller (PIC) designed via an offline piecewise linear approximation of system dynamics [2], and the
advanced model predictive utilization controller (MPC) [3]. By performing extensive experiments, we
thoroughly compare their performance with each other. Among the tested approaches, the FLC shows
the smallest deviation from and the fastest convergence to the specified utilization set-point when the
system is in a transient status. Further, it only consumes 0.53% CPU utilization and a small amount of
memory to store fuzzy rules and a few control variables.

Despite the effectiveness of fuzzy logic control theory, little prior work has been done to apply it
to manage the performance of real-time systems [14, 15]. A summary of the key contributions of this
paper follows:

• This paper presents a new closed-loop approach to supporting the specified set-point utilization
even in the presence of dynamic workloads. Especially, we directly manage the nonlinear relation
between the load and utilization via formal fuzzy logic control theory that is very effective to
support the desired performance in nonlinear, dynamic systems [1].

• Unlike the most existing work on fuzzy control of real-time performance [14, 15], we do formal
stability analysis to prove that the utilization convergesto the specified set-point in our fuzzy
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closed-loop system.

• Different from [2, 3, 11, 14] based on simulations, we compare the performance of our approach
to PIC and MPC in a real-time kernel. Although Wang et al [16, 17] have implemented and eval-
uated their approaches based on model predictive control theory [10] for utilization control in a
real-time middleware, we are not aware of any prior work thatthoroughly compares the perfor-
mance of fuzzy logic, model predictive, and PI control approaches for performance management
in a real-time kernel.

The remainder of this paper is organized as follows. The problem formulation of fuzzy logic control
is given in Section 2. The design of our fuzzy closed-loop system is described in Section 3. In Section 4,
the stability of our fuzzy logic controller is proved. Performance evaluation results are discussed in
Section 5. Our work is compared to the current state of art in Section 6. Finally, we conclude the paper
and discuss future work in Section 7.

2. Problem Formulation

In this section, the key objective of our fuzzy closed-loop approach, real-time task model, and QoS
adaptation approach taken in this paper are described.

2.1. Objective and Real-Time Task Model

• Goal: In this paper, we aim to ensure that the utilization converges to the specified set-point
even in the presence of dynamic workloads. In this way, the real-time system controlled by our
fuzzy closed-loop scheme is desired to avoid overload or underutilization as much as possible.

• Average and Transient Performance: A real-time system operating in a dynamic environment
may suffer transient overload or underutilization. Therefore, it is necessary to monitor and control
not only the long-term average utilization but also the transient utilization in a closed-loop.

• Task Model: In this paper, we assume that there areN periodic real-time tasks in the system.
Taskτi (1≤ i ≤ N) is described by (Ci, Ti , Ti,min, Ti,max) whereCi is theestimatedexecution time
andTi is the period. Thus,τi ’s estimated utilizationUi = Ci/Ti . In this paper, we assume that
τi ’s relative deadlineDi = Ti. A job τi j is the jth instance of the periodic taskτi . We assume that
every task starts at time 0. Therefore,τi j ’s absolute deadlineDi j = jTi where j ≥ 1.

In our approach,τi ’s periodTi can be adapted at run-time, if necessary, to support the utilization
set-point within the specified lower and upper bounds, similar to [18]. Hence,Ti always meets
the following condition:

Ti,min ≤ Ti ≤ Ti,max (1)

where the minimum period,Ti,min, and maximum period,Ti,max, are determined by the application
of interest. For example,Ti,min andTi,maxmay determine the highest and lowest QoS provided by
τi for target tracking or traffic monitoring, respectively. Also, based on the relative importance of
tasks, different tasks can be assigned different minimum and maximum periods, similar to [18].
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• Workload Estimation: In this paper, we assume that only the estimated task execution times are
known but the accurate execution times are unknown, becauseit is very difficult, if at all possible,
to know precise workloadsa priory in real-time systems operating in dynamic environments as
discussed before. Therefore, we can only compute the estimated loadL = ∑N

i=1Ui.

• Scheduling: In this paper, real-time tasks are scheduled in an earliest deadline first (EDF) man-
ner [6]. As the schedulable utilization bound of EDF is 1, a set of real-time tasks are admitted to
the system, ifL ≤Us ≤ 1 whereUs is the utilization set-point. As tasks are admitted and sched-
uled based on the estimated load, the system can be overloaded (or underutilized), if the execution
times are underestimated (or overestimated). Thus, a system administrator is recommended to
setUs < 1 to leave headroom to meet as many deadlines as possible evenin the presence of dy-
namic workloads unknown a priori. Note that our approach is not tied to EDF, but it is generally
applicable to a class of real-time scheduling algorithms designed to meet deadlines by control-
ling the CPU utilization to be below the schedulable utilization bound. Thus, another real-time
scheduling algorithm such as rate monotonic [6] can be used instead.

2.2. High-Level System Architecture

EDF Scheduler

Fuzzy Logic Controller
∆w(k)

Q
oS M

anager

A
dm

ission C
ontroller

RT Task Pool

Task Requests

∆w(k)

u(k)
System Monitor

Adjusted Periods

Admitted Task

Figure 1: System Architecture

The overall structure of our closed-loop real-time system is shown in Figure 1:

• Upon the arrival of a real-time taskτi with theestimated utilization Ui, the admission controller
admitsτi if Ui + L ≤ Us. Otherwise, it rejectsτi and returns the system busy message to the
client that submitted the task. To reduce the overhead for admission control, our admission test
is performed on the task basis rather than considering individual task instances. Once a task is
admitted, its periodic instances (i.e., jobs) are executed, even though the task execution period
can be adapted, if necessary, to supportUs even given dynamic workloads.

• At the kth sampling point, the system monitor measures the current utilization u(k) and provides
it to the fuzzy closed-loop controller that computes the required workload adjustment∆w(k) to
supportUs.
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• According to∆w(k), the QoS manager adjusts the periods of all the real-time tasks in the system
within their specified minimum and maximum period bounds, ifnecessary, to supportUs. If
∆w(k) < 0 (or∆w(k) > 0), the periods of all the tasks in the system are increased (or decreased) in
proportion to|∆w(k)| within their bounds specified by the application administrator. In this way,
we aim to avoid an unfair case in which one task’s period is increased (or decreased) substantially
within its minimum and maximum bounds, while others are not.At the same time, our approach
ensures that an important task with a small maximum period receives a higher QoS than the other
tasks with the large maximum periods.

• The QoS manager informs the application and scheduler of thepotential period adaptation, if
any. Thus, the application is aware of potential QoS adaptation. At the same time, the scheduler
can schedule the tasks using the updated periods.

2.3. Overview of QoS Adaptation in the Fuzzy Closed-Loop System
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Figure 2: Fuzzy Logic Control System

Figure 2 shows the structure of the fuzzy closed-loop systemdesigned in this paper. Let SP stand for
the sampling period for control. We use the same SP for the PIC,MPC and FLC for fair performance
comparisons in Section 5. The utilizationu(k) is measured at thekth sampling point, i.e., timekSP, for
the jobs executed in thekth sampling period, i.e., the time interval[(k−1)SP,kSP).

Given the current utilizationu(k), the fuzzy logic controller computes the required workloadadjust-
ment to support the utilization set-pointUs such as 0.7. The system is considered to be overloaded, if
u(k) exceeds the set-point and vice versa. The fuzzy control signal becomes negative (positive) when
the system is overloaded (underutilized). Accordingly, the QoS manager in the real-time system deter-
mines how much to increase the task periods under overload and vice versa within certain bounds. A
more detailed description of the procedure follows.

In the fuzzy logic closed loop system, the error,e(k) in Figure 2, is defined as follows:

e(k) = Us−u(k) (2)

whereUs is the utilization set-point. Also, we monitor the change inerror:

∆e(k) = e(k)−e(k−1) (3)

Based on the measured error and change in error, we directly manage the utilization rather than
relying on a black-box model that may involve non-trivial statistical errors, if the load changes fast
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[7, 10]. Based one(k) and∆e(k), the FLC in Figure 2 computes the required workload adjustment
∆w(k) for the next sampling period. The fuzzification interface convertse(k) and∆e(k) to linguistic
values such as negative small (NS) and positive small (PS). The inference mechanism looks up the
knowledge base that has IF-THEN rules to find the corresponding control signal. For example, an
IF-THEN rule for utilization control may state that if erroris NS and change in error is PS, then the
control signal is NS. This rule dictates the QoS manager to reduce the load by a small amount. The
defuzzification1 interface converts the linguistic control signal to a crispcontrol signal∆w(k) expressed
as a real number such as -0.25. A detailed discussion of fuzzycontrol is given in Section 3.

Given the control signal∆w(k), the QoS manager computes the period adaptation factorFe(k+ 1)
for the next sampling period:

Fe(k+1) = Fe(k) · (1−K∆w∆w(k)) (4)

Note that the control signal in Eq 4, i.e.∆w(k), is derived based on the potentially nonlinear rela-
tionship between the load and utilization as described before. K∆w in Eq 4 is the control gain that needs
to be tuned to support the stability of the closed-loop system. (The stability of our closed-loop system
is analyzed in Section 4.)

As the control signal∆w(k) is inverted in Eq 4,Fe(k+1) > Fe(k) and the periods of real-time tasks
will be increased to reduce the utilization if∆w(k) < 0 due to overload conditions and vice versa. If
the system is overloaded at thekth sampling point, the period ofτi (1≤ i ≤ N−1) is increased for the
next sampling period; that is,Ti(k+1) > Ti(k). Thus, the estimated loadL is decreased by Ci

Ti(k+1)−Ti(k)
.

Assuming the tasks are sorted in descending order of the importance, QoS adaptation is applied toτi+1

and the next task(s) until the sum of the estimated load adaptation becomes equal toK∆w∆w(k) or no
task period can be increased any further. Similarly, task periods are decreased according to the control
signal, if the system is underutilized.

Using the adaptation factor, the QoS manager in the real-time system computes:

T̂i(k+1) = Ti(k) ·Fe(k+1) (5)

for an arbitrary taskτi in the real-time system and determinesτi ’s period for the(k+ 1)th sampling
period,Ti(k+1), as follows:

Ti(k+1) =






T̂i(k+1) if Ti,min ≤ T̂i(k+1) ≤ Ti,max

Ti,min if T̂i(k+1) < Ti,min

Ti,max if T̂i(k+1) > Ti,max

(6)

Given∆w(k), the QoS manager in Figure 1 increase or decrease the period of every task in the system
according to Eq 5 and Eq 6, if necessary, to support the utilization set-point via QoS adaptation that
is fair to every task as discussed in Section 2.2. Further, the QoS manager informs the scheduler and
application of the new periods (as described in Section 2.2). Hence, the required workload to support

1Fuzzification and defuzzification are standard terms in fuzzy control theory [1].
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utilization set-pointUs for the next period is calculated as:

w(k+1) = w(k)+K∆w∆w(k) (7)

From Eq 1 and Eq 6, we observe that it may not always be possibleto adapt the task period as much as
indicated byK∆w∆w(k). This is especially a problem when the system is currently overloaded and no
task period can be extended anymore. In this case, newly incoming tasks, if any, are rejected. Also, the
least important tasks in the system are temporarily suspended to fully enforce the control signal. In the
(k+1)th sampling period, the admission controller in Figure 1 will accept incoming tasks, if the sum
of the estimated utilization values of the tasks arriving atand already in the system does not exceedUs

as discussed before.
In this paper, a certain load that lets the system to convergeto the set-point is called the convergent

loadW. The difference betweenW and the current workload is formulated as:

w̃(k) = W−w(k) (8)

In reality,W is unknown and it may vary in time depending on execution timeestimation errors. Thus,
the purpose of fuzzy control is to adapt the workload based one(k) and∆e(k) to supportUs by mini-
mizing |w̃(k)|, i.e., the absolute value of ˜w(k).

3. Fuzzy Logic Control

In this section, the key components of the FLC and control signal computation process are described.
Further, a detailed discussion of our rule-base design is given.

3.1. Fuzzy Logic Control Components for Control Signal Derivation

In this subsection, we describe standard fuzzy control terminologies [1] and describe how to derive
the control signal.

0

NL NM ZNS PS PM PL

NL: Negative Large, NM: Negative Medium, NS: Negative Small, 
Z: Zero, PS: Positive Small, PM: Positive Medium, PL: Positive Large

−0.75 −0.5 −0.25 0.25 0.5 0.75−1 1

1

Figure 3: Input/Output Membership Functions

The universe of discourse is the domain of an input (output) to (from) the FLC [1]. Figure 3 shows
the universe of discourse for the utilization error, changein error, and control output. In this paper,
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∆e(k)
NL NM NS ZE PS PM PL

e(k)

NL NL NL NL NL NM NS ZE
NM NL NL NL NM NS ZE PS
NS NL NL NM NS ZE PS PM
ZE NL NM NS ZE PS PM PL
PS NM NS ZE PS PM PL PL
PM NS ZE PS PM PL PL PL
PL ZE PS PM PL PL PL PL

Table 1: Fuzzy Rule-Base

the universe of discourse fore(k) and∆e(k) is [−1,1], while the universe of discourse for the control
output is set to [-0.75, 0.75] to bound the range of the control signal.

Linguistic variables describe the input/output variablesin fuzzy control. For instance, two inputs to
the fuzzy controller at timekSPareerror, i.e., fuzzifiede(k), andchange in error, i.e., fuzzified∆e(k).
Also, the output from the FLC is calledcontrol signal−the required workload adjustment expressed
linguistically.

Linguistic variables are associated with linguistic values to describe characteristics of the variables.
A linguistic variableerror, for example, could be associated with linguistic values Large, Small, or
Zero at a sampling point. Figure 3 shows linguistic values for the linguistic variableserror, change in
error, and workloadcontrol signalused in this paper.

A set of IF premiseTHEN consequentlinguistic rules are used to map the inputs to output(s) of a
FLC. For example, iferror = NL andchange in error= NM at thekth sampling point, i.e., timekSP,
then the system is overloaded and the degree of overload is increasing considerably according to Eq 2
and Eq 3. Thus, the corresponding rule in Table 1 generates a NL signal that dictates the real-time
system to significantly reduce the load to achieveUs. Therule-basein Table 1 has a set of IF-THEN
rules stating how to achieve the utilization set-point according to the currenterror andchange in error.
(The design of the rule-base in Table 1 is discussed in Section 3.2).

A membership function (MF) in Figure 3 quantifies thecertaintyane(k), ∆e(k), or ∆w(k) value to
be associated with a specific linguistic value. Specifically, the horizontal axis of Figure 3 represents
e(k), ∆e(k), or ∆w(k), while the vertical axis indicates the membership value. For MFs (except for the
leftmost or rightmost ones), we use symmetric triangles of an equal base and 50% overlap with adjacent
MFs, similar to [19, 1].

Unlike traditional set theory, in fuzzy set theory underlying fuzzy control theory, set membership
is not binary but continuous to deal with uncertainties [20,21, 1]. Thus, a fuzzy input or output may
belong to more than one sets−maximum two adjacent sets in Figure 3−with different certainty values.
For example, ife(k) =−0.25, thene(k) belongs to the fuzzy set NS in Figure 3 with certainty 1, which
is expressed as:µNS(−0.25) = 1. If ∆e(k) = 0.0625,µZE(0.0625) = 0.75 andµPS(0.0625) = 0.25.

Based on the fuzzifiede(k) and∆e(k), the inference mechanism in Figure 2 determines which rules
to apply at thekth sampling point. Thus, in the previous example, the IF-THEN rules, rule(NS,ZE) =
NS and rule(NS, PS) = ZE, in Table 1 apply. To compute the certainty value(s) of the corresponding IF
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premiseTHEN consequentrule(s), we take the minimum between the certainty values ofthe premise,
i.e.,e(k) and∆e(k), because the consequent cannot be more certain than the premise [1, 19, 22]. Thus,
µ(NS,ZE) = min{1,0.75} = 0.75 andµ(NS,PS) = min{1,0.25} = 0.25 in the previous example.

Note that maximum four rules apply at a sampling point, sincethe error or change in error can belong
to up to two MFs in Figure 3. Thus, the worst case time complexity of our fuzzy logic control is O(1).
Also, storing the rule-base (Table 1) consumes little memory.

Finally, the control signal is computed via defuzzification. Let i and j (1≤ i, j ≤ 7) represent the row
and column indexes in Table 1. Further, letµ(i, j) denote the certainty of the correspondingrule(i, j)
in the table derived as described before and letc(i, j) denote the center of the MF of therule(i, j)’s
consequent. For triangle MFs, the center is the middle of thetriangle’s base and the fuzzy utilization
control output is [1]:

∆w(k) =
∑i, j c(i, j) ·µ(i, j)

∑i, j µ(i, j)
(9)

In Figure 3, the center ofNSandZE is −0.25 and 0.0, respectively. Thus, in the previous example,
∆w(k) = ((−0.25) ·0.75+(0.0) ·0.25)/(0.75+0.25) = −0.1875.

3.2. Fuzzy Rule-Base Design

1

1
2 3 5

4
u(k)

Time

Overshoot

Undershoot

Set−point

Saturation

Figure 4: Utilization Control Characteristics

As shown in Figure 4, there are five zones that characterize dynamic real-time system’s behaviors
from which we derive the rule-base for utilization control in Table 1.

Zone 1. e(k) ≥ 0 and∆e(k) ≤ 0: In this zone, the actual utilization is smaller than the set point, but it
comes closer to the set point2. The control signal to be applied is carefully determined bycomparing
the magnitude of ”e(k)” and ”∆e(k)” where ”e(k)” and ”∆e(k)” represent the fuzzifiede(k) and∆e(k),
since the current workload may be lower than, equal to, or higher than the convergent loadW.

• If |”e(k)” | > |”∆e(k)” | then w̃(k) ≥ 0 in Eq. 8; that is, the current load is lower than W. For
example, if ”e(k)” ∈ PM,PL and ”∆e(k)” ∈ NS, then the current load is lower than W. In this

2Note that, in Zones 1−4, e(k) and∆e(k) are not both zero at the same time. In only Zone 5,e(k) and∆e(k) can be zero
at the same time.
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case, the utilization is increasing too slow. Thus, the controller should apply a positive signal to
further increase the load. As a result,∆w(k) > 0.

• If |”e(k)” | = |”∆e(k)” |, thenw̃(k) = 0 in Eq. 8. For example, if ”e(k)” ∈ PSand ”∆e(k)” ∈ NS,
then the current load is equal to W ( ˜w(k) = 0). Thus,∆w(k) = 0.

• If |”e(k)” | < |”∆e(k)” |, then w̃(k) < 0. For example, if ”e(k)” ∈ PS and ”∆e(k)” ∈ NM,NL,
then the current load is higher than W. In this case, the utilization increases too fast. Thus, the
controller applies a negative signal,∆w(k) < 0, to avoid an overshoot.

Zone 2. e(k) < 0 and∆e(k)≤ 0: In this zone, the utilization is higher than the set-pointand it is further
increasing. It indicates that the current load is higher than W; that is,w̃(k) < 0. Hence, the controller
applies∆w(k) < 0 to reverse the current trend.

Zone 3. e(k) ≤ 0 and∆e(k) ≥ 0: In this zone, the utilization is higher than the set point,but it comes
closer to the set point. The control signal should be carefully determined by comparing the magnitude
of ”e(k)” and ”∆e(k)” as the current workload value may be lower than, equal to, orhigher than W
value.

• If |”e(k)” | > |”∆e(k)” |, thenw̃(k) < 0. For example, if ”e(k)” ∈ NM,NL and ”∆e(k)” ∈ PSthen
the current load is higher than W; that is, ˜w(k) < 0. As the utilization is decreasing too slow, the
controller should apply a negative signal to further reducethe load.

• If |”e(k)” | = |”∆e(k)” |, thenw̃(k) = 0. For example, if ”e(k)” ∈ NSand ”∆e(k)” ∈ PS, then the
current load is equal to W. Thus,∆w(k) = 0.

• If |”e(k)” | < |”∆e(k)” |, thenw̃(k) > 0. For example, if ”e(k)” ∈ NSand ”∆e(k)” ∈ PM,PL, then
the current load is lower than W. The utilization is decreasing too fast in this case. Thus, the
controller should apply a positive signal to increase the load to supportUs, i.e.,∆w(k) > 0.

Zone 4. e(k) > 0 and∆e(k) ≥ 0: In this zone, the actual utilization is lower than the set-point and
it is further decreasing. It indicates that the current workload is lower than W, i.e., ˜w(k) > 0. Thus,
∆w(k) > 0.

Zone 5. |e(k)| ≤ ε and|∆e(k)| ≤ ε whereε is a small predefined real number: In this case, the real-
time system is in the steady state.∆w(k) = 0, as the current workload is equal to W, i.e., ˜w(k) =
0. In Section 4, we prove that the fuzzy closed-loop system asymptotically convergences to theε
neighborhood of the set-point.

To summarize, the relationship between the control output and inputs in Table 1 can be formulated
in linguistic terms:

”∆w(k)” = ”e(k)” + ”∆e(k)”

The linguistic value of ” ˜w(k)” can be determined from these five zones. Our fuzzy logic rule-base
containing the five zones implies the following linguistic equation:

” w̃(k)” = ”∆w(k)” (10)
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which can be validated by inspecting the rule base and explanation of the fuzzy control actions in the
five zones. In our rule-base, the sign of∆w(k) is equal to the sign of ˜w(k). This is because, in each
zone, the sign of∆w(k) is determined based on the sign of ˜w(k) as discussed earlier in this subsection.
Also, the control signal’s magnitude is proportional to thedifference between W and current load.

4. Stability Analysis and Tuning

In this section, the stability of the closed-loop system is analyzed and the control gains, i.e.,Ke,K∆e

andK∆w in Figure 2, are tuned.

4.1. Stability Analysis

In this paper, we prove the stability of our fuzzy closed-loop system via the Lyapunov Direct Method
[12, 1].

Theorem 4.1 Lyapunov Direct Method [12, 1]. If the following conditions are true for an arbitrary
function V(x(k)) : Rn → R where n≥ 1,

V(x(k)) = 0, i f x(k) = 0

V(x(k)) > 0, i f x(k) ∈ Rn−{0}

V(x(k+1))−V(x(k)) < 0

then V(x(k)) is a Lyapunov candidate function (LCF) in some region D∈ Rn which contains the ori-
gin. V(x(k)) guarantees the asymptotic stability around zero. (Any nonzero equilibrium point can be
transformed to the origin via change of variables.)

We apply Theorem 4.1 to prove the stability of our closed loopfuzzy control system. Specifically,
we choose the LCF function as:

V(w̃(k+1)) = w̃ 2(k+1). (11)

Theorem 4.2 If the V(w̃(k+ 1)) has the LCF function properties, then the closed loop fuzzy control
system is asymptotically stable around the set point.

Proof The LCF function has the following properties:

V(w̃(k+1)) = 0, i f w̃(k+1) = 0

V(w̃(k+1)) > 0, i f w̃(k+1) ∈ R−{0}

To meet all the requirements to be a LCF, this function should also have the following property:

V(w̃(k+1))−V(w̃(k)) = w̃ 2(k+1)− w̃ 2(k) < 0 (12)
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Using Eq. 7 and Eq. 8, we get:

w̃(k+1) = W−w(k+1)

= W− [w(k)+K∆w∆w(k)]

= W−w(k)−K∆w∆w(k)

= w̃(k)−K∆w∆w(k) (13)

From Eq. 12 and Eq. 13, we derive that:

V(w̃(k+1))−V(w̃(k)) = [w̃(k)−K∆w∆w(k)]2− w̃ 2(k)

= K∆w∆w(k) [K∆w∆w(k)−2w̃(k)] < 0

To ensure this inequality, the following constraints should be met:

sign(w̃(k)) = sign(∆w(k)) (14)

|∆w(k)| <
2

K∆w
|w̃(k)| (15)

The first constraint (Eq. 14) is met, since “ ˜w(k)” = “∆w(k)” (Eq. 10). As W and thus ˜w(k) are not
measurable directly, we can change the second constraint (Eq. 15) by replacing ˜w(k) with a small
positive real numberε:

|∆w(k)| <
2

K∆w
ε, ε ∈ R+ (16)

If this inequality holds for ˜w(k) ≥ ε, thenw(k) will asymptotically converge to anε neighborhood
of the convergent load. Specifically, 0< K∆w < 2/0.75 since∆w(k) = [−0.75,0.75] as discussed in
Section 3.1. This concludes the proof of the stability of ourfuzzy closed-loop system.

4.2. Fuzzy Controller Tuning
We need to tuneKe,K∆e andK∆w in Figure 2 for good performance. To support the stability ofthe

fuzzy closed-loop system, we must meet the condition that 0< K∆w < 2.6 as derived in Theorem 4.2.
K∆w of a larger value reduces the settling time, but it may cause ahigher overshoot. In this paper, we set
K∆w = 1 to balance the settling time and overshoot, while focusingslightly more on reducing potential
overshoots. Generally,K∆w has the largest effect on the system performance, because itdirectly affects
the stability in addition to the settling time and overshoot. On the other hand,Ke andK∆e do not directly
affect the stability according to Theorem 4.2. In this paper, Ke is set to 1 so that the controller can utilize
the whole rule base for the error input. On the other hand, we set K∆e = 0.1 to damp potentially jittery
change-in-error values. Generally, a largeK∆e reduces the settling time, but increases the overshoot.

5. Performance Evaluation

In this section, a description of the experimental set-up for evaluating the FLC, MPC, and PIC is
given. Also, the performance evaluation results are discussed.
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5.1. Experimental Settings

We have implemented the FLC, MPC, and PIC in the RTAI 3.6 [13]. The Linux kernel version
2.6.22 is installed on a 2.3GHz Pentium 4 machine with 1 GB RAM.We have modified the real-time
scheduler provided by RTAI to collect performance statistics and implement the controllers. We have
implemented and tuned the PIC as described in [2]. Also, we have implemented the MPC described in
[3] with the prediction horizonP = 2 and control horizonM = 1.

Name Value
Set-point (Us) 0.7
Sampling period (SP) 1 second
Algorithm EDF
Deadline semantics Firm
Run length 300 seconds
Runs per load profile 10
Load profiles Ramp, Step & Sawtooth

Table 2: System parameters

As described in Section 2, all the controllers output the period adaptation factorFe in Eq. 4 used to
adapt the periods of real-time tasks in the system. Each controller is invoked at every sampling point
to compute the required workload adjustment to support the utilization set-pointUs. In this paper, SP
is set to 1s andUs is set to 0.7 as shown in Table 2.

Tasks are scheduled according to the EDF (Earliest DeadlineFirst) algorithm. The deadlines are
firm; that is, a task instance is canceled as soon as it misses its deadline. Each job is associated with an
actual execution time:AETi j = α ·EETi j whereEETi j is the estimated execution time of jobτi j in the
system andα is theexecution time factor, similar to [2, 3]. In this way, fair performance comparisons
are possible among the PIC, MPC, and FLC.
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Figure 5: Tested Workloads

Note that the scheduler and controllers are unaware of actual execution times. Whenα > 1, they
may underestimate execution times. As a result, they may overload the system, missing deadlines. On
the other hand, whenα < 1, they may underutilize the system. Thus, we evaluate how closely the
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FLC, MPC, and PIC can supportUs when α varies. To this end, we have created several different
experimental load profiles summarized in Table 2. For each profile, 10 runs are executed and the
average of the 10 runs is reported. Each run executes a randomtask set for 300s.

In Figure 5, theramp load continuously increases asα increases from 0.3 to 5 over 300s. Thestep
load tests the robustness of the controller given a sudden load increase and decrease in a step manner.
There are five variations of the step load. Each of them startswith α = 1 and an initial load of 60%. At
100s,α is increased to 2, 3, 4, and 5 for Step-2, Step-3, Step-4, and Step-5, respectively. Further,α is
decreased to 0.3 at 200s. The ramp and step workloads are widely used to evaluate control performance
[7, 9, 2, 3]. We use them for fair performance comparisons between the fuzzy controller and the PIC
[2] and MPC [3]. In addition, we consider thesawtooth loadthat concatenates multiple ramp loads to
stress the real-time system by increasing or decreasingα at a constant rate.

At the beginning of an experimental run, each taskτi runs at its minimum periodTi,min. To satisfy
Eq 1, the maximum period of a taskτi is:

Ti,max= xTi,min (17)

For the set of experiments presented in Sections 5.2.1− 5.2.3, we setx = 4 and use the ramp, step,
and sawtooth workloads described above. For the experiments presented in Section 5.2.4, we fixα to
2 and randomly choosex in Eq 17 in the range[2,6] for each task. Also, we increase the number of
tasks by six times at 100s in a step manner. This workload is called TASKx6 workload in this paper.
In Section 5.2.5, we use a different workload, called Step5-Random, wherex for each task is randomly
selected in the range[2,6]. Moreover,α is abruptly increased to 5 at 100s and decreased to 0.3 at 200s
to further stress-test the performance of the tested approaches to utilization management.

5.2. Experiment Results

In this section, the performance evaluation results of the FLC, MPC, and PIC for the ramp, step,
and sawtooth workloads are discussed. In our experiments, all the tested approaches admitted all real-
time tasks, because theestimated total utilizationcomputed based on the estimated execution times is
smaller than 1−the schedulable utilization bound of the EDF scheduling algorithm [6]. Also, no task
was suspended in this paper.

In our experiments, all the tested closed-loop approaches successfully supported theaverageutiliza-
tion set-point for most of the experiments by adapting task periods according to the feedback control
signal as directed in Eq 6. Therefore, we focus on thetransientperformance results in the following.
Note that it is critical to manage not only the long-term average but also transient performance in a
mission-critical real-time system.

5.2.1. Ramp Workload
The results for the ramp load are given in Figure 6. The PIC hasnon-zero steady state errors that

do not decay until the end of the experiment at 300s as shown inFigure 6. Thus, we observe that the
PIC clearly fails to support the set-point. In contrast, theMPC cancels an initial utilization overshoot.
MPC’s settling time is approximately 40s. As shown in Figure 6, the FLC’s settling time is only about
10s. Also, it shows the smallest overshoot. From these results, we observe that the FLC achieves the
best performance among the tested approaches for the ramp load.
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Figure 6: Ramp Results

To further analyze the set-point tracking performance, we define the aggregated errorEagg:

Eagg =

√
1
n

n

∑
k=1

(Us−u(k))2 (18)

wheren is the number of the sampling points in one experimental run.For the ramp workloads, the
FLC reducesEagg by 56% and 74% compared to the MPC and PIC. Specifically,Eagg = 0.0056 for
the FLC, whileEagg = 0.0127 andEagg = 0.0215 for MPC and PIC, respectively. Overall, the FLC
supports the smallest deviations from the set-point and shortest settling times for the ramp load.

For all the tested workloads, the FLC, MPC, and PIC adjusts the task periods in a similar fashion.
The average period adaptations achieved by them are almost equal. However, the transient period
adaptation of the FLC is faster than the others. This result shows the higher adaptivity of the FLC to
dynamic workloads.
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Figure 7: Step-5 Results

5.2.2. Step Workloads
For the clarity of presentation without repetitive discussions, we only show the results for the Step-5

load under which the real-time system is most stressed. Figure 7 shows the results for the Step-5 load
that tests the robustness of the controllers against abruptchanges in task execution times. Since theα
value suddenly jumps from 1 to 5 at 100s, all the tested approaches show utilization overshoots. As a
result, the utilization saturates at 1 at 100s in Figure 7. However, the FLC’s settling time is only about
7s as shown in Figure 7, which is less than half the settling time of the MPC. The FLC’s settling time
is approximately seven times shorter than the PIC’s settlingtime of 55s.

Further, the FLC achieves the smallestEagg. Specifically,Eagg = 0.0611,0.0714, and 0.1227 for the
FLC, MPC, and PIC, respectively. Thus, the FLC reducesEagg by approximately 50% compared to
the PIC. Furthermore, it reducesEagg by more than 14% compared to the MPC with the less complex
controller design than the MPC.

5.2.3. Sawtooth Workload
The performance results for the sawtooth load are shown in Figure 8. Similar to the ramp and step

load results, the FLC shows the most reliable performance.
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Figure 8: Sawtooth Results
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In Figure 8, the FLC shows the substantially smaller utilization overshoots and undershoots than the
MPC and PIC. The FLC achieves the fastest convergence to the set-point, even though it is difficult
to numerically compare the settling time of the tested approaches due to the highly dynamic system
behavior as shown in Figure 8.

Moreover,Eagg= 0.0568,0.073, and 0.0994 for the FLC, MPC, and PIC. Thus, the FLC reducesEagg

by more than 22% and 42% compared to the MPC and PIC, respectively. These results demonstrate the
effectiveness and robustness of fuzzy control.

5.2.4. TASKx6 Workload
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Figure 9: TASKx6 Results

In the TASKx6 workload, we abruptly increase the number of real-time tasks in the system rather
than increasing theα value, which is kept fixed atα = 2. The number of tasks in the system is increased
by 6 times at 100s. As a result, the load increases from 70% to 420% at 100s. Also, thex value in
Eq. 17 is randomly selected within the range[2,6] for each task. As shown in Figure 9, FLC improves
the settling time by 29% and 72% compared to MPC and PIC, respectively. Also, it decreasesEagg by
17% and 32%, while reducing the total number of deadline misses by 50% and 46% over MPC and
PIC, respectively.
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5.2.5. Step5-Random Workload
In this experiment,x value is randomly selected in the range [2, 6]. In addition,α is increased to 5

at 100s and reduced to 0.3 at 200s. The results are presented in Figure 10. FLC decreases the settling
time by 63% and 84%, while reducingEagg by 29% and 35% over MPC and PIC, respectively. Further,
FLC reduces the number of total deadline misses by 59% and 52%compared to MPC and PIC.
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Figure 10: Step5-Random Results

Overall, the FLC achieves the most robust control performance based on the logical understand-
ing of the system behavior requiring no mathematical modeling of the underlying controlled system,
which is tied to an operating range or subject to modeling errors due to simplified approximations or
online/offline statistical modeling errors. Especially, the FLC is more robust than the PIC and MPC
when the load changes fast.

Table 3 summarizes the settling time,Eagg, and total number of deadline misses normalized to the
FLC. In this way, we measure the performance of the tested approaches in terms of the accuracy of
set-point tracking, the timeliness of system adaptation under overload or underutilization conditions,
and completion ratio. We consider these features, because they are very important to avoid and recover
quickly from overload or underutilization conditions, if any, in a real-time system. From Table 3, we
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Load Approach Norm. Settling Time Norm. Error Norm. Total Misses

Ramp
FLC 1 (10s) 1 (0.0056) 0
MPC 4 2.27 0
PIC 1.1 (persistentess) 3.84 0

FLC 1 (4s) 1 (0.0415) 1 (2716)
Step 2 MPC 1.25 1.12 2.60

PIC 3.25 1.4 1.31

FLC 1 (6s) 1 (0.0490) 1 (6994)
Step 3 MPC 1.33 1.21 2.65

PIC 3.66 1.72 1.87

FLC 1 (7s) 1 (0.0559) 1 (9477)
Step 4 MPC 1.29 1.19 2.54

PIC 4.28 1.88 1.96

FLC 1 (7s) 1 (0.0611) 1 (11198)
Step 5 MPC 2.87 1.17 2.32

PIC 5.71 2 1.96

Sawtooth
FLC 1 (1s) 1 (0.0568) 1 (7430)
MPC 3 1.29 1.40
PIC 24 1.75 3.46

FLC 1 (7s) 1 (0.0286) 1 (4058)
TASKx6 MPC 1.40 1.21 2

PIC 3.57 1.47 1.84

FLC 1 (7s) 1 (0.0733) 1 (23531)
Step5-Random MPC 2.71 1.41 2.45

PIC 6.14 1.54 2.08

Table 3: Performance Summary

observe that the FLC decreases the settling time by up to 75% and 96%,Eagg by up to 56% and 74%,
and number of total deadline misses by up to 62% and 71% compared to the MPC and PIC.

Controller CPU Utilization Code Size
PIC 0.25% 3 lines
FLC 0.53% 100 lines
MPC 0.95% 600 lines

Table 4: Control Overhead Comparisons

Finally, Table 4 shows the overhead of the tested controllers. All the controllers are lightweight and
consume less than 1% CPU utilization for the sampling period of 1s. The PIC has the lowest overhead
while the MPC has the highest overhead due to the complexity.The FLC consumes approximately
0.5% CPU utilization and a small amount of memory.
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6. Related Work

Feedback control has been applied to manage the real-time system performance in dynamic environ-
ments. A number of existing approaches for feedback controlof real-time performance such as [2, 8]
mathematically model real-time system behaviors via difference equations. To apply classical linear
control theory, real-time system behaviors are approximated in a piecewise linear manner. As control
gains are determined offline, however, these approaches mayfail when workloads or system behavioral
characteristics deviate from the ones used for offline modeling. Many existing linear control theoretic
approaches share this problem [9, 23].

Our QoS adaptation scheme via task period adaptation is similar to [18]. Abeni et al. [24] takes an
alternative approach where the task budget rather than the task period is adapted under overload. Our
approach can be integrated with the adaptive reservation scheme [24] too. This is reserved for future
work.

Constrained predictive control techniques are applied to control the CPU utilization in a multipro-
cessor environment [3, 11]. Self-tuning regulators based on adaptive control theory [12] estimate the
system model for automatic tuning of the controllers to manage the performance of e-commerce servers
[25]. It is shown that a self-tuning regulator can converge to the target performance, if a set of conditions
are met [25]. Adaptive control is also applied to differentiated web caching services [26]. However,
model predictive control and adaptive control approaches are subject to online modeling errors. There-
fore, they can only handle moderate nonlinearity. In contrast, fuzzy logic control is very effective to
manage the performance of nonlinear, complex systems due tothe model-free nature [1].

Fuzzy control theory has been applied to maximize the profit in an e-mail server [27]. eQoS [22]
applies fuzzy control theory to differentiate services in aweb server. However, they do not consider
real-time constraints.

Little prior work has been done to apply fuzzy control theoryto real-time performance management.
Li et al. [15] apply fuzzy control to visual tracking; however, they do not consider the utilization control
problem. Further, they do not analyze the stability of the fuzzy closed-loop system. Suzer et al. [14]
have developed a fuzzy utilization controller. However, this paper presents a more advanced fuzzy rule-
base to reduce potential overshoots and undershoots. Further, [14] does not provide stability analysis
and evaluates performance via simulation.

7. Conclusion

In a number of real-time applications such as target tracking and traffic control, it is challenging to
support the desired real-time performance. To closely support the specified utilization set-point in the
presence of dynamic workloads and system behaviors, we design a fuzzy closed-loop system, while
mathematically proving the stability of the fuzzy closed-loop system. Also, extensive experiments
are performed to thoroughly evaluate the fuzzy, PI [2], and model predictive [3] controllers in a real-
time kernel. Among the tested approaches, our fuzzy logic controller shows the smallest overshoots,
undershoots, and reference tracking error as well as the shortest settling time to the set-point across all
the tested workloads. To the best of our knowledge, no prior work has designed a fuzzy control system
for real-time performance management with formal stability analysis, while comparing it to the PI and
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model predictive controllers. In the future, we will develop more advanced fuzzy control techniques
for real-time performance management.
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